GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *      The journal MUST be locked.  We don't perform atomic mallocs on the
75  *      new transaction and we can't block without protecting against other
76  *      processes trying to touch the journal while it is in transition.
77  *
78  */
79
80 static void jbd2_get_transaction(journal_t *journal,
81                                 transaction_t *transaction)
82 {
83         transaction->t_journal = journal;
84         transaction->t_state = T_RUNNING;
85         transaction->t_start_time = ktime_get();
86         transaction->t_tid = journal->j_transaction_sequence++;
87         transaction->t_expires = jiffies + journal->j_commit_interval;
88         spin_lock_init(&transaction->t_handle_lock);
89         atomic_set(&transaction->t_updates, 0);
90         atomic_set(&transaction->t_outstanding_credits,
91                    atomic_read(&journal->j_reserved_credits));
92         atomic_set(&transaction->t_handle_count, 0);
93         INIT_LIST_HEAD(&transaction->t_inode_list);
94         INIT_LIST_HEAD(&transaction->t_private_list);
95
96         /* Set up the commit timer for the new transaction. */
97         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98         add_timer(&journal->j_commit_timer);
99
100         J_ASSERT(journal->j_running_transaction == NULL);
101         journal->j_running_transaction = transaction;
102         transaction->t_max_wait = 0;
103         transaction->t_start = jiffies;
104         transaction->t_requested = 0;
105 }
106
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126                                      unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129         if (jbd2_journal_enable_debug &&
130             time_after(transaction->t_start, ts)) {
131                 ts = jbd2_time_diff(ts, transaction->t_start);
132                 spin_lock(&transaction->t_handle_lock);
133                 if (ts > transaction->t_max_wait)
134                         transaction->t_max_wait = ts;
135                 spin_unlock(&transaction->t_handle_lock);
136         }
137 #endif
138 }
139
140 /*
141  * Wait until running transaction passes to T_FLUSH state and new transaction
142  * can thus be started. Also starts the commit if needed. The function expects
143  * running transaction to exist and releases j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146         __releases(journal->j_state_lock)
147 {
148         DEFINE_WAIT(wait);
149         int need_to_start;
150         tid_t tid = journal->j_running_transaction->t_tid;
151
152         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
153                         TASK_UNINTERRUPTIBLE);
154         need_to_start = !tid_geq(journal->j_commit_request, tid);
155         read_unlock(&journal->j_state_lock);
156         if (need_to_start)
157                 jbd2_log_start_commit(journal, tid);
158         jbd2_might_wait_for_commit(journal);
159         schedule();
160         finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162
163 /*
164  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
165  * state and new transaction can thus be started. The function releases
166  * j_state_lock.
167  */
168 static void wait_transaction_switching(journal_t *journal)
169         __releases(journal->j_state_lock)
170 {
171         DEFINE_WAIT(wait);
172
173         if (WARN_ON(!journal->j_running_transaction ||
174                     journal->j_running_transaction->t_state != T_SWITCH)) {
175                 read_unlock(&journal->j_state_lock);
176                 return;
177         }
178         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
179                         TASK_UNINTERRUPTIBLE);
180         read_unlock(&journal->j_state_lock);
181         /*
182          * We don't call jbd2_might_wait_for_commit() here as there's no
183          * waiting for outstanding handles happening anymore in T_SWITCH state
184          * and handling of reserved handles actually relies on that for
185          * correctness.
186          */
187         schedule();
188         finish_wait(&journal->j_wait_transaction_locked, &wait);
189 }
190
191 static void sub_reserved_credits(journal_t *journal, int blocks)
192 {
193         atomic_sub(blocks, &journal->j_reserved_credits);
194         wake_up(&journal->j_wait_reserved);
195 }
196
197 /*
198  * Wait until we can add credits for handle to the running transaction.  Called
199  * with j_state_lock held for reading. Returns 0 if handle joined the running
200  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
201  * caller must retry.
202  */
203 static int add_transaction_credits(journal_t *journal, int blocks,
204                                    int rsv_blocks)
205 {
206         transaction_t *t = journal->j_running_transaction;
207         int needed;
208         int total = blocks + rsv_blocks;
209
210         /*
211          * If the current transaction is locked down for commit, wait
212          * for the lock to be released.
213          */
214         if (t->t_state != T_RUNNING) {
215                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
216                 wait_transaction_locked(journal);
217                 return 1;
218         }
219
220         /*
221          * If there is not enough space left in the log to write all
222          * potential buffers requested by this operation, we need to
223          * stall pending a log checkpoint to free some more log space.
224          */
225         needed = atomic_add_return(total, &t->t_outstanding_credits);
226         if (needed > journal->j_max_transaction_buffers) {
227                 /*
228                  * If the current transaction is already too large,
229                  * then start to commit it: we can then go back and
230                  * attach this handle to a new transaction.
231                  */
232                 atomic_sub(total, &t->t_outstanding_credits);
233
234                 /*
235                  * Is the number of reserved credits in the current transaction too
236                  * big to fit this handle? Wait until reserved credits are freed.
237                  */
238                 if (atomic_read(&journal->j_reserved_credits) + total >
239                     journal->j_max_transaction_buffers) {
240                         read_unlock(&journal->j_state_lock);
241                         jbd2_might_wait_for_commit(journal);
242                         wait_event(journal->j_wait_reserved,
243                                    atomic_read(&journal->j_reserved_credits) + total <=
244                                    journal->j_max_transaction_buffers);
245                         return 1;
246                 }
247
248                 wait_transaction_locked(journal);
249                 return 1;
250         }
251
252         /*
253          * The commit code assumes that it can get enough log space
254          * without forcing a checkpoint.  This is *critical* for
255          * correctness: a checkpoint of a buffer which is also
256          * associated with a committing transaction creates a deadlock,
257          * so commit simply cannot force through checkpoints.
258          *
259          * We must therefore ensure the necessary space in the journal
260          * *before* starting to dirty potentially checkpointed buffers
261          * in the new transaction.
262          */
263         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
264                 atomic_sub(total, &t->t_outstanding_credits);
265                 read_unlock(&journal->j_state_lock);
266                 jbd2_might_wait_for_commit(journal);
267                 write_lock(&journal->j_state_lock);
268                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
269                         __jbd2_log_wait_for_space(journal);
270                 write_unlock(&journal->j_state_lock);
271                 return 1;
272         }
273
274         /* No reservation? We are done... */
275         if (!rsv_blocks)
276                 return 0;
277
278         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
279         /* We allow at most half of a transaction to be reserved */
280         if (needed > journal->j_max_transaction_buffers / 2) {
281                 sub_reserved_credits(journal, rsv_blocks);
282                 atomic_sub(total, &t->t_outstanding_credits);
283                 read_unlock(&journal->j_state_lock);
284                 jbd2_might_wait_for_commit(journal);
285                 wait_event(journal->j_wait_reserved,
286                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
287                          <= journal->j_max_transaction_buffers / 2);
288                 return 1;
289         }
290         return 0;
291 }
292
293 /*
294  * start_this_handle: Given a handle, deal with any locking or stalling
295  * needed to make sure that there is enough journal space for the handle
296  * to begin.  Attach the handle to a transaction and set up the
297  * transaction's buffer credits.
298  */
299
300 static int start_this_handle(journal_t *journal, handle_t *handle,
301                              gfp_t gfp_mask)
302 {
303         transaction_t   *transaction, *new_transaction = NULL;
304         int             blocks = handle->h_buffer_credits;
305         int             rsv_blocks = 0;
306         unsigned long ts = jiffies;
307
308         if (handle->h_rsv_handle)
309                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
310
311         /*
312          * Limit the number of reserved credits to 1/2 of maximum transaction
313          * size and limit the number of total credits to not exceed maximum
314          * transaction size per operation.
