1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129 getname_flags(const char __user *filename, int flags, int *empty)
131 struct filename *result;
135 result = audit_reusename(filename);
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
144 * First, try to embed the struct filename inside the names_cache
147 kname = (char *)result->iname;
148 result->name = kname;
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 if (unlikely(len < 0)) {
157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 * separate struct filename so we can dedicate the entire
159 * names_cache allocation for the pathname, and re-do the copy from
162 if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 const size_t size = offsetof(struct filename, iname[1]);
164 kname = (char *)result;
167 * size is chosen that way we to guarantee that
168 * result->iname[0] is within the same object and that
169 * kname can't be equal to result->iname, no matter what.
171 result = kzalloc(size, GFP_KERNEL);
172 if (unlikely(!result)) {
174 return ERR_PTR(-ENOMEM);
176 result->name = kname;
177 len = strncpy_from_user(kname, filename, PATH_MAX);
178 if (unlikely(len < 0)) {
183 if (unlikely(len == PATH_MAX)) {
186 return ERR_PTR(-ENAMETOOLONG);
191 /* The empty path is special. */
192 if (unlikely(!len)) {
195 if (!(flags & LOOKUP_EMPTY)) {
197 return ERR_PTR(-ENOENT);
201 result->uptr = filename;
202 result->aname = NULL;
203 audit_getname(result);
208 getname_uflags(const char __user *filename, int uflags)
210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212 return getname_flags(filename, flags, NULL);
216 getname(const char __user * filename)
218 return getname_flags(filename, 0, NULL);
222 getname_kernel(const char * filename)
224 struct filename *result;
225 int len = strlen(filename) + 1;
227 result = __getname();
228 if (unlikely(!result))
229 return ERR_PTR(-ENOMEM);
231 if (len <= EMBEDDED_NAME_MAX) {
232 result->name = (char *)result->iname;
233 } else if (len <= PATH_MAX) {
234 const size_t size = offsetof(struct filename, iname[1]);
235 struct filename *tmp;
237 tmp = kmalloc(size, GFP_KERNEL);
238 if (unlikely(!tmp)) {
240 return ERR_PTR(-ENOMEM);
242 tmp->name = (char *)result;
246 return ERR_PTR(-ENAMETOOLONG);
248 memcpy((char *)result->name, filename, len);
250 result->aname = NULL;
252 audit_getname(result);
257 void putname(struct filename *name)
262 BUG_ON(name->refcnt <= 0);
264 if (--name->refcnt > 0)
267 if (name->name != name->iname) {
268 __putname(name->name);
275 * check_acl - perform ACL permission checking
276 * @mnt_userns: user namespace of the mount the inode was found from
277 * @inode: inode to check permissions on
278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
280 * This function performs the ACL permission checking. Since this function
281 * retrieve POSIX acls it needs to know whether it is called from a blocking or
282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
284 * If the inode has been found through an idmapped mount the user namespace of
285 * the vfsmount must be passed through @mnt_userns. This function will then take
286 * care to map the inode according to @mnt_userns before checking permissions.
287 * On non-idmapped mounts or if permission checking is to be performed on the
288 * raw inode simply passs init_user_ns.
290 static int check_acl(struct user_namespace *mnt_userns,
291 struct inode *inode, int mask)
293 #ifdef CONFIG_FS_POSIX_ACL
294 struct posix_acl *acl;
296 if (mask & MAY_NOT_BLOCK) {
297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
300 /* no ->get_acl() calls in RCU mode... */
301 if (is_uncached_acl(acl))
303 return posix_acl_permission(mnt_userns, inode, acl, mask);
306 acl = get_acl(inode, ACL_TYPE_ACCESS);
310 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
311 posix_acl_release(acl);
320 * acl_permission_check - perform basic UNIX permission checking
321 * @mnt_userns: user namespace of the mount the inode was found from
322 * @inode: inode to check permissions on
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
325 * This function performs the basic UNIX permission checking. Since this
326 * function may retrieve POSIX acls it needs to know whether it is called from a
327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
329 * If the inode has been found through an idmapped mount the user namespace of
330 * the vfsmount must be passed through @mnt_userns. This function will then take
331 * care to map the inode according to @mnt_userns before checking permissions.
332 * On non-idmapped mounts or if permission checking is to be performed on the
333 * raw inode simply passs init_user_ns.
335 static int acl_permission_check(struct user_namespace *mnt_userns,
336 struct inode *inode, int mask)
338 unsigned int mode = inode->i_mode;
341 /* Are we the owner? If so, ACL's don't matter */
342 i_uid = i_uid_into_mnt(mnt_userns, inode);
343 if (likely(uid_eq(current_fsuid(), i_uid))) {
346 return (mask & ~mode) ? -EACCES : 0;
349 /* Do we have ACL's? */
350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
351 int error = check_acl(mnt_userns, inode, mask);
352 if (error != -EAGAIN)
356 /* Only RWX matters for group/other mode bits */
360 * Are the group permissions different from
361 * the other permissions in the bits we care
362 * about? Need to check group ownership if so.
364 if (mask & (mode ^ (mode >> 3))) {
365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
366 if (in_group_p(kgid))
370 /* Bits in 'mode' clear that we require? */
371 return (mask & ~mode) ? -EACCES : 0;
375 * generic_permission - check for access rights on a Posix-like filesystem
376 * @mnt_userns: user namespace of the mount the inode was found from
377 * @inode: inode to check access rights for
378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
379 * %MAY_NOT_BLOCK ...)
381 * Used to check for read/write/execute permissions on a file.
382 * We use "fsuid" for this, letting us set arbitrary permissions
383 * for filesystem access without changing the "normal" uids which
384 * are used for other things.
386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
387 * request cannot be satisfied (eg. requires blocking or too much complexity).
388 * It would then be called again in ref-walk mode.
390 * If the inode has been found through an idmapped mount the user namespace of
391 * the vfsmount must be passed through @mnt_userns. This function will then take
392 * care to map the inode according to @mnt_userns before checking permissions.
393 * On non-idmapped mounts or if permission checking is to be performed on the
394 * raw inode simply passs init_user_ns.
396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
402 * Do the basic permission checks.
404 ret = acl_permission_check(mnt_userns, inode, mask);
408 if (S_ISDIR(inode->i_mode)) {
409 /* DACs are overridable for directories */
410 if (!(mask & MAY_WRITE))
411 if (capable_wrt_inode_uidgid(mnt_userns, inode,
412 CAP_DAC_READ_SEARCH))
414 if (capable_wrt_inode_uidgid(mnt_userns, inode,
421 * Searching includes executable on directories, else just read.
423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
424 if (mask == MAY_READ)
425 if (capable_wrt_inode_uidgid(mnt_userns, inode,
426 CAP_DAC_READ_SEARCH))
429 * Read/write DACs are always overridable.
430 * Executable DACs are overridable when there is
431 * at least one exec bit set.
433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
434 if (capable_wrt_inode_uidgid(mnt_userns, inode,
440 EXPORT_SYMBOL(generic_permission);
443 * do_inode_permission - UNIX permission checking
444 * @mnt_userns: user namespace of the mount the inode was found from
445 * @inode: inode to check permissions on
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
448 * We _really_ want to just do "generic_permission()" without
449 * even looking at the inode->i_op values. So we keep a cache
450 * flag in inode->i_opflags, that says "this has not special
451 * permission function, use the fast case".
453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
454 struct inode *inode, int mask)
456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
457 if (likely(inode->i_op->permission))
458 return inode->i_op->permission(mnt_userns, inode, mask);
460 /* This gets set once for the inode lifetime */
461 spin_lock(&inode->i_lock);
462 inode->i_opflags |= IOP_FASTPERM;
463 spin_unlock(&inode->i_lock);
465 return generic_permission(mnt_userns, inode, mask);
469 * sb_permission - Check superblock-level permissions
470 * @sb: Superblock of inode to check permission on
471 * @inode: Inode to check permission on
472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
474 * Separate out file-system wide checks from inode-specific permission checks.
476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
478 if (unlikely(mask & MAY_WRITE)) {
479 umode_t mode = inode->i_mode;
481 /* Nobody gets write access to a read-only fs. */
482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
489 * inode_permission - Check for access rights to a given inode
490 * @mnt_userns: User namespace of the mount the inode was found from
491 * @inode: Inode to check permission on
492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
495 * this, letting us set arbitrary permissions for filesystem access without
496 * changing the "normal" UIDs which are used for other things.
498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
500 int inode_permission(struct user_namespace *mnt_userns,
501 struct inode *inode, int mask)
505 retval = sb_permission(inode->i_sb, inode, mask);
509 if (unlikely(mask & MAY_WRITE)) {
511 * Nobody gets write access to an immutable file.
513 if (IS_IMMUTABLE(inode))
517 * Updating mtime will likely cause i_uid and i_gid to be
518 * written back improperly if their true value is unknown
521 if (HAS_UNMAPPED_ID(mnt_userns, inode))
525 retval = do_inode_permission(mnt_userns, inode, mask);
529 retval = devcgroup_inode_permission(inode, mask);
533 return security_inode_permission(inode, mask);
535 EXPORT_SYMBOL(inode_permission);
538 * path_get - get a reference to a path
539 * @path: path to get the reference to
541 * Given a path increment the reference count to the dentry and the vfsmount.
543 void path_get(const struct path *path)
548 EXPORT_SYMBOL(path_get);
551 * path_put - put a reference to a path
552 * @path: path to put the reference to
554 * Given a path decrement the reference count to the dentry and the vfsmount.
556 void path_put(const struct path *path)
561 EXPORT_SYMBOL(path_put);
563 #define EMBEDDED_LEVELS 2
568 struct inode *inode; /* path.dentry.d_inode */
569 unsigned int flags, state;
570 unsigned seq, m_seq, r_seq;
573 int total_link_count;
576 struct delayed_call done;
579 } *stack, internal[EMBEDDED_LEVELS];
580 struct filename *name;
581 struct nameidata *saved;
586 } __randomize_layout;
588 #define ND_ROOT_PRESET 1
589 #define ND_ROOT_GRABBED 2
592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
594 struct nameidata *old = current->nameidata;
595 p->stack = p->internal;
600 p->path.dentry = NULL;
601 p->total_link_count = old ? old->total_link_count : 0;
603 current->nameidata = p;
606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
607 const struct path *root)
609 __set_nameidata(p, dfd, name);
611 if (unlikely(root)) {
612 p->state = ND_ROOT_PRESET;
617 static void restore_nameidata(void)
619 struct nameidata *now = current->nameidata, *old = now->saved;
621 current->nameidata = old;
623 old->total_link_count = now->total_link_count;
624 if (now->stack != now->internal)
628 static bool nd_alloc_stack(struct nameidata *nd)
632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
636 memcpy(p, nd->internal, sizeof(nd->internal));
642 * path_connected - Verify that a dentry is below mnt.mnt_root
644 * Rename can sometimes move a file or directory outside of a bind
645 * mount, path_connected allows those cases to be detected.
647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
649 struct super_block *sb = mnt->mnt_sb;
651 /* Bind mounts can have disconnected paths */
652 if (mnt->mnt_root == sb->s_root)
655 return is_subdir(dentry, mnt->mnt_root);
658 static void drop_links(struct nameidata *nd)
662 struct saved *last = nd->stack + i;
663 do_delayed_call(&last->done);
664 clear_delayed_call(&last->done);
668 static void terminate_walk(struct nameidata *nd)
671 if (!(nd->flags & LOOKUP_RCU)) {
674 for (i = 0; i < nd->depth; i++)
675 path_put(&nd->stack[i].link);
676 if (nd->state & ND_ROOT_GRABBED) {
678 nd->state &= ~ND_ROOT_GRABBED;
681 nd->flags &= ~LOOKUP_RCU;
686 nd->path.dentry = NULL;
689 /* path_put is needed afterwards regardless of success or failure */
690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
692 int res = __legitimize_mnt(path->mnt, mseq);
699 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
703 return !read_seqcount_retry(&path->dentry->d_seq, seq);
706 static inline bool legitimize_path(struct nameidata *nd,
707 struct path *path, unsigned seq)
709 return __legitimize_path(path, seq, nd->m_seq);
712 static bool legitimize_links(struct nameidata *nd)
715 if (unlikely(nd->flags & LOOKUP_CACHED)) {
720 for (i = 0; i < nd->depth; i++) {
721 struct saved *last = nd->stack + i;
722 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
731 static bool legitimize_root(struct nameidata *nd)
733 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
734 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
736 nd->state |= ND_ROOT_GRABBED;
737 return legitimize_path(nd, &nd->root, nd->root_seq);
741 * Path walking has 2 modes, rcu-walk and ref-walk (see
742 * Documentation/filesystems/path-lookup.txt). In situations when we can't
743 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
744 * normal reference counts on dentries and vfsmounts to transition to ref-walk
745 * mode. Refcounts are grabbed at the last known good point before rcu-walk
746 * got stuck, so ref-walk may continue from there. If this is not successful
747 * (eg. a seqcount has changed), then failure is returned and it's up to caller
748 * to restart the path walk from the beginning in ref-walk mode.
752 * try_to_unlazy - try to switch to ref-walk mode.
753 * @nd: nameidata pathwalk data
754 * Returns: true on success, false on failure
756 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
758 * Must be called from rcu-walk context.
759 * Nothing should touch nameidata between try_to_unlazy() failure and
762 static bool try_to_unlazy(struct nameidata *nd)
764 struct dentry *parent = nd->path.dentry;
766 BUG_ON(!(nd->flags & LOOKUP_RCU));
768 nd->flags &= ~LOOKUP_RCU;
769 if (unlikely(!legitimize_links(nd)))
771 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
773 if (unlikely(!legitimize_root(nd)))
776 BUG_ON(nd->inode != parent->d_inode);
781 nd->path.dentry = NULL;
788 * try_to_unlazy_next - try to switch to ref-walk mode.
