GNU Linux-libre 4.19.211-gnu1
[releases.git] / fs / nfsd / nfscache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/highmem.h>
16 #include <linux/log2.h>
17 #include <linux/hash.h>
18 #include <net/checksum.h>
19
20 #include "nfsd.h"
21 #include "cache.h"
22
23 #define NFSDDBG_FACILITY        NFSDDBG_REPCACHE
24
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE      64
31
32 struct nfsd_drc_bucket {
33         struct list_head lru_head;
34         spinlock_t cache_lock;
35 };
36
37 static struct nfsd_drc_bucket   *drc_hashtbl;
38 static struct kmem_cache        *drc_slab;
39
40 /* max number of entries allowed in the cache */
41 static unsigned int             max_drc_entries;
42
43 /* number of significant bits in the hash value */
44 static unsigned int             maskbits;
45 static unsigned int             drc_hashsize;
46
47 /*
48  * Stats and other tracking of on the duplicate reply cache. All of these and
49  * the "rc" fields in nfsdstats are protected by the cache_lock
50  */
51
52 /* total number of entries */
53 static atomic_t                 num_drc_entries;
54
55 /* cache misses due only to checksum comparison failures */
56 static unsigned int             payload_misses;
57
58 /* amount of memory (in bytes) currently consumed by the DRC */
59 static unsigned int             drc_mem_usage;
60
61 /* longest hash chain seen */
62 static unsigned int             longest_chain;
63
64 /* size of cache when we saw the longest hash chain */
65 static unsigned int             longest_chain_cachesize;
66
67 static int      nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
68 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
69                                             struct shrink_control *sc);
70 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
71                                            struct shrink_control *sc);
72
73 static struct shrinker nfsd_reply_cache_shrinker = {
74         .scan_objects = nfsd_reply_cache_scan,
75         .count_objects = nfsd_reply_cache_count,
76         .seeks  = 1,
77 };
78
79 /*
80  * Put a cap on the size of the DRC based on the amount of available
81  * low memory in the machine.
82  *
83  *  64MB:    8192
84  * 128MB:   11585
85  * 256MB:   16384
86  * 512MB:   23170
87  *   1GB:   32768
88  *   2GB:   46340
89  *   4GB:   65536
90  *   8GB:   92681
91  *  16GB:  131072
92  *
93  * ...with a hard cap of 256k entries. In the worst case, each entry will be
94  * ~1k, so the above numbers should give a rough max of the amount of memory
95  * used in k.
96  */
97 static unsigned int
98 nfsd_cache_size_limit(void)
99 {
100         unsigned int limit;
101         unsigned long low_pages = totalram_pages - totalhigh_pages;
102
103         limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
104         return min_t(unsigned int, limit, 256*1024);
105 }
106
107 /*
108  * Compute the number of hash buckets we need. Divide the max cachesize by
109  * the "target" max bucket size, and round up to next power of two.
110  */
111 static unsigned int
112 nfsd_hashsize(unsigned int limit)
113 {
114         return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
115 }
116
117 static u32
118 nfsd_cache_hash(__be32 xid)
119 {
120         return hash_32(be32_to_cpu(xid), maskbits);
121 }
122
123 static struct svc_cacherep *
124 nfsd_reply_cache_alloc(void)
125 {
126         struct svc_cacherep     *rp;
127
128         rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
129         if (rp) {
130                 rp->c_state = RC_UNUSED;
131                 rp->c_type = RC_NOCACHE;
132                 INIT_LIST_HEAD(&rp->c_lru);
133         }
134         return rp;
135 }
136
137 static void
138 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
139 {
140         if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
141                 drc_mem_usage -= rp->c_replvec.iov_len;
142                 kfree(rp->c_replvec.iov_base);
143         }
144         list_del(&rp->c_lru);
145         atomic_dec(&num_drc_entries);
146         drc_mem_usage -= sizeof(*rp);
147         kmem_cache_free(drc_slab, rp);
148 }
149
150 static void
151 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
152 {
153         spin_lock(&b->cache_lock);
154         nfsd_reply_cache_free_locked(rp);
155         spin_unlock(&b->cache_lock);
156 }
157
158 int nfsd_reply_cache_init(void)
159 {
160         unsigned int hashsize;
161         unsigned int i;
162         int status = 0;
163
164         max_drc_entries = nfsd_cache_size_limit();
165         atomic_set(&num_drc_entries, 0);
166         hashsize = nfsd_hashsize(max_drc_entries);
167         maskbits = ilog2(hashsize);
168
169         status = register_shrinker(&nfsd_reply_cache_shrinker);
170         if (status)
171                 return status;
172
173         drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
174                                         0, 0, NULL);
175         if (!drc_slab)
176                 goto out_nomem;
177
178         drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
179         if (!drc_hashtbl) {
180                 drc_hashtbl = vzalloc(array_size(hashsize,
181                                                  sizeof(*drc_hashtbl)));
182                 if (!drc_hashtbl)
