2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
11 #include <linux/sched.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
28 static bool kernfs_active(struct kernfs_node *kn)
30 lockdep_assert_held(&kernfs_mutex);
31 return atomic_read(&kn->active) >= 0;
34 static bool kernfs_lockdep(struct kernfs_node *kn)
36 #ifdef CONFIG_DEBUG_LOCK_ALLOC
37 return kn->flags & KERNFS_LOCKDEP;
43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
46 return strlcpy(buf, "(null)", buflen);
48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
51 /* kernfs_node_depth - compute depth from @from to @to */
52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
56 while (to->parent && to != from) {
63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 struct kernfs_node *b)
67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
72 da = kernfs_depth(ra->kn, a);
73 db = kernfs_depth(rb->kn, b);
84 /* worst case b and a will be the same at root */
94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95 * where kn_from is treated as root of the path.
96 * @kn_from: kernfs node which should be treated as root for the path
97 * @kn_to: kernfs node to which path is needed
98 * @buf: buffer to copy the path into
99 * @buflen: size of @buf
101 * We need to handle couple of scenarios here:
102 * [1] when @kn_from is an ancestor of @kn_to at some level
104 * kn_to: /n1/n2/n3/n4/n5
107 * [2] when @kn_from is on a different hierarchy and we need to find common
108 * ancestor between @kn_from and @kn_to.
109 * kn_from: /n1/n2/n3/n4
113 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
114 * kn_to: /n1/n2/n3 [depth=3]
117 * [3] when @kn_to is NULL result will be "(null)"
119 * Returns the length of the full path. If the full length is equal to or
120 * greater than @buflen, @buf contains the truncated path with the trailing
121 * '\0'. On error, -errno is returned.
123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 struct kernfs_node *kn_from,
125 char *buf, size_t buflen)
127 struct kernfs_node *kn, *common;
128 const char parent_str[] = "/..";
129 size_t depth_from, depth_to, len = 0;
133 return strlcpy(buf, "(null)", buflen);
136 kn_from = kernfs_root(kn_to)->kn;
138 if (kn_from == kn_to)
139 return strlcpy(buf, "/", buflen);
141 common = kernfs_common_ancestor(kn_from, kn_to);
142 if (WARN_ON(!common))
145 depth_to = kernfs_depth(common, kn_to);
146 depth_from = kernfs_depth(common, kn_from);
151 for (i = 0; i < depth_from; i++)
152 len += strlcpy(buf + len, parent_str,
153 len < buflen ? buflen - len : 0);
155 /* Calculate how many bytes we need for the rest */
156 for (i = depth_to - 1; i >= 0; i--) {
157 for (kn = kn_to, j = 0; j < i; j++)
159 len += strlcpy(buf + len, "/",
160 len < buflen ? buflen - len : 0);
161 len += strlcpy(buf + len, kn->name,
162 len < buflen ? buflen - len : 0);
169 * kernfs_name - obtain the name of a given node
170 * @kn: kernfs_node of interest
171 * @buf: buffer to copy @kn's name into
172 * @buflen: size of @buf
174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
175 * similar to strlcpy(). It returns the length of @kn's name and if @buf
176 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 * Fills buffer with "(null)" if @kn is NULL.
180 * This function can be called from any context.
182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
187 spin_lock_irqsave(&kernfs_rename_lock, flags);
188 ret = kernfs_name_locked(kn, buf, buflen);
189 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
194 * kernfs_path_from_node - build path of node @to relative to @from.
195 * @from: parent kernfs_node relative to which we need to build the path
196 * @to: kernfs_node of interest
197 * @buf: buffer to copy @to's path into
198 * @buflen: size of @buf
200 * Builds @to's path relative to @from in @buf. @from and @to must
201 * be on the same kernfs-root. If @from is not parent of @to, then a relative
202 * path (which includes '..'s) as needed to reach from @from to @to is
205 * Returns the length of the full path. If the full length is equal to or
206 * greater than @buflen, @buf contains the truncated path with the trailing
207 * '\0'. On error, -errno is returned.
209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 char *buf, size_t buflen)
215 spin_lock_irqsave(&kernfs_rename_lock, flags);
216 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
220 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224 * @kn: kernfs_node of interest
226 * This function can be called from any context.