789 * @nd: nameidata pathwalk data
790 * @dentry: next dentry to step into
791 * @seq: seq number to check @dentry against
792 * Returns: true on success, false on failure
794 * Similar to try_to_unlazy(), but here we have the next dentry already
795 * picked by rcu-walk and want to legitimize that in addition to the current
796 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
797 * Nothing should touch nameidata between try_to_unlazy_next() failure and
800 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
802 BUG_ON(!(nd->flags & LOOKUP_RCU));
804 nd->flags &= ~LOOKUP_RCU;
805 if (unlikely(!legitimize_links(nd)))
807 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
809 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
813 * We need to move both the parent and the dentry from the RCU domain
814 * to be properly refcounted. And the sequence number in the dentry
815 * validates *both* dentry counters, since we checked the sequence
816 * number of the parent after we got the child sequence number. So we
817 * know the parent must still be valid if the child sequence number is
819 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
821 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
824 * Sequence counts matched. Now make sure that the root is
825 * still valid and get it if required.
827 if (unlikely(!legitimize_root(nd)))
835 nd->path.dentry = NULL;
845 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
847 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
848 return dentry->d_op->d_revalidate(dentry, flags);
854 * complete_walk - successful completion of path walk
855 * @nd: pointer nameidata
857 * If we had been in RCU mode, drop out of it and legitimize nd->path.
858 * Revalidate the final result, unless we'd already done that during
859 * the path walk or the filesystem doesn't ask for it. Return 0 on
860 * success, -error on failure. In case of failure caller does not
861 * need to drop nd->path.
863 static int complete_walk(struct nameidata *nd)
865 struct dentry *dentry = nd->path.dentry;
868 if (nd->flags & LOOKUP_RCU) {
870 * We don't want to zero nd->root for scoped-lookups or
871 * externally-managed nd->root.
873 if (!(nd->state & ND_ROOT_PRESET))
874 if (!(nd->flags & LOOKUP_IS_SCOPED))
876 nd->flags &= ~LOOKUP_CACHED;
877 if (!try_to_unlazy(nd))
881 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
883 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
884 * ever step outside the root during lookup" and should already
885 * be guaranteed by the rest of namei, we want to avoid a namei
886 * BUG resulting in userspace being given a path that was not
887 * scoped within the root at some point during the lookup.
889 * So, do a final sanity-check to make sure that in the
890 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
891 * we won't silently return an fd completely outside of the
892 * requested root to userspace.
894 * Userspace could move the path outside the root after this
895 * check, but as discussed elsewhere this is not a concern (the
896 * resolved file was inside the root at some point).
898 if (!path_is_under(&nd->path, &nd->root))
902 if (likely(!(nd->state & ND_JUMPED)))
905 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
908 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
918 static int set_root(struct nameidata *nd)
920 struct fs_struct *fs = current->fs;
923 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
924 * still have to ensure it doesn't happen because it will cause a breakout
927 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
928 return -ENOTRECOVERABLE;
930 if (nd->flags & LOOKUP_RCU) {
934 seq = read_seqcount_begin(&fs->seq);
936 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
937 } while (read_seqcount_retry(&fs->seq, seq));
939 get_fs_root(fs, &nd->root);
940 nd->state |= ND_ROOT_GRABBED;
945 static int nd_jump_root(struct nameidata *nd)
947 if (unlikely(nd->flags & LOOKUP_BENEATH))
949 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
950 /* Absolute path arguments to path_init() are allowed. */
951 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
955 int error = set_root(nd);
959 if (nd->flags & LOOKUP_RCU) {
963 nd->inode = d->d_inode;
964 nd->seq = nd->root_seq;
965 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
971 nd->inode = nd->path.dentry->d_inode;
973 nd->state |= ND_JUMPED;
978 * Helper to directly jump to a known parsed path from ->get_link,
979 * caller must have taken a reference to path beforehand.
981 int nd_jump_link(struct path *path)
984 struct nameidata *nd = current->nameidata;
986 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
990 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
991 if (nd->path.mnt != path->mnt)
994 /* Not currently safe for scoped-lookups. */
995 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1000 nd->inode = nd->path.dentry->d_inode;
1001 nd->state |= ND_JUMPED;
1009 static inline void put_link(struct nameidata *nd)
1011 struct saved *last = nd->stack + --nd->depth;
1012 do_delayed_call(&last->done);
1013 if (!(nd->flags & LOOKUP_RCU))
1014 path_put(&last->link);
1017 static int sysctl_protected_symlinks __read_mostly;
1018 static int sysctl_protected_hardlinks __read_mostly;
1019 static int sysctl_protected_fifos __read_mostly;
1020 static int sysctl_protected_regular __read_mostly;
1022 #ifdef CONFIG_SYSCTL
1023 static struct ctl_table namei_sysctls[] = {
1025 .procname = "protected_symlinks",
1026 .data = &sysctl_protected_symlinks,
1027 .maxlen = sizeof(int),
1029 .proc_handler = proc_dointvec_minmax,
1030 .extra1 = SYSCTL_ZERO,
1031 .extra2 = SYSCTL_ONE,
1034 .procname = "protected_hardlinks",
1035 .data = &sysctl_protected_hardlinks,
1036 .maxlen = sizeof(int),
1038 .proc_handler = proc_dointvec_minmax,
1039 .extra1 = SYSCTL_ZERO,
1040 .extra2 = SYSCTL_ONE,
1043 .procname = "protected_fifos",
1044 .data = &sysctl_protected_fifos,
1045 .maxlen = sizeof(int),
1047 .proc_handler = proc_dointvec_minmax,
1048 .extra1 = SYSCTL_ZERO,
1049 .extra2 = SYSCTL_TWO,
1052 .procname = "protected_regular",
1053 .data = &sysctl_protected_regular,
1054 .maxlen = sizeof(int),
1056 .proc_handler = proc_dointvec_minmax,
1057 .extra1 = SYSCTL_ZERO,
1058 .extra2 = SYSCTL_TWO,
1063 static int __init init_fs_namei_sysctls(void)
1065 register_sysctl_init("fs", namei_sysctls);
1068 fs_initcall(init_fs_namei_sysctls);
1070 #endif /* CONFIG_SYSCTL */
1073 * may_follow_link - Check symlink following for unsafe situations
1074 * @nd: nameidata pathwalk data
1076 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1077 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1078 * in a sticky world-writable directory. This is to protect privileged
1079 * processes from failing races against path names that may change out
1080 * from under them by way of other users creating malicious symlinks.
1081 * It will permit symlinks to be followed only when outside a sticky
1082 * world-writable directory, or when the uid of the symlink and follower
1083 * match, or when the directory owner matches the symlink's owner.
1085 * Returns 0 if following the symlink is allowed, -ve on error.
1087 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1089 struct user_namespace *mnt_userns;
1092 if (!sysctl_protected_symlinks)
1095 mnt_userns = mnt_user_ns(nd->path.mnt);
1096 i_uid = i_uid_into_mnt(mnt_userns, inode);
1097 /* Allowed if owner and follower match. */
1098 if (uid_eq(current_cred()->fsuid, i_uid))
1101 /* Allowed if parent directory not sticky and world-writable. */
1102 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1105 /* Allowed if parent directory and link owner match. */
1106 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1109 if (nd->flags & LOOKUP_RCU)
1112 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1113 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1118 * safe_hardlink_source - Check for safe hardlink conditions
1119 * @mnt_userns: user namespace of the mount the inode was found from
1120 * @inode: the source inode to hardlink from
1122 * Return false if at least one of the following conditions:
1123 * - inode is not a regular file
1125 * - inode is setgid and group-exec
1126 * - access failure for read and write
1128 * Otherwise returns true.
1130 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1131 struct inode *inode)
1133 umode_t mode = inode->i_mode;
1135 /* Special files should not get pinned to the filesystem. */
1139 /* Setuid files should not get pinned to the filesystem. */
1143 /* Executable setgid files should not get pinned to the filesystem. */
1144 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1147 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1148 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1155 * may_linkat - Check permissions for creating a hardlink
1156 * @mnt_userns: user namespace of the mount the inode was found from
1157 * @link: the source to hardlink from
1159 * Block hardlink when all of:
1160 * - sysctl_protected_hardlinks enabled
1161 * - fsuid does not match inode
1162 * - hardlink source is unsafe (see safe_hardlink_source() above)
1163 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1165 * If the inode has been found through an idmapped mount the user namespace of
1166 * the vfsmount must be passed through @mnt_userns. This function will then take
1167 * care to map the inode according to @mnt_userns before checking permissions.
1168 * On non-idmapped mounts or if permission checking is to be performed on the
1169 * raw inode simply passs init_user_ns.
1171 * Returns 0 if successful, -ve on error.
1173 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1175 struct inode *inode = link->dentry->d_inode;
1177 /* Inode writeback is not safe when the uid or gid are invalid. */
1178 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1179 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1182 if (!sysctl_protected_hardlinks)
1185 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1186 * otherwise, it must be a safe source.
1188 if (safe_hardlink_source(mnt_userns, inode) ||
1189 inode_owner_or_capable(mnt_userns, inode))
1192 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1197 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1198 * should be allowed, or not, on files that already
1200 * @mnt_userns: user namespace of the mount the inode was found from
1201 * @nd: nameidata pathwalk data
1202 * @inode: the inode of the file to open
1204 * Block an O_CREAT open of a FIFO (or a regular file) when:
1205 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1206 * - the file already exists
1207 * - we are in a sticky directory
1208 * - we don't own the file
1209 * - the owner of the directory doesn't own the file
1210 * - the directory is world writable
1211 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1212 * the directory doesn't have to be world writable: being group writable will
1215 * If the inode has been found through an idmapped mount the user namespace of
1216 * the vfsmount must be passed through @mnt_userns. This function will then take
1217 * care to map the inode according to @mnt_userns before checking permissions.
1218 * On non-idmapped mounts or if permission checking is to be performed on the
1219 * raw inode simply passs init_user_ns.
1221 * Returns 0 if the open is allowed, -ve on error.
1223 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1224 struct nameidata *nd, struct inode *const inode)
1226 umode_t dir_mode = nd->dir_mode;
1227 kuid_t dir_uid = nd->dir_uid;
1229 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1230 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1231 likely(!(dir_mode & S_ISVTX)) ||
1232 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1233 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1236 if (likely(dir_mode & 0002) ||
1238 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1239 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1240 const char *operation = S_ISFIFO(inode->i_mode) ?
1241 "sticky_create_fifo" :
1242 "sticky_create_regular";
1243 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1250 * follow_up - Find the mountpoint of path's vfsmount
1252 * Given a path, find the mountpoint of its source file system.
1253 * Replace @path with the path of the mountpoint in the parent mount.
1256 * Return 1 if we went up a level and 0 if we were already at the
1259 int follow_up(struct path *path)
1261 struct mount *mnt = real_mount(path->mnt);
1262 struct mount *parent;
1263 struct dentry *mountpoint;
1265 read_seqlock_excl(&mount_lock);
1266 parent = mnt->mnt_parent;
1267 if (parent == mnt) {
1268 read_sequnlock_excl(&mount_lock);
1271 mntget(&parent->mnt);
1272 mountpoint = dget(mnt->mnt_mountpoint);
1273 read_sequnlock_excl(&mount_lock);
1275 path->dentry = mountpoint;
1277 path->mnt = &parent->mnt;
1280 EXPORT_SYMBOL(follow_up);
1282 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1283 struct path *path, unsigned *seqp)
1285 while (mnt_has_parent(m)) {
1286 struct dentry *mountpoint = m->mnt_mountpoint;
1289 if (unlikely(root->dentry == mountpoint &&
1290 root->mnt == &m->mnt))
1292 if (mountpoint != m->mnt.mnt_root) {
1293 path->mnt = &m->mnt;
1294 path->dentry = mountpoint;
1295 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1302 static bool choose_mountpoint(struct mount *m, const struct path *root,
1309 unsigned seq, mseq = read_seqbegin(&mount_lock);
1311 found = choose_mountpoint_rcu(m, root, path, &seq);
1312 if (unlikely(!found)) {
1313 if (!read_seqretry(&mount_lock, mseq))
1316 if (likely(__legitimize_path(path, seq, mseq)))
1328 * Perform an automount
1329 * - return -EISDIR to tell follow_managed() to stop and return the path we
1332 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1334 struct dentry *dentry = path->dentry;
1336 /* We don't want to mount if someone's just doing a stat -
1337 * unless they're stat'ing a directory and appended a '/' to
1340 * We do, however, want to mount if someone wants to open or
1341 * create a file of any type under the mountpoint, wants to
1342 * traverse through the mountpoint or wants to open the
1343 * mounted directory. Also, autofs may mark negative dentries
1344 * as being automount points. These will need the attentions
1345 * of the daemon to instantiate them before they can be used.
1347 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1348 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1352 if (count && (*count)++ >= MAXSYMLINKS)
1355 return finish_automount(dentry->d_op->d_automount(path), path);
1359 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1360 * dentries are pinned but not locked here, so negative dentry can go
1361 * positive right under us. Use of smp_load_acquire() provides a barrier
1362 * sufficient for ->d_inode and ->d_flags consistency.
