GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / jffs2 / wbuf.c
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/jiffies.h>
22 #include <linux/sched.h>
23 #include <linux/writeback.h>
24
25 #include "nodelist.h"
26
27 /* For testing write failures */
28 #undef BREAKME
29 #undef BREAKMEHEADER
30
31 #ifdef BREAKME
32 static unsigned char *brokenbuf;
33 #endif
34
35 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
36 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
37
38 /* max. erase failures before we mark a block bad */
39 #define MAX_ERASE_FAILURES      2
40
41 struct jffs2_inodirty {
42         uint32_t ino;
43         struct jffs2_inodirty *next;
44 };
45
46 static struct jffs2_inodirty inodirty_nomem;
47
48 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
49 {
50         struct jffs2_inodirty *this = c->wbuf_inodes;
51
52         /* If a malloc failed, consider _everything_ dirty */
53         if (this == &inodirty_nomem)
54                 return 1;
55
56         /* If ino == 0, _any_ non-GC writes mean 'yes' */
57         if (this && !ino)
58                 return 1;
59
60         /* Look to see if the inode in question is pending in the wbuf */
61         while (this) {
62                 if (this->ino == ino)
63                         return 1;
64                 this = this->next;
65         }
66         return 0;
67 }
68
69 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
70 {
71         struct jffs2_inodirty *this;
72
73         this = c->wbuf_inodes;
74
75         if (this != &inodirty_nomem) {
76                 while (this) {
77                         struct jffs2_inodirty *next = this->next;
78                         kfree(this);
79                         this = next;
80                 }
81         }
82         c->wbuf_inodes = NULL;
83 }
84
85 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
86 {
87         struct jffs2_inodirty *new;
88
89         /* Schedule delayed write-buffer write-out */
90         jffs2_dirty_trigger(c);
91
92         if (jffs2_wbuf_pending_for_ino(c, ino))
93                 return;
94
95         new = kmalloc(sizeof(*new), GFP_KERNEL);
96         if (!new) {
97                 jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
98                 jffs2_clear_wbuf_ino_list(c);
99                 c->wbuf_inodes = &inodirty_nomem;
100                 return;
101         }
102         new->ino = ino;
103         new->next = c->wbuf_inodes;
104         c->wbuf_inodes = new;
105         return;
106 }
107
108 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
109 {
110         struct list_head *this, *next;
111         static int n;
112
113         if (list_empty(&c->erasable_pending_wbuf_list))
114                 return;
115
116         list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
117                 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
118
119                 jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
120                           jeb->offset);
121                 list_del(this);
122                 if ((jiffies + (n++)) & 127) {
123                         /* Most of the time, we just erase it immediately. Otherwise we
124                            spend ages scanning it on mount, etc. */
125                         jffs2_dbg(1, "...and adding to erase_pending_list\n");
126                         list_add_tail(&jeb->list, &c->erase_pending_list);
127                         c->nr_erasing_blocks++;
128                         jffs2_garbage_collect_trigger(c);
129                 } else {
130                         /* Sometimes, however, we leave it elsewhere so it doesn't get
131                            immediately reused, and we spread the load a bit. */
132                         jffs2_dbg(1, "...and adding to erasable_list\n");
133                         list_add_tail(&jeb->list, &c->erasable_list);
134                 }
135         }
136 }
137
138 #define REFILE_NOTEMPTY 0
139 #define REFILE_ANYWAY   1
140
141 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
142 {
143         jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
144
145         /* File the existing block on the bad_used_list.... */
146         if (c->nextblock == jeb)
147                 c->nextblock = NULL;
148         else /* Not sure this should ever happen... need more coffee */
149                 list_del(&jeb->list);
150         if (jeb->first_node) {
151                 jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
152                           jeb->offset);
153                 list_add(&jeb->list, &c->bad_used_list);
154         } else {
155                 BUG_ON(allow_empty == REFILE_NOTEMPTY);
156                 /* It has to have had some nodes or we couldn't be here */
157                 jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
158                           jeb->offset);
159                 list_add(&jeb->list, &c->erase_pending_list);
160                 c->nr_erasing_blocks++;
161                 jffs2_garbage_collect_trigger(c);
162         }
163
164         if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
165                 uint32_t oldfree = jeb->free_size;
166
167                 jffs2_link_node_ref(c, jeb, 
168                                     (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
169                                     oldfree, NULL);
170                 /* convert to wasted */
171                 c->wasted_size += oldfree;
172                 jeb->wasted_size += oldfree;
173                 c->dirty_size -= oldfree;
174                 jeb->dirty_size -= oldfree;
175         }
176
177         jffs2_dbg_dump_block_lists_nolock(c);
178         jffs2_dbg_acct_sanity_check_nolock(c,jeb);
179         jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
180 }
181
182 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
183                                                             struct jffs2_inode_info *f,
184                                                             struct jffs2_raw_node_ref *raw,
185                                                             union jffs2_node_union *node)
186 {
187         struct jffs2_node_frag *frag;
188         struct jffs2_full_dirent *fd;
189
190         dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
191                     node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
192
193         BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
194                je16_to_cpu(node->u.magic) != 0);
195
196         switch (je16_to_cpu(node->u.nodetype)) {
197         case JFFS2_NODETYPE_INODE:
198                 if (f->metadata && f->metadata->raw == raw) {
199                         dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
200                         return &f->metadata->raw;
201                 }
202                 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
203                 BUG_ON(!frag);
204                 /* Find a frag which refers to the full_dnode we want to modify */
205                 while (!frag->node || frag->node->raw != raw) {
206                         frag = frag_next(frag);
207                         BUG_ON(!frag);
208                 }
209                 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
210                 return &frag->node->raw;
211
212         case JFFS2_NODETYPE_DIRENT:
213                 for (fd = f->dents; fd; fd = fd->next) {
214                         if (fd->raw == raw) {
215                                 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
216                                 return &fd->raw;
217                         }
218                 }
219                 BUG();
220
221         default:
222                 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
223                             je16_to_cpu(node->u.nodetype));
224                 break;
225         }
226         return NULL;
227 }
228
229 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
230 static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
231                               uint32_t ofs)
232 {
233         int ret;
234         size_t retlen;
235         char *eccstr;
236
237         ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
238         if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
239                 pr_warn("%s(): Read back of page at %08x failed: %d\n",
240                         __func__, c->wbuf_ofs, ret);
241                 return ret;
242         } else if (retlen != c->wbuf_pagesize) {
243                 pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
244                         __func__, ofs, retlen, c->wbuf_pagesize);
245                 return -EIO;
246         }
247         if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
248                 return 0;
249
250         if (ret == -EUCLEAN)
251                 eccstr = "corrected";
252         else if (ret == -EBADMSG)
253                 eccstr = "correction failed";
254         else
255                 eccstr = "OK or unused";
256
257         pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
258                 eccstr, c->wbuf_ofs);
259         print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
260                        c->wbuf, c->wbuf_pagesize, 0);
261
262         pr_warn("Read back:\n");
263         print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
264                        c->wbuf_verify, c->wbuf_pagesize, 0);
265
266         return -EIO;
267 }
268 #else
269 #define jffs2_verify_write(c,b,o) (0)
270 #endif
271
272 /* Recover from failure to write wbuf. Recover the nodes up to the
273  * wbuf, not the one which we were starting to try to write. */
274
275 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
276 {
277         struct jffs2_eraseblock *jeb, *new_jeb;
278         struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
279         size_t retlen;
280         int ret;
281         int nr_refile = 0;
282         unsigned char *buf;
283         uint32_t start, end, ofs, len;
284
285         jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
286
287         spin_lock(&c->erase_completion_lock);
288         if (c->wbuf_ofs % c->mtd->erasesize)
289                 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
290         else
291                 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
292         spin_unlock(&c->erase_completion_lock);
293
294         BUG_ON(!ref_obsolete(jeb->last_node));
295
296         /* Find the first node to be recovered, by skipping over every
297            node which ends before the wbuf starts, or which is obsolete. */
298         for (next = raw = jeb->first_node; next; raw = next) {
299                 next = ref_next(raw);
300
301                 if (ref_obsolete(raw) || 
302                     (next && ref_offset(next) <= c->wbuf_ofs)) {
303                         dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
304                                     ref_offset(raw), ref_flags(raw),
305                                     (ref_offset(raw) + ref_totlen(c, jeb, raw)),
306                                     c->wbuf_ofs);
307                         continue;
308                 }
309                 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
310                             ref_offset(raw), ref_flags(raw),
311                             (ref_offset(raw) + ref_totlen(c, jeb, raw)));
312
313                 first_raw = raw;
314                 break;
315         }
316
317         if (!first_raw) {
318                 /* All nodes were obsolete. Nothing to recover. */
319                 jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
320                 c->wbuf_len = 0;
321                 return;
322         }
323
324         start = ref_offset(first_raw);
325         end = ref_offset(jeb->last_node);
326         nr_refile = 1;
327
328         /* Count the number of refs which need to be copied */
329         while ((raw = ref_next(raw)) != jeb->last_node)
330                 nr_refile++;
331
332         dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
333                     start, end, end - start, nr_refile);
334
335         buf = NULL;
336         if (start < c->wbuf_ofs) {
337                 /* First affected node was already partially written.
338                  * Attempt to reread the old data into our buffer. */
339
340                 buf = kmalloc(end - start, GFP_KERNEL);
341                 if (!buf) {
342                         pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
343
344                         goto read_failed;
345                 }
346
347                 /* Do the read... */
348                 ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
349                                buf);
350
351                 /* ECC recovered ? */
352                 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
353                     (retlen == c->wbuf_ofs - start))
354                         ret = 0;
355
356                 if (ret || retlen != c->wbuf_ofs - start) {
357                         pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
358
359                         kfree(buf);
360                         buf = NULL;
361                 read_failed:
362                         first_raw = ref_next(first_raw);
363                         nr_refile--;
364                         while (first_raw && ref_obsolete(first_raw)) {
365                                 first_raw = ref_next(first_raw);
366                                 nr_refile--;
367                         }
368
369                         /* If this was the only node to be recovered, give up */
370                         if (!first_raw) {
371                                 c->wbuf_len = 0;
372                                 return;
373                         }
374
375                         /* It wasn't. Go on and try to recover nodes complete in the wbuf */
376                         start = ref_offset(first_raw);
377                         dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
378                                     start, end, end - start, nr_refile);
379
380                 } else {
381                         /* Read succeeded. Copy the remaining data from the wbuf */
382                         memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
383                 }
384         }
385         /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
386            Either 'buf' contains the data, or we find it in the wbuf */
387
388         /* ... and get an allocation of space from a shiny new block instead */
389         ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
390         if (ret) {
391                 pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
392                 kfree(buf);
393                 return;
394         }
395
396         /* The summary is not recovered, so it must be disabled for this erase block */
397         jffs2_sum_disable_collecting(c->summary);
398
399         ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
400         if (ret) {
401                 pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
402                 kfree(buf);
403                 return;
404         }
405
406         ofs = write_ofs(c);
407
408         if (end-start >= c->wbuf_pagesize) {
409                 /* Need to do another write immediately, but it's possible
410                    that this is just because the wbuf itself is completely
411                    full, and there's nothing earlier read back from the
412                    flash. Hence 'buf' isn't necessarily what we're writing
413                    from. */
414                 unsigned char *rewrite_buf = buf?:c->wbuf;
415                 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
416
417                 jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
418                           towrite, ofs);
419
420 #ifdef BREAKMEHEADER
421                 static int breakme;
422                 if (breakme++ == 20) {
423                         pr_notice("Faking write error at 0x%08x\n", ofs);
424                         breakme = 0;
425                         mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
426                         ret = -EIO;
427                 } else
428 #endif
429                         ret = mtd_write(c->mtd, ofs, towrite, &retlen,
430                                         rewrite_buf);
431
432                 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
433                         /* Argh. We tried. Really we did. */
434                         pr_crit("Recovery of wbuf failed due to a second write error\n");
435                         kfree(buf);
436
437                         if (retlen)
438                                 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
439
440                         return;
441                 }
442                 pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
443
444                 c->wbuf_len = (end - start) - towrite;
445                 c->wbuf_ofs = ofs + towrite;
446                 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
447                 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
448         } else {
449                 /* OK, now we're left with the dregs in whichever buffer we're using */
450                 if (buf) {
451                         memcpy(c->wbuf, buf, end-start);
452                 } else {
453                         memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
454                 }
455                 c->wbuf_ofs = ofs;
456                 c->wbuf_len = end - start;
457         }
458
459         /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
460         new_jeb = &c->blocks[ofs / c->sector_size];
461
462         spin_lock(&c->erase_completion_lock);
463         for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
464                 uint32_t rawlen = ref_totlen(c, jeb, raw);
465                 struct jffs2_inode_cache *ic;
466                 struct jffs2_raw_node_ref *new_ref;
467                 struct jffs2_raw_node_ref **adjust_ref = NULL;
468                 struct jffs2_inode_info *f = NULL;
469
470                 jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
471                           rawlen, ref_offset(raw), ref_flags(raw), ofs);
472
473                 ic = jffs2_raw_ref_to_ic(raw);
474
475                 /* Ick. This XATTR mess should be fixed shortly... */
476                 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
477                         struct jffs2_xattr_datum *xd = (void *)ic;
478                         BUG_ON(xd->node != raw);
479                         adjust_ref = &xd->node;
480                         raw->next_in_ino = NULL;
481                         ic = NULL;
482                 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
483                         struct jffs2_xattr_datum *xr = (void *)ic;
484                         BUG_ON(xr->node != raw);
485                         adjust_ref = &xr->node;
486                         raw->next_in_ino = NULL;
487                         ic = NULL;
488                 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
489                         struct jffs2_raw_node_ref **p = &ic->nodes;
490
491                         /* Remove the old node from the per-inode list */
492                         while (*p && *p != (void *)ic) {
493                                 if (*p == raw) {
494                                         (*p) = (raw->next_in_ino);
495                                         raw->next_in_ino = NULL;
496                                         break;
497                                 }
498                                 p = &((*p)->next_in_ino);
499                         }
500
501                         if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
502                                 /* If it's an in-core inode, then we have to adjust any
503                                    full_dirent or full_dnode structure to point to the
504                                    new version instead of the old */
505                                 f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
506                                 if (IS_ERR(f)) {
507                                         /* Should never happen; it _must_ be present */
508                                         JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
509                                                     ic->ino, PTR_ERR(f));
510                                         BUG();
511                                 }
512                                 /* We don't lock f->sem. There's a number of ways we could
513                                    end up in here with it already being locked, and nobody's
514                                    going to modify it on us anyway because we hold the
515                                    alloc_sem. We're only changing one ->raw pointer too,
516                                    which we can get away with without upsetting readers. */
517                                 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
518                                                                       (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
519                         } else if (unlikely(ic->state != INO_STATE_PRESENT &&
520                                             ic->state != INO_STATE_CHECKEDABSENT &&
521                                             ic->state != INO_STATE_GC)) {
522                                 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
523                                 BUG();
524                         }
525                 }
526
527                 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
528
529                 if (adjust_ref) {
530                         BUG_ON(*adjust_ref != raw);
531                         *adjust_ref = new_ref;
532                 }
533                 if (f)
534                         jffs2_gc_release_inode(c, f);
535
536                 if (!ref_obsolete(raw)) {
537                         jeb->dirty_size += rawlen;
538                         jeb->used_size  -= rawlen;
539                         c->dirty_size += rawlen;
540                         c->used_size -= rawlen;
541                         raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
542                         BUG_ON(raw->next_in_ino);
543                 }
544                 ofs += rawlen;
545         }
546
547         kfree(buf);
548
549         /* Fix up the original jeb now it's on the bad_list */
550         if (first_raw == jeb->first_node) {
551                 jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
552                           jeb->offset);
553                 list_move(&jeb->list, &c->erase_pending_list);
554                 c->nr_erasing_blocks++;
555                 jffs2_garbage_collect_trigger(c);
556         }
557
558         jffs2_dbg_acct_sanity_check_nolock(c, jeb);
559         jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
560
561         jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
562         jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
563
564         spin_unlock(&c->erase_completion_lock);
565
566         jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
567                   c->wbuf_ofs, c->wbuf_len);
568
569 }
570
571 /* Meaning of pad argument:
572    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
573    1: Pad, do not adjust nextblock free_size
574    2: Pad, adjust nextblock free_size
575 */
576 #define NOPAD           0
577 #define PAD_NOACCOUNT   1
578 #define PAD_ACCOUNTING  2
579
580 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
581 {
582         struct jffs2_eraseblock *wbuf_jeb;
583         int ret;
584         size_t retlen;
585
586         /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
587            del_timer() the timer we never initialised. */
588         if (!jffs2_is_writebuffered(c))
589                 return 0;
590
591         if (!mutex_is_locked(&c->alloc_sem)) {
592                 pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
593                 BUG();
594         }
595
596         if (!c->wbuf_len)       /* already checked c->wbuf above */
597                 return 0;
598
599         wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
600         if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
601                 return -ENOMEM;
602
603         /* claim remaining space on the page
604            this happens, if we have a change to a new block,
605            or if fsync forces us to flush the writebuffer.
606            if we have a switch to next page, we will not have
607            enough remaining space for this.
608         */
609         if (pad ) {
610                 c->wbuf_len = PAD(c->wbuf_len);
611
612                 /* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
613                    with 8 byte page size */
614                 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
615
616                 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
617                         struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
618                         padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
619                         padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
620                         padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
621                         padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
622                 }
623         }
624         /* else jffs2_flash_writev has actually filled in the rest of the
625            buffer for us, and will deal with the node refs etc. later. */
626
627 #ifdef BREAKME
628         static int breakme;
629         if (breakme++ == 20) {
630                 pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
631                 breakme = 0;
632                 mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
633                           brokenbuf);
634                 ret = -EIO;
635         } else
636 #endif
637
638                 ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
639                                 &retlen, c->wbuf);
640
641         if (ret) {
642                 pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
643                 goto wfail;
644         } else if (retlen != c->wbuf_pagesize) {
645                 pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
646                         retlen, c->wbuf_pagesize);
647                 ret = -EIO;
648                 goto wfail;
649         } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
650         wfail:
651                 jffs2_wbuf_recover(c);
652
653                 return ret;
654         }
655
656         /* Adjust free size of the block if we padded. */
657         if (pad) {
658                 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
659
660                 jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
661                           (wbuf_jeb == c->nextblock) ? "next" : "",
662                           wbuf_jeb->offset);
663
664                 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
665                    padded. If there is less free space in the block than that,
666                    something screwed up */
667                 if (wbuf_jeb->free_size < waste) {
668                         pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
669                                 c->wbuf_ofs, c->wbuf_len, waste);
670                         pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
671                                 wbuf_jeb->offset, wbuf_jeb->free_size);
672                         BUG();
673                 }
674
675                 spin_lock(&c->erase_completion_lock);
676
677                 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
678                 /* FIXME: that made it count as dirty. Convert to wasted */
679                 wbuf_jeb->dirty_size -= waste;
680                 c->dirty_size -= waste;
681                 wbuf_jeb->wasted_size += waste;
682                 c->wasted_size += waste;
683         } else
684                 spin_lock(&c->erase_completion_lock);
685
686         /* Stick any now-obsoleted blocks on the erase_pending_list */
687         jffs2_refile_wbuf_blocks(c);
688         jffs2_clear_wbuf_ino_list(c);
689         spin_unlock(&c->erase_completion_lock);
690
691         memset(c->wbuf,0xff,c->wbuf_pagesize);
692         /* adjust write buffer offset, else we get a non contiguous write bug */
693         c->wbuf_ofs += c->wbuf_pagesize;
694         c->wbuf_len = 0;
695         return 0;
696 }
697
698 /* Trigger garbage collection to flush the write-buffer.
699    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
700    outstanding. If ino arg non-zero, do it only if a write for the
701    given inode is outstanding. */
702 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
703 {
704         uint32_t old_wbuf_ofs;
705         uint32_t old_wbuf_len;
706         int ret = 0;
707
708         jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
709
710         if (!c->wbuf)
711                 return 0;
712
713         mutex_lock(&c->alloc_sem);
714         if (!jffs2_wbuf_pending_for_ino(c, ino)) {
715                 jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
716                 mutex_unlock(&c->alloc_sem);
717                 return 0;
718         }
719
720         old_wbuf_ofs = c->wbuf_ofs;
721         old_wbuf_len = c->wbuf_len;
722
723         if (c->unchecked_size) {
724                 /* GC won't make any progress for a while */
725                 jffs2_dbg(1, "%s(): padding. Not finished checking\n",
726                           __func__);
727                 down_write(&c->wbuf_sem);
728                 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
729                 /* retry flushing wbuf in case jffs2_wbuf_recover
730                    left some data in the wbuf */
731                 if (ret)
732                         ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
733                 up_write(&c->wbuf_sem);
734         } else while (old_wbuf_len &&
735                       old_wbuf_ofs == c->wbuf_ofs) {
736
737                 mutex_unlock(&c->alloc_sem);
738
739                 jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
740
741                 ret = jffs2_garbage_collect_pass(c);
742                 if (ret) {
743                         /* GC failed. Flush it with padding instead */
744                         mutex_lock(&c->alloc_sem);
745                         down_write(&c->wbuf_sem);
746                         ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
747                         /* retry flushing wbuf in case jffs2_wbuf_recover
748                            left some data in the wbuf */
749                         if (ret)
750                                 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
751                         up_write(&c->wbuf_sem);
752                         break;
753                 }
754                 mutex_lock(&c->alloc_sem);
755         }
756
757         jffs2_dbg(1, "%s(): ends...\n", __func__);
758
759         mutex_unlock(&c->alloc_sem);
760         return ret;
761 }
762
763 /* Pad write-buffer to end and write it, wasting space. */
764 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
765 {
766         int ret;
767
768         if (!c->wbuf)
769                 return 0;
770
771         down_write(&c->wbuf_sem);
772         ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
773         /* retry - maybe wbuf recover left some data in wbuf. */
774         if (ret)
775                 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
776         up_write(&c->wbuf_sem);
777
778         return ret;
779 }
780
781 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
782                               size_t len)
783 {
784         if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
785                 return 0;
786
787         if (len > (c->wbuf_pagesize - c->wbuf_len))
788                 len = c->wbuf_pagesize - c->wbuf_len;
789         memcpy(c->wbuf + c->wbuf_len, buf, len);
790         c->wbuf_len += (uint32_t) len;
791         return len;
792 }
793
794 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
795                        unsigned long count, loff_t to, size_t *retlen,
796                        uint32_t ino)
797 {
798         struct jffs2_eraseblock *jeb;
799         size_t wbuf_retlen, donelen = 0;
800         uint32_t outvec_to = to;
801         int ret, invec;
802
803         /* If not writebuffered flash, don't bother */
804         if (!jffs2_is_writebuffered(c))
805                 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
806
807         down_write(&c->wbuf_sem);
808
809         /* If wbuf_ofs is not initialized, set it to target address */
810         if (c->wbuf_ofs == 0xFFFFFFFF) {
811                 c->wbuf_ofs = PAGE_DIV(to);
812                 c->wbuf_len = PAGE_MOD(to);
813                 memset(c->wbuf,0xff,c->wbuf_pagesize);
814         }
815
816         /*
817          * Sanity checks on target address.  It's permitted to write
818          * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
819          * write at the beginning of a new erase block. Anything else,
820          * and you die.  New block starts at xxx000c (0-b = block
821          * header)
822          */
823         if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
824                 /* It's a write to a new block */
825                 if (c->wbuf_len) {
826                         jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
827                                   __func__, (unsigned long)to, c->wbuf_ofs);
828                         ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
829                         if (ret)
830                                 goto outerr;
831                 }
832                 /* set pointer to new block */
833                 c->wbuf_ofs = PAGE_DIV(to);
834                 c->wbuf_len = PAGE_MOD(to);
835         }
836
837         if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
838                 /* We're not writing immediately after the writebuffer. Bad. */
839                 pr_crit("%s(): Non-contiguous write to %08lx\n",
840                         __func__, (unsigned long)to);
841                 if (c->wbuf_len)
842                         pr_crit("wbuf was previously %08x-%08x\n",
843                                 c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
844                 BUG();
845         }
846
847         /* adjust alignment offset */
848         if (c->wbuf_len != PAGE_MOD(to)) {
849                 c->wbuf_len = PAGE_MOD(to);
850                 /* take care of alignment to next page */
851                 if (!c->wbuf_len) {
852                         c->wbuf_len = c->wbuf_pagesize;
853                         ret = __jffs2_flush_wbuf(c, NOPAD);
854                         if (ret)
855                                 goto outerr;
856                 }
857         }
858
859         for (invec = 0; invec < count; invec++) {
860                 int vlen = invecs[invec].iov_len;
861                 uint8_t *v = invecs[invec].iov_base;
862
863                 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
864
865                 if (c->wbuf_len == c->wbuf_pagesize) {
866                         ret = __jffs2_flush_wbuf(c, NOPAD);
867                         if (ret)
868                                 goto outerr;
869                 }
870                 vlen -= wbuf_retlen;
871                 outvec_to += wbuf_retlen;
872                 donelen += wbuf_retlen;
873                 v += wbuf_retlen;
874
875                 if (vlen >= c->wbuf_pagesize) {
876                         ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
877                                         &wbuf_retlen, v);
878                         if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
879                                 goto outfile;
880
881                         vlen -= wbuf_retlen;
882                         outvec_to += wbuf_retlen;
883                         c->wbuf_ofs = outvec_to;
884                         donelen += wbuf_retlen;
885                         v += wbuf_retlen;
886                 }
887
888                 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
889                 if (c->wbuf_len == c->wbuf_pagesize) {
890                         ret = __jffs2_flush_wbuf(c, NOPAD);
891                         if (ret)
892                                 goto outerr;
893                 }
894
895                 outvec_to += wbuf_retlen;
896                 donelen += wbuf_retlen;
897         }
898
899         /*
900          * If there's a remainder in the wbuf and it's a non-GC write,
901          * remember that the wbuf affects this ino
902          */
903         *retlen = donelen;
904
905         if (jffs2_sum_active()) {
906                 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
907                 if (res)
908                         return res;
909         }
910
911         if (c->wbuf_len && ino)
912                 jffs2_wbuf_dirties_inode(c, ino);
913
914         ret = 0;
915         up_write(&c->wbuf_sem);
916         return ret;
917
918 outfile:
919         /*
920          * At this point we have no problem, c->wbuf is empty. However
921          * refile nextblock to avoid writing again to same address.
922          */
923
924         spin_lock(&c->erase_completion_lock);
925
926         jeb = &c->blocks[outvec_to / c->sector_size];
927         jffs2_block_refile(c, jeb, REFILE_ANYWAY);
928
929         spin_unlock(&c->erase_completion_lock);
930
931 outerr:
932         *retlen = 0;
933         up_write(&c->wbuf_sem);
934         return ret;
935 }
936
937 /*
938  *      This is the entry for flash write.
939  *      Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
940 */
941 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
942                       size_t *retlen, const u_char *buf)
943 {
944         struct kvec vecs[1];
945
946         if (!jffs2_is_writebuffered(c))
947                 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
948
949         vecs[0].iov_base = (unsigned char *) buf;
950         vecs[0].iov_len = len;
951         return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
952 }
953
954 /*
955         Handle readback from writebuffer and ECC failure return
956 */
957 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
958 {
959         loff_t  orbf = 0, owbf = 0, lwbf = 0;
960         int     ret;
961
962         if (!jffs2_is_writebuffered(c))
963                 return mtd_read(c->mtd, ofs, len, retlen, buf);
964
965         /* Read flash */
966         down_read(&c->wbuf_sem);
967         ret = mtd_read(c->mtd, ofs, len, retlen, buf);
968
969         if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
970                 if (ret == -EBADMSG)
971                         pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
972                                 len, ofs);
973                 /*
974                  * We have the raw data without ECC correction in the buffer,
975                  * maybe we are lucky and all data or parts are correct. We
976                  * check the node.  If data are corrupted node check will sort
977                  * it out.  We keep this block, it will fail on write or erase
978                  * and the we mark it bad. Or should we do that now? But we
979                  * should give him a chance.  Maybe we had a system crash or
980                  * power loss before the ecc write or a erase was completed.
981                  * So we return success. :)
982                  */
983                 ret = 0;
984         }
985
986         /* if no writebuffer available or write buffer empty, return */
987         if (!c->wbuf_pagesize || !c->wbuf_len)
988                 goto exit;
989
990         /* if we read in a different block, return */
991         if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
992                 goto exit;
993
994         if (ofs >= c->wbuf_ofs) {
995                 owbf = (ofs - c->wbuf_ofs);     /* offset in write buffer */
996                 if (owbf > c->wbuf_len)         /* is read beyond write buffer ? */
997                         goto exit;
998                 lwbf = c->wbuf_len - owbf;      /* number of bytes to copy */
999                 if (lwbf > len)
1000                         lwbf = len;
1001         } else {
1002                 orbf = (c->wbuf_ofs - ofs);     /* offset in read buffer */
1003                 if (orbf > len)                 /* is write beyond write buffer ? */
1004                         goto exit;
1005                 lwbf = len - orbf;              /* number of bytes to copy */
1006                 if (lwbf > c->wbuf_len)
1007                         lwbf = c->wbuf_len;
1008         }
1009         if (lwbf > 0)
1010                 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1011
1012 exit:
1013         up_read(&c->wbuf_sem);
1014         return ret;
1015 }
1016
1017 #define NR_OOB_SCAN_PAGES 4
1018
1019 /* For historical reasons we use only 8 bytes for OOB clean marker */
1020 #define OOB_CM_SIZE 8
1021
1022 static const struct jffs2_unknown_node oob_cleanmarker =
1023 {
1024         .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1025         .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1026         .totlen = constant_cpu_to_je32(8)
1027 };
1028
1029 /*
1030  * Check, if the out of band area is empty. This function knows about the clean
1031  * marker and if it is present in OOB, treats the OOB as empty anyway.
1032  */
1033 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1034                           struct jffs2_eraseblock *jeb, int mode)
1035 {
1036         int i, ret;
1037         int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1038         struct mtd_oob_ops ops;
1039
1040         ops.mode = MTD_OPS_AUTO_OOB;
1041         ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1042         ops.oobbuf = c->oobbuf;
1043         ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1044         ops.datbuf = NULL;
1045
1046         ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1047         if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1048                 pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1049                        jeb->offset, ops.ooblen, ops.oobretlen, ret);
1050                 if (!ret || mtd_is_bitflip(ret))
1051                         ret = -EIO;
1052                 return ret;
1053         }
1054
1055         for(i = 0; i < ops.ooblen; i++) {
1056                 if (mode && i < cmlen)
1057                         /* Yeah, we know about the cleanmarker */
1058                         continue;
1059
1060                 if (ops.oobbuf[i] != 0xFF) {
1061                         jffs2_dbg(2, "Found %02x at %x in OOB for "
1062                                   "%08x\n", ops.oobbuf[i], i, jeb->offset);
1063                         return 1;
1064                 }
1065         }
1066
1067         return 0;
1068 }
1069
1070 /*
1071  * Check for a valid cleanmarker.
1072  * Returns: 0 if a valid cleanmarker was found
1073  *          1 if no cleanmarker was found
1074  *          negative error code if an error occurred
1075  */
1076 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1077                                  struct jffs2_eraseblock *jeb)
1078 {
1079         struct mtd_oob_ops ops;
1080         int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1081
1082         ops.mode = MTD_OPS_AUTO_OOB;
1083         ops.ooblen = cmlen;
1084         ops.oobbuf = c->oobbuf;
1085         ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1086         ops.datbuf = NULL;
1087
1088         ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1089         if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1090                 pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1091                        jeb->offset, ops.ooblen, ops.oobretlen, ret);
1092                 if (!ret || mtd_is_bitflip(ret))
1093                         ret = -EIO;
1094                 return ret;
1095         }
1096
1097         return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1098 }
1099
1100 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1101                                  struct jffs2_eraseblock *jeb)
1102 {
1103         int ret;
1104         struct mtd_oob_ops ops;
1105         int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1106
1107         ops.mode = MTD_OPS_AUTO_OOB;
1108         ops.ooblen = cmlen;
1109         ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1110         ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1111         ops.datbuf = NULL;
1112
1113         ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1114         if (ret || ops.oobretlen != ops.ooblen) {
1115                 pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1116                        jeb->offset, ops.ooblen, ops.oobretlen, ret);
1117                 if (!ret)
1118                         ret = -EIO;
1119                 return ret;
1120         }
1121
1122         return 0;
1123 }
1124
1125 /*
1126  * On NAND we try to mark this block bad. If the block was erased more
1127  * than MAX_ERASE_FAILURES we mark it finally bad.
1128  * Don't care about failures. This block remains on the erase-pending
1129  * or badblock list as long as nobody manipulates the flash with
1130  * a bootloader or something like that.
1131  */
1132
1133 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1134 {
1135         int     ret;
1136
1137         /* if the count is < max, we try to write the counter to the 2nd page oob area */
1138         if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1139                 return 0;
1140
1141         pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
1142         ret = mtd_block_markbad(c->mtd, bad_offset);
1143
1144         if (ret) {
1145                 jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1146                           __func__, jeb->offset, ret);
1147                 return ret;
1148         }
1149         return 1;
1150 }
1151
1152 static struct jffs2_sb_info *work_to_sb(struct work_struct *work)
1153 {
1154         struct delayed_work *dwork;
1155
1156         dwork = to_delayed_work(work);
1157         return container_of(dwork, struct jffs2_sb_info, wbuf_dwork);
1158 }
1159
1160 static void delayed_wbuf_sync(struct work_struct *work)
1161 {
1162         struct jffs2_sb_info *c = work_to_sb(work);
1163         struct super_block *sb = OFNI_BS_2SFFJ(c);
1164
1165         if (!sb_rdonly(sb)) {
1166                 jffs2_dbg(1, "%s()\n", __func__);
1167                 jffs2_flush_wbuf_gc(c, 0);
1168         }
1169 }
1170
1171 void jffs2_dirty_trigger(struct jffs2_sb_info *c)
1172 {
1173         struct super_block *sb = OFNI_BS_2SFFJ(c);
1174         unsigned long delay;
1175
1176         if (sb_rdonly(sb))
1177                 return;
1178
1179         delay = msecs_to_jiffies(dirty_writeback_interval * 10);
1180         if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay))
1181                 jffs2_dbg(1, "%s()\n", __func__);
1182 }
1183
1184 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1185 {
1186         if (!c->mtd->oobsize)
1187                 return 0;
1188
1189         /* Cleanmarker is out-of-band, so inline size zero */
1190         c->cleanmarker_size = 0;
1191
1192         if (c->mtd->oobavail == 0) {
1193                 pr_err("inconsistent device description\n");
1194                 return -EINVAL;
1195         }
1196
1197         jffs2_dbg(1, "using OOB on NAND\n");
1198
1199         c->oobavail = c->mtd->oobavail;
1200
1201         /* Initialise write buffer */
1202         init_rwsem(&c->wbuf_sem);
1203         INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1204         c->wbuf_pagesize = c->mtd->writesize;
1205         c->wbuf_ofs = 0xFFFFFFFF;
1206
1207         c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1208         if (!c->wbuf)
1209                 return -ENOMEM;
1210
1211         c->oobbuf = kmalloc_array(NR_OOB_SCAN_PAGES, c->oobavail, GFP_KERNEL);
1212         if (!c->oobbuf) {
1213                 kfree(c->wbuf);
1214                 return -ENOMEM;
1215         }
1216
1217 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1218         c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1219         if (!c->wbuf_verify) {
1220                 kfree(c->oobbuf);
1221                 kfree(c->wbuf);
1222                 return -ENOMEM;
1223         }
1224 #endif
1225         return 0;
1226 }
1227
1228 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1229 {
1230 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1231         kfree(c->wbuf_verify);
1232 #endif
1233         kfree(c->wbuf);
1234         kfree(c->oobbuf);
1235 }
1236
1237 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1238         c->cleanmarker_size = 0;                /* No cleanmarkers needed */
1239
1240         /* Initialize write buffer */
1241         init_rwsem(&c->wbuf_sem);
1242         INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1243         c->wbuf_pagesize =  c->mtd->erasesize;
1244
1245         /* Find a suitable c->sector_size
1246          * - Not too much sectors
1247          * - Sectors have to be at least 4 K + some bytes
1248          * - All known dataflashes have erase sizes of 528 or 1056
1249          * - we take at least 8 eraseblocks and want to have at least 8K size
1250          * - The concatenation should be a power of 2
1251         */
1252
1253         c->sector_size = 8 * c->mtd->erasesize;
1254
1255         while (c->sector_size < 8192) {
1256                 c->sector_size *= 2;
1257         }
1258
1259         /* It may be necessary to adjust the flash size */
1260         c->flash_size = c->mtd->size;
1261
1262         if ((c->flash_size % c->sector_size) != 0) {
1263                 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1264                 pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
1265         }
1266
1267         c->wbuf_ofs = 0xFFFFFFFF;
1268         c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1269         if (!c->wbuf)
1270                 return -ENOMEM;
1271
1272 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1273         c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1274         if (!c->wbuf_verify) {
1275                 kfree(c->wbuf);
1276                 return -ENOMEM;
1277         }
1278 #endif
1279
1280         pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1281                 c->wbuf_pagesize, c->sector_size);
1282
1283         return 0;
1284 }
1285
1286 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1287 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1288         kfree(c->wbuf_verify);
1289 #endif
1290         kfree(c->wbuf);
1291 }
1292
1293 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1294         /* Cleanmarker currently occupies whole programming regions,
1295          * either one or 2 for 8Byte STMicro flashes. */
1296         c->cleanmarker_size = max(16u, c->mtd->writesize);
1297
1298         /* Initialize write buffer */
1299         init_rwsem(&c->wbuf_sem);
1300         INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1301
1302         c->wbuf_pagesize = c->mtd->writesize;
1303         c->wbuf_ofs = 0xFFFFFFFF;
1304
1305         c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1306         if (!c->wbuf)
1307                 return -ENOMEM;
1308
1309 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1310         c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1311         if (!c->wbuf_verify) {
1312                 kfree(c->wbuf);
1313                 return -ENOMEM;
1314         }
1315 #endif
1316         return 0;
1317 }
1318
1319 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1320 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1321         kfree(c->wbuf_verify);
1322 #endif
1323         kfree(c->wbuf);
1324 }
1325
1326 int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1327         c->cleanmarker_size = 0;
1328
1329         if (c->mtd->writesize == 1)
1330                 /* We do not need write-buffer */
1331                 return 0;
1332
1333         init_rwsem(&c->wbuf_sem);
1334         INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1335
1336         c->wbuf_pagesize =  c->mtd->writesize;
1337         c->wbuf_ofs = 0xFFFFFFFF;
1338         c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1339         if (!c->wbuf)
1340                 return -ENOMEM;
1341
1342         pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1343                 c->wbuf_pagesize, c->sector_size);
1344
1345         return 0;
1346 }
1347
1348 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1349         kfree(c->wbuf);
1350 }