GNU Linux-libre 4.14.251-gnu1
[releases.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now 
56  * replaced with a single function lookup_dentry() that can handle all 
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *      inside the path - always follow.
99  *      in the last component in creation/removal/renaming - never follow.
100  *      if LOOKUP_FOLLOW passed - follow.
101  *      if the pathname has trailing slashes - follow.
102  *      otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124
125 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130         struct filename *result;
131         char *kname;
132         int len;
133
134         result = audit_reusename(filename);
135         if (result)
136                 return result;
137
138         result = __getname();
139         if (unlikely(!result))
140                 return ERR_PTR(-ENOMEM);
141
142         /*
143          * First, try to embed the struct filename inside the names_cache
144          * allocation
145          */
146         kname = (char *)result->iname;
147         result->name = kname;
148
149         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150         if (unlikely(len < 0)) {
151                 __putname(result);
152                 return ERR_PTR(len);
153         }
154
155         /*
156          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157          * separate struct filename so we can dedicate the entire
158          * names_cache allocation for the pathname, and re-do the copy from
159          * userland.
160          */
161         if (unlikely(len == EMBEDDED_NAME_MAX)) {
162                 const size_t size = offsetof(struct filename, iname[1]);
163                 kname = (char *)result;
164
165                 /*
166                  * size is chosen that way we to guarantee that
167                  * result->iname[0] is within the same object and that
168                  * kname can't be equal to result->iname, no matter what.
169                  */
170                 result = kzalloc(size, GFP_KERNEL);
171                 if (unlikely(!result)) {
172                         __putname(kname);
173                         return ERR_PTR(-ENOMEM);
174                 }
175                 result->name = kname;
176                 len = strncpy_from_user(kname, filename, PATH_MAX);
177                 if (unlikely(len < 0)) {
178                         __putname(kname);
179                         kfree(result);
180                         return ERR_PTR(len);
181                 }
182                 if (unlikely(len == PATH_MAX)) {
183                         __putname(kname);
184                         kfree(result);
185                         return ERR_PTR(-ENAMETOOLONG);
186                 }
187         }
188
189         result->refcnt = 1;
190         /* The empty path is special. */
191         if (unlikely(!len)) {
192                 if (empty)
193                         *empty = 1;
194                 if (!(flags & LOOKUP_EMPTY)) {
195                         putname(result);
196                         return ERR_PTR(-ENOENT);
197                 }
198         }
199
200         result->uptr = filename;
201         result->aname = NULL;
202         audit_getname(result);
203         return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209         return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215         struct filename *result;
216         int len = strlen(filename) + 1;
217
218         result = __getname();
219         if (unlikely(!result))
220                 return ERR_PTR(-ENOMEM);
221
222         if (len <= EMBEDDED_NAME_MAX) {
223                 result->name = (char *)result->iname;
224         } else if (len <= PATH_MAX) {
225                 const size_t size = offsetof(struct filename, iname[1]);
226                 struct filename *tmp;
227
228                 tmp = kmalloc(size, GFP_KERNEL);
229                 if (unlikely(!tmp)) {
230                         __putname(result);
231                         return ERR_PTR(-ENOMEM);
232                 }
233                 tmp->name = (char *)result;
234                 result = tmp;
235         } else {
236                 __putname(result);
237                 return ERR_PTR(-ENAMETOOLONG);
238         }
239         memcpy((char *)result->name, filename, len);
240         result->uptr = NULL;
241         result->aname = NULL;
242         result->refcnt = 1;
243         audit_getname(result);
244
245         return result;
246 }
247
248 void putname(struct filename *name)
249 {
250         BUG_ON(name->refcnt <= 0);
251
252         if (--name->refcnt > 0)
253                 return;
254
255         if (name->name != name->iname) {
256                 __putname(name->name);
257                 kfree(name);
258         } else
259                 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265         struct posix_acl *acl;
266
267         if (mask & MAY_NOT_BLOCK) {
268                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269                 if (!acl)
270                         return -EAGAIN;
271                 /* no ->get_acl() calls in RCU mode... */
272                 if (is_uncached_acl(acl))
273                         return -ECHILD;
274                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275         }
276
277         acl = get_acl(inode, ACL_TYPE_ACCESS);
278         if (IS_ERR(acl))
279                 return PTR_ERR(acl);
280         if (acl) {
281                 int error = posix_acl_permission(inode, acl, mask);
282                 posix_acl_release(acl);
283                 return error;
284         }
285 #endif
286
287         return -EAGAIN;
288 }
289
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295         unsigned int mode = inode->i_mode;
296
297         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298                 mode >>= 6;
299         else {
300                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301                         int error = check_acl(inode, mask);
302                         if (error != -EAGAIN)
303                                 return error;
304                 }
305
306                 if (in_group_p(inode->i_gid))
307                         mode >>= 3;
308         }
309
310         /*
311          * If the DACs are ok we don't need any capability check.
312          */
313         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314                 return 0;
315         return -EACCES;
316 }
317
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:      inode to check access rights for
321  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334         int ret;
335
336         /*
337          * Do the basic permission checks.
338          */
339         ret = acl_permission_check(inode, mask);
340         if (ret != -EACCES)
341                 return ret;
342
343         if (S_ISDIR(inode->i_mode)) {
344                 /* DACs are overridable for directories */
345                 if (!(mask & MAY_WRITE))
346                         if (capable_wrt_inode_uidgid(inode,
347                                                      CAP_DAC_READ_SEARCH))
348                                 return 0;
349                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350                         return 0;
351                 return -EACCES;
352         }
353
354         /*
355          * Searching includes executable on directories, else just read.
356          */
357         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358         if (mask == MAY_READ)
359                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360                         return 0;
361         /*
362          * Read/write DACs are always overridable.
363          * Executable DACs are overridable when there is
364          * at least one exec bit set.
365          */
366         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368                         return 0;
369
370         return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383                 if (likely(inode->i_op->permission))
384                         return inode->i_op->permission(inode, mask);
385
386                 /* This gets set once for the inode lifetime */
387                 spin_lock(&inode->i_lock);
388                 inode->i_opflags |= IOP_FASTPERM;
389                 spin_unlock(&inode->i_lock);
390         }
391         return generic_permission(inode, mask);
392 }
393
394 /**
395  * __inode_permission - Check for access rights to a given inode
396  * @inode: Inode to check permission on
397  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398  *
399  * Check for read/write/execute permissions on an inode.
400  *
401  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
402  *
403  * This does not check for a read-only file system.  You probably want
404  * inode_permission().
405  */
406 int __inode_permission(struct inode *inode, int mask)
407 {
408         int retval;
409
410         if (unlikely(mask & MAY_WRITE)) {
411                 /*
412                  * Nobody gets write access to an immutable file.
413                  */
414                 if (IS_IMMUTABLE(inode))
415                         return -EPERM;
416
417                 /*
418                  * Updating mtime will likely cause i_uid and i_gid to be
419                  * written back improperly if their true value is unknown
420                  * to the vfs.
421                  */
422                 if (HAS_UNMAPPED_ID(inode))
423                         return -EACCES;
424         }
425
426         retval = do_inode_permission(inode, mask);
427         if (retval)
428                 return retval;
429
430         retval = devcgroup_inode_permission(inode, mask);
431         if (retval)
432                 return retval;
433
434         return security_inode_permission(inode, mask);
435 }
436 EXPORT_SYMBOL(__inode_permission);
437
438 /**
439  * sb_permission - Check superblock-level permissions
440  * @sb: Superblock of inode to check permission on
441  * @inode: Inode to check permission on
442  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443  *
444  * Separate out file-system wide checks from inode-specific permission checks.
445  */
446 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
447 {
448         if (unlikely(mask & MAY_WRITE)) {
449                 umode_t mode = inode->i_mode;
450
451                 /* Nobody gets write access to a read-only fs. */
452                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
453                         return -EROFS;
454         }
455         return 0;
456 }
457
458 /**
459  * inode_permission - Check for access rights to a given inode
460  * @inode: Inode to check permission on
461  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462  *
463  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
464  * this, letting us set arbitrary permissions for filesystem access without
465  * changing the "normal" UIDs which are used for other things.
466  *
467  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468  */
469 int inode_permission(struct inode *inode, int mask)
470 {
471         int retval;
472
473         retval = sb_permission(inode->i_sb, inode, mask);
474         if (retval)
475                 return retval;
476         return __inode_permission(inode, mask);
477 }
478 EXPORT_SYMBOL(inode_permission);
479
480 /**
481  * path_get - get a reference to a path
482  * @path: path to get the reference to
483  *
484  * Given a path increment the reference count to the dentry and the vfsmount.
485  */
486 void path_get(const struct path *path)
487 {
488         mntget(path->mnt);
489         dget(path->dentry);
490 }
491 EXPORT_SYMBOL(path_get);
492
493 /**
494  * path_put - put a reference to a path
495  * @path: path to put the reference to
496  *
497  * Given a path decrement the reference count to the dentry and the vfsmount.
498  */
499 void path_put(const struct path *path)
500 {
501         dput(path->dentry);
502         mntput(path->mnt);
503 }
504 EXPORT_SYMBOL(path_put);
505
506 #define EMBEDDED_LEVELS 2
507 struct nameidata {
508         struct path     path;
509         struct qstr     last;
510         struct path     root;
511         struct inode    *inode; /* path.dentry.d_inode */
512         unsigned int    flags;
513         unsigned        seq, m_seq;
514         int             last_type;
515         unsigned        depth;
516         int             total_link_count;
517         struct saved {
518                 struct path link;
519                 struct delayed_call done;
520                 const char *name;
521                 unsigned seq;
522         } *stack, internal[EMBEDDED_LEVELS];
523         struct filename *name;
524         struct nameidata *saved;
525         struct inode    *link_inode;
526         unsigned        root_seq;
527         int             dfd;
528 } __randomize_layout;
529
530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 {
532         struct nameidata *old = current->nameidata;
533         p->stack = p->internal;
534         p->dfd = dfd;
535         p->name = name;
536         p->total_link_count = old ? old->total_link_count : 0;
537         p->saved = old;
538         current->nameidata = p;
539 }
540
541 static void restore_nameidata(void)
542 {
543         struct nameidata *now = current->nameidata, *old = now->saved;
544
545         current->nameidata = old;
546         if (old)
547                 old->total_link_count = now->total_link_count;
548         if (now->stack != now->internal)
549                 kfree(now->stack);
550 }
551
552 static int __nd_alloc_stack(struct nameidata *nd)
553 {
554         struct saved *p;
555
556         if (nd->flags & LOOKUP_RCU) {
557                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
558                                   GFP_ATOMIC);
559                 if (unlikely(!p))
560                         return -ECHILD;
561         } else {
562                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
563                                   GFP_KERNEL);
564                 if (unlikely(!p))
565                         return -ENOMEM;
566         }
567         memcpy(p, nd->internal, sizeof(nd->internal));
568         nd->stack = p;
569         return 0;
570 }
571
572 /**
573  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
574  * @path: nameidate to verify
575  *
576  * Rename can sometimes move a file or directory outside of a bind
577  * mount, path_connected allows those cases to be detected.
578  */
579 static bool path_connected(const struct path *path)
580 {
581         struct vfsmount *mnt = path->mnt;
582         struct super_block *sb = mnt->mnt_sb;
583
584         /* Bind mounts and multi-root filesystems can have disconnected paths */
585         if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
586                 return true;
587
588         return is_subdir(path->dentry, mnt->mnt_root);
589 }
590
591 static inline int nd_alloc_stack(struct nameidata *nd)
592 {
593         if (likely(nd->depth != EMBEDDED_LEVELS))
594                 return 0;
595         if (likely(nd->stack != nd->internal))
596                 return 0;
597         return __nd_alloc_stack(nd);
598 }
599
600 static void drop_links(struct nameidata *nd)
601 {
602         int i = nd->depth;
603         while (i--) {
604                 struct saved *last = nd->stack + i;
605                 do_delayed_call(&last->done);
606                 clear_delayed_call(&last->done);
607         }
608 }
609
610 static void terminate_walk(struct nameidata *nd)
611 {
612         drop_links(nd);
613         if (!(nd->flags & LOOKUP_RCU)) {
614                 int i;
615                 path_put(&nd->path);
616                 for (i = 0; i < nd->depth; i++)
617                         path_put(&nd->stack[i].link);
618                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
619                         path_put(&nd->root);
620                         nd->root.mnt = NULL;
621                 }
622         } else {
623                 nd->flags &= ~LOOKUP_RCU;
624                 if (!(nd->flags & LOOKUP_ROOT))
625                         nd->root.mnt = NULL;
626                 rcu_read_unlock();
627         }
628         nd->depth = 0;
629 }
630
631 /* path_put is needed afterwards regardless of success or failure */
632 static bool legitimize_path(struct nameidata *nd,
633                             struct path *path, unsigned seq)
634 {
635         int res = __legitimize_mnt(path->mnt, nd->m_seq);
636         if (unlikely(res)) {
637                 if (res > 0)
638                         path->mnt = NULL;
639                 path->dentry = NULL;
640                 return false;
641         }
642         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643                 path->dentry = NULL;
644                 return false;
645         }
646         return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 }
648
649 static bool legitimize_links(struct nameidata *nd)
650 {
651         int i;
652         for (i = 0; i < nd->depth; i++) {
653                 struct saved *last = nd->stack + i;
654                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
655                         drop_links(nd);
656                         nd->depth = i + 1;
657                         return false;
658                 }
659         }
660         return true;
661 }
662
663 /*
664  * Path walking has 2 modes, rcu-walk and ref-walk (see
665  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
666  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667  * normal reference counts on dentries and vfsmounts to transition to ref-walk
668  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
669  * got stuck, so ref-walk may continue from there. If this is not successful
670  * (eg. a seqcount has changed), then failure is returned and it's up to caller
671  * to restart the path walk from the beginning in ref-walk mode.
672  */
673
674 /**
675  * unlazy_walk - try to switch to ref-walk mode.
676  * @nd: nameidata pathwalk data
677  * Returns: 0 on success, -ECHILD on failure
678  *
679  * unlazy_walk attempts to legitimize the current nd->path and nd->root
680  * for ref-walk mode.
681  * Must be called from rcu-walk context.
682  * Nothing should touch nameidata between unlazy_walk() failure and
683  * terminate_walk().
684  */
685 static int unlazy_walk(struct nameidata *nd)
686 {
687         struct dentry *parent = nd->path.dentry;
688
689         BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691         nd->flags &= ~LOOKUP_RCU;
692         if (unlikely(!legitimize_links(nd)))
693                 goto out2;
694         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
695                 goto out1;
696         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
697                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
698                         goto out;
699         }
700         rcu_read_unlock();
701         BUG_ON(nd->inode != parent->d_inode);
702         return 0;
703
704 out2:
705         nd->path.mnt = NULL;
706         nd->path.dentry = NULL;
707 out1:
708         if (!(nd->flags & LOOKUP_ROOT))
709                 nd->root.mnt = NULL;
710 out:
711         rcu_read_unlock();
712         return -ECHILD;
713 }
714
715 /**
716  * unlazy_child - try to switch to ref-walk mode.
717  * @nd: nameidata pathwalk data
718  * @dentry: child of nd->path.dentry
719  * @seq: seq number to check dentry against
720  * Returns: 0 on success, -ECHILD on failure
721  *
722  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
723  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
724  * @nd.  Must be called from rcu-walk context.
725  * Nothing should touch nameidata between unlazy_child() failure and
726  * terminate_walk().
727  */
728 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
729 {
730         BUG_ON(!(nd->flags & LOOKUP_RCU));
731
732         nd->flags &= ~LOOKUP_RCU;
733         if (unlikely(!legitimize_links(nd)))
734                 goto out2;
735         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
736                 goto out2;
737         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
738                 goto out1;
739
740         /*
741          * We need to move both the parent and the dentry from the RCU domain
742          * to be properly refcounted. And the sequence number in the dentry
743          * validates *both* dentry counters, since we checked the sequence
744          * number of the parent after we got the child sequence number. So we
745          * know the parent must still be valid if the child sequence number is
746          */
747         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
748                 goto out;
749         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
750                 rcu_read_unlock();
751                 dput(dentry);
752                 goto drop_root_mnt;
753         }
754         /*
755          * Sequence counts matched. Now make sure that the root is
756          * still valid and get it if required.
757          */
758         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
759                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
760                         rcu_read_unlock();
761                         dput(dentry);
762                         return -ECHILD;
763                 }
764         }
765
766         rcu_read_unlock();
767         return 0;
768
769 out2:
770         nd->path.mnt = NULL;
771 out1:
772         nd->path.dentry = NULL;
773 out:
774         rcu_read_unlock();
775 drop_root_mnt:
776         if (!(nd->flags & LOOKUP_ROOT))
777                 nd->root.mnt = NULL;
778         return -ECHILD;
779 }
780
781 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
782 {
783         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
784                 return dentry->d_op->d_revalidate(dentry, flags);
785         else
786                 return 1;
787 }
788
789 /**
790  * complete_walk - successful completion of path walk
791  * @nd:  pointer nameidata
792  *
793  * If we had been in RCU mode, drop out of it and legitimize nd->path.
794  * Revalidate the final result, unless we'd already done that during
795  * the path walk or the filesystem doesn't ask for it.  Return 0 on
796  * success, -error on failure.  In case of failure caller does not
797  * need to drop nd->path.