1364 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1365 int *count, unsigned lookup_flags)
1367 struct vfsmount *mnt = path->mnt;
1368 bool need_mntput = false;
1371 while (flags & DCACHE_MANAGED_DENTRY) {
1372 /* Allow the filesystem to manage the transit without i_mutex
1374 if (flags & DCACHE_MANAGE_TRANSIT) {
1375 ret = path->dentry->d_op->d_manage(path, false);
1376 flags = smp_load_acquire(&path->dentry->d_flags);
1381 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1382 struct vfsmount *mounted = lookup_mnt(path);
1383 if (mounted) { // ... in our namespace
1387 path->mnt = mounted;
1388 path->dentry = dget(mounted->mnt_root);
1389 // here we know it's positive
1390 flags = path->dentry->d_flags;
1396 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1399 // uncovered automount point
1400 ret = follow_automount(path, count, lookup_flags);
1401 flags = smp_load_acquire(&path->dentry->d_flags);
1408 // possible if you race with several mount --move
1409 if (need_mntput && path->mnt == mnt)
1411 if (!ret && unlikely(d_flags_negative(flags)))
1413 *jumped = need_mntput;
1417 static inline int traverse_mounts(struct path *path, bool *jumped,
1418 int *count, unsigned lookup_flags)
1420 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1423 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1425 if (unlikely(d_flags_negative(flags)))
1429 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1432 int follow_down_one(struct path *path)
1434 struct vfsmount *mounted;
1436 mounted = lookup_mnt(path);
1440 path->mnt = mounted;
1441 path->dentry = dget(mounted->mnt_root);
1446 EXPORT_SYMBOL(follow_down_one);
1449 * Follow down to the covering mount currently visible to userspace. At each
1450 * point, the filesystem owning that dentry may be queried as to whether the
1451 * caller is permitted to proceed or not.
1453 int follow_down(struct path *path)
1455 struct vfsmount *mnt = path->mnt;
1457 int ret = traverse_mounts(path, &jumped, NULL, 0);
1459 if (path->mnt != mnt)
1463 EXPORT_SYMBOL(follow_down);
1466 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1467 * we meet a managed dentry that would need blocking.
1469 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1470 struct inode **inode, unsigned *seqp)
1472 struct dentry *dentry = path->dentry;
1473 unsigned int flags = dentry->d_flags;
1475 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1478 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1483 * Don't forget we might have a non-mountpoint managed dentry
1484 * that wants to block transit.
1486 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1487 int res = dentry->d_op->d_manage(path, true);
1489 return res == -EISDIR;
1490 flags = dentry->d_flags;
1493 if (flags & DCACHE_MOUNTED) {
1494 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1496 path->mnt = &mounted->mnt;
1497 dentry = path->dentry = mounted->mnt.mnt_root;
1498 nd->state |= ND_JUMPED;
1499 *seqp = read_seqcount_begin(&dentry->d_seq);
1500 *inode = dentry->d_inode;
1502 * We don't need to re-check ->d_seq after this
1503 * ->d_inode read - there will be an RCU delay
1504 * between mount hash removal and ->mnt_root
1505 * becoming unpinned.
1507 flags = dentry->d_flags;
1510 if (read_seqretry(&mount_lock, nd->m_seq))
1513 return !(flags & DCACHE_NEED_AUTOMOUNT);
1517 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1518 struct path *path, struct inode **inode,
1524 path->mnt = nd->path.mnt;
1525 path->dentry = dentry;
1526 if (nd->flags & LOOKUP_RCU) {
1527 unsigned int seq = *seqp;
1528 if (unlikely(!*inode))
1530 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1532 if (!try_to_unlazy_next(nd, dentry, seq))
1534 // *path might've been clobbered by __follow_mount_rcu()
1535 path->mnt = nd->path.mnt;
1536 path->dentry = dentry;
1538 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1540 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1543 nd->state |= ND_JUMPED;
1545 if (unlikely(ret)) {
1547 if (path->mnt != nd->path.mnt)
1550 *inode = d_backing_inode(path->dentry);
1551 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1557 * This looks up the name in dcache and possibly revalidates the found dentry.
1558 * NULL is returned if the dentry does not exist in the cache.
1560 static struct dentry *lookup_dcache(const struct qstr *name,
1564 struct dentry *dentry = d_lookup(dir, name);
1566 int error = d_revalidate(dentry, flags);
1567 if (unlikely(error <= 0)) {
1569 d_invalidate(dentry);
1571 return ERR_PTR(error);
1578 * Parent directory has inode locked exclusive. This is one
1579 * and only case when ->lookup() gets called on non in-lookup
1580 * dentries - as the matter of fact, this only gets called
1581 * when directory is guaranteed to have no in-lookup children
1584 static struct dentry *__lookup_hash(const struct qstr *name,
1585 struct dentry *base, unsigned int flags)
1587 struct dentry *dentry = lookup_dcache(name, base, flags);
1589 struct inode *dir = base->d_inode;
1594 /* Don't create child dentry for a dead directory. */
1595 if (unlikely(IS_DEADDIR(dir)))
1596 return ERR_PTR(-ENOENT);
1598 dentry = d_alloc(base, name);
1599 if (unlikely(!dentry))
1600 return ERR_PTR(-ENOMEM);
1602 old = dir->i_op->lookup(dir, dentry, flags);
1603 if (unlikely(old)) {
1610 static struct dentry *lookup_fast(struct nameidata *nd,
1611 struct inode **inode,
1614 struct dentry *dentry, *parent = nd->path.dentry;
1618 * Rename seqlock is not required here because in the off chance
1619 * of a false negative due to a concurrent rename, the caller is
1620 * going to fall back to non-racy lookup.
1622 if (nd->flags & LOOKUP_RCU) {
1624 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1625 if (unlikely(!dentry)) {
1626 if (!try_to_unlazy(nd))
1627 return ERR_PTR(-ECHILD);
1632 * This sequence count validates that the inode matches
1633 * the dentry name information from lookup.
1635 *inode = d_backing_inode(dentry);
1636 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1637 return ERR_PTR(-ECHILD);
1640 * This sequence count validates that the parent had no
1641 * changes while we did the lookup of the dentry above.
1643 * The memory barrier in read_seqcount_begin of child is
1644 * enough, we can use __read_seqcount_retry here.
1646 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1647 return ERR_PTR(-ECHILD);
1650 status = d_revalidate(dentry, nd->flags);
1651 if (likely(status > 0))
1653 if (!try_to_unlazy_next(nd, dentry, seq))
1654 return ERR_PTR(-ECHILD);
1655 if (status == -ECHILD)
1656 /* we'd been told to redo it in non-rcu mode */
1657 status = d_revalidate(dentry, nd->flags);
1659 dentry = __d_lookup(parent, &nd->last);
1660 if (unlikely(!dentry))
1662 status = d_revalidate(dentry, nd->flags);
1664 if (unlikely(status <= 0)) {
1666 d_invalidate(dentry);
1668 return ERR_PTR(status);
1673 /* Fast lookup failed, do it the slow way */
1674 static struct dentry *__lookup_slow(const struct qstr *name,
1678 struct dentry *dentry, *old;
1679 struct inode *inode = dir->d_inode;
1680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1682 /* Don't go there if it's already dead */
1683 if (unlikely(IS_DEADDIR(inode)))
1684 return ERR_PTR(-ENOENT);
1686 dentry = d_alloc_parallel(dir, name, &wq);
1689 if (unlikely(!d_in_lookup(dentry))) {
1690 int error = d_revalidate(dentry, flags);
1691 if (unlikely(error <= 0)) {
1693 d_invalidate(dentry);
1698 dentry = ERR_PTR(error);
1701 old = inode->i_op->lookup(inode, dentry, flags);
1702 d_lookup_done(dentry);
1703 if (unlikely(old)) {
1711 static struct dentry *lookup_slow(const struct qstr *name,
1715 struct inode *inode = dir->d_inode;
1717 inode_lock_shared(inode);
1718 res = __lookup_slow(name, dir, flags);
1719 inode_unlock_shared(inode);
1723 static inline int may_lookup(struct user_namespace *mnt_userns,
1724 struct nameidata *nd)
1726 if (nd->flags & LOOKUP_RCU) {
1727 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1728 if (err != -ECHILD || !try_to_unlazy(nd))
1731 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1734 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1736 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1739 if (likely(nd->depth != EMBEDDED_LEVELS))
1741 if (likely(nd->stack != nd->internal))
1743 if (likely(nd_alloc_stack(nd)))
1746 if (nd->flags & LOOKUP_RCU) {
1747 // we need to grab link before we do unlazy. And we can't skip
1748 // unlazy even if we fail to grab the link - cleanup needs it
1749 bool grabbed_link = legitimize_path(nd, link, seq);
1751 if (!try_to_unlazy(nd) || !grabbed_link)
1754 if (nd_alloc_stack(nd))
1760 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1762 static const char *pick_link(struct nameidata *nd, struct path *link,
1763 struct inode *inode, unsigned seq, int flags)
1767 int error = reserve_stack(nd, link, seq);
1769 if (unlikely(error)) {
1770 if (!(nd->flags & LOOKUP_RCU))
1772 return ERR_PTR(error);
1774 last = nd->stack + nd->depth++;
1776 clear_delayed_call(&last->done);
1779 if (flags & WALK_TRAILING) {
1780 error = may_follow_link(nd, inode);
1781 if (unlikely(error))
1782 return ERR_PTR(error);
1785 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1786 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1787 return ERR_PTR(-ELOOP);
1789 if (!(nd->flags & LOOKUP_RCU)) {
1790 touch_atime(&last->link);
1792 } else if (atime_needs_update(&last->link, inode)) {
1793 if (!try_to_unlazy(nd))
1794 return ERR_PTR(-ECHILD);
1795 touch_atime(&last->link);
1798 error = security_inode_follow_link(link->dentry, inode,
1799 nd->flags & LOOKUP_RCU);
1800 if (unlikely(error))
1801 return ERR_PTR(error);
1803 res = READ_ONCE(inode->i_link);
1805 const char * (*get)(struct dentry *, struct inode *,
1806 struct delayed_call *);
1807 get = inode->i_op->get_link;
1808 if (nd->flags & LOOKUP_RCU) {
1809 res = get(NULL, inode, &last->done);
1810 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1811 res = get(link->dentry, inode, &last->done);
1813 res = get(link->dentry, inode, &last->done);
1821 error = nd_jump_root(nd);
1822 if (unlikely(error))
1823 return ERR_PTR(error);
1824 while (unlikely(*++res == '/'))
1829 all_done: // pure jump
1835 * Do we need to follow links? We _really_ want to be able
1836 * to do this check without having to look at inode->i_op,
1837 * so we keep a cache of "no, this doesn't need follow_link"
1838 * for the common case.
1840 static const char *step_into(struct nameidata *nd, int flags,
1841 struct dentry *dentry, struct inode *inode, unsigned seq)
1844 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1847 return ERR_PTR(err);
1848 if (likely(!d_is_symlink(path.dentry)) ||
1849 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1850 (flags & WALK_NOFOLLOW)) {
1851 /* not a symlink or should not follow */
1852 if (!(nd->flags & LOOKUP_RCU)) {
1853 dput(nd->path.dentry);
1854 if (nd->path.mnt != path.mnt)
1855 mntput(nd->path.mnt);
1862 if (nd->flags & LOOKUP_RCU) {
1863 /* make sure that d_is_symlink above matches inode */
1864 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1865 return ERR_PTR(-ECHILD);
1867 if (path.mnt == nd->path.mnt)
1870 return pick_link(nd, &path, inode, seq, flags);
1873 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1874 struct inode **inodep,
1877 struct dentry *parent, *old;
1879 if (path_equal(&nd->path, &nd->root))
1881 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1884 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1885 &nd->root, &path, &seq))
1887 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1888 return ERR_PTR(-ECHILD);
1890 nd->inode = path.dentry->d_inode;
1892 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1893 return ERR_PTR(-ECHILD);
1894 /* we know that mountpoint was pinned */
1896 old = nd->path.dentry;
1897 parent = old->d_parent;
1898 *inodep = parent->d_inode;
1899 *seqp = read_seqcount_begin(&parent->d_seq);
1900 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1901 return ERR_PTR(-ECHILD);
1902 if (unlikely(!path_connected(nd->path.mnt, parent)))
1903 return ERR_PTR(-ECHILD);
1906 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1907 return ERR_PTR(-ECHILD);
1908 if (unlikely(nd->flags & LOOKUP_BENEATH))
1909 return ERR_PTR(-ECHILD);
1913 static struct dentry *follow_dotdot(struct nameidata *nd,
1914 struct inode **inodep,
1917 struct dentry *parent;
1919 if (path_equal(&nd->path, &nd->root))
1921 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1924 if (!choose_mountpoint(real_mount(nd->path.mnt),
1927 path_put(&nd->path);
1929 nd->inode = path.dentry->d_inode;
1930 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1931 return ERR_PTR(-EXDEV);
1933 /* rare case of legitimate dget_parent()... */
1934 parent = dget_parent(nd->path.dentry);
1935 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1937 return ERR_PTR(-ENOENT);
1940 *inodep = parent->d_inode;
1944 if (unlikely(nd->flags & LOOKUP_BENEATH))
1945 return ERR_PTR(-EXDEV);
1946 dget(nd->path.dentry);
1950 static const char *handle_dots(struct nameidata *nd, int type)
1952 if (type == LAST_DOTDOT) {
1953 const char *error = NULL;
1954 struct dentry *parent;
1955 struct inode *inode;
1958 if (!nd->root.mnt) {
1959 error = ERR_PTR(set_root(nd));
1963 if (nd->flags & LOOKUP_RCU)
1964 parent = follow_dotdot_rcu(nd, &inode, &seq);
1966 parent = follow_dotdot(nd, &inode, &seq);
1968 return ERR_CAST(parent);
1969 if (unlikely(!parent))
1970 error = step_into(nd, WALK_NOFOLLOW,
1971 nd->path.dentry, nd->inode, nd->seq);
1973 error = step_into(nd, WALK_NOFOLLOW,
1974 parent, inode, seq);
1975 if (unlikely(error))
1978 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1980 * If there was a racing rename or mount along our
1981 * path, then we can't be sure that ".." hasn't jumped
1982 * above nd->root (and so userspace should retry or use
1986 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1987 return ERR_PTR(-EAGAIN);
1988 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1989 return ERR_PTR(-EAGAIN);
1995 static const char *walk_component(struct nameidata *nd, int flags)
1997 struct dentry *dentry;
1998 struct inode *inode;
2001 * "." and ".." are special - ".." especially so because it has
2002 * to be able to know about the current root directory and
2003 * parent relationships.
