GNU Linux-libre 6.8.9-gnu
[releases.git] / fs / kernfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 static DEFINE_RWLOCK(kernfs_rename_lock);       /* kn->parent and ->name */
21 /*
22  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24  * will perform wakeups when releasing console_sem. Holding rename_lock
25  * will introduce deadlock if the scheduler reads the kernfs_name in the
26  * wakeup path.
27  */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX];       /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock);        /* root->ino_idr */
31
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36         return atomic_read(&kn->active) >= 0;
37 }
38
39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41         lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42         return __kernfs_active(kn);
43 }
44
45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48         return kn->flags & KERNFS_LOCKDEP;
49 #else
50         return false;
51 #endif
52 }
53
54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56         if (!kn)
57                 return strscpy(buf, "(null)", buflen);
58
59         return strscpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61
62 /* kernfs_node_depth - compute depth from @from to @to */
63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65         size_t depth = 0;
66
67         while (to->parent && to != from) {
68                 depth++;
69                 to = to->parent;
70         }
71         return depth;
72 }
73
74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75                                                   struct kernfs_node *b)
76 {
77         size_t da, db;
78         struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79
80         if (ra != rb)
81                 return NULL;
82
83         da = kernfs_depth(ra->kn, a);
84         db = kernfs_depth(rb->kn, b);
85
86         while (da > db) {
87                 a = a->parent;
88                 da--;
89         }
90         while (db > da) {
91                 b = b->parent;
92                 db--;
93         }
94
95         /* worst case b and a will be the same at root */
96         while (b != a) {
97                 b = b->parent;
98                 a = a->parent;
99         }
100
101         return a;
102 }
103
104 /**
105  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106  * where kn_from is treated as root of the path.
107  * @kn_from: kernfs node which should be treated as root for the path
108  * @kn_to: kernfs node to which path is needed
109  * @buf: buffer to copy the path into
110  * @buflen: size of @buf
111  *
112  * We need to handle couple of scenarios here:
113  * [1] when @kn_from is an ancestor of @kn_to at some level
114  * kn_from: /n1/n2/n3
115  * kn_to:   /n1/n2/n3/n4/n5
116  * result:  /n4/n5
117  *
118  * [2] when @kn_from is on a different hierarchy and we need to find common
119  * ancestor between @kn_from and @kn_to.
120  * kn_from: /n1/n2/n3/n4
121  * kn_to:   /n1/n2/n5
122  * result:  /../../n5
123  * OR
124  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
125  * kn_to:   /n1/n2/n3         [depth=3]
126  * result:  /../..
127  *
128  * [3] when @kn_to is %NULL result will be "(null)"
129  *
130  * Return: the length of the constructed path.  If the path would have been
131  * greater than @buflen, @buf contains the truncated path with the trailing
132  * '\0'.  On error, -errno is returned.
133  */
134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135                                         struct kernfs_node *kn_from,
136                                         char *buf, size_t buflen)
137 {
138         struct kernfs_node *kn, *common;
139         const char parent_str[] = "/..";
140         size_t depth_from, depth_to, len = 0;
141         ssize_t copied;
142         int i, j;
143
144         if (!kn_to)
145                 return strscpy(buf, "(null)", buflen);
146
147         if (!kn_from)
148                 kn_from = kernfs_root(kn_to)->kn;
149
150         if (kn_from == kn_to)
151                 return strscpy(buf, "/", buflen);
152
153         common = kernfs_common_ancestor(kn_from, kn_to);
154         if (WARN_ON(!common))
155                 return -EINVAL;
156
157         depth_to = kernfs_depth(common, kn_to);
158         depth_from = kernfs_depth(common, kn_from);
159
160         buf[0] = '\0';
161
162         for (i = 0; i < depth_from; i++) {
163                 copied = strscpy(buf + len, parent_str, buflen - len);
164                 if (copied < 0)
165                         return copied;
166                 len += copied;
167         }
168
169         /* Calculate how many bytes we need for the rest */
170         for (i = depth_to - 1; i >= 0; i--) {
171                 for (kn = kn_to, j = 0; j < i; j++)
172                         kn = kn->parent;
173
174                 len += scnprintf(buf + len, buflen - len, "/%s", kn->name);
175         }
176
177         return len;
178 }
179
180 /**
181  * kernfs_name - obtain the name of a given node
182  * @kn: kernfs_node of interest
183  * @buf: buffer to copy @kn's name into
184  * @buflen: size of @buf
185  *
186  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
187  * similar to strscpy().
188  *
189  * Fills buffer with "(null)" if @kn is %NULL.
190  *
191  * Return: the resulting length of @buf. If @buf isn't long enough,
192  * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG.
193  *
194  * This function can be called from any context.
195  */
196 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
197 {
198         unsigned long flags;
199         int ret;
200
201         read_lock_irqsave(&kernfs_rename_lock, flags);
202         ret = kernfs_name_locked(kn, buf, buflen);
203         read_unlock_irqrestore(&kernfs_rename_lock, flags);
204         return ret;
205 }
206
207 /**
208  * kernfs_path_from_node - build path of node @to relative to @from.
209  * @from: parent kernfs_node relative to which we need to build the path
210  * @to: kernfs_node of interest
211  * @buf: buffer to copy @to's path into
212  * @buflen: size of @buf
213  *
214  * Builds @to's path relative to @from in @buf. @from and @to must
215  * be on the same kernfs-root. If @from is not parent of @to, then a relative
216  * path (which includes '..'s) as needed to reach from @from to @to is
217  * returned.
218  *
219  * Return: the length of the constructed path.  If the path would have been
220  * greater than @buflen, @buf contains the truncated path with the trailing
221  * '\0'.  On error, -errno is returned.
222  */
223 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
224                           char *buf, size_t buflen)
225 {
226         unsigned long flags;
227         int ret;
228
229         read_lock_irqsave(&kernfs_rename_lock, flags);
230         ret = kernfs_path_from_node_locked(to, from, buf, buflen);
231         read_unlock_irqrestore(&kernfs_rename_lock, flags);
232         return ret;
233 }
234 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
235
236 /**
237  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
238  * @kn: kernfs_node of interest
239  *
240  * This function can be called from any context.
241  */
242 void pr_cont_kernfs_name(struct kernfs_node *kn)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
247
248         kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
249         pr_cont("%s", kernfs_pr_cont_buf);
250
251         spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
252 }
253
254 /**
255  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
256  * @kn: kernfs_node of interest
257  *
258  * This function can be called from any context.
259  */
260 void pr_cont_kernfs_path(struct kernfs_node *kn)
261 {
262         unsigned long flags;
263         int sz;
264
265         spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
266
267         sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
268                                    sizeof(kernfs_pr_cont_buf));
269         if (sz < 0) {
270                 if (sz == -E2BIG)
271                         pr_cont("(name too long)");
272                 else
273                         pr_cont("(error)");
274                 goto out;
275         }
276
277         pr_cont("%s", kernfs_pr_cont_buf);
278
279 out:
280         spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
281 }
282
283 /**
284  * kernfs_get_parent - determine the parent node and pin it
285  * @kn: kernfs_node of interest
286  *
287  * Determines @kn's parent, pins and returns it.  This function can be
288  * called from any context.