798  */
799 static int complete_walk(struct nameidata *nd)
800 {
801         struct dentry *dentry = nd->path.dentry;
802         int status;
803
804         if (nd->flags & LOOKUP_RCU) {
805                 if (!(nd->flags & LOOKUP_ROOT))
806                         nd->root.mnt = NULL;
807                 if (unlikely(unlazy_walk(nd)))
808                         return -ECHILD;
809         }
810
811         if (likely(!(nd->flags & LOOKUP_JUMPED)))
812                 return 0;
813
814         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
815                 return 0;
816
817         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
818         if (status > 0)
819                 return 0;
820
821         if (!status)
822                 status = -ESTALE;
823
824         return status;
825 }
826
827 static void set_root(struct nameidata *nd)
828 {
829         struct fs_struct *fs = current->fs;
830
831         if (nd->flags & LOOKUP_RCU) {
832                 unsigned seq;
833
834                 do {
835                         seq = read_seqcount_begin(&fs->seq);
836                         nd->root = fs->root;
837                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
838                 } while (read_seqcount_retry(&fs->seq, seq));
839         } else {
840                 get_fs_root(fs, &nd->root);
841         }
842 }
843
844 static void path_put_conditional(struct path *path, struct nameidata *nd)
845 {
846         dput(path->dentry);
847         if (path->mnt != nd->path.mnt)
848                 mntput(path->mnt);
849 }
850
851 static inline void path_to_nameidata(const struct path *path,
852                                         struct nameidata *nd)
853 {
854         if (!(nd->flags & LOOKUP_RCU)) {
855                 dput(nd->path.dentry);
856                 if (nd->path.mnt != path->mnt)
857                         mntput(nd->path.mnt);
858         }
859         nd->path.mnt = path->mnt;
860         nd->path.dentry = path->dentry;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865         if (nd->flags & LOOKUP_RCU) {
866                 struct dentry *d;
867                 nd->path = nd->root;
868                 d = nd->path.dentry;
869                 nd->inode = d->d_inode;
870                 nd->seq = nd->root_seq;
871                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
872                         return -ECHILD;
873         } else {
874                 path_put(&nd->path);
875                 nd->path = nd->root;
876                 path_get(&nd->path);
877                 nd->inode = nd->path.dentry->d_inode;
878         }
879         nd->flags |= LOOKUP_JUMPED;
880         return 0;
881 }
882
883 /*
884  * Helper to directly jump to a known parsed path from ->get_link,
885  * caller must have taken a reference to path beforehand.
886  */
887 void nd_jump_link(struct path *path)
888 {
889         struct nameidata *nd = current->nameidata;
890         path_put(&nd->path);
891
892         nd->path = *path;
893         nd->inode = nd->path.dentry->d_inode;
894         nd->flags |= LOOKUP_JUMPED;
895 }
896
897 static inline void put_link(struct nameidata *nd)
898 {
899         struct saved *last = nd->stack + --nd->depth;
900         do_delayed_call(&last->done);
901         if (!(nd->flags & LOOKUP_RCU))
902                 path_put(&last->link);
903 }
904
905 int sysctl_protected_symlinks __read_mostly = 0;
906 int sysctl_protected_hardlinks __read_mostly = 0;
907 int sysctl_protected_fifos __read_mostly;
908 int sysctl_protected_regular __read_mostly;
909
910 /**
911  * may_follow_link - Check symlink following for unsafe situations
912  * @nd: nameidata pathwalk data
913  *
914  * In the case of the sysctl_protected_symlinks sysctl being enabled,
915  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
916  * in a sticky world-writable directory. This is to protect privileged
917  * processes from failing races against path names that may change out
918  * from under them by way of other users creating malicious symlinks.
919  * It will permit symlinks to be followed only when outside a sticky
920  * world-writable directory, or when the uid of the symlink and follower
921  * match, or when the directory owner matches the symlink's owner.
922  *
923  * Returns 0 if following the symlink is allowed, -ve on error.
924  */
925 static inline int may_follow_link(struct nameidata *nd)
926 {
927         const struct inode *inode;
928         const struct inode *parent;
929         kuid_t puid;
930
931         if (!sysctl_protected_symlinks)
932                 return 0;
933
934         /* Allowed if owner and follower match. */
935         inode = nd->link_inode;
936         if (uid_eq(current_cred()->fsuid, inode->i_uid))
937                 return 0;
938
939         /* Allowed if parent directory not sticky and world-writable. */
940         parent = nd->inode;
941         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
942                 return 0;
943
944         /* Allowed if parent directory and link owner match. */
945         puid = parent->i_uid;
946         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
947                 return 0;
948
949         if (nd->flags & LOOKUP_RCU)
950                 return -ECHILD;
951
952         audit_log_link_denied("follow_link", &nd->stack[0].link);
953         return -EACCES;
954 }
955
956 /**
957  * safe_hardlink_source - Check for safe hardlink conditions
958  * @inode: the source inode to hardlink from
959  *
960  * Return false if at least one of the following conditions:
961  *    - inode is not a regular file
962  *    - inode is setuid
963  *    - inode is setgid and group-exec
964  *    - access failure for read and write
965  *
966  * Otherwise returns true.
967  */
968 static bool safe_hardlink_source(struct inode *inode)
969 {
970         umode_t mode = inode->i_mode;
971
972         /* Special files should not get pinned to the filesystem. */
973         if (!S_ISREG(mode))
974                 return false;
975
976         /* Setuid files should not get pinned to the filesystem. */
977         if (mode & S_ISUID)
978                 return false;
979
980         /* Executable setgid files should not get pinned to the filesystem. */
981         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
982                 return false;
983
984         /* Hardlinking to unreadable or unwritable sources is dangerous. */
985         if (inode_permission(inode, MAY_READ | MAY_WRITE))
986                 return false;
987
988         return true;
989 }
990
991 /**
992  * may_linkat - Check permissions for creating a hardlink
993  * @link: the source to hardlink from
994  *
995  * Block hardlink when all of:
996  *  - sysctl_protected_hardlinks enabled
997  *  - fsuid does not match inode
998  *  - hardlink source is unsafe (see safe_hardlink_source() above)
999  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1000  *
1001  * Returns 0 if successful, -ve on error.
1002  */
1003 static int may_linkat(struct path *link)
1004 {
1005         struct inode *inode;
1006
1007         if (!sysctl_protected_hardlinks)
1008                 return 0;
1009
1010         inode = link->dentry->d_inode;
1011
1012         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1013          * otherwise, it must be a safe source.
1014          */
1015         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1016                 return 0;
1017
1018         audit_log_link_denied("linkat", link);
1019         return -EPERM;
1020 }
1021
1022 /**
1023  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1024  *                        should be allowed, or not, on files that already
1025  *                        exist.
1026  * @dir_mode: mode bits of directory
1027  * @dir_uid: owner of directory
1028  * @inode: the inode of the file to open
1029  *
1030  * Block an O_CREAT open of a FIFO (or a regular file) when:
1031  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1032  *   - the file already exists
1033  *   - we are in a sticky directory
1034  *   - we don't own the file
1035  *   - the owner of the directory doesn't own the file
1036  *   - the directory is world writable
1037  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1038  * the directory doesn't have to be world writable: being group writable will
1039  * be enough.
1040  *
1041  * Returns 0 if the open is allowed, -ve on error.
1042  */
1043 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1044                                 struct inode * const inode)
1045 {
1046         if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1047             (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1048             likely(!(dir_mode & S_ISVTX)) ||
1049             uid_eq(inode->i_uid, dir_uid) ||
1050             uid_eq(current_fsuid(), inode->i_uid))
1051                 return 0;
1052
1053         if (likely(dir_mode & 0002) ||
1054             (dir_mode & 0020 &&
1055              ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1056               (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1057                 return -EACCES;
1058         }
1059         return 0;
1060 }
1061
1062 static __always_inline
1063 const char *get_link(struct nameidata *nd)
1064 {
1065         struct saved *last = nd->stack + nd->depth - 1;
1066         struct dentry *dentry = last->link.dentry;
1067         struct inode *inode = nd->link_inode;
1068         int error;
1069         const char *res;
1070
1071         if (!(nd->flags & LOOKUP_RCU)) {
1072                 touch_atime(&last->link);
1073                 cond_resched();
1074         } else if (atime_needs_update_rcu(&last->link, inode)) {
1075                 if (unlikely(unlazy_walk(nd)))
1076                         return ERR_PTR(-ECHILD);
1077                 touch_atime(&last->link);
1078         }
1079
1080         error = security_inode_follow_link(dentry, inode,
1081                                            nd->flags & LOOKUP_RCU);
1082         if (unlikely(error))
1083                 return ERR_PTR(error);
1084
1085         nd->last_type = LAST_BIND;
1086         res = inode->i_link;
1087         if (!res) {
1088                 const char * (*get)(struct dentry *, struct inode *,
1089                                 struct delayed_call *);
1090                 get = inode->i_op->get_link;
1091                 if (nd->flags & LOOKUP_RCU) {
1092                         res = get(NULL, inode, &last->done);
1093                         if (res == ERR_PTR(-ECHILD)) {
1094                                 if (unlikely(unlazy_walk(nd)))
1095                                         return ERR_PTR(-ECHILD);
1096                                 res = get(dentry, inode, &last->done);
1097                         }
1098                 } else {
1099                         res = get(dentry, inode, &last->done);
1100                 }
1101                 if (IS_ERR_OR_NULL(res))
1102                         return res;
1103         }
1104         if (*res == '/') {
1105                 if (!nd->root.mnt)
1106                         set_root(nd);
1107                 if (unlikely(nd_jump_root(nd)))
1108                         return ERR_PTR(-ECHILD);
1109                 while (unlikely(*++res == '/'))
1110                         ;
1111         }
1112         if (!*res)
1113                 res = NULL;
1114         return res;
1115 }
1116
1117 /*
1118  * follow_up - Find the mountpoint of path's vfsmount
1119  *
1120  * Given a path, find the mountpoint of its source file system.
1121  * Replace @path with the path of the mountpoint in the parent mount.
1122  * Up is towards /.
1123  *
1124  * Return 1 if we went up a level and 0 if we were already at the
1125  * root.
1126  */
1127 int follow_up(struct path *path)
1128 {
1129         struct mount *mnt = real_mount(path->mnt);
1130         struct mount *parent;
1131         struct dentry *mountpoint;
1132
1133         read_seqlock_excl(&mount_lock);
1134         parent = mnt->mnt_parent;
1135         if (parent == mnt) {
1136                 read_sequnlock_excl(&mount_lock);
1137                 return 0;
1138         }
1139         mntget(&parent->mnt);
1140         mountpoint = dget(mnt->mnt_mountpoint);
1141         read_sequnlock_excl(&mount_lock);
1142         dput(path->dentry);
1143         path->dentry = mountpoint;
1144         mntput(path->mnt);
1145         path->mnt = &parent->mnt;
1146         return 1;
1147 }
1148 EXPORT_SYMBOL(follow_up);
1149
1150 /*
1151  * Perform an automount
1152  * - return -EISDIR to tell follow_managed() to stop and return the path we
1153  *   were called with.
1154  */
1155 static int follow_automount(struct path *path, struct nameidata *nd,
1156                             bool *need_mntput)
1157 {
1158         struct vfsmount *mnt;
1159         int err;
1160
1161         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1162                 return -EREMOTE;
1163
1164         /* We don't want to mount if someone's just doing a stat -
1165          * unless they're stat'ing a directory and appended a '/' to
1166          * the name.
1167          *
1168          * We do, however, want to mount if someone wants to open or
1169          * create a file of any type under the mountpoint, wants to
1170          * traverse through the mountpoint or wants to open the
1171          * mounted directory.  Also, autofs may mark negative dentries
1172          * as being automount points.  These will need the attentions
1173          * of the daemon to instantiate them before they can be used.
1174          */
1175         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1176                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1177             path->dentry->d_inode)
1178                 return -EISDIR;
1179
1180         nd->total_link_count++;
1181         if (nd->total_link_count >= 40)
1182                 return -ELOOP;
1183
1184         mnt = path->dentry->d_op->d_automount(path);
1185         if (IS_ERR(mnt)) {
1186                 /*
1187                  * The filesystem is allowed to return -EISDIR here to indicate
1188                  * it doesn't want to automount.  For instance, autofs would do
1189                  * this so that its userspace daemon can mount on this dentry.
1190                  *
1191                  * However, we can only permit this if it's a terminal point in
1192                  * the path being looked up; if it wasn't then the remainder of
1193                  * the path is inaccessible and we should say so.
1194                  */
1195                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1196                         return -EREMOTE;
1197                 return PTR_ERR(mnt);
1198         }
1199
1200         if (!mnt) /* mount collision */
1201                 return 0;
1202
1203         if (!*need_mntput) {
1204                 /* lock_mount() may release path->mnt on error */
1205                 mntget(path->mnt);
1206                 *need_mntput = true;
1207         }
1208         err = finish_automount(mnt, path);
1209
1210         switch (err) {
1211         case -EBUSY:
1212                 /* Someone else made a mount here whilst we were busy */
1213                 return 0;
1214         case 0:
1215                 path_put(path);
1216                 path->mnt = mnt;
1217                 path->dentry = dget(mnt->mnt_root);
1218                 return 0;
1219         default:
1220                 return err;
1221         }
1222
1223 }
1224
1225 /*
1226  * Handle a dentry that is managed in some way.
1227  * - Flagged for transit management (autofs)
1228  * - Flagged as mountpoint
1229  * - Flagged as automount point
1230  *
1231  * This may only be called in refwalk mode.
1232  *
1233  * Serialization is taken care of in namespace.c
1234  */
1235 static int follow_managed(struct path *path, struct nameidata *nd)
1236 {
1237         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1238         unsigned managed;
1239         bool need_mntput = false;
1240         int ret = 0;
1241
1242         /* Given that we're not holding a lock here, we retain the value in a
1243          * local variable for each dentry as we look at it so that we don't see
1244          * the components of that value change under us */
1245         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1246                managed &= DCACHE_MANAGED_DENTRY,
1247                unlikely(managed != 0)) {
1248                 /* Allow the filesystem to manage the transit without i_mutex
1249                  * being held. */
1250                 if (managed & DCACHE_MANAGE_TRANSIT) {
1251                         BUG_ON(!path->dentry->d_op);
1252                         BUG_ON(!path->dentry->d_op->d_manage);
1253                         ret = path->dentry->d_op->d_manage(path, false);
1254                         if (ret < 0)
1255                                 break;
1256                 }
1257
1258                 /* Transit to a mounted filesystem. */
1259                 if (managed & DCACHE_MOUNTED) {
1260                         struct vfsmount *mounted = lookup_mnt(path);
1261                         if (mounted) {
1262                                 dput(path->dentry);
1263                                 if (need_mntput)
1264                                         mntput(path->mnt);
1265                                 path->mnt = mounted;
1266                                 path->dentry = dget(mounted->mnt_root);
1267                                 need_mntput = true;
1268                                 continue;
1269                         }
1270
1271                         /* Something is mounted on this dentry in another
1272                          * namespace and/or whatever was mounted there in this
1273                          * namespace got unmounted before lookup_mnt() could
1274                          * get it */
1275                 }
1276
1277                 /* Handle an automount point */
1278                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1279                         ret = follow_automount(path, nd, &need_mntput);
1280                         if (ret < 0)
1281                                 break;
1282                         continue;
1283                 }
1284
1285                 /* We didn't change the current path point */
1286                 break;
1287         }
1288
1289         if (need_mntput && path->mnt == mnt)
1290                 mntput(path->mnt);
1291         if (ret == -EISDIR || !ret)
1292                 ret = 1;
1293         if (need_mntput)
1294                 nd->flags |= LOOKUP_JUMPED;
1295         if (unlikely(ret < 0))
1296                 path_put_conditional(path, nd);
1297         return ret;
1298 }
1299
1300 int follow_down_one(struct path *path)
1301 {
1302         struct vfsmount *mounted;
1303
1304         mounted = lookup_mnt(path);
1305         if (mounted) {
1306                 dput(path->dentry);
1307                 mntput(path->mnt);
1308                 path->mnt = mounted;
1309                 path->dentry = dget(mounted->mnt_root);
1310                 return 1;
1311         }
1312         return 0;
1313 }
1314 EXPORT_SYMBOL(follow_down_one);
1315
1316 static inline int managed_dentry_rcu(const struct path *path)
1317 {
1318         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1319                 path->dentry->d_op->d_manage(path, true) : 0;
1320 }
1321
1322 /*
1323  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1324  * we meet a managed dentry that would need blocking.
1325  */
1326 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1327                                struct inode **inode, unsigned *seqp)
1328 {
1329         for (;;) {
1330                 struct mount *mounted;
1331                 /*
1332                  * Don't forget we might have a non-mountpoint managed dentry
1333                  * that wants to block transit.
1334                  */
1335                 switch (managed_dentry_rcu(path)) {
1336                 case -ECHILD:
1337                 default:
1338                         return false;
1339                 case -EISDIR:
1340                         return true;
1341                 case 0:
1342                         break;
1343                 }
1344
1345                 if (!d_mountpoint(path->dentry))
1346                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1347
1348                 mounted = __lookup_mnt(path->mnt, path->dentry);
1349                 if (!mounted)
1350                         break;
1351                 path->mnt = &mounted->mnt;
1352                 path->dentry = mounted->mnt.mnt_root;
1353                 nd->flags |= LOOKUP_JUMPED;
1354                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1355                 /*
1356                  * Update the inode too. We don't need to re-check the
1357                  * dentry sequence number here after this d_inode read,
1358                  * because a mount-point is always pinned.
1359                  */
1360                 *inode = path->dentry->d_inode;
1361         }
1362         return !read_seqretry(&mount_lock, nd->m_seq) &&
1363                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1364 }
1365
1366 static int follow_dotdot_rcu(struct nameidata *nd)
1367 {
1368         struct inode *inode = nd->inode;
1369
1370         while (1) {
1371                 if (path_equal(&nd->path, &nd->root))
1372                         break;
1373                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1374                         struct dentry *old = nd->path.dentry;
1375                         struct dentry *parent = old->d_parent;
1376                         unsigned seq;
1377
1378                         inode = parent->d_inode;
1379                         seq = read_seqcount_begin(&parent->d_seq);
1380                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1381                                 return -ECHILD;
1382                         nd->path.dentry = parent;
1383                         nd->seq = seq;
1384                         if (unlikely(!path_connected(&nd->path)))
1385                                 return -ECHILD;
1386                         break;
1387                 } else {
1388                         struct mount *mnt = real_mount(nd->path.mnt);
1389                         struct mount *mparent = mnt->mnt_parent;
1390                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1391                         struct inode *inode2 = mountpoint->d_inode;
1392                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1393                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1394                                 return -ECHILD;
1395                         if (&mparent->mnt == nd->path.mnt)
1396                                 break;
1397                         /* we know that mountpoint was pinned */
1398                         nd->path.dentry = mountpoint;
1399                         nd->path.mnt = &mparent->mnt;
1400                         inode = inode2;
1401                         nd->seq = seq;
1402                 }
1403         }
1404         while (unlikely(d_mountpoint(nd->path.dentry))) {
1405                 struct mount *mounted;
1406                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1407                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1408                         return -ECHILD;
1409                 if (!mounted)
1410                         break;
1411                 nd->path.mnt = &mounted->mnt;
1412                 nd->path.dentry = mounted->mnt.mnt_root;
1413                 inode = nd->path.dentry->d_inode;
1414                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1415         }
1416         nd->inode = inode;
1417         return 0;
1418 }
1419
1420 /*
1421  * Follow down to the covering mount currently visible to userspace.  At each
1422  * point, the filesystem owning that dentry may be queried as to whether the
1423  * caller is permitted to proceed or not.