2005 if (unlikely(nd->last_type != LAST_NORM)) {
2006 if (!(flags & WALK_MORE) && nd->depth)
2008 return handle_dots(nd, nd->last_type);
2010 dentry = lookup_fast(nd, &inode, &seq);
2012 return ERR_CAST(dentry);
2013 if (unlikely(!dentry)) {
2014 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2016 return ERR_CAST(dentry);
2018 if (!(flags & WALK_MORE) && nd->depth)
2020 return step_into(nd, flags, dentry, inode, seq);
2024 * We can do the critical dentry name comparison and hashing
2025 * operations one word at a time, but we are limited to:
2027 * - Architectures with fast unaligned word accesses. We could
2028 * do a "get_unaligned()" if this helps and is sufficiently
2031 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2032 * do not trap on the (extremely unlikely) case of a page
2033 * crossing operation.
2035 * - Furthermore, we need an efficient 64-bit compile for the
2036 * 64-bit case in order to generate the "number of bytes in
2037 * the final mask". Again, that could be replaced with a
2038 * efficient population count instruction or similar.
2040 #ifdef CONFIG_DCACHE_WORD_ACCESS
2042 #include <asm/word-at-a-time.h>
2046 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2048 #elif defined(CONFIG_64BIT)
2050 * Register pressure in the mixing function is an issue, particularly
2051 * on 32-bit x86, but almost any function requires one state value and
2052 * one temporary. Instead, use a function designed for two state values
2053 * and no temporaries.
2055 * This function cannot create a collision in only two iterations, so
2056 * we have two iterations to achieve avalanche. In those two iterations,
2057 * we have six layers of mixing, which is enough to spread one bit's
2058 * influence out to 2^6 = 64 state bits.
2060 * Rotate constants are scored by considering either 64 one-bit input
2061 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2062 * probability of that delta causing a change to each of the 128 output
2063 * bits, using a sample of random initial states.
2065 * The Shannon entropy of the computed probabilities is then summed
2066 * to produce a score. Ideally, any input change has a 50% chance of
2067 * toggling any given output bit.
2069 * Mixing scores (in bits) for (12,45):
2070 * Input delta: 1-bit 2-bit
2071 * 1 round: 713.3 42542.6
2072 * 2 rounds: 2753.7 140389.8
2073 * 3 rounds: 5954.1 233458.2
2074 * 4 rounds: 7862.6 256672.2
2075 * Perfect: 8192 258048
2076 * (64*128) (64*63/2 * 128)
2078 #define HASH_MIX(x, y, a) \
2080 y ^= x, x = rol64(x,12),\
2081 x += y, y = rol64(y,45),\
2085 * Fold two longs into one 32-bit hash value. This must be fast, but
2086 * latency isn't quite as critical, as there is a fair bit of additional
2087 * work done before the hash value is used.
2089 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2091 y ^= x * GOLDEN_RATIO_64;
2092 y *= GOLDEN_RATIO_64;
2096 #else /* 32-bit case */
2099 * Mixing scores (in bits) for (7,20):
2100 * Input delta: 1-bit 2-bit
2101 * 1 round: 330.3 9201.6
2102 * 2 rounds: 1246.4 25475.4
2103 * 3 rounds: 1907.1 31295.1
2104 * 4 rounds: 2042.3 31718.6
2105 * Perfect: 2048 31744
2106 * (32*64) (32*31/2 * 64)
2108 #define HASH_MIX(x, y, a) \
2110 y ^= x, x = rol32(x, 7),\
2111 x += y, y = rol32(y,20),\
2114 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2116 /* Use arch-optimized multiply if one exists */
2117 return __hash_32(y ^ __hash_32(x));
2123 * Return the hash of a string of known length. This is carfully
2124 * designed to match hash_name(), which is the more critical function.
2125 * In particular, we must end by hashing a final word containing 0..7
2126 * payload bytes, to match the way that hash_name() iterates until it
2127 * finds the delimiter after the name.
2129 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2131 unsigned long a, x = 0, y = (unsigned long)salt;
2136 a = load_unaligned_zeropad(name);
2137 if (len < sizeof(unsigned long))
2140 name += sizeof(unsigned long);
2141 len -= sizeof(unsigned long);
2143 x ^= a & bytemask_from_count(len);
2145 return fold_hash(x, y);
2147 EXPORT_SYMBOL(full_name_hash);
2149 /* Return the "hash_len" (hash and length) of a null-terminated string */
2150 u64 hashlen_string(const void *salt, const char *name)
2152 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2153 unsigned long adata, mask, len;
2154 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2161 len += sizeof(unsigned long);
2163 a = load_unaligned_zeropad(name+len);
2164 } while (!has_zero(a, &adata, &constants));
2166 adata = prep_zero_mask(a, adata, &constants);
2167 mask = create_zero_mask(adata);
2168 x ^= a & zero_bytemask(mask);
2170 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2172 EXPORT_SYMBOL(hashlen_string);
2175 * Calculate the length and hash of the path component, and
2176 * return the "hash_len" as the result.
2178 static inline u64 hash_name(const void *salt, const char *name)
2180 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2181 unsigned long adata, bdata, mask, len;
2182 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2189 len += sizeof(unsigned long);
2191 a = load_unaligned_zeropad(name+len);
2192 b = a ^ REPEAT_BYTE('/');
2193 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2195 adata = prep_zero_mask(a, adata, &constants);
2196 bdata = prep_zero_mask(b, bdata, &constants);
2197 mask = create_zero_mask(adata | bdata);
2198 x ^= a & zero_bytemask(mask);
2200 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2203 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2205 /* Return the hash of a string of known length */
2206 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2208 unsigned long hash = init_name_hash(salt);
2210 hash = partial_name_hash((unsigned char)*name++, hash);
2211 return end_name_hash(hash);
2213 EXPORT_SYMBOL(full_name_hash);
2215 /* Return the "hash_len" (hash and length) of a null-terminated string */
2216 u64 hashlen_string(const void *salt, const char *name)
2218 unsigned long hash = init_name_hash(salt);
2219 unsigned long len = 0, c;
2221 c = (unsigned char)*name;
2224 hash = partial_name_hash(c, hash);
2225 c = (unsigned char)name[len];
2227 return hashlen_create(end_name_hash(hash), len);
2229 EXPORT_SYMBOL(hashlen_string);
2232 * We know there's a real path component here of at least
2235 static inline u64 hash_name(const void *salt, const char *name)
2237 unsigned long hash = init_name_hash(salt);
2238 unsigned long len = 0, c;
2240 c = (unsigned char)*name;
2243 hash = partial_name_hash(c, hash);
2244 c = (unsigned char)name[len];
2245 } while (c && c != '/');
2246 return hashlen_create(end_name_hash(hash), len);
2253 * This is the basic name resolution function, turning a pathname into
2254 * the final dentry. We expect 'base' to be positive and a directory.
2256 * Returns 0 and nd will have valid dentry and mnt on success.
2257 * Returns error and drops reference to input namei data on failure.
2259 static int link_path_walk(const char *name, struct nameidata *nd)
2261 int depth = 0; // depth <= nd->depth
2264 nd->last_type = LAST_ROOT;
2265 nd->flags |= LOOKUP_PARENT;
2267 return PTR_ERR(name);
2271 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2275 /* At this point we know we have a real path component. */
2277 struct user_namespace *mnt_userns;
2282 mnt_userns = mnt_user_ns(nd->path.mnt);
2283 err = may_lookup(mnt_userns, nd);
2287 hash_len = hash_name(nd->path.dentry, name);
2290 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2292 if (name[1] == '.') {
2294 nd->state |= ND_JUMPED;
2300 if (likely(type == LAST_NORM)) {
2301 struct dentry *parent = nd->path.dentry;
2302 nd->state &= ~ND_JUMPED;
2303 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2304 struct qstr this = { { .hash_len = hash_len }, .name = name };
2305 err = parent->d_op->d_hash(parent, &this);
2308 hash_len = this.hash_len;
2313 nd->last.hash_len = hash_len;
2314 nd->last.name = name;
2315 nd->last_type = type;
2317 name += hashlen_len(hash_len);
2321 * If it wasn't NUL, we know it was '/'. Skip that
2322 * slash, and continue until no more slashes.
2326 } while (unlikely(*name == '/'));
2327 if (unlikely(!*name)) {
2329 /* pathname or trailing symlink, done */
2331 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2332 nd->dir_mode = nd->inode->i_mode;
2333 nd->flags &= ~LOOKUP_PARENT;
2336 /* last component of nested symlink */
2337 name = nd->stack[--depth].name;
2338 link = walk_component(nd, 0);
2340 /* not the last component */
2341 link = walk_component(nd, WALK_MORE);
2343 if (unlikely(link)) {
2345 return PTR_ERR(link);
2346 /* a symlink to follow */
2347 nd->stack[depth++].name = name;
2351 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2352 if (nd->flags & LOOKUP_RCU) {
2353 if (!try_to_unlazy(nd))
2361 /* must be paired with terminate_walk() */
2362 static const char *path_init(struct nameidata *nd, unsigned flags)
2365 const char *s = nd->name->name;
2367 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2368 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2369 return ERR_PTR(-EAGAIN);
2372 flags &= ~LOOKUP_RCU;
2373 if (flags & LOOKUP_RCU)
2377 nd->state |= ND_JUMPED;
2379 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2380 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2383 if (nd->state & ND_ROOT_PRESET) {
2384 struct dentry *root = nd->root.dentry;
2385 struct inode *inode = root->d_inode;
2386 if (*s && unlikely(!d_can_lookup(root)))
2387 return ERR_PTR(-ENOTDIR);
2388 nd->path = nd->root;
2390 if (flags & LOOKUP_RCU) {
2391 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2392 nd->root_seq = nd->seq;
2394 path_get(&nd->path);
2399 nd->root.mnt = NULL;
2401 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2402 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2403 error = nd_jump_root(nd);
2404 if (unlikely(error))
2405 return ERR_PTR(error);
2409 /* Relative pathname -- get the starting-point it is relative to. */
2410 if (nd->dfd == AT_FDCWD) {
2411 if (flags & LOOKUP_RCU) {
2412 struct fs_struct *fs = current->fs;
2416 seq = read_seqcount_begin(&fs->seq);
2418 nd->inode = nd->path.dentry->d_inode;
2419 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2420 } while (read_seqcount_retry(&fs->seq, seq));
2422 get_fs_pwd(current->fs, &nd->path);
2423 nd->inode = nd->path.dentry->d_inode;
2426 /* Caller must check execute permissions on the starting path component */
2427 struct fd f = fdget_raw(nd->dfd);
2428 struct dentry *dentry;
2431 return ERR_PTR(-EBADF);
2433 dentry = f.file->f_path.dentry;
2435 if (*s && unlikely(!d_can_lookup(dentry))) {
2437 return ERR_PTR(-ENOTDIR);
2440 nd->path = f.file->f_path;
2441 if (flags & LOOKUP_RCU) {
2442 nd->inode = nd->path.dentry->d_inode;
2443 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2445 path_get(&nd->path);
2446 nd->inode = nd->path.dentry->d_inode;
2451 /* For scoped-lookups we need to set the root to the dirfd as well. */
2452 if (flags & LOOKUP_IS_SCOPED) {
2453 nd->root = nd->path;
2454 if (flags & LOOKUP_RCU) {
2455 nd->root_seq = nd->seq;
2457 path_get(&nd->root);
2458 nd->state |= ND_ROOT_GRABBED;
2464 static inline const char *lookup_last(struct nameidata *nd)
2466 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2467 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2469 return walk_component(nd, WALK_TRAILING);
2472 static int handle_lookup_down(struct nameidata *nd)
2474 if (!(nd->flags & LOOKUP_RCU))
2475 dget(nd->path.dentry);
2476 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2477 nd->path.dentry, nd->inode, nd->seq));
2480 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2481 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2483 const char *s = path_init(nd, flags);
2486 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2487 err = handle_lookup_down(nd);
2488 if (unlikely(err < 0))
2492 while (!(err = link_path_walk(s, nd)) &&
2493 (s = lookup_last(nd)) != NULL)
2495 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2496 err = handle_lookup_down(nd);
2497 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2500 err = complete_walk(nd);
2502 if (!err && nd->flags & LOOKUP_DIRECTORY)
2503 if (!d_can_lookup(nd->path.dentry))
2507 nd->path.mnt = NULL;
2508 nd->path.dentry = NULL;
2514 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2515 struct path *path, struct path *root)
2518 struct nameidata nd;
2520 return PTR_ERR(name);
2521 set_nameidata(&nd, dfd, name, root);
2522 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2523 if (unlikely(retval == -ECHILD))
2524 retval = path_lookupat(&nd, flags, path);
2525 if (unlikely(retval == -ESTALE))
2526 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2528 if (likely(!retval))
2529 audit_inode(name, path->dentry,
2530 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2531 restore_nameidata();
2535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2536 static int path_parentat(struct nameidata *nd, unsigned flags,
2537 struct path *parent)
2539 const char *s = path_init(nd, flags);
2540 int err = link_path_walk(s, nd);
2542 err = complete_walk(nd);
2545 nd->path.mnt = NULL;
2546 nd->path.dentry = NULL;
2552 /* Note: this does not consume "name" */
2553 static int filename_parentat(int dfd, struct filename *name,
2554 unsigned int flags, struct path *parent,
2555 struct qstr *last, int *type)
2558 struct nameidata nd;
2561 return PTR_ERR(name);
2562 set_nameidata(&nd, dfd, name, NULL);
2563 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2564 if (unlikely(retval == -ECHILD))
2565 retval = path_parentat(&nd, flags, parent);
2566 if (unlikely(retval == -ESTALE))
2567 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2568 if (likely(!retval)) {
2570 *type = nd.last_type;
2571 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2573 restore_nameidata();
2577 /* does lookup, returns the object with parent locked */
2578 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2584 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2586 return ERR_PTR(error);
2587 if (unlikely(type != LAST_NORM)) {
2589 return ERR_PTR(-EINVAL);
2591 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2592 d = __lookup_hash(&last, path->dentry, 0);
2594 inode_unlock(path->dentry->d_inode);
2600 struct dentry *kern_path_locked(const char *name, struct path *path)
2602 struct filename *filename = getname_kernel(name);
2603 struct dentry *res = __kern_path_locked(filename, path);
2609 int kern_path(const char *name, unsigned int flags, struct path *path)
2611 struct filename *filename = getname_kernel(name);
2612 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2618 EXPORT_SYMBOL(kern_path);
2621 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2622 * @dentry: pointer to dentry of the base directory
2623 * @mnt: pointer to vfs mount of the base directory
2624 * @name: pointer to file name
2625 * @flags: lookup flags
2626 * @path: pointer to struct path to fill
2628 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2629 const char *name, unsigned int flags,
2632 struct filename *filename;
2633 struct path root = {.mnt = mnt, .dentry = dentry};
2636 filename = getname_kernel(name);
2637 /* the first argument of filename_lookup() is ignored with root */
2638 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2642 EXPORT_SYMBOL(vfs_path_lookup);
2644 static int lookup_one_common(struct user_namespace *mnt_userns,
2645 const char *name, struct dentry *base, int len,
2650 this->hash = full_name_hash(base, name, len);
2654 if (unlikely(name[0] == '.')) {
2655 if (len < 2 || (len == 2 && name[1] == '.'))