289  *
290  * Return: parent node of @kn
291  */
292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
293 {
294         struct kernfs_node *parent;
295         unsigned long flags;
296
297         read_lock_irqsave(&kernfs_rename_lock, flags);
298         parent = kn->parent;
299         kernfs_get(parent);
300         read_unlock_irqrestore(&kernfs_rename_lock, flags);
301
302         return parent;
303 }
304
305 /**
306  *      kernfs_name_hash - calculate hash of @ns + @name
307  *      @name: Null terminated string to hash
308  *      @ns:   Namespace tag to hash
309  *
310  *      Return: 31-bit hash of ns + name (so it fits in an off_t)
311  */
312 static unsigned int kernfs_name_hash(const char *name, const void *ns)
313 {
314         unsigned long hash = init_name_hash(ns);
315         unsigned int len = strlen(name);
316         while (len--)
317                 hash = partial_name_hash(*name++, hash);
318         hash = end_name_hash(hash);
319         hash &= 0x7fffffffU;
320         /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
321         if (hash < 2)
322                 hash += 2;
323         if (hash >= INT_MAX)
324                 hash = INT_MAX - 1;
325         return hash;
326 }
327
328 static int kernfs_name_compare(unsigned int hash, const char *name,
329                                const void *ns, const struct kernfs_node *kn)
330 {
331         if (hash < kn->hash)
332                 return -1;
333         if (hash > kn->hash)
334                 return 1;
335         if (ns < kn->ns)
336                 return -1;
337         if (ns > kn->ns)
338                 return 1;
339         return strcmp(name, kn->name);
340 }
341
342 static int kernfs_sd_compare(const struct kernfs_node *left,
343                              const struct kernfs_node *right)
344 {
345         return kernfs_name_compare(left->hash, left->name, left->ns, right);
346 }
347
348 /**
349  *      kernfs_link_sibling - link kernfs_node into sibling rbtree
350  *      @kn: kernfs_node of interest
351  *
352  *      Link @kn into its sibling rbtree which starts from
353  *      @kn->parent->dir.children.
354  *
355  *      Locking:
356  *      kernfs_rwsem held exclusive
357  *
358  *      Return:
359  *      %0 on success, -EEXIST on failure.
360  */
361 static int kernfs_link_sibling(struct kernfs_node *kn)
362 {
363         struct rb_node **node = &kn->parent->dir.children.rb_node;
364         struct rb_node *parent = NULL;
365
366         while (*node) {
367                 struct kernfs_node *pos;
368                 int result;
369
370                 pos = rb_to_kn(*node);
371                 parent = *node;
372                 result = kernfs_sd_compare(kn, pos);
373                 if (result < 0)
374                         node = &pos->rb.rb_left;
375                 else if (result > 0)
376                         node = &pos->rb.rb_right;
377                 else
378                         return -EEXIST;
379         }
380
381         /* add new node and rebalance the tree */
382         rb_link_node(&kn->rb, parent, node);
383         rb_insert_color(&kn->rb, &kn->parent->dir.children);
384
385         /* successfully added, account subdir number */
386         down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
387         if (kernfs_type(kn) == KERNFS_DIR)
388                 kn->parent->dir.subdirs++;
389         kernfs_inc_rev(kn->parent);
390         up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
391
392         return 0;
393 }
394
395 /**
396  *      kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
397  *      @kn: kernfs_node of interest
398  *
399  *      Try to unlink @kn from its sibling rbtree which starts from
400  *      kn->parent->dir.children.
401  *
402  *      Return: %true if @kn was actually removed,
403  *      %false if @kn wasn't on the rbtree.
404  *
405  *      Locking:
406  *      kernfs_rwsem held exclusive
407  */
408 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
409 {
410         if (RB_EMPTY_NODE(&kn->rb))
411                 return false;
412
413         down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
414         if (kernfs_type(kn) == KERNFS_DIR)
415                 kn->parent->dir.subdirs--;
416         kernfs_inc_rev(kn->parent);
417         up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
418
419         rb_erase(&kn->rb, &kn->parent->dir.children);
420         RB_CLEAR_NODE(&kn->rb);
421         return true;
422 }
423
424 /**
425  *      kernfs_get_active - get an active reference to kernfs_node
426  *      @kn: kernfs_node to get an active reference to
427  *
428  *      Get an active reference of @kn.  This function is noop if @kn
429  *      is %NULL.
430  *
431  *      Return:
432  *      Pointer to @kn on success, %NULL on failure.
433  */
434 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
435 {
436         if (unlikely(!kn))
437                 return NULL;
438
439         if (!atomic_inc_unless_negative(&kn->active))
440                 return NULL;
441
442         if (kernfs_lockdep(kn))
443                 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
444         return kn;
445 }
446
447 /**
448  *      kernfs_put_active - put an active reference to kernfs_node
449  *      @kn: kernfs_node to put an active reference to
450  *
451  *      Put an active reference to @kn.  This function is noop if @kn
452  *      is %NULL.
453  */
454 void kernfs_put_active(struct kernfs_node *kn)
455 {
456         int v;
457
458         if (unlikely(!kn))
459                 return;
460
461         if (kernfs_lockdep(kn))
462                 rwsem_release(&kn->dep_map, _RET_IP_);
463         v = atomic_dec_return(&kn->active);
464         if (likely(v != KN_DEACTIVATED_BIAS))
465                 return;
466
467         wake_up_all(&kernfs_root(kn)->deactivate_waitq);
468 }
469
470 /**
471  * kernfs_drain - drain kernfs_node
472  * @kn: kernfs_node to drain
473  *
474  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
475  * removers may invoke this function concurrently on @kn and all will
476  * return after draining is complete.
477  */
478 static void kernfs_drain(struct kernfs_node *kn)
479         __releases(&kernfs_root(kn)->kernfs_rwsem)
480         __acquires(&kernfs_root(kn)->kernfs_rwsem)
481 {
482         struct kernfs_root *root = kernfs_root(kn);
483
484         lockdep_assert_held_write(&root->kernfs_rwsem);
485         WARN_ON_ONCE(kernfs_active(kn));
486
487         /*
488          * Skip draining if already fully drained. This avoids draining and its
489          * lockdep annotations for nodes which have never been activated
490          * allowing embedding kernfs_remove() in create error paths without
491          * worrying about draining.