228 void pr_cont_kernfs_name(struct kernfs_node *kn)
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 pr_cont("%s", kernfs_pr_cont_buf);
237 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242 * @kn: kernfs_node of interest
244 * This function can be called from any context.
246 void pr_cont_kernfs_path(struct kernfs_node *kn)
251 spin_lock_irqsave(&kernfs_rename_lock, flags);
253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 sizeof(kernfs_pr_cont_buf));
260 if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 pr_cont("(name too long)");
265 pr_cont("%s", kernfs_pr_cont_buf);
268 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
272 * kernfs_get_parent - determine the parent node and pin it
273 * @kn: kernfs_node of interest
275 * Determines @kn's parent, pins and returns it. This function can be
276 * called from any context.
278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 struct kernfs_node *parent;
283 spin_lock_irqsave(&kernfs_rename_lock, flags);
286 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
293 * @name: Null terminated string to hash
294 * @ns: Namespace tag to hash
296 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 unsigned long hash = init_name_hash(ns);
301 unsigned int len = strlen(name);
303 hash = partial_name_hash(*name++, hash);
304 hash = end_name_hash(hash);
306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
314 static int kernfs_name_compare(unsigned int hash, const char *name,
315 const void *ns, const struct kernfs_node *kn)
325 return strcmp(name, kn->name);
328 static int kernfs_sd_compare(const struct kernfs_node *left,
329 const struct kernfs_node *right)
331 return kernfs_name_compare(left->hash, left->name, left->ns, right);
335 * kernfs_link_sibling - link kernfs_node into sibling rbtree
336 * @kn: kernfs_node of interest
338 * Link @kn into its sibling rbtree which starts from
339 * @kn->parent->dir.children.
342 * mutex_lock(kernfs_mutex)
345 * 0 on susccess -EEXIST on failure.
347 static int kernfs_link_sibling(struct kernfs_node *kn)
349 struct rb_node **node = &kn->parent->dir.children.rb_node;
350 struct rb_node *parent = NULL;
353 struct kernfs_node *pos;
356 pos = rb_to_kn(*node);
358 result = kernfs_sd_compare(kn, pos);
360 node = &pos->rb.rb_left;
362 node = &pos->rb.rb_right;
367 /* add new node and rebalance the tree */
368 rb_link_node(&kn->rb, parent, node);
369 rb_insert_color(&kn->rb, &kn->parent->dir.children);
371 /* successfully added, account subdir number */
372 if (kernfs_type(kn) == KERNFS_DIR)
373 kn->parent->dir.subdirs++;
379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380 * @kn: kernfs_node of interest
382 * Try to unlink @kn from its sibling rbtree which starts from
383 * kn->parent->dir.children. Returns %true if @kn was actually
384 * removed, %false if @kn wasn't on the rbtree.
387 * mutex_lock(kernfs_mutex)
389 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391 if (RB_EMPTY_NODE(&kn->rb))
394 if (kernfs_type(kn) == KERNFS_DIR)
395 kn->parent->dir.subdirs--;
397 rb_erase(&kn->rb, &kn->parent->dir.children);
398 RB_CLEAR_NODE(&kn->rb);
403 * kernfs_get_active - get an active reference to kernfs_node
404 * @kn: kernfs_node to get an active reference to
406 * Get an active reference of @kn. This function is noop if @kn
410 * Pointer to @kn on success, NULL on failure.
412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
417 if (!atomic_inc_unless_negative(&kn->active))
420 if (kernfs_lockdep(kn))
421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
426 * kernfs_put_active - put an active reference to kernfs_node
427 * @kn: kernfs_node to put an active reference to
429 * Put an active reference to @kn. This function is noop if @kn
432 void kernfs_put_active(struct kernfs_node *kn)
434 struct kernfs_root *root = kernfs_root(kn);
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
446 wake_up_all(&root->deactivate_waitq);
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
457 static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
460 struct kernfs_root *root = kernfs_root(kn);
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
465 mutex_unlock(&kernfs_mutex);
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
482 kernfs_drain_open_files(kn);
484 mutex_lock(&kernfs_mutex);
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
491 void kernfs_get(struct kernfs_node *kn)
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
498 EXPORT_SYMBOL_GPL(kernfs_get);
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
504 * Put a reference count of @kn and destroy it if it reached zero.