2660 unsigned int c = *(const unsigned char *)name++;
2661 if (c == '/' || c == '\0')
2665 * See if the low-level filesystem might want
2666 * to use its own hash..
2668 if (base->d_flags & DCACHE_OP_HASH) {
2669 int err = base->d_op->d_hash(base, this);
2674 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2678 * try_lookup_one_len - filesystem helper to lookup single pathname component
2679 * @name: pathname component to lookup
2680 * @base: base directory to lookup from
2681 * @len: maximum length @len should be interpreted to
2683 * Look up a dentry by name in the dcache, returning NULL if it does not
2684 * currently exist. The function does not try to create a dentry.
2686 * Note that this routine is purely a helper for filesystem usage and should
2687 * not be called by generic code.
2689 * The caller must hold base->i_mutex.
2691 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2696 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2698 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2700 return ERR_PTR(err);
2702 return lookup_dcache(&this, base, 0);
2704 EXPORT_SYMBOL(try_lookup_one_len);
2707 * lookup_one_len - filesystem helper to lookup single pathname component
2708 * @name: pathname component to lookup
2709 * @base: base directory to lookup from
2710 * @len: maximum length @len should be interpreted to
2712 * Note that this routine is purely a helper for filesystem usage and should
2713 * not be called by generic code.
2715 * The caller must hold base->i_mutex.
2717 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2719 struct dentry *dentry;
2723 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2725 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2727 return ERR_PTR(err);
2729 dentry = lookup_dcache(&this, base, 0);
2730 return dentry ? dentry : __lookup_slow(&this, base, 0);
2732 EXPORT_SYMBOL(lookup_one_len);
2735 * lookup_one - filesystem helper to lookup single pathname component
2736 * @mnt_userns: user namespace of the mount the lookup is performed from
2737 * @name: pathname component to lookup
2738 * @base: base directory to lookup from
2739 * @len: maximum length @len should be interpreted to
2741 * Note that this routine is purely a helper for filesystem usage and should
2742 * not be called by generic code.
2744 * The caller must hold base->i_mutex.
2746 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2747 struct dentry *base, int len)
2749 struct dentry *dentry;
2753 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2755 err = lookup_one_common(mnt_userns, name, base, len, &this);
2757 return ERR_PTR(err);
2759 dentry = lookup_dcache(&this, base, 0);
2760 return dentry ? dentry : __lookup_slow(&this, base, 0);
2762 EXPORT_SYMBOL(lookup_one);
2765 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2766 * @mnt_userns: idmapping of the mount the lookup is performed from
2767 * @name: pathname component to lookup
2768 * @base: base directory to lookup from
2769 * @len: maximum length @len should be interpreted to
2771 * Note that this routine is purely a helper for filesystem usage and should
2772 * not be called by generic code.
2774 * Unlike lookup_one_len, it should be called without the parent
2775 * i_mutex held, and will take the i_mutex itself if necessary.
2777 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2778 const char *name, struct dentry *base,
2785 err = lookup_one_common(mnt_userns, name, base, len, &this);
2787 return ERR_PTR(err);
2789 ret = lookup_dcache(&this, base, 0);
2791 ret = lookup_slow(&this, base, 0);
2794 EXPORT_SYMBOL(lookup_one_unlocked);
2797 * lookup_one_positive_unlocked - filesystem helper to lookup single
2798 * pathname component
2799 * @mnt_userns: idmapping of the mount the lookup is performed from
2800 * @name: pathname component to lookup
2801 * @base: base directory to lookup from
2802 * @len: maximum length @len should be interpreted to
2804 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2805 * known positive or ERR_PTR(). This is what most of the users want.
2807 * Note that pinned negative with unlocked parent _can_ become positive at any
2808 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2809 * positives have >d_inode stable, so this one avoids such problems.
2811 * Note that this routine is purely a helper for filesystem usage and should
2812 * not be called by generic code.
2814 * The helper should be called without i_mutex held.
2816 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2818 struct dentry *base, int len)
2820 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2822 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2824 ret = ERR_PTR(-ENOENT);
2828 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2831 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2832 * @name: pathname component to lookup
2833 * @base: base directory to lookup from
2834 * @len: maximum length @len should be interpreted to
2836 * Note that this routine is purely a helper for filesystem usage and should
2837 * not be called by generic code.
2839 * Unlike lookup_one_len, it should be called without the parent
2840 * i_mutex held, and will take the i_mutex itself if necessary.
2842 struct dentry *lookup_one_len_unlocked(const char *name,
2843 struct dentry *base, int len)
2845 return lookup_one_unlocked(&init_user_ns, name, base, len);
2847 EXPORT_SYMBOL(lookup_one_len_unlocked);
2850 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2851 * on negatives. Returns known positive or ERR_PTR(); that's what
2852 * most of the users want. Note that pinned negative with unlocked parent
2853 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2854 * need to be very careful; pinned positives have ->d_inode stable, so
2855 * this one avoids such problems.
2857 struct dentry *lookup_positive_unlocked(const char *name,
2858 struct dentry *base, int len)
2860 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2862 EXPORT_SYMBOL(lookup_positive_unlocked);
2864 #ifdef CONFIG_UNIX98_PTYS
2865 int path_pts(struct path *path)
2867 /* Find something mounted on "pts" in the same directory as
2870 struct dentry *parent = dget_parent(path->dentry);
2871 struct dentry *child;
2872 struct qstr this = QSTR_INIT("pts", 3);
2874 if (unlikely(!path_connected(path->mnt, parent))) {
2879 path->dentry = parent;
2880 child = d_hash_and_lookup(parent, &this);
2884 path->dentry = child;
2891 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2892 struct path *path, int *empty)
2894 struct filename *filename = getname_flags(name, flags, empty);
2895 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2900 EXPORT_SYMBOL(user_path_at_empty);
2902 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2903 struct inode *inode)
2905 kuid_t fsuid = current_fsuid();
2907 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2909 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2911 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2913 EXPORT_SYMBOL(__check_sticky);
2916 * Check whether we can remove a link victim from directory dir, check
2917 * whether the type of victim is right.
2918 * 1. We can't do it if dir is read-only (done in permission())
2919 * 2. We should have write and exec permissions on dir
2920 * 3. We can't remove anything from append-only dir
2921 * 4. We can't do anything with immutable dir (done in permission())
2922 * 5. If the sticky bit on dir is set we should either
2923 * a. be owner of dir, or
2924 * b. be owner of victim, or
2925 * c. have CAP_FOWNER capability
2926 * 6. If the victim is append-only or immutable we can't do antyhing with
2927 * links pointing to it.
2928 * 7. If the victim has an unknown uid or gid we can't change the inode.
2929 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2930 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2931 * 10. We can't remove a root or mountpoint.
2932 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2933 * nfs_async_unlink().
2935 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2936 struct dentry *victim, bool isdir)
2938 struct inode *inode = d_backing_inode(victim);
2941 if (d_is_negative(victim))
2945 BUG_ON(victim->d_parent->d_inode != dir);
2947 /* Inode writeback is not safe when the uid or gid are invalid. */
2948 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2949 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2952 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2954 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2960 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2961 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2962 HAS_UNMAPPED_ID(mnt_userns, inode))
2965 if (!d_is_dir(victim))
2967 if (IS_ROOT(victim))
2969 } else if (d_is_dir(victim))
2971 if (IS_DEADDIR(dir))
2973 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2978 /* Check whether we can create an object with dentry child in directory
2980 * 1. We can't do it if child already exists (open has special treatment for
2981 * this case, but since we are inlined it's OK)
2982 * 2. We can't do it if dir is read-only (done in permission())
2983 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2984 * 4. We should have write and exec permissions on dir
2985 * 5. We can't do it if dir is immutable (done in permission())
2987 static inline int may_create(struct user_namespace *mnt_userns,
2988 struct inode *dir, struct dentry *child)
2990 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2993 if (IS_DEADDIR(dir))
2995 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2998 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3002 * p1 and p2 should be directories on the same fs.
3004 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3009 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3013 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3015 p = d_ancestor(p2, p1);
3017 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3018 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3022 p = d_ancestor(p1, p2);
3024 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3025 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3029 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3030 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3033 EXPORT_SYMBOL(lock_rename);
3035 void unlock_rename(struct dentry *p1, struct dentry *p2)
3037 inode_unlock(p1->d_inode);
3039 inode_unlock(p2->d_inode);
3040 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3043 EXPORT_SYMBOL(unlock_rename);
3046 * vfs_create - create new file
3047 * @mnt_userns: user namespace of the mount the inode was found from
3048 * @dir: inode of @dentry
3049 * @dentry: pointer to dentry of the base directory
3050 * @mode: mode of the new file
3051 * @want_excl: whether the file must not yet exist
3053 * Create a new file.
3055 * If the inode has been found through an idmapped mount the user namespace of
3056 * the vfsmount must be passed through @mnt_userns. This function will then take
3057 * care to map the inode according to @mnt_userns before checking permissions.
3058 * On non-idmapped mounts or if permission checking is to be performed on the
3059 * raw inode simply passs init_user_ns.
3061 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3062 struct dentry *dentry, umode_t mode, bool want_excl)
3064 int error = may_create(mnt_userns, dir, dentry);
3068 if (!dir->i_op->create)
3069 return -EACCES; /* shouldn't it be ENOSYS? */
3072 error = security_inode_create(dir, dentry, mode);
3075 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3077 fsnotify_create(dir, dentry);
3080 EXPORT_SYMBOL(vfs_create);
3082 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3083 int (*f)(struct dentry *, umode_t, void *),
3086 struct inode *dir = dentry->d_parent->d_inode;
3087 int error = may_create(&init_user_ns, dir, dentry);
3093 error = security_inode_create(dir, dentry, mode);
3096 error = f(dentry, mode, arg);
3098 fsnotify_create(dir, dentry);
3101 EXPORT_SYMBOL(vfs_mkobj);
3103 bool may_open_dev(const struct path *path)
3105 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3106 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3109 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3110 int acc_mode, int flag)
3112 struct dentry *dentry = path->dentry;
3113 struct inode *inode = dentry->d_inode;
3119 switch (inode->i_mode & S_IFMT) {
3123 if (acc_mode & MAY_WRITE)
3125 if (acc_mode & MAY_EXEC)
3130 if (!may_open_dev(path))
3135 if (acc_mode & MAY_EXEC)
3140 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3145 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3150 * An append-only file must be opened in append mode for writing.
3152 if (IS_APPEND(inode)) {
3153 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3159 /* O_NOATIME can only be set by the owner or superuser */
3160 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3166 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3168 const struct path *path = &filp->f_path;
3169 struct inode *inode = path->dentry->d_inode;
3170 int error = get_write_access(inode);
3174 error = security_path_truncate(path);
3176 error = do_truncate(mnt_userns, path->dentry, 0,
3177 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3180 put_write_access(inode);
3184 static inline int open_to_namei_flags(int flag)
3186 if ((flag & O_ACCMODE) == 3)
3191 static int may_o_create(struct user_namespace *mnt_userns,
3192 const struct path *dir, struct dentry *dentry,
3195 int error = security_path_mknod(dir, dentry, mode, 0);
3199 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3202 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3203 MAY_WRITE | MAY_EXEC);
3207 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3211 * Attempt to atomically look up, create and open a file from a negative
3214 * Returns 0 if successful. The file will have been created and attached to
3215 * @file by the filesystem calling finish_open().