1424  */
1425 int follow_down(struct path *path)
1426 {
1427         unsigned managed;
1428         int ret;
1429
1430         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1431                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1432                 /* Allow the filesystem to manage the transit without i_mutex
1433                  * being held.
1434                  *
1435                  * We indicate to the filesystem if someone is trying to mount
1436                  * something here.  This gives autofs the chance to deny anyone
1437                  * other than its daemon the right to mount on its
1438                  * superstructure.
1439                  *
1440                  * The filesystem may sleep at this point.
1441                  */
1442                 if (managed & DCACHE_MANAGE_TRANSIT) {
1443                         BUG_ON(!path->dentry->d_op);
1444                         BUG_ON(!path->dentry->d_op->d_manage);
1445                         ret = path->dentry->d_op->d_manage(path, false);
1446                         if (ret < 0)
1447                                 return ret == -EISDIR ? 0 : ret;
1448                 }
1449
1450                 /* Transit to a mounted filesystem. */
1451                 if (managed & DCACHE_MOUNTED) {
1452                         struct vfsmount *mounted = lookup_mnt(path);
1453                         if (!mounted)
1454                                 break;
1455                         dput(path->dentry);
1456                         mntput(path->mnt);
1457                         path->mnt = mounted;
1458                         path->dentry = dget(mounted->mnt_root);
1459                         continue;
1460                 }
1461
1462                 /* Don't handle automount points here */
1463                 break;
1464         }
1465         return 0;
1466 }
1467 EXPORT_SYMBOL(follow_down);
1468
1469 /*
1470  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1471  */
1472 static void follow_mount(struct path *path)
1473 {
1474         while (d_mountpoint(path->dentry)) {
1475                 struct vfsmount *mounted = lookup_mnt(path);
1476                 if (!mounted)
1477                         break;
1478                 dput(path->dentry);
1479                 mntput(path->mnt);
1480                 path->mnt = mounted;
1481                 path->dentry = dget(mounted->mnt_root);
1482         }
1483 }
1484
1485 static int path_parent_directory(struct path *path)
1486 {
1487         struct dentry *old = path->dentry;
1488         /* rare case of legitimate dget_parent()... */
1489         path->dentry = dget_parent(path->dentry);
1490         dput(old);
1491         if (unlikely(!path_connected(path)))
1492                 return -ENOENT;
1493         return 0;
1494 }
1495
1496 static int follow_dotdot(struct nameidata *nd)
1497 {
1498         while(1) {
1499                 if (nd->path.dentry == nd->root.dentry &&
1500                     nd->path.mnt == nd->root.mnt) {
1501                         break;
1502                 }
1503                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1504                         int ret = path_parent_directory(&nd->path);
1505                         if (ret)
1506                                 return ret;
1507                         break;
1508                 }
1509                 if (!follow_up(&nd->path))
1510                         break;
1511         }
1512         follow_mount(&nd->path);
1513         nd->inode = nd->path.dentry->d_inode;
1514         return 0;
1515 }
1516
1517 /*
1518  * This looks up the name in dcache and possibly revalidates the found dentry.
1519  * NULL is returned if the dentry does not exist in the cache.
1520  */
1521 static struct dentry *lookup_dcache(const struct qstr *name,
1522                                     struct dentry *dir,
1523                                     unsigned int flags)
1524 {
1525         struct dentry *dentry = d_lookup(dir, name);
1526         if (dentry) {
1527                 int error = d_revalidate(dentry, flags);
1528                 if (unlikely(error <= 0)) {
1529                         if (!error)
1530                                 d_invalidate(dentry);
1531                         dput(dentry);
1532                         return ERR_PTR(error);
1533                 }
1534         }
1535         return dentry;
1536 }
1537
1538 /*
1539  * Call i_op->lookup on the dentry.  The dentry must be negative and
1540  * unhashed.
1541  *
1542  * dir->d_inode->i_mutex must be held
1543  */
1544 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1545                                   unsigned int flags)
1546 {
1547         struct dentry *old;
1548
1549         /* Don't create child dentry for a dead directory. */
1550         if (unlikely(IS_DEADDIR(dir))) {
1551                 dput(dentry);
1552                 return ERR_PTR(-ENOENT);
1553         }
1554
1555         old = dir->i_op->lookup(dir, dentry, flags);
1556         if (unlikely(old)) {
1557                 dput(dentry);
1558                 dentry = old;
1559         }
1560         return dentry;
1561 }
1562
1563 static struct dentry *__lookup_hash(const struct qstr *name,
1564                 struct dentry *base, unsigned int flags)
1565 {
1566         struct dentry *dentry = lookup_dcache(name, base, flags);
1567
1568         if (dentry)
1569                 return dentry;
1570
1571         dentry = d_alloc(base, name);
1572         if (unlikely(!dentry))
1573                 return ERR_PTR(-ENOMEM);
1574
1575         return lookup_real(base->d_inode, dentry, flags);
1576 }
1577
1578 static int lookup_fast(struct nameidata *nd,
1579                        struct path *path, struct inode **inode,
1580                        unsigned *seqp)
1581 {
1582         struct vfsmount *mnt = nd->path.mnt;
1583         struct dentry *dentry, *parent = nd->path.dentry;
1584         int status = 1;
1585         int err;
1586
1587         /*
1588          * Rename seqlock is not required here because in the off chance
1589          * of a false negative due to a concurrent rename, the caller is
1590          * going to fall back to non-racy lookup.
1591          */
1592         if (nd->flags & LOOKUP_RCU) {
1593                 unsigned seq;
1594                 bool negative;
1595                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1596                 if (unlikely(!dentry)) {
1597                         if (unlazy_walk(nd))
1598                                 return -ECHILD;
1599                         return 0;
1600                 }
1601
1602                 /*
1603                  * This sequence count validates that the inode matches
1604                  * the dentry name information from lookup.
1605                  */
1606                 *inode = d_backing_inode(dentry);
1607                 negative = d_is_negative(dentry);
1608                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1609                         return -ECHILD;
1610
1611                 /*
1612                  * This sequence count validates that the parent had no
1613                  * changes while we did the lookup of the dentry above.
1614                  *
1615                  * The memory barrier in read_seqcount_begin of child is
1616                  *  enough, we can use __read_seqcount_retry here.
1617                  */
1618                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1619                         return -ECHILD;
1620
1621                 *seqp = seq;
1622                 status = d_revalidate(dentry, nd->flags);
1623                 if (likely(status > 0)) {
1624                         /*
1625                          * Note: do negative dentry check after revalidation in
1626                          * case that drops it.
1627                          */
1628                         if (unlikely(negative))
1629                                 return -ENOENT;
1630                         path->mnt = mnt;
1631                         path->dentry = dentry;
1632                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1633                                 return 1;
1634                 }
1635                 if (unlazy_child(nd, dentry, seq))
1636                         return -ECHILD;
1637                 if (unlikely(status == -ECHILD))
1638                         /* we'd been told to redo it in non-rcu mode */
1639                         status = d_revalidate(dentry, nd->flags);
1640         } else {
1641                 dentry = __d_lookup(parent, &nd->last);
1642                 if (unlikely(!dentry))
1643                         return 0;
1644                 status = d_revalidate(dentry, nd->flags);
1645         }
1646         if (unlikely(status <= 0)) {
1647                 if (!status)
1648                         d_invalidate(dentry);
1649                 dput(dentry);
1650                 return status;
1651         }
1652         if (unlikely(d_is_negative(dentry))) {
1653                 dput(dentry);
1654                 return -ENOENT;
1655         }
1656
1657         path->mnt = mnt;
1658         path->dentry = dentry;
1659         err = follow_managed(path, nd);
1660         if (likely(err > 0))
1661                 *inode = d_backing_inode(path->dentry);
1662         return err;
1663 }
1664
1665 /* Fast lookup failed, do it the slow way */
1666 static struct dentry *lookup_slow(const struct qstr *name,
1667                                   struct dentry *dir,
1668                                   unsigned int flags)
1669 {
1670         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1671         struct inode *inode = dir->d_inode;
1672         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1673
1674         inode_lock_shared(inode);
1675         /* Don't go there if it's already dead */
1676         if (unlikely(IS_DEADDIR(inode)))
1677                 goto out;
1678 again:
1679         dentry = d_alloc_parallel(dir, name, &wq);
1680         if (IS_ERR(dentry))
1681                 goto out;
1682         if (unlikely(!d_in_lookup(dentry))) {
1683                 if (!(flags & LOOKUP_NO_REVAL)) {
1684                         int error = d_revalidate(dentry, flags);
1685                         if (unlikely(error <= 0)) {
1686                                 if (!error) {
1687                                         d_invalidate(dentry);
1688                                         dput(dentry);
1689                                         goto again;
1690                                 }
1691                                 dput(dentry);
1692                                 dentry = ERR_PTR(error);
1693                         }
1694                 }
1695         } else {
1696                 old = inode->i_op->lookup(inode, dentry, flags);
1697                 d_lookup_done(dentry);
1698                 if (unlikely(old)) {
1699                         dput(dentry);
1700                         dentry = old;
1701                 }
1702         }
1703 out:
1704         inode_unlock_shared(inode);
1705         return dentry;
1706 }
1707
1708 static inline int may_lookup(struct nameidata *nd)
1709 {
1710         if (nd->flags & LOOKUP_RCU) {
1711                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1712                 if (err != -ECHILD)
1713                         return err;
1714                 if (unlazy_walk(nd))
1715                         return -ECHILD;
1716         }
1717         return inode_permission(nd->inode, MAY_EXEC);
1718 }
1719
1720 static inline int handle_dots(struct nameidata *nd, int type)
1721 {
1722         if (type == LAST_DOTDOT) {
1723                 if (!nd->root.mnt)
1724                         set_root(nd);
1725                 if (nd->flags & LOOKUP_RCU) {
1726                         return follow_dotdot_rcu(nd);
1727                 } else
1728                         return follow_dotdot(nd);
1729         }
1730         return 0;
1731 }
1732
1733 static int pick_link(struct nameidata *nd, struct path *link,
1734                      struct inode *inode, unsigned seq)
1735 {
1736         int error;
1737         struct saved *last;
1738         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1739                 path_to_nameidata(link, nd);
1740                 return -ELOOP;
1741         }
1742         if (!(nd->flags & LOOKUP_RCU)) {
1743                 if (link->mnt == nd->path.mnt)
1744                         mntget(link->mnt);
1745         }
1746         error = nd_alloc_stack(nd);
1747         if (unlikely(error)) {
1748                 if (error == -ECHILD) {
1749                         if (unlikely(!legitimize_path(nd, link, seq))) {
1750                                 drop_links(nd);
1751                                 nd->depth = 0;
1752                                 nd->flags &= ~LOOKUP_RCU;
1753                                 nd->path.mnt = NULL;
1754                                 nd->path.dentry = NULL;
1755                                 if (!(nd->flags & LOOKUP_ROOT))
1756                                         nd->root.mnt = NULL;
1757                                 rcu_read_unlock();
1758                         } else if (likely(unlazy_walk(nd)) == 0)
1759                                 error = nd_alloc_stack(nd);
1760                 }
1761                 if (error) {
1762                         path_put(link);
1763                         return error;
1764                 }
1765         }
1766
1767         last = nd->stack + nd->depth++;
1768         last->link = *link;
1769         clear_delayed_call(&last->done);
1770         nd->link_inode = inode;
1771         last->seq = seq;
1772         return 1;
1773 }
1774
1775 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1776
1777 /*
1778  * Do we need to follow links? We _really_ want to be able
1779  * to do this check without having to look at inode->i_op,
1780  * so we keep a cache of "no, this doesn't need follow_link"
1781  * for the common case.
1782  */
1783 static inline int step_into(struct nameidata *nd, struct path *path,
1784                             int flags, struct inode *inode, unsigned seq)
1785 {
1786         if (!(flags & WALK_MORE) && nd->depth)
1787                 put_link(nd);
1788         if (likely(!d_is_symlink(path->dentry)) ||
1789            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1790                 /* not a symlink or should not follow */
1791                 path_to_nameidata(path, nd);
1792                 nd->inode = inode;
1793                 nd->seq = seq;
1794                 return 0;
1795         }
1796         /* make sure that d_is_symlink above matches inode */
1797         if (nd->flags & LOOKUP_RCU) {
1798                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1799                         return -ECHILD;
1800         }
1801         return pick_link(nd, path, inode, seq);
1802 }
1803
1804 static int walk_component(struct nameidata *nd, int flags)
1805 {
1806         struct path path;
1807         struct inode *inode;
1808         unsigned seq;
1809         int err;
1810         /*
1811          * "." and ".." are special - ".." especially so because it has
1812          * to be able to know about the current root directory and
1813          * parent relationships.
1814          */
1815         if (unlikely(nd->last_type != LAST_NORM)) {
1816                 err = handle_dots(nd, nd->last_type);
1817                 if (!(flags & WALK_MORE) && nd->depth)
1818                         put_link(nd);
1819                 return err;
1820         }
1821         err = lookup_fast(nd, &path, &inode, &seq);
1822         if (unlikely(err <= 0)) {
1823                 if (err < 0)
1824                         return err;
1825                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1826                                           nd->flags);
1827                 if (IS_ERR(path.dentry))
1828                         return PTR_ERR(path.dentry);
1829
1830                 path.mnt = nd->path.mnt;
1831                 err = follow_managed(&path, nd);
1832                 if (unlikely(err < 0))
1833                         return err;
1834
1835                 if (unlikely(d_is_negative(path.dentry))) {
1836                         path_to_nameidata(&path, nd);
1837                         return -ENOENT;
1838                 }
1839
1840                 seq = 0;        /* we are already out of RCU mode */
1841                 inode = d_backing_inode(path.dentry);
1842         }
1843
1844         return step_into(nd, &path, flags, inode, seq);
1845 }
1846
1847 /*
1848  * We can do the critical dentry name comparison and hashing
1849  * operations one word at a time, but we are limited to:
1850  *
1851  * - Architectures with fast unaligned word accesses. We could
1852  *   do a "get_unaligned()" if this helps and is sufficiently
1853  *   fast.
1854  *
1855  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1856  *   do not trap on the (extremely unlikely) case of a page
1857  *   crossing operation.
1858  *
1859  * - Furthermore, we need an efficient 64-bit compile for the
1860  *   64-bit case in order to generate the "number of bytes in
1861  *   the final mask". Again, that could be replaced with a
1862  *   efficient population count instruction or similar.
1863  */
1864 #ifdef CONFIG_DCACHE_WORD_ACCESS
1865
1866 #include <asm/word-at-a-time.h>
1867
1868 #ifdef HASH_MIX
1869
1870 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1871
1872 #elif defined(CONFIG_64BIT)
1873 /*
1874  * Register pressure in the mixing function is an issue, particularly
1875  * on 32-bit x86, but almost any function requires one state value and
1876  * one temporary.  Instead, use a function designed for two state values
1877  * and no temporaries.
1878  *
1879  * This function cannot create a collision in only two iterations, so
1880  * we have two iterations to achieve avalanche.  In those two iterations,
1881  * we have six layers of mixing, which is enough to spread one bit's
1882  * influence out to 2^6 = 64 state bits.
1883  *
1884  * Rotate constants are scored by considering either 64 one-bit input
1885  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1886  * probability of that delta causing a change to each of the 128 output
1887  * bits, using a sample of random initial states.
1888  *
1889  * The Shannon entropy of the computed probabilities is then summed
1890  * to produce a score.  Ideally, any input change has a 50% chance of
1891  * toggling any given output bit.
1892  *
1893  * Mixing scores (in bits) for (12,45):
1894  * Input delta: 1-bit      2-bit
1895  * 1 round:     713.3    42542.6
1896  * 2 rounds:   2753.7   140389.8
1897  * 3 rounds:   5954.1   233458.2
1898  * 4 rounds:   7862.6   256672.2
1899  * Perfect:    8192     258048
1900  *            (64*128) (64*63/2 * 128)
1901  */
1902 #define HASH_MIX(x, y, a)       \
1903         (       x ^= (a),       \
1904         y ^= x, x = rol64(x,12),\
1905         x += y, y = rol64(y,45),\
1906         y *= 9                  )
1907
1908 /*
1909  * Fold two longs into one 32-bit hash value.  This must be fast, but
1910  * latency isn't quite as critical, as there is a fair bit of additional
1911  * work done before the hash value is used.
1912  */
1913 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914 {
1915         y ^= x * GOLDEN_RATIO_64;
1916         y *= GOLDEN_RATIO_64;
1917         return y >> 32;
1918 }
1919
1920 #else   /* 32-bit case */
1921
1922 /*
1923  * Mixing scores (in bits) for (7,20):
1924  * Input delta: 1-bit      2-bit
1925  * 1 round:     330.3     9201.6
1926  * 2 rounds:   1246.4    25475.4
1927  * 3 rounds:   1907.1    31295.1
1928  * 4 rounds:   2042.3    31718.6
1929  * Perfect:    2048      31744
1930  *            (32*64)   (32*31/2 * 64)
1931  */
1932 #define HASH_MIX(x, y, a)       \
1933         (       x ^= (a),       \
1934         y ^= x, x = rol32(x, 7),\
1935         x += y, y = rol32(y,20),\
1936         y *= 9                  )
1937
1938 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1939 {
1940         /* Use arch-optimized multiply if one exists */
1941         return __hash_32(y ^ __hash_32(x));
1942 }
1943
1944 #endif
1945
1946 /*
1947  * Return the hash of a string of known length.  This is carfully
1948  * designed to match hash_name(), which is the more critical function.