506 void kernfs_put(struct kernfs_node *kn)
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
515 if (!kn || !atomic_dec_and_test(&kn->count))
517 root = kernfs_root(kn);
520 * Moving/renaming is always done while holding reference.
521 * kn->parent won't change beneath us.
525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
529 if (kernfs_type(kn) == KERNFS_LINK)
530 kernfs_put(kn->symlink.target_kn);
532 kfree_const(kn->name);
535 if (kn->iattr->ia_secdata)
536 security_release_secctx(kn->iattr->ia_secdata,
537 kn->iattr->ia_secdata_len);
538 simple_xattrs_free(&kn->iattr->xattrs);
541 spin_lock(&kernfs_idr_lock);
542 idr_remove(&root->ino_idr, kn->id.ino);
543 spin_unlock(&kernfs_idr_lock);
544 kmem_cache_free(kernfs_node_cache, kn);
548 if (atomic_dec_and_test(&kn->count))
551 /* just released the root kn, free @root too */
552 idr_destroy(&root->ino_idr);
556 EXPORT_SYMBOL_GPL(kernfs_put);
558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
560 struct kernfs_node *kn;
562 if (flags & LOOKUP_RCU)
565 /* Always perform fresh lookup for negatives */
566 if (d_really_is_negative(dentry))
567 goto out_bad_unlocked;
569 kn = kernfs_dentry_node(dentry);
570 mutex_lock(&kernfs_mutex);
572 /* The kernfs node has been deactivated */
573 if (!kernfs_active(kn))
576 /* The kernfs node has been moved? */
577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
580 /* The kernfs node has been renamed */
581 if (strcmp(dentry->d_name.name, kn->name) != 0)
584 /* The kernfs node has been moved to a different namespace */
585 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 kernfs_info(dentry->d_sb)->ns != kn->ns)
589 mutex_unlock(&kernfs_mutex);
592 mutex_unlock(&kernfs_mutex);
597 const struct dentry_operations kernfs_dops = {
598 .d_revalidate = kernfs_dop_revalidate,
602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603 * @dentry: the dentry in question
605 * Return the kernfs_node associated with @dentry. If @dentry is not a
606 * kernfs one, %NULL is returned.
608 * While the returned kernfs_node will stay accessible as long as @dentry
609 * is accessible, the returned node can be in any state and the caller is
610 * fully responsible for determining what's accessible.
612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
614 if (dentry->d_sb->s_op == &kernfs_sops &&
615 !d_really_is_negative(dentry))
616 return kernfs_dentry_node(dentry);
620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 const char *name, umode_t mode,
622 kuid_t uid, kgid_t gid,
625 struct kernfs_node *kn;
629 name = kstrdup_const(name, GFP_KERNEL);
633 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
637 idr_preload(GFP_KERNEL);
638 spin_lock(&kernfs_idr_lock);
639 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
640 if (ret >= 0 && ret < root->last_ino)
641 root->next_generation++;
642 gen = root->next_generation;
643 root->last_ino = ret;
644 spin_unlock(&kernfs_idr_lock);
649 kn->id.generation = gen;
652 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
653 * kernfs_find_and_get_node_by_ino
655 atomic_set_release(&kn->count, 1);
656 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
657 RB_CLEAR_NODE(&kn->rb);
663 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
664 struct iattr iattr = {
665 .ia_valid = ATTR_UID | ATTR_GID,
670 ret = __kernfs_setattr(kn, &iattr);
678 idr_remove(&root->ino_idr, kn->id.ino);
680 kmem_cache_free(kernfs_node_cache, kn);
686 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
687 const char *name, umode_t mode,
688 kuid_t uid, kgid_t gid,
691 struct kernfs_node *kn;
693 kn = __kernfs_new_node(kernfs_root(parent),
694 name, mode, uid, gid, flags);
703 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
704 * @root: the kernfs root
708 * NULL on failure. Return a kernfs node with reference counter incremented
710 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
713 struct kernfs_node *kn;
716 kn = idr_find(&root->ino_idr, ino);
721 * Since kernfs_node is freed in RCU, it's possible an old node for ino
722 * is freed, but reused before RCU grace period. But a freed node (see
723 * kernfs_put) or an incompletedly initialized node (see
724 * __kernfs_new_node) should have 'count' 0. We can use this fact to
725 * filter out such node.