3217 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3218 * be set. The caller will need to perform the open themselves. @path will
3219 * have been updated to point to the new dentry. This may be negative.
3221 * Returns an error code otherwise.
3223 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3225 int open_flag, umode_t mode)
3227 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3228 struct inode *dir = nd->path.dentry->d_inode;
3231 if (nd->flags & LOOKUP_DIRECTORY)
3232 open_flag |= O_DIRECTORY;
3234 file->f_path.dentry = DENTRY_NOT_SET;
3235 file->f_path.mnt = nd->path.mnt;
3236 error = dir->i_op->atomic_open(dir, dentry, file,
3237 open_to_namei_flags(open_flag), mode);
3238 d_lookup_done(dentry);
3240 if (file->f_mode & FMODE_OPENED) {
3241 if (unlikely(dentry != file->f_path.dentry)) {
3243 dentry = dget(file->f_path.dentry);
3245 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3248 if (file->f_path.dentry) {
3250 dentry = file->f_path.dentry;
3252 if (unlikely(d_is_negative(dentry)))
3258 dentry = ERR_PTR(error);
3264 * Look up and maybe create and open the last component.
3266 * Must be called with parent locked (exclusive in O_CREAT case).
3268 * Returns 0 on success, that is, if
3269 * the file was successfully atomically created (if necessary) and opened, or
3270 * the file was not completely opened at this time, though lookups and
3271 * creations were performed.
3272 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3273 * In the latter case dentry returned in @path might be negative if O_CREAT
3274 * hadn't been specified.
3276 * An error code is returned on failure.
3278 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3279 const struct open_flags *op,
3282 struct user_namespace *mnt_userns;
3283 struct dentry *dir = nd->path.dentry;
3284 struct inode *dir_inode = dir->d_inode;
3285 int open_flag = op->open_flag;
3286 struct dentry *dentry;
3287 int error, create_error = 0;
3288 umode_t mode = op->mode;
3289 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3291 if (unlikely(IS_DEADDIR(dir_inode)))
3292 return ERR_PTR(-ENOENT);
3294 file->f_mode &= ~FMODE_CREATED;
3295 dentry = d_lookup(dir, &nd->last);
3298 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3302 if (d_in_lookup(dentry))
3305 error = d_revalidate(dentry, nd->flags);
3306 if (likely(error > 0))
3310 d_invalidate(dentry);
3314 if (dentry->d_inode) {
3315 /* Cached positive dentry: will open in f_op->open */
3320 * Checking write permission is tricky, bacuse we don't know if we are
3321 * going to actually need it: O_CREAT opens should work as long as the
3322 * file exists. But checking existence breaks atomicity. The trick is
3323 * to check access and if not granted clear O_CREAT from the flags.
3325 * Another problem is returing the "right" error value (e.g. for an
3326 * O_EXCL open we want to return EEXIST not EROFS).
3328 if (unlikely(!got_write))
3329 open_flag &= ~O_TRUNC;
3330 mnt_userns = mnt_user_ns(nd->path.mnt);
3331 if (open_flag & O_CREAT) {
3332 if (open_flag & O_EXCL)
3333 open_flag &= ~O_TRUNC;
3334 if (!IS_POSIXACL(dir->d_inode))
3335 mode &= ~current_umask();
3336 if (likely(got_write))
3337 create_error = may_o_create(mnt_userns, &nd->path,
3340 create_error = -EROFS;
3343 open_flag &= ~O_CREAT;
3344 if (dir_inode->i_op->atomic_open) {
3345 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3346 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3347 dentry = ERR_PTR(create_error);
3351 if (d_in_lookup(dentry)) {
3352 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3354 d_lookup_done(dentry);
3355 if (unlikely(res)) {
3357 error = PTR_ERR(res);
3365 /* Negative dentry, just create the file */
3366 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3367 file->f_mode |= FMODE_CREATED;
3368 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3369 if (!dir_inode->i_op->create) {
3374 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3375 mode, open_flag & O_EXCL);
3379 if (unlikely(create_error) && !dentry->d_inode) {
3380 error = create_error;
3387 return ERR_PTR(error);
3390 static const char *open_last_lookups(struct nameidata *nd,
3391 struct file *file, const struct open_flags *op)
3393 struct dentry *dir = nd->path.dentry;
3394 int open_flag = op->open_flag;
3395 bool got_write = false;
3397 struct inode *inode;
3398 struct dentry *dentry;
3401 nd->flags |= op->intent;
3403 if (nd->last_type != LAST_NORM) {
3406 return handle_dots(nd, nd->last_type);
3409 if (!(open_flag & O_CREAT)) {
3410 if (nd->last.name[nd->last.len])
3411 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3412 /* we _can_ be in RCU mode here */
3413 dentry = lookup_fast(nd, &inode, &seq);
3415 return ERR_CAST(dentry);
3419 BUG_ON(nd->flags & LOOKUP_RCU);
3421 /* create side of things */
3422 if (nd->flags & LOOKUP_RCU) {
3423 if (!try_to_unlazy(nd))
3424 return ERR_PTR(-ECHILD);
3426 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3427 /* trailing slashes? */
3428 if (unlikely(nd->last.name[nd->last.len]))
3429 return ERR_PTR(-EISDIR);
3432 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3433 got_write = !mnt_want_write(nd->path.mnt);
3435 * do _not_ fail yet - we might not need that or fail with
3436 * a different error; let lookup_open() decide; we'll be
3437 * dropping this one anyway.
3440 if (open_flag & O_CREAT)
3441 inode_lock(dir->d_inode);
3443 inode_lock_shared(dir->d_inode);
3444 dentry = lookup_open(nd, file, op, got_write);
3445 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3446 fsnotify_create(dir->d_inode, dentry);
3447 if (open_flag & O_CREAT)
3448 inode_unlock(dir->d_inode);
3450 inode_unlock_shared(dir->d_inode);
3453 mnt_drop_write(nd->path.mnt);
3456 return ERR_CAST(dentry);
3458 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3459 dput(nd->path.dentry);
3460 nd->path.dentry = dentry;
3467 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3469 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3474 * Handle the last step of open()
3476 static int do_open(struct nameidata *nd,
3477 struct file *file, const struct open_flags *op)
3479 struct user_namespace *mnt_userns;
3480 int open_flag = op->open_flag;
3485 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3486 error = complete_walk(nd);
3490 if (!(file->f_mode & FMODE_CREATED))
3491 audit_inode(nd->name, nd->path.dentry, 0);
3492 mnt_userns = mnt_user_ns(nd->path.mnt);
3493 if (open_flag & O_CREAT) {
3494 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3496 if (d_is_dir(nd->path.dentry))
3498 error = may_create_in_sticky(mnt_userns, nd,
3499 d_backing_inode(nd->path.dentry));
3500 if (unlikely(error))
3503 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3506 do_truncate = false;
3507 acc_mode = op->acc_mode;
3508 if (file->f_mode & FMODE_CREATED) {
3509 /* Don't check for write permission, don't truncate */
3510 open_flag &= ~O_TRUNC;
3512 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3513 error = mnt_want_write(nd->path.mnt);
3518 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3519 if (!error && !(file->f_mode & FMODE_OPENED))
3520 error = vfs_open(&nd->path, file);
3522 error = ima_file_check(file, op->acc_mode);
3523 if (!error && do_truncate)
3524 error = handle_truncate(mnt_userns, file);
3525 if (unlikely(error > 0)) {
3530 mnt_drop_write(nd->path.mnt);
3535 * vfs_tmpfile - create tmpfile
3536 * @mnt_userns: user namespace of the mount the inode was found from
3537 * @dentry: pointer to dentry of the base directory
3538 * @mode: mode of the new tmpfile
3541 * Create a temporary file.
3543 * If the inode has been found through an idmapped mount the user namespace of
3544 * the vfsmount must be passed through @mnt_userns. This function will then take
3545 * care to map the inode according to @mnt_userns before checking permissions.
3546 * On non-idmapped mounts or if permission checking is to be performed on the
3547 * raw inode simply passs init_user_ns.
3549 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3550 struct dentry *dentry, umode_t mode, int open_flag)
3552 struct dentry *child = NULL;
3553 struct inode *dir = dentry->d_inode;
3554 struct inode *inode;
3557 /* we want directory to be writable */
3558 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3561 error = -EOPNOTSUPP;
3562 if (!dir->i_op->tmpfile)
3565 child = d_alloc(dentry, &slash_name);
3566 if (unlikely(!child))
3568 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3572 inode = child->d_inode;
3573 if (unlikely(!inode))
3575 if (!(open_flag & O_EXCL)) {
3576 spin_lock(&inode->i_lock);
3577 inode->i_state |= I_LINKABLE;
3578 spin_unlock(&inode->i_lock);
3580 ima_post_create_tmpfile(mnt_userns, inode);
3585 return ERR_PTR(error);
3587 EXPORT_SYMBOL(vfs_tmpfile);
3589 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3590 const struct open_flags *op,
3593 struct user_namespace *mnt_userns;
3594 struct dentry *child;
3596 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3597 if (unlikely(error))
3599 error = mnt_want_write(path.mnt);
3600 if (unlikely(error))
3602 mnt_userns = mnt_user_ns(path.mnt);
3603 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3604 error = PTR_ERR(child);
3608 path.dentry = child;
3609 audit_inode(nd->name, child, 0);
3610 /* Don't check for other permissions, the inode was just created */
3611 error = may_open(mnt_userns, &path, 0, op->open_flag);
3613 error = vfs_open(&path, file);
3615 mnt_drop_write(path.mnt);
3621 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3624 int error = path_lookupat(nd, flags, &path);
3626 audit_inode(nd->name, path.dentry, 0);
3627 error = vfs_open(&path, file);
3633 static struct file *path_openat(struct nameidata *nd,
3634 const struct open_flags *op, unsigned flags)
3639 file = alloc_empty_file(op->open_flag, current_cred());
3643 if (unlikely(file->f_flags & __O_TMPFILE)) {
3644 error = do_tmpfile(nd, flags, op, file);
3645 } else if (unlikely(file->f_flags & O_PATH)) {
3646 error = do_o_path(nd, flags, file);
3648 const char *s = path_init(nd, flags);
3649 while (!(error = link_path_walk(s, nd)) &&
3650 (s = open_last_lookups(nd, file, op)) != NULL)
3653 error = do_open(nd, file, op);
3656 if (likely(!error)) {
3657 if (likely(file->f_mode & FMODE_OPENED))
3663 if (error == -EOPENSTALE) {
3664 if (flags & LOOKUP_RCU)
3669 return ERR_PTR(error);
3672 struct file *do_filp_open(int dfd, struct filename *pathname,
3673 const struct open_flags *op)
3675 struct nameidata nd;
3676 int flags = op->lookup_flags;
3679 set_nameidata(&nd, dfd, pathname, NULL);
3680 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3681 if (unlikely(filp == ERR_PTR(-ECHILD)))
3682 filp = path_openat(&nd, op, flags);
3683 if (unlikely(filp == ERR_PTR(-ESTALE)))
3684 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3685 restore_nameidata();
3689 struct file *do_file_open_root(const struct path *root,
3690 const char *name, const struct open_flags *op)
3692 struct nameidata nd;
3694 struct filename *filename;
3695 int flags = op->lookup_flags;
3697 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3698 return ERR_PTR(-ELOOP);
3700 filename = getname_kernel(name);
3701 if (IS_ERR(filename))
3702 return ERR_CAST(filename);
3704 set_nameidata(&nd, -1, filename, root);
3705 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3706 if (unlikely(file == ERR_PTR(-ECHILD)))
3707 file = path_openat(&nd, op, flags);
3708 if (unlikely(file == ERR_PTR(-ESTALE)))
3709 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3710 restore_nameidata();
3715 static struct dentry *filename_create(int dfd, struct filename *name,
3716 struct path *path, unsigned int lookup_flags)
3718 struct dentry *dentry = ERR_PTR(-EEXIST);
3720 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3721 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3722 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3727 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3729 return ERR_PTR(error);
3732 * Yucky last component or no last component at all?
3733 * (foo/., foo/.., /////)
3735 if (unlikely(type != LAST_NORM))
3738 /* don't fail immediately if it's r/o, at least try to report other errors */
3739 err2 = mnt_want_write(path->mnt);
3741 * Do the final lookup. Suppress 'create' if there is a trailing
3742 * '/', and a directory wasn't requested.
3744 if (last.name[last.len] && !want_dir)
3746 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3747 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3752 if (d_is_positive(dentry))
3756 * Special case - lookup gave negative, but... we had foo/bar/
3757 * From the vfs_mknod() POV we just have a negative dentry -
3758 * all is fine. Let's be bastards - you had / on the end, you've
3759 * been asking for (non-existent) directory. -ENOENT for you.