1949  * In particular, we must end by hashing a final word containing 0..7
1950  * payload bytes, to match the way that hash_name() iterates until it
1951  * finds the delimiter after the name.
1952  */
1953 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1954 {
1955         unsigned long a, x = 0, y = (unsigned long)salt;
1956
1957         for (;;) {
1958                 if (!len)
1959                         goto done;
1960                 a = load_unaligned_zeropad(name);
1961                 if (len < sizeof(unsigned long))
1962                         break;
1963                 HASH_MIX(x, y, a);
1964                 name += sizeof(unsigned long);
1965                 len -= sizeof(unsigned long);
1966         }
1967         x ^= a & bytemask_from_count(len);
1968 done:
1969         return fold_hash(x, y);
1970 }
1971 EXPORT_SYMBOL(full_name_hash);
1972
1973 /* Return the "hash_len" (hash and length) of a null-terminated string */
1974 u64 hashlen_string(const void *salt, const char *name)
1975 {
1976         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1977         unsigned long adata, mask, len;
1978         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1979
1980         len = 0;
1981         goto inside;
1982
1983         do {
1984                 HASH_MIX(x, y, a);
1985                 len += sizeof(unsigned long);
1986 inside:
1987                 a = load_unaligned_zeropad(name+len);
1988         } while (!has_zero(a, &adata, &constants));
1989
1990         adata = prep_zero_mask(a, adata, &constants);
1991         mask = create_zero_mask(adata);
1992         x ^= a & zero_bytemask(mask);
1993
1994         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1995 }
1996 EXPORT_SYMBOL(hashlen_string);
1997
1998 /*
1999  * Calculate the length and hash of the path component, and
2000  * return the "hash_len" as the result.
2001  */
2002 static inline u64 hash_name(const void *salt, const char *name)
2003 {
2004         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2005         unsigned long adata, bdata, mask, len;
2006         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2007
2008         len = 0;
2009         goto inside;
2010
2011         do {
2012                 HASH_MIX(x, y, a);
2013                 len += sizeof(unsigned long);
2014 inside:
2015                 a = load_unaligned_zeropad(name+len);
2016                 b = a ^ REPEAT_BYTE('/');
2017         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2018
2019         adata = prep_zero_mask(a, adata, &constants);
2020         bdata = prep_zero_mask(b, bdata, &constants);
2021         mask = create_zero_mask(adata | bdata);
2022         x ^= a & zero_bytemask(mask);
2023
2024         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2025 }
2026
2027 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2028
2029 /* Return the hash of a string of known length */
2030 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2031 {
2032         unsigned long hash = init_name_hash(salt);
2033         while (len--)
2034                 hash = partial_name_hash((unsigned char)*name++, hash);
2035         return end_name_hash(hash);
2036 }
2037 EXPORT_SYMBOL(full_name_hash);
2038
2039 /* Return the "hash_len" (hash and length) of a null-terminated string */
2040 u64 hashlen_string(const void *salt, const char *name)
2041 {
2042         unsigned long hash = init_name_hash(salt);
2043         unsigned long len = 0, c;
2044
2045         c = (unsigned char)*name;
2046         while (c) {
2047                 len++;
2048                 hash = partial_name_hash(c, hash);
2049                 c = (unsigned char)name[len];
2050         }
2051         return hashlen_create(end_name_hash(hash), len);
2052 }
2053 EXPORT_SYMBOL(hashlen_string);
2054
2055 /*
2056  * We know there's a real path component here of at least
2057  * one character.
2058  */
2059 static inline u64 hash_name(const void *salt, const char *name)
2060 {
2061         unsigned long hash = init_name_hash(salt);
2062         unsigned long len = 0, c;
2063
2064         c = (unsigned char)*name;
2065         do {
2066                 len++;
2067                 hash = partial_name_hash(c, hash);
2068                 c = (unsigned char)name[len];
2069         } while (c && c != '/');
2070         return hashlen_create(end_name_hash(hash), len);
2071 }
2072
2073 #endif
2074
2075 /*
2076  * Name resolution.
2077  * This is the basic name resolution function, turning a pathname into
2078  * the final dentry. We expect 'base' to be positive and a directory.
2079  *
2080  * Returns 0 and nd will have valid dentry and mnt on success.
2081  * Returns error and drops reference to input namei data on failure.
2082  */
2083 static int link_path_walk(const char *name, struct nameidata *nd)
2084 {
2085         int err;
2086
2087         while (*name=='/')
2088                 name++;
2089         if (!*name)
2090                 return 0;
2091
2092         /* At this point we know we have a real path component. */
2093         for(;;) {
2094                 u64 hash_len;
2095                 int type;
2096
2097                 err = may_lookup(nd);
2098                 if (err)
2099                         return err;
2100
2101                 hash_len = hash_name(nd->path.dentry, name);
2102
2103                 type = LAST_NORM;
2104                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2105                         case 2:
2106                                 if (name[1] == '.') {
2107                                         type = LAST_DOTDOT;
2108                                         nd->flags |= LOOKUP_JUMPED;
2109                                 }
2110                                 break;
2111                         case 1:
2112                                 type = LAST_DOT;
2113                 }
2114                 if (likely(type == LAST_NORM)) {
2115                         struct dentry *parent = nd->path.dentry;
2116                         nd->flags &= ~LOOKUP_JUMPED;
2117                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2118                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2119                                 err = parent->d_op->d_hash(parent, &this);
2120                                 if (err < 0)
2121                                         return err;
2122                                 hash_len = this.hash_len;
2123                                 name = this.name;
2124                         }
2125                 }
2126
2127                 nd->last.hash_len = hash_len;
2128                 nd->last.name = name;
2129                 nd->last_type = type;
2130
2131                 name += hashlen_len(hash_len);
2132                 if (!*name)
2133                         goto OK;
2134                 /*
2135                  * If it wasn't NUL, we know it was '/'. Skip that
2136                  * slash, and continue until no more slashes.
2137                  */
2138                 do {
2139                         name++;
2140                 } while (unlikely(*name == '/'));
2141                 if (unlikely(!*name)) {
2142 OK:
2143                         /* pathname body, done */
2144                         if (!nd->depth)
2145                                 return 0;
2146                         name = nd->stack[nd->depth - 1].name;
2147                         /* trailing symlink, done */
2148                         if (!name)
2149                                 return 0;
2150                         /* last component of nested symlink */
2151                         err = walk_component(nd, WALK_FOLLOW);
2152                 } else {
2153                         /* not the last component */
2154                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2155                 }
2156                 if (err < 0)
2157                         return err;
2158
2159                 if (err) {
2160                         const char *s = get_link(nd);
2161
2162                         if (IS_ERR(s))
2163                                 return PTR_ERR(s);
2164                         err = 0;
2165                         if (unlikely(!s)) {
2166                                 /* jumped */
2167                                 put_link(nd);
2168                         } else {
2169                                 nd->stack[nd->depth - 1].name = name;
2170                                 name = s;
2171                                 continue;
2172                         }
2173                 }
2174                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2175                         if (nd->flags & LOOKUP_RCU) {
2176                                 if (unlazy_walk(nd))
2177                                         return -ECHILD;
2178                         }
2179                         return -ENOTDIR;
2180                 }
2181         }
2182 }
2183
2184 static const char *path_init(struct nameidata *nd, unsigned flags)
2185 {
2186         const char *s = nd->name->name;
2187
2188         if (!*s)
2189                 flags &= ~LOOKUP_RCU;
2190
2191         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2192         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2193         nd->depth = 0;
2194         if (flags & LOOKUP_ROOT) {
2195                 struct dentry *root = nd->root.dentry;
2196                 struct inode *inode = root->d_inode;
2197                 if (*s && unlikely(!d_can_lookup(root)))
2198                         return ERR_PTR(-ENOTDIR);
2199                 nd->path = nd->root;
2200                 nd->inode = inode;
2201                 if (flags & LOOKUP_RCU) {
2202                         rcu_read_lock();
2203                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2204                         nd->root_seq = nd->seq;
2205                         nd->m_seq = read_seqbegin(&mount_lock);
2206                 } else {
2207                         path_get(&nd->path);
2208                 }
2209                 return s;
2210         }
2211
2212         nd->root.mnt = NULL;
2213         nd->path.mnt = NULL;
2214         nd->path.dentry = NULL;
2215
2216         nd->m_seq = read_seqbegin(&mount_lock);
2217         if (*s == '/') {
2218                 if (flags & LOOKUP_RCU)
2219                         rcu_read_lock();
2220                 set_root(nd);
2221                 if (likely(!nd_jump_root(nd)))
2222                         return s;
2223                 nd->root.mnt = NULL;
2224                 rcu_read_unlock();
2225                 return ERR_PTR(-ECHILD);
2226         } else if (nd->dfd == AT_FDCWD) {
2227                 if (flags & LOOKUP_RCU) {
2228                         struct fs_struct *fs = current->fs;
2229                         unsigned seq;
2230
2231                         rcu_read_lock();
2232
2233                         do {
2234                                 seq = read_seqcount_begin(&fs->seq);
2235                                 nd->path = fs->pwd;
2236                                 nd->inode = nd->path.dentry->d_inode;
2237                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2238                         } while (read_seqcount_retry(&fs->seq, seq));
2239                 } else {
2240                         get_fs_pwd(current->fs, &nd->path);
2241                         nd->inode = nd->path.dentry->d_inode;
2242                 }
2243                 return s;
2244         } else {
2245                 /* Caller must check execute permissions on the starting path component */
2246                 struct fd f = fdget_raw(nd->dfd);
2247                 struct dentry *dentry;
2248
2249                 if (!f.file)
2250                         return ERR_PTR(-EBADF);
2251
2252                 dentry = f.file->f_path.dentry;
2253
2254                 if (*s) {
2255                         if (!d_can_lookup(dentry)) {
2256                                 fdput(f);
2257                                 return ERR_PTR(-ENOTDIR);
2258                         }
2259                 }
2260
2261                 nd->path = f.file->f_path;
2262                 if (flags & LOOKUP_RCU) {
2263                         rcu_read_lock();
2264                         nd->inode = nd->path.dentry->d_inode;
2265                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2266                 } else {
2267                         path_get(&nd->path);
2268                         nd->inode = nd->path.dentry->d_inode;
2269                 }
2270                 fdput(f);
2271                 return s;
2272         }
2273 }
2274
2275 static const char *trailing_symlink(struct nameidata *nd)
2276 {
2277         const char *s;
2278         int error = may_follow_link(nd);
2279         if (unlikely(error))
2280                 return ERR_PTR(error);
2281         nd->flags |= LOOKUP_PARENT;
2282         nd->stack[0].name = NULL;
2283         s = get_link(nd);
2284         return s ? s : "";
2285 }
2286
2287 static inline int lookup_last(struct nameidata *nd)
2288 {
2289         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2290                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2291
2292         nd->flags &= ~LOOKUP_PARENT;
2293         return walk_component(nd, 0);
2294 }
2295
2296 static int handle_lookup_down(struct nameidata *nd)
2297 {
2298         struct path path = nd->path;
2299         struct inode *inode = nd->inode;
2300         unsigned seq = nd->seq;
2301         int err;
2302
2303         if (nd->flags & LOOKUP_RCU) {
2304                 /*
2305                  * don't bother with unlazy_walk on failure - we are
2306                  * at the very beginning of walk, so we lose nothing
2307                  * if we simply redo everything in non-RCU mode
2308                  */
2309                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2310                         return -ECHILD;
2311         } else {
2312                 dget(path.dentry);
2313                 err = follow_managed(&path, nd);
2314                 if (unlikely(err < 0))
2315                         return err;
2316                 inode = d_backing_inode(path.dentry);
2317                 seq = 0;
2318         }
2319         path_to_nameidata(&path, nd);
2320         nd->inode = inode;
2321         nd->seq = seq;
2322         return 0;
2323 }
2324
2325 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2326 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2327 {
2328         const char *s = path_init(nd, flags);
2329         int err;
2330
2331         if (IS_ERR(s))
2332                 return PTR_ERR(s);
2333
2334         if (unlikely(flags & LOOKUP_DOWN)) {
2335                 err = handle_lookup_down(nd);
2336                 if (unlikely(err < 0)) {
2337                         terminate_walk(nd);
2338                         return err;
2339                 }
2340         }
2341
2342         while (!(err = link_path_walk(s, nd))
2343                 && ((err = lookup_last(nd)) > 0)) {
2344                 s = trailing_symlink(nd);
2345                 if (IS_ERR(s)) {
2346                         err = PTR_ERR(s);
2347                         break;
2348                 }
2349         }
2350         if (!err)
2351                 err = complete_walk(nd);
2352
2353         if (!err && nd->flags & LOOKUP_DIRECTORY)
2354                 if (!d_can_lookup(nd->path.dentry))
2355                         err = -ENOTDIR;
2356         if (!err) {
2357                 *path = nd->path;
2358                 nd->path.mnt = NULL;
2359                 nd->path.dentry = NULL;
2360         }
2361         terminate_walk(nd);
2362         return err;
2363 }
2364
2365 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2366                            struct path *path, struct path *root)
2367 {
2368         int retval;
2369         struct nameidata nd;
2370         if (IS_ERR(name))
2371                 return PTR_ERR(name);
2372         if (unlikely(root)) {
2373                 nd.root = *root;
2374                 flags |= LOOKUP_ROOT;
2375         }
2376         set_nameidata(&nd, dfd, name);
2377         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2378         if (unlikely(retval == -ECHILD))
2379                 retval = path_lookupat(&nd, flags, path);
2380         if (unlikely(retval == -ESTALE))
2381                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2382
2383         if (likely(!retval))
2384                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2385         restore_nameidata();
2386         putname(name);
2387         return retval;
2388 }
2389
2390 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2391 static int path_parentat(struct nameidata *nd, unsigned flags,
2392                                 struct path *parent)
2393 {
2394         const char *s = path_init(nd, flags);
2395         int err;
2396         if (IS_ERR(s))
2397                 return PTR_ERR(s);
2398         err = link_path_walk(s, nd);
2399         if (!err)
2400                 err = complete_walk(nd);
2401         if (!err) {
2402                 *parent = nd->path;
2403                 nd->path.mnt = NULL;
2404                 nd->path.dentry = NULL;
2405         }
2406         terminate_walk(nd);
2407         return err;
2408 }
2409
2410 static struct filename *filename_parentat(int dfd, struct filename *name,
2411                                 unsigned int flags, struct path *parent,
2412                                 struct qstr *last, int *type)
2413 {
2414         int retval;
2415         struct nameidata nd;
2416
2417         if (IS_ERR(name))
2418                 return name;
2419         set_nameidata(&nd, dfd, name);
2420         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2421         if (unlikely(retval == -ECHILD))
2422                 retval = path_parentat(&nd, flags, parent);
2423         if (unlikely(retval == -ESTALE))
2424                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2425         if (likely(!retval)) {
2426                 *last = nd.last;
2427                 *type = nd.last_type;
2428                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2429         } else {
2430                 putname(name);
2431                 name = ERR_PTR(retval);
2432         }
2433         restore_nameidata();
2434         return name;
2435 }
2436
2437 /* does lookup, returns the object with parent locked */
2438 struct dentry *kern_path_locked(const char *name, struct path *path)
2439 {
2440         struct filename *filename;
2441         struct dentry *d;
2442         struct qstr last;
2443         int type;
2444
2445         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2446                                     &last, &type);
2447         if (IS_ERR(filename))
2448                 return ERR_CAST(filename);
2449         if (unlikely(type != LAST_NORM)) {
2450                 path_put(path);
2451                 putname(filename);
2452                 return ERR_PTR(-EINVAL);
2453         }
2454         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2455         d = __lookup_hash(&last, path->dentry, 0);
2456         if (IS_ERR(d)) {
2457                 inode_unlock(path->dentry->d_inode);
2458                 path_put(path);
2459         }
2460         putname(filename);
2461         return d;
2462 }
2463
2464 int kern_path(const char *name, unsigned int flags, struct path *path)
2465 {
2466         return filename_lookup(AT_FDCWD, getname_kernel(name),
2467                                flags, path, NULL);
2468 }
2469 EXPORT_SYMBOL(kern_path);
2470
2471 /**
2472  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2473  * @dentry:  pointer to dentry of the base directory
2474  * @mnt: pointer to vfs mount of the base directory
2475  * @name: pointer to file name
2476  * @flags: lookup flags
2477  * @path: pointer to struct path to fill
2478  */
2479 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2480                     const char *name, unsigned int flags,
2481                     struct path *path)
2482 {
2483         struct path root = {.mnt = mnt, .dentry = dentry};
2484         /* the first argument of filename_lookup() is ignored with root */
2485         return filename_lookup(AT_FDCWD, getname_kernel(name),
2486                                flags , path, &root);
2487 }
2488 EXPORT_SYMBOL(vfs_path_lookup);
2489
2490 /**
2491  * lookup_one_len - filesystem helper to lookup single pathname component
2492  * @name:       pathname component to lookup
2493  * @base:       base directory to lookup from
2494  * @len:        maximum length @len should be interpreted to
2495  *
2496  * Note that this routine is purely a helper for filesystem usage and should
2497  * not be called by generic code.
2498  *
2499  * The caller must hold base->i_mutex.
2500  */
2501 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2502 {
2503         struct qstr this;
2504         unsigned int c;
2505         int err;
2506
2507         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2508
2509         this.name = name;
2510         this.len = len;
2511         this.hash = full_name_hash(base, name, len);
2512         if (!len)
2513                 return ERR_PTR(-EACCES);
2514
2515         if (unlikely(name[0] == '.')) {
2516                 if (len < 2 || (len == 2 && name[1] == '.'))