727 if (!atomic_inc_not_zero(&kn->count)) {
733 * The node could be a new node or a reused node. If it's a new node,
734 * we are ok. If it's reused because of RCU (because of
735 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
736 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
737 * hence we can use 'ino' to filter stale node.
739 if (kn->id.ino != ino)
751 * kernfs_add_one - add kernfs_node to parent without warning
752 * @kn: kernfs_node to be added
754 * The caller must already have initialized @kn->parent. This
755 * function increments nlink of the parent's inode if @kn is a
756 * directory and link into the children list of the parent.
759 * 0 on success, -EEXIST if entry with the given name already
762 int kernfs_add_one(struct kernfs_node *kn)
764 struct kernfs_node *parent = kn->parent;
765 struct kernfs_iattrs *ps_iattr;
769 mutex_lock(&kernfs_mutex);
772 has_ns = kernfs_ns_enabled(parent);
773 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
774 has_ns ? "required" : "invalid", parent->name, kn->name))
777 if (kernfs_type(parent) != KERNFS_DIR)
781 if (parent->flags & KERNFS_EMPTY_DIR)
784 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
787 kn->hash = kernfs_name_hash(kn->name, kn->ns);
789 ret = kernfs_link_sibling(kn);
793 /* Update timestamps on the parent */
794 ps_iattr = parent->iattr;
796 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
797 ktime_get_real_ts64(&ps_iattrs->ia_ctime);
798 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
801 mutex_unlock(&kernfs_mutex);
804 * Activate the new node unless CREATE_DEACTIVATED is requested.
805 * If not activated here, the kernfs user is responsible for
806 * activating the node with kernfs_activate(). A node which hasn't
807 * been activated is not visible to userland and its removal won't
808 * trigger deactivation.
810 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
815 mutex_unlock(&kernfs_mutex);
820 * kernfs_find_ns - find kernfs_node with the given name
821 * @parent: kernfs_node to search under
822 * @name: name to look for
823 * @ns: the namespace tag to use
825 * Look for kernfs_node with name @name under @parent. Returns pointer to
826 * the found kernfs_node on success, %NULL on failure.
828 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
829 const unsigned char *name,
832 struct rb_node *node = parent->dir.children.rb_node;
833 bool has_ns = kernfs_ns_enabled(parent);
836 lockdep_assert_held(&kernfs_mutex);
838 if (has_ns != (bool)ns) {
839 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
840 has_ns ? "required" : "invalid", parent->name, name);
844 hash = kernfs_name_hash(name, ns);
846 struct kernfs_node *kn;
850 result = kernfs_name_compare(hash, name, ns, kn);
852 node = node->rb_left;
854 node = node->rb_right;
861 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
862 const unsigned char *path,
868 lockdep_assert_held(&kernfs_mutex);
870 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
871 spin_lock_irq(&kernfs_rename_lock);
873 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
875 if (len >= sizeof(kernfs_pr_cont_buf)) {
876 spin_unlock_irq(&kernfs_rename_lock);
880 p = kernfs_pr_cont_buf;
882 while ((name = strsep(&p, "/")) && parent) {
885 parent = kernfs_find_ns(parent, name, ns);
888 spin_unlock_irq(&kernfs_rename_lock);
894 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
895 * @parent: kernfs_node to search under
896 * @name: name to look for
897 * @ns: the namespace tag to use
899 * Look for kernfs_node with name @name under @parent and get a reference
900 * if found. This function may sleep and returns pointer to the found
901 * kernfs_node on success, %NULL on failure.
903 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
904 const char *name, const void *ns)
906 struct kernfs_node *kn;
908 mutex_lock(&kernfs_mutex);
909 kn = kernfs_find_ns(parent, name, ns);
911 mutex_unlock(&kernfs_mutex);
915 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
918 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
919 * @parent: kernfs_node to search under
920 * @path: path to look for
921 * @ns: the namespace tag to use
923 * Look for kernfs_node with path @path under @parent and get a reference
924 * if found. This function may sleep and returns pointer to the found
925 * kernfs_node on success, %NULL on failure.