183                         goto out_nomem;
184         }
185
186         for (i = 0; i < hashsize; i++) {
187                 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
188                 spin_lock_init(&drc_hashtbl[i].cache_lock);
189         }
190         drc_hashsize = hashsize;
191
192         return 0;
193 out_nomem:
194         printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
195         nfsd_reply_cache_shutdown();
196         return -ENOMEM;
197 }
198
199 void nfsd_reply_cache_shutdown(void)
200 {
201         struct svc_cacherep     *rp;
202         unsigned int i;
203
204         unregister_shrinker(&nfsd_reply_cache_shrinker);
205
206         for (i = 0; i < drc_hashsize; i++) {
207                 struct list_head *head = &drc_hashtbl[i].lru_head;
208                 while (!list_empty(head)) {
209                         rp = list_first_entry(head, struct svc_cacherep, c_lru);
210                         nfsd_reply_cache_free_locked(rp);
211                 }
212         }
213
214         kvfree(drc_hashtbl);
215         drc_hashtbl = NULL;
216         drc_hashsize = 0;
217
218         kmem_cache_destroy(drc_slab);
219         drc_slab = NULL;
220 }
221
222 /*
223  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
224  * not already scheduled.
225  */
226 static void
227 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
228 {
229         rp->c_timestamp = jiffies;
230         list_move_tail(&rp->c_lru, &b->lru_head);
231 }
232
233 static long
234 prune_bucket(struct nfsd_drc_bucket *b)
235 {
236         struct svc_cacherep *rp, *tmp;
237         long freed = 0;
238
239         list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
240                 /*
241                  * Don't free entries attached to calls that are still
242                  * in-progress, but do keep scanning the list.
243                  */
244                 if (rp->c_state == RC_INPROG)
245                         continue;
246                 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
247                     time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
248                         break;
249                 nfsd_reply_cache_free_locked(rp);
250                 freed++;
251         }
252         return freed;
253 }
254
255 /*
256  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
257  * Also prune the oldest ones when the total exceeds the max number of entries.
258  */
259 static long
260 prune_cache_entries(void)
261 {
262         unsigned int i;
263         long freed = 0;
264
265         for (i = 0; i < drc_hashsize; i++) {
266                 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
267
268                 if (list_empty(&b->lru_head))
269                         continue;
270                 spin_lock(&b->cache_lock);
271                 freed += prune_bucket(b);
272                 spin_unlock(&b->cache_lock);
273         }
274         return freed;
275 }
276
277 static unsigned long
278 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
279 {
280         return atomic_read(&num_drc_entries);
281 }
282
283 static unsigned long
284 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
285 {
286         return prune_cache_entries();
287 }
288 /*
289  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
290  */
291 static __wsum
292 nfsd_cache_csum(struct svc_rqst *rqstp)
293 {
294         int idx;
295         unsigned int base;
296         __wsum csum;
297         struct xdr_buf *buf = &rqstp->rq_arg;
298         const unsigned char *p = buf->head[0].iov_base;
299         size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
300                                 RC_CSUMLEN);
301         size_t len = min(buf->head[0].iov_len, csum_len);
302
303         /* rq_arg.head first */
304         csum = csum_partial(p, len, 0);
305         csum_len -= len;
306
307         /* Continue into page array */
308         idx = buf->page_base / PAGE_SIZE;
309         base = buf->page_base & ~PAGE_MASK;
310         while (csum_len) {
311                 p = page_address(buf->pages[idx]) + base;
312                 len = min_t(size_t, PAGE_SIZE - base, csum_len);
313                 csum = csum_partial(p, len, csum);
314                 csum_len -= len;
315                 base = 0;
316                 ++idx;
317         }
318         return csum;
319 }
320
321 static bool
322 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
323 {
324         /* Check RPC XID first */
325         if (rqstp->rq_xid != rp->c_xid)
326                 return false;
327         /* compare checksum of NFS data */
328         if (csum != rp->c_csum) {
329                 ++payload_misses;
330                 return false;
331         }
332
333         /* Other discriminators */
334         if (rqstp->rq_proc != rp->c_proc ||
335             rqstp->rq_prot != rp->c_prot ||
336             rqstp->rq_vers != rp->c_vers ||
337             rqstp->rq_arg.len != rp->c_len ||
338             !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
339             rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
340                 return false;
341
342         return true;
343 }
344
345 /*
346  * Search the request hash for an entry that matches the given rqstp.