492          */
493         if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
494             !kernfs_should_drain_open_files(kn))
495                 return;
496
497         up_write(&root->kernfs_rwsem);
498
499         if (kernfs_lockdep(kn)) {
500                 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
501                 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
502                         lock_contended(&kn->dep_map, _RET_IP_);
503         }
504
505         wait_event(root->deactivate_waitq,
506                    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
507
508         if (kernfs_lockdep(kn)) {
509                 lock_acquired(&kn->dep_map, _RET_IP_);
510                 rwsem_release(&kn->dep_map, _RET_IP_);
511         }
512
513         if (kernfs_should_drain_open_files(kn))
514                 kernfs_drain_open_files(kn);
515
516         down_write(&root->kernfs_rwsem);
517 }
518
519 /**
520  * kernfs_get - get a reference count on a kernfs_node
521  * @kn: the target kernfs_node
522  */
523 void kernfs_get(struct kernfs_node *kn)
524 {
525         if (kn) {
526                 WARN_ON(!atomic_read(&kn->count));
527                 atomic_inc(&kn->count);
528         }
529 }
530 EXPORT_SYMBOL_GPL(kernfs_get);
531
532 static void kernfs_free_rcu(struct rcu_head *rcu)
533 {
534         struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu);
535
536         kfree_const(kn->name);
537
538         if (kn->iattr) {
539                 simple_xattrs_free(&kn->iattr->xattrs, NULL);
540                 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
541         }
542
543         kmem_cache_free(kernfs_node_cache, kn);
544 }
545
546 /**
547  * kernfs_put - put a reference count on a kernfs_node
548  * @kn: the target kernfs_node
549  *
550  * Put a reference count of @kn and destroy it if it reached zero.
551  */
552 void kernfs_put(struct kernfs_node *kn)
553 {
554         struct kernfs_node *parent;
555         struct kernfs_root *root;
556
557         if (!kn || !atomic_dec_and_test(&kn->count))
558                 return;
559         root = kernfs_root(kn);
560  repeat:
561         /*
562          * Moving/renaming is always done while holding reference.
563          * kn->parent won't change beneath us.
564          */
565         parent = kn->parent;
566
567         WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
568                   "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
569                   parent ? parent->name : "", kn->name, atomic_read(&kn->active));
570
571         if (kernfs_type(kn) == KERNFS_LINK)
572                 kernfs_put(kn->symlink.target_kn);
573
574         spin_lock(&kernfs_idr_lock);
575         idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
576         spin_unlock(&kernfs_idr_lock);
577
578         call_rcu(&kn->rcu, kernfs_free_rcu);
579
580         kn = parent;
581         if (kn) {
582                 if (atomic_dec_and_test(&kn->count))
583                         goto repeat;
584         } else {
585                 /* just released the root kn, free @root too */
586                 idr_destroy(&root->ino_idr);
587                 kfree_rcu(root, rcu);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kernfs_put);
591
592 /**
593  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
594  * @dentry: the dentry in question
595  *
596  * Return: the kernfs_node associated with @dentry.  If @dentry is not a
597  * kernfs one, %NULL is returned.
598  *
599  * While the returned kernfs_node will stay accessible as long as @dentry
600  * is accessible, the returned node can be in any state and the caller is
601  * fully responsible for determining what's accessible.
602  */
603 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
604 {
605         if (dentry->d_sb->s_op == &kernfs_sops)
606                 return kernfs_dentry_node(dentry);
607         return NULL;
608 }
609
610 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
611                                              struct kernfs_node *parent,
612                                              const char *name, umode_t mode,
613                                              kuid_t uid, kgid_t gid,
614                                              unsigned flags)
615 {
616         struct kernfs_node *kn;
617         u32 id_highbits;
618         int ret;
619
620         name = kstrdup_const(name, GFP_KERNEL);
621         if (!name)
622                 return NULL;
623
624         kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
625         if (!kn)
626                 goto err_out1;
627
628         idr_preload(GFP_KERNEL);
629         spin_lock(&kernfs_idr_lock);
630         ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
631         if (ret >= 0 && ret < root->last_id_lowbits)
632                 root->id_highbits++;
633         id_highbits = root->id_highbits;
634         root->last_id_lowbits = ret;
635         spin_unlock(&kernfs_idr_lock);
636         idr_preload_end();
637         if (ret < 0)
638                 goto err_out2;
639
640         kn->id = (u64)id_highbits << 32 | ret;
641
642         atomic_set(&kn->count, 1);
643         atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
644         RB_CLEAR_NODE(&kn->rb);
645
646         kn->name = name;
647         kn->mode = mode;
648         kn->flags = flags;
649
650         if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
651                 struct iattr iattr = {
652                         .ia_valid = ATTR_UID | ATTR_GID,
653                         .ia_uid = uid,
654                         .ia_gid = gid,
655                 };
656
657                 ret = __kernfs_setattr(kn, &iattr);
658                 if (ret < 0)
659                         goto err_out3;
660         }
661
662         if (parent) {
663                 ret = security_kernfs_init_security(parent, kn);
664                 if (ret)
665                         goto err_out3;
666         }
667
668         return kn;
669
670  err_out3:
671         spin_lock(&kernfs_idr_lock);
672         idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
673         spin_unlock(&kernfs_idr_lock);
674  err_out2:
675         kmem_cache_free(kernfs_node_cache, kn);
676  err_out1:
677         kfree_const(name);
678         return NULL;
679 }
680
681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
682                                     const char *name, umode_t mode,
683                                     kuid_t uid, kgid_t gid,
684                                     unsigned flags)
685 {
686         struct kernfs_node *kn;
687
688         if (parent->mode & S_ISGID) {
689                 /* this code block imitates inode_init_owner() for
690                  * kernfs
691                  */
692
693                 if (parent->iattr)
694                         gid = parent->iattr->ia_gid;
695
696                 if (flags & KERNFS_DIR)
697                         mode |= S_ISGID;
698         }
699
700         kn = __kernfs_new_node(kernfs_root(parent), parent,
701                                name, mode, uid, gid, flags);
702         if (kn) {
703                 kernfs_get(parent);
704                 kn->parent = parent;
705         }
706         return kn;
707 }
708
709 /*
710  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
711  * @root: the kernfs root
712  * @id: the target node id
713  *
714  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
715  * zero, all generations are matched.
716  *
717  * Return: %NULL on failure,
718  * otherwise a kernfs node with reference counter incremented.
719  */
720 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
721                                                    u64 id)
722 {
723         struct kernfs_node *kn;
724         ino_t ino = kernfs_id_ino(id);
725         u32 gen = kernfs_id_gen(id);
726
727         rcu_read_lock();
728
729         kn = idr_find(&root->ino_idr, (u32)ino);
730         if (!kn)
731                 goto err_unlock;
732
733         if (sizeof(ino_t) >= sizeof(u64)) {
734                 /* we looked up with the low 32bits, compare the whole */
735                 if (kernfs_ino(kn) != ino)
736                         goto err_unlock;
737         } else {
738                 /* 0 matches all generations */
739                 if (unlikely(gen && kernfs_gen(kn) != gen))
740                         goto err_unlock;
741         }
742
743         /*
744          * We should fail if @kn has never been activated and guarantee success
745          * if the caller knows that @kn is active. Both can be achieved by
746          * __kernfs_active() which tests @kn->active without kernfs_rwsem.
747          */
748         if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
749                 goto err_unlock;
750
751         rcu_read_unlock();
752         return kn;
753 err_unlock:
754         rcu_read_unlock();
755         return NULL;
756 }
757
758 /**
759  *      kernfs_add_one - add kernfs_node to parent without warning
760  *      @kn: kernfs_node to be added
761  *
762  *      The caller must already have initialized @kn->parent.  This
763  *      function increments nlink of the parent's inode if @kn is a
764  *      directory and link into the children list of the parent.
