GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / jfs / jfs_dmap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  *   Portions Copyright (C) Tino Reichardt, 2012
5  */
6
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17
18 /*
19  *      SERIALIZATION of the Block Allocation Map.
20  *
21  *      the working state of the block allocation map is accessed in
22  *      two directions:
23  *
24  *      1) allocation and free requests that start at the dmap
25  *         level and move up through the dmap control pages (i.e.
26  *         the vast majority of requests).
27  *
28  *      2) allocation requests that start at dmap control page
29  *         level and work down towards the dmaps.
30  *
31  *      the serialization scheme used here is as follows.
32  *
33  *      requests which start at the bottom are serialized against each
34  *      other through buffers and each requests holds onto its buffers
35  *      as it works it way up from a single dmap to the required level
36  *      of dmap control page.
37  *      requests that start at the top are serialized against each other
38  *      and request that start from the bottom by the multiple read/single
39  *      write inode lock of the bmap inode. requests starting at the top
40  *      take this lock in write mode while request starting at the bottom
41  *      take the lock in read mode.  a single top-down request may proceed
42  *      exclusively while multiple bottoms-up requests may proceed
43  *      simultaneously (under the protection of busy buffers).
44  *
45  *      in addition to information found in dmaps and dmap control pages,
46  *      the working state of the block allocation map also includes read/
47  *      write information maintained in the bmap descriptor (i.e. total
48  *      free block count, allocation group level free block counts).
49  *      a single exclusive lock (BMAP_LOCK) is used to guard this information
50  *      in the face of multiple-bottoms up requests.
51  *      (lock ordering: IREAD_LOCK, BMAP_LOCK);
52  *
53  *      accesses to the persistent state of the block allocation map (limited
54  *      to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55  */
56
57 #define BMAP_LOCK_INIT(bmp)     mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp)          mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp)        mutex_unlock(&bmp->db_bmaplock)
60
61 /*
62  * forward references
63  */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65                         int nblocks);
66 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
67 static int dbBackSplit(dmtree_t * tp, int leafno);
68 static int dbJoin(dmtree_t * tp, int leafno, int newval);
69 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71                     int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74                        int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76                        int nblocks,
77                        int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79                        int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81                           int l2nb,
82                           s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84                      s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86                       s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92                       int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94                       int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102                          int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108
109 /*
110  *      buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118         3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135
136 /*
137  * NAME:        dbMount()
138  *
139  * FUNCTION:    initializate the block allocation map.
140  *
141  *              memory is allocated for the in-core bmap descriptor and
142  *              the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *      ipbmap  - pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *      0       - success
149  *      -ENOMEM - insufficient memory
150  *      -EIO    - i/o error
151  *      -EINVAL - wrong bmap data
152  */
153 int dbMount(struct inode *ipbmap)
154 {
155         struct bmap *bmp;
156         struct dbmap_disk *dbmp_le;
157         struct metapage *mp;
158         int i;
159
160         /*
161          * allocate/initialize the in-memory bmap descriptor
162          */
163         /* allocate memory for the in-memory bmap descriptor */
164         bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165         if (bmp == NULL)
166                 return -ENOMEM;
167
168         /* read the on-disk bmap descriptor. */
169         mp = read_metapage(ipbmap,
170                            BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171                            PSIZE, 0);
172         if (mp == NULL) {
173                 kfree(bmp);
174                 return -EIO;
175         }
176
177         /* copy the on-disk bmap descriptor to its in-memory version. */
178         dbmp_le = (struct dbmap_disk *) mp->data;
179         bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180         bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181         bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182         bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183         if (!bmp->db_numag) {
184                 release_metapage(mp);
185                 kfree(bmp);
186                 return -EINVAL;
187         }
188
189         bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
190         bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
191         bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
192         bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
193         bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
194         bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
195         bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
196         bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
197         for (i = 0; i < MAXAG; i++)
198                 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
199         bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
200         bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
201
202         /* release the buffer. */
203         release_metapage(mp);
204
205         /* bind the bmap inode and the bmap descriptor to each other. */
206         bmp->db_ipbmap = ipbmap;
207         JFS_SBI(ipbmap->i_sb)->bmap = bmp;
208
209         memset(bmp->db_active, 0, sizeof(bmp->db_active));
210
211         /*
212          * allocate/initialize the bmap lock
213          */
214         BMAP_LOCK_INIT(bmp);
215
216         return (0);
217 }
218
219
220 /*
221  * NAME:        dbUnmount()
222  *
223  * FUNCTION:    terminate the block allocation map in preparation for
224  *              file system unmount.
225  *
226  *              the in-core bmap descriptor is written to disk and
227  *              the memory for this descriptor is freed.
228  *
229  * PARAMETERS:
230  *      ipbmap  - pointer to in-core inode for the block map.
231  *
232  * RETURN VALUES:
233  *      0       - success
234  *      -EIO    - i/o error
235  */
236 int dbUnmount(struct inode *ipbmap, int mounterror)
237 {
238         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
239
240         if (!(mounterror || isReadOnly(ipbmap)))
241                 dbSync(ipbmap);
242
243         /*
244          * Invalidate the page cache buffers
245          */
246         truncate_inode_pages(ipbmap->i_mapping, 0);
247
248         /* free the memory for the in-memory bmap. */
249         kfree(bmp);
250
251         return (0);
252 }
253
254 /*
255  *      dbSync()
256  */
257 int dbSync(struct inode *ipbmap)
258 {
259         struct dbmap_disk *dbmp_le;
260         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
261         struct metapage *mp;
262         int i;
263
264         /*
265          * write bmap global control page
266          */
267         /* get the buffer for the on-disk bmap descriptor. */
268         mp = read_metapage(ipbmap,
269                            BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
270                            PSIZE, 0);
271         if (mp == NULL) {
272                 jfs_err("dbSync: read_metapage failed!");
273                 return -EIO;
274         }
275         /* copy the in-memory version of the bmap to the on-disk version */
276         dbmp_le = (struct dbmap_disk *) mp->data;
277         dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
278         dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
279         dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
280         dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
281         dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
282         dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
283         dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
284         dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
285         dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
286         dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
287         dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
288         dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
289         for (i = 0; i < MAXAG; i++)
290                 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
291         dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
292         dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
293
294         /* write the buffer */
295         write_metapage(mp);
296
297         /*
298          * write out dirty pages of bmap
299          */
300         filemap_write_and_wait(ipbmap->i_mapping);
301
302         diWriteSpecial(ipbmap, 0);
303
304         return (0);
305 }
306
307 /*
308  * NAME:        dbFree()
309  *
310  * FUNCTION:    free the specified block range from the working block
311  *              allocation map.
312  *
313  *              the blocks will be free from the working map one dmap
314  *              at a time.
315  *
316  * PARAMETERS:
317  *      ip      - pointer to in-core inode;
318  *      blkno   - starting block number to be freed.
319  *      nblocks - number of blocks to be freed.
320  *
321  * RETURN VALUES:
322  *      0       - success
323  *      -EIO    - i/o error
324  */
325 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
326 {
327         struct metapage *mp;
328         struct dmap *dp;
329         int nb, rc;
330         s64 lblkno, rem;
331         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
332         struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
333         struct super_block *sb = ipbmap->i_sb;
334
335         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
336
337         /* block to be freed better be within the mapsize. */
338         if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
339                 IREAD_UNLOCK(ipbmap);
340                 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
341                        (unsigned long long) blkno,
342                        (unsigned long long) nblocks);
343                 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
344                 return -EIO;
345         }
346
347         /**
348          * TRIM the blocks, when mounted with discard option
349          */
350         if (JFS_SBI(sb)->flag & JFS_DISCARD)
351                 if (JFS_SBI(sb)->minblks_trim <= nblocks)
352                         jfs_issue_discard(ipbmap, blkno, nblocks);
353
354         /*
355          * free the blocks a dmap at a time.
356          */
357         mp = NULL;
358         for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
359                 /* release previous dmap if any */
360                 if (mp) {
361                         write_metapage(mp);
362                 }
363
364                 /* get the buffer for the current dmap. */
365                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
366                 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
367                 if (mp == NULL) {
368                         IREAD_UNLOCK(ipbmap);
369                         return -EIO;
370                 }
371                 dp = (struct dmap *) mp->data;
372
373                 /* determine the number of blocks to be freed from
374                  * this dmap.
375                  */
376                 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
377
378                 /* free the blocks. */
379                 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
380                         jfs_error(ip->i_sb, "error in block map\n");
381                         release_metapage(mp);
382                         IREAD_UNLOCK(ipbmap);
383                         return (rc);
384                 }
385         }
386
387         /* write the last buffer. */
388         if (mp)
389                 write_metapage(mp);
390
391         IREAD_UNLOCK(ipbmap);
392
393         return (0);
394 }
395
396
397 /*
398  * NAME:        dbUpdatePMap()
399  *
400  * FUNCTION:    update the allocation state (free or allocate) of the
401  *              specified block range in the persistent block allocation map.
402  *
403  *              the blocks will be updated in the persistent map one
404  *              dmap at a time.
405  *
406  * PARAMETERS:
407  *      ipbmap  - pointer to in-core inode for the block map.
408  *      free    - 'true' if block range is to be freed from the persistent
409  *                map; 'false' if it is to be allocated.
410  *      blkno   - starting block number of the range.
411  *      nblocks - number of contiguous blocks in the range.
412  *      tblk    - transaction block;
413  *
414  * RETURN VALUES:
415  *      0       - success
416  *      -EIO    - i/o error
417  */
418 int
419 dbUpdatePMap(struct inode *ipbmap,
420              int free, s64 blkno, s64 nblocks, struct tblock * tblk)
421 {
422         int nblks, dbitno, wbitno, rbits;
423         int word, nbits, nwords;
424         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
425         s64 lblkno, rem, lastlblkno;
426         u32 mask;
427         struct dmap *dp;
428         struct metapage *mp;
429         struct jfs_log *log;
430         int lsn, difft, diffp;
431         unsigned long flags;
432
433         /* the blocks better be within the mapsize. */
434         if (blkno + nblocks > bmp->db_mapsize) {
435                 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
436                        (unsigned long long) blkno,
437                        (unsigned long long) nblocks);
438                 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
439                 return -EIO;
440         }
441
442         /* compute delta of transaction lsn from log syncpt */
443         lsn = tblk->lsn;
444         log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
445         logdiff(difft, lsn, log);
446
447         /*
448          * update the block state a dmap at a time.
449          */
450         mp = NULL;
451         lastlblkno = 0;
452         for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
453                 /* get the buffer for the current dmap. */
454                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
455                 if (lblkno != lastlblkno) {
456                         if (mp) {
457                                 write_metapage(mp);
458                         }
459
460                         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
461                                            0);
462                         if (mp == NULL)
463                                 return -EIO;
464                         metapage_wait_for_io(mp);
465                 }
466                 dp = (struct dmap *) mp->data;
467
468                 /* determine the bit number and word within the dmap of
469                  * the starting block.  also determine how many blocks
470                  * are to be updated within this dmap.
471                  */
472                 dbitno = blkno & (BPERDMAP - 1);
473                 word = dbitno >> L2DBWORD;
474                 nblks = min(rem, (s64)BPERDMAP - dbitno);
475
476                 /* update the bits of the dmap words. the first and last
477                  * words may only have a subset of their bits updated. if
478                  * this is the case, we'll work against that word (i.e.
479                  * partial first and/or last) only in a single pass.  a
480                  * single pass will also be used to update all words that
481                  * are to have all their bits updated.
482                  */
483                 for (rbits = nblks; rbits > 0;
484                      rbits -= nbits, dbitno += nbits) {
485                         /* determine the bit number within the word and
486                          * the number of bits within the word.
487                          */
488                         wbitno = dbitno & (DBWORD - 1);
489                         nbits = min(rbits, DBWORD - wbitno);
490
491                         /* check if only part of the word is to be updated. */
492                         if (nbits < DBWORD) {
493                                 /* update (free or allocate) the bits
494                                  * in this word.
495                                  */
496                                 mask =
497                                     (ONES << (DBWORD - nbits) >> wbitno);
498                                 if (free)
499                                         dp->pmap[word] &=
500                                             cpu_to_le32(~mask);
501                                 else
502                                         dp->pmap[word] |=
503                                             cpu_to_le32(mask);
504
505                                 word += 1;
506                         } else {
507                                 /* one or more words are to have all
508                                  * their bits updated.  determine how
509                                  * many words and how many bits.
510                                  */
511                                 nwords = rbits >> L2DBWORD;
512                                 nbits = nwords << L2DBWORD;
513
514                                 /* update (free or allocate) the bits
515                                  * in these words.
516                                  */
517                                 if (free)
518                                         memset(&dp->pmap[word], 0,
519                                                nwords * 4);
520                                 else
521                                         memset(&dp->pmap[word], (int) ONES,
522                                                nwords * 4);
523
524                                 word += nwords;
525                         }
526                 }
527
528                 /*
529                  * update dmap lsn
530                  */
531                 if (lblkno == lastlblkno)
532                         continue;
533
534                 lastlblkno = lblkno;
535
536                 LOGSYNC_LOCK(log, flags);
537                 if (mp->lsn != 0) {
538                         /* inherit older/smaller lsn */
539                         logdiff(diffp, mp->lsn, log);
540                         if (difft < diffp) {
541                                 mp->lsn = lsn;
542
543                                 /* move bp after tblock in logsync list */
544                                 list_move(&mp->synclist, &tblk->synclist);
545                         }
546
547                         /* inherit younger/larger clsn */
548                         logdiff(difft, tblk->clsn, log);
549                         logdiff(diffp, mp->clsn, log);
550                         if (difft > diffp)
551                                 mp->clsn = tblk->clsn;
552                 } else {
553                         mp->log = log;
554                         mp->lsn = lsn;
555
556                         /* insert bp after tblock in logsync list */
557                         log->count++;
558                         list_add(&mp->synclist, &tblk->synclist);
559
560                         mp->clsn = tblk->clsn;
561                 }
562                 LOGSYNC_UNLOCK(log, flags);
563         }
564
565         /* write the last buffer. */
566         if (mp) {
567                 write_metapage(mp);
568         }
569
570         return (0);
571 }
572
573
574 /*
575  * NAME:        dbNextAG()
576  *
577  * FUNCTION:    find the preferred allocation group for new allocations.
578  *
579  *              Within the allocation groups, we maintain a preferred
580  *              allocation group which consists of a group with at least
581  *              average free space.  It is the preferred group that we target
582  *              new inode allocation towards.  The tie-in between inode
583  *              allocation and block allocation occurs as we allocate the
584  *              first (data) block of an inode and specify the inode (block)
585  *              as the allocation hint for this block.
586  *
587  *              We try to avoid having more than one open file growing in
588  *              an allocation group, as this will lead to fragmentation.
589  *              This differs from the old OS/2 method of trying to keep
590  *              empty ags around for large allocations.
591  *
592  * PARAMETERS:
593  *      ipbmap  - pointer to in-core inode for the block map.
594  *
595  * RETURN VALUES:
596  *      the preferred allocation group number.
597  */
598 int dbNextAG(struct inode *ipbmap)
599 {
600         s64 avgfree;
601         int agpref;
602         s64 hwm = 0;
603         int i;
604         int next_best = -1;
605         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
606
607         BMAP_LOCK(bmp);
608
609         /* determine the average number of free blocks within the ags. */
610         avgfree = (u32)bmp->db_nfree / bmp->db_numag;
611
612         /*
613          * if the current preferred ag does not have an active allocator
614          * and has at least average freespace, return it
615          */
616         agpref = bmp->db_agpref;
617         if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
618             (bmp->db_agfree[agpref] >= avgfree))
619                 goto unlock;
620
621         /* From the last preferred ag, find the next one with at least
622          * average free space.