3761 if (unlikely(!create_flags)) {
3765 if (unlikely(err2)) {
3772 dentry = ERR_PTR(error);
3774 inode_unlock(path->dentry->d_inode);
3776 mnt_drop_write(path->mnt);
3782 struct dentry *kern_path_create(int dfd, const char *pathname,
3783 struct path *path, unsigned int lookup_flags)
3785 struct filename *filename = getname_kernel(pathname);
3786 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3791 EXPORT_SYMBOL(kern_path_create);
3793 void done_path_create(struct path *path, struct dentry *dentry)
3796 inode_unlock(path->dentry->d_inode);
3797 mnt_drop_write(path->mnt);
3800 EXPORT_SYMBOL(done_path_create);
3802 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3803 struct path *path, unsigned int lookup_flags)
3805 struct filename *filename = getname(pathname);
3806 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3811 EXPORT_SYMBOL(user_path_create);
3814 * vfs_mknod - create device node or file
3815 * @mnt_userns: user namespace of the mount the inode was found from
3816 * @dir: inode of @dentry
3817 * @dentry: pointer to dentry of the base directory
3818 * @mode: mode of the new device node or file
3819 * @dev: device number of device to create
3821 * Create a device node or file.
3823 * If the inode has been found through an idmapped mount the user namespace of
3824 * the vfsmount must be passed through @mnt_userns. This function will then take
3825 * care to map the inode according to @mnt_userns before checking permissions.
3826 * On non-idmapped mounts or if permission checking is to be performed on the
3827 * raw inode simply passs init_user_ns.
3829 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3830 struct dentry *dentry, umode_t mode, dev_t dev)
3832 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3833 int error = may_create(mnt_userns, dir, dentry);
3838 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3839 !capable(CAP_MKNOD))
3842 if (!dir->i_op->mknod)
3845 error = devcgroup_inode_mknod(mode, dev);
3849 error = security_inode_mknod(dir, dentry, mode, dev);
3853 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3855 fsnotify_create(dir, dentry);
3858 EXPORT_SYMBOL(vfs_mknod);
3860 static int may_mknod(umode_t mode)
3862 switch (mode & S_IFMT) {
3868 case 0: /* zero mode translates to S_IFREG */
3877 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3880 struct user_namespace *mnt_userns;
3881 struct dentry *dentry;
3884 unsigned int lookup_flags = 0;
3886 error = may_mknod(mode);
3890 dentry = filename_create(dfd, name, &path, lookup_flags);
3891 error = PTR_ERR(dentry);
3895 if (!IS_POSIXACL(path.dentry->d_inode))
3896 mode &= ~current_umask();
3897 error = security_path_mknod(&path, dentry, mode, dev);
3901 mnt_userns = mnt_user_ns(path.mnt);
3902 switch (mode & S_IFMT) {
3903 case 0: case S_IFREG:
3904 error = vfs_create(mnt_userns, path.dentry->d_inode,
3905 dentry, mode, true);
3907 ima_post_path_mknod(mnt_userns, dentry);
3909 case S_IFCHR: case S_IFBLK:
3910 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3911 dentry, mode, new_decode_dev(dev));
3913 case S_IFIFO: case S_IFSOCK:
3914 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3919 done_path_create(&path, dentry);
3920 if (retry_estale(error, lookup_flags)) {
3921 lookup_flags |= LOOKUP_REVAL;
3929 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3932 return do_mknodat(dfd, getname(filename), mode, dev);
3935 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3937 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3941 * vfs_mkdir - create directory
3942 * @mnt_userns: user namespace of the mount the inode was found from
3943 * @dir: inode of @dentry
3944 * @dentry: pointer to dentry of the base directory
3945 * @mode: mode of the new directory
3947 * Create a directory.
3949 * If the inode has been found through an idmapped mount the user namespace of
3950 * the vfsmount must be passed through @mnt_userns. This function will then take
3951 * care to map the inode according to @mnt_userns before checking permissions.
3952 * On non-idmapped mounts or if permission checking is to be performed on the
3953 * raw inode simply passs init_user_ns.
3955 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3956 struct dentry *dentry, umode_t mode)
3958 int error = may_create(mnt_userns, dir, dentry);
3959 unsigned max_links = dir->i_sb->s_max_links;
3964 if (!dir->i_op->mkdir)
3967 mode &= (S_IRWXUGO|S_ISVTX);
3968 error = security_inode_mkdir(dir, dentry, mode);
3972 if (max_links && dir->i_nlink >= max_links)
3975 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3977 fsnotify_mkdir(dir, dentry);
3980 EXPORT_SYMBOL(vfs_mkdir);
3982 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3984 struct dentry *dentry;
3987 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3990 dentry = filename_create(dfd, name, &path, lookup_flags);
3991 error = PTR_ERR(dentry);
3995 if (!IS_POSIXACL(path.dentry->d_inode))
3996 mode &= ~current_umask();
3997 error = security_path_mkdir(&path, dentry, mode);
3999 struct user_namespace *mnt_userns;
4000 mnt_userns = mnt_user_ns(path.mnt);
4001 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4004 done_path_create(&path, dentry);
4005 if (retry_estale(error, lookup_flags)) {
4006 lookup_flags |= LOOKUP_REVAL;
4014 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4016 return do_mkdirat(dfd, getname(pathname), mode);
4019 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4021 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4025 * vfs_rmdir - remove directory
4026 * @mnt_userns: user namespace of the mount the inode was found from
4027 * @dir: inode of @dentry
4028 * @dentry: pointer to dentry of the base directory
4030 * Remove a directory.
4032 * If the inode has been found through an idmapped mount the user namespace of
4033 * the vfsmount must be passed through @mnt_userns. This function will then take
4034 * care to map the inode according to @mnt_userns before checking permissions.
4035 * On non-idmapped mounts or if permission checking is to be performed on the
4036 * raw inode simply passs init_user_ns.
4038 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4039 struct dentry *dentry)
4041 int error = may_delete(mnt_userns, dir, dentry, 1);
4046 if (!dir->i_op->rmdir)
4050 inode_lock(dentry->d_inode);
4053 if (is_local_mountpoint(dentry) ||
4054 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4057 error = security_inode_rmdir(dir, dentry);
4061 error = dir->i_op->rmdir(dir, dentry);
4065 shrink_dcache_parent(dentry);
4066 dentry->d_inode->i_flags |= S_DEAD;
4068 detach_mounts(dentry);
4071 inode_unlock(dentry->d_inode);
4074 d_delete_notify(dir, dentry);
4077 EXPORT_SYMBOL(vfs_rmdir);
4079 int do_rmdir(int dfd, struct filename *name)
4081 struct user_namespace *mnt_userns;
4083 struct dentry *dentry;
4087 unsigned int lookup_flags = 0;
4089 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4105 error = mnt_want_write(path.mnt);
4109 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4110 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4111 error = PTR_ERR(dentry);
4114 if (!dentry->d_inode) {
4118 error = security_path_rmdir(&path, dentry);
4121 mnt_userns = mnt_user_ns(path.mnt);
4122 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4126 inode_unlock(path.dentry->d_inode);
4127 mnt_drop_write(path.mnt);
4130 if (retry_estale(error, lookup_flags)) {
4131 lookup_flags |= LOOKUP_REVAL;
4139 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4141 return do_rmdir(AT_FDCWD, getname(pathname));
4145 * vfs_unlink - unlink a filesystem object
4146 * @mnt_userns: user namespace of the mount the inode was found from
4147 * @dir: parent directory
4149 * @delegated_inode: returns victim inode, if the inode is delegated.
4151 * The caller must hold dir->i_mutex.
4153 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4154 * return a reference to the inode in delegated_inode. The caller
4155 * should then break the delegation on that inode and retry. Because
4156 * breaking a delegation may take a long time, the caller should drop
4157 * dir->i_mutex before doing so.
4159 * Alternatively, a caller may pass NULL for delegated_inode. This may
4160 * be appropriate for callers that expect the underlying filesystem not
4161 * to be NFS exported.
4163 * If the inode has been found through an idmapped mount the user namespace of
4164 * the vfsmount must be passed through @mnt_userns. This function will then take
4165 * care to map the inode according to @mnt_userns before checking permissions.
4166 * On non-idmapped mounts or if permission checking is to be performed on the
4167 * raw inode simply passs init_user_ns.
4169 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4170 struct dentry *dentry, struct inode **delegated_inode)
4172 struct inode *target = dentry->d_inode;
4173 int error = may_delete(mnt_userns, dir, dentry, 0);
4178 if (!dir->i_op->unlink)
4182 if (IS_SWAPFILE(target))
4184 else if (is_local_mountpoint(dentry))
4187 error = security_inode_unlink(dir, dentry);
4189 error = try_break_deleg(target, delegated_inode);
4192 error = dir->i_op->unlink(dir, dentry);
4195 detach_mounts(dentry);
4200 inode_unlock(target);
4202 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4203 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4204 fsnotify_unlink(dir, dentry);
4205 } else if (!error) {
4206 fsnotify_link_count(target);
4207 d_delete_notify(dir, dentry);
4212 EXPORT_SYMBOL(vfs_unlink);
4215 * Make sure that the actual truncation of the file will occur outside its
4216 * directory's i_mutex. Truncate can take a long time if there is a lot of
4217 * writeout happening, and we don't want to prevent access to the directory
4218 * while waiting on the I/O.
4220 int do_unlinkat(int dfd, struct filename *name)
4223 struct dentry *dentry;
4227 struct inode *inode = NULL;
4228 struct inode *delegated_inode = NULL;
4229 unsigned int lookup_flags = 0;
4231 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4236 if (type != LAST_NORM)
4239 error = mnt_want_write(path.mnt);
4243 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4244 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4245 error = PTR_ERR(dentry);
4246 if (!IS_ERR(dentry)) {
4247 struct user_namespace *mnt_userns;
4249 /* Why not before? Because we want correct error value */
4250 if (last.name[last.len])
4252 inode = dentry->d_inode;
4253 if (d_is_negative(dentry))
4256 error = security_path_unlink(&path, dentry);
4259 mnt_userns = mnt_user_ns(path.mnt);
4260 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4265 inode_unlock(path.dentry->d_inode);
4267 iput(inode); /* truncate the inode here */
4269 if (delegated_inode) {
4270 error = break_deleg_wait(&delegated_inode);
4274 mnt_drop_write(path.mnt);
4277 if (retry_estale(error, lookup_flags)) {
4278 lookup_flags |= LOOKUP_REVAL;
4287 if (d_is_negative(dentry))
4289 else if (d_is_dir(dentry))
4296 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4298 if ((flag & ~AT_REMOVEDIR) != 0)
4301 if (flag & AT_REMOVEDIR)
4302 return do_rmdir(dfd, getname(pathname));
4303 return do_unlinkat(dfd, getname(pathname));
4306 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4308 return do_unlinkat(AT_FDCWD, getname(pathname));
4312 * vfs_symlink - create symlink
4313 * @mnt_userns: user namespace of the mount the inode was found from
4314 * @dir: inode of @dentry
4315 * @dentry: pointer to dentry of the base directory
4316 * @oldname: name of the file to link to
4320 * If the inode has been found through an idmapped mount the user namespace of
4321 * the vfsmount must be passed through @mnt_userns. This function will then take
4322 * care to map the inode according to @mnt_userns before checking permissions.
4323 * On non-idmapped mounts or if permission checking is to be performed on the
4324 * raw inode simply passs init_user_ns.
4326 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4327 struct dentry *dentry, const char *oldname)
4329 int error = may_create(mnt_userns, dir, dentry);
4334 if (!dir->i_op->symlink)
4337 error = security_inode_symlink(dir, dentry, oldname);
4341 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4343 fsnotify_create(dir, dentry);
4346 EXPORT_SYMBOL(vfs_symlink);
4348 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4351 struct dentry *dentry;
4353 unsigned int lookup_flags = 0;
4356 error = PTR_ERR(from);
4360 dentry = filename_create(newdfd, to, &path, lookup_flags);
4361 error = PTR_ERR(dentry);
4365 error = security_path_symlink(&path, dentry, from->name);
4367 struct user_namespace *mnt_userns;
4369 mnt_userns = mnt_user_ns(path.mnt);
4370 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4373 done_path_create(&path, dentry);
4374 if (retry_estale(error, lookup_flags)) {
4375 lookup_flags |= LOOKUP_REVAL;
4384 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4385 int, newdfd, const char __user *, newname)
4387 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4390 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4392 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4396 * vfs_link - create a new link
4397 * @old_dentry: object to be linked
4398 * @mnt_userns: the user namespace of the mount
4400 * @new_dentry: where to create the new link
4401 * @delegated_inode: returns inode needing a delegation break
4403 * The caller must hold dir->i_mutex
4405 * If vfs_link discovers a delegation on the to-be-linked file in need
4406 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4407 * inode in delegated_inode. The caller should then break the delegation
4408 * and retry. Because breaking a delegation may take a long time, the
4409 * caller should drop the i_mutex before doing so.
4411 * Alternatively, a caller may pass NULL for delegated_inode. This may
4412 * be appropriate for callers that expect the underlying filesystem not
4413 * to be NFS exported.
4415 * If the inode has been found through an idmapped mount the user namespace of
4416 * the vfsmount must be passed through @mnt_userns. This function will then take
4417 * care to map the inode according to @mnt_userns before checking permissions.
4418 * On non-idmapped mounts or if permission checking is to be performed on the
4419 * raw inode simply passs init_user_ns.
4421 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4422 struct inode *dir, struct dentry *new_dentry,
4423 struct inode **delegated_inode)
4425 struct inode *inode = old_dentry->d_inode;
4426 unsigned max_links = dir->i_sb->s_max_links;
4432 error = may_create(mnt_userns, dir, new_dentry);
4436 if (dir->i_sb != inode->i_sb)
4440 * A link to an append-only or immutable file cannot be created.