765  *
766  *      Return:
767  *      %0 on success, -EEXIST if entry with the given name already
768  *      exists.
769  */
770 int kernfs_add_one(struct kernfs_node *kn)
771 {
772         struct kernfs_node *parent = kn->parent;
773         struct kernfs_root *root = kernfs_root(parent);
774         struct kernfs_iattrs *ps_iattr;
775         bool has_ns;
776         int ret;
777
778         down_write(&root->kernfs_rwsem);
779
780         ret = -EINVAL;
781         has_ns = kernfs_ns_enabled(parent);
782         if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
783                  has_ns ? "required" : "invalid", parent->name, kn->name))
784                 goto out_unlock;
785
786         if (kernfs_type(parent) != KERNFS_DIR)
787                 goto out_unlock;
788
789         ret = -ENOENT;
790         if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
791                 goto out_unlock;
792
793         kn->hash = kernfs_name_hash(kn->name, kn->ns);
794
795         ret = kernfs_link_sibling(kn);
796         if (ret)
797                 goto out_unlock;
798
799         /* Update timestamps on the parent */
800         down_write(&root->kernfs_iattr_rwsem);
801
802         ps_iattr = parent->iattr;
803         if (ps_iattr) {
804                 ktime_get_real_ts64(&ps_iattr->ia_ctime);
805                 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
806         }
807
808         up_write(&root->kernfs_iattr_rwsem);
809         up_write(&root->kernfs_rwsem);
810
811         /*
812          * Activate the new node unless CREATE_DEACTIVATED is requested.
813          * If not activated here, the kernfs user is responsible for
814          * activating the node with kernfs_activate().  A node which hasn't
815          * been activated is not visible to userland and its removal won't
816          * trigger deactivation.
817          */
818         if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
819                 kernfs_activate(kn);
820         return 0;
821
822 out_unlock:
823         up_write(&root->kernfs_rwsem);
824         return ret;
825 }
826
827 /**
828  * kernfs_find_ns - find kernfs_node with the given name
829  * @parent: kernfs_node to search under
830  * @name: name to look for
831  * @ns: the namespace tag to use
832  *
833  * Look for kernfs_node with name @name under @parent.
834  *
835  * Return: pointer to the found kernfs_node on success, %NULL on failure.
836  */
837 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
838                                           const unsigned char *name,
839                                           const void *ns)
840 {
841         struct rb_node *node = parent->dir.children.rb_node;
842         bool has_ns = kernfs_ns_enabled(parent);
843         unsigned int hash;
844
845         lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
846
847         if (has_ns != (bool)ns) {
848                 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
849                      has_ns ? "required" : "invalid", parent->name, name);
850                 return NULL;
851         }
852
853         hash = kernfs_name_hash(name, ns);
854         while (node) {
855                 struct kernfs_node *kn;
856                 int result;
857
858                 kn = rb_to_kn(node);
859                 result = kernfs_name_compare(hash, name, ns, kn);
860                 if (result < 0)
861                         node = node->rb_left;
862                 else if (result > 0)
863                         node = node->rb_right;
864                 else
865                         return kn;
866         }
867         return NULL;
868 }
869
870 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
871                                           const unsigned char *path,
872                                           const void *ns)
873 {
874         ssize_t len;
875         char *p, *name;
876
877         lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
878
879         spin_lock_irq(&kernfs_pr_cont_lock);
880
881         len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
882
883         if (len < 0) {
884                 spin_unlock_irq(&kernfs_pr_cont_lock);
885                 return NULL;
886         }
887
888         p = kernfs_pr_cont_buf;
889
890         while ((name = strsep(&p, "/")) && parent) {
891                 if (*name == '\0')
892                         continue;
893                 parent = kernfs_find_ns(parent, name, ns);
894         }
895
896         spin_unlock_irq(&kernfs_pr_cont_lock);
897
898         return parent;
899 }
900
901 /**
902  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
903  * @parent: kernfs_node to search under
904  * @name: name to look for
905  * @ns: the namespace tag to use
906  *
907  * Look for kernfs_node with name @name under @parent and get a reference
908  * if found.  This function may sleep.
909  *
910  * Return: pointer to the found kernfs_node on success, %NULL on failure.
911  */
912 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
913                                            const char *name, const void *ns)
914 {
915         struct kernfs_node *kn;
916         struct kernfs_root *root = kernfs_root(parent);
917
918         down_read(&root->kernfs_rwsem);
919         kn = kernfs_find_ns(parent, name, ns);
920         kernfs_get(kn);
921         up_read(&root->kernfs_rwsem);
922
923         return kn;
924 }
925 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
926
927 /**
928  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
929  * @parent: kernfs_node to search under
930  * @path: path to look for
931  * @ns: the namespace tag to use
932  *
933  * Look for kernfs_node with path @path under @parent and get a reference
934  * if found.  This function may sleep.
935  *
936  * Return: pointer to the found kernfs_node on success, %NULL on failure.
937  */
938 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
939                                            const char *path, const void *ns)
940 {
941         struct kernfs_node *kn;
942         struct kernfs_root *root = kernfs_root(parent);
943
944         down_read(&root->kernfs_rwsem);
945         kn = kernfs_walk_ns(parent, path, ns);
946         kernfs_get(kn);
947         up_read(&root->kernfs_rwsem);
948
949         return kn;
950 }
951
952 /**
953  * kernfs_create_root - create a new kernfs hierarchy
954  * @scops: optional syscall operations for the hierarchy
955  * @flags: KERNFS_ROOT_* flags
956  * @priv: opaque data associated with the new directory
957  *
958  * Return: the root of the new hierarchy on success, ERR_PTR() value on
959  * failure.
960  */
961 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
962                                        unsigned int flags, void *priv)
963 {
964         struct kernfs_root *root;
965         struct kernfs_node *kn;
966
967         root = kzalloc(sizeof(*root), GFP_KERNEL);
968         if (!root)
969                 return ERR_PTR(-ENOMEM);
970
971         idr_init(&root->ino_idr);
972         init_rwsem(&root->kernfs_rwsem);
973         init_rwsem(&root->kernfs_iattr_rwsem);
974         init_rwsem(&root->kernfs_supers_rwsem);
975         INIT_LIST_HEAD(&root->supers);
976
977         /*
978          * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
979          * High bits generation.  The starting value for both ino and
980          * genenration is 1.  Initialize upper 32bit allocation
981          * accordingly.