927 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
928 const char *path, const void *ns)
930 struct kernfs_node *kn;
932 mutex_lock(&kernfs_mutex);
933 kn = kernfs_walk_ns(parent, path, ns);
935 mutex_unlock(&kernfs_mutex);
941 * kernfs_create_root - create a new kernfs hierarchy
942 * @scops: optional syscall operations for the hierarchy
943 * @flags: KERNFS_ROOT_* flags
944 * @priv: opaque data associated with the new directory
946 * Returns the root of the new hierarchy on success, ERR_PTR() value on
949 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
950 unsigned int flags, void *priv)
952 struct kernfs_root *root;
953 struct kernfs_node *kn;
955 root = kzalloc(sizeof(*root), GFP_KERNEL);
957 return ERR_PTR(-ENOMEM);
959 idr_init(&root->ino_idr);
960 INIT_LIST_HEAD(&root->supers);
961 root->next_generation = 1;
963 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
964 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
967 idr_destroy(&root->ino_idr);
969 return ERR_PTR(-ENOMEM);
975 root->syscall_ops = scops;
978 init_waitqueue_head(&root->deactivate_waitq);
980 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
987 * kernfs_destroy_root - destroy a kernfs hierarchy
988 * @root: root of the hierarchy to destroy
990 * Destroy the hierarchy anchored at @root by removing all existing
991 * directories and destroying @root.
993 void kernfs_destroy_root(struct kernfs_root *root)
995 kernfs_remove(root->kn); /* will also free @root */
999 * kernfs_create_dir_ns - create a directory
1000 * @parent: parent in which to create a new directory
1001 * @name: name of the new directory
1002 * @mode: mode of the new directory
1003 * @uid: uid of the new directory
1004 * @gid: gid of the new directory
1005 * @priv: opaque data associated with the new directory
1006 * @ns: optional namespace tag of the directory
1008 * Returns the created node on success, ERR_PTR() value on failure.
1010 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1011 const char *name, umode_t mode,
1012 kuid_t uid, kgid_t gid,
1013 void *priv, const void *ns)
1015 struct kernfs_node *kn;
1019 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1020 uid, gid, KERNFS_DIR);
1022 return ERR_PTR(-ENOMEM);
1024 kn->dir.root = parent->dir.root;
1029 rc = kernfs_add_one(kn);
1038 * kernfs_create_empty_dir - create an always empty directory
1039 * @parent: parent in which to create a new directory
1040 * @name: name of the new directory
1042 * Returns the created node on success, ERR_PTR() value on failure.
1044 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1047 struct kernfs_node *kn;
1051 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1052 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1054 return ERR_PTR(-ENOMEM);
1056 kn->flags |= KERNFS_EMPTY_DIR;
1057 kn->dir.root = parent->dir.root;
1062 rc = kernfs_add_one(kn);
1070 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1071 struct dentry *dentry,
1075 struct kernfs_node *parent = dir->i_private;
1076 struct kernfs_node *kn;
1077 struct inode *inode;
1078 const void *ns = NULL;
1080 mutex_lock(&kernfs_mutex);
1082 if (kernfs_ns_enabled(parent))
1083 ns = kernfs_info(dir->i_sb)->ns;
1085 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1088 if (!kn || !kernfs_active(kn)) {
1093 /* attach dentry and inode */
1094 inode = kernfs_get_inode(dir->i_sb, kn);
1096 ret = ERR_PTR(-ENOMEM);
1100 /* instantiate and hash dentry */
1101 ret = d_splice_alias(inode, dentry);
1103 mutex_unlock(&kernfs_mutex);
1107 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1110 struct kernfs_node *parent = dir->i_private;
1111 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1114 if (!scops || !scops->mkdir)
1117 if (!kernfs_get_active(parent))
1120 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1122 kernfs_put_active(parent);
1126 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1128 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1129 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1132 if (!scops || !scops->rmdir)
1135 if (!kernfs_get_active(kn))
1138 ret = scops->rmdir(kn);
1140 kernfs_put_active(kn);
1144 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1145 struct inode *new_dir, struct dentry *new_dentry,
1148 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1149 struct kernfs_node *new_parent = new_dir->i_private;
1150 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1156 if (!scops || !scops->rename)
1159 if (!kernfs_get_active(kn))
1162 if (!kernfs_get_active(new_parent)) {
1163 kernfs_put_active(kn);
1167 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1169 kernfs_put_active(new_parent);
1170 kernfs_put_active(kn);
1174 const struct inode_operations kernfs_dir_iops = {
