GNU Linux-libre 6.9-gnu
[releases.git] / fs / nfsd / nfscache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE      64
31
32 struct nfsd_drc_bucket {
33         struct rb_root rb_head;
34         struct list_head lru_head;
35         spinlock_t cache_lock;
36 };
37
38 static struct kmem_cache        *drc_slab;
39
40 static int      nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42                                             struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44                                            struct shrink_control *sc);
45
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
68 nfsd_cache_size_limit(void)
69 {
70         unsigned int limit;
71         unsigned long low_pages = totalram_pages() - totalhigh_pages();
72
73         limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74         return min_t(unsigned int, limit, 256*1024);
75 }
76
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
82 nfsd_hashsize(unsigned int limit)
83 {
84         return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86
87 static struct nfsd_cacherep *
88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89                     struct nfsd_net *nn)
90 {
91         struct nfsd_cacherep *rp;
92
93         rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94         if (rp) {
95                 rp->c_state = RC_UNUSED;
96                 rp->c_type = RC_NOCACHE;
97                 RB_CLEAR_NODE(&rp->c_node);
98                 INIT_LIST_HEAD(&rp->c_lru);
99
100                 memset(&rp->c_key, 0, sizeof(rp->c_key));
101                 rp->c_key.k_xid = rqstp->rq_xid;
102                 rp->c_key.k_proc = rqstp->rq_proc;
103                 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104                 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105                 rp->c_key.k_prot = rqstp->rq_prot;
106                 rp->c_key.k_vers = rqstp->rq_vers;
107                 rp->c_key.k_len = rqstp->rq_arg.len;
108                 rp->c_key.k_csum = csum;
109         }
110         return rp;
111 }
112
113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115         if (rp->c_type == RC_REPLBUFF)
116                 kfree(rp->c_replvec.iov_base);
117         kmem_cache_free(drc_slab, rp);
118 }
119
120 static unsigned long
121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123         struct nfsd_cacherep *rp;
124         unsigned long freed = 0;
125
126         while (!list_empty(dispose)) {
127                 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128                 list_del(&rp->c_lru);
129                 nfsd_cacherep_free(rp);
130                 freed++;
131         }
132         return freed;
133 }
134
135 static void
136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137                             struct nfsd_cacherep *rp)
138 {
139         if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140                 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141         if (rp->c_state != RC_UNUSED) {
142                 rb_erase(&rp->c_node, &b->rb_head);
143                 list_del(&rp->c_lru);
144                 atomic_dec(&nn->num_drc_entries);
145                 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146         }
147 }
148
149 static void
150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151                                 struct nfsd_net *nn)
152 {
153         nfsd_cacherep_unlink_locked(nn, b, rp);
154         nfsd_cacherep_free(rp);
155 }
156
157 static void
158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159                         struct nfsd_net *nn)
160 {
161         spin_lock(&b->cache_lock);
162         nfsd_cacherep_unlink_locked(nn, b, rp);
163         spin_unlock(&b->cache_lock);
164         nfsd_cacherep_free(rp);
165 }
166
167 int nfsd_drc_slab_create(void)
168 {
169         drc_slab = KMEM_CACHE(nfsd_cacherep, 0);
170         return drc_slab ? 0: -ENOMEM;
171 }
172
173 void nfsd_drc_slab_free(void)
174 {
175         kmem_cache_destroy(drc_slab);
176 }
177
178 int nfsd_reply_cache_init(struct nfsd_net *nn)
179 {
180         unsigned int hashsize;
181         unsigned int i;
182
183         nn->max_drc_entries = nfsd_cache_size_limit();
184         atomic_set(&nn->num_drc_entries, 0);
185         hashsize = nfsd_hashsize(nn->max_drc_entries);
186         nn->maskbits = ilog2(hashsize);
187
188         nn->drc_hashtbl = kvzalloc(array_size(hashsize,
189                                 sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
190         if (!nn->drc_hashtbl)
191                 return -ENOMEM;
192
193         nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s",
194                                                        nn->nfsd_name);
195         if (!nn->nfsd_reply_cache_shrinker)
196                 goto out_shrinker;
197
198         nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan;
199         nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count;
200         nn->nfsd_reply_cache_shrinker->seeks = 1;
201         nn->nfsd_reply_cache_shrinker->private_data = nn;
202
203         shrinker_register(nn->nfsd_reply_cache_shrinker);
204
205         for (i = 0; i < hashsize; i++) {
206                 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
207                 spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
208         }
209         nn->drc_hashsize = hashsize;
210
211         return 0;
212 out_shrinker:
213         kvfree(nn->drc_hashtbl);
214         printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
215         return -ENOMEM;
216 }
217
218 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
219 {
220         struct nfsd_cacherep *rp;
221         unsigned int i;
222
223         shrinker_free(nn->nfsd_reply_cache_shrinker);
224
225         for (i = 0; i < nn->drc_hashsize; i++) {
226                 struct list_head *head = &nn->drc_hashtbl[i].lru_head;
227                 while (!list_empty(head)) {
228                         rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
229                         nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
230                                                                         rp, nn);
231                 }
232         }
233
234         kvfree(nn->drc_hashtbl);
235         nn->drc_hashtbl = NULL;
236         nn->drc_hashsize = 0;
237
238 }
239
240 /*
241  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
242  * not already scheduled.