982          */
983         if (sizeof(ino_t) >= sizeof(u64))
984                 root->id_highbits = 0;
985         else
986                 root->id_highbits = 1;
987
988         kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
989                                GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
990                                KERNFS_DIR);
991         if (!kn) {
992                 idr_destroy(&root->ino_idr);
993                 kfree(root);
994                 return ERR_PTR(-ENOMEM);
995         }
996
997         kn->priv = priv;
998         kn->dir.root = root;
999
1000         root->syscall_ops = scops;
1001         root->flags = flags;
1002         root->kn = kn;
1003         init_waitqueue_head(&root->deactivate_waitq);
1004
1005         if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1006                 kernfs_activate(kn);
1007
1008         return root;
1009 }
1010
1011 /**
1012  * kernfs_destroy_root - destroy a kernfs hierarchy
1013  * @root: root of the hierarchy to destroy
1014  *
1015  * Destroy the hierarchy anchored at @root by removing all existing
1016  * directories and destroying @root.
1017  */
1018 void kernfs_destroy_root(struct kernfs_root *root)
1019 {
1020         /*
1021          *  kernfs_remove holds kernfs_rwsem from the root so the root
1022          *  shouldn't be freed during the operation.
1023          */
1024         kernfs_get(root->kn);
1025         kernfs_remove(root->kn);
1026         kernfs_put(root->kn); /* will also free @root */
1027 }
1028
1029 /**
1030  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1031  * @root: root to use to lookup
1032  *
1033  * Return: @root's kernfs_node
1034  */
1035 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1036 {
1037         return root->kn;
1038 }
1039
1040 /**
1041  * kernfs_create_dir_ns - create a directory
1042  * @parent: parent in which to create a new directory
1043  * @name: name of the new directory
1044  * @mode: mode of the new directory
1045  * @uid: uid of the new directory
1046  * @gid: gid of the new directory
1047  * @priv: opaque data associated with the new directory
1048  * @ns: optional namespace tag of the directory
1049  *
1050  * Return: the created node on success, ERR_PTR() value on failure.
1051  */
1052 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1053                                          const char *name, umode_t mode,
1054                                          kuid_t uid, kgid_t gid,
1055                                          void *priv, const void *ns)
1056 {
1057         struct kernfs_node *kn;
1058         int rc;
1059
1060         /* allocate */
1061         kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1062                              uid, gid, KERNFS_DIR);
1063         if (!kn)
1064                 return ERR_PTR(-ENOMEM);
1065
1066         kn->dir.root = parent->dir.root;
1067         kn->ns = ns;
1068         kn->priv = priv;
1069
1070         /* link in */
1071         rc = kernfs_add_one(kn);
1072         if (!rc)
1073                 return kn;
1074
1075         kernfs_put(kn);
1076         return ERR_PTR(rc);
1077 }
1078
1079 /**
1080  * kernfs_create_empty_dir - create an always empty directory
1081  * @parent: parent in which to create a new directory
1082  * @name: name of the new directory
1083  *
1084  * Return: the created node on success, ERR_PTR() value on failure.
1085  */
1086 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1087                                             const char *name)
1088 {
1089         struct kernfs_node *kn;
1090         int rc;
1091
1092         /* allocate */
1093         kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1094                              GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1095         if (!kn)
1096                 return ERR_PTR(-ENOMEM);
1097
1098         kn->flags |= KERNFS_EMPTY_DIR;
1099         kn->dir.root = parent->dir.root;
1100         kn->ns = NULL;
1101         kn->priv = NULL;
1102
1103         /* link in */
1104         rc = kernfs_add_one(kn);
1105         if (!rc)
1106                 return kn;
1107
1108         kernfs_put(kn);
1109         return ERR_PTR(rc);
1110 }
1111
1112 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1113 {
1114         struct kernfs_node *kn;
1115         struct kernfs_root *root;
1116
1117         if (flags & LOOKUP_RCU)
1118                 return -ECHILD;
1119
1120         /* Negative hashed dentry? */
1121         if (d_really_is_negative(dentry)) {
1122                 struct kernfs_node *parent;
1123
1124                 /* If the kernfs parent node has changed discard and
1125                  * proceed to ->lookup.
1126                  *
1127                  * There's nothing special needed here when getting the
1128                  * dentry parent, even if a concurrent rename is in
1129                  * progress. That's because the dentry is negative so
1130                  * it can only be the target of the rename and it will
1131                  * be doing a d_move() not a replace. Consequently the
1132                  * dentry d_parent won't change over the d_move().
1133                  *
1134                  * Also kernfs negative dentries transitioning from
1135                  * negative to positive during revalidate won't happen
1136                  * because they are invalidated on containing directory
1137                  * changes and the lookup re-done so that a new positive
1138                  * dentry can be properly created.
1139                  */
1140                 root = kernfs_root_from_sb(dentry->d_sb);
1141                 down_read(&root->kernfs_rwsem);
1142                 parent = kernfs_dentry_node(dentry->d_parent);
1143                 if (parent) {
1144                         if (kernfs_dir_changed(parent, dentry)) {
1145                                 up_read(&root->kernfs_rwsem);
1146                                 return 0;
1147                         }
1148                 }
1149                 up_read(&root->kernfs_rwsem);
1150
1151                 /* The kernfs parent node hasn't changed, leave the
1152                  * dentry negative and return success.
1153                  */
1154                 return 1;
1155         }
1156
1157         kn = kernfs_dentry_node(dentry);
1158         root = kernfs_root(kn);
1159         down_read(&root->kernfs_rwsem);
1160
1161         /* The kernfs node has been deactivated */
1162         if (!kernfs_active(kn))
1163                 goto out_bad;
1164
1165         /* The kernfs node has been moved? */
1166         if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1167                 goto out_bad;
1168
1169         /* The kernfs node has been renamed */
1170         if (strcmp(dentry->d_name.name, kn->name) != 0)
1171                 goto out_bad;
1172
1173         /* The kernfs node has been moved to a different namespace */
1174         if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1175             kernfs_info(dentry->d_sb)->ns != kn->ns)
1176                 goto out_bad;
1177
1178         up_read(&root->kernfs_rwsem);
1179         return 1;
1180 out_bad:
1181         up_read(&root->kernfs_rwsem);
1182         return 0;
1183 }
1184
1185 const struct dentry_operations kernfs_dops = {
1186         .d_revalidate   = kernfs_dop_revalidate,
1187 };
1188
1189 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1190                                         struct dentry *dentry,
1191                                         unsigned int flags)
1192 {
1193         struct kernfs_node *parent = dir->i_private;
1194         struct kernfs_node *kn;
1195         struct kernfs_root *root;
1196         struct inode *inode = NULL;
1197         const void *ns = NULL;
1198
1199         root = kernfs_root(parent);
1200         down_read(&root->kernfs_rwsem);
1201         if (kernfs_ns_enabled(parent))
1202                 ns = kernfs_info(dir->i_sb)->ns;
1203
1204         kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1205         /* attach dentry and inode */
1206         if (kn) {
1207                 /* Inactive nodes are invisible to the VFS so don't
1208                  * create a negative.
1209                  */
1210                 if (!kernfs_active(kn)) {
1211                         up_read(&root->kernfs_rwsem);
1212                         return NULL;
1213                 }
1214                 inode = kernfs_get_inode(dir->i_sb, kn);
1215                 if (!inode)
1216                         inode = ERR_PTR(-ENOMEM);
1217         }
1218         /*
1219          * Needed for negative dentry validation.