1175 .lookup = kernfs_iop_lookup,
1176 .permission = kernfs_iop_permission,
1177 .setattr = kernfs_iop_setattr,
1178 .getattr = kernfs_iop_getattr,
1179 .listxattr = kernfs_iop_listxattr,
1181 .mkdir = kernfs_iop_mkdir,
1182 .rmdir = kernfs_iop_rmdir,
1183 .rename = kernfs_iop_rename,
1186 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1188 struct kernfs_node *last;
1191 struct rb_node *rbn;
1195 if (kernfs_type(pos) != KERNFS_DIR)
1198 rbn = rb_first(&pos->dir.children);
1202 pos = rb_to_kn(rbn);
1209 * kernfs_next_descendant_post - find the next descendant for post-order walk
1210 * @pos: the current position (%NULL to initiate traversal)
1211 * @root: kernfs_node whose descendants to walk
1213 * Find the next descendant to visit for post-order traversal of @root's
1214 * descendants. @root is included in the iteration and the last node to be
1217 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1218 struct kernfs_node *root)
1220 struct rb_node *rbn;
1222 lockdep_assert_held(&kernfs_mutex);
1224 /* if first iteration, visit leftmost descendant which may be root */
1226 return kernfs_leftmost_descendant(root);
1228 /* if we visited @root, we're done */
1232 /* if there's an unvisited sibling, visit its leftmost descendant */
1233 rbn = rb_next(&pos->rb);
1235 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1237 /* no sibling left, visit parent */
1242 * kernfs_activate - activate a node which started deactivated
1243 * @kn: kernfs_node whose subtree is to be activated
1245 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1246 * needs to be explicitly activated. A node which hasn't been activated
1247 * isn't visible to userland and deactivation is skipped during its
1248 * removal. This is useful to construct atomic init sequences where
1249 * creation of multiple nodes should either succeed or fail atomically.
1251 * The caller is responsible for ensuring that this function is not called
1252 * after kernfs_remove*() is invoked on @kn.
1254 void kernfs_activate(struct kernfs_node *kn)
1256 struct kernfs_node *pos;
1258 mutex_lock(&kernfs_mutex);
1261 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1262 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1265 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1266 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1268 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1269 pos->flags |= KERNFS_ACTIVATED;
1272 mutex_unlock(&kernfs_mutex);
1275 static void __kernfs_remove(struct kernfs_node *kn)
1277 struct kernfs_node *pos;
1279 lockdep_assert_held(&kernfs_mutex);
1282 * Short-circuit if non-root @kn has already finished removal.
1283 * This is for kernfs_remove_self() which plays with active ref
1286 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1289 pr_debug("kernfs %s: removing\n", kn->name);
1291 /* prevent any new usage under @kn by deactivating all nodes */
1293 while ((pos = kernfs_next_descendant_post(pos, kn)))
1294 if (kernfs_active(pos))
1295 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1297 /* deactivate and unlink the subtree node-by-node */
1299 pos = kernfs_leftmost_descendant(kn);
1302 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1303 * base ref could have been put by someone else by the time
1304 * the function returns. Make sure it doesn't go away
1310 * Drain iff @kn was activated. This avoids draining and
1311 * its lockdep annotations for nodes which have never been
1312 * activated and allows embedding kernfs_remove() in create
1313 * error paths without worrying about draining.
1315 if (kn->flags & KERNFS_ACTIVATED)
1318 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1321 * kernfs_unlink_sibling() succeeds once per node. Use it
1322 * to decide who's responsible for cleanups.
1324 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1325 struct kernfs_iattrs *ps_iattr =
1326 pos->parent ? pos->parent->iattr : NULL;
1328 /* update timestamps on the parent */
1330 ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime);
1331 ps_iattr->ia_iattr.ia_mtime =
1332 ps_iattr->ia_iattr.ia_ctime;
1339 } while (pos != kn);
1343 * kernfs_remove - remove a kernfs_node recursively
1344 * @kn: the kernfs_node to remove
1346 * Remove @kn along with all its subdirectories and files.
1348 void kernfs_remove(struct kernfs_node *kn)
1350 mutex_lock(&kernfs_mutex);
1351 __kernfs_remove(kn);
1352 mutex_unlock(&kernfs_mutex);
1356 * kernfs_break_active_protection - break out of active protection
1357 * @kn: the self kernfs_node
1359 * The caller must be running off of a kernfs operation which is invoked
1360 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1361 * this function must also be matched with an invocation of
1362 * kernfs_unbreak_active_protection().