2517                         return ERR_PTR(-EACCES);
2518         }
2519
2520         while (len--) {
2521                 c = *(const unsigned char *)name++;
2522                 if (c == '/' || c == '\0')
2523                         return ERR_PTR(-EACCES);
2524         }
2525         /*
2526          * See if the low-level filesystem might want
2527          * to use its own hash..
2528          */
2529         if (base->d_flags & DCACHE_OP_HASH) {
2530                 int err = base->d_op->d_hash(base, &this);
2531                 if (err < 0)
2532                         return ERR_PTR(err);
2533         }
2534
2535         err = inode_permission(base->d_inode, MAY_EXEC);
2536         if (err)
2537                 return ERR_PTR(err);
2538
2539         return __lookup_hash(&this, base, 0);
2540 }
2541 EXPORT_SYMBOL(lookup_one_len);
2542
2543 /**
2544  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2545  * @name:       pathname component to lookup
2546  * @base:       base directory to lookup from
2547  * @len:        maximum length @len should be interpreted to
2548  *
2549  * Note that this routine is purely a helper for filesystem usage and should
2550  * not be called by generic code.
2551  *
2552  * Unlike lookup_one_len, it should be called without the parent
2553  * i_mutex held, and will take the i_mutex itself if necessary.
2554  */
2555 struct dentry *lookup_one_len_unlocked(const char *name,
2556                                        struct dentry *base, int len)
2557 {
2558         struct qstr this;
2559         unsigned int c;
2560         int err;
2561         struct dentry *ret;
2562
2563         this.name = name;
2564         this.len = len;
2565         this.hash = full_name_hash(base, name, len);
2566         if (!len)
2567                 return ERR_PTR(-EACCES);
2568
2569         if (unlikely(name[0] == '.')) {
2570                 if (len < 2 || (len == 2 && name[1] == '.'))
2571                         return ERR_PTR(-EACCES);
2572         }
2573
2574         while (len--) {
2575                 c = *(const unsigned char *)name++;
2576                 if (c == '/' || c == '\0')
2577                         return ERR_PTR(-EACCES);
2578         }
2579         /*
2580          * See if the low-level filesystem might want
2581          * to use its own hash..
2582          */
2583         if (base->d_flags & DCACHE_OP_HASH) {
2584                 int err = base->d_op->d_hash(base, &this);
2585                 if (err < 0)
2586                         return ERR_PTR(err);
2587         }
2588
2589         err = inode_permission(base->d_inode, MAY_EXEC);
2590         if (err)
2591                 return ERR_PTR(err);
2592
2593         ret = lookup_dcache(&this, base, 0);
2594         if (!ret)
2595                 ret = lookup_slow(&this, base, 0);
2596         return ret;
2597 }
2598 EXPORT_SYMBOL(lookup_one_len_unlocked);
2599
2600 #ifdef CONFIG_UNIX98_PTYS
2601 int path_pts(struct path *path)
2602 {
2603         /* Find something mounted on "pts" in the same directory as
2604          * the input path.
2605          */
2606         struct dentry *child, *parent;
2607         struct qstr this;
2608         int ret;
2609
2610         ret = path_parent_directory(path);
2611         if (ret)
2612                 return ret;
2613
2614         parent = path->dentry;
2615         this.name = "pts";
2616         this.len = 3;
2617         child = d_hash_and_lookup(parent, &this);
2618         if (!child)
2619                 return -ENOENT;
2620
2621         path->dentry = child;
2622         dput(parent);
2623         follow_mount(path);
2624         return 0;
2625 }
2626 #endif
2627
2628 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2629                  struct path *path, int *empty)
2630 {
2631         return filename_lookup(dfd, getname_flags(name, flags, empty),
2632                                flags, path, NULL);
2633 }
2634 EXPORT_SYMBOL(user_path_at_empty);
2635
2636 /**
2637  * mountpoint_last - look up last component for umount
2638  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2639  *
2640  * This is a special lookup_last function just for umount. In this case, we
2641  * need to resolve the path without doing any revalidation.
2642  *
2643  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2644  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2645  * in almost all cases, this lookup will be served out of the dcache. The only
2646  * cases where it won't are if nd->last refers to a symlink or the path is
2647  * bogus and it doesn't exist.
2648  *
2649  * Returns:
2650  * -error: if there was an error during lookup. This includes -ENOENT if the
2651  *         lookup found a negative dentry.
2652  *
2653  * 0:      if we successfully resolved nd->last and found it to not to be a
2654  *         symlink that needs to be followed.
2655  *
2656  * 1:      if we successfully resolved nd->last and found it to be a symlink
2657  *         that needs to be followed.
2658  */
2659 static int
2660 mountpoint_last(struct nameidata *nd)
2661 {
2662         int error = 0;
2663         struct dentry *dir = nd->path.dentry;
2664         struct path path;
2665
2666         /* If we're in rcuwalk, drop out of it to handle last component */
2667         if (nd->flags & LOOKUP_RCU) {
2668                 if (unlazy_walk(nd))
2669                         return -ECHILD;
2670         }
2671
2672         nd->flags &= ~LOOKUP_PARENT;
2673
2674         if (unlikely(nd->last_type != LAST_NORM)) {
2675                 error = handle_dots(nd, nd->last_type);
2676                 if (error)
2677                         return error;
2678                 path.dentry = dget(nd->path.dentry);
2679         } else {
2680                 path.dentry = d_lookup(dir, &nd->last);
2681                 if (!path.dentry) {
2682                         /*
2683                          * No cached dentry. Mounted dentries are pinned in the
2684                          * cache, so that means that this dentry is probably
2685                          * a symlink or the path doesn't actually point
2686                          * to a mounted dentry.
2687                          */
2688                         path.dentry = lookup_slow(&nd->last, dir,
2689                                              nd->flags | LOOKUP_NO_REVAL);
2690                         if (IS_ERR(path.dentry))
2691                                 return PTR_ERR(path.dentry);
2692                 }
2693         }
2694         if (d_is_negative(path.dentry)) {
2695                 dput(path.dentry);
2696                 return -ENOENT;
2697         }
2698         path.mnt = nd->path.mnt;
2699         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2700 }
2701
2702 /**
2703  * path_mountpoint - look up a path to be umounted
2704  * @nd:         lookup context
2705  * @flags:      lookup flags
2706  * @path:       pointer to container for result
2707  *
2708  * Look up the given name, but don't attempt to revalidate the last component.
2709  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2710  */
2711 static int
2712 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2713 {
2714         const char *s = path_init(nd, flags);
2715         int err;
2716         if (IS_ERR(s))
2717                 return PTR_ERR(s);
2718         while (!(err = link_path_walk(s, nd)) &&
2719                 (err = mountpoint_last(nd)) > 0) {
2720                 s = trailing_symlink(nd);
2721                 if (IS_ERR(s)) {
2722                         err = PTR_ERR(s);
2723                         break;
2724                 }
2725         }
2726         if (!err) {
2727                 *path = nd->path;
2728                 nd->path.mnt = NULL;
2729                 nd->path.dentry = NULL;
2730                 follow_mount(path);
2731         }
2732         terminate_walk(nd);
2733         return err;
2734 }
2735
2736 static int
2737 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2738                         unsigned int flags)
2739 {
2740         struct nameidata nd;
2741         int error;
2742         if (IS_ERR(name))
2743                 return PTR_ERR(name);
2744         set_nameidata(&nd, dfd, name);
2745         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2746         if (unlikely(error == -ECHILD))
2747                 error = path_mountpoint(&nd, flags, path);
2748         if (unlikely(error == -ESTALE))
2749                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2750         if (likely(!error))
2751                 audit_inode(name, path->dentry, 0);
2752         restore_nameidata();
2753         putname(name);
2754         return error;
2755 }
2756
2757 /**
2758  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2759  * @dfd:        directory file descriptor
2760  * @name:       pathname from userland
2761  * @flags:      lookup flags
2762  * @path:       pointer to container to hold result
2763  *
2764  * A umount is a special case for path walking. We're not actually interested
2765  * in the inode in this situation, and ESTALE errors can be a problem. We
2766  * simply want track down the dentry and vfsmount attached at the mountpoint
2767  * and avoid revalidating the last component.
2768  *
2769  * Returns 0 and populates "path" on success.
2770  */
2771 int
2772 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2773                         struct path *path)
2774 {
2775         return filename_mountpoint(dfd, getname(name), path, flags);
2776 }
2777
2778 int
2779 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2780                         unsigned int flags)
2781 {
2782         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2783 }
2784 EXPORT_SYMBOL(kern_path_mountpoint);
2785
2786 int __check_sticky(struct inode *dir, struct inode *inode)
2787 {
2788         kuid_t fsuid = current_fsuid();
2789
2790         if (uid_eq(inode->i_uid, fsuid))
2791                 return 0;
2792         if (uid_eq(dir->i_uid, fsuid))
2793                 return 0;
2794         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2795 }
2796 EXPORT_SYMBOL(__check_sticky);
2797
2798 /*
2799  *      Check whether we can remove a link victim from directory dir, check
2800  *  whether the type of victim is right.
2801  *  1. We can't do it if dir is read-only (done in permission())
2802  *  2. We should have write and exec permissions on dir
2803  *  3. We can't remove anything from append-only dir
2804  *  4. We can't do anything with immutable dir (done in permission())
2805  *  5. If the sticky bit on dir is set we should either
2806  *      a. be owner of dir, or
2807  *      b. be owner of victim, or
2808  *      c. have CAP_FOWNER capability
2809  *  6. If the victim is append-only or immutable we can't do antyhing with
2810  *     links pointing to it.
2811  *  7. If the victim has an unknown uid or gid we can't change the inode.
2812  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2813  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2814  * 10. We can't remove a root or mountpoint.
2815  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2816  *     nfs_async_unlink().
2817  */
2818 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2819 {
2820         struct inode *inode = d_backing_inode(victim);
2821         int error;
2822
2823         if (d_is_negative(victim))
2824                 return -ENOENT;
2825         BUG_ON(!inode);
2826
2827         BUG_ON(victim->d_parent->d_inode != dir);
2828         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2829
2830         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2831         if (error)
2832                 return error;
2833         if (IS_APPEND(dir))
2834                 return -EPERM;
2835
2836         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2837             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2838                 return -EPERM;
2839         if (isdir) {
2840                 if (!d_is_dir(victim))
2841                         return -ENOTDIR;
2842                 if (IS_ROOT(victim))
2843                         return -EBUSY;
2844         } else if (d_is_dir(victim))
2845                 return -EISDIR;
2846         if (IS_DEADDIR(dir))
2847                 return -ENOENT;
2848         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2849                 return -EBUSY;
2850         return 0;
2851 }
2852
2853 /*      Check whether we can create an object with dentry child in directory
2854  *  dir.
2855  *  1. We can't do it if child already exists (open has special treatment for
2856  *     this case, but since we are inlined it's OK)
2857  *  2. We can't do it if dir is read-only (done in permission())
2858  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2859  *  4. We should have write and exec permissions on dir
2860  *  5. We can't do it if dir is immutable (done in permission())
2861  */
2862 static inline int may_create(struct inode *dir, struct dentry *child)
2863 {
2864         struct user_namespace *s_user_ns;
2865         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2866         if (child->d_inode)
2867                 return -EEXIST;
2868         if (IS_DEADDIR(dir))
2869                 return -ENOENT;
2870         s_user_ns = dir->i_sb->s_user_ns;
2871         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2872             !kgid_has_mapping(s_user_ns, current_fsgid()))
2873                 return -EOVERFLOW;
2874         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2875 }
2876
2877 /*
2878  * p1 and p2 should be directories on the same fs.
2879  */
2880 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2881 {
2882         struct dentry *p;
2883
2884         if (p1 == p2) {
2885                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2886                 return NULL;
2887         }
2888
2889         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2890
2891         p = d_ancestor(p2, p1);
2892         if (p) {
2893                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2894                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2895                 return p;
2896         }
2897
2898         p = d_ancestor(p1, p2);
2899         if (p) {
2900                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2901                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2902                 return p;
2903         }
2904
2905         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2906         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2907         return NULL;
2908 }
2909 EXPORT_SYMBOL(lock_rename);
2910
2911 void unlock_rename(struct dentry *p1, struct dentry *p2)
2912 {
2913         inode_unlock(p1->d_inode);
2914         if (p1 != p2) {
2915                 inode_unlock(p2->d_inode);
2916                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2917         }
2918 }
2919 EXPORT_SYMBOL(unlock_rename);
2920
2921 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2922                 bool want_excl)
2923 {
2924         int error = may_create(dir, dentry);
2925         if (error)
2926                 return error;
2927
2928         if (!dir->i_op->create)
2929                 return -EACCES; /* shouldn't it be ENOSYS? */
2930         mode &= S_IALLUGO;
2931         mode |= S_IFREG;
2932         error = security_inode_create(dir, dentry, mode);
2933         if (error)
2934                 return error;
2935         error = dir->i_op->create(dir, dentry, mode, want_excl);
2936         if (!error)
2937                 fsnotify_create(dir, dentry);
2938         return error;
2939 }
2940 EXPORT_SYMBOL(vfs_create);
2941
2942 bool may_open_dev(const struct path *path)
2943 {
2944         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2945                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2946 }
2947
2948 static int may_open(const struct path *path, int acc_mode, int flag)
2949 {
2950         struct dentry *dentry = path->dentry;
2951         struct inode *inode = dentry->d_inode;
2952         int error;
2953
2954         if (!inode)
2955                 return -ENOENT;
2956
2957         switch (inode->i_mode & S_IFMT) {
2958         case S_IFLNK:
2959                 return -ELOOP;
2960         case S_IFDIR:
2961                 if (acc_mode & MAY_WRITE)
2962                         return -EISDIR;
2963                 break;
2964         case S_IFBLK:
2965         case S_IFCHR:
2966                 if (!may_open_dev(path))
2967                         return -EACCES;
2968                 /*FALLTHRU*/
2969         case S_IFIFO:
2970         case S_IFSOCK:
2971                 flag &= ~O_TRUNC;
2972                 break;
2973         }
2974
2975         error = inode_permission(inode, MAY_OPEN | acc_mode);
2976         if (error)
2977                 return error;
2978
2979         /*
2980          * An append-only file must be opened in append mode for writing.
2981          */
2982         if (IS_APPEND(inode)) {
2983                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2984                         return -EPERM;
2985                 if (flag & O_TRUNC)
2986                         return -EPERM;
2987         }
2988
2989         /* O_NOATIME can only be set by the owner or superuser */
2990         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2991                 return -EPERM;
2992
2993         return 0;
2994 }
2995
2996 static int handle_truncate(struct file *filp)
2997 {
2998         const struct path *path = &filp->f_path;
2999         struct inode *inode = path->dentry->d_inode;
3000         int error = get_write_access(inode);
3001         if (error)
3002                 return error;
3003         /*
3004          * Refuse to truncate files with mandatory locks held on them.
3005          */
3006         error = locks_verify_locked(filp);
3007         if (!error)
3008                 error = security_path_truncate(path);
3009         if (!error) {
3010                 error = do_truncate(path->dentry, 0,
3011                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3012                                     filp);
3013         }
3014         put_write_access(inode);
3015         return error;
3016 }
3017
3018 static inline int open_to_namei_flags(int flag)
3019 {
3020         if ((flag & O_ACCMODE) == 3)
3021                 flag--;
3022         return flag;
3023 }
3024
3025 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3026 {
3027         struct user_namespace *s_user_ns;
3028         int error = security_path_mknod(dir, dentry, mode, 0);
3029         if (error)
3030                 return error;
3031
3032         s_user_ns = dir->dentry->d_sb->s_user_ns;
3033         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3034             !kgid_has_mapping(s_user_ns, current_fsgid()))
3035                 return -EOVERFLOW;
3036
3037         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3038         if (error)
3039                 return error;
3040
3041         return security_inode_create(dir->dentry->d_inode, dentry, mode);
3042 }
3043
3044 /*
3045  * Attempt to atomically look up, create and open a file from a negative
3046  * dentry.
3047  *
3048  * Returns 0 if successful.  The file will have been created and attached to
3049  * @file by the filesystem calling finish_open().
3050  *
3051  * Returns 1 if the file was looked up only or didn't need creating.  The
3052  * caller will need to perform the open themselves.  @path will have been
3053  * updated to point to the new dentry.  This may be negative.
3054  *
3055  * Returns an error code otherwise.
3056  */
3057 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3058                         struct path *path, struct file *file,
3059                         const struct open_flags *op,
3060                         int open_flag, umode_t mode,
3061                         int *opened)
3062 {
3063         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3064         struct inode *dir =  nd->path.dentry->d_inode;
3065         int error;
3066
3067         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3068                 open_flag &= ~O_TRUNC;
3069
3070         if (nd->flags & LOOKUP_DIRECTORY)
3071                 open_flag |= O_DIRECTORY;
3072
3073         file->f_path.dentry = DENTRY_NOT_SET;
3074         file->f_path.mnt = nd->path.mnt;
3075         error = dir->i_op->atomic_open(dir, dentry, file,
3076                                        open_to_namei_flags(open_flag),
3077                                        mode, opened);
3078         d_lookup_done(dentry);
3079         if (!error) {
3080                 /*
3081                  * We didn't have the inode before the open, so check open
3082                  * permission here.