347  * Must be called with cache_lock held. Returns the found entry or
348  * NULL on failure.
349  */
350 static struct svc_cacherep *
351 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
352                 __wsum csum)
353 {
354         struct svc_cacherep     *rp, *ret = NULL;
355         struct list_head        *rh = &b->lru_head;
356         unsigned int            entries = 0;
357
358         list_for_each_entry(rp, rh, c_lru) {
359                 ++entries;
360                 if (nfsd_cache_match(rqstp, csum, rp)) {
361                         ret = rp;
362                         break;
363                 }
364         }
365
366         /* tally hash chain length stats */
367         if (entries > longest_chain) {
368                 longest_chain = entries;
369                 longest_chain_cachesize = atomic_read(&num_drc_entries);
370         } else if (entries == longest_chain) {
371                 /* prefer to keep the smallest cachesize possible here */
372                 longest_chain_cachesize = min_t(unsigned int,
373                                 longest_chain_cachesize,
374                                 atomic_read(&num_drc_entries));
375         }
376
377         return ret;
378 }
379
380 /*
381  * Try to find an entry matching the current call in the cache. When none
382  * is found, we try to grab the oldest expired entry off the LRU list. If
383  * a suitable one isn't there, then drop the cache_lock and allocate a
384  * new one, then search again in case one got inserted while this thread
385  * didn't hold the lock.
386  */
387 int
388 nfsd_cache_lookup(struct svc_rqst *rqstp)
389 {
390         struct svc_cacherep     *rp, *found;
391         __be32                  xid = rqstp->rq_xid;
392         u32                     proto =  rqstp->rq_prot,
393                                 vers = rqstp->rq_vers,
394                                 proc = rqstp->rq_proc;
395         __wsum                  csum;
396         u32 hash = nfsd_cache_hash(xid);
397         struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
398         int type = rqstp->rq_cachetype;
399         int rtn = RC_DOIT;
400
401         rqstp->rq_cacherep = NULL;
402         if (type == RC_NOCACHE) {
403                 nfsdstats.rcnocache++;
404                 return rtn;
405         }
406
407         csum = nfsd_cache_csum(rqstp);
408
409         /*
410          * Since the common case is a cache miss followed by an insert,
411          * preallocate an entry.
412          */
413         rp = nfsd_reply_cache_alloc();
414         spin_lock(&b->cache_lock);
415         if (likely(rp)) {
416                 atomic_inc(&num_drc_entries);
417                 drc_mem_usage += sizeof(*rp);
418         }
419
420         /* go ahead and prune the cache */
421         prune_bucket(b);
422
423         found = nfsd_cache_search(b, rqstp, csum);
424         if (found) {
425                 if (likely(rp))
426                         nfsd_reply_cache_free_locked(rp);
427                 rp = found;
428                 goto found_entry;
429         }
430
431         if (!rp) {
432                 dprintk("nfsd: unable to allocate DRC entry!\n");
433                 goto out;
434         }
435
436         nfsdstats.rcmisses++;
437         rqstp->rq_cacherep = rp;
438         rp->c_state = RC_INPROG;
439         rp->c_xid = xid;
440         rp->c_proc = proc;
441         rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
442         rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
443         rp->c_prot = proto;
444         rp->c_vers = vers;
445         rp->c_len = rqstp->rq_arg.len;
446         rp->c_csum = csum;
447
448         lru_put_end(b, rp);
449
450         /* release any buffer */
451         if (rp->c_type == RC_REPLBUFF) {
452                 drc_mem_usage -= rp->c_replvec.iov_len;
453                 kfree(rp->c_replvec.iov_base);
454                 rp->c_replvec.iov_base = NULL;
455         }
456         rp->c_type = RC_NOCACHE;
457  out:
458         spin_unlock(&b->cache_lock);
459         return rtn;
460
461 found_entry:
462         nfsdstats.rchits++;
463         /* We found a matching entry which is either in progress or done. */
464         lru_put_end(b, rp);
465
466         rtn = RC_DROPIT;
467         /* Request being processed */
468         if (rp->c_state == RC_INPROG)
469                 goto out;
470
471         /* From the hall of fame of impractical attacks:
472          * Is this a user who tries to snoop on the cache? */
473         rtn = RC_DOIT;
474         if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
475                 goto out;
476
477         /* Compose RPC reply header */
478         switch (rp->c_type) {
479         case RC_NOCACHE:
480                 break;
481         case RC_REPLSTAT:
482                 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
483                 rtn = RC_REPLY;
484                 break;
485         case RC_REPLBUFF:
486                 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
487                         goto out;       /* should not happen */
488                 rtn = RC_REPLY;
489                 break;
490         default:
491                 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
492                 nfsd_reply_cache_free_locked(rp);
493         }
494
495         goto out;
496 }
497
498 /*
499  * Update a cache entry. This is called from nfsd_dispatch when
500  * the procedure has been executed and the complete reply is in
501  * rqstp->rq_res.