243  */
244 static void
245 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
246 {
247         rp->c_timestamp = jiffies;
248         list_move_tail(&rp->c_lru, &b->lru_head);
249 }
250
251 static noinline struct nfsd_drc_bucket *
252 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
253 {
254         unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
255
256         return &nn->drc_hashtbl[hash];
257 }
258
259 /*
260  * Remove and return no more than @max expired entries in bucket @b.
261  * If @max is zero, do not limit the number of removed entries.
262  */
263 static void
264 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
265                          unsigned int max, struct list_head *dispose)
266 {
267         unsigned long expiry = jiffies - RC_EXPIRE;
268         struct nfsd_cacherep *rp, *tmp;
269         unsigned int freed = 0;
270
271         lockdep_assert_held(&b->cache_lock);
272
273         /* The bucket LRU is ordered oldest-first. */
274         list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
275                 /*
276                  * Don't free entries attached to calls that are still
277                  * in-progress, but do keep scanning the list.
278                  */
279                 if (rp->c_state == RC_INPROG)
280                         continue;
281
282                 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
283                     time_before(expiry, rp->c_timestamp))
284                         break;
285
286                 nfsd_cacherep_unlink_locked(nn, b, rp);
287                 list_add(&rp->c_lru, dispose);
288
289                 if (max && ++freed > max)
290                         break;
291         }
292 }
293
294 /**
295  * nfsd_reply_cache_count - count_objects method for the DRC shrinker
296  * @shrink: our registered shrinker context
297  * @sc: garbage collection parameters
298  *
299  * Returns the total number of entries in the duplicate reply cache. To
300  * keep things simple and quick, this is not the number of expired entries
301  * in the cache (ie, the number that would be removed by a call to
302  * nfsd_reply_cache_scan).
303  */
304 static unsigned long
305 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
306 {
307         struct nfsd_net *nn = shrink->private_data;
308
309         return atomic_read(&nn->num_drc_entries);
310 }
311
312 /**
313  * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
314  * @shrink: our registered shrinker context
315  * @sc: garbage collection parameters
316  *
317  * Free expired entries on each bucket's LRU list until we've released
318  * nr_to_scan freed objects. Nothing will be released if the cache
319  * has not exceeded it's max_drc_entries limit.
320  *
321  * Returns the number of entries released by this call.
322  */
323 static unsigned long
324 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
325 {
326         struct nfsd_net *nn = shrink->private_data;
327         unsigned long freed = 0;
328         LIST_HEAD(dispose);
329         unsigned int i;
330
331         for (i = 0; i < nn->drc_hashsize; i++) {
332                 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
333
334                 if (list_empty(&b->lru_head))
335                         continue;
336
337                 spin_lock(&b->cache_lock);
338                 nfsd_prune_bucket_locked(nn, b, 0, &dispose);
339                 spin_unlock(&b->cache_lock);
340
341                 freed += nfsd_cacherep_dispose(&dispose);
342                 if (freed > sc->nr_to_scan)
343                         break;
344         }
345         return freed;
346 }
347
348 /**
349  * nfsd_cache_csum - Checksum incoming NFS Call arguments
350  * @buf: buffer containing a whole RPC Call message
351  * @start: starting byte of the NFS Call header
352  * @remaining: size of the NFS Call header, in bytes
353  *
354  * Compute a weak checksum of the leading bytes of an NFS procedure
355  * call header to help verify that a retransmitted Call matches an
356  * entry in the duplicate reply cache.
357  *
358  * To avoid assumptions about how the RPC message is laid out in
359  * @buf and what else it might contain (eg, a GSS MIC suffix), the
360  * caller passes us the exact location and length of the NFS Call
361  * header.
362  *
363  * Returns a 32-bit checksum value, as defined in RFC 793.