315          */
316         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
317             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
318                 printk(KERN_ERR "JBD2: %s wants too many credits "
319                        "credits:%d rsv_credits:%d max:%d\n",
320                        current->comm, blocks, rsv_blocks,
321                        journal->j_max_transaction_buffers);
322                 WARN_ON(1);
323                 return -ENOSPC;
324         }
325
326 alloc_transaction:
327         if (!journal->j_running_transaction) {
328                 /*
329                  * If __GFP_FS is not present, then we may be being called from
330                  * inside the fs writeback layer, so we MUST NOT fail.
331                  */
332                 if ((gfp_mask & __GFP_FS) == 0)
333                         gfp_mask |= __GFP_NOFAIL;
334                 new_transaction = kmem_cache_zalloc(transaction_cache,
335                                                     gfp_mask);
336                 if (!new_transaction)
337                         return -ENOMEM;
338         }
339
340         jbd_debug(3, "New handle %p going live.\n", handle);
341
342         /*
343          * We need to hold j_state_lock until t_updates has been incremented,
344          * for proper journal barrier handling
345          */
346 repeat:
347         read_lock(&journal->j_state_lock);
348         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
349         if (is_journal_aborted(journal) ||
350             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
351                 read_unlock(&journal->j_state_lock);
352                 jbd2_journal_free_transaction(new_transaction);
353                 return -EROFS;
354         }
355
356         /*
357          * Wait on the journal's transaction barrier if necessary. Specifically
358          * we allow reserved handles to proceed because otherwise commit could
359          * deadlock on page writeback not being able to complete.
360          */
361         if (!handle->h_reserved && journal->j_barrier_count) {
362                 read_unlock(&journal->j_state_lock);
363                 wait_event(journal->j_wait_transaction_locked,
364                                 journal->j_barrier_count == 0);
365                 goto repeat;
366         }
367
368         if (!journal->j_running_transaction) {
369                 read_unlock(&journal->j_state_lock);
370                 if (!new_transaction)
371                         goto alloc_transaction;
372                 write_lock(&journal->j_state_lock);
373                 if (!journal->j_running_transaction &&
374                     (handle->h_reserved || !journal->j_barrier_count)) {
375                         jbd2_get_transaction(journal, new_transaction);
376                         new_transaction = NULL;
377                 }
378                 write_unlock(&journal->j_state_lock);
379                 goto repeat;
380         }
381
382         transaction = journal->j_running_transaction;
383
384         if (!handle->h_reserved) {
385                 /* We may have dropped j_state_lock - restart in that case */
386                 if (add_transaction_credits(journal, blocks, rsv_blocks))
387                         goto repeat;
388         } else {
389                 /*
390                  * We have handle reserved so we are allowed to join T_LOCKED
391                  * transaction and we don't have to check for transaction size
392                  * and journal space. But we still have to wait while running
393                  * transaction is being switched to a committing one as it
394                  * won't wait for any handles anymore.
395                  */
396                 if (transaction->t_state == T_SWITCH) {
397                         wait_transaction_switching(journal);
398                         goto repeat;
399                 }
400                 sub_reserved_credits(journal, blocks);
401                 handle->h_reserved = 0;
402         }
403
404         /* OK, account for the buffers that this operation expects to
405          * use and add the handle to the running transaction. 
406          */
407         update_t_max_wait(transaction, ts);
408         handle->h_transaction = transaction;
409         handle->h_requested_credits = blocks;
410         handle->h_start_jiffies = jiffies;
411         atomic_inc(&transaction->t_updates);
412         atomic_inc(&transaction->t_handle_count);
413         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
414                   handle, blocks,
415                   atomic_read(&transaction->t_outstanding_credits),
416                   jbd2_log_space_left(journal));
417         read_unlock(&journal->j_state_lock);
418         current->journal_info = handle;
419
420         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
421         jbd2_journal_free_transaction(new_transaction);
422         /*
423          * Ensure that no allocations done while the transaction is open are
424          * going to recurse back to the fs layer.
425          */
426         handle->saved_alloc_context = memalloc_nofs_save();
427         return 0;
428 }
429
430 /* Allocate a new handle.  This should probably be in a slab... */
431 static handle_t *new_handle(int nblocks)
432 {
433         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
434         if (!handle)
435                 return NULL;
436         handle->h_buffer_credits = nblocks;
437         handle->h_ref = 1;
438
439         return handle;
440 }
441
442 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
443                               gfp_t gfp_mask, unsigned int type,
444                               unsigned int line_no)
445 {
446         handle_t *handle = journal_current_handle();
447         int err;
448
449         if (!journal)
450                 return ERR_PTR(-EROFS);
451
452         if (handle) {
453                 J_ASSERT(handle->h_transaction->t_journal == journal);
454                 handle->h_ref++;
455                 return handle;
456         }
457
458         handle = new_handle(nblocks);
459         if (!handle)
460                 return ERR_PTR(-ENOMEM);
461         if (rsv_blocks) {
462                 handle_t *rsv_handle;
463
464                 rsv_handle = new_handle(rsv_blocks);
465                 if (!rsv_handle) {
466                         jbd2_free_handle(handle);
467                         return ERR_PTR(-ENOMEM);
468                 }
469                 rsv_handle->h_reserved = 1;
470                 rsv_handle->h_journal = journal;
471                 handle->h_rsv_handle = rsv_handle;
472         }
473
474         err = start_this_handle(journal, handle, gfp_mask);
475         if (err < 0) {
476                 if (handle->h_rsv_handle)
477                         jbd2_free_handle(handle->h_rsv_handle);
478                 jbd2_free_handle(handle);
479                 return ERR_PTR(err);
480         }
481         handle->h_type = type;
482         handle->h_line_no = line_no;
483         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
484                                 handle->h_transaction->t_tid, type,
485                                 line_no, nblocks);
486
487         return handle;
488 }
489 EXPORT_SYMBOL(jbd2__journal_start);
490
491
492 /**
493  * jbd2_journal_start() - Obtain a new handle.
494  * @journal: Journal to start transaction on.
495  * @nblocks: number of block buffer we might modify
496  *
497  * We make sure that the transaction can guarantee at least nblocks of
498  * modified buffers in the log.  We block until the log can guarantee
499  * that much space. Additionally, if rsv_blocks > 0, we also create another
500  * handle with rsv_blocks reserved blocks in the journal. This handle is
501  * is stored in h_rsv_handle. It is not attached to any particular transaction
502  * and thus doesn't block transaction commit. If the caller uses this reserved
503  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
504  * on the parent handle will dispose the reserved one. Reserved handle has to
505  * be converted to a normal handle using jbd2_journal_start_reserved() before
506  * it can be used.
507  *
508  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
509  * on failure.
510  */
511 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
512 {
513         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
514 }
515 EXPORT_SYMBOL(jbd2_journal_start);
516
517 void jbd2_journal_free_reserved(handle_t *handle)
518 {
519         journal_t *journal = handle->h_journal;
520
521         WARN_ON(!handle->h_reserved);
522         sub_reserved_credits(journal, handle->h_buffer_credits);
523         jbd2_free_handle(handle);
524 }
525 EXPORT_SYMBOL(jbd2_journal_free_reserved);
526
527 /**
528  * jbd2_journal_start_reserved() - start reserved handle
529  * @handle: handle to start
530  * @type: for handle statistics
531  * @line_no: for handle statistics
532  *
533  * Start handle that has been previously reserved with jbd2_journal_reserve().