3083                  */
3084                 int acc_mode = op->acc_mode;
3085                 if (*opened & FILE_CREATED) {
3086                         WARN_ON(!(open_flag & O_CREAT));
3087                         fsnotify_create(dir, dentry);
3088                         acc_mode = 0;
3089                 }
3090                 error = may_open(&file->f_path, acc_mode, open_flag);
3091                 if (WARN_ON(error > 0))
3092                         error = -EINVAL;
3093         } else if (error > 0) {
3094                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3095                         error = -EIO;
3096                 } else {
3097                         if (file->f_path.dentry) {
3098                                 dput(dentry);
3099                                 dentry = file->f_path.dentry;
3100                         }
3101                         if (*opened & FILE_CREATED)
3102                                 fsnotify_create(dir, dentry);
3103                         if (unlikely(d_is_negative(dentry))) {
3104                                 error = -ENOENT;
3105                         } else {
3106                                 path->dentry = dentry;
3107                                 path->mnt = nd->path.mnt;
3108                                 return 1;
3109                         }
3110                 }
3111         }
3112         dput(dentry);
3113         return error;
3114 }
3115
3116 /*
3117  * Look up and maybe create and open the last component.
3118  *
3119  * Must be called with i_mutex held on parent.
3120  *
3121  * Returns 0 if the file was successfully atomically created (if necessary) and
3122  * opened.  In this case the file will be returned attached to @file.
3123  *
3124  * Returns 1 if the file was not completely opened at this time, though lookups
3125  * and creations will have been performed and the dentry returned in @path will
3126  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3127  * specified then a negative dentry may be returned.
3128  *
3129  * An error code is returned otherwise.
3130  *
3131  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3132  * cleared otherwise prior to returning.
3133  */
3134 static int lookup_open(struct nameidata *nd, struct path *path,
3135                         struct file *file,
3136                         const struct open_flags *op,
3137                         bool got_write, int *opened)
3138 {
3139         struct dentry *dir = nd->path.dentry;
3140         struct inode *dir_inode = dir->d_inode;
3141         int open_flag = op->open_flag;
3142         struct dentry *dentry;
3143         int error, create_error = 0;
3144         umode_t mode = op->mode;
3145         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3146
3147         if (unlikely(IS_DEADDIR(dir_inode)))
3148                 return -ENOENT;
3149
3150         *opened &= ~FILE_CREATED;
3151         dentry = d_lookup(dir, &nd->last);
3152         for (;;) {
3153                 if (!dentry) {
3154                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3155                         if (IS_ERR(dentry))
3156                                 return PTR_ERR(dentry);
3157                 }
3158                 if (d_in_lookup(dentry))
3159                         break;
3160
3161                 error = d_revalidate(dentry, nd->flags);
3162                 if (likely(error > 0))
3163                         break;
3164                 if (error)
3165                         goto out_dput;
3166                 d_invalidate(dentry);
3167                 dput(dentry);
3168                 dentry = NULL;
3169         }
3170         if (dentry->d_inode) {
3171                 /* Cached positive dentry: will open in f_op->open */
3172                 goto out_no_open;
3173         }
3174
3175         /*
3176          * Checking write permission is tricky, bacuse we don't know if we are
3177          * going to actually need it: O_CREAT opens should work as long as the
3178          * file exists.  But checking existence breaks atomicity.  The trick is
3179          * to check access and if not granted clear O_CREAT from the flags.
3180          *
3181          * Another problem is returing the "right" error value (e.g. for an
3182          * O_EXCL open we want to return EEXIST not EROFS).
3183          */
3184         if (open_flag & O_CREAT) {
3185                 if (!IS_POSIXACL(dir->d_inode))
3186                         mode &= ~current_umask();
3187                 if (unlikely(!got_write)) {
3188                         create_error = -EROFS;
3189                         open_flag &= ~O_CREAT;
3190                         if (open_flag & (O_EXCL | O_TRUNC))
3191                                 goto no_open;
3192                         /* No side effects, safe to clear O_CREAT */
3193                 } else {
3194                         create_error = may_o_create(&nd->path, dentry, mode);
3195                         if (create_error) {
3196                                 open_flag &= ~O_CREAT;
3197                                 if (open_flag & O_EXCL)
3198                                         goto no_open;
3199                         }
3200                 }
3201         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3202                    unlikely(!got_write)) {
3203                 /*
3204                  * No O_CREATE -> atomicity not a requirement -> fall
3205                  * back to lookup + open
3206                  */
3207                 goto no_open;
3208         }
3209
3210         if (dir_inode->i_op->atomic_open) {
3211                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3212                                     mode, opened);
3213                 if (unlikely(error == -ENOENT) && create_error)
3214                         error = create_error;
3215                 return error;
3216         }
3217
3218 no_open:
3219         if (d_in_lookup(dentry)) {
3220                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3221                                                              nd->flags);
3222                 d_lookup_done(dentry);
3223                 if (unlikely(res)) {
3224                         if (IS_ERR(res)) {
3225                                 error = PTR_ERR(res);
3226                                 goto out_dput;
3227                         }
3228                         dput(dentry);
3229                         dentry = res;
3230                 }
3231         }
3232
3233         /* Negative dentry, just create the file */
3234         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3235                 *opened |= FILE_CREATED;
3236                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3237                 if (!dir_inode->i_op->create) {
3238                         error = -EACCES;
3239                         goto out_dput;
3240                 }
3241                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3242                                                 open_flag & O_EXCL);
3243                 if (error)
3244                         goto out_dput;
3245                 fsnotify_create(dir_inode, dentry);
3246         }
3247         if (unlikely(create_error) && !dentry->d_inode) {
3248                 error = create_error;
3249                 goto out_dput;
3250         }
3251 out_no_open:
3252         path->dentry = dentry;
3253         path->mnt = nd->path.mnt;
3254         return 1;
3255
3256 out_dput:
3257         dput(dentry);
3258         return error;
3259 }
3260
3261 /*
3262  * Handle the last step of open()
3263  */
3264 static int do_last(struct nameidata *nd,
3265                    struct file *file, const struct open_flags *op,
3266                    int *opened)
3267 {
3268         struct dentry *dir = nd->path.dentry;
3269         kuid_t dir_uid = nd->inode->i_uid;
3270         umode_t dir_mode = nd->inode->i_mode;
3271         int open_flag = op->open_flag;
3272         bool will_truncate = (open_flag & O_TRUNC) != 0;
3273         bool got_write = false;
3274         int acc_mode = op->acc_mode;
3275         unsigned seq;
3276         struct inode *inode;
3277         struct path path;
3278         int error;
3279
3280         nd->flags &= ~LOOKUP_PARENT;
3281         nd->flags |= op->intent;
3282
3283         if (nd->last_type != LAST_NORM) {
3284                 error = handle_dots(nd, nd->last_type);
3285                 if (unlikely(error))
3286                         return error;
3287                 goto finish_open;
3288         }
3289
3290         if (!(open_flag & O_CREAT)) {
3291                 if (nd->last.name[nd->last.len])
3292                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3293                 /* we _can_ be in RCU mode here */
3294                 error = lookup_fast(nd, &path, &inode, &seq);
3295                 if (likely(error > 0))
3296                         goto finish_lookup;
3297
3298                 if (error < 0)
3299                         return error;
3300
3301                 BUG_ON(nd->inode != dir->d_inode);
3302                 BUG_ON(nd->flags & LOOKUP_RCU);
3303         } else {
3304                 /* create side of things */
3305                 /*
3306                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3307                  * has been cleared when we got to the last component we are
3308                  * about to look up
3309                  */
3310                 error = complete_walk(nd);
3311                 if (error)
3312                         return error;
3313
3314                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3315                 /* trailing slashes? */
3316                 if (unlikely(nd->last.name[nd->last.len]))
3317                         return -EISDIR;
3318         }
3319
3320         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3321                 error = mnt_want_write(nd->path.mnt);
3322                 if (!error)
3323                         got_write = true;
3324                 /*
3325                  * do _not_ fail yet - we might not need that or fail with
3326                  * a different error; let lookup_open() decide; we'll be
3327                  * dropping this one anyway.
3328                  */
3329         }
3330         if (open_flag & O_CREAT)
3331                 inode_lock(dir->d_inode);
3332         else
3333                 inode_lock_shared(dir->d_inode);
3334         error = lookup_open(nd, &path, file, op, got_write, opened);
3335         if (open_flag & O_CREAT)
3336                 inode_unlock(dir->d_inode);
3337         else
3338                 inode_unlock_shared(dir->d_inode);
3339
3340         if (error <= 0) {
3341                 if (error)
3342                         goto out;
3343
3344                 if ((*opened & FILE_CREATED) ||
3345                     !S_ISREG(file_inode(file)->i_mode))
3346                         will_truncate = false;
3347
3348                 audit_inode(nd->name, file->f_path.dentry, 0);
3349                 goto opened;
3350         }
3351
3352         if (*opened & FILE_CREATED) {
3353                 /* Don't check for write permission, don't truncate */
3354                 open_flag &= ~O_TRUNC;
3355                 will_truncate = false;
3356                 acc_mode = 0;
3357                 path_to_nameidata(&path, nd);
3358                 goto finish_open_created;
3359         }
3360
3361         /*
3362          * If atomic_open() acquired write access it is dropped now due to
3363          * possible mount and symlink following (this might be optimized away if
3364          * necessary...)
3365          */
3366         if (got_write) {
3367                 mnt_drop_write(nd->path.mnt);
3368                 got_write = false;
3369         }
3370
3371         error = follow_managed(&path, nd);
3372         if (unlikely(error < 0))
3373                 return error;
3374
3375         if (unlikely(d_is_negative(path.dentry))) {
3376                 path_to_nameidata(&path, nd);
3377                 return -ENOENT;
3378         }
3379
3380         /*
3381          * create/update audit record if it already exists.
3382          */
3383         audit_inode(nd->name, path.dentry, 0);
3384
3385         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3386                 path_to_nameidata(&path, nd);
3387                 return -EEXIST;
3388         }
3389
3390         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3391         inode = d_backing_inode(path.dentry);
3392 finish_lookup:
3393         error = step_into(nd, &path, 0, inode, seq);
3394         if (unlikely(error))
3395                 return error;
3396 finish_open:
3397         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3398         error = complete_walk(nd);
3399         if (error)
3400                 return error;
3401         audit_inode(nd->name, nd->path.dentry, 0);
3402         if (open_flag & O_CREAT) {
3403                 error = -EISDIR;
3404                 if (d_is_dir(nd->path.dentry))
3405                         goto out;
3406                 error = may_create_in_sticky(dir_mode, dir_uid,
3407                                              d_backing_inode(nd->path.dentry));
3408                 if (unlikely(error))
3409                         goto out;
3410         }
3411         error = -ENOTDIR;
3412         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3413                 goto out;
3414         if (!d_is_reg(nd->path.dentry))
3415                 will_truncate = false;
3416
3417         if (will_truncate) {
3418                 error = mnt_want_write(nd->path.mnt);
3419                 if (error)
3420                         goto out;
3421                 got_write = true;
3422         }
3423 finish_open_created:
3424         error = may_open(&nd->path, acc_mode, open_flag);
3425         if (error)
3426                 goto out;
3427         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3428         error = vfs_open(&nd->path, file, current_cred());
3429         if (error)
3430                 goto out;
3431         *opened |= FILE_OPENED;
3432 opened:
3433         error = open_check_o_direct(file);
3434         if (!error)
3435                 error = ima_file_check(file, op->acc_mode, *opened);
3436         if (!error && will_truncate)
3437                 error = handle_truncate(file);
3438 out:
3439         if (unlikely(error) && (*opened & FILE_OPENED))
3440                 fput(file);
3441         if (unlikely(error > 0)) {
3442                 WARN_ON(1);
3443                 error = -EINVAL;
3444         }
3445         if (got_write)
3446                 mnt_drop_write(nd->path.mnt);
3447         return error;
3448 }
3449
3450 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3451 {
3452         struct dentry *child = NULL;
3453         struct inode *dir = dentry->d_inode;
3454         struct inode *inode;
3455         int error;
3456
3457         /* we want directory to be writable */
3458         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3459         if (error)
3460                 goto out_err;
3461         error = -EOPNOTSUPP;
3462         if (!dir->i_op->tmpfile)
3463                 goto out_err;
3464         error = -ENOMEM;
3465         child = d_alloc(dentry, &slash_name);
3466         if (unlikely(!child))
3467                 goto out_err;
3468         error = dir->i_op->tmpfile(dir, child, mode);
3469         if (error)
3470                 goto out_err;
3471         error = -ENOENT;
3472         inode = child->d_inode;
3473         if (unlikely(!inode))
3474                 goto out_err;
3475         if (!(open_flag & O_EXCL)) {
3476                 spin_lock(&inode->i_lock);
3477                 inode->i_state |= I_LINKABLE;
3478                 spin_unlock(&inode->i_lock);
3479         }
3480         return child;
3481
3482 out_err:
3483         dput(child);
3484         return ERR_PTR(error);
3485 }
3486 EXPORT_SYMBOL(vfs_tmpfile);
3487
3488 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3489                 const struct open_flags *op,
3490                 struct file *file, int *opened)
3491 {
3492         struct dentry *child;
3493         struct path path;
3494         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3495         if (unlikely(error))
3496                 return error;
3497         error = mnt_want_write(path.mnt);
3498         if (unlikely(error))
3499                 goto out;
3500         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3501         error = PTR_ERR(child);
3502         if (unlikely(IS_ERR(child)))
3503                 goto out2;
3504         dput(path.dentry);
3505         path.dentry = child;
3506         audit_inode(nd->name, child, 0);
3507         /* Don't check for other permissions, the inode was just created */
3508         error = may_open(&path, 0, op->open_flag);
3509         if (error)
3510                 goto out2;
3511         file->f_path.mnt = path.mnt;
3512         error = finish_open(file, child, NULL, opened);
3513         if (error)
3514                 goto out2;
3515         error = open_check_o_direct(file);
3516         if (error)
3517                 fput(file);
3518 out2:
3519         mnt_drop_write(path.mnt);
3520 out:
3521         path_put(&path);
3522         return error;
3523 }
3524
3525 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3526 {
3527         struct path path;
3528         int error = path_lookupat(nd, flags, &path);
3529         if (!error) {
3530                 audit_inode(nd->name, path.dentry, 0);
3531                 error = vfs_open(&path, file, current_cred());
3532                 path_put(&path);
3533         }
3534         return error;
3535 }
3536
3537 static struct file *path_openat(struct nameidata *nd,
3538                         const struct open_flags *op, unsigned flags)
3539 {
3540         const char *s;
3541         struct file *file;
3542         int opened = 0;
3543         int error;
3544
3545         file = get_empty_filp();
3546         if (IS_ERR(file))
3547                 return file;
3548
3549         file->f_flags = op->open_flag;
3550
3551         if (unlikely(file->f_flags & __O_TMPFILE)) {
3552                 error = do_tmpfile(nd, flags, op, file, &opened);
3553                 goto out2;
3554         }
3555
3556         if (unlikely(file->f_flags & O_PATH)) {
3557                 error = do_o_path(nd, flags, file);
3558                 if (!error)
3559                         opened |= FILE_OPENED;
3560                 goto out2;
3561         }
3562
3563         s = path_init(nd, flags);
3564         if (IS_ERR(s)) {
3565                 put_filp(file);
3566                 return ERR_CAST(s);
3567         }
3568         while (!(error = link_path_walk(s, nd)) &&
3569                 (error = do_last(nd, file, op, &opened)) > 0) {
3570                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3571                 s = trailing_symlink(nd);
3572                 if (IS_ERR(s)) {
3573                         error = PTR_ERR(s);
3574                         break;
3575                 }
3576         }
3577         terminate_walk(nd);
3578 out2:
3579         if (!(opened & FILE_OPENED)) {
3580                 BUG_ON(!error);
3581                 put_filp(file);
3582         }
3583         if (unlikely(error)) {
3584                 if (error == -EOPENSTALE) {
3585                         if (flags & LOOKUP_RCU)
3586                                 error = -ECHILD;
3587                         else
3588                                 error = -ESTALE;
3589                 }
3590                 file = ERR_PTR(error);
3591         }
3592         return file;
3593 }
3594
3595 struct file *do_filp_open(int dfd, struct filename *pathname,
3596                 const struct open_flags *op)
3597 {
3598         struct nameidata nd;
3599         int flags = op->lookup_flags;
3600         struct file *filp;
3601
3602         set_nameidata(&nd, dfd, pathname);
3603         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3604         if (unlikely(filp == ERR_PTR(-ECHILD)))
3605                 filp = path_openat(&nd, op, flags);
3606         if (unlikely(filp == ERR_PTR(-ESTALE)))
3607                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3608         restore_nameidata();
3609         return filp;
3610 }
3611
3612 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3613                 const char *name, const struct open_flags *op)
3614 {
3615         struct nameidata nd;
3616         struct file *file;
3617         struct filename *filename;
3618         int flags = op->lookup_flags | LOOKUP_ROOT;
3619
3620         nd.root.mnt = mnt;
3621         nd.root.dentry = dentry;
3622
3623         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3624                 return ERR_PTR(-ELOOP);
3625
3626         filename = getname_kernel(name);
3627         if (IS_ERR(filename))
3628                 return ERR_CAST(filename);
3629
3630         set_nameidata(&nd, -1, filename);
3631         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3632         if (unlikely(file == ERR_PTR(-ECHILD)))
3633                 file = path_openat(&nd, op, flags);
3634         if (unlikely(file == ERR_PTR(-ESTALE)))
3635                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3636         restore_nameidata();
3637         putname(filename);
3638         return file;
3639 }
3640
3641 static struct dentry *filename_create(int dfd, struct filename *name,
3642                                 struct path *path, unsigned int lookup_flags)
3643 {
3644         struct dentry *dentry = ERR_PTR(-EEXIST);
3645         struct qstr last;
3646         int type;
3647         int err2;
3648         int error;
3649         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3650
3651         /*
3652          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3653          * other flags passed in are ignored!
3654          */
3655         lookup_flags &= LOOKUP_REVAL;
3656
3657         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3658         if (IS_ERR(name))
3659                 return ERR_CAST(name);
3660
3661         /*
3662          * Yucky last component or no last component at all?
3663          * (foo/., foo/.., /////)
3664          */
3665         if (unlikely(type != LAST_NORM))
3666                 goto out;
3667
3668         /* don't fail immediately if it's r/o, at least try to report other errors */
3669         err2 = mnt_want_write(path->mnt);
3670         /*
3671          * Do the final lookup.