1364 * This function releases the active reference of @kn the caller is
1365 * holding. Once this function is called, @kn may be removed at any point
1366 * and the caller is solely responsible for ensuring that the objects it
1367 * dereferences are accessible.
1369 void kernfs_break_active_protection(struct kernfs_node *kn)
1372 * Take out ourself out of the active ref dependency chain. If
1373 * we're called without an active ref, lockdep will complain.
1375 kernfs_put_active(kn);
1379 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1380 * @kn: the self kernfs_node
1382 * If kernfs_break_active_protection() was called, this function must be
1383 * invoked before finishing the kernfs operation. Note that while this
1384 * function restores the active reference, it doesn't and can't actually
1385 * restore the active protection - @kn may already or be in the process of
1386 * being removed. Once kernfs_break_active_protection() is invoked, that
1387 * protection is irreversibly gone for the kernfs operation instance.
1389 * While this function may be called at any point after
1390 * kernfs_break_active_protection() is invoked, its most useful location
1391 * would be right before the enclosing kernfs operation returns.
1393 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1396 * @kn->active could be in any state; however, the increment we do
1397 * here will be undone as soon as the enclosing kernfs operation
1398 * finishes and this temporary bump can't break anything. If @kn
1399 * is alive, nothing changes. If @kn is being deactivated, the
1400 * soon-to-follow put will either finish deactivation or restore
1401 * deactivated state. If @kn is already removed, the temporary
1402 * bump is guaranteed to be gone before @kn is released.
1404 atomic_inc(&kn->active);
1405 if (kernfs_lockdep(kn))
1406 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1410 * kernfs_remove_self - remove a kernfs_node from its own method
1411 * @kn: the self kernfs_node to remove
1413 * The caller must be running off of a kernfs operation which is invoked
1414 * with an active reference - e.g. one of kernfs_ops. This can be used to
1415 * implement a file operation which deletes itself.
1417 * For example, the "delete" file for a sysfs device directory can be
1418 * implemented by invoking kernfs_remove_self() on the "delete" file
1419 * itself. This function breaks the circular dependency of trying to
1420 * deactivate self while holding an active ref itself. It isn't necessary
1421 * to modify the usual removal path to use kernfs_remove_self(). The
1422 * "delete" implementation can simply invoke kernfs_remove_self() on self
1423 * before proceeding with the usual removal path. kernfs will ignore later
1424 * kernfs_remove() on self.
1426 * kernfs_remove_self() can be called multiple times concurrently on the
1427 * same kernfs_node. Only the first one actually performs removal and
1428 * returns %true. All others will wait until the kernfs operation which
1429 * won self-removal finishes and return %false. Note that the losers wait
1430 * for the completion of not only the winning kernfs_remove_self() but also
1431 * the whole kernfs_ops which won the arbitration. This can be used to
1432 * guarantee, for example, all concurrent writes to a "delete" file to
1433 * finish only after the whole operation is complete.
1435 bool kernfs_remove_self(struct kernfs_node *kn)
1439 mutex_lock(&kernfs_mutex);
1440 kernfs_break_active_protection(kn);
1443 * SUICIDAL is used to arbitrate among competing invocations. Only
1444 * the first one will actually perform removal. When the removal
1445 * is complete, SUICIDED is set and the active ref is restored
1446 * while holding kernfs_mutex. The ones which lost arbitration
1447 * waits for SUICDED && drained which can happen only after the
1448 * enclosing kernfs operation which executed the winning instance
1449 * of kernfs_remove_self() finished.
1451 if (!(kn->flags & KERNFS_SUICIDAL)) {
1452 kn->flags |= KERNFS_SUICIDAL;
1453 __kernfs_remove(kn);
1454 kn->flags |= KERNFS_SUICIDED;
1457 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1461 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1463 if ((kn->flags & KERNFS_SUICIDED) &&
1464 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1467 mutex_unlock(&kernfs_mutex);
1469 mutex_lock(&kernfs_mutex);
1471 finish_wait(waitq, &wait);
1472 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1477 * This must be done while holding kernfs_mutex; otherwise, waiting
1478 * for SUICIDED && deactivated could finish prematurely.