534  * This attaches @handle to the running transaction (or creates one if there's
535  * not transaction running). Unlike jbd2_journal_start() this function cannot
536  * block on journal commit, checkpointing, or similar stuff. It can block on
537  * memory allocation or frozen journal though.
538  *
539  * Return 0 on success, non-zero on error - handle is freed in that case.
540  */
541 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
542                                 unsigned int line_no)
543 {
544         journal_t *journal = handle->h_journal;
545         int ret = -EIO;
546
547         if (WARN_ON(!handle->h_reserved)) {
548                 /* Someone passed in normal handle? Just stop it. */
549                 jbd2_journal_stop(handle);
550                 return ret;
551         }
552         /*
553          * Usefulness of mixing of reserved and unreserved handles is
554          * questionable. So far nobody seems to need it so just error out.
555          */
556         if (WARN_ON(current->journal_info)) {
557                 jbd2_journal_free_reserved(handle);
558                 return ret;
559         }
560
561         handle->h_journal = NULL;
562         /*
563          * GFP_NOFS is here because callers are likely from writeback or
564          * similarly constrained call sites
565          */
566         ret = start_this_handle(journal, handle, GFP_NOFS);
567         if (ret < 0) {
568                 handle->h_journal = journal;
569                 jbd2_journal_free_reserved(handle);
570                 return ret;
571         }
572         handle->h_type = type;
573         handle->h_line_no = line_no;
574         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
575                                 handle->h_transaction->t_tid, type,
576                                 line_no, handle->h_buffer_credits);
577         return 0;
578 }
579 EXPORT_SYMBOL(jbd2_journal_start_reserved);
580
581 /**
582  * jbd2_journal_extend() - extend buffer credits.
583  * @handle:  handle to 'extend'
584  * @nblocks: nr blocks to try to extend by.
585  *
586  * Some transactions, such as large extends and truncates, can be done
587  * atomically all at once or in several stages.  The operation requests
588  * a credit for a number of buffer modifications in advance, but can
589  * extend its credit if it needs more.
590  *
591  * jbd2_journal_extend tries to give the running handle more buffer credits.
592  * It does not guarantee that allocation - this is a best-effort only.
593  * The calling process MUST be able to deal cleanly with a failure to
594  * extend here.
595  *
596  * Return 0 on success, non-zero on failure.
597  *
598  * return code < 0 implies an error
599  * return code > 0 implies normal transaction-full status.
600  */
601 int jbd2_journal_extend(handle_t *handle, int nblocks)
602 {
603         transaction_t *transaction = handle->h_transaction;
604         journal_t *journal;
605         int result;
606         int wanted;
607
608         if (is_handle_aborted(handle))
609                 return -EROFS;
610         journal = transaction->t_journal;
611
612         result = 1;
613
614         read_lock(&journal->j_state_lock);
615
616         /* Don't extend a locked-down transaction! */
617         if (transaction->t_state != T_RUNNING) {
618                 jbd_debug(3, "denied handle %p %d blocks: "
619                           "transaction not running\n", handle, nblocks);
620                 goto error_out;
621         }
622
623         spin_lock(&transaction->t_handle_lock);
624         wanted = atomic_add_return(nblocks,
625                                    &transaction->t_outstanding_credits);
626
627         if (wanted > journal->j_max_transaction_buffers) {
628                 jbd_debug(3, "denied handle %p %d blocks: "
629                           "transaction too large\n", handle, nblocks);
630                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
631                 goto unlock;
632         }
633
634         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
635             jbd2_log_space_left(journal)) {
636                 jbd_debug(3, "denied handle %p %d blocks: "
637                           "insufficient log space\n", handle, nblocks);
638                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
639                 goto unlock;
640         }
641
642         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
643                                  transaction->t_tid,
644                                  handle->h_type, handle->h_line_no,
645                                  handle->h_buffer_credits,
646                                  nblocks);
647
648         handle->h_buffer_credits += nblocks;
649         handle->h_requested_credits += nblocks;
650         result = 0;
651
652         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
653 unlock:
654         spin_unlock(&transaction->t_handle_lock);
655 error_out:
656         read_unlock(&journal->j_state_lock);
657         return result;
658 }
659
660
661 /**
662  * jbd2__journal_restart() - restart a handle .
663  * @handle:  handle to restart
664  * @nblocks: nr credits requested
665  * @gfp_mask: memory allocation flags (for start_this_handle)
666  *
667  * Restart a handle for a multi-transaction filesystem
668  * operation.
669  *
670  * If the jbd2_journal_extend() call above fails to grant new buffer credits
671  * to a running handle, a call to jbd2_journal_restart will commit the
672  * handle's transaction so far and reattach the handle to a new
673  * transaction capable of guaranteeing the requested number of
674  * credits. We preserve reserved handle if there's any attached to the
675  * passed in handle.
676  */
677 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
678 {
679         transaction_t *transaction = handle->h_transaction;
680         journal_t *journal;
681         tid_t           tid;
682         int             need_to_start, ret;
683
684         /* If we've had an abort of any type, don't even think about
685          * actually doing the restart! */
686         if (is_handle_aborted(handle))
687                 return 0;
688         journal = transaction->t_journal;
689
690         /*
691          * First unlink the handle from its current transaction, and start the
692          * commit on that.
693          */
694         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
695         J_ASSERT(journal_current_handle() == handle);
696
697         read_lock(&journal->j_state_lock);
698         spin_lock(&transaction->t_handle_lock);
699         atomic_sub(handle->h_buffer_credits,
700                    &transaction->t_outstanding_credits);
701         if (handle->h_rsv_handle) {
702                 sub_reserved_credits(journal,
703                                      handle->h_rsv_handle->h_buffer_credits);
704         }
705         if (atomic_dec_and_test(&transaction->t_updates))
706                 wake_up(&journal->j_wait_updates);
707         tid = transaction->t_tid;
708         spin_unlock(&transaction->t_handle_lock);
709         handle->h_transaction = NULL;
710         current->journal_info = NULL;
711
712         jbd_debug(2, "restarting handle %p\n", handle);
713         need_to_start = !tid_geq(journal->j_commit_request, tid);
714         read_unlock(&journal->j_state_lock);
715         if (need_to_start)
716                 jbd2_log_start_commit(journal, tid);
717
718         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
719         handle->h_buffer_credits = nblocks;
720         /*
721          * Restore the original nofs context because the journal restart
722          * is basically the same thing as journal stop and start.
723          * start_this_handle will start a new nofs context.
724          */
725         memalloc_nofs_restore(handle->saved_alloc_context);
726         ret = start_this_handle(journal, handle, gfp_mask);
727         return ret;
728 }
729 EXPORT_SYMBOL(jbd2__journal_restart);
730
731
732 int jbd2_journal_restart(handle_t *handle, int nblocks)
733 {
734         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
735 }
736 EXPORT_SYMBOL(jbd2_journal_restart);
737
738 /**
739  * jbd2_journal_lock_updates () - establish a transaction barrier.
740  * @journal:  Journal to establish a barrier on.
741  *
742  * This locks out any further updates from being started, and blocks
743  * until all existing updates have completed, returning only once the
744  * journal is in a quiescent state with no updates running.
745  *
746  * The journal lock should not be held on entry.