3672          */
3673         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3674         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3675         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3676         if (IS_ERR(dentry))
3677                 goto unlock;
3678
3679         error = -EEXIST;
3680         if (d_is_positive(dentry))
3681                 goto fail;
3682
3683         /*
3684          * Special case - lookup gave negative, but... we had foo/bar/
3685          * From the vfs_mknod() POV we just have a negative dentry -
3686          * all is fine. Let's be bastards - you had / on the end, you've
3687          * been asking for (non-existent) directory. -ENOENT for you.
3688          */
3689         if (unlikely(!is_dir && last.name[last.len])) {
3690                 error = -ENOENT;
3691                 goto fail;
3692         }
3693         if (unlikely(err2)) {
3694                 error = err2;
3695                 goto fail;
3696         }
3697         putname(name);
3698         return dentry;
3699 fail:
3700         dput(dentry);
3701         dentry = ERR_PTR(error);
3702 unlock:
3703         inode_unlock(path->dentry->d_inode);
3704         if (!err2)
3705                 mnt_drop_write(path->mnt);
3706 out:
3707         path_put(path);
3708         putname(name);
3709         return dentry;
3710 }
3711
3712 struct dentry *kern_path_create(int dfd, const char *pathname,
3713                                 struct path *path, unsigned int lookup_flags)
3714 {
3715         return filename_create(dfd, getname_kernel(pathname),
3716                                 path, lookup_flags);
3717 }
3718 EXPORT_SYMBOL(kern_path_create);
3719
3720 void done_path_create(struct path *path, struct dentry *dentry)
3721 {
3722         dput(dentry);
3723         inode_unlock(path->dentry->d_inode);
3724         mnt_drop_write(path->mnt);
3725         path_put(path);
3726 }
3727 EXPORT_SYMBOL(done_path_create);
3728
3729 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3730                                 struct path *path, unsigned int lookup_flags)
3731 {
3732         return filename_create(dfd, getname(pathname), path, lookup_flags);
3733 }
3734 EXPORT_SYMBOL(user_path_create);
3735
3736 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3737 {
3738         int error = may_create(dir, dentry);
3739
3740         if (error)
3741                 return error;
3742
3743         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3744                 return -EPERM;
3745
3746         if (!dir->i_op->mknod)
3747                 return -EPERM;
3748
3749         error = devcgroup_inode_mknod(mode, dev);
3750         if (error)
3751                 return error;
3752
3753         error = security_inode_mknod(dir, dentry, mode, dev);
3754         if (error)
3755                 return error;
3756
3757         error = dir->i_op->mknod(dir, dentry, mode, dev);
3758         if (!error)
3759                 fsnotify_create(dir, dentry);
3760         return error;
3761 }
3762 EXPORT_SYMBOL(vfs_mknod);
3763
3764 static int may_mknod(umode_t mode)
3765 {
3766         switch (mode & S_IFMT) {
3767         case S_IFREG:
3768         case S_IFCHR:
3769         case S_IFBLK:
3770         case S_IFIFO:
3771         case S_IFSOCK:
3772         case 0: /* zero mode translates to S_IFREG */
3773                 return 0;
3774         case S_IFDIR:
3775                 return -EPERM;
3776         default:
3777                 return -EINVAL;
3778         }
3779 }
3780
3781 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3782                 unsigned, dev)
3783 {
3784         struct dentry *dentry;
3785         struct path path;
3786         int error;
3787         unsigned int lookup_flags = 0;
3788
3789         error = may_mknod(mode);
3790         if (error)
3791                 return error;
3792 retry:
3793         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3794         if (IS_ERR(dentry))
3795                 return PTR_ERR(dentry);
3796
3797         if (!IS_POSIXACL(path.dentry->d_inode))
3798                 mode &= ~current_umask();
3799         error = security_path_mknod(&path, dentry, mode, dev);
3800         if (error)
3801                 goto out;
3802         switch (mode & S_IFMT) {
3803                 case 0: case S_IFREG:
3804                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3805                         if (!error)
3806                                 ima_post_path_mknod(dentry);
3807                         break;
3808                 case S_IFCHR: case S_IFBLK:
3809                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3810                                         new_decode_dev(dev));
3811                         break;
3812                 case S_IFIFO: case S_IFSOCK:
3813                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3814                         break;
3815         }
3816 out:
3817         done_path_create(&path, dentry);
3818         if (retry_estale(error, lookup_flags)) {
3819                 lookup_flags |= LOOKUP_REVAL;
3820                 goto retry;
3821         }
3822         return error;
3823 }
3824
3825 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3826 {
3827         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3828 }
3829
3830 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3831 {
3832         int error = may_create(dir, dentry);
3833         unsigned max_links = dir->i_sb->s_max_links;
3834
3835         if (error)
3836                 return error;
3837
3838         if (!dir->i_op->mkdir)
3839                 return -EPERM;
3840
3841         mode &= (S_IRWXUGO|S_ISVTX);
3842         error = security_inode_mkdir(dir, dentry, mode);
3843         if (error)
3844                 return error;
3845
3846         if (max_links && dir->i_nlink >= max_links)
3847                 return -EMLINK;
3848
3849         error = dir->i_op->mkdir(dir, dentry, mode);
3850         if (!error)
3851                 fsnotify_mkdir(dir, dentry);
3852         return error;
3853 }
3854 EXPORT_SYMBOL(vfs_mkdir);
3855
3856 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3857 {
3858         struct dentry *dentry;
3859         struct path path;
3860         int error;
3861         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3862
3863 retry:
3864         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3865         if (IS_ERR(dentry))
3866                 return PTR_ERR(dentry);
3867
3868         if (!IS_POSIXACL(path.dentry->d_inode))
3869                 mode &= ~current_umask();
3870         error = security_path_mkdir(&path, dentry, mode);
3871         if (!error)
3872                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3873         done_path_create(&path, dentry);
3874         if (retry_estale(error, lookup_flags)) {
3875                 lookup_flags |= LOOKUP_REVAL;
3876                 goto retry;
3877         }
3878         return error;
3879 }
3880
3881 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3882 {
3883         return sys_mkdirat(AT_FDCWD, pathname, mode);
3884 }
3885
3886 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3887 {
3888         int error = may_delete(dir, dentry, 1);
3889
3890         if (error)
3891                 return error;
3892
3893         if (!dir->i_op->rmdir)
3894                 return -EPERM;
3895
3896         dget(dentry);
3897         inode_lock(dentry->d_inode);
3898
3899         error = -EBUSY;
3900         if (is_local_mountpoint(dentry))
3901                 goto out;
3902
3903         error = security_inode_rmdir(dir, dentry);
3904         if (error)
3905                 goto out;
3906
3907         shrink_dcache_parent(dentry);
3908         error = dir->i_op->rmdir(dir, dentry);
3909         if (error)
3910                 goto out;
3911
3912         dentry->d_inode->i_flags |= S_DEAD;
3913         dont_mount(dentry);
3914         detach_mounts(dentry);
3915
3916 out:
3917         inode_unlock(dentry->d_inode);
3918         dput(dentry);
3919         if (!error)
3920                 d_delete(dentry);
3921         return error;
3922 }
3923 EXPORT_SYMBOL(vfs_rmdir);
3924
3925 static long do_rmdir(int dfd, const char __user *pathname)
3926 {
3927         int error = 0;
3928         struct filename *name;
3929         struct dentry *dentry;
3930         struct path path;
3931         struct qstr last;
3932         int type;
3933         unsigned int lookup_flags = 0;
3934 retry:
3935         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3936                                 &path, &last, &type);
3937         if (IS_ERR(name))
3938                 return PTR_ERR(name);
3939
3940         switch (type) {
3941         case LAST_DOTDOT:
3942                 error = -ENOTEMPTY;
3943                 goto exit1;
3944         case LAST_DOT:
3945                 error = -EINVAL;
3946                 goto exit1;
3947         case LAST_ROOT:
3948                 error = -EBUSY;
3949                 goto exit1;
3950         }
3951
3952         error = mnt_want_write(path.mnt);
3953         if (error)
3954                 goto exit1;
3955
3956         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3957         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3958         error = PTR_ERR(dentry);
3959         if (IS_ERR(dentry))
3960                 goto exit2;
3961         if (!dentry->d_inode) {
3962                 error = -ENOENT;
3963                 goto exit3;
3964         }
3965         error = security_path_rmdir(&path, dentry);
3966         if (error)
3967                 goto exit3;
3968         error = vfs_rmdir(path.dentry->d_inode, dentry);
3969 exit3:
3970         dput(dentry);
3971 exit2:
3972         inode_unlock(path.dentry->d_inode);
3973         mnt_drop_write(path.mnt);
3974 exit1:
3975         path_put(&path);
3976         putname(name);
3977         if (retry_estale(error, lookup_flags)) {
3978                 lookup_flags |= LOOKUP_REVAL;
3979                 goto retry;
3980         }
3981         return error;
3982 }
3983
3984 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3985 {
3986         return do_rmdir(AT_FDCWD, pathname);
3987 }
3988
3989 /**
3990  * vfs_unlink - unlink a filesystem object
3991  * @dir:        parent directory
3992  * @dentry:     victim
3993  * @delegated_inode: returns victim inode, if the inode is delegated.
3994  *
3995  * The caller must hold dir->i_mutex.
3996  *
3997  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3998  * return a reference to the inode in delegated_inode.  The caller
3999  * should then break the delegation on that inode and retry.  Because
4000  * breaking a delegation may take a long time, the caller should drop
4001  * dir->i_mutex before doing so.
4002  *
4003  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4004  * be appropriate for callers that expect the underlying filesystem not
4005  * to be NFS exported.
4006  */
4007 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4008 {
4009         struct inode *target = dentry->d_inode;
4010         int error = may_delete(dir, dentry, 0);
4011
4012         if (error)
4013                 return error;
4014
4015         if (!dir->i_op->unlink)
4016                 return -EPERM;
4017
4018         inode_lock(target);
4019         if (is_local_mountpoint(dentry))
4020                 error = -EBUSY;
4021         else {
4022                 error = security_inode_unlink(dir, dentry);
4023                 if (!error) {
4024                         error = try_break_deleg(target, delegated_inode);
4025                         if (error)
4026                                 goto out;
4027                         error = dir->i_op->unlink(dir, dentry);
4028                         if (!error) {
4029                                 dont_mount(dentry);
4030                                 detach_mounts(dentry);
4031                         }
4032                 }
4033         }
4034 out:
4035         inode_unlock(target);
4036
4037         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4038         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4039                 fsnotify_link_count(target);
4040                 d_delete(dentry);
4041         }
4042
4043         return error;
4044 }
4045 EXPORT_SYMBOL(vfs_unlink);
4046
4047 /*
4048  * Make sure that the actual truncation of the file will occur outside its
4049  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4050  * writeout happening, and we don't want to prevent access to the directory
4051  * while waiting on the I/O.
4052  */
4053 static long do_unlinkat(int dfd, const char __user *pathname)
4054 {
4055         int error;
4056         struct filename *name;
4057         struct dentry *dentry;
4058         struct path path;
4059         struct qstr last;
4060         int type;
4061         struct inode *inode = NULL;
4062         struct inode *delegated_inode = NULL;
4063         unsigned int lookup_flags = 0;
4064 retry:
4065         name = filename_parentat(dfd, getname(pathname), lookup_flags,
4066                                 &path, &last, &type);
4067         if (IS_ERR(name))
4068                 return PTR_ERR(name);
4069
4070         error = -EISDIR;
4071         if (type != LAST_NORM)
4072                 goto exit1;
4073
4074         error = mnt_want_write(path.mnt);
4075         if (error)
4076                 goto exit1;
4077 retry_deleg:
4078         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4079         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4080         error = PTR_ERR(dentry);
4081         if (!IS_ERR(dentry)) {
4082                 /* Why not before? Because we want correct error value */
4083                 if (last.name[last.len])
4084                         goto slashes;
4085                 inode = dentry->d_inode;
4086                 if (d_is_negative(dentry))
4087                         goto slashes;
4088                 ihold(inode);
4089                 error = security_path_unlink(&path, dentry);
4090                 if (error)
4091                         goto exit2;
4092                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4093 exit2:
4094                 dput(dentry);
4095         }
4096         inode_unlock(path.dentry->d_inode);
4097         if (inode)
4098                 iput(inode);    /* truncate the inode here */
4099         inode = NULL;
4100         if (delegated_inode) {
4101                 error = break_deleg_wait(&delegated_inode);
4102                 if (!error)
4103                         goto retry_deleg;
4104         }
4105         mnt_drop_write(path.mnt);
4106 exit1:
4107         path_put(&path);
4108         putname(name);
4109         if (retry_estale(error, lookup_flags)) {
4110                 lookup_flags |= LOOKUP_REVAL;
4111                 inode = NULL;
4112                 goto retry;
4113         }
4114         return error;
4115
4116 slashes:
4117         if (d_is_negative(dentry))
4118                 error = -ENOENT;
4119         else if (d_is_dir(dentry))
4120                 error = -EISDIR;
4121         else
4122                 error = -ENOTDIR;
4123         goto exit2;
4124 }
4125
4126 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4127 {
4128         if ((flag & ~AT_REMOVEDIR) != 0)
4129                 return -EINVAL;
4130
4131         if (flag & AT_REMOVEDIR)
4132                 return do_rmdir(dfd, pathname);
4133
4134         return do_unlinkat(dfd, pathname);
4135 }
4136
4137 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4138 {
4139         return do_unlinkat(AT_FDCWD, pathname);
4140 }
4141
4142 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4143 {
4144         int error = may_create(dir, dentry);
4145
4146         if (error)
4147                 return error;
4148
4149         if (!dir->i_op->symlink)
4150                 return -EPERM;
4151
4152         error = security_inode_symlink(dir, dentry, oldname);
4153         if (error)
4154                 return error;
4155
4156         error = dir->i_op->symlink(dir, dentry, oldname);
4157         if (!error)
4158                 fsnotify_create(dir, dentry);
4159         return error;
4160 }
4161 EXPORT_SYMBOL(vfs_symlink);
4162
4163 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4164                 int, newdfd, const char __user *, newname)
4165 {
4166         int error;
4167         struct filename *from;
4168         struct dentry *dentry;
4169         struct path path;
4170         unsigned int lookup_flags = 0;
4171
4172         from = getname(oldname);
4173         if (IS_ERR(from))
4174                 return PTR_ERR(from);
4175 retry:
4176         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4177         error = PTR_ERR(dentry);
4178         if (IS_ERR(dentry))
4179                 goto out_putname;
4180
4181         error = security_path_symlink(&path, dentry, from->name);
4182         if (!error)
4183                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4184         done_path_create(&path, dentry);
4185         if (retry_estale(error, lookup_flags)) {
4186                 lookup_flags |= LOOKUP_REVAL;
4187                 goto retry;
4188         }
4189 out_putname:
4190         putname(from);
4191         return error;
4192 }
4193
4194 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4195 {
4196         return sys_symlinkat(oldname, AT_FDCWD, newname);
4197 }
4198
4199 /**
4200  * vfs_link - create a new link
4201  * @old_dentry: object to be linked
4202  * @dir:        new parent
4203  * @new_dentry: where to create the new link
4204  * @delegated_inode: returns inode needing a delegation break
4205  *
4206  * The caller must hold dir->i_mutex
4207  *
4208  * If vfs_link discovers a delegation on the to-be-linked file in need
4209  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4210  * inode in delegated_inode.  The caller should then break the delegation
4211  * and retry.  Because breaking a delegation may take a long time, the
4212  * caller should drop the i_mutex before doing so.
4213  *
4214  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4215  * be appropriate for callers that expect the underlying filesystem not
4216  * to be NFS exported.
4217  */
4218 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4219 {
4220         struct inode *inode = old_dentry->d_inode;
4221         unsigned max_links = dir->i_sb->s_max_links;
4222         int error;
4223
4224         if (!inode)
4225                 return -ENOENT;
4226
4227         error = may_create(dir, new_dentry);
4228         if (error)
4229                 return error;
4230
4231         if (dir->i_sb != inode->i_sb)
4232                 return -EXDEV;
4233
4234         /*
4235          * A link to an append-only or immutable file cannot be created.
4236          */
4237         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4238                 return -EPERM;
4239         /*
4240          * Updating the link count will likely cause i_uid and i_gid to
4241          * be writen back improperly if their true value is unknown to
4242          * the vfs.
4243          */
4244         if (HAS_UNMAPPED_ID(inode))
4245                 return -EPERM;
4246         if (!dir->i_op->link)
4247                 return -EPERM;
4248         if (S_ISDIR(inode->i_mode))
4249                 return -EPERM;
4250
4251         error = security_inode_link(old_dentry, dir, new_dentry);
4252         if (error)
4253                 return error;
4254
4255         inode_lock(inode);
4256         /* Make sure we don't allow creating hardlink to an unlinked file */
4257         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4258                 error =  -ENOENT;
4259         else if (max_links && inode->i_nlink >= max_links)
4260                 error = -EMLINK;
4261         else {
4262                 error = try_break_deleg(inode, delegated_inode);
4263                 if (!error)
4264                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4265         }
4266
4267         if (!error && (inode->i_state & I_LINKABLE)) {
4268                 spin_lock(&inode->i_lock);
4269                 inode->i_state &= ~I_LINKABLE;
4270                 spin_unlock(&inode->i_lock);
4271         }
4272         inode_unlock(inode);
4273         if (!error)
4274                 fsnotify_link(dir, inode, new_dentry);
4275         return error;
4276 }
4277 EXPORT_SYMBOL(vfs_link);
4278
4279 /*
4280  * Hardlinks are often used in delicate situations.  We avoid
4281  * security-related surprises by not following symlinks on the
4282  * newname.  --KAB
4283  *
4284  * We don't follow them on the oldname either to be compatible
4285  * with linux 2.0, and to avoid hard-linking to directories
4286  * and other special files.  --ADM
4287  */
4288 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4289                 int, newdfd, const char __user *, newname, int, flags)
4290 {
4291         struct dentry *new_dentry;
4292         struct path old_path, new_path;
4293         struct inode *delegated_inode = NULL;
4294         int how = 0;
4295         int error;
4296
4297         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4298                 return -EINVAL;
4299         /*
4300          * To use null names we require CAP_DAC_READ_SEARCH
4301          * This ensures that not everyone will be able to create
4302          * handlink using the passed filedescriptor.