502  *
503  * We're copying around data here rather than swapping buffers because
504  * the toplevel loop requires max-sized buffers, which would be a waste
505  * of memory for a cache with a max reply size of 100 bytes (diropokres).
506  *
507  * If we should start to use different types of cache entries tailored
508  * specifically for attrstat and fh's, we may save even more space.
509  *
510  * Also note that a cachetype of RC_NOCACHE can legally be passed when
511  * nfsd failed to encode a reply that otherwise would have been cached.
512  * In this case, nfsd_cache_update is called with statp == NULL.
513  */
514 void
515 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
516 {
517         struct svc_cacherep *rp = rqstp->rq_cacherep;
518         struct kvec     *resv = &rqstp->rq_res.head[0], *cachv;
519         u32             hash;
520         struct nfsd_drc_bucket *b;
521         int             len;
522         size_t          bufsize = 0;
523
524         if (!rp)
525                 return;
526
527         hash = nfsd_cache_hash(rp->c_xid);
528         b = &drc_hashtbl[hash];
529
530         len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
531         len >>= 2;
532
533         /* Don't cache excessive amounts of data and XDR failures */
534         if (!statp || len > (256 >> 2)) {
535                 nfsd_reply_cache_free(b, rp);
536                 return;
537         }
538
539         switch (cachetype) {
540         case RC_REPLSTAT:
541                 if (len != 1)
542                         printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
543                 rp->c_replstat = *statp;
544                 break;
545         case RC_REPLBUFF:
546                 cachv = &rp->c_replvec;
547                 bufsize = len << 2;
548                 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
549                 if (!cachv->iov_base) {
550                         nfsd_reply_cache_free(b, rp);
551                         return;
552                 }
553                 cachv->iov_len = bufsize;
554                 memcpy(cachv->iov_base, statp, bufsize);
555                 break;
556         case RC_NOCACHE:
557                 nfsd_reply_cache_free(b, rp);
558                 return;
559         }
560         spin_lock(&b->cache_lock);
561         drc_mem_usage += bufsize;
562         lru_put_end(b, rp);
563         rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
564         rp->c_type = cachetype;
565         rp->c_state = RC_DONE;
566         spin_unlock(&b->cache_lock);
567         return;
568 }
569
570 /*
571  * Copy cached reply to current reply buffer. Should always fit.
572  * FIXME as reply is in a page, we should just attach the page, and
573  * keep a refcount....
574  */
575 static int
576 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
577 {
578         struct kvec     *vec = &rqstp->rq_res.head[0];
579
580         if (vec->iov_len + data->iov_len > PAGE_SIZE) {
581                 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
582                                 data->iov_len);
583                 return 0;
584         }
585         memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
586         vec->iov_len += data->iov_len;
587         return 1;
588 }
589
590 /*
591  * Note that fields may be added, removed or reordered in the future. Programs
592  * scraping this file for info should test the labels to ensure they're
593  * getting the correct field.
594  */
595 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
596 {
597         seq_printf(m, "max entries:           %u\n", max_drc_entries);
598         seq_printf(m, "num entries:           %u\n",
599                         atomic_read(&num_drc_entries));
600         seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
601         seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
602         seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
603         seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
604         seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
605         seq_printf(m, "payload misses:        %u\n", payload_misses);
606         seq_printf(m, "longest chain len:     %u\n", longest_chain);
607         seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
608         return 0;
609 }
610
611 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
612 {
613         return single_open(file, nfsd_reply_cache_stats_show, NULL);
614 }