1480 kernfs_unbreak_active_protection(kn);
1482 mutex_unlock(&kernfs_mutex);
1487 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1488 * @parent: parent of the target
1489 * @name: name of the kernfs_node to remove
1490 * @ns: namespace tag of the kernfs_node to remove
1492 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1493 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1495 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1498 struct kernfs_node *kn;
1501 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1506 mutex_lock(&kernfs_mutex);
1508 kn = kernfs_find_ns(parent, name, ns);
1510 __kernfs_remove(kn);
1512 mutex_unlock(&kernfs_mutex);
1521 * kernfs_rename_ns - move and rename a kernfs_node
1523 * @new_parent: new parent to put @sd under
1524 * @new_name: new name
1525 * @new_ns: new namespace tag
1527 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1528 const char *new_name, const void *new_ns)
1530 struct kernfs_node *old_parent;
1531 const char *old_name = NULL;
1534 /* can't move or rename root */
1538 mutex_lock(&kernfs_mutex);
1541 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1542 (new_parent->flags & KERNFS_EMPTY_DIR))
1546 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1547 (strcmp(kn->name, new_name) == 0))
1548 goto out; /* nothing to rename */
1551 if (kernfs_find_ns(new_parent, new_name, new_ns))
1554 /* rename kernfs_node */
1555 if (strcmp(kn->name, new_name) != 0) {
1557 new_name = kstrdup_const(new_name, GFP_KERNEL);
1565 * Move to the appropriate place in the appropriate directories rbtree.
1567 kernfs_unlink_sibling(kn);
1568 kernfs_get(new_parent);
1570 /* rename_lock protects ->parent and ->name accessors */
1571 spin_lock_irq(&kernfs_rename_lock);
1573 old_parent = kn->parent;
1574 kn->parent = new_parent;
1578 old_name = kn->name;
1579 kn->name = new_name;
1582 spin_unlock_irq(&kernfs_rename_lock);
1584 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1585 kernfs_link_sibling(kn);
1587 kernfs_put(old_parent);
1588 kfree_const(old_name);
1592 mutex_unlock(&kernfs_mutex);
1596 /* Relationship between s_mode and the DT_xxx types */
1597 static inline unsigned char dt_type(struct kernfs_node *kn)
1599 return (kn->mode >> 12) & 15;
1602 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1604 kernfs_put(filp->private_data);
1608 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1609 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1612 int valid = kernfs_active(pos) &&
1613 pos->parent == parent && hash == pos->hash;
1618 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1619 struct rb_node *node = parent->dir.children.rb_node;
1621 pos = rb_to_kn(node);
1623 if (hash < pos->hash)
1624 node = node->rb_left;
1625 else if (hash > pos->hash)
1626 node = node->rb_right;
1631 /* Skip over entries which are dying/dead or in the wrong namespace */
1632 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1633 struct rb_node *node = rb_next(&pos->rb);
1637 pos = rb_to_kn(node);
1642 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1643 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1645 pos = kernfs_dir_pos(ns, parent, ino, pos);
1648 struct rb_node *node = rb_next(&pos->rb);
1652 pos = rb_to_kn(node);
1653 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1658 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1660 struct dentry *dentry = file->f_path.dentry;
1661 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1662 struct kernfs_node *pos = file->private_data;
1663 const void *ns = NULL;
1665 if (!dir_emit_dots(file, ctx))
1667 mutex_lock(&kernfs_mutex);
1669 if (kernfs_ns_enabled(parent))
1670 ns = kernfs_info(dentry->d_sb)->ns;
1672 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1674 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1675 const char *name = pos->name;
1676 unsigned int type = dt_type(pos);
1677 int len = strlen(name);
1678 ino_t ino = pos->id.ino;
1680 ctx->pos = pos->hash;
1681 file->private_data = pos;
1684 mutex_unlock(&kernfs_mutex);
1685 if (!dir_emit(ctx, name, len, ino, type))
1687 mutex_lock(&kernfs_mutex);
1689 mutex_unlock(&kernfs_mutex);
1690 file->private_data = NULL;
1695 const struct file_operations kernfs_dir_fops = {
1696 .read = generic_read_dir,
1697 .iterate_shared = kernfs_fop_readdir,
1698 .release = kernfs_dir_fop_release,
1699 .llseek = generic_file_llseek,