4442 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4445 * Updating the link count will likely cause i_uid and i_gid to
4446 * be writen back improperly if their true value is unknown to
4449 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4451 if (!dir->i_op->link)
4453 if (S_ISDIR(inode->i_mode))
4456 error = security_inode_link(old_dentry, dir, new_dentry);
4461 /* Make sure we don't allow creating hardlink to an unlinked file */
4462 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4464 else if (max_links && inode->i_nlink >= max_links)
4467 error = try_break_deleg(inode, delegated_inode);
4469 error = dir->i_op->link(old_dentry, dir, new_dentry);
4472 if (!error && (inode->i_state & I_LINKABLE)) {
4473 spin_lock(&inode->i_lock);
4474 inode->i_state &= ~I_LINKABLE;
4475 spin_unlock(&inode->i_lock);
4477 inode_unlock(inode);
4479 fsnotify_link(dir, inode, new_dentry);
4482 EXPORT_SYMBOL(vfs_link);
4485 * Hardlinks are often used in delicate situations. We avoid
4486 * security-related surprises by not following symlinks on the
4489 * We don't follow them on the oldname either to be compatible
4490 * with linux 2.0, and to avoid hard-linking to directories
4491 * and other special files. --ADM
4493 int do_linkat(int olddfd, struct filename *old, int newdfd,
4494 struct filename *new, int flags)
4496 struct user_namespace *mnt_userns;
4497 struct dentry *new_dentry;
4498 struct path old_path, new_path;
4499 struct inode *delegated_inode = NULL;
4503 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4508 * To use null names we require CAP_DAC_READ_SEARCH
4509 * This ensures that not everyone will be able to create
4510 * handlink using the passed filedescriptor.
4512 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4517 if (flags & AT_SYMLINK_FOLLOW)
4518 how |= LOOKUP_FOLLOW;
4520 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4524 new_dentry = filename_create(newdfd, new, &new_path,
4525 (how & LOOKUP_REVAL));
4526 error = PTR_ERR(new_dentry);
4527 if (IS_ERR(new_dentry))
4531 if (old_path.mnt != new_path.mnt)
4533 mnt_userns = mnt_user_ns(new_path.mnt);
4534 error = may_linkat(mnt_userns, &old_path);
4535 if (unlikely(error))
4537 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4540 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4541 new_dentry, &delegated_inode);
4543 done_path_create(&new_path, new_dentry);
4544 if (delegated_inode) {
4545 error = break_deleg_wait(&delegated_inode);
4547 path_put(&old_path);
4551 if (retry_estale(error, how)) {
4552 path_put(&old_path);
4553 how |= LOOKUP_REVAL;
4557 path_put(&old_path);
4565 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4566 int, newdfd, const char __user *, newname, int, flags)
4568 return do_linkat(olddfd, getname_uflags(oldname, flags),
4569 newdfd, getname(newname), flags);
4572 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4574 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4578 * vfs_rename - rename a filesystem object
4579 * @rd: pointer to &struct renamedata info
4581 * The caller must hold multiple mutexes--see lock_rename()).
4583 * If vfs_rename discovers a delegation in need of breaking at either
4584 * the source or destination, it will return -EWOULDBLOCK and return a
4585 * reference to the inode in delegated_inode. The caller should then
4586 * break the delegation and retry. Because breaking a delegation may
4587 * take a long time, the caller should drop all locks before doing
4590 * Alternatively, a caller may pass NULL for delegated_inode. This may
4591 * be appropriate for callers that expect the underlying filesystem not
4592 * to be NFS exported.
4594 * The worst of all namespace operations - renaming directory. "Perverted"
4595 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4598 * a) we can get into loop creation.
4599 * b) race potential - two innocent renames can create a loop together.
4600 * That's where 4.4 screws up. Current fix: serialization on
4601 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4603 * c) we have to lock _four_ objects - parents and victim (if it exists),
4604 * and source (if it is not a directory).
4605 * And that - after we got ->i_mutex on parents (until then we don't know
4606 * whether the target exists). Solution: try to be smart with locking
4607 * order for inodes. We rely on the fact that tree topology may change
4608 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4609 * move will be locked. Thus we can rank directories by the tree
4610 * (ancestors first) and rank all non-directories after them.
4611 * That works since everybody except rename does "lock parent, lookup,
4612 * lock child" and rename is under ->s_vfs_rename_mutex.
4613 * HOWEVER, it relies on the assumption that any object with ->lookup()
4614 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4615 * we'd better make sure that there's no link(2) for them.
4616 * d) conversion from fhandle to dentry may come in the wrong moment - when
4617 * we are removing the target. Solution: we will have to grab ->i_mutex
4618 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4619 * ->i_mutex on parents, which works but leads to some truly excessive
4622 int vfs_rename(struct renamedata *rd)
4625 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4626 struct dentry *old_dentry = rd->old_dentry;
4627 struct dentry *new_dentry = rd->new_dentry;
4628 struct inode **delegated_inode = rd->delegated_inode;
4629 unsigned int flags = rd->flags;
4630 bool is_dir = d_is_dir(old_dentry);
4631 struct inode *source = old_dentry->d_inode;
4632 struct inode *target = new_dentry->d_inode;
4633 bool new_is_dir = false;
4634 unsigned max_links = new_dir->i_sb->s_max_links;
4635 struct name_snapshot old_name;
4637 if (source == target)
4640 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4645 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4647 new_is_dir = d_is_dir(new_dentry);
4649 if (!(flags & RENAME_EXCHANGE))
4650 error = may_delete(rd->new_mnt_userns, new_dir,
4651 new_dentry, is_dir);
4653 error = may_delete(rd->new_mnt_userns, new_dir,
4654 new_dentry, new_is_dir);
4659 if (!old_dir->i_op->rename)
4663 * If we are going to change the parent - check write permissions,
4664 * we'll need to flip '..'.
4666 if (new_dir != old_dir) {
4668 error = inode_permission(rd->old_mnt_userns, source,
4673 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4674 error = inode_permission(rd->new_mnt_userns, target,
4681 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4686 take_dentry_name_snapshot(&old_name, old_dentry);
4688 if (!is_dir || (flags & RENAME_EXCHANGE))
4689 lock_two_nondirectories(source, target);
4694 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4698 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4701 if (max_links && new_dir != old_dir) {
4703 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4705 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4706 old_dir->i_nlink >= max_links)
4710 error = try_break_deleg(source, delegated_inode);
4714 if (target && !new_is_dir) {
4715 error = try_break_deleg(target, delegated_inode);
4719 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4720 new_dir, new_dentry, flags);
4724 if (!(flags & RENAME_EXCHANGE) && target) {
4726 shrink_dcache_parent(new_dentry);
4727 target->i_flags |= S_DEAD;
4729 dont_mount(new_dentry);
4730 detach_mounts(new_dentry);
4732 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4733 if (!(flags & RENAME_EXCHANGE))
4734 d_move(old_dentry, new_dentry);
4736 d_exchange(old_dentry, new_dentry);
4739 if (!is_dir || (flags & RENAME_EXCHANGE))
4740 unlock_two_nondirectories(source, target);
4742 inode_unlock(target);
4745 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4746 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4747 if (flags & RENAME_EXCHANGE) {
4748 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4749 new_is_dir, NULL, new_dentry);
4752 release_dentry_name_snapshot(&old_name);
4756 EXPORT_SYMBOL(vfs_rename);
4758 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4759 struct filename *to, unsigned int flags)
4761 struct renamedata rd;
4762 struct dentry *old_dentry, *new_dentry;
4763 struct dentry *trap;
4764 struct path old_path, new_path;
4765 struct qstr old_last, new_last;
4766 int old_type, new_type;
4767 struct inode *delegated_inode = NULL;
4768 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4769 bool should_retry = false;
4770 int error = -EINVAL;
4772 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4775 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4776 (flags & RENAME_EXCHANGE))
4779 if (flags & RENAME_EXCHANGE)
4783 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4784 &old_last, &old_type);
4788 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4794 if (old_path.mnt != new_path.mnt)
4798 if (old_type != LAST_NORM)
4801 if (flags & RENAME_NOREPLACE)
4803 if (new_type != LAST_NORM)
4806 error = mnt_want_write(old_path.mnt);
4811 trap = lock_rename(new_path.dentry, old_path.dentry);
4813 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4814 error = PTR_ERR(old_dentry);
4815 if (IS_ERR(old_dentry))
4817 /* source must exist */
4819 if (d_is_negative(old_dentry))
4821 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4822 error = PTR_ERR(new_dentry);
4823 if (IS_ERR(new_dentry))
4826 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4828 if (flags & RENAME_EXCHANGE) {
4830 if (d_is_negative(new_dentry))
4833 if (!d_is_dir(new_dentry)) {
4835 if (new_last.name[new_last.len])
4839 /* unless the source is a directory trailing slashes give -ENOTDIR */
4840 if (!d_is_dir(old_dentry)) {
4842 if (old_last.name[old_last.len])
4844 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4847 /* source should not be ancestor of target */
4849 if (old_dentry == trap)
4851 /* target should not be an ancestor of source */
4852 if (!(flags & RENAME_EXCHANGE))
4854 if (new_dentry == trap)
4857 error = security_path_rename(&old_path, old_dentry,
4858 &new_path, new_dentry, flags);
4862 rd.old_dir = old_path.dentry->d_inode;
4863 rd.old_dentry = old_dentry;
4864 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4865 rd.new_dir = new_path.dentry->d_inode;
4866 rd.new_dentry = new_dentry;
4867 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4868 rd.delegated_inode = &delegated_inode;
4870 error = vfs_rename(&rd);
4876 unlock_rename(new_path.dentry, old_path.dentry);
4877 if (delegated_inode) {
4878 error = break_deleg_wait(&delegated_inode);
4882 mnt_drop_write(old_path.mnt);
4884 if (retry_estale(error, lookup_flags))
4885 should_retry = true;
4886 path_put(&new_path);
4888 path_put(&old_path);
4890 should_retry = false;
4891 lookup_flags |= LOOKUP_REVAL;
4900 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4901 int, newdfd, const char __user *, newname, unsigned int, flags)
4903 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4907 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4908 int, newdfd, const char __user *, newname)
4910 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4914 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4916 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4917 getname(newname), 0);
4920 int readlink_copy(char __user *buffer, int buflen, const char *link)
4922 int len = PTR_ERR(link);
4927 if (len > (unsigned) buflen)
4929 if (copy_to_user(buffer, link, len))
4936 * vfs_readlink - copy symlink body into userspace buffer
4937 * @dentry: dentry on which to get symbolic link
4938 * @buffer: user memory pointer
4939 * @buflen: size of buffer
4941 * Does not touch atime. That's up to the caller if necessary
4943 * Does not call security hook.
4945 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4947 struct inode *inode = d_inode(dentry);
4948 DEFINE_DELAYED_CALL(done);
4952 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4953 if (unlikely(inode->i_op->readlink))
4954 return inode->i_op->readlink(dentry, buffer, buflen);
4956 if (!d_is_symlink(dentry))
4959 spin_lock(&inode->i_lock);
4960 inode->i_opflags |= IOP_DEFAULT_READLINK;
4961 spin_unlock(&inode->i_lock);
4964 link = READ_ONCE(inode->i_link);
4966 link = inode->i_op->get_link(dentry, inode, &done);
4968 return PTR_ERR(link);
4970 res = readlink_copy(buffer, buflen, link);
4971 do_delayed_call(&done);
4974 EXPORT_SYMBOL(vfs_readlink);
4977 * vfs_get_link - get symlink body
4978 * @dentry: dentry on which to get symbolic link
4979 * @done: caller needs to free returned data with this
4981 * Calls security hook and i_op->get_link() on the supplied inode.
4983 * It does not touch atime. That's up to the caller if necessary.
4985 * Does not work on "special" symlinks like /proc/$$/fd/N
4987 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4989 const char *res = ERR_PTR(-EINVAL);
4990 struct inode *inode = d_inode(dentry);
4992 if (d_is_symlink(dentry)) {
4993 res = ERR_PTR(security_inode_readlink(dentry));
4995 res = inode->i_op->get_link(dentry, inode, done);
4999 EXPORT_SYMBOL(vfs_get_link);
5001 /* get the link contents into pagecache */
5002 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5003 struct delayed_call *callback)
5007 struct address_space *mapping = inode->i_mapping;
5010 page = find_get_page(mapping, 0);
5012 return ERR_PTR(-ECHILD);
5013 if (!PageUptodate(page)) {
5015 return ERR_PTR(-ECHILD);
5018 page = read_mapping_page(mapping, 0, NULL);
5022 set_delayed_call(callback, page_put_link, page);
5023 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5024 kaddr = page_address(page);
5025 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5029 EXPORT_SYMBOL(page_get_link);
5031 void page_put_link(void *arg)
5035 EXPORT_SYMBOL(page_put_link);
5037 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5039 DEFINE_DELAYED_CALL(done);
5040 int res = readlink_copy(buffer, buflen,
5041 page_get_link(dentry, d_inode(dentry),
5043 do_delayed_call(&done);
5046 EXPORT_SYMBOL(page_readlink);
5048 int page_symlink(struct inode *inode, const char *symname, int len)
5050 struct address_space *mapping = inode->i_mapping;
5051 const struct address_space_operations *aops = mapping->a_ops;
5052 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5060 flags = memalloc_nofs_save();
5061 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5063 memalloc_nofs_restore(flags);
5067 memcpy(page_address(page), symname, len-1);
5069 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5076 mark_inode_dirty(inode);
5081 EXPORT_SYMBOL(page_symlink);
5083 const struct inode_operations page_symlink_inode_operations = {
5084 .get_link = page_get_link,
5086 EXPORT_SYMBOL(page_symlink_inode_operations);