1220          * The negative dentry can be created in kernfs_iop_lookup()
1221          * or transforms from positive dentry in dentry_unlink_inode()
1222          * called from vfs_rmdir().
1223          */
1224         if (!IS_ERR(inode))
1225                 kernfs_set_rev(parent, dentry);
1226         up_read(&root->kernfs_rwsem);
1227
1228         /* instantiate and hash (possibly negative) dentry */
1229         return d_splice_alias(inode, dentry);
1230 }
1231
1232 static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
1233                             struct inode *dir, struct dentry *dentry,
1234                             umode_t mode)
1235 {
1236         struct kernfs_node *parent = dir->i_private;
1237         struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1238         int ret;
1239
1240         if (!scops || !scops->mkdir)
1241                 return -EPERM;
1242
1243         if (!kernfs_get_active(parent))
1244                 return -ENODEV;
1245
1246         ret = scops->mkdir(parent, dentry->d_name.name, mode);
1247
1248         kernfs_put_active(parent);
1249         return ret;
1250 }
1251
1252 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1253 {
1254         struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1255         struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1256         int ret;
1257
1258         if (!scops || !scops->rmdir)
1259                 return -EPERM;
1260
1261         if (!kernfs_get_active(kn))
1262                 return -ENODEV;
1263
1264         ret = scops->rmdir(kn);
1265
1266         kernfs_put_active(kn);
1267         return ret;
1268 }
1269
1270 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1271                              struct inode *old_dir, struct dentry *old_dentry,
1272                              struct inode *new_dir, struct dentry *new_dentry,
1273                              unsigned int flags)
1274 {
1275         struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1276         struct kernfs_node *new_parent = new_dir->i_private;
1277         struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1278         int ret;
1279
1280         if (flags)
1281                 return -EINVAL;
1282
1283         if (!scops || !scops->rename)
1284                 return -EPERM;
1285
1286         if (!kernfs_get_active(kn))
1287                 return -ENODEV;
1288
1289         if (!kernfs_get_active(new_parent)) {
1290                 kernfs_put_active(kn);
1291                 return -ENODEV;
1292         }
1293
1294         ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1295
1296         kernfs_put_active(new_parent);
1297         kernfs_put_active(kn);
1298         return ret;
1299 }
1300
1301 const struct inode_operations kernfs_dir_iops = {
1302         .lookup         = kernfs_iop_lookup,
1303         .permission     = kernfs_iop_permission,
1304         .setattr        = kernfs_iop_setattr,
1305         .getattr        = kernfs_iop_getattr,
1306         .listxattr      = kernfs_iop_listxattr,
1307
1308         .mkdir          = kernfs_iop_mkdir,
1309         .rmdir          = kernfs_iop_rmdir,
1310         .rename         = kernfs_iop_rename,
1311 };
1312
1313 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1314 {
1315         struct kernfs_node *last;
1316
1317         while (true) {
1318                 struct rb_node *rbn;
1319
1320                 last = pos;
1321
1322                 if (kernfs_type(pos) != KERNFS_DIR)
1323                         break;
1324
1325                 rbn = rb_first(&pos->dir.children);
1326                 if (!rbn)
1327                         break;
1328
1329                 pos = rb_to_kn(rbn);
1330         }
1331
1332         return last;
1333 }
1334
1335 /**
1336  * kernfs_next_descendant_post - find the next descendant for post-order walk
1337  * @pos: the current position (%NULL to initiate traversal)
1338  * @root: kernfs_node whose descendants to walk
1339  *
1340  * Find the next descendant to visit for post-order traversal of @root's
1341  * descendants.  @root is included in the iteration and the last node to be
1342  * visited.
1343  *
1344  * Return: the next descendant to visit or %NULL when done.
1345  */
1346 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1347                                                        struct kernfs_node *root)
1348 {
1349         struct rb_node *rbn;
1350
1351         lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1352
1353         /* if first iteration, visit leftmost descendant which may be root */
1354         if (!pos)
1355                 return kernfs_leftmost_descendant(root);
1356
1357         /* if we visited @root, we're done */
1358         if (pos == root)
1359                 return NULL;
1360
1361         /* if there's an unvisited sibling, visit its leftmost descendant */
1362         rbn = rb_next(&pos->rb);
1363         if (rbn)
1364                 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1365
1366         /* no sibling left, visit parent */
1367         return pos->parent;
1368 }
1369
1370 static void kernfs_activate_one(struct kernfs_node *kn)
1371 {
1372         lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1373
1374         kn->flags |= KERNFS_ACTIVATED;
1375
1376         if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1377                 return;
1378
1379         WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1380         WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1381
1382         atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1383 }
1384
1385 /**
1386  * kernfs_activate - activate a node which started deactivated
1387  * @kn: kernfs_node whose subtree is to be activated
1388  *
1389  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1390  * needs to be explicitly activated.  A node which hasn't been activated
1391  * isn't visible to userland and deactivation is skipped during its
1392  * removal.  This is useful to construct atomic init sequences where
1393  * creation of multiple nodes should either succeed or fail atomically.
1394  *
1395  * The caller is responsible for ensuring that this function is not called
1396  * after kernfs_remove*() is invoked on @kn.
1397  */
1398 void kernfs_activate(struct kernfs_node *kn)
1399 {
1400         struct kernfs_node *pos;
1401         struct kernfs_root *root = kernfs_root(kn);
1402
1403         down_write(&root->kernfs_rwsem);
1404
1405         pos = NULL;
1406         while ((pos = kernfs_next_descendant_post(pos, kn)))
1407                 kernfs_activate_one(pos);
1408
1409         up_write(&root->kernfs_rwsem);
1410 }
1411
1412 /**
1413  * kernfs_show - show or hide a node
1414  * @kn: kernfs_node to show or hide
1415  * @show: whether to show or hide
1416  *
1417  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1418  * ignored in future activaitons. If %true, the mark is removed and activation
1419  * state is restored. This function won't implicitly activate a new node in a
1420  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1421  *
1422  * To avoid recursion complexities, directories aren't supported for now.
1423  */
1424 void kernfs_show(struct kernfs_node *kn, bool show)
1425 {
1426         struct kernfs_root *root = kernfs_root(kn);
1427
1428         if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1429                 return;
1430
1431         down_write(&root->kernfs_rwsem);
1432
1433         if (show) {
1434                 kn->flags &= ~KERNFS_HIDDEN;
1435                 if (kn->flags & KERNFS_ACTIVATED)
1436                         kernfs_activate_one(kn);
1437         } else {
1438                 kn->flags |= KERNFS_HIDDEN;
1439                 if (kernfs_active(kn))
1440                         atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1441                 kernfs_drain(kn);
1442         }
1443
1444         up_write(&root->kernfs_rwsem);
1445 }
1446
1447 static void __kernfs_remove(struct kernfs_node *kn)
1448 {
1449         struct kernfs_node *pos;
1450
1451         /* Short-circuit if non-root @kn has already finished removal. */
1452         if (!kn)
1453                 return;
1454
1455         lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1456
1457         /*
1458          * This is for kernfs_remove_self() which plays with active ref
1459          * after removal.
1460          */
1461         if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1462                 return;
1463
1464         pr_debug("kernfs %s: removing\n", kn->name);
1465
1466         /* prevent new usage by marking all nodes removing and deactivating */
1467         pos = NULL;
1468         while ((pos = kernfs_next_descendant_post(pos, kn))) {
1469                 pos->flags |= KERNFS_REMOVING;
1470                 if (kernfs_active(pos))
1471                         atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1472         }
1473
1474         /* deactivate and unlink the subtree node-by-node */
1475         do {
1476                 pos = kernfs_leftmost_descendant(kn);
1477
1478                 /*
1479                  * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1480                  * base ref could have been put by someone else by the time
1481                  * the function returns.  Make sure it doesn't go away
1482                  * underneath us.
1483                  */
1484                 kernfs_get(pos);
1485
1486                 kernfs_drain(pos);
1487
1488                 /*
1489                  * kernfs_unlink_sibling() succeeds once per node.  Use it
1490                  * to decide who's responsible for cleanups.
1491                  */
1492                 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1493                         struct kernfs_iattrs *ps_iattr =
1494                                 pos->parent ? pos->parent->iattr : NULL;
1495
1496                         /* update timestamps on the parent */
1497                         down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1498
1499                         if (ps_iattr) {
1500                                 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1501                                 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1502                         }
1503
1504                         up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1505                         kernfs_put(pos);
1506                 }
1507
1508                 kernfs_put(pos);
1509         } while (pos != kn);
1510 }
1511
1512 /**
1513  * kernfs_remove - remove a kernfs_node recursively
1514  * @kn: the kernfs_node to remove
1515  *
1516  * Remove @kn along with all its subdirectories and files.
1517  */
1518 void kernfs_remove(struct kernfs_node *kn)
1519 {
1520         struct kernfs_root *root;
1521
1522         if (!kn)
1523                 return;
1524
1525         root = kernfs_root(kn);
1526
1527         down_write(&root->kernfs_rwsem);
1528         __kernfs_remove(kn);
1529         up_write(&root->kernfs_rwsem);
1530 }
1531
1532 /**
1533  * kernfs_break_active_protection - break out of active protection
1534  * @kn: the self kernfs_node
1535  *
1536  * The caller must be running off of a kernfs operation which is invoked
1537  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1538  * this function must also be matched with an invocation of
1539  * kernfs_unbreak_active_protection().
1540  *
1541  * This function releases the active reference of @kn the caller is
1542  * holding.  Once this function is called, @kn may be removed at any point
1543  * and the caller is solely responsible for ensuring that the objects it
1544  * dereferences are accessible.
1545  */
1546 void kernfs_break_active_protection(struct kernfs_node *kn)
1547 {
1548         /*
1549          * Take out ourself out of the active ref dependency chain.  If
1550          * we're called without an active ref, lockdep will complain.
1551          */
1552         kernfs_put_active(kn);
1553 }
1554
1555 /**
1556  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1557  * @kn: the self kernfs_node
1558  *
1559  * If kernfs_break_active_protection() was called, this function must be
1560  * invoked before finishing the kernfs operation.  Note that while this
1561  * function restores the active reference, it doesn't and can't actually
1562  * restore the active protection - @kn may already or be in the process of
1563  * being removed.  Once kernfs_break_active_protection() is invoked, that
1564  * protection is irreversibly gone for the kernfs operation instance.
1565  *
1566  * While this function may be called at any point after
1567  * kernfs_break_active_protection() is invoked, its most useful location
1568  * would be right before the enclosing kernfs operation returns.
1569  */
1570 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1571 {
1572         /*
1573          * @kn->active could be in any state; however, the increment we do
1574          * here will be undone as soon as the enclosing kernfs operation
1575          * finishes and this temporary bump can't break anything.  If @kn
1576          * is alive, nothing changes.  If @kn is being deactivated, the
1577          * soon-to-follow put will either finish deactivation or restore
1578          * deactivated state.  If @kn is already removed, the temporary
1579          * bump is guaranteed to be gone before @kn is released.
1580          */
1581         atomic_inc(&kn->active);
1582         if (kernfs_lockdep(kn))
1583                 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1584 }
1585
1586 /**
1587  * kernfs_remove_self - remove a kernfs_node from its own method
1588  * @kn: the self kernfs_node to remove
1589  *
1590  * The caller must be running off of a kernfs operation which is invoked
1591  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1592  * implement a file operation which deletes itself.
1593  *
1594  * For example, the "delete" file for a sysfs device directory can be
1595  * implemented by invoking kernfs_remove_self() on the "delete" file
1596  * itself.  This function breaks the circular dependency of trying to
1597  * deactivate self while holding an active ref itself.  It isn't necessary
1598  * to modify the usual removal path to use kernfs_remove_self().  The
1599  * "delete" implementation can simply invoke kernfs_remove_self() on self
1600  * before proceeding with the usual removal path.  kernfs will ignore later
1601  * kernfs_remove() on self.
1602  *
1603  * kernfs_remove_self() can be called multiple times concurrently on the
1604  * same kernfs_node.  Only the first one actually performs removal and
1605  * returns %true.  All others will wait until the kernfs operation which
1606  * won self-removal finishes and return %false.  Note that the losers wait
1607  * for the completion of not only the winning kernfs_remove_self() but also
1608  * the whole kernfs_ops which won the arbitration.  This can be used to
1609  * guarantee, for example, all concurrent writes to a "delete" file to
1610  * finish only after the whole operation is complete.
1611  *
1612  * Return: %true if @kn is removed by this call, otherwise %false.
1613  */
1614 bool kernfs_remove_self(struct kernfs_node *kn)
1615 {
1616         bool ret;
1617         struct kernfs_root *root = kernfs_root(kn);
1618
1619         down_write(&root->kernfs_rwsem);
1620         kernfs_break_active_protection(kn);
1621
1622         /*
1623          * SUICIDAL is used to arbitrate among competing invocations.  Only
1624          * the first one will actually perform removal.  When the removal
1625          * is complete, SUICIDED is set and the active ref is restored
1626          * while kernfs_rwsem for held exclusive.  The ones which lost
1627          * arbitration waits for SUICIDED && drained which can happen only
1628          * after the enclosing kernfs operation which executed the winning
1629          * instance of kernfs_remove_self() finished.
1630          */
1631         if (!(kn->flags & KERNFS_SUICIDAL)) {
1632                 kn->flags |= KERNFS_SUICIDAL;
1633                 __kernfs_remove(kn);
1634                 kn->flags |= KERNFS_SUICIDED;
1635                 ret = true;
1636         } else {
1637                 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1638                 DEFINE_WAIT(wait);
1639
1640                 while (true) {
1641                         prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1642
1643                         if ((kn->flags & KERNFS_SUICIDED) &&
1644                             atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1645                                 break;
1646
1647                         up_write(&root->kernfs_rwsem);
1648                         schedule();
1649                         down_write(&root->kernfs_rwsem);
1650                 }
1651                 finish_wait(waitq, &wait);
1652                 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1653                 ret = false;
1654         }
1655
1656         /*
1657          * This must be done while kernfs_rwsem held exclusive; otherwise,
1658          * waiting for SUICIDED && deactivated could finish prematurely.