623          */
624         for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
625                 if (agpref == bmp->db_numag)
626                         agpref = 0;
627
628                 if (atomic_read(&bmp->db_active[agpref]))
629                         /* open file is currently growing in this ag */
630                         continue;
631                 if (bmp->db_agfree[agpref] >= avgfree) {
632                         /* Return this one */
633                         bmp->db_agpref = agpref;
634                         goto unlock;
635                 } else if (bmp->db_agfree[agpref] > hwm) {
636                         /* Less than avg. freespace, but best so far */
637                         hwm = bmp->db_agfree[agpref];
638                         next_best = agpref;
639                 }
640         }
641
642         /*
643          * If no inactive ag was found with average freespace, use the
644          * next best
645          */
646         if (next_best != -1)
647                 bmp->db_agpref = next_best;
648         /* else leave db_agpref unchanged */
649 unlock:
650         BMAP_UNLOCK(bmp);
651
652         /* return the preferred group.
653          */
654         return (bmp->db_agpref);
655 }
656
657 /*
658  * NAME:        dbAlloc()
659  *
660  * FUNCTION:    attempt to allocate a specified number of contiguous free
661  *              blocks from the working allocation block map.
662  *
663  *              the block allocation policy uses hints and a multi-step
664  *              approach.
665  *
666  *              for allocation requests smaller than the number of blocks
667  *              per dmap, we first try to allocate the new blocks
668  *              immediately following the hint.  if these blocks are not
669  *              available, we try to allocate blocks near the hint.  if
670  *              no blocks near the hint are available, we next try to
671  *              allocate within the same dmap as contains the hint.
672  *
673  *              if no blocks are available in the dmap or the allocation
674  *              request is larger than the dmap size, we try to allocate
675  *              within the same allocation group as contains the hint. if
676  *              this does not succeed, we finally try to allocate anywhere
677  *              within the aggregate.
678  *
679  *              we also try to allocate anywhere within the aggregate
680  *              for allocation requests larger than the allocation group
681  *              size or requests that specify no hint value.
682  *
683  * PARAMETERS:
684  *      ip      - pointer to in-core inode;
685  *      hint    - allocation hint.
686  *      nblocks - number of contiguous blocks in the range.
687  *      results - on successful return, set to the starting block number
688  *                of the newly allocated contiguous range.
689  *
690  * RETURN VALUES:
691  *      0       - success
692  *      -ENOSPC - insufficient disk resources
693  *      -EIO    - i/o error
694  */
695 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
696 {
697         int rc, agno;
698         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
699         struct bmap *bmp;
700         struct metapage *mp;
701         s64 lblkno, blkno;
702         struct dmap *dp;
703         int l2nb;
704         s64 mapSize;
705         int writers;
706
707         /* assert that nblocks is valid */
708         assert(nblocks > 0);
709
710         /* get the log2 number of blocks to be allocated.
711          * if the number of blocks is not a log2 multiple,
712          * it will be rounded up to the next log2 multiple.
713          */
714         l2nb = BLKSTOL2(nblocks);
715
716         bmp = JFS_SBI(ip->i_sb)->bmap;
717
718         mapSize = bmp->db_mapsize;
719
720         /* the hint should be within the map */
721         if (hint >= mapSize) {
722                 jfs_error(ip->i_sb, "the hint is outside the map\n");
723                 return -EIO;
724         }
725
726         /* if the number of blocks to be allocated is greater than the
727          * allocation group size, try to allocate anywhere.
728          */
729         if (l2nb > bmp->db_agl2size) {
730                 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
731
732                 rc = dbAllocAny(bmp, nblocks, l2nb, results);
733
734                 goto write_unlock;
735         }
736
737         /*
738          * If no hint, let dbNextAG recommend an allocation group
739          */
740         if (hint == 0)
741                 goto pref_ag;
742
743         /* we would like to allocate close to the hint.  adjust the
744          * hint to the block following the hint since the allocators
745          * will start looking for free space starting at this point.
746          */
747         blkno = hint + 1;
748
749         if (blkno >= bmp->db_mapsize)
750                 goto pref_ag;
751
752         agno = blkno >> bmp->db_agl2size;
753
754         /* check if blkno crosses over into a new allocation group.
755          * if so, check if we should allow allocations within this
756          * allocation group.
757          */
758         if ((blkno & (bmp->db_agsize - 1)) == 0)
759                 /* check if the AG is currently being written to.
760                  * if so, call dbNextAG() to find a non-busy
761                  * AG with sufficient free space.
762                  */
763                 if (atomic_read(&bmp->db_active[agno]))
764                         goto pref_ag;
765
766         /* check if the allocation request size can be satisfied from a
767          * single dmap.  if so, try to allocate from the dmap containing
768          * the hint using a tiered strategy.
769          */
770         if (nblocks <= BPERDMAP) {
771                 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
772
773                 /* get the buffer for the dmap containing the hint.
774                  */
775                 rc = -EIO;
776                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
777                 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
778                 if (mp == NULL)
779                         goto read_unlock;
780
781                 dp = (struct dmap *) mp->data;
782
783                 /* first, try to satisfy the allocation request with the
784                  * blocks beginning at the hint.
785                  */
786                 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
787                     != -ENOSPC) {
788                         if (rc == 0) {
789                                 *results = blkno;
790                                 mark_metapage_dirty(mp);
791                         }
792
793                         release_metapage(mp);
794                         goto read_unlock;
795                 }
796
797                 writers = atomic_read(&bmp->db_active[agno]);
798                 if ((writers > 1) ||
799                     ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
800                         /*
801                          * Someone else is writing in this allocation
802                          * group.  To avoid fragmenting, try another ag
803                          */
804                         release_metapage(mp);
805                         IREAD_UNLOCK(ipbmap);
806                         goto pref_ag;
807                 }
808
809                 /* next, try to satisfy the allocation request with blocks
810                  * near the hint.
811                  */
812                 if ((rc =
813                      dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
814                     != -ENOSPC) {
815                         if (rc == 0)
816                                 mark_metapage_dirty(mp);
817
818                         release_metapage(mp);
819                         goto read_unlock;
820                 }
821
822                 /* try to satisfy the allocation request with blocks within
823                  * the same dmap as the hint.
824                  */
825                 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
826                     != -ENOSPC) {
827                         if (rc == 0)
828                                 mark_metapage_dirty(mp);
829
830                         release_metapage(mp);
831                         goto read_unlock;
832                 }
833
834                 release_metapage(mp);
835                 IREAD_UNLOCK(ipbmap);
836         }
837
838         /* try to satisfy the allocation request with blocks within
839          * the same allocation group as the hint.
840          */
841         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
842         if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
843                 goto write_unlock;
844
845         IWRITE_UNLOCK(ipbmap);
846
847
848       pref_ag:
849         /*
850          * Let dbNextAG recommend a preferred allocation group
851          */
852         agno = dbNextAG(ipbmap);
853         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
854
855         /* Try to allocate within this allocation group.  if that fails, try to
856          * allocate anywhere in the map.
857          */
858         if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
859                 rc = dbAllocAny(bmp, nblocks, l2nb, results);
860
861       write_unlock:
862         IWRITE_UNLOCK(ipbmap);
863
864         return (rc);
865
866       read_unlock:
867         IREAD_UNLOCK(ipbmap);
868
869         return (rc);
870 }
871
872 /*
873  * NAME:        dbReAlloc()
874  *
875  * FUNCTION:    attempt to extend a current allocation by a specified
876  *              number of blocks.
877  *
878  *              this routine attempts to satisfy the allocation request
879  *              by first trying to extend the existing allocation in
880  *              place by allocating the additional blocks as the blocks
881  *              immediately following the current allocation.  if these
882  *              blocks are not available, this routine will attempt to
883  *              allocate a new set of contiguous blocks large enough
884  *              to cover the existing allocation plus the additional
885  *              number of blocks required.
886  *
887  * PARAMETERS:
888  *      ip          -  pointer to in-core inode requiring allocation.
889  *      blkno       -  starting block of the current allocation.
890  *      nblocks     -  number of contiguous blocks within the current
891  *                     allocation.
892  *      addnblocks  -  number of blocks to add to the allocation.
893  *      results -      on successful return, set to the starting block number
894  *                     of the existing allocation if the existing allocation
895  *                     was extended in place or to a newly allocated contiguous
896  *                     range if the existing allocation could not be extended
897  *                     in place.
898  *
899  * RETURN VALUES:
900  *      0       - success
901  *      -ENOSPC - insufficient disk resources
902  *      -EIO    - i/o error
903  */
904 int
905 dbReAlloc(struct inode *ip,
906           s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
907 {
908         int rc;
909
910         /* try to extend the allocation in place.
911          */
912         if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
913                 *results = blkno;
914                 return (0);
915         } else {
916                 if (rc != -ENOSPC)
917                         return (rc);
918         }
919
920         /* could not extend the allocation in place, so allocate a
921          * new set of blocks for the entire request (i.e. try to get
922          * a range of contiguous blocks large enough to cover the
923          * existing allocation plus the additional blocks.)
924          */
925         return (dbAlloc
926                 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
927 }
928
929
930 /*
931  * NAME:        dbExtend()
932  *
933  * FUNCTION:    attempt to extend a current allocation by a specified
934  *              number of blocks.
935  *
936  *              this routine attempts to satisfy the allocation request
937  *              by first trying to extend the existing allocation in
938  *              place by allocating the additional blocks as the blocks
939  *              immediately following the current allocation.
940  *
941  * PARAMETERS:
942  *      ip          -  pointer to in-core inode requiring allocation.
943  *      blkno       -  starting block of the current allocation.
944  *      nblocks     -  number of contiguous blocks within the current
945  *                     allocation.
946  *      addnblocks  -  number of blocks to add to the allocation.
947  *
948  * RETURN VALUES:
949  *      0       - success
950  *      -ENOSPC - insufficient disk resources
951  *      -EIO    - i/o error
952  */
953 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
954 {
955         struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
956         s64 lblkno, lastblkno, extblkno;
957         uint rel_block;
958         struct metapage *mp;
959         struct dmap *dp;
960         int rc;
961         struct inode *ipbmap = sbi->ipbmap;
962         struct bmap *bmp;
963
964         /*
965          * We don't want a non-aligned extent to cross a page boundary
966          */
967         if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
968             (rel_block + nblocks + addnblocks > sbi->nbperpage))
969                 return -ENOSPC;
970
971         /* get the last block of the current allocation */
972         lastblkno = blkno + nblocks - 1;
973
974         /* determine the block number of the block following
975          * the existing allocation.
976          */
977         extblkno = lastblkno + 1;
978
979         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
980
981         /* better be within the file system */
982         bmp = sbi->bmap;
983         if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
984                 IREAD_UNLOCK(ipbmap);
985                 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
986                 return -EIO;
987         }
988
989         /* we'll attempt to extend the current allocation in place by
990          * allocating the additional blocks as the blocks immediately
991          * following the current allocation.  we only try to extend the
992          * current allocation in place if the number of additional blocks
993          * can fit into a dmap, the last block of the current allocation
994          * is not the last block of the file system, and the start of the
995          * inplace extension is not on an allocation group boundary.
996          */
997         if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
998             (extblkno & (bmp->db_agsize - 1)) == 0) {
999                 IREAD_UNLOCK(ipbmap);
1000                 return -ENOSPC;
1001         }
1002
1003         /* get the buffer for the dmap containing the first block
1004          * of the extension.
1005          */
1006         lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1007         mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1008         if (mp == NULL) {
1009                 IREAD_UNLOCK(ipbmap);
1010                 return -EIO;
1011         }
1012
1013         dp = (struct dmap *) mp->data;
1014
1015         /* try to allocate the blocks immediately following the
1016          * current allocation.
1017          */
1018         rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1019
1020         IREAD_UNLOCK(ipbmap);
1021
1022         /* were we successful ? */
1023         if (rc == 0)
1024                 write_metapage(mp);
1025         else
1026                 /* we were not successful */
1027                 release_metapage(mp);
1028
1029         return (rc);
1030 }
1031
1032
1033 /*
1034  * NAME:        dbAllocNext()
1035  *
1036  * FUNCTION:    attempt to allocate the blocks of the specified block
1037  *              range within a dmap.
1038  *
1039  * PARAMETERS:
1040  *      bmp     -  pointer to bmap descriptor
1041  *      dp      -  pointer to dmap.
1042  *      blkno   -  starting block number of the range.
1043  *      nblocks -  number of contiguous free blocks of the range.
1044  *
1045  * RETURN VALUES:
1046  *      0       - success
1047  *      -ENOSPC - insufficient disk resources
1048  *      -EIO    - i/o error
1049  *
1050  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1051  */
1052 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1053                        int nblocks)
1054 {
1055         int dbitno, word, rembits, nb, nwords, wbitno, nw;
1056         int l2size;
1057         s8 *leaf;
1058         u32 mask;
1059
1060         if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1061                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1062                 return -EIO;
1063         }
1064
1065         /* pick up a pointer to the leaves of the dmap tree.
1066          */
1067         leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1068
1069         /* determine the bit number and word within the dmap of the
1070          * starting block.
1071          */
1072         dbitno = blkno & (BPERDMAP - 1);
1073         word = dbitno >> L2DBWORD;
1074
1075         /* check if the specified block range is contained within
1076          * this dmap.
1077          */
1078         if (dbitno + nblocks > BPERDMAP)
1079                 return -ENOSPC;
1080
1081         /* check if the starting leaf indicates that anything
1082          * is free.
1083          */
1084         if (leaf[word] == NOFREE)
1085                 return -ENOSPC;
1086
1087         /* check the dmaps words corresponding to block range to see
1088          * if the block range is free.  not all bits of the first and
1089          * last words may be contained within the block range.  if this
1090          * is the case, we'll work against those words (i.e. partial first
1091          * and/or last) on an individual basis (a single pass) and examine
1092          * the actual bits to determine if they are free.  a single pass
1093          * will be used for all dmap words fully contained within the
1094          * specified range.  within this pass, the leaves of the dmap
1095          * tree will be examined to determine if the blocks are free. a
1096          * single leaf may describe the free space of multiple dmap
1097          * words, so we may visit only a subset of the actual leaves
1098          * corresponding to the dmap words of the block range.
1099          */
1100         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1101                 /* determine the bit number within the word and
1102                  * the number of bits within the word.
1103                  */
1104                 wbitno = dbitno & (DBWORD - 1);
1105                 nb = min(rembits, DBWORD - wbitno);
1106
1107                 /* check if only part of the word is to be examined.
1108                  */
1109                 if (nb < DBWORD) {
1110                         /* check if the bits are free.
1111                          */
1112                         mask = (ONES << (DBWORD - nb) >> wbitno);
1113                         if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1114                                 return -ENOSPC;
1115
1116                         word += 1;
1117                 } else {
1118                         /* one or more dmap words are fully contained
1119                          * within the block range.  determine how many
1120                          * words and how many bits.
1121                          */
1122                         nwords = rembits >> L2DBWORD;
1123                         nb = nwords << L2DBWORD;
1124
1125                         /* now examine the appropriate leaves to determine
1126                          * if the blocks are free.
1127                          */
1128                         while (nwords > 0) {
1129                                 /* does the leaf describe any free space ?
1130                                  */
1131                                 if (leaf[word] < BUDMIN)
1132                                         return -ENOSPC;
1133
1134                                 /* determine the l2 number of bits provided
1135                                  * by this leaf.
1136                                  */
1137                                 l2size =
1138                                     min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1139
1140                                 /* determine how many words were handled.
1141                                  */
1142                                 nw = BUDSIZE(l2size, BUDMIN);
1143
1144                                 nwords -= nw;
1145                                 word += nw;
1146                         }
1147                 }
1148         }
1149
1150         /* allocate the blocks.
1151          */
1152         return (dbAllocDmap(bmp, dp, blkno, nblocks));
1153 }
1154
1155
1156 /*
1157  * NAME:        dbAllocNear()
1158  *
1159  * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1160  *              a specified block (hint) within a dmap.
1161  *
1162  *              starting with the dmap leaf that covers the hint, we'll
1163  *              check the next four contiguous leaves for sufficient free
1164  *              space.  if sufficient free space is found, we'll allocate
1165  *              the desired free space.
1166  *
1167  * PARAMETERS:
1168  *      bmp     -  pointer to bmap descriptor
1169  *      dp      -  pointer to dmap.
1170  *      blkno   -  block number to allocate near.
1171  *      nblocks -  actual number of contiguous free blocks desired.
1172  *      l2nb    -  log2 number of contiguous free blocks desired.
1173  *      results -  on successful return, set to the starting block number
1174  *                 of the newly allocated range.
1175  *
1176  * RETURN VALUES:
1177  *      0       - success
1178  *      -ENOSPC - insufficient disk resources
1179  *      -EIO    - i/o error
1180  *
1181  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1182  */
1183 static int
1184 dbAllocNear(struct bmap * bmp,
1185             struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1186 {
1187         int word, lword, rc;
1188         s8 *leaf;
1189
1190         if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1191                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1192                 return -EIO;
1193         }
1194
1195         leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1196
1197         /* determine the word within the dmap that holds the hint
1198          * (i.e. blkno).  also, determine the last word in the dmap
1199          * that we'll include in our examination.
1200          */
1201         word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1202         lword = min(word + 4, LPERDMAP);
1203
1204         /* examine the leaves for sufficient free space.
1205          */
1206         for (; word < lword; word++) {
1207                 /* does the leaf describe sufficient free space ?
1208                  */
1209                 if (leaf[word] < l2nb)
1210                         continue;
1211
1212                 /* determine the block number within the file system
1213                  * of the first block described by this dmap word.
1214                  */
1215                 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1216
1217                 /* if not all bits of the dmap word are free, get the
1218                  * starting bit number within the dmap word of the required
1219                  * string of free bits and adjust the block number with the
1220                  * value.
1221                  */
1222                 if (leaf[word] < BUDMIN)
1223                         blkno +=
1224                             dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1225
1226                 /* allocate the blocks.
1227                  */
1228                 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1229                         *results = blkno;
1230
1231                 return (rc);
1232         }
1233
1234         return -ENOSPC;
1235 }
1236
1237
1238 /*
1239  * NAME:        dbAllocAG()
1240  *
1241  * FUNCTION:    attempt to allocate the specified number of contiguous
1242  *              free blocks within the specified allocation group.
1243  *
1244  *              unless the allocation group size is equal to the number
1245  *              of blocks per dmap, the dmap control pages will be used to
1246  *              find the required free space, if available.  we start the
1247  *              search at the highest dmap control page level which
1248  *              distinctly describes the allocation group's free space
1249  *              (i.e. the highest level at which the allocation group's
1250  *              free space is not mixed in with that of any other group).
1251  *              in addition, we start the search within this level at a
1252  *              height of the dmapctl dmtree at which the nodes distinctly
1253  *              describe the allocation group's free space.  at this height,
1254  *              the allocation group's free space may be represented by 1
1255  *              or two sub-trees, depending on the allocation group size.
1256  *              we search the top nodes of these subtrees left to right for
1257  *              sufficient free space.  if sufficient free space is found,
1258  *              the subtree is searched to find the leftmost leaf that
1259  *              has free space.  once we have made it to the leaf, we
1260  *              move the search to the next lower level dmap control page
1261  *              corresponding to this leaf.  we continue down the dmap control
1262  *              pages until we find the dmap that contains or starts the
1263  *              sufficient free space and we allocate at this dmap.
1264  *
1265  *              if the allocation group size is equal to the dmap size,
1266  *              we'll start at the dmap corresponding to the allocation
1267  *              group and attempt the allocation at this level.
1268  *
1269  *              the dmap control page search is also not performed if the
1270  *              allocation group is completely free and we go to the first
1271  *              dmap of the allocation group to do the allocation.  this is
1272  *              done because the allocation group may be part (not the first
1273  *              part) of a larger binary buddy system, causing the dmap
1274  *              control pages to indicate no free space (NOFREE) within
1275  *              the allocation group.
1276  *
1277  * PARAMETERS:
1278  *      bmp     -  pointer to bmap descriptor
1279  *      agno    - allocation group number.
1280  *      nblocks -  actual number of contiguous free blocks desired.
1281  *      l2nb    -  log2 number of contiguous free blocks desired.
1282  *      results -  on successful return, set to the starting block number
1283  *                 of the newly allocated range.
1284  *
1285  * RETURN VALUES:
1286  *      0       - success
1287  *      -ENOSPC - insufficient disk resources
1288  *      -EIO    - i/o error
1289  *
1290  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1291  */
1292 static int
1293 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1294 {
1295         struct metapage *mp;
1296         struct dmapctl *dcp;
1297         int rc, ti, i, k, m, n, agperlev;
1298         s64 blkno, lblkno;
1299         int budmin;
1300
1301         /* allocation request should not be for more than the
1302          * allocation group size.
1303          */
1304         if (l2nb > bmp->db_agl2size) {
1305                 jfs_error(bmp->db_ipbmap->i_sb,
1306                           "allocation request is larger than the allocation group size\n");
1307                 return -EIO;
1308         }
1309
1310         /* determine the starting block number of the allocation
1311          * group.
1312          */
1313         blkno = (s64) agno << bmp->db_agl2size;
1314
1315         /* check if the allocation group size is the minimum allocation
1316          * group size or if the allocation group is completely free. if
1317          * the allocation group size is the minimum size of BPERDMAP (i.e.
1318          * 1 dmap), there is no need to search the dmap control page (below)
1319          * that fully describes the allocation group since the allocation
1320          * group is already fully described by a dmap.  in this case, we
1321          * just call dbAllocCtl() to search the dmap tree and allocate the
1322          * required space if available.
1323          *
1324          * if the allocation group is completely free, dbAllocCtl() is
1325          * also called to allocate the required space.  this is done for
1326          * two reasons.  first, it makes no sense searching the dmap control
1327          * pages for free space when we know that free space exists.  second,
1328          * the dmap control pages may indicate that the allocation group
1329          * has no free space if the allocation group is part (not the first
1330          * part) of a larger binary buddy system.
1331          */
1332         if (bmp->db_agsize == BPERDMAP
1333             || bmp->db_agfree[agno] == bmp->db_agsize) {
1334                 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1335                 if ((rc == -ENOSPC) &&
1336                     (bmp->db_agfree[agno] == bmp->db_agsize)) {
1337                         printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1338                                (unsigned long long) blkno,
1339                                (unsigned long long) nblocks);
1340                         jfs_error(bmp->db_ipbmap->i_sb,
1341                                   "dbAllocCtl failed in free AG\n");
1342                 }
1343                 return (rc);
1344         }
1345
1346         /* the buffer for the dmap control page that fully describes the
1347          * allocation group.
1348          */
1349         lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1350         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1351         if (mp == NULL)
1352                 return -EIO;
1353         dcp = (struct dmapctl *) mp->data;
1354         budmin = dcp->budmin;
1355
1356         if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1357                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1358                 release_metapage(mp);
1359                 return -EIO;
1360         }
1361
1362         /* search the subtree(s) of the dmap control page that describes
1363          * the allocation group, looking for sufficient free space.  to begin,
1364          * determine how many allocation groups are represented in a dmap
1365          * control page at the control page level (i.e. L0, L1, L2) that
1366          * fully describes an allocation group. next, determine the starting
1367          * tree index of this allocation group within the control page.
1368          */
1369         agperlev =
1370             (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1371         ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1372
1373         /* dmap control page trees fan-out by 4 and a single allocation
1374          * group may be described by 1 or 2 subtrees within the ag level
1375          * dmap control page, depending upon the ag size. examine the ag's
1376          * subtrees for sufficient free space, starting with the leftmost
1377          * subtree.
1378          */
1379         for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1380                 /* is there sufficient free space ?
1381                  */
1382                 if (l2nb > dcp->stree[ti])
1383                         continue;
1384
1385                 /* sufficient free space found in a subtree. now search down
1386                  * the subtree to find the leftmost leaf that describes this
1387                  * free space.
1388                  */
1389                 for (k = bmp->db_agheight; k > 0; k--) {
1390                         for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1391                                 if (l2nb <= dcp->stree[m + n]) {
1392                                         ti = m + n;
1393                                         break;
1394                                 }
1395                         }
1396                         if (n == 4) {
1397                                 jfs_error(bmp->db_ipbmap->i_sb,
1398                                           "failed descending stree\n");
1399                                 release_metapage(mp);
1400                                 return -EIO;
1401                         }
1402                 }
1403
1404                 /* determine the block number within the file system
1405                  * that corresponds to this leaf.
1406                  */
1407                 if (bmp->db_aglevel == 2)
1408                         blkno = 0;
1409                 else if (bmp->db_aglevel == 1)
1410                         blkno &= ~(MAXL1SIZE - 1);
1411                 else            /* bmp->db_aglevel == 0 */
1412                         blkno &= ~(MAXL0SIZE - 1);
1413
1414                 blkno +=
1415                     ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1416
1417                 /* release the buffer in preparation for going down
1418                  * the next level of dmap control pages.
1419                  */
1420                 release_metapage(mp);
1421
1422                 /* check if we need to continue to search down the lower
1423                  * level dmap control pages.  we need to if the number of
1424                  * blocks required is less than maximum number of blocks
1425                  * described at the next lower level.
1426                  */
1427                 if (l2nb < budmin) {
1428
1429                         /* search the lower level dmap control pages to get
1430                          * the starting block number of the dmap that
1431                          * contains or starts off the free space.
1432                          */
1433                         if ((rc =
1434                              dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1435                                        &blkno))) {
1436                                 if (rc == -ENOSPC) {
1437                                         jfs_error(bmp->db_ipbmap->i_sb,
1438                                                   "control page inconsistent\n");
1439                                         return -EIO;
1440                                 }
1441                                 return (rc);
1442                         }
1443                 }
1444
1445                 /* allocate the blocks.
1446                  */
1447                 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1448                 if (rc == -ENOSPC) {
1449                         jfs_error(bmp->db_ipbmap->i_sb,
1450                                   "unable to allocate blocks\n");
1451                         rc = -EIO;
1452                 }
1453                 return (rc);
1454         }
1455
1456         /* no space in the allocation group.  release the buffer and
1457          * return -ENOSPC.
1458          */
1459         release_metapage(mp);
1460
1461         return -ENOSPC;
1462 }
1463
1464
1465 /*
1466  * NAME:        dbAllocAny()
1467  *
1468  * FUNCTION:    attempt to allocate the specified number of contiguous
1469  *              free blocks anywhere in the file system.
1470  *
1471  *              dbAllocAny() attempts to find the sufficient free space by
1472  *              searching down the dmap control pages, starting with the
1473  *              highest level (i.e. L0, L1, L2) control page.  if free space
1474  *              large enough to satisfy the desired free space is found, the
1475  *              desired free space is allocated.
1476  *
1477  * PARAMETERS:
1478  *      bmp     -  pointer to bmap descriptor
1479  *      nblocks  -  actual number of contiguous free blocks desired.
1480  *      l2nb     -  log2 number of contiguous free blocks desired.
1481  *      results -  on successful return, set to the starting block number
1482  *                 of the newly allocated range.
1483  *
1484  * RETURN VALUES:
1485  *      0       - success
1486  *      -ENOSPC - insufficient disk resources
1487  *      -EIO    - i/o error
1488  *
1489  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1490  */
1491 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1492 {
1493         int rc;
1494         s64 blkno = 0;
1495
1496         /* starting with the top level dmap control page, search
1497          * down the dmap control levels for sufficient free space.
1498          * if free space is found, dbFindCtl() returns the starting
1499          * block number of the dmap that contains or starts off the
1500          * range of free space.
1501          */
1502         if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1503                 return (rc);
1504
1505         /* allocate the blocks.
1506          */
1507         rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1508         if (rc == -ENOSPC) {
1509                 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1510                 return -EIO;
1511         }
1512         return (rc);
1513 }
1514
1515
1516 /*
1517  * NAME:        dbDiscardAG()
1518  *
1519  * FUNCTION:    attempt to discard (TRIM) all free blocks of specific AG
1520  *
1521  *              algorithm:
1522  *              1) allocate blocks, as large as possible and save them
1523  *                 while holding IWRITE_LOCK on ipbmap
1524  *              2) trim all these saved block/length values
1525  *              3) mark the blocks free again
1526  *
1527  *              benefit:
1528  *              - we work only on one ag at some time, minimizing how long we
1529  *                need to lock ipbmap
1530  *              - reading / writing the fs is possible most time, even on
1531  *                trimming
1532  *
1533  *              downside:
1534  *              - we write two times to the dmapctl and dmap pages
1535  *              - but for me, this seems the best way, better ideas?
1536  *              /TR 2012
1537  *
1538  * PARAMETERS:
1539  *      ip      - pointer to in-core inode
1540  *      agno    - ag to trim
1541  *      minlen  - minimum value of contiguous blocks
1542  *
1543  * RETURN VALUES:
1544  *      s64     - actual number of blocks trimmed
1545  */
1546 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1547 {
1548         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1549         struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1550         s64 nblocks, blkno;
1551         u64 trimmed = 0;
1552         int rc, l2nb;
1553         struct super_block *sb = ipbmap->i_sb;
1554
1555         struct range2trim {
1556                 u64 blkno;
1557                 u64 nblocks;
1558         } *totrim, *tt;
1559
1560         /* max blkno / nblocks pairs to trim */
1561         int count = 0, range_cnt;
1562         u64 max_ranges;
1563
1564         /* prevent others from writing new stuff here, while trimming */
1565         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1566
1567         nblocks = bmp->db_agfree[agno];
1568         max_ranges = nblocks;
1569         do_div(max_ranges, minlen);
1570         range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1571         totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1572         if (totrim == NULL) {
1573                 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1574                 IWRITE_UNLOCK(ipbmap);
1575                 return 0;
1576         }
1577
1578         tt = totrim;
1579         while (nblocks >= minlen) {
1580                 l2nb = BLKSTOL2(nblocks);
1581
1582                 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1583                 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1584                 if (rc == 0) {
1585                         tt->blkno = blkno;
1586                         tt->nblocks = nblocks;
1587                         tt++; count++;
1588
1589                         /* the whole ag is free, trim now */
1590                         if (bmp->db_agfree[agno] == 0)
1591                                 break;
1592
1593                         /* give a hint for the next while */
1594                         nblocks = bmp->db_agfree[agno];
1595                         continue;
1596                 } else if (rc == -ENOSPC) {
1597                         /* search for next smaller log2 block */
1598                         l2nb = BLKSTOL2(nblocks) - 1;
1599                         nblocks = 1LL << l2nb;
1600                 } else {
1601                         /* Trim any already allocated blocks */
1602                         jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1603                         break;
1604                 }
1605
1606                 /* check, if our trim array is full */
1607                 if (unlikely(count >= range_cnt - 1))
1608                         break;
1609         }
1610         IWRITE_UNLOCK(ipbmap);
1611
1612         tt->nblocks = 0; /* mark the current end */
1613         for (tt = totrim; tt->nblocks != 0; tt++) {
1614                 /* when mounted with online discard, dbFree() will
1615                  * call jfs_issue_discard() itself */
1616                 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1617                         jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1618                 dbFree(ip, tt->blkno, tt->nblocks);
1619                 trimmed += tt->nblocks;
1620         }
1621         kfree(totrim);
1622
1623         return trimmed;
1624 }
1625
1626 /*
1627  * NAME:        dbFindCtl()
1628  *
1629  * FUNCTION:    starting at a specified dmap control page level and block
1630  *              number, search down the dmap control levels for a range of
1631  *              contiguous free blocks large enough to satisfy an allocation
1632  *              request for the specified number of free blocks.
1633  *
1634  *              if sufficient contiguous free blocks are found, this routine
1635  *              returns the starting block number within a dmap page that
1636  *              contains or starts a range of contiqious free blocks that
1637  *              is sufficient in size.
1638  *
1639  * PARAMETERS:
1640  *      bmp     -  pointer to bmap descriptor
1641  *      level   -  starting dmap control page level.
1642  *      l2nb    -  log2 number of contiguous free blocks desired.
1643  *      *blkno  -  on entry, starting block number for conducting the search.
1644  *                 on successful return, the first block within a dmap page
1645  *                 that contains or starts a range of contiguous free blocks.
1646  *
1647  * RETURN VALUES:
1648  *      0       - success
1649  *      -ENOSPC - insufficient disk resources
1650  *      -EIO    - i/o error
1651  *
1652  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1653  */
1654 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1655 {
1656         int rc, leafidx, lev;
1657         s64 b, lblkno;
1658         struct dmapctl *dcp;
1659         int budmin;
1660         struct metapage *mp;
1661
1662         /* starting at the specified dmap control page level and block
1663          * number, search down the dmap control levels for the starting
1664          * block number of a dmap page that contains or starts off
1665          * sufficient free blocks.
1666          */
1667         for (lev = level, b = *blkno; lev >= 0; lev--) {
1668                 /* get the buffer of the dmap control page for the block
1669                  * number and level (i.e. L0, L1, L2).
1670                  */
1671                 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1672                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1673                 if (mp == NULL)
1674                         return -EIO;
1675                 dcp = (struct dmapctl *) mp->data;
1676                 budmin = dcp->budmin;
1677
1678                 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1679                         jfs_error(bmp->db_ipbmap->i_sb,
1680                                   "Corrupt dmapctl page\n");
1681                         release_metapage(mp);
1682                         return -EIO;
1683                 }
1684
1685                 /* search the tree within the dmap control page for
1686                  * sufficient free space.  if sufficient free space is found,
1687                  * dbFindLeaf() returns the index of the leaf at which
1688                  * free space was found.
1689                  */
1690                 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1691
1692                 /* release the buffer.
1693                  */
1694                 release_metapage(mp);
1695
1696                 /* space found ?
1697                  */
1698                 if (rc) {
1699                         if (lev != level) {
1700                                 jfs_error(bmp->db_ipbmap->i_sb,
1701                                           "dmap inconsistent\n");
1702                                 return -EIO;
1703                         }
1704                         return -ENOSPC;
1705                 }
1706
1707                 /* adjust the block number to reflect the location within
1708                  * the dmap control page (i.e. the leaf) at which free
1709                  * space was found.
1710                  */
1711                 b += (((s64) leafidx) << budmin);
1712
1713                 /* we stop the search at this dmap control page level if
1714                  * the number of blocks required is greater than or equal
1715                  * to the maximum number of blocks described at the next
1716                  * (lower) level.
1717                  */
1718                 if (l2nb >= budmin)
1719                         break;
1720         }
1721
1722         *blkno = b;
1723         return (0);
1724 }
1725
1726
1727 /*
1728  * NAME:        dbAllocCtl()
1729  *
1730  * FUNCTION:    attempt to allocate a specified number of contiguous
1731  *              blocks starting within a specific dmap.
1732  *
1733  *              this routine is called by higher level routines that search
1734  *              the dmap control pages above the actual dmaps for contiguous
1735  *              free space.  the result of successful searches by these
1736  *              routines are the starting block numbers within dmaps, with
1737  *              the dmaps themselves containing the desired contiguous free
1738  *              space or starting a contiguous free space of desired size
1739  *              that is made up of the blocks of one or more dmaps. these
1740  *              calls should not fail due to insufficent resources.
1741  *
1742  *              this routine is called in some cases where it is not known
1743  *              whether it will fail due to insufficient resources.  more
1744  *              specifically, this occurs when allocating from an allocation
1745  *              group whose size is equal to the number of blocks per dmap.
1746  *              in this case, the dmap control pages are not examined prior
1747  *              to calling this routine (to save pathlength) and the call
1748  *              might fail.
1749  *
1750  *              for a request size that fits within a dmap, this routine relies
1751  *              upon the dmap's dmtree to find the requested contiguous free
1752  *              space.  for request sizes that are larger than a dmap, the
1753  *              requested free space will start at the first block of the
1754  *              first dmap (i.e. blkno).
1755  *
1756  * PARAMETERS:
1757  *      bmp     -  pointer to bmap descriptor
1758  *      nblocks  -  actual number of contiguous free blocks to allocate.
1759  *      l2nb     -  log2 number of contiguous free blocks to allocate.
1760  *      blkno    -  starting block number of the dmap to start the allocation
1761  *                  from.
1762  *      results -  on successful return, set to the starting block number
1763  *                 of the newly allocated range.
1764  *
1765  * RETURN VALUES:
1766  *      0       - success
1767  *      -ENOSPC - insufficient disk resources
1768  *      -EIO    - i/o error
1769  *
1770  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1771  */
1772 static int
1773 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1774 {
1775         int rc, nb;
1776         s64 b, lblkno, n;
1777         struct metapage *mp;
1778         struct dmap *dp;
1779
1780         /* check if the allocation request is confined to a single dmap.
1781          */
1782         if (l2nb <= L2BPERDMAP) {
1783                 /* get the buffer for the dmap.
1784                  */
1785                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1786                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1787                 if (mp == NULL)
1788                         return -EIO;
1789                 dp = (struct dmap *) mp->data;
1790
1791                 /* try to allocate the blocks.
1792                  */
1793                 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1794                 if (rc == 0)
1795                         mark_metapage_dirty(mp);
1796
1797                 release_metapage(mp);
1798
1799                 return (rc);
1800         }
1801
1802         /* allocation request involving multiple dmaps. it must start on
1803          * a dmap boundary.
1804          */
1805         assert((blkno & (BPERDMAP - 1)) == 0);
1806
1807         /* allocate the blocks dmap by dmap.
1808          */
1809         for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1810                 /* get the buffer for the dmap.
1811                  */
1812                 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1813                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1814                 if (mp == NULL) {
1815                         rc = -EIO;
1816                         goto backout;
1817                 }
1818                 dp = (struct dmap *) mp->data;
1819
1820                 /* the dmap better be all free.
1821                  */
1822                 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1823                         release_metapage(mp);
1824                         jfs_error(bmp->db_ipbmap->i_sb,
1825                                   "the dmap is not all free\n");
1826                         rc = -EIO;
1827                         goto backout;
1828                 }
1829
1830                 /* determine how many blocks to allocate from this dmap.
1831                  */
1832                 nb = min_t(s64, n, BPERDMAP);
1833
1834                 /* allocate the blocks from the dmap.
1835                  */
1836                 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1837                         release_metapage(mp);
1838                         goto backout;
1839                 }
1840
1841                 /* write the buffer.
1842                  */
1843                 write_metapage(mp);
1844         }
1845
1846         /* set the results (starting block number) and return.
1847          */
1848         *results = blkno;
1849         return (0);
1850
1851         /* something failed in handling an allocation request involving
1852          * multiple dmaps.  we'll try to clean up by backing out any
1853          * allocation that has already happened for this request.  if
1854          * we fail in backing out the allocation, we'll mark the file
1855          * system to indicate that blocks have been leaked.
1856          */
1857       backout:
1858
1859         /* try to backout the allocations dmap by dmap.
1860          */
1861         for (n = nblocks - n, b = blkno; n > 0;
1862              n -= BPERDMAP, b += BPERDMAP) {
1863                 /* get the buffer for this dmap.
1864                  */
1865                 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1866                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1867                 if (mp == NULL) {
1868                         /* could not back out.  mark the file system
1869                          * to indicate that we have leaked blocks.
1870                          */
1871                         jfs_error(bmp->db_ipbmap->i_sb,
1872                                   "I/O Error: Block Leakage\n");
1873                         continue;
1874                 }
1875                 dp = (struct dmap *) mp->data;
1876
1877                 /* free the blocks is this dmap.
1878                  */
1879                 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1880                         /* could not back out.  mark the file system
1881                          * to indicate that we have leaked blocks.
1882                          */
1883                         release_metapage(mp);
1884                         jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1885                         continue;
1886                 }
1887
1888                 /* write the buffer.
1889                  */
1890                 write_metapage(mp);
1891         }
1892
1893         return (rc);
1894 }
1895
1896
1897 /*
1898  * NAME:        dbAllocDmapLev()
1899  *
1900  * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1901  *              from a specified dmap.
1902  *
1903  *              this routine checks if the contiguous blocks are available.
1904  *              if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1905  *              returned.
1906  *
1907  * PARAMETERS:
1908  *      mp      -  pointer to bmap descriptor
1909  *      dp      -  pointer to dmap to attempt to allocate blocks from.
1910  *      l2nb    -  log2 number of contiguous block desired.
1911  *      nblocks -  actual number of contiguous block desired.
1912  *      results -  on successful return, set to the starting block number
1913  *                 of the newly allocated range.
1914  *
1915  * RETURN VALUES:
1916  *      0       - success
1917  *      -ENOSPC - insufficient disk resources
1918  *      -EIO    - i/o error
1919  *
1920  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1921  *      IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1922  */
1923 static int
1924 dbAllocDmapLev(struct bmap * bmp,
1925                struct dmap * dp, int nblocks, int l2nb, s64 * results)
1926 {
1927         s64 blkno;
1928         int leafidx, rc;
1929
1930         /* can't be more than a dmaps worth of blocks */
1931         assert(l2nb <= L2BPERDMAP);
1932
1933         /* search the tree within the dmap page for sufficient
1934          * free space.  if sufficient free space is found, dbFindLeaf()
1935          * returns the index of the leaf at which free space was found.
1936          */
1937         if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1938                 return -ENOSPC;
1939
1940         /* determine the block number within the file system corresponding
1941          * to the leaf at which free space was found.
1942          */
1943         blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1944
1945         /* if not all bits of the dmap word are free, get the starting
1946          * bit number within the dmap word of the required string of free
1947          * bits and adjust the block number with this value.
1948          */
1949         if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1950                 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1951
1952         /* allocate the blocks */
1953         if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1954                 *results = blkno;
1955
1956         return (rc);
1957 }
1958
1959
1960 /*
1961  * NAME:        dbAllocDmap()
1962  *
1963  * FUNCTION:    adjust the disk allocation map to reflect the allocation
1964  *              of a specified block range within a dmap.
1965  *
1966  *              this routine allocates the specified blocks from the dmap
1967  *              through a call to dbAllocBits(). if the allocation of the
1968  *              block range causes the maximum string of free blocks within
1969  *              the dmap to change (i.e. the value of the root of the dmap's
1970  *              dmtree), this routine will cause this change to be reflected
1971  *              up through the appropriate levels of the dmap control pages
1972  *              by a call to dbAdjCtl() for the L0 dmap control page that
1973  *              covers this dmap.
1974  *
1975  * PARAMETERS:
1976  *      bmp     -  pointer to bmap descriptor
1977  *      dp      -  pointer to dmap to allocate the block range from.
1978  *      blkno   -  starting block number of the block to be allocated.
1979  *      nblocks -  number of blocks to be allocated.
1980  *
1981  * RETURN VALUES:
1982  *      0       - success
1983  *      -EIO    - i/o error
1984  *
1985  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1986  */
1987 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1988                        int nblocks)
1989 {
1990         s8 oldroot;
1991         int rc;
1992
1993         /* save the current value of the root (i.e. maximum free string)
1994          * of the dmap tree.
1995          */
1996         oldroot = dp->tree.stree[ROOT];
1997
1998         /* allocate the specified (blocks) bits */
1999         dbAllocBits(bmp, dp, blkno, nblocks);
2000
2001         /* if the root has not changed, done. */
2002         if (dp->tree.stree[ROOT] == oldroot)
2003                 return (0);
2004
2005         /* root changed. bubble the change up to the dmap control pages.
2006          * if the adjustment of the upper level control pages fails,
2007          * backout the bit allocation (thus making everything consistent).
2008          */
2009         if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2010                 dbFreeBits(bmp, dp, blkno, nblocks);
2011
2012         return (rc);
2013 }
2014
2015
2016 /*
2017  * NAME:        dbFreeDmap()
2018  *
2019  * FUNCTION:    adjust the disk allocation map to reflect the allocation
2020  *              of a specified block range within a dmap.
2021  *
2022  *              this routine frees the specified blocks from the dmap through
2023  *              a call to dbFreeBits(). if the deallocation of the block range
2024  *              causes the maximum string of free blocks within the dmap to
2025  *              change (i.e. the value of the root of the dmap's dmtree), this
2026  *              routine will cause this change to be reflected up through the
2027  *              appropriate levels of the dmap control pages by a call to
2028  *              dbAdjCtl() for the L0 dmap control page that covers this dmap.
2029  *
2030  * PARAMETERS:
2031  *      bmp     -  pointer to bmap descriptor
2032  *      dp      -  pointer to dmap to free the block range from.
2033  *      blkno   -  starting block number of the block to be freed.
2034  *      nblocks -  number of blocks to be freed.
2035  *
2036  * RETURN VALUES:
2037  *      0       - success
2038  *      -EIO    - i/o error
2039  *
2040  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2041  */
2042 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2043                       int nblocks)
2044 {
2045         s8 oldroot;
2046         int rc = 0, word;
2047
2048         /* save the current value of the root (i.e. maximum free string)
2049          * of the dmap tree.
2050          */
2051         oldroot = dp->tree.stree[ROOT];
2052
2053         /* free the specified (blocks) bits */
2054         rc = dbFreeBits(bmp, dp, blkno, nblocks);
2055
2056         /* if error or the root has not changed, done. */
2057         if (rc || (dp->tree.stree[ROOT] == oldroot))
2058                 return (rc);
2059
2060         /* root changed. bubble the change up to the dmap control pages.
2061          * if the adjustment of the upper level control pages fails,
2062          * backout the deallocation.
2063          */
2064         if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2065                 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2066
2067                 /* as part of backing out the deallocation, we will have
2068                  * to back split the dmap tree if the deallocation caused
2069                  * the freed blocks to become part of a larger binary buddy
2070                  * system.
2071                  */
2072                 if (dp->tree.stree[word] == NOFREE)
2073                         dbBackSplit((dmtree_t *) & dp->tree, word);
2074
2075                 dbAllocBits(bmp, dp, blkno, nblocks);
2076         }
2077
2078         return (rc);
2079 }
2080
2081
2082 /*
2083  * NAME:        dbAllocBits()
2084  *
2085  * FUNCTION:    allocate a specified block range from a dmap.
2086  *
2087  *              this routine updates the dmap to reflect the working
2088  *              state allocation of the specified block range. it directly
2089  *              updates the bits of the working map and causes the adjustment
2090  *              of the binary buddy system described by the dmap's dmtree
2091  *              leaves to reflect the bits allocated.  it also causes the
2092  *              dmap's dmtree, as a whole, to reflect the allocated range.
2093  *
2094  * PARAMETERS:
2095  *      bmp     -  pointer to bmap descriptor
2096  *      dp      -  pointer to dmap to allocate bits from.
2097  *      blkno   -  starting block number of the bits to be allocated.
2098  *      nblocks -  number of bits to be allocated.
2099  *
2100  * RETURN VALUES: none
2101  *
2102  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2103  */
2104 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2105                         int nblocks)
2106 {
2107         int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2108         dmtree_t *tp = (dmtree_t *) & dp->tree;
2109         int size;
2110         s8 *leaf;
2111
2112         /* pick up a pointer to the leaves of the dmap tree */
2113         leaf = dp->tree.stree + LEAFIND;
2114
2115         /* determine the bit number and word within the dmap of the
2116          * starting block.
2117          */
2118         dbitno = blkno & (BPERDMAP - 1);
2119         word = dbitno >> L2DBWORD;
2120
2121         /* block range better be within the dmap */
2122         assert(dbitno + nblocks <= BPERDMAP);
2123
2124         /* allocate the bits of the dmap's words corresponding to the block
2125          * range. not all bits of the first and last words may be contained
2126          * within the block range.  if this is the case, we'll work against
2127          * those words (i.e. partial first and/or last) on an individual basis
2128          * (a single pass), allocating the bits of interest by hand and
2129          * updating the leaf corresponding to the dmap word. a single pass
2130          * will be used for all dmap words fully contained within the
2131          * specified range.  within this pass, the bits of all fully contained
2132          * dmap words will be marked as free in a single shot and the leaves
2133          * will be updated. a single leaf may describe the free space of
2134          * multiple dmap words, so we may update only a subset of the actual
2135          * leaves corresponding to the dmap words of the block range.
2136          */
2137         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2138                 /* determine the bit number within the word and
2139                  * the number of bits within the word.
2140                  */
2141                 wbitno = dbitno & (DBWORD - 1);
2142                 nb = min(rembits, DBWORD - wbitno);
2143
2144                 /* check if only part of a word is to be allocated.
2145                  */
2146                 if (nb < DBWORD) {
2147                         /* allocate (set to 1) the appropriate bits within
2148                          * this dmap word.
2149                          */
2150                         dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2151                                                       >> wbitno);
2152
2153                         /* update the leaf for this dmap word. in addition
2154                          * to setting the leaf value to the binary buddy max
2155                          * of the updated dmap word, dbSplit() will split
2156                          * the binary system of the leaves if need be.
2157                          */
2158                         dbSplit(tp, word, BUDMIN,
2159                                 dbMaxBud((u8 *) & dp->wmap[word]));
2160
2161                         word += 1;
2162                 } else {
2163                         /* one or more dmap words are fully contained
2164                          * within the block range.  determine how many
2165                          * words and allocate (set to 1) the bits of these
2166                          * words.
2167                          */
2168                         nwords = rembits >> L2DBWORD;
2169                         memset(&dp->wmap[word], (int) ONES, nwords * 4);
2170
2171                         /* determine how many bits.
2172                          */
2173                         nb = nwords << L2DBWORD;
2174
2175                         /* now update the appropriate leaves to reflect
2176                          * the allocated words.
2177                          */
2178                         for (; nwords > 0; nwords -= nw) {
2179                                 if (leaf[word] < BUDMIN) {
2180                                         jfs_error(bmp->db_ipbmap->i_sb,
2181                                                   "leaf page corrupt\n");
2182                                         break;
2183                                 }
2184
2185                                 /* determine what the leaf value should be
2186                                  * updated to as the minimum of the l2 number
2187                                  * of bits being allocated and the l2 number
2188                                  * of bits currently described by this leaf.
2189                                  */
2190                                 size = min_t(int, leaf[word],
2191                                              NLSTOL2BSZ(nwords));
2192
2193                                 /* update the leaf to reflect the allocation.
2194                                  * in addition to setting the leaf value to
2195                                  * NOFREE, dbSplit() will split the binary
2196                                  * system of the leaves to reflect the current
2197                                  * allocation (size).
2198                                  */
2199                                 dbSplit(tp, word, size, NOFREE);
2200
2201                                 /* get the number of dmap words handled */
2202                                 nw = BUDSIZE(size, BUDMIN);
2203                                 word += nw;
2204                         }
2205                 }
2206         }
2207
2208         /* update the free count for this dmap */
2209         le32_add_cpu(&dp->nfree, -nblocks);
2210
2211         BMAP_LOCK(bmp);
2212
2213         /* if this allocation group is completely free,
2214          * update the maximum allocation group number if this allocation
2215          * group is the new max.
2216          */
2217         agno = blkno >> bmp->db_agl2size;
2218         if (agno > bmp->db_maxag)
2219                 bmp->db_maxag = agno;
2220
2221         /* update the free count for the allocation group and map */
2222         bmp->db_agfree[agno] -= nblocks;
2223         bmp->db_nfree -= nblocks;
2224
2225         BMAP_UNLOCK(bmp);
2226 }
2227
2228
2229 /*
2230  * NAME:        dbFreeBits()
2231  *
2232  * FUNCTION:    free a specified block range from a dmap.
2233  *
2234  *              this routine updates the dmap to reflect the working
2235  *              state allocation of the specified block range. it directly
2236  *              updates the bits of the working map and causes the adjustment
2237  *              of the binary buddy system described by the dmap's dmtree
2238  *              leaves to reflect the bits freed.  it also causes the dmap's
2239  *              dmtree, as a whole, to reflect the deallocated range.
2240  *
2241  * PARAMETERS:
2242  *      bmp     -  pointer to bmap descriptor
2243  *      dp      -  pointer to dmap to free bits from.
2244  *      blkno   -  starting block number of the bits to be freed.
2245  *      nblocks -  number of bits to be freed.
2246  *
2247  * RETURN VALUES: 0 for success
2248  *
2249  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2250  */
2251 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2252                        int nblocks)
2253 {
2254         int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2255         dmtree_t *tp = (dmtree_t *) & dp->tree;
2256         int rc = 0;
2257         int size;
2258
2259         /* determine the bit number and word within the dmap of the
2260          * starting block.
2261          */
2262         dbitno = blkno & (BPERDMAP - 1);
2263         word = dbitno >> L2DBWORD;
2264
2265         /* block range better be within the dmap.
2266          */
2267         assert(dbitno + nblocks <= BPERDMAP);
2268
2269         /* free the bits of the dmaps words corresponding to the block range.
2270          * not all bits of the first and last words may be contained within
2271          * the block range.  if this is the case, we'll work against those
2272          * words (i.e. partial first and/or last) on an individual basis
2273          * (a single pass), freeing the bits of interest by hand and updating
2274          * the leaf corresponding to the dmap word. a single pass will be used
2275          * for all dmap words fully contained within the specified range.
2276          * within this pass, the bits of all fully contained dmap words will
2277          * be marked as free in a single shot and the leaves will be updated. a
2278          * single leaf may describe the free space of multiple dmap words,
2279          * so we may update only a subset of the actual leaves corresponding
2280          * to the dmap words of the block range.
2281          *
2282          * dbJoin() is used to update leaf values and will join the binary
2283          * buddy system of the leaves if the new leaf values indicate this
2284          * should be done.
2285          */
2286         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2287                 /* determine the bit number within the word and
2288                  * the number of bits within the word.
2289                  */
2290                 wbitno = dbitno & (DBWORD - 1);
2291                 nb = min(rembits, DBWORD - wbitno);
2292
2293                 /* check if only part of a word is to be freed.
2294                  */
2295                 if (nb < DBWORD) {
2296                         /* free (zero) the appropriate bits within this
2297                          * dmap word.
2298                          */
2299                         dp->wmap[word] &=
2300                             cpu_to_le32(~(ONES << (DBWORD - nb)
2301                                           >> wbitno));
2302
2303                         /* update the leaf for this dmap word.
2304                          */
2305                         rc = dbJoin(tp, word,
2306                                     dbMaxBud((u8 *) & dp->wmap[word]));
2307                         if (rc)
2308                                 return rc;
2309
2310                         word += 1;
2311                 } else {
2312                         /* one or more dmap words are fully contained
2313                          * within the block range.  determine how many
2314                          * words and free (zero) the bits of these words.
2315                          */
2316                         nwords = rembits >> L2DBWORD;
2317                         memset(&dp->wmap[word], 0, nwords * 4);
2318
2319                         /* determine how many bits.
2320                          */
2321                         nb = nwords << L2DBWORD;
2322
2323                         /* now update the appropriate leaves to reflect
2324                          * the freed words.
2325                          */
2326                         for (; nwords > 0; nwords -= nw) {
2327                                 /* determine what the leaf value should be
2328                                  * updated to as the minimum of the l2 number
2329                                  * of bits being freed and the l2 (max) number
2330                                  * of bits that can be described by this leaf.
2331                                  */
2332                                 size =
2333                                     min(LITOL2BSZ
2334                                         (word, L2LPERDMAP, BUDMIN),
2335                                         NLSTOL2BSZ(nwords));
2336
2337                                 /* update the leaf.
2338                                  */
2339                                 rc = dbJoin(tp, word, size);
2340                                 if (rc)
2341                                         return rc;
2342
2343                                 /* get the number of dmap words handled.
2344                                  */
2345                                 nw = BUDSIZE(size, BUDMIN);
2346                                 word += nw;
2347                         }
2348                 }
2349         }
2350
2351         /* update the free count for this dmap.
2352          */
2353         le32_add_cpu(&dp->nfree, nblocks);
2354
2355         BMAP_LOCK(bmp);
2356
2357         /* update the free count for the allocation group and
2358          * map.
2359          */
2360         agno = blkno >> bmp->db_agl2size;
2361         bmp->db_nfree += nblocks;
2362         bmp->db_agfree[agno] += nblocks;
2363
2364         /* check if this allocation group is not completely free and
2365          * if it is currently the maximum (rightmost) allocation group.
2366          * if so, establish the new maximum allocation group number by
2367          * searching left for the first allocation group with allocation.
2368          */
2369         if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2370             (agno == bmp->db_numag - 1 &&
2371              bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2372                 while (bmp->db_maxag > 0) {
2373                         bmp->db_maxag -= 1;
2374                         if (bmp->db_agfree[bmp->db_maxag] !=
2375                             bmp->db_agsize)
2376                                 break;
2377                 }
2378
2379                 /* re-establish the allocation group preference if the
2380                  * current preference is right of the maximum allocation
2381                  * group.
2382                  */
2383                 if (bmp->db_agpref > bmp->db_maxag)
2384                         bmp->db_agpref = bmp->db_maxag;
2385         }
2386
2387         BMAP_UNLOCK(bmp);
2388
2389         return 0;
2390 }
2391
2392
2393 /*
2394  * NAME:        dbAdjCtl()
2395  *
2396  * FUNCTION:    adjust a dmap control page at a specified level to reflect
2397  *              the change in a lower level dmap or dmap control page's
2398  *              maximum string of free blocks (i.e. a change in the root
2399  *              of the lower level object's dmtree) due to the allocation
2400  *              or deallocation of a range of blocks with a single dmap.
2401  *
2402  *              on entry, this routine is provided with the new value of
2403  *              the lower level dmap or dmap control page root and the
2404  *              starting block number of the block range whose allocation
2405  *              or deallocation resulted in the root change.  this range
2406  *              is respresented by a single leaf of the current dmapctl
2407  *              and the leaf will be updated with this value, possibly
2408  *              causing a binary buddy system within the leaves to be
2409  *              split or joined.  the update may also cause the dmapctl's
2410  *              dmtree to be updated.
2411  *
2412  *              if the adjustment of the dmap control page, itself, causes its
2413  *              root to change, this change will be bubbled up to the next dmap
2414  *              control level by a recursive call to this routine, specifying
2415  *              the new root value and the next dmap control page level to
2416  *              be adjusted.
2417  * PARAMETERS:
2418  *      bmp     -  pointer to bmap descriptor
2419  *      blkno   -  the first block of a block range within a dmap.  it is
2420  *                 the allocation or deallocation of this block range that
2421  *                 requires the dmap control page to be adjusted.
2422  *      newval  -  the new value of the lower level dmap or dmap control
2423  *                 page root.
2424  *      alloc   -  'true' if adjustment is due to an allocation.
2425  *      level   -  current level of dmap control page (i.e. L0, L1, L2) to
2426  *                 be adjusted.
2427  *
2428  * RETURN VALUES:
2429  *      0       - success
2430  *      -EIO    - i/o error
2431  *
2432  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2433  */
2434 static int
2435 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2436 {
2437         struct metapage *mp;
2438         s8 oldroot;
2439         int oldval;
2440         s64 lblkno;
2441         struct dmapctl *dcp;
2442         int rc, leafno, ti;
2443
2444         /* get the buffer for the dmap control page for the specified
2445          * block number and control page level.
2446          */
2447         lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2448         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2449         if (mp == NULL)
2450                 return -EIO;
2451         dcp = (struct dmapctl *) mp->data;
2452
2453         if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2454                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2455                 release_metapage(mp);
2456                 return -EIO;
2457         }
2458
2459         /* determine the leaf number corresponding to the block and
2460          * the index within the dmap control tree.
2461          */
2462         leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2463         ti = leafno + le32_to_cpu(dcp->leafidx);
2464
2465         /* save the current leaf value and the current root level (i.e.
2466          * maximum l2 free string described by this dmapctl).
2467          */
2468         oldval = dcp->stree[ti];
2469         oldroot = dcp->stree[ROOT];
2470
2471         /* check if this is a control page update for an allocation.
2472          * if so, update the leaf to reflect the new leaf value using
2473          * dbSplit(); otherwise (deallocation), use dbJoin() to update
2474          * the leaf with the new value.  in addition to updating the
2475          * leaf, dbSplit() will also split the binary buddy system of
2476          * the leaves, if required, and bubble new values within the
2477          * dmapctl tree, if required.  similarly, dbJoin() will join
2478          * the binary buddy system of leaves and bubble new values up
2479          * the dmapctl tree as required by the new leaf value.
2480          */
2481         if (alloc) {
2482                 /* check if we are in the middle of a binary buddy
2483                  * system.  this happens when we are performing the
2484                  * first allocation out of an allocation group that
2485                  * is part (not the first part) of a larger binary
2486                  * buddy system.  if we are in the middle, back split
2487                  * the system prior to calling dbSplit() which assumes
2488                  * that it is at the front of a binary buddy system.
2489                  */
2490                 if (oldval == NOFREE) {
2491                         rc = dbBackSplit((dmtree_t *) dcp, leafno);
2492                         if (rc) {
2493                                 release_metapage(mp);
2494                                 return rc;
2495                         }
2496                         oldval = dcp->stree[ti];
2497                 }
2498                 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2499         } else {
2500                 rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2501                 if (rc) {
2502                         release_metapage(mp);
2503                         return rc;
2504                 }
2505         }
2506
2507         /* check if the root of the current dmap control page changed due
2508          * to the update and if the current dmap control page is not at
2509          * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2510          * root changed and this is not the top level), call this routine
2511          * again (recursion) for the next higher level of the mapping to
2512          * reflect the change in root for the current dmap control page.
2513          */
2514         if (dcp->stree[ROOT] != oldroot) {
2515                 /* are we below the top level of the map.  if so,
2516                  * bubble the root up to the next higher level.
2517                  */
2518                 if (level < bmp->db_maxlevel) {
2519                         /* bubble up the new root of this dmap control page to
2520                          * the next level.
2521                          */
2522                         if ((rc =
2523                              dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2524                                       level + 1))) {
2525                                 /* something went wrong in bubbling up the new
2526                                  * root value, so backout the changes to the
2527                                  * current dmap control page.
2528                                  */
2529                                 if (alloc) {
2530                                         dbJoin((dmtree_t *) dcp, leafno,
2531                                                oldval);
2532                                 } else {
2533                                         /* the dbJoin() above might have
2534                                          * caused a larger binary buddy system
2535                                          * to form and we may now be in the
2536                                          * middle of it.  if this is the case,
2537                                          * back split the buddies.
2538                                          */
2539                                         if (dcp->stree[ti] == NOFREE)
2540                                                 dbBackSplit((dmtree_t *)
2541                                                             dcp, leafno);
2542                                         dbSplit((dmtree_t *) dcp, leafno,
2543                                                 dcp->budmin, oldval);
2544                                 }
2545
2546                                 /* release the buffer and return the error.
2547                                  */
2548                                 release_metapage(mp);
2549                                 return (rc);
2550                         }
2551                 } else {
2552                         /* we're at the top level of the map. update
2553                          * the bmap control page to reflect the size
2554                          * of the maximum free buddy system.
2555                          */
2556                         assert(level == bmp->db_maxlevel);
2557                         if (bmp->db_maxfreebud != oldroot) {
2558                                 jfs_error(bmp->db_ipbmap->i_sb,
2559                                           "the maximum free buddy is not the old root\n");
2560                         }
2561                         bmp->db_maxfreebud = dcp->stree[ROOT];
2562                 }
2563         }
2564
2565         /* write the buffer.
2566          */
2567         write_metapage(mp);
2568
2569         return (0);
2570 }
2571
2572
2573 /*
2574  * NAME:        dbSplit()
2575  *
2576  * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2577  *              the leaf from the binary buddy system of the dmtree's
2578  *              leaves, as required.
2579  *
2580  * PARAMETERS:
2581  *      tp      - pointer to the tree containing the leaf.
2582  *      leafno  - the number of the leaf to be updated.
2583  *      splitsz - the size the binary buddy system starting at the leaf
2584  *                must be split to, specified as the log2 number of blocks.
2585  *      newval  - the new value for the leaf.
2586  *
2587  * RETURN VALUES: none
2588  *
2589  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2590  */
2591 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2592 {
2593         int budsz;
2594         int cursz;
2595         s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2596
2597         /* check if the leaf needs to be split.
2598          */
2599         if (leaf[leafno] > tp->dmt_budmin) {
2600                 /* the split occurs by cutting the buddy system in half
2601                  * at the specified leaf until we reach the specified
2602                  * size.  pick up the starting split size (current size
2603                  * - 1 in l2) and the corresponding buddy size.
2604                  */
2605                 cursz = leaf[leafno] - 1;
2606                 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2607
2608                 /* split until we reach the specified size.
2609                  */
2610                 while (cursz >= splitsz) {
2611                         /* update the buddy's leaf with its new value.
2612                          */
2613                         dbAdjTree(tp, leafno ^ budsz, cursz);
2614
2615                         /* on to the next size and buddy.
2616                          */
2617                         cursz -= 1;
2618                         budsz >>= 1;
2619                 }
2620         }
2621
2622         /* adjust the dmap tree to reflect the specified leaf's new
2623          * value.
2624          */
2625         dbAdjTree(tp, leafno, newval);
2626 }
2627
2628
2629 /*
2630  * NAME:        dbBackSplit()
2631  *
2632  * FUNCTION:    back split the binary buddy system of dmtree leaves
2633  *              that hold a specified leaf until the specified leaf
2634  *              starts its own binary buddy system.
2635  *
2636  *              the allocators typically perform allocations at the start
2637  *              of binary buddy systems and dbSplit() is used to accomplish
2638  *              any required splits.  in some cases, however, allocation
2639  *              may occur in the middle of a binary system and requires a
2640  *              back split, with the split proceeding out from the middle of
2641  *              the system (less efficient) rather than the start of the
2642  *              system (more efficient).  the cases in which a back split
2643  *              is required are rare and are limited to the first allocation
2644  *              within an allocation group which is a part (not first part)
2645  *              of a larger binary buddy system and a few exception cases
2646  *              in which a previous join operation must be backed out.
2647  *
2648  * PARAMETERS:
2649  *      tp      - pointer to the tree containing the leaf.
2650  *      leafno  - the number of the leaf to be updated.
2651  *
2652  * RETURN VALUES: none
2653  *
2654  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2655  */
2656 static int dbBackSplit(dmtree_t * tp, int leafno)
2657 {
2658         int budsz, bud, w, bsz, size;
2659         int cursz;
2660         s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2661
2662         /* leaf should be part (not first part) of a binary
2663          * buddy system.
2664          */
2665         assert(leaf[leafno] == NOFREE);
2666
2667         /* the back split is accomplished by iteratively finding the leaf
2668          * that starts the buddy system that contains the specified leaf and
2669          * splitting that system in two.  this iteration continues until
2670          * the specified leaf becomes the start of a buddy system.
2671          *
2672          * determine maximum possible l2 size for the specified leaf.
2673          */
2674         size =
2675             LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2676                       tp->dmt_budmin);
2677
2678         /* determine the number of leaves covered by this size.  this
2679          * is the buddy size that we will start with as we search for
2680          * the buddy system that contains the specified leaf.
2681          */
2682         budsz = BUDSIZE(size, tp->dmt_budmin);
2683
2684         /* back split.
2685          */
2686         while (leaf[leafno] == NOFREE) {
2687                 /* find the leftmost buddy leaf.
2688                  */
2689                 for (w = leafno, bsz = budsz;; bsz <<= 1,
2690                      w = (w < bud) ? w : bud) {
2691                         if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2692                                 jfs_err("JFS: block map error in dbBackSplit");
2693                                 return -EIO;
2694                         }
2695
2696                         /* determine the buddy.
2697                          */
2698                         bud = w ^ bsz;
2699
2700                         /* check if this buddy is the start of the system.
2701                          */
2702                         if (leaf[bud] != NOFREE) {
2703                                 /* split the leaf at the start of the
2704                                  * system in two.
2705                                  */
2706                                 cursz = leaf[bud] - 1;
2707                                 dbSplit(tp, bud, cursz, cursz);
2708                                 break;
2709                         }
2710                 }
2711         }
2712
2713         if (leaf[leafno] != size) {
2714                 jfs_err("JFS: wrong leaf value in dbBackSplit");
2715                 return -EIO;
2716         }
2717         return 0;
2718 }
2719
2720
2721 /*
2722  * NAME:        dbJoin()
2723  *
2724  * FUNCTION:    update the leaf of a dmtree with a new value, joining
2725  *              the leaf with other leaves of the dmtree into a multi-leaf
2726  *              binary buddy system, as required.
2727  *
2728  * PARAMETERS:
2729  *      tp      - pointer to the tree containing the leaf.
2730  *      leafno  - the number of the leaf to be updated.
2731  *      newval  - the new value for the leaf.
2732  *
2733  * RETURN VALUES: none
2734  */
2735 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2736 {
2737         int budsz, buddy;
2738         s8 *leaf;
2739
2740         /* can the new leaf value require a join with other leaves ?
2741          */
2742         if (newval >= tp->dmt_budmin) {
2743                 /* pickup a pointer to the leaves of the tree.
2744                  */
2745                 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2746
2747                 /* try to join the specified leaf into a large binary
2748                  * buddy system.  the join proceeds by attempting to join
2749                  * the specified leafno with its buddy (leaf) at new value.
2750                  * if the join occurs, we attempt to join the left leaf
2751                  * of the joined buddies with its buddy at new value + 1.
2752                  * we continue to join until we find a buddy that cannot be
2753                  * joined (does not have a value equal to the size of the
2754                  * last join) or until all leaves have been joined into a
2755                  * single system.
2756                  *
2757                  * get the buddy size (number of words covered) of
2758                  * the new value.
2759                  */
2760                 budsz = BUDSIZE(newval, tp->dmt_budmin);
2761
2762                 /* try to join.
2763                  */
2764                 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2765                         /* get the buddy leaf.
2766                          */
2767                         buddy = leafno ^ budsz;
2768
2769                         /* if the leaf's new value is greater than its
2770                          * buddy's value, we join no more.
2771                          */
2772                         if (newval > leaf[buddy])
2773                                 break;
2774
2775                         /* It shouldn't be less */
2776                         if (newval < leaf[buddy])
2777                                 return -EIO;
2778
2779                         /* check which (leafno or buddy) is the left buddy.
2780                          * the left buddy gets to claim the blocks resulting
2781                          * from the join while the right gets to claim none.
2782                          * the left buddy is also eligible to participate in
2783                          * a join at the next higher level while the right
2784                          * is not.
2785                          *
2786                          */
2787                         if (leafno < buddy) {
2788                                 /* leafno is the left buddy.
2789                                  */
2790                                 dbAdjTree(tp, buddy, NOFREE);
2791                         } else {
2792                                 /* buddy is the left buddy and becomes
2793                                  * leafno.
2794                                  */
2795                                 dbAdjTree(tp, leafno, NOFREE);
2796                                 leafno = buddy;
2797                         }
2798
2799                         /* on to try the next join.
2800                          */
2801                         newval += 1;
2802                         budsz <<= 1;
2803                 }
2804         }
2805
2806         /* update the leaf value.
2807          */
2808         dbAdjTree(tp, leafno, newval);
2809
2810         return 0;
2811 }
2812
2813
2814 /*
2815  * NAME:        dbAdjTree()
2816  *
2817  * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2818  *              the dmtree, as required, to reflect the new leaf value.
2819  *              the combination of any buddies must already be done before
2820  *              this is called.
2821  *
2822  * PARAMETERS:
2823  *      tp      - pointer to the tree to be adjusted.
2824  *      leafno  - the number of the leaf to be updated.
2825  *      newval  - the new value for the leaf.
2826  *
2827  * RETURN VALUES: none
2828  */
2829 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2830 {
2831         int lp, pp, k;
2832         int max;
2833
2834         /* pick up the index of the leaf for this leafno.
2835          */
2836         lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2837
2838         /* is the current value the same as the old value ?  if so,
2839          * there is nothing to do.
2840          */
2841         if (tp->dmt_stree[lp] == newval)
2842                 return;
2843
2844         /* set the new value.
2845          */
2846         tp->dmt_stree[lp] = newval;
2847
2848         /* bubble the new value up the tree as required.
2849          */
2850         for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2851                 /* get the index of the first leaf of the 4 leaf
2852                  * group containing the specified leaf (leafno).
2853                  */
2854                 lp = ((lp - 1) & ~0x03) + 1;
2855
2856                 /* get the index of the parent of this 4 leaf group.
2857                  */
2858                 pp = (lp - 1) >> 2;
2859
2860                 /* determine the maximum of the 4 leaves.
2861                  */
2862                 max = TREEMAX(&tp->dmt_stree[lp]);
2863
2864                 /* if the maximum of the 4 is the same as the
2865                  * parent's value, we're done.
2866                  */
2867                 if (tp->dmt_stree[pp] == max)
2868                         break;
2869
2870                 /* parent gets new value.
2871                  */
2872                 tp->dmt_stree[pp] = max;
2873
2874                 /* parent becomes leaf for next go-round.
2875                  */
2876                 lp = pp;
2877         }
2878 }
2879
2880
2881 /*
2882  * NAME:        dbFindLeaf()
2883  *
2884  * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2885  *              the index of a leaf describing the free blocks if
2886  *              sufficient free blocks are found.
2887  *
2888  *              the search starts at the top of the dmtree_t tree and
2889  *              proceeds down the tree to the leftmost leaf with sufficient
2890  *              free space.
2891  *
2892  * PARAMETERS:
2893  *      tp      - pointer to the tree to be searched.
2894  *      l2nb    - log2 number of free blocks to search for.
2895  *      leafidx - return pointer to be set to the index of the leaf
2896  *                describing at least l2nb free blocks if sufficient
2897  *                free blocks are found.
2898  *
2899  * RETURN VALUES:
2900  *      0       - success
2901  *      -ENOSPC - insufficient free blocks.
2902  */
2903 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2904 {
2905         int ti, n = 0, k, x = 0;
2906
2907         /* first check the root of the tree to see if there is
2908          * sufficient free space.
2909          */
2910         if (l2nb > tp->dmt_stree[ROOT])
2911                 return -ENOSPC;
2912
2913         /* sufficient free space available. now search down the tree
2914          * starting at the next level for the leftmost leaf that
2915          * describes sufficient free space.
2916          */
2917         for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2918              k > 0; k--, ti = ((ti + n) << 2) + 1) {
2919                 /* search the four nodes at this level, starting from
2920                  * the left.
2921                  */
2922                 for (x = ti, n = 0; n < 4; n++) {
2923                         /* sufficient free space found.  move to the next
2924                          * level (or quit if this is the last level).
2925                          */
2926                         if (l2nb <= tp->dmt_stree[x + n])
2927                                 break;
2928                 }
2929
2930                 /* better have found something since the higher
2931                  * levels of the tree said it was here.
2932                  */
2933                 assert(n < 4);
2934         }
2935
2936         /* set the return to the leftmost leaf describing sufficient
2937          * free space.
2938          */
2939         *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2940
2941         return (0);
2942 }
2943
2944
2945 /*
2946  * NAME:        dbFindBits()
2947  *
2948  * FUNCTION:    find a specified number of binary buddy free bits within a
2949  *              dmap bitmap word value.
2950  *
2951  *              this routine searches the bitmap value for (1 << l2nb) free
2952  *              bits at (1 << l2nb) alignments within the value.
2953  *
2954  * PARAMETERS:
2955  *      word    -  dmap bitmap word value.
2956  *      l2nb    -  number of free bits specified as a log2 number.
2957  *
2958  * RETURN VALUES:
2959  *      starting bit number of free bits.
2960  */
2961 static int dbFindBits(u32 word, int l2nb)
2962 {
2963         int bitno, nb;
2964         u32 mask;
2965
2966         /* get the number of bits.
2967          */
2968         nb = 1 << l2nb;
2969         assert(nb <= DBWORD);
2970
2971         /* complement the word so we can use a mask (i.e. 0s represent
2972          * free bits) and compute the mask.
2973          */
2974         word = ~word;
2975         mask = ONES << (DBWORD - nb);
2976
2977         /* scan the word for nb free bits at nb alignments.
2978          */
2979         for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2980                 if ((mask & word) == mask)
2981                         break;
2982         }
2983
2984         ASSERT(bitno < 32);
2985
2986         /* return the bit number.
2987          */
2988         return (bitno);
2989 }
2990
2991
2992 /*
2993  * NAME:        dbMaxBud(u8 *cp)
2994  *
2995  * FUNCTION:    determine the largest binary buddy string of free
2996  *              bits within 32-bits of the map.
2997  *
2998  * PARAMETERS:
2999  *      cp      -  pointer to the 32-bit value.
3000  *
3001  * RETURN VALUES:
3002  *      largest binary buddy of free bits within a dmap word.
3003  */
3004 static int dbMaxBud(u8 * cp)
3005 {
3006         signed char tmp1, tmp2;
3007
3008         /* check if the wmap word is all free. if so, the
3009          * free buddy size is BUDMIN.
3010          */
3011         if (*((uint *) cp) == 0)
3012                 return (BUDMIN);
3013
3014         /* check if the wmap word is half free. if so, the
3015          * free buddy size is BUDMIN-1.
3016          */
3017         if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3018                 return (BUDMIN - 1);
3019
3020         /* not all free or half free. determine the free buddy
3021          * size thru table lookup using quarters of the wmap word.
3022          */
3023         tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3024         tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3025         return (max(tmp1, tmp2));
3026 }
3027
3028
3029 /*
3030  * NAME:        cnttz(uint word)
3031  *
3032  * FUNCTION:    determine the number of trailing zeros within a 32-bit
3033  *              value.
3034  *
3035  * PARAMETERS:
3036  *      value   -  32-bit value to be examined.
3037  *
3038  * RETURN VALUES:
3039  *      count of trailing zeros
3040  */
3041 static int cnttz(u32 word)
3042 {
3043         int n;
3044
3045         for (n = 0; n < 32; n++, word >>= 1) {
3046                 if (word & 0x01)
3047                         break;
3048         }
3049
3050         return (n);
3051 }
3052
3053
3054 /*
3055  * NAME:        cntlz(u32 value)
3056  *
3057  * FUNCTION:    determine the number of leading zeros within a 32-bit
3058  *              value.
3059  *
3060  * PARAMETERS:
3061  *      value   -  32-bit value to be examined.
3062  *
3063  * RETURN VALUES:
3064  *      count of leading zeros
3065  */
3066 static int cntlz(u32 value)
3067 {
3068         int n;
3069
3070         for (n = 0; n < 32; n++, value <<= 1) {
3071                 if (value & HIGHORDER)
3072                         break;
3073         }
3074         return (n);
3075 }
3076
3077
3078 /*
3079  * NAME:        blkstol2(s64 nb)
3080  *
3081  * FUNCTION:    convert a block count to its log2 value. if the block
3082  *              count is not a l2 multiple, it is rounded up to the next
3083  *              larger l2 multiple.
3084  *
3085  * PARAMETERS:
3086  *      nb      -  number of blocks
3087  *
3088  * RETURN VALUES:
3089  *      log2 number of blocks
3090  */
3091 static int blkstol2(s64 nb)
3092 {
3093         int l2nb;
3094         s64 mask;               /* meant to be signed */
3095
3096         mask = (s64) 1 << (64 - 1);
3097
3098         /* count the leading bits.
3099          */
3100         for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3101                 /* leading bit found.
3102                  */
3103                 if (nb & mask) {
3104                         /* determine the l2 value.
3105                          */
3106                         l2nb = (64 - 1) - l2nb;
3107
3108                         /* check if we need to round up.
3109                          */
3110                         if (~mask & nb)
3111                                 l2nb++;
3112
3113                         return (l2nb);
3114                 }
3115         }
3116         assert(0);
3117         return 0;               /* fix compiler warning */
3118 }
3119
3120
3121 /*
3122  * NAME:        dbAllocBottomUp()
3123  *
3124  * FUNCTION:    alloc the specified block range from the working block
3125  *              allocation map.
3126  *
3127  *              the blocks will be alloc from the working map one dmap
3128  *              at a time.
3129  *
3130  * PARAMETERS:
3131  *      ip      -  pointer to in-core inode;
3132  *      blkno   -  starting block number to be freed.
3133  *      nblocks -  number of blocks to be freed.
3134  *
3135  * RETURN VALUES:
3136  *      0       - success
3137  *      -EIO    - i/o error
3138  */
3139 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3140 {
3141         struct metapage *mp;
3142         struct dmap *dp;
3143         int nb, rc;
3144         s64 lblkno, rem;
3145         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3146         struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3147
3148         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3149
3150         /* block to be allocated better be within the mapsize. */
3151         ASSERT(nblocks <= bmp->db_mapsize - blkno);
3152
3153         /*
3154          * allocate the blocks a dmap at a time.
3155          */
3156         mp = NULL;
3157         for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3158                 /* release previous dmap if any */
3159                 if (mp) {
3160                         write_metapage(mp);
3161                 }
3162
3163                 /* get the buffer for the current dmap. */
3164                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3165                 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3166                 if (mp == NULL) {
3167                         IREAD_UNLOCK(ipbmap);
3168                         return -EIO;
3169                 }
3170                 dp = (struct dmap *) mp->data;
3171
3172                 /* determine the number of blocks to be allocated from
3173                  * this dmap.
3174                  */
3175                 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3176
3177                 /* allocate the blocks. */
3178                 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3179                         release_metapage(mp);
3180                         IREAD_UNLOCK(ipbmap);
3181                         return (rc);
3182                 }
3183         }
3184
3185         /* write the last buffer. */
3186         write_metapage(mp);
3187
3188         IREAD_UNLOCK(ipbmap);
3189
3190         return (0);
3191 }
3192
3193
3194 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3195                          int nblocks)
3196 {
3197         int rc;
3198         int dbitno, word, rembits, nb, nwords, wbitno, agno;
3199         s8 oldroot;
3200         struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3201
3202         /* save the current value of the root (i.e. maximum free string)
3203          * of the dmap tree.
3204          */
3205         oldroot = tp->stree[ROOT];
3206
3207         /* determine the bit number and word within the dmap of the
3208          * starting block.
3209          */
3210         dbitno = blkno & (BPERDMAP - 1);
3211         word = dbitno >> L2DBWORD;
3212
3213         /* block range better be within the dmap */
3214         assert(dbitno + nblocks <= BPERDMAP);
3215
3216         /* allocate the bits of the dmap's words corresponding to the block
3217          * range. not all bits of the first and last words may be contained
3218          * within the block range.  if this is the case, we'll work against
3219          * those words (i.e. partial first and/or last) on an individual basis
3220          * (a single pass), allocating the bits of interest by hand and
3221          * updating the leaf corresponding to the dmap word. a single pass
3222          * will be used for all dmap words fully contained within the
3223          * specified range.  within this pass, the bits of all fully contained
3224          * dmap words will be marked as free in a single shot and the leaves
3225          * will be updated. a single leaf may describe the free space of
3226          * multiple dmap words, so we may update only a subset of the actual
3227          * leaves corresponding to the dmap words of the block range.
3228          */
3229         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3230                 /* determine the bit number within the word and
3231                  * the number of bits within the word.
3232                  */
3233                 wbitno = dbitno & (DBWORD - 1);
3234                 nb = min(rembits, DBWORD - wbitno);
3235
3236                 /* check if only part of a word is to be allocated.
3237                  */
3238                 if (nb < DBWORD) {
3239                         /* allocate (set to 1) the appropriate bits within
3240                          * this dmap word.
3241                          */
3242                         dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3243                                                       >> wbitno);
3244
3245                         word++;
3246                 } else {
3247                         /* one or more dmap words are fully contained
3248                          * within the block range.  determine how many
3249                          * words and allocate (set to 1) the bits of these
3250                          * words.
3251                          */
3252                         nwords = rembits >> L2DBWORD;
3253                         memset(&dp->wmap[word], (int) ONES, nwords * 4);
3254
3255                         /* determine how many bits */
3256                         nb = nwords << L2DBWORD;
3257                         word += nwords;
3258                 }
3259         }
3260
3261         /* update the free count for this dmap */
3262         le32_add_cpu(&dp->nfree, -nblocks);
3263
3264         /* reconstruct summary tree */
3265         dbInitDmapTree(dp);
3266
3267         BMAP_LOCK(bmp);
3268
3269         /* if this allocation group is completely free,
3270          * update the highest active allocation group number
3271          * if this allocation group is the new max.
3272          */
3273         agno = blkno >> bmp->db_agl2size;
3274         if (agno > bmp->db_maxag)
3275                 bmp->db_maxag = agno;
3276
3277         /* update the free count for the allocation group and map */
3278         bmp->db_agfree[agno] -= nblocks;
3279         bmp->db_nfree -= nblocks;
3280
3281         BMAP_UNLOCK(bmp);
3282
3283         /* if the root has not changed, done. */
3284         if (tp->stree[ROOT] == oldroot)
3285                 return (0);
3286
3287         /* root changed. bubble the change up to the dmap control pages.
3288          * if the adjustment of the upper level control pages fails,
3289          * backout the bit allocation (thus making everything consistent).
3290          */
3291         if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3292                 dbFreeBits(bmp, dp, blkno, nblocks);
3293
3294         return (rc);
3295 }
3296
3297
3298 /*
3299  * NAME:        dbExtendFS()
3300  *
3301  * FUNCTION:    extend bmap from blkno for nblocks;
3302  *              dbExtendFS() updates bmap ready for dbAllocBottomUp();
3303  *
3304  * L2
3305  *  |
3306  *   L1---------------------------------L1
3307  *    |                                  |
3308  *     L0---------L0---------L0           L0---------L0---------L0
3309  *      |          |          |            |          |          |
3310  *       d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3311  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3312  *
3313  * <---old---><----------------------------extend----------------------->
3314  */
3315 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3316 {
3317         struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3318         int nbperpage = sbi->nbperpage;
3319         int i, i0 = true, j, j0 = true, k, n;
3320         s64 newsize;
3321         s64 p;
3322         struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3323         struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3324         struct dmap *dp;
3325         s8 *l0leaf, *l1leaf, *l2leaf;
3326         struct bmap *bmp = sbi->bmap;
3327         int agno, l2agsize, oldl2agsize;
3328         s64 ag_rem;
3329
3330         newsize = blkno + nblocks;
3331
3332         jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3333                  (long long) blkno, (long long) nblocks, (long long) newsize);
3334
3335         /*
3336          *      initialize bmap control page.
3337          *
3338          * all the data in bmap control page should exclude
3339          * the mkfs hidden dmap page.
3340          */
3341
3342         /* update mapsize */
3343         bmp->db_mapsize = newsize;
3344         bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3345
3346         /* compute new AG size */
3347         l2agsize = dbGetL2AGSize(newsize);
3348         oldl2agsize = bmp->db_agl2size;
3349
3350         bmp->db_agl2size = l2agsize;
3351         bmp->db_agsize = 1 << l2agsize;
3352
3353         /* compute new number of AG */
3354         agno = bmp->db_numag;
3355         bmp->db_numag = newsize >> l2agsize;
3356         bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3357
3358         /*
3359          *      reconfigure db_agfree[]
3360          * from old AG configuration to new AG configuration;
3361          *
3362          * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3363          * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3364          * note: new AG size = old AG size * (2**x).
3365          */
3366         if (l2agsize == oldl2agsize)
3367                 goto extend;
3368         k = 1 << (l2agsize - oldl2agsize);
3369         ag_rem = bmp->db_agfree[0];     /* save agfree[0] */
3370         for (i = 0, n = 0; i < agno; n++) {
3371                 bmp->db_agfree[n] = 0;  /* init collection point */
3372
3373                 /* coalesce contiguous k AGs; */
3374                 for (j = 0; j < k && i < agno; j++, i++) {
3375                         /* merge AGi to AGn */
3376                         bmp->db_agfree[n] += bmp->db_agfree[i];
3377                 }
3378         }
3379         bmp->db_agfree[0] += ag_rem;    /* restore agfree[0] */
3380
3381         for (; n < MAXAG; n++)
3382                 bmp->db_agfree[n] = 0;
3383
3384         /*
3385          * update highest active ag number
3386          */
3387
3388         bmp->db_maxag = bmp->db_maxag / k;
3389
3390         /*
3391          *      extend bmap
3392          *
3393          * update bit maps and corresponding level control pages;
3394          * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3395          */
3396       extend:
3397         /* get L2 page */
3398         p = BMAPBLKNO + nbperpage;      /* L2 page */
3399         l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3400         if (!l2mp) {
3401                 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3402                 return -EIO;
3403         }
3404         l2dcp = (struct dmapctl *) l2mp->data;
3405
3406         /* compute start L1 */
3407         k = blkno >> L2MAXL1SIZE;
3408         l2leaf = l2dcp->stree + CTLLEAFIND + k;
3409         p = BLKTOL1(blkno, sbi->l2nbperpage);   /* L1 page */
3410
3411         /*
3412          * extend each L1 in L2
3413          */
3414         for (; k < LPERCTL; k++, p += nbperpage) {
3415                 /* get L1 page */
3416                 if (j0) {
3417                         /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3418                         l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3419                         if (l1mp == NULL)
3420                                 goto errout;
3421                         l1dcp = (struct dmapctl *) l1mp->data;
3422
3423                         /* compute start L0 */
3424                         j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3425                         l1leaf = l1dcp->stree + CTLLEAFIND + j;
3426                         p = BLKTOL0(blkno, sbi->l2nbperpage);
3427                         j0 = false;
3428                 } else {
3429                         /* assign/init L1 page */
3430                         l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3431                         if (l1mp == NULL)
3432                                 goto errout;
3433
3434                         l1dcp = (struct dmapctl *) l1mp->data;
3435
3436                         /* compute start L0 */
3437                         j = 0;
3438                         l1leaf = l1dcp->stree + CTLLEAFIND;
3439                         p += nbperpage; /* 1st L0 of L1.k */
3440                 }
3441
3442                 /*
3443                  * extend each L0 in L1
3444                  */
3445                 for (; j < LPERCTL; j++) {
3446                         /* get L0 page */
3447                         if (i0) {
3448                                 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3449
3450                                 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3451                                 if (l0mp == NULL)
3452                                         goto errout;
3453                                 l0dcp = (struct dmapctl *) l0mp->data;
3454
3455                                 /* compute start dmap */
3456                                 i = (blkno & (MAXL0SIZE - 1)) >>
3457                                     L2BPERDMAP;
3458                                 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3459                                 p = BLKTODMAP(blkno,
3460                                               sbi->l2nbperpage);
3461                                 i0 = false;
3462                         } else {
3463                                 /* assign/init L0 page */
3464                                 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3465                                 if (l0mp == NULL)
3466                                         goto errout;
3467
3468                                 l0dcp = (struct dmapctl *) l0mp->data;
3469
3470                                 /* compute start dmap */
3471                                 i = 0;
3472                                 l0leaf = l0dcp->stree + CTLLEAFIND;
3473                                 p += nbperpage; /* 1st dmap of L0.j */
3474                         }
3475
3476                         /*
3477                          * extend each dmap in L0
3478                          */
3479                         for (; i < LPERCTL; i++) {
3480                                 /*
3481                                  * reconstruct the dmap page, and
3482                                  * initialize corresponding parent L0 leaf
3483                                  */
3484                                 if ((n = blkno & (BPERDMAP - 1))) {
3485                                         /* read in dmap page: */
3486                                         mp = read_metapage(ipbmap, p,
3487                                                            PSIZE, 0);
3488                                         if (mp == NULL)
3489                                                 goto errout;
3490                                         n = min(nblocks, (s64)BPERDMAP - n);
3491                                 } else {
3492                                         /* assign/init dmap page */
3493                                         mp = read_metapage(ipbmap, p,
3494                                                            PSIZE, 0);
3495                                         if (mp == NULL)
3496                                                 goto errout;
3497
3498                                         n = min_t(s64, nblocks, BPERDMAP);
3499                                 }
3500
3501                                 dp = (struct dmap *) mp->data;
3502                                 *l0leaf = dbInitDmap(dp, blkno, n);
3503
3504                                 bmp->db_nfree += n;
3505                                 agno = le64_to_cpu(dp->start) >> l2agsize;
3506                                 bmp->db_agfree[agno] += n;
3507
3508                                 write_metapage(mp);
3509
3510                                 l0leaf++;
3511                                 p += nbperpage;
3512
3513                                 blkno += n;
3514                                 nblocks -= n;
3515                                 if (nblocks == 0)
3516                                         break;
3517                         }       /* for each dmap in a L0 */
3518
3519                         /*
3520                          * build current L0 page from its leaves, and
3521                          * initialize corresponding parent L1 leaf
3522                          */
3523                         *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3524                         write_metapage(l0mp);
3525                         l0mp = NULL;
3526
3527                         if (nblocks)
3528                                 l1leaf++;       /* continue for next L0 */
3529                         else {
3530                                 /* more than 1 L0 ? */
3531                                 if (j > 0)
3532                                         break;  /* build L1 page */
3533                                 else {
3534                                         /* summarize in global bmap page */
3535                                         bmp->db_maxfreebud = *l1leaf;
3536                                         release_metapage(l1mp);
3537                                         release_metapage(l2mp);
3538                                         goto finalize;
3539                                 }
3540                         }
3541                 }               /* for each L0 in a L1 */
3542
3543                 /*
3544                  * build current L1 page from its leaves, and
3545                  * initialize corresponding parent L2 leaf
3546                  */
3547                 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3548                 write_metapage(l1mp);
3549                 l1mp = NULL;
3550
3551                 if (nblocks)
3552                         l2leaf++;       /* continue for next L1 */
3553                 else {
3554                         /* more than 1 L1 ? */
3555                         if (k > 0)
3556                                 break;  /* build L2 page */
3557                         else {
3558                                 /* summarize in global bmap page */
3559                                 bmp->db_maxfreebud = *l2leaf;
3560                                 release_metapage(l2mp);
3561                                 goto finalize;
3562                         }
3563                 }
3564         }                       /* for each L1 in a L2 */
3565
3566         jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3567 errout:
3568         if (l0mp)
3569                 release_metapage(l0mp);
3570         if (l1mp)
3571                 release_metapage(l1mp);
3572         release_metapage(l2mp);
3573         return -EIO;
3574
3575         /*
3576          *      finalize bmap control page
3577          */
3578 finalize:
3579
3580         return 0;
3581 }
3582
3583
3584 /*
3585  *      dbFinalizeBmap()
3586  */
3587 void dbFinalizeBmap(struct inode *ipbmap)
3588 {
3589         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3590         int actags, inactags, l2nl;
3591         s64 ag_rem, actfree, inactfree, avgfree;
3592         int i, n;
3593
3594         /*
3595          *      finalize bmap control page
3596          */
3597 //finalize:
3598         /*
3599          * compute db_agpref: preferred ag to allocate from
3600          * (the leftmost ag with average free space in it);
3601          */
3602 //agpref:
3603         /* get the number of active ags and inactive ags */
3604         actags = bmp->db_maxag + 1;
3605         inactags = bmp->db_numag - actags;
3606         ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);        /* ??? */
3607
3608         /* determine how many blocks are in the inactive allocation
3609          * groups. in doing this, we must account for the fact that
3610          * the rightmost group might be a partial group (i.e. file
3611          * system size is not a multiple of the group size).
3612          */
3613         inactfree = (inactags && ag_rem) ?
3614             ((inactags - 1) << bmp->db_agl2size) + ag_rem
3615             : inactags << bmp->db_agl2size;
3616
3617         /* determine how many free blocks are in the active
3618          * allocation groups plus the average number of free blocks
3619          * within the active ags.
3620          */
3621         actfree = bmp->db_nfree - inactfree;
3622         avgfree = (u32) actfree / (u32) actags;
3623
3624         /* if the preferred allocation group has not average free space.
3625          * re-establish the preferred group as the leftmost
3626          * group with average free space.
3627          */
3628         if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3629                 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3630                      bmp->db_agpref++) {
3631                         if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3632                                 break;
3633                 }
3634                 if (bmp->db_agpref >= bmp->db_numag) {
3635                         jfs_error(ipbmap->i_sb,
3636                                   "cannot find ag with average freespace\n");
3637                 }
3638         }
3639
3640         /*
3641          * compute db_aglevel, db_agheight, db_width, db_agstart:
3642          * an ag is covered in aglevel dmapctl summary tree,
3643          * at agheight level height (from leaf) with agwidth number of nodes
3644          * each, which starts at agstart index node of the smmary tree node
3645          * array;
3646          */
3647         bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3648         l2nl =
3649             bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3650         bmp->db_agheight = l2nl >> 1;
3651         bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3652         for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3653              i--) {
3654                 bmp->db_agstart += n;
3655                 n <<= 2;
3656         }
3657
3658 }
3659
3660
3661 /*
3662  * NAME:        dbInitDmap()/ujfs_idmap_page()
3663  *
3664  * FUNCTION:    initialize working/persistent bitmap of the dmap page
3665  *              for the specified number of blocks:
3666  *
3667  *              at entry, the bitmaps had been initialized as free (ZEROS);
3668  *              The number of blocks will only account for the actually
3669  *              existing blocks. Blocks which don't actually exist in
3670  *              the aggregate will be marked as allocated (ONES);
3671  *
3672  * PARAMETERS:
3673  *      dp      - pointer to page of map
3674  *      nblocks - number of blocks this page
3675  *
3676  * RETURNS: NONE
3677  */
3678 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3679 {
3680         int blkno, w, b, r, nw, nb, i;
3681
3682         /* starting block number within the dmap */
3683         blkno = Blkno & (BPERDMAP - 1);
3684
3685         if (blkno == 0) {
3686                 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3687                 dp->start = cpu_to_le64(Blkno);
3688
3689                 if (nblocks == BPERDMAP) {
3690                         memset(&dp->wmap[0], 0, LPERDMAP * 4);
3691                         memset(&dp->pmap[0], 0, LPERDMAP * 4);
3692                         goto initTree;
3693                 }
3694         } else {
3695                 le32_add_cpu(&dp->nblocks, nblocks);
3696                 le32_add_cpu(&dp->nfree, nblocks);
3697         }
3698
3699         /* word number containing start block number */
3700         w = blkno >> L2DBWORD;
3701
3702         /*
3703          * free the bits corresponding to the block range (ZEROS):
3704          * note: not all bits of the first and last words may be contained
3705          * within the block range.
3706          */
3707         for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3708                 /* number of bits preceding range to be freed in the word */
3709                 b = blkno & (DBWORD - 1);
3710                 /* number of bits to free in the word */
3711                 nb = min(r, DBWORD - b);
3712
3713                 /* is partial word to be freed ? */
3714                 if (nb < DBWORD) {
3715                         /* free (set to 0) from the bitmap word */
3716                         dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3717                                                      >> b));
3718                         dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3719                                                      >> b));
3720
3721                         /* skip the word freed */
3722                         w++;
3723                 } else {
3724                         /* free (set to 0) contiguous bitmap words */
3725                         nw = r >> L2DBWORD;
3726                         memset(&dp->wmap[w], 0, nw * 4);
3727                         memset(&dp->pmap[w], 0, nw * 4);
3728
3729                         /* skip the words freed */
3730                         nb = nw << L2DBWORD;
3731                         w += nw;
3732                 }
3733         }
3734
3735         /*
3736          * mark bits following the range to be freed (non-existing
3737          * blocks) as allocated (ONES)
3738          */
3739
3740         if (blkno == BPERDMAP)
3741                 goto initTree;
3742
3743         /* the first word beyond the end of existing blocks */
3744         w = blkno >> L2DBWORD;
3745
3746         /* does nblocks fall on a 32-bit boundary ? */
3747         b = blkno & (DBWORD - 1);
3748         if (b) {
3749                 /* mark a partial word allocated */
3750                 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3751                 w++;
3752         }
3753
3754         /* set the rest of the words in the page to allocated (ONES) */
3755         for (i = w; i < LPERDMAP; i++)
3756                 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3757
3758         /*
3759          * init tree
3760          */
3761       initTree:
3762         return (dbInitDmapTree(dp));
3763 }
3764
3765
3766 /*
3767  * NAME:        dbInitDmapTree()/ujfs_complete_dmap()
3768  *
3769  * FUNCTION:    initialize summary tree of the specified dmap:
3770  *
3771  *              at entry, bitmap of the dmap has been initialized;
3772  *
3773  * PARAMETERS:
3774  *      dp      - dmap to complete
3775  *      blkno   - starting block number for this dmap
3776  *      treemax - will be filled in with max free for this dmap
3777  *
3778  * RETURNS:     max free string at the root of the tree
3779  */
3780 static int dbInitDmapTree(struct dmap * dp)
3781 {
3782         struct dmaptree *tp;
3783         s8 *cp;
3784         int i;
3785
3786         /* init fixed info of tree */
3787         tp = &dp->tree;
3788         tp->nleafs = cpu_to_le32(LPERDMAP);
3789         tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3790         tp->leafidx = cpu_to_le32(LEAFIND);
3791         tp->height = cpu_to_le32(4);
3792         tp->budmin = BUDMIN;
3793
3794         /* init each leaf from corresponding wmap word:
3795          * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3796          * bitmap word are allocated.
3797          */
3798         cp = tp->stree + le32_to_cpu(tp->leafidx);
3799         for (i = 0; i < LPERDMAP; i++)
3800                 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3801
3802         /* build the dmap's binary buddy summary tree */
3803         return (dbInitTree(tp));
3804 }
3805
3806
3807 /*
3808  * NAME:        dbInitTree()/ujfs_adjtree()
3809  *
3810  * FUNCTION:    initialize binary buddy summary tree of a dmap or dmapctl.
3811  *
3812  *              at entry, the leaves of the tree has been initialized
3813  *              from corresponding bitmap word or root of summary tree
3814  *              of the child control page;
3815  *              configure binary buddy system at the leaf level, then
3816  *              bubble up the values of the leaf nodes up the tree.
3817  *
3818  * PARAMETERS:
3819  *      cp      - Pointer to the root of the tree
3820  *      l2leaves- Number of leaf nodes as a power of 2
3821  *      l2min   - Number of blocks that can be covered by a leaf
3822  *                as a power of 2
3823  *
3824  * RETURNS: max free string at the root of the tree
3825  */
3826 static int dbInitTree(struct dmaptree * dtp)
3827 {
3828         int l2max, l2free, bsize, nextb, i;
3829         int child, parent, nparent;
3830         s8 *tp, *cp, *cp1;
3831
3832         tp = dtp->stree;
3833
3834         /* Determine the maximum free string possible for the leaves */
3835         l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3836
3837         /*
3838          * configure the leaf levevl into binary buddy system
3839          *
3840          * Try to combine buddies starting with a buddy size of 1
3841          * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3842          * can be combined if both buddies have a maximum free of l2min;
3843          * the combination will result in the left-most buddy leaf having
3844          * a maximum free of l2min+1.
3845          * After processing all buddies for a given size, process buddies
3846          * at the next higher buddy size (i.e. current size * 2) and
3847          * the next maximum free (current free + 1).
3848          * This continues until the maximum possible buddy combination
3849          * yields maximum free.
3850          */
3851         for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3852              l2free++, bsize = nextb) {
3853                 /* get next buddy size == current buddy pair size */
3854                 nextb = bsize << 1;
3855
3856                 /* scan each adjacent buddy pair at current buddy size */
3857                 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3858                      i < le32_to_cpu(dtp->nleafs);
3859                      i += nextb, cp += nextb) {
3860                         /* coalesce if both adjacent buddies are max free */
3861                         if (*cp == l2free && *(cp + bsize) == l2free) {
3862                                 *cp = l2free + 1;       /* left take right */
3863                                 *(cp + bsize) = -1;     /* right give left */
3864                         }
3865                 }
3866         }
3867
3868         /*
3869          * bubble summary information of leaves up the tree.
3870          *
3871          * Starting at the leaf node level, the four nodes described by
3872          * the higher level parent node are compared for a maximum free and
3873          * this maximum becomes the value of the parent node.
3874          * when all lower level nodes are processed in this fashion then
3875          * move up to the next level (parent becomes a lower level node) and
3876          * continue the process for that level.
3877          */
3878         for (child = le32_to_cpu(dtp->leafidx),
3879              nparent = le32_to_cpu(dtp->nleafs) >> 2;
3880              nparent > 0; nparent >>= 2, child = parent) {
3881                 /* get index of 1st node of parent level */
3882                 parent = (child - 1) >> 2;
3883
3884                 /* set the value of the parent node as the maximum
3885                  * of the four nodes of the current level.
3886                  */
3887                 for (i = 0, cp = tp + child, cp1 = tp + parent;
3888                      i < nparent; i++, cp += 4, cp1++)
3889                         *cp1 = TREEMAX(cp);
3890         }
3891
3892         return (*tp);
3893 }
3894
3895
3896 /*
3897  *      dbInitDmapCtl()
3898  *
3899  * function: initialize dmapctl page
3900  */
3901 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3902 {                               /* start leaf index not covered by range */
3903         s8 *cp;
3904
3905         dcp->nleafs = cpu_to_le32(LPERCTL);
3906         dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3907         dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3908         dcp->height = cpu_to_le32(5);
3909         dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3910
3911         /*
3912          * initialize the leaves of current level that were not covered
3913          * by the specified input block range (i.e. the leaves have no
3914          * low level dmapctl or dmap).
3915          */
3916         cp = &dcp->stree[CTLLEAFIND + i];
3917         for (; i < LPERCTL; i++)
3918                 *cp++ = NOFREE;
3919
3920         /* build the dmap's binary buddy summary tree */
3921         return (dbInitTree((struct dmaptree *) dcp));
3922 }
3923
3924
3925 /*
3926  * NAME:        dbGetL2AGSize()/ujfs_getagl2size()
3927  *
3928  * FUNCTION:    Determine log2(allocation group size) from aggregate size
3929  *
3930  * PARAMETERS:
3931  *      nblocks - Number of blocks in aggregate
3932  *
3933  * RETURNS: log2(allocation group size) in aggregate blocks
3934  */
3935 static int dbGetL2AGSize(s64 nblocks)
3936 {
3937         s64 sz;
3938         s64 m;
3939         int l2sz;
3940
3941         if (nblocks < BPERDMAP * MAXAG)
3942                 return (L2BPERDMAP);
3943
3944         /* round up aggregate size to power of 2 */
3945         m = ((u64) 1 << (64 - 1));
3946         for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3947                 if (m & nblocks)
3948                         break;
3949         }
3950
3951         sz = (s64) 1 << l2sz;
3952         if (sz < nblocks)
3953                 l2sz += 1;
3954
3955         /* agsize = roundupSize/max_number_of_ag */
3956         return (l2sz - L2MAXAG);
3957 }
3958
3959
3960 /*
3961  * NAME:        dbMapFileSizeToMapSize()
3962  *
3963  * FUNCTION:    compute number of blocks the block allocation map file
3964  *              can cover from the map file size;
3965  *
3966  * RETURNS:     Number of blocks which can be covered by this block map file;
3967  */
3968
3969 /*
3970  * maximum number of map pages at each level including control pages
3971  */
3972 #define MAXL0PAGES      (1 + LPERCTL)
3973 #define MAXL1PAGES      (1 + LPERCTL * MAXL0PAGES)
3974
3975 /*
3976  * convert number of map pages to the zero origin top dmapctl level
3977  */
3978 #define BMAPPGTOLEV(npages)     \
3979         (((npages) <= 3 + MAXL0PAGES) ? 0 : \
3980          ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3981
3982 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3983 {
3984         struct super_block *sb = ipbmap->i_sb;
3985         s64 nblocks;
3986         s64 npages, ndmaps;
3987         int level, i;
3988         int complete, factor;
3989
3990         nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3991         npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3992         level = BMAPPGTOLEV(npages);
3993
3994         /* At each level, accumulate the number of dmap pages covered by
3995          * the number of full child levels below it;
3996          * repeat for the last incomplete child level.
3997          */
3998         ndmaps = 0;
3999         npages--;               /* skip the first global control page */
4000         /* skip higher level control pages above top level covered by map */
4001         npages -= (2 - level);
4002         npages--;               /* skip top level's control page */
4003         for (i = level; i >= 0; i--) {
4004                 factor =
4005                     (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4006                 complete = (u32) npages / factor;
4007                 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4008                                       ((i == 1) ? LPERCTL : 1));
4009
4010                 /* pages in last/incomplete child */
4011                 npages = (u32) npages % factor;
4012                 /* skip incomplete child's level control page */
4013                 npages--;
4014         }
4015
4016         /* convert the number of dmaps into the number of blocks
4017          * which can be covered by the dmaps;
4018          */
4019         nblocks = ndmaps << L2BPERDMAP;
4020
4021         return (nblocks);
4022 }