4303          */
4304         if (flags & AT_EMPTY_PATH) {
4305                 if (!capable(CAP_DAC_READ_SEARCH))
4306                         return -ENOENT;
4307                 how = LOOKUP_EMPTY;
4308         }
4309
4310         if (flags & AT_SYMLINK_FOLLOW)
4311                 how |= LOOKUP_FOLLOW;
4312 retry:
4313         error = user_path_at(olddfd, oldname, how, &old_path);
4314         if (error)
4315                 return error;
4316
4317         new_dentry = user_path_create(newdfd, newname, &new_path,
4318                                         (how & LOOKUP_REVAL));
4319         error = PTR_ERR(new_dentry);
4320         if (IS_ERR(new_dentry))
4321                 goto out;
4322
4323         error = -EXDEV;
4324         if (old_path.mnt != new_path.mnt)
4325                 goto out_dput;
4326         error = may_linkat(&old_path);
4327         if (unlikely(error))
4328                 goto out_dput;
4329         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4330         if (error)
4331                 goto out_dput;
4332         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4333 out_dput:
4334         done_path_create(&new_path, new_dentry);
4335         if (delegated_inode) {
4336                 error = break_deleg_wait(&delegated_inode);
4337                 if (!error) {
4338                         path_put(&old_path);
4339                         goto retry;
4340                 }
4341         }
4342         if (retry_estale(error, how)) {
4343                 path_put(&old_path);
4344                 how |= LOOKUP_REVAL;
4345                 goto retry;
4346         }
4347 out:
4348         path_put(&old_path);
4349
4350         return error;
4351 }
4352
4353 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4354 {
4355         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4356 }
4357
4358 /**
4359  * vfs_rename - rename a filesystem object
4360  * @old_dir:    parent of source
4361  * @old_dentry: source
4362  * @new_dir:    parent of destination
4363  * @new_dentry: destination
4364  * @delegated_inode: returns an inode needing a delegation break
4365  * @flags:      rename flags
4366  *
4367  * The caller must hold multiple mutexes--see lock_rename()).
4368  *
4369  * If vfs_rename discovers a delegation in need of breaking at either
4370  * the source or destination, it will return -EWOULDBLOCK and return a
4371  * reference to the inode in delegated_inode.  The caller should then
4372  * break the delegation and retry.  Because breaking a delegation may
4373  * take a long time, the caller should drop all locks before doing
4374  * so.
4375  *
4376  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4377  * be appropriate for callers that expect the underlying filesystem not
4378  * to be NFS exported.
4379  *
4380  * The worst of all namespace operations - renaming directory. "Perverted"
4381  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4382  * Problems:
4383  *
4384  *      a) we can get into loop creation.
4385  *      b) race potential - two innocent renames can create a loop together.
4386  *         That's where 4.4 screws up. Current fix: serialization on
4387  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4388  *         story.
4389  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4390  *         and source (if it is not a directory).
4391  *         And that - after we got ->i_mutex on parents (until then we don't know
4392  *         whether the target exists).  Solution: try to be smart with locking
4393  *         order for inodes.  We rely on the fact that tree topology may change
4394  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4395  *         move will be locked.  Thus we can rank directories by the tree
4396  *         (ancestors first) and rank all non-directories after them.
4397  *         That works since everybody except rename does "lock parent, lookup,
4398  *         lock child" and rename is under ->s_vfs_rename_mutex.
4399  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4400  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4401  *         we'd better make sure that there's no link(2) for them.
4402  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4403  *         we are removing the target. Solution: we will have to grab ->i_mutex
4404  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4405  *         ->i_mutex on parents, which works but leads to some truly excessive
4406  *         locking].
4407  */
4408 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4409                struct inode *new_dir, struct dentry *new_dentry,
4410                struct inode **delegated_inode, unsigned int flags)
4411 {
4412         int error;
4413         bool is_dir = d_is_dir(old_dentry);
4414         struct inode *source = old_dentry->d_inode;
4415         struct inode *target = new_dentry->d_inode;
4416         bool new_is_dir = false;
4417         unsigned max_links = new_dir->i_sb->s_max_links;
4418         struct name_snapshot old_name;
4419
4420         if (source == target)
4421                 return 0;
4422
4423         error = may_delete(old_dir, old_dentry, is_dir);
4424         if (error)
4425                 return error;
4426
4427         if (!target) {
4428                 error = may_create(new_dir, new_dentry);
4429         } else {
4430                 new_is_dir = d_is_dir(new_dentry);
4431
4432                 if (!(flags & RENAME_EXCHANGE))
4433                         error = may_delete(new_dir, new_dentry, is_dir);
4434                 else
4435                         error = may_delete(new_dir, new_dentry, new_is_dir);
4436         }
4437         if (error)
4438                 return error;
4439
4440         if (!old_dir->i_op->rename)
4441                 return -EPERM;
4442
4443         /*
4444          * If we are going to change the parent - check write permissions,
4445          * we'll need to flip '..'.
4446          */
4447         if (new_dir != old_dir) {
4448                 if (is_dir) {
4449                         error = inode_permission(source, MAY_WRITE);
4450                         if (error)
4451                                 return error;
4452                 }
4453                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4454                         error = inode_permission(target, MAY_WRITE);
4455                         if (error)
4456                                 return error;
4457                 }
4458         }
4459
4460         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4461                                       flags);
4462         if (error)
4463                 return error;
4464
4465         take_dentry_name_snapshot(&old_name, old_dentry);
4466         dget(new_dentry);
4467         if (!is_dir || (flags & RENAME_EXCHANGE))
4468                 lock_two_nondirectories(source, target);
4469         else if (target)
4470                 inode_lock(target);
4471
4472         error = -EBUSY;
4473         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4474                 goto out;
4475
4476         if (max_links && new_dir != old_dir) {
4477                 error = -EMLINK;
4478                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4479                         goto out;
4480                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4481                     old_dir->i_nlink >= max_links)
4482                         goto out;
4483         }
4484         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4485                 shrink_dcache_parent(new_dentry);
4486         if (!is_dir) {
4487                 error = try_break_deleg(source, delegated_inode);
4488                 if (error)
4489                         goto out;
4490         }
4491         if (target && !new_is_dir) {
4492                 error = try_break_deleg(target, delegated_inode);
4493                 if (error)
4494                         goto out;
4495         }
4496         error = old_dir->i_op->rename(old_dir, old_dentry,
4497                                        new_dir, new_dentry, flags);
4498         if (error)
4499                 goto out;
4500
4501         if (!(flags & RENAME_EXCHANGE) && target) {
4502                 if (is_dir)
4503                         target->i_flags |= S_DEAD;
4504                 dont_mount(new_dentry);
4505                 detach_mounts(new_dentry);
4506         }
4507         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4508                 if (!(flags & RENAME_EXCHANGE))
4509                         d_move(old_dentry, new_dentry);
4510                 else
4511                         d_exchange(old_dentry, new_dentry);
4512         }
4513 out:
4514         if (!is_dir || (flags & RENAME_EXCHANGE))
4515                 unlock_two_nondirectories(source, target);
4516         else if (target)
4517                 inode_unlock(target);
4518         dput(new_dentry);
4519         if (!error) {
4520                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4521                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4522                 if (flags & RENAME_EXCHANGE) {
4523                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4524                                       new_is_dir, NULL, new_dentry);
4525                 }
4526         }
4527         release_dentry_name_snapshot(&old_name);
4528
4529         return error;
4530 }
4531 EXPORT_SYMBOL(vfs_rename);
4532
4533 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4534                 int, newdfd, const char __user *, newname, unsigned int, flags)
4535 {
4536         struct dentry *old_dentry, *new_dentry;
4537         struct dentry *trap;
4538         struct path old_path, new_path;
4539         struct qstr old_last, new_last;
4540         int old_type, new_type;
4541         struct inode *delegated_inode = NULL;
4542         struct filename *from;
4543         struct filename *to;
4544         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4545         bool should_retry = false;
4546         int error;
4547
4548         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4549                 return -EINVAL;
4550
4551         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4552             (flags & RENAME_EXCHANGE))
4553                 return -EINVAL;
4554
4555         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4556                 return -EPERM;
4557
4558         if (flags & RENAME_EXCHANGE)
4559                 target_flags = 0;
4560
4561 retry:
4562         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4563                                 &old_path, &old_last, &old_type);
4564         if (IS_ERR(from)) {
4565                 error = PTR_ERR(from);
4566                 goto exit;
4567         }
4568
4569         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4570                                 &new_path, &new_last, &new_type);
4571         if (IS_ERR(to)) {
4572                 error = PTR_ERR(to);
4573                 goto exit1;
4574         }
4575
4576         error = -EXDEV;
4577         if (old_path.mnt != new_path.mnt)
4578                 goto exit2;
4579
4580         error = -EBUSY;
4581         if (old_type != LAST_NORM)
4582                 goto exit2;
4583
4584         if (flags & RENAME_NOREPLACE)
4585                 error = -EEXIST;
4586         if (new_type != LAST_NORM)
4587                 goto exit2;
4588
4589         error = mnt_want_write(old_path.mnt);
4590         if (error)
4591                 goto exit2;
4592
4593 retry_deleg:
4594         trap = lock_rename(new_path.dentry, old_path.dentry);
4595
4596         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4597         error = PTR_ERR(old_dentry);
4598         if (IS_ERR(old_dentry))
4599                 goto exit3;
4600         /* source must exist */
4601         error = -ENOENT;
4602         if (d_is_negative(old_dentry))
4603                 goto exit4;
4604         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4605         error = PTR_ERR(new_dentry);
4606         if (IS_ERR(new_dentry))
4607                 goto exit4;
4608         error = -EEXIST;
4609         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4610                 goto exit5;
4611         if (flags & RENAME_EXCHANGE) {
4612                 error = -ENOENT;
4613                 if (d_is_negative(new_dentry))
4614                         goto exit5;
4615
4616                 if (!d_is_dir(new_dentry)) {
4617                         error = -ENOTDIR;
4618                         if (new_last.name[new_last.len])
4619                                 goto exit5;
4620                 }
4621         }
4622         /* unless the source is a directory trailing slashes give -ENOTDIR */
4623         if (!d_is_dir(old_dentry)) {
4624                 error = -ENOTDIR;
4625                 if (old_last.name[old_last.len])
4626                         goto exit5;
4627                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4628                         goto exit5;
4629         }
4630         /* source should not be ancestor of target */
4631         error = -EINVAL;
4632         if (old_dentry == trap)
4633                 goto exit5;
4634         /* target should not be an ancestor of source */
4635         if (!(flags & RENAME_EXCHANGE))
4636                 error = -ENOTEMPTY;
4637         if (new_dentry == trap)
4638                 goto exit5;
4639
4640         error = security_path_rename(&old_path, old_dentry,
4641                                      &new_path, new_dentry, flags);
4642         if (error)
4643                 goto exit5;
4644         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4645                            new_path.dentry->d_inode, new_dentry,
4646                            &delegated_inode, flags);
4647 exit5:
4648         dput(new_dentry);
4649 exit4:
4650         dput(old_dentry);
4651 exit3:
4652         unlock_rename(new_path.dentry, old_path.dentry);
4653         if (delegated_inode) {
4654                 error = break_deleg_wait(&delegated_inode);
4655                 if (!error)
4656                         goto retry_deleg;
4657         }
4658         mnt_drop_write(old_path.mnt);
4659 exit2:
4660         if (retry_estale(error, lookup_flags))
4661                 should_retry = true;
4662         path_put(&new_path);
4663         putname(to);
4664 exit1:
4665         path_put(&old_path);
4666         putname(from);
4667         if (should_retry) {
4668                 should_retry = false;
4669                 lookup_flags |= LOOKUP_REVAL;
4670                 goto retry;
4671         }
4672 exit:
4673         return error;
4674 }
4675
4676 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4677                 int, newdfd, const char __user *, newname)
4678 {
4679         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4680 }
4681
4682 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4683 {
4684         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4685 }
4686
4687 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4688 {
4689         int error = may_create(dir, dentry);
4690         if (error)
4691                 return error;
4692
4693         if (!dir->i_op->mknod)
4694                 return -EPERM;
4695
4696         return dir->i_op->mknod(dir, dentry,
4697                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4698 }
4699 EXPORT_SYMBOL(vfs_whiteout);
4700
4701 int readlink_copy(char __user *buffer, int buflen, const char *link)
4702 {
4703         int len = PTR_ERR(link);
4704         if (IS_ERR(link))
4705                 goto out;
4706
4707         len = strlen(link);
4708         if (len > (unsigned) buflen)
4709                 len = buflen;
4710         if (copy_to_user(buffer, link, len))
4711                 len = -EFAULT;
4712 out:
4713         return len;
4714 }
4715
4716 /*
4717  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4718  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4719  * for any given inode is up to filesystem.
4720  */
4721 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4722                             int buflen)
4723 {
4724         DEFINE_DELAYED_CALL(done);
4725         struct inode *inode = d_inode(dentry);
4726         const char *link = inode->i_link;
4727         int res;
4728
4729         if (!link) {
4730                 link = inode->i_op->get_link(dentry, inode, &done);
4731                 if (IS_ERR(link))
4732                         return PTR_ERR(link);
4733         }
4734         res = readlink_copy(buffer, buflen, link);
4735         do_delayed_call(&done);
4736         return res;
4737 }
4738
4739 /**
4740  * vfs_readlink - copy symlink body into userspace buffer
4741  * @dentry: dentry on which to get symbolic link
4742  * @buffer: user memory pointer
4743  * @buflen: size of buffer
4744  *
4745  * Does not touch atime.  That's up to the caller if necessary
4746  *
4747  * Does not call security hook.
4748  */
4749 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4750 {
4751         struct inode *inode = d_inode(dentry);
4752
4753         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4754                 if (unlikely(inode->i_op->readlink))
4755                         return inode->i_op->readlink(dentry, buffer, buflen);
4756
4757                 if (!d_is_symlink(dentry))
4758                         return -EINVAL;
4759
4760                 spin_lock(&inode->i_lock);
4761                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4762                 spin_unlock(&inode->i_lock);
4763         }
4764
4765         return generic_readlink(dentry, buffer, buflen);
4766 }
4767 EXPORT_SYMBOL(vfs_readlink);
4768
4769 /**
4770  * vfs_get_link - get symlink body
4771  * @dentry: dentry on which to get symbolic link
4772  * @done: caller needs to free returned data with this
4773  *
4774  * Calls security hook and i_op->get_link() on the supplied inode.
4775  *
4776  * It does not touch atime.  That's up to the caller if necessary.
4777  *
4778  * Does not work on "special" symlinks like /proc/$$/fd/N
4779  */
4780 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4781 {
4782         const char *res = ERR_PTR(-EINVAL);
4783         struct inode *inode = d_inode(dentry);
4784
4785         if (d_is_symlink(dentry)) {
4786                 res = ERR_PTR(security_inode_readlink(dentry));
4787                 if (!res)
4788                         res = inode->i_op->get_link(dentry, inode, done);
4789         }
4790         return res;
4791 }
4792 EXPORT_SYMBOL(vfs_get_link);
4793
4794 /* get the link contents into pagecache */
4795 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4796                           struct delayed_call *callback)
4797 {
4798         char *kaddr;
4799         struct page *page;
4800         struct address_space *mapping = inode->i_mapping;
4801
4802         if (!dentry) {
4803                 page = find_get_page(mapping, 0);
4804                 if (!page)
4805                         return ERR_PTR(-ECHILD);
4806                 if (!PageUptodate(page)) {
4807                         put_page(page);
4808                         return ERR_PTR(-ECHILD);
4809                 }
4810         } else {
4811                 page = read_mapping_page(mapping, 0, NULL);
4812                 if (IS_ERR(page))
4813                         return (char*)page;
4814         }
4815         set_delayed_call(callback, page_put_link, page);
4816         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4817         kaddr = page_address(page);
4818         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4819         return kaddr;
4820 }
4821
4822 EXPORT_SYMBOL(page_get_link);
4823
4824 void page_put_link(void *arg)
4825 {
4826         put_page(arg);
4827 }
4828 EXPORT_SYMBOL(page_put_link);
4829
4830 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4831 {
4832         DEFINE_DELAYED_CALL(done);
4833         int res = readlink_copy(buffer, buflen,
4834                                 page_get_link(dentry, d_inode(dentry),
4835                                               &done));
4836         do_delayed_call(&done);
4837         return res;
4838 }
4839 EXPORT_SYMBOL(page_readlink);
4840
4841 /*
4842  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4843  */
4844 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4845 {
4846         struct address_space *mapping = inode->i_mapping;
4847         struct page *page;
4848         void *fsdata;
4849         int err;
4850         unsigned int flags = 0;
4851         if (nofs)
4852                 flags |= AOP_FLAG_NOFS;
4853
4854 retry:
4855         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4856                                 flags, &page, &fsdata);
4857         if (err)
4858                 goto fail;
4859
4860         memcpy(page_address(page), symname, len-1);
4861
4862         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4863                                                         page, fsdata);
4864         if (err < 0)
4865                 goto fail;
4866         if (err < len-1)
4867                 goto retry;
4868
4869         mark_inode_dirty(inode);
4870         return 0;
4871 fail:
4872         return err;
4873 }
4874 EXPORT_SYMBOL(__page_symlink);
4875
4876 int page_symlink(struct inode *inode, const char *symname, int len)
4877 {
4878         return __page_symlink(inode, symname, len,
4879                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4880 }
4881 EXPORT_SYMBOL(page_symlink);
4882
4883 const struct inode_operations page_symlink_inode_operations = {
4884         .get_link       = page_get_link,
4885 };
4886 EXPORT_SYMBOL(page_symlink_inode_operations);