1659          */
1660         kernfs_unbreak_active_protection(kn);
1661
1662         up_write(&root->kernfs_rwsem);
1663         return ret;
1664 }
1665
1666 /**
1667  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1668  * @parent: parent of the target
1669  * @name: name of the kernfs_node to remove
1670  * @ns: namespace tag of the kernfs_node to remove
1671  *
1672  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1673  *
1674  * Return: %0 on success, -ENOENT if such entry doesn't exist.
1675  */
1676 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1677                              const void *ns)
1678 {
1679         struct kernfs_node *kn;
1680         struct kernfs_root *root;
1681
1682         if (!parent) {
1683                 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1684                         name);
1685                 return -ENOENT;
1686         }
1687
1688         root = kernfs_root(parent);
1689         down_write(&root->kernfs_rwsem);
1690
1691         kn = kernfs_find_ns(parent, name, ns);
1692         if (kn) {
1693                 kernfs_get(kn);
1694                 __kernfs_remove(kn);
1695                 kernfs_put(kn);
1696         }
1697
1698         up_write(&root->kernfs_rwsem);
1699
1700         if (kn)
1701                 return 0;
1702         else
1703                 return -ENOENT;
1704 }
1705
1706 /**
1707  * kernfs_rename_ns - move and rename a kernfs_node
1708  * @kn: target node
1709  * @new_parent: new parent to put @sd under
1710  * @new_name: new name
1711  * @new_ns: new namespace tag
1712  *
1713  * Return: %0 on success, -errno on failure.
1714  */
1715 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1716                      const char *new_name, const void *new_ns)
1717 {
1718         struct kernfs_node *old_parent;
1719         struct kernfs_root *root;
1720         const char *old_name = NULL;
1721         int error;
1722
1723         /* can't move or rename root */
1724         if (!kn->parent)
1725                 return -EINVAL;
1726
1727         root = kernfs_root(kn);
1728         down_write(&root->kernfs_rwsem);
1729
1730         error = -ENOENT;
1731         if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1732             (new_parent->flags & KERNFS_EMPTY_DIR))
1733                 goto out;
1734
1735         error = 0;
1736         if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1737             (strcmp(kn->name, new_name) == 0))
1738                 goto out;       /* nothing to rename */
1739
1740         error = -EEXIST;
1741         if (kernfs_find_ns(new_parent, new_name, new_ns))
1742                 goto out;
1743
1744         /* rename kernfs_node */
1745         if (strcmp(kn->name, new_name) != 0) {
1746                 error = -ENOMEM;
1747                 new_name = kstrdup_const(new_name, GFP_KERNEL);
1748                 if (!new_name)
1749                         goto out;
1750         } else {
1751                 new_name = NULL;
1752         }
1753
1754         /*
1755          * Move to the appropriate place in the appropriate directories rbtree.
1756          */
1757         kernfs_unlink_sibling(kn);
1758         kernfs_get(new_parent);
1759
1760         /* rename_lock protects ->parent and ->name accessors */
1761         write_lock_irq(&kernfs_rename_lock);
1762
1763         old_parent = kn->parent;
1764         kn->parent = new_parent;
1765
1766         kn->ns = new_ns;
1767         if (new_name) {
1768                 old_name = kn->name;
1769                 kn->name = new_name;
1770         }
1771
1772         write_unlock_irq(&kernfs_rename_lock);
1773
1774         kn->hash = kernfs_name_hash(kn->name, kn->ns);
1775         kernfs_link_sibling(kn);
1776
1777         kernfs_put(old_parent);
1778         kfree_const(old_name);
1779
1780         error = 0;
1781  out:
1782         up_write(&root->kernfs_rwsem);
1783         return error;
1784 }
1785
1786 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1787 {
1788         kernfs_put(filp->private_data);
1789         return 0;
1790 }
1791
1792 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1793         struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1794 {
1795         if (pos) {
1796                 int valid = kernfs_active(pos) &&
1797                         pos->parent == parent && hash == pos->hash;
1798                 kernfs_put(pos);
1799                 if (!valid)
1800                         pos = NULL;
1801         }
1802         if (!pos && (hash > 1) && (hash < INT_MAX)) {
1803                 struct rb_node *node = parent->dir.children.rb_node;
1804                 while (node) {
1805                         pos = rb_to_kn(node);
1806
1807                         if (hash < pos->hash)
1808                                 node = node->rb_left;
1809                         else if (hash > pos->hash)
1810                                 node = node->rb_right;
1811                         else
1812                                 break;
1813                 }
1814         }
1815         /* Skip over entries which are dying/dead or in the wrong namespace */
1816         while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1817                 struct rb_node *node = rb_next(&pos->rb);
1818                 if (!node)
1819                         pos = NULL;
1820                 else
1821                         pos = rb_to_kn(node);
1822         }
1823         return pos;
1824 }
1825
1826 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1827         struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1828 {
1829         pos = kernfs_dir_pos(ns, parent, ino, pos);
1830         if (pos) {
1831                 do {
1832                         struct rb_node *node = rb_next(&pos->rb);
1833                         if (!node)
1834                                 pos = NULL;
1835                         else
1836                                 pos = rb_to_kn(node);
1837                 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1838         }
1839         return pos;
1840 }
1841
1842 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1843 {
1844         struct dentry *dentry = file->f_path.dentry;
1845         struct kernfs_node *parent = kernfs_dentry_node(dentry);
1846         struct kernfs_node *pos = file->private_data;
1847         struct kernfs_root *root;
1848         const void *ns = NULL;
1849
1850         if (!dir_emit_dots(file, ctx))
1851                 return 0;
1852
1853         root = kernfs_root(parent);
1854         down_read(&root->kernfs_rwsem);
1855
1856         if (kernfs_ns_enabled(parent))
1857                 ns = kernfs_info(dentry->d_sb)->ns;
1858
1859         for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1860              pos;
1861              pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1862                 const char *name = pos->name;
1863                 unsigned int type = fs_umode_to_dtype(pos->mode);
1864                 int len = strlen(name);
1865                 ino_t ino = kernfs_ino(pos);
1866
1867                 ctx->pos = pos->hash;
1868                 file->private_data = pos;
1869                 kernfs_get(pos);
1870
1871                 up_read(&root->kernfs_rwsem);
1872                 if (!dir_emit(ctx, name, len, ino, type))
1873                         return 0;
1874                 down_read(&root->kernfs_rwsem);
1875         }
1876         up_read(&root->kernfs_rwsem);
1877         file->private_data = NULL;
1878         ctx->pos = INT_MAX;
1879         return 0;
1880 }
1881
1882 const struct file_operations kernfs_dir_fops = {
1883         .read           = generic_read_dir,
1884         .iterate_shared = kernfs_fop_readdir,
1885         .release        = kernfs_dir_fop_release,
1886         .llseek         = generic_file_llseek,
1887 };