364  */
365 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
366                               unsigned int remaining)
367 {
368         unsigned int base, len;
369         struct xdr_buf subbuf;
370         __wsum csum = 0;
371         void *p;
372         int idx;
373
374         if (remaining > RC_CSUMLEN)
375                 remaining = RC_CSUMLEN;
376         if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
377                 return csum;
378
379         /* rq_arg.head first */
380         if (subbuf.head[0].iov_len) {
381                 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
382                 csum = csum_partial(subbuf.head[0].iov_base, len, csum);
383                 remaining -= len;
384         }
385
386         /* Continue into page array */
387         idx = subbuf.page_base / PAGE_SIZE;
388         base = subbuf.page_base & ~PAGE_MASK;
389         while (remaining) {
390                 p = page_address(subbuf.pages[idx]) + base;
391                 len = min_t(unsigned int, PAGE_SIZE - base, remaining);
392                 csum = csum_partial(p, len, csum);
393                 remaining -= len;
394                 base = 0;
395                 ++idx;
396         }
397         return csum;
398 }
399
400 static int
401 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
402                    const struct nfsd_cacherep *rp, struct nfsd_net *nn)
403 {
404         if (key->c_key.k_xid == rp->c_key.k_xid &&
405             key->c_key.k_csum != rp->c_key.k_csum) {
406                 nfsd_stats_payload_misses_inc(nn);
407                 trace_nfsd_drc_mismatch(nn, key, rp);
408         }
409
410         return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
411 }
412
413 /*
414  * Search the request hash for an entry that matches the given rqstp.
415  * Must be called with cache_lock held. Returns the found entry or
416  * inserts an empty key on failure.
417  */
418 static struct nfsd_cacherep *
419 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
420                         struct nfsd_net *nn)
421 {
422         struct nfsd_cacherep    *rp, *ret = key;
423         struct rb_node          **p = &b->rb_head.rb_node,
424                                 *parent = NULL;
425         unsigned int            entries = 0;
426         int cmp;
427
428         while (*p != NULL) {
429                 ++entries;
430                 parent = *p;
431                 rp = rb_entry(parent, struct nfsd_cacherep, c_node);
432
433                 cmp = nfsd_cache_key_cmp(key, rp, nn);
434                 if (cmp < 0)
435                         p = &parent->rb_left;
436                 else if (cmp > 0)
437                         p = &parent->rb_right;
438                 else {
439                         ret = rp;
440                         goto out;
441                 }
442         }
443         rb_link_node(&key->c_node, parent, p);
444         rb_insert_color(&key->c_node, &b->rb_head);
445 out:
446         /* tally hash chain length stats */
447         if (entries > nn->longest_chain) {
448                 nn->longest_chain = entries;
449                 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
450         } else if (entries == nn->longest_chain) {
451                 /* prefer to keep the smallest cachesize possible here */
452                 nn->longest_chain_cachesize = min_t(unsigned int,
453                                 nn->longest_chain_cachesize,
454                                 atomic_read(&nn->num_drc_entries));
455         }
456
457         lru_put_end(b, ret);
458         return ret;
459 }
460
461 /**
462  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
463  * @rqstp: Incoming Call to find
464  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
465  * @len: size of the NFS Call header, in bytes
466  * @cacherep: OUT: DRC entry for this request
467  *
468  * Try to find an entry matching the current call in the cache. When none
469  * is found, we try to grab the oldest expired entry off the LRU list. If
470  * a suitable one isn't there, then drop the cache_lock and allocate a
471  * new one, then search again in case one got inserted while this thread
472  * didn't hold the lock.
473  *
474  * Return values:
475  *   %RC_DOIT: Process the request normally
476  *   %RC_REPLY: Reply from cache
477  *   %RC_DROPIT: Do not process the request further
478  */
479 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
480                       unsigned int len, struct nfsd_cacherep **cacherep)
481 {
482         struct nfsd_net         *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
483         struct nfsd_cacherep    *rp, *found;
484         __wsum                  csum;
485         struct nfsd_drc_bucket  *b;
486         int type = rqstp->rq_cachetype;
487         LIST_HEAD(dispose);
488         int rtn = RC_DOIT;
489
490         if (type == RC_NOCACHE) {
491                 nfsd_stats_rc_nocache_inc(nn);
492                 goto out;
493         }
494
495         csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
496
497         /*
498          * Since the common case is a cache miss followed by an insert,
499          * preallocate an entry.
500          */
501         rp = nfsd_cacherep_alloc(rqstp, csum, nn);
502         if (!rp)
503                 goto out;
504
505         b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
506         spin_lock(&b->cache_lock);
507         found = nfsd_cache_insert(b, rp, nn);
508         if (found != rp)
509                 goto found_entry;
510         *cacherep = rp;
511         rp->c_state = RC_INPROG;
512         nfsd_prune_bucket_locked(nn, b, 3, &dispose);
513         spin_unlock(&b->cache_lock);
514
515         nfsd_cacherep_dispose(&dispose);
516
517         nfsd_stats_rc_misses_inc(nn);
518         atomic_inc(&nn->num_drc_entries);
519         nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
520         goto out;
521
522 found_entry:
523         /* We found a matching entry which is either in progress or done. */
524         nfsd_reply_cache_free_locked(NULL, rp, nn);
525         nfsd_stats_rc_hits_inc(nn);
526         rtn = RC_DROPIT;
527         rp = found;
528
529         /* Request being processed */
530         if (rp->c_state == RC_INPROG)
531                 goto out_trace;
532
533         /* From the hall of fame of impractical attacks:
534          * Is this a user who tries to snoop on the cache? */
535         rtn = RC_DOIT;
536         if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
537                 goto out_trace;
538
539         /* Compose RPC reply header */
540         switch (rp->c_type) {
541         case RC_NOCACHE:
542                 break;
543         case RC_REPLSTAT:
544                 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
545                 rtn = RC_REPLY;
546                 break;
547         case RC_REPLBUFF:
548                 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
549                         goto out_unlock; /* should not happen */
550                 rtn = RC_REPLY;
551                 break;
552         default:
553                 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
554         }
555
556 out_trace:
557         trace_nfsd_drc_found(nn, rqstp, rtn);
558 out_unlock:
559         spin_unlock(&b->cache_lock);
560 out:
561         return rtn;
562 }
563
564 /**
565  * nfsd_cache_update - Update an entry in the duplicate reply cache.
566  * @rqstp: svc_rqst with a finished Reply
567  * @rp: IN: DRC entry for this request
568  * @cachetype: which cache to update
569  * @statp: pointer to Reply's NFS status code, or NULL
570  *
571  * This is called from nfsd_dispatch when the procedure has been
572  * executed and the complete reply is in rqstp->rq_res.
573  *
574  * We're copying around data here rather than swapping buffers because
575  * the toplevel loop requires max-sized buffers, which would be a waste
576  * of memory for a cache with a max reply size of 100 bytes (diropokres).
577  *
578  * If we should start to use different types of cache entries tailored
579  * specifically for attrstat and fh's, we may save even more space.
580  *
581  * Also note that a cachetype of RC_NOCACHE can legally be passed when
582  * nfsd failed to encode a reply that otherwise would have been cached.
583  * In this case, nfsd_cache_update is called with statp == NULL.
584  */
585 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
586                        int cachetype, __be32 *statp)
587 {
588         struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
589         struct kvec     *resv = &rqstp->rq_res.head[0], *cachv;
590         struct nfsd_drc_bucket *b;
591         int             len;
592         size_t          bufsize = 0;
593
594         if (!rp)
595                 return;
596
597         b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
598
599         len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
600         len >>= 2;
601
602         /* Don't cache excessive amounts of data and XDR failures */
603         if (!statp || len > (256 >> 2)) {
604                 nfsd_reply_cache_free(b, rp, nn);
605                 return;
606         }
607
608         switch (cachetype) {
609         case RC_REPLSTAT:
610                 if (len != 1)
611                         printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
612                 rp->c_replstat = *statp;
613                 break;
614         case RC_REPLBUFF:
615                 cachv = &rp->c_replvec;
616                 bufsize = len << 2;
617                 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
618                 if (!cachv->iov_base) {
619                         nfsd_reply_cache_free(b, rp, nn);
620                         return;
621                 }
622                 cachv->iov_len = bufsize;
623                 memcpy(cachv->iov_base, statp, bufsize);
624                 break;
625         case RC_NOCACHE:
626                 nfsd_reply_cache_free(b, rp, nn);
627                 return;
628         }
629         spin_lock(&b->cache_lock);
630         nfsd_stats_drc_mem_usage_add(nn, bufsize);
631         lru_put_end(b, rp);
632         rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
633         rp->c_type = cachetype;
634         rp->c_state = RC_DONE;
635         spin_unlock(&b->cache_lock);
636         return;
637 }
638
639 static int
640 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
641 {
642         __be32 *p;
643
644         p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
645         if (unlikely(!p))
646                 return false;
647         memcpy(p, data->iov_base, data->iov_len);
648         xdr_commit_encode(&rqstp->rq_res_stream);
649         return true;
650 }
651
652 /*
653  * Note that fields may be added, removed or reordered in the future. Programs
654  * scraping this file for info should test the labels to ensure they're
655  * getting the correct field.
656  */
657 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
658 {
659         struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
660                                           nfsd_net_id);
661
662         seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
663         seq_printf(m, "num entries:           %u\n",
664                    atomic_read(&nn->num_drc_entries));
665         seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
666         seq_printf(m, "mem usage:             %lld\n",
667                    percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE]));
668         seq_printf(m, "cache hits:            %lld\n",
669                    percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]));
670         seq_printf(m, "cache misses:          %lld\n",
671                    percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]));
672         seq_printf(m, "not cached:            %lld\n",
673                    percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]));
674         seq_printf(m, "payload misses:        %lld\n",
675                    percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES]));
676         seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
677         seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
678         return 0;
679 }