747  */
748 void jbd2_journal_lock_updates(journal_t *journal)
749 {
750         DEFINE_WAIT(wait);
751
752         jbd2_might_wait_for_commit(journal);
753
754         write_lock(&journal->j_state_lock);
755         ++journal->j_barrier_count;
756
757         /* Wait until there are no reserved handles */
758         if (atomic_read(&journal->j_reserved_credits)) {
759                 write_unlock(&journal->j_state_lock);
760                 wait_event(journal->j_wait_reserved,
761                            atomic_read(&journal->j_reserved_credits) == 0);
762                 write_lock(&journal->j_state_lock);
763         }
764
765         /* Wait until there are no running updates */
766         while (1) {
767                 transaction_t *transaction = journal->j_running_transaction;
768
769                 if (!transaction)
770                         break;
771
772                 spin_lock(&transaction->t_handle_lock);
773                 prepare_to_wait(&journal->j_wait_updates, &wait,
774                                 TASK_UNINTERRUPTIBLE);
775                 if (!atomic_read(&transaction->t_updates)) {
776                         spin_unlock(&transaction->t_handle_lock);
777                         finish_wait(&journal->j_wait_updates, &wait);
778                         break;
779                 }
780                 spin_unlock(&transaction->t_handle_lock);
781                 write_unlock(&journal->j_state_lock);
782                 schedule();
783                 finish_wait(&journal->j_wait_updates, &wait);
784                 write_lock(&journal->j_state_lock);
785         }
786         write_unlock(&journal->j_state_lock);
787
788         /*
789          * We have now established a barrier against other normal updates, but
790          * we also need to barrier against other jbd2_journal_lock_updates() calls
791          * to make sure that we serialise special journal-locked operations
792          * too.
793          */
794         mutex_lock(&journal->j_barrier);
795 }
796
797 /**
798  * jbd2_journal_unlock_updates () - release barrier
799  * @journal:  Journal to release the barrier on.
800  *
801  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
802  *
803  * Should be called without the journal lock held.
804  */
805 void jbd2_journal_unlock_updates (journal_t *journal)
806 {
807         J_ASSERT(journal->j_barrier_count != 0);
808
809         mutex_unlock(&journal->j_barrier);
810         write_lock(&journal->j_state_lock);
811         --journal->j_barrier_count;
812         write_unlock(&journal->j_state_lock);
813         wake_up_all(&journal->j_wait_transaction_locked);
814 }
815
816 static void warn_dirty_buffer(struct buffer_head *bh)
817 {
818         printk(KERN_WARNING
819                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
820                "There's a risk of filesystem corruption in case of system "
821                "crash.\n",
822                bh->b_bdev, (unsigned long long)bh->b_blocknr);
823 }
824
825 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
826 static void jbd2_freeze_jh_data(struct journal_head *jh)
827 {
828         struct page *page;
829         int offset;
830         char *source;
831         struct buffer_head *bh = jh2bh(jh);
832
833         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
834         page = bh->b_page;
835         offset = offset_in_page(bh->b_data);
836         source = kmap_atomic(page);
837         /* Fire data frozen trigger just before we copy the data */
838         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
839         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
840         kunmap_atomic(source);
841
842         /*
843          * Now that the frozen data is saved off, we need to store any matching
844          * triggers.
845          */
846         jh->b_frozen_triggers = jh->b_triggers;
847 }
848
849 /*
850  * If the buffer is already part of the current transaction, then there
851  * is nothing we need to do.  If it is already part of a prior
852  * transaction which we are still committing to disk, then we need to
853  * make sure that we do not overwrite the old copy: we do copy-out to
854  * preserve the copy going to disk.  We also account the buffer against
855  * the handle's metadata buffer credits (unless the buffer is already
856  * part of the transaction, that is).
857  *
858  */
859 static int
860 do_get_write_access(handle_t *handle, struct journal_head *jh,
861                         int force_copy)
862 {
863         struct buffer_head *bh;
864         transaction_t *transaction = handle->h_transaction;
865         journal_t *journal;
866         int error;
867         char *frozen_buffer = NULL;
868         unsigned long start_lock, time_lock;
869
870         journal = transaction->t_journal;
871
872         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
873
874         JBUFFER_TRACE(jh, "entry");
875 repeat:
876         bh = jh2bh(jh);
877
878         /* @@@ Need to check for errors here at some point. */
879
880         start_lock = jiffies;
881         lock_buffer(bh);
882         jbd_lock_bh_state(bh);
883
884         /* If it takes too long to lock the buffer, trace it */
885         time_lock = jbd2_time_diff(start_lock, jiffies);
886         if (time_lock > HZ/10)
887                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
888                         jiffies_to_msecs(time_lock));
889
890         /* We now hold the buffer lock so it is safe to query the buffer
891          * state.  Is the buffer dirty?
892          *
893          * If so, there are two possibilities.  The buffer may be
894          * non-journaled, and undergoing a quite legitimate writeback.
895          * Otherwise, it is journaled, and we don't expect dirty buffers
896          * in that state (the buffers should be marked JBD_Dirty
897          * instead.)  So either the IO is being done under our own
898          * control and this is a bug, or it's a third party IO such as
899          * dump(8) (which may leave the buffer scheduled for read ---
900          * ie. locked but not dirty) or tune2fs (which may actually have
901          * the buffer dirtied, ugh.)  */
902
903         if (buffer_dirty(bh)) {
904                 /*
905                  * First question: is this buffer already part of the current
906                  * transaction or the existing committing transaction?
907                  */
908                 if (jh->b_transaction) {
909                         J_ASSERT_JH(jh,
910                                 jh->b_transaction == transaction ||
911                                 jh->b_transaction ==
912                                         journal->j_committing_transaction);
913                         if (jh->b_next_transaction)
914                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
915                                                         transaction);
916                         warn_dirty_buffer(bh);
917                 }
918                 /*
919                  * In any case we need to clean the dirty flag and we must
920                  * do it under the buffer lock to be sure we don't race
921                  * with running write-out.
922                  */
923                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
924                 clear_buffer_dirty(bh);
925                 set_buffer_jbddirty(bh);
926         }
927
928         unlock_buffer(bh);
929
930         error = -EROFS;
931         if (is_handle_aborted(handle)) {
932                 jbd_unlock_bh_state(bh);
933                 goto out;
934         }
935         error = 0;
936
937         /*
938          * The buffer is already part of this transaction if b_transaction or
939          * b_next_transaction points to it
940          */
941         if (jh->b_transaction == transaction ||
942             jh->b_next_transaction == transaction)
943                 goto done;
944
945         /*
946          * this is the first time this transaction is touching this buffer,
947          * reset the modified flag
948          */
949         jh->b_modified = 0;
950
951         /*
952          * If the buffer is not journaled right now, we need to make sure it
953          * doesn't get written to disk before the caller actually commits the
954          * new data
955          */
956         if (!jh->b_transaction) {
957                 JBUFFER_TRACE(jh, "no transaction");
958                 J_ASSERT_JH(jh, !jh->b_next_transaction);
959                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
960                 /*
961                  * Make sure all stores to jh (b_modified, b_frozen_data) are
962                  * visible before attaching it to the running transaction.
963                  * Paired with barrier in jbd2_write_access_granted()
964                  */
965                 smp_wmb();
966                 spin_lock(&journal->j_list_lock);
967                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
968                 spin_unlock(&journal->j_list_lock);
969                 goto done;
970         }
971         /*
972          * If there is already a copy-out version of this buffer, then we don't
973          * need to make another one
974          */
975         if (jh->b_frozen_data) {
976                 JBUFFER_TRACE(jh, "has frozen data");
977                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
978                 goto attach_next;
979         }
980
981         JBUFFER_TRACE(jh, "owned by older transaction");
982         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
983         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
984
985         /*
986          * There is one case we have to be very careful about.  If the
987          * committing transaction is currently writing this buffer out to disk
988          * and has NOT made a copy-out, then we cannot modify the buffer
989          * contents at all right now.  The essence of copy-out is that it is
990          * the extra copy, not the primary copy, which gets journaled.  If the
991          * primary copy is already going to disk then we cannot do copy-out
992          * here.
993          */
994         if (buffer_shadow(bh)) {
995                 JBUFFER_TRACE(jh, "on shadow: sleep");
996                 jbd_unlock_bh_state(bh);
997                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
998                 goto repeat;
999         }
1000
1001         /*
1002          * Only do the copy if the currently-owning transaction still needs it.
1003          * If buffer isn't on BJ_Metadata list, the committing transaction is
1004          * past that stage (here we use the fact that BH_Shadow is set under
1005          * bh_state lock together with refiling to BJ_Shadow list and at this
1006          * point we know the buffer doesn't have BH_Shadow set).
1007          *
1008          * Subtle point, though: if this is a get_undo_access, then we will be
1009          * relying on the frozen_data to contain the new value of the
1010          * committed_data record after the transaction, so we HAVE to force the
1011          * frozen_data copy in that case.
1012          */
1013         if (jh->b_jlist == BJ_Metadata || force_copy) {
1014                 JBUFFER_TRACE(jh, "generate frozen data");
1015                 if (!frozen_buffer) {
1016                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1017                         jbd_unlock_bh_state(bh);
1018                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1019                                                    GFP_NOFS | __GFP_NOFAIL);
1020                         goto repeat;
1021                 }
1022                 jh->b_frozen_data = frozen_buffer;
1023                 frozen_buffer = NULL;
1024                 jbd2_freeze_jh_data(jh);
1025         }
1026 attach_next:
1027         /*
1028          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1029          * before attaching it to the running transaction. Paired with barrier
1030          * in jbd2_write_access_granted()
1031          */
1032         smp_wmb();
1033         jh->b_next_transaction = transaction;
1034
1035 done:
1036         jbd_unlock_bh_state(bh);
1037
1038         /*
1039          * If we are about to journal a buffer, then any revoke pending on it is
1040          * no longer valid
1041          */
1042         jbd2_journal_cancel_revoke(handle, jh);
1043
1044 out:
1045         if (unlikely(frozen_buffer))    /* It's usually NULL */
1046                 jbd2_free(frozen_buffer, bh->b_size);
1047
1048         JBUFFER_TRACE(jh, "exit");
1049         return error;
1050 }
1051
1052 /* Fast check whether buffer is already attached to the required transaction */
1053 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1054                                                         bool undo)
1055 {
1056         struct journal_head *jh;
1057         bool ret = false;
1058
1059         /* Dirty buffers require special handling... */
1060         if (buffer_dirty(bh))
1061                 return false;
1062
1063         /*
1064          * RCU protects us from dereferencing freed pages. So the checks we do
1065          * are guaranteed not to oops. However the jh slab object can get freed
1066          * & reallocated while we work with it. So we have to be careful. When
1067          * we see jh attached to the running transaction, we know it must stay
1068          * so until the transaction is committed. Thus jh won't be freed and
1069          * will be attached to the same bh while we run.  However it can
1070          * happen jh gets freed, reallocated, and attached to the transaction
1071          * just after we get pointer to it from bh. So we have to be careful
1072          * and recheck jh still belongs to our bh before we return success.
1073          */
1074         rcu_read_lock();
1075         if (!buffer_jbd(bh))
1076                 goto out;
1077         /* This should be bh2jh() but that doesn't work with inline functions */
1078         jh = READ_ONCE(bh->b_private);
1079         if (!jh)
1080                 goto out;
1081         /* For undo access buffer must have data copied */
1082         if (undo && !jh->b_committed_data)
1083                 goto out;
1084         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1085             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1086                 goto out;
1087         /*
1088          * There are two reasons for the barrier here:
1089          * 1) Make sure to fetch b_bh after we did previous checks so that we
1090          * detect when jh went through free, realloc, attach to transaction
1091          * while we were checking. Paired with implicit barrier in that path.
1092          * 2) So that access to bh done after jbd2_write_access_granted()
1093          * doesn't get reordered and see inconsistent state of concurrent
1094          * do_get_write_access().
1095          */
1096         smp_mb();
1097         if (unlikely(jh->b_bh != bh))
1098                 goto out;
1099         ret = true;
1100 out:
1101         rcu_read_unlock();
1102         return ret;
1103 }
1104
1105 /**
1106  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1107  *                                   for metadata (not data) update.
1108  * @handle: transaction to add buffer modifications to
1109  * @bh:     bh to be used for metadata writes
1110  *
1111  * Returns: error code or 0 on success.
1112  *
1113  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1114  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1115  */
1116
1117 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1118 {
1119         struct journal_head *jh;
1120         int rc;
1121
1122         if (is_handle_aborted(handle))
1123                 return -EROFS;
1124
1125         if (jbd2_write_access_granted(handle, bh, false))
1126                 return 0;
1127
1128         jh = jbd2_journal_add_journal_head(bh);
1129         /* We do not want to get caught playing with fields which the
1130          * log thread also manipulates.  Make sure that the buffer
1131          * completes any outstanding IO before proceeding. */
1132         rc = do_get_write_access(handle, jh, 0);
1133         jbd2_journal_put_journal_head(jh);
1134         return rc;
1135 }
1136
1137
1138 /*
1139  * When the user wants to journal a newly created buffer_head
1140  * (ie. getblk() returned a new buffer and we are going to populate it
1141  * manually rather than reading off disk), then we need to keep the
1142  * buffer_head locked until it has been completely filled with new
1143  * data.  In this case, we should be able to make the assertion that
1144  * the bh is not already part of an existing transaction.
1145  *
1146  * The buffer should already be locked by the caller by this point.
1147  * There is no lock ranking violation: it was a newly created,
1148  * unlocked buffer beforehand. */
1149
1150 /**
1151  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1152  * @handle: transaction to new buffer to
1153  * @bh: new buffer.
1154  *
1155  * Call this if you create a new bh.
1156  */
1157 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1158 {
1159         transaction_t *transaction = handle->h_transaction;
1160         journal_t *journal;
1161         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1162         int err;
1163
1164         jbd_debug(5, "journal_head %p\n", jh);
1165         err = -EROFS;
1166         if (is_handle_aborted(handle))
1167                 goto out;
1168         journal = transaction->t_journal;
1169         err = 0;
1170
1171         JBUFFER_TRACE(jh, "entry");
1172         /*
1173          * The buffer may already belong to this transaction due to pre-zeroing
1174          * in the filesystem's new_block code.  It may also be on the previous,
1175          * committing transaction's lists, but it HAS to be in Forget state in
1176          * that case: the transaction must have deleted the buffer for it to be
1177          * reused here.
1178          */
1179         jbd_lock_bh_state(bh);
1180         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1181                 jh->b_transaction == NULL ||
1182                 (jh->b_transaction == journal->j_committing_transaction &&
1183                           jh->b_jlist == BJ_Forget)));
1184
1185         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1186         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1187
1188         if (jh->b_transaction == NULL) {
1189                 /*
1190                  * Previous jbd2_journal_forget() could have left the buffer
1191                  * with jbddirty bit set because it was being committed. When
1192                  * the commit finished, we've filed the buffer for
1193                  * checkpointing and marked it dirty. Now we are reallocating
1194                  * the buffer so the transaction freeing it must have
1195                  * committed and so it's safe to clear the dirty bit.
1196                  */
1197                 clear_buffer_dirty(jh2bh(jh));
1198                 /* first access by this transaction */
1199                 jh->b_modified = 0;
1200
1201                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1202                 spin_lock(&journal->j_list_lock);
1203                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1204                 spin_unlock(&journal->j_list_lock);
1205         } else if (jh->b_transaction == journal->j_committing_transaction) {
1206                 /* first access by this transaction */
1207                 jh->b_modified = 0;
1208
1209                 JBUFFER_TRACE(jh, "set next transaction");
1210                 spin_lock(&journal->j_list_lock);
1211                 jh->b_next_transaction = transaction;
1212                 spin_unlock(&journal->j_list_lock);
1213         }
1214         jbd_unlock_bh_state(bh);
1215
1216         /*
1217          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1218          * blocks which contain freed but then revoked metadata.  We need
1219          * to cancel the revoke in case we end up freeing it yet again
1220          * and the reallocating as data - this would cause a second revoke,
1221          * which hits an assertion error.
1222          */
1223         JBUFFER_TRACE(jh, "cancelling revoke");
1224         jbd2_journal_cancel_revoke(handle, jh);
1225 out:
1226         jbd2_journal_put_journal_head(jh);
1227         return err;
1228 }
1229
1230 /**
1231  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1232  *     non-rewindable consequences
1233  * @handle: transaction
1234  * @bh: buffer to undo
1235  *
1236  * Sometimes there is a need to distinguish between metadata which has
1237  * been committed to disk and that which has not.  The ext3fs code uses
1238  * this for freeing and allocating space, we have to make sure that we
1239  * do not reuse freed space until the deallocation has been committed,
1240  * since if we overwrote that space we would make the delete
1241  * un-rewindable in case of a crash.
1242  *
1243  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1244  * buffer for parts of non-rewindable operations such as delete
1245  * operations on the bitmaps.  The journaling code must keep a copy of
1246  * the buffer's contents prior to the undo_access call until such time
1247  * as we know that the buffer has definitely been committed to disk.
1248  *
1249  * We never need to know which transaction the committed data is part
1250  * of, buffers touched here are guaranteed to be dirtied later and so
1251  * will be committed to a new transaction in due course, at which point
1252  * we can discard the old committed data pointer.
1253  *
1254  * Returns error number or 0 on success.
1255  */
1256 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1257 {
1258         int err;
1259         struct journal_head *jh;
1260         char *committed_data = NULL;
1261
1262         if (is_handle_aborted(handle))
1263                 return -EROFS;
1264
1265         if (jbd2_write_access_granted(handle, bh, true))
1266                 return 0;
1267
1268         jh = jbd2_journal_add_journal_head(bh);
1269         JBUFFER_TRACE(jh, "entry");
1270
1271         /*
1272          * Do this first --- it can drop the journal lock, so we want to
1273          * make sure that obtaining the committed_data is done
1274          * atomically wrt. completion of any outstanding commits.
1275          */
1276         err = do_get_write_access(handle, jh, 1);
1277         if (err)
1278                 goto out;
1279
1280 repeat:
1281         if (!jh->b_committed_data)
1282                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1283                                             GFP_NOFS|__GFP_NOFAIL);
1284
1285         jbd_lock_bh_state(bh);
1286         if (!jh->b_committed_data) {
1287                 /* Copy out the current buffer contents into the
1288                  * preserved, committed copy. */
1289                 JBUFFER_TRACE(jh, "generate b_committed data");
1290                 if (!committed_data) {
1291                         jbd_unlock_bh_state(bh);
1292                         goto repeat;
1293                 }
1294
1295                 jh->b_committed_data = committed_data;
1296                 committed_data = NULL;
1297                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1298         }
1299         jbd_unlock_bh_state(bh);
1300 out:
1301         jbd2_journal_put_journal_head(jh);
1302         if (unlikely(committed_data))
1303                 jbd2_free(committed_data, bh->b_size);
1304         return err;
1305 }
1306
1307 /**
1308  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1309  * @bh: buffer to trigger on
1310  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1311  *
1312  * Set any triggers on this journal_head.  This is always safe, because
1313  * triggers for a committing buffer will be saved off, and triggers for
1314  * a running transaction will match the buffer in that transaction.
1315  *
1316  * Call with NULL to clear the triggers.
1317  */
1318 void jbd2_journal_set_triggers(struct buffer_head *bh,
1319                                struct jbd2_buffer_trigger_type *type)
1320 {
1321         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1322
1323         if (WARN_ON(!jh))
1324                 return;
1325         jh->b_triggers = type;
1326         jbd2_journal_put_journal_head(jh);
1327 }
1328
1329 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1330                                 struct jbd2_buffer_trigger_type *triggers)
1331 {
1332         struct buffer_head *bh = jh2bh(jh);
1333
1334         if (!triggers || !triggers->t_frozen)
1335                 return;
1336
1337         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1338 }
1339
1340 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1341                                struct jbd2_buffer_trigger_type *triggers)
1342 {
1343         if (!triggers || !triggers->t_abort)
1344                 return;
1345
1346         triggers->t_abort(triggers, jh2bh(jh));
1347 }
1348
1349 /**
1350  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1351  * @handle: transaction to add buffer to.
1352  * @bh: buffer to mark
1353  *
1354  * mark dirty metadata which needs to be journaled as part of the current
1355  * transaction.
1356  *
1357  * The buffer must have previously had jbd2_journal_get_write_access()
1358  * called so that it has a valid journal_head attached to the buffer
1359  * head.
1360  *
1361  * The buffer is placed on the transaction's metadata list and is marked
1362  * as belonging to the transaction.
1363  *
1364  * Returns error number or 0 on success.
1365  *
1366  * Special care needs to be taken if the buffer already belongs to the
1367  * current committing transaction (in which case we should have frozen
1368  * data present for that commit).  In that case, we don't relink the
1369  * buffer: that only gets done when the old transaction finally
1370  * completes its commit.
1371  */
1372 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1373 {
1374         transaction_t *transaction = handle->h_transaction;
1375         journal_t *journal;
1376         struct journal_head *jh;
1377         int ret = 0;
1378
1379         if (!buffer_jbd(bh))
1380                 return -EUCLEAN;
1381
1382         /*
1383          * We don't grab jh reference here since the buffer must be part
1384          * of the running transaction.
1385          */
1386         jh = bh2jh(bh);
1387         jbd_debug(5, "journal_head %p\n", jh);
1388         JBUFFER_TRACE(jh, "entry");
1389
1390         /*
1391          * This and the following assertions are unreliable since we may see jh
1392          * in inconsistent state unless we grab bh_state lock. But this is
1393          * crucial to catch bugs so let's do a reliable check until the
1394          * lockless handling is fully proven.
1395          */
1396         if (jh->b_transaction != transaction &&
1397             jh->b_next_transaction != transaction) {
1398                 jbd_lock_bh_state(bh);
1399                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1400                                 jh->b_next_transaction == transaction);
1401                 jbd_unlock_bh_state(bh);
1402         }
1403         if (jh->b_modified == 1) {
1404                 /* If it's in our transaction it must be in BJ_Metadata list. */
1405                 if (jh->b_transaction == transaction &&
1406                     jh->b_jlist != BJ_Metadata) {
1407                         jbd_lock_bh_state(bh);
1408                         if (jh->b_transaction == transaction &&
1409                             jh->b_jlist != BJ_Metadata)
1410                                 pr_err("JBD2: assertion failure: h_type=%u "
1411                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1412                                        handle->h_type, handle->h_line_no,
1413                                        (unsigned long long) bh->b_blocknr,
1414                                        jh->b_jlist);
1415                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1416                                         jh->b_jlist == BJ_Metadata);
1417                         jbd_unlock_bh_state(bh);
1418                 }
1419                 goto out;
1420         }
1421
1422         journal = transaction->t_journal;
1423         jbd_lock_bh_state(bh);
1424
1425         if (is_handle_aborted(handle)) {
1426                 /*
1427                  * Check journal aborting with @jh->b_state_lock locked,
1428                  * since 'jh->b_transaction' could be replaced with
1429                  * 'jh->b_next_transaction' during old transaction
1430                  * committing if journal aborted, which may fail
1431                  * assertion on 'jh->b_frozen_data == NULL'.
1432                  */
1433                 ret = -EROFS;
1434                 goto out_unlock_bh;
1435         }
1436
1437         if (jh->b_modified == 0) {
1438                 /*
1439                  * This buffer's got modified and becoming part
1440                  * of the transaction. This needs to be done
1441                  * once a transaction -bzzz
1442                  */
1443                 if (handle->h_buffer_credits <= 0) {
1444                         ret = -ENOSPC;
1445                         goto out_unlock_bh;
1446                 }
1447                 jh->b_modified = 1;
1448                 handle->h_buffer_credits--;
1449         }
1450
1451         /*
1452          * fastpath, to avoid expensive locking.  If this buffer is already
1453          * on the running transaction's metadata list there is nothing to do.
1454          * Nobody can take it off again because there is a handle open.
1455          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1456          * result in this test being false, so we go in and take the locks.
1457          */
1458         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1459                 JBUFFER_TRACE(jh, "fastpath");
1460                 if (unlikely(jh->b_transaction !=
1461                              journal->j_running_transaction)) {
1462                         printk(KERN_ERR "JBD2: %s: "
1463                                "jh->b_transaction (%llu, %p, %u) != "
1464                                "journal->j_running_transaction (%p, %u)\n",
1465                                journal->j_devname,
1466                                (unsigned long long) bh->b_blocknr,
1467                                jh->b_transaction,
1468                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1469                                journal->j_running_transaction,
1470                                journal->j_running_transaction ?
1471                                journal->j_running_transaction->t_tid : 0);
1472                         ret = -EINVAL;
1473                 }
1474                 goto out_unlock_bh;
1475         }
1476
1477         set_buffer_jbddirty(bh);
1478
1479         /*
1480          * Metadata already on the current transaction list doesn't
1481          * need to be filed.  Metadata on another transaction's list must
1482          * be committing, and will be refiled once the commit completes:
1483          * leave it alone for now.
1484          */
1485         if (jh->b_transaction != transaction) {
1486                 JBUFFER_TRACE(jh, "already on other transaction");
1487                 if (unlikely(((jh->b_transaction !=
1488                                journal->j_committing_transaction)) ||
1489                              (jh->b_next_transaction != transaction))) {
1490                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1491                                "bad jh for block %llu: "
1492                                "transaction (%p, %u), "
1493                                "jh->b_transaction (%p, %u), "
1494                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1495                                journal->j_devname,
1496                                (unsigned long long) bh->b_blocknr,
1497                                transaction, transaction->t_tid,
1498                                jh->b_transaction,
1499                                jh->b_transaction ?
1500                                jh->b_transaction->t_tid : 0,
1501                                jh->b_next_transaction,
1502                                jh->b_next_transaction ?
1503                                jh->b_next_transaction->t_tid : 0,
1504                                jh->b_jlist);
1505                         WARN_ON(1);
1506                         ret = -EINVAL;
1507                 }
1508                 /* And this case is illegal: we can't reuse another
1509                  * transaction's data buffer, ever. */
1510                 goto out_unlock_bh;
1511         }
1512
1513         /* That test should have eliminated the following case: */
1514         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1515
1516         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1517         spin_lock(&journal->j_list_lock);
1518         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1519         spin_unlock(&journal->j_list_lock);
1520 out_unlock_bh:
1521         jbd_unlock_bh_state(bh);
1522 out:
1523         JBUFFER_TRACE(jh, "exit");
1524         return ret;
1525 }
1526
1527 /**
1528  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1529  * @handle: transaction handle
1530  * @bh:     bh to 'forget'
1531  *
1532  * We can only do the bforget if there are no commits pending against the
1533  * buffer.  If the buffer is dirty in the current running transaction we
1534  * can safely unlink it.
1535  *
1536  * bh may not be a journalled buffer at all - it may be a non-JBD
1537  * buffer which came off the hashtable.  Check for this.
1538  *
1539  * Decrements bh->b_count by one.
1540  *
1541  * Allow this call even if the handle has aborted --- it may be part of
1542  * the caller's cleanup after an abort.
1543  */
1544 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1545 {
1546         transaction_t *transaction = handle->h_transaction;
1547         journal_t *journal;
1548         struct journal_head *jh;
1549         int drop_reserve = 0;
1550         int err = 0;
1551         int was_modified = 0;
1552
1553         if (is_handle_aborted(handle))
1554                 return -EROFS;
1555         journal = transaction->t_journal;
1556
1557         BUFFER_TRACE(bh, "entry");
1558
1559         jbd_lock_bh_state(bh);
1560
1561         if (!buffer_jbd(bh))
1562                 goto not_jbd;
1563         jh = bh2jh(bh);
1564
1565         /* Critical error: attempting to delete a bitmap buffer, maybe?
1566          * Don't do any jbd operations, and return an error. */
1567         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1568                          "inconsistent data on disk")) {
1569                 err = -EIO;
1570                 goto not_jbd;
1571         }
1572
1573         /* keep track of whether or not this transaction modified us */
1574         was_modified = jh->b_modified;
1575
1576         /*
1577          * The buffer's going from the transaction, we must drop
1578          * all references -bzzz
1579          */
1580         jh->b_modified = 0;
1581
1582         if (jh->b_transaction == transaction) {
1583                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1584
1585                 /* If we are forgetting a buffer which is already part
1586                  * of this transaction, then we can just drop it from
1587                  * the transaction immediately. */
1588                 clear_buffer_dirty(bh);
1589                 clear_buffer_jbddirty(bh);
1590
1591                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1592
1593                 /*
1594                  * we only want to drop a reference if this transaction
1595                  * modified the buffer
1596                  */
1597                 if (was_modified)
1598                         drop_reserve = 1;
1599
1600                 /*
1601                  * We are no longer going to journal this buffer.
1602                  * However, the commit of this transaction is still
1603                  * important to the buffer: the delete that we are now
1604                  * processing might obsolete an old log entry, so by
1605                  * committing, we can satisfy the buffer's checkpoint.
1606                  *
1607                  * So, if we have a checkpoint on the buffer, we should
1608                  * now refile the buffer on our BJ_Forget list so that
1609                  * we know to remove the checkpoint after we commit.
1610                  */
1611
1612                 spin_lock(&journal->j_list_lock);
1613                 if (jh->b_cp_transaction) {
1614                         __jbd2_journal_temp_unlink_buffer(jh);
1615                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1616                 } else {
1617                         __jbd2_journal_unfile_buffer(jh);
1618                         if (!buffer_jbd(bh)) {
1619                                 spin_unlock(&journal->j_list_lock);
1620                                 goto not_jbd;
1621                         }
1622                 }
1623                 spin_unlock(&journal->j_list_lock);
1624         } else if (jh->b_transaction) {
1625                 J_ASSERT_JH(jh, (jh->b_transaction ==
1626                                  journal->j_committing_transaction));
1627                 /* However, if the buffer is still owned by a prior
1628                  * (committing) transaction, we can't drop it yet... */
1629                 JBUFFER_TRACE(jh, "belongs to older transaction");
1630                 /* ... but we CAN drop it from the new transaction through
1631                  * marking the buffer as freed and set j_next_transaction to
1632                  * the new transaction, so that not only the commit code
1633                  * knows it should clear dirty bits when it is done with the
1634                  * buffer, but also the buffer can be checkpointed only
1635                  * after the new transaction commits. */
1636
1637                 set_buffer_freed(bh);
1638
1639                 if (!jh->b_next_transaction) {
1640                         spin_lock(&journal->j_list_lock);
1641                         jh->b_next_transaction = transaction;
1642                         spin_unlock(&journal->j_list_lock);
1643                 } else {
1644                         J_ASSERT(jh->b_next_transaction == transaction);
1645
1646                         /*
1647                          * only drop a reference if this transaction modified
1648                          * the buffer
1649                          */
1650                         if (was_modified)
1651                                 drop_reserve = 1;
1652                 }
1653         } else {
1654                 /*
1655                  * Finally, if the buffer is not belongs to any
1656                  * transaction, we can just drop it now if it has no
1657                  * checkpoint.
1658                  */
1659                 spin_lock(&journal->j_list_lock);
1660                 if (!jh->b_cp_transaction) {
1661                         JBUFFER_TRACE(jh, "belongs to none transaction");
1662                         spin_unlock(&journal->j_list_lock);
1663                         goto not_jbd;
1664                 }
1665
1666                 /*
1667                  * Otherwise, if the buffer has been written to disk,
1668                  * it is safe to remove the checkpoint and drop it.
1669                  */
1670                 if (!buffer_dirty(bh)) {
1671                         __jbd2_journal_remove_checkpoint(jh);
1672                         spin_unlock(&journal->j_list_lock);
1673                         goto not_jbd;
1674                 }
1675
1676                 /*
1677                  * The buffer is still not written to disk, we should
1678                  * attach this buffer to current transaction so that the
1679                  * buffer can be checkpointed only after the current
1680                  * transaction commits.
1681                  */
1682                 clear_buffer_dirty(bh);
1683                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1684                 spin_unlock(&journal->j_list_lock);
1685         }
1686
1687         jbd_unlock_bh_state(bh);
1688         __brelse(bh);
1689 drop:
1690         if (drop_reserve) {
1691                 /* no need to reserve log space for this block -bzzz */
1692                 handle->h_buffer_credits++;
1693         }
1694         return err;
1695
1696 not_jbd:
1697         jbd_unlock_bh_state(bh);
1698         __bforget(bh);
1699         goto drop;
1700 }
1701
1702 /**
1703  * jbd2_journal_stop() - complete a transaction
1704  * @handle: transaction to complete.
1705  *
1706  * All done for a particular handle.
1707  *
1708  * There is not much action needed here.  We just return any remaining
1709  * buffer credits to the transaction and remove the handle.  The only
1710  * complication is that we need to start a commit operation if the
1711  * filesystem is marked for synchronous update.
1712  *
1713  * jbd2_journal_stop itself will not usually return an error, but it may
1714  * do so in unusual circumstances.  In particular, expect it to
1715  * return -EIO if a jbd2_journal_abort has been executed since the
1716  * transaction began.
1717  */
1718 int jbd2_journal_stop(handle_t *handle)
1719 {
1720         transaction_t *transaction = handle->h_transaction;
1721         journal_t *journal;
1722         int err = 0, wait_for_commit = 0;
1723         tid_t tid;
1724         pid_t pid;
1725
1726         if (!transaction) {
1727                 /*
1728                  * Handle is already detached from the transaction so
1729                  * there is nothing to do other than decrease a refcount,
1730                  * or free the handle if refcount drops to zero
1731                  */
1732                 if (--handle->h_ref > 0) {
1733                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1734                                                          handle->h_ref);
1735                         return err;
1736                 } else {
1737                         if (handle->h_rsv_handle)
1738                                 jbd2_free_handle(handle->h_rsv_handle);
1739                         goto free_and_exit;
1740                 }
1741         }
1742         journal = transaction->t_journal;
1743
1744         J_ASSERT(journal_current_handle() == handle);
1745
1746         if (is_handle_aborted(handle))
1747                 err = -EIO;
1748         else
1749                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1750
1751         if (--handle->h_ref > 0) {
1752                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1753                           handle->h_ref);
1754                 return err;
1755         }
1756
1757         jbd_debug(4, "Handle %p going down\n", handle);
1758         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1759                                 transaction->t_tid,
1760                                 handle->h_type, handle->h_line_no,
1761                                 jiffies - handle->h_start_jiffies,
1762                                 handle->h_sync, handle->h_requested_credits,
1763                                 (handle->h_requested_credits -
1764                                  handle->h_buffer_credits));
1765
1766         /*
1767          * Implement synchronous transaction batching.  If the handle
1768          * was synchronous, don't force a commit immediately.  Let's
1769          * yield and let another thread piggyback onto this
1770          * transaction.  Keep doing that while new threads continue to
1771          * arrive.  It doesn't cost much - we're about to run a commit
1772          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1773          * operations by 30x or more...
1774          *
1775          * We try and optimize the sleep time against what the
1776          * underlying disk can do, instead of having a static sleep
1777          * time.  This is useful for the case where our storage is so
1778          * fast that it is more optimal to go ahead and force a flush
1779          * and wait for the transaction to be committed than it is to
1780          * wait for an arbitrary amount of time for new writers to
1781          * join the transaction.  We achieve this by measuring how
1782          * long it takes to commit a transaction, and compare it with
1783          * how long this transaction has been running, and if run time
1784          * < commit time then we sleep for the delta and commit.  This
1785          * greatly helps super fast disks that would see slowdowns as
1786          * more threads started doing fsyncs.
1787          *
1788          * But don't do this if this process was the most recent one
1789          * to perform a synchronous write.  We do this to detect the
1790          * case where a single process is doing a stream of sync
1791          * writes.  No point in waiting for joiners in that case.
1792          *
1793          * Setting max_batch_time to 0 disables this completely.
1794          */
1795         pid = current->pid;
1796         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1797             journal->j_max_batch_time) {
1798                 u64 commit_time, trans_time;
1799
1800                 journal->j_last_sync_writer = pid;
1801
1802                 read_lock(&journal->j_state_lock);
1803                 commit_time = journal->j_average_commit_time;
1804                 read_unlock(&journal->j_state_lock);
1805
1806                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1807                                                    transaction->t_start_time));
1808
1809                 commit_time = max_t(u64, commit_time,
1810                                     1000*journal->j_min_batch_time);
1811                 commit_time = min_t(u64, commit_time,
1812                                     1000*journal->j_max_batch_time);
1813
1814                 if (trans_time < commit_time) {
1815                         ktime_t expires = ktime_add_ns(ktime_get(),
1816                                                        commit_time);
1817                         set_current_state(TASK_UNINTERRUPTIBLE);
1818                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1819                 }
1820         }
1821
1822         if (handle->h_sync)
1823                 transaction->t_synchronous_commit = 1;
1824         current->journal_info = NULL;
1825         atomic_sub(handle->h_buffer_credits,
1826                    &transaction->t_outstanding_credits);
1827
1828         /*
1829          * If the handle is marked SYNC, we need to set another commit
1830          * going!  We also want to force a commit if the current
1831          * transaction is occupying too much of the log, or if the
1832          * transaction is too old now.
1833          */
1834         if (handle->h_sync ||
1835             (atomic_read(&transaction->t_outstanding_credits) >
1836              journal->j_max_transaction_buffers) ||
1837             time_after_eq(jiffies, transaction->t_expires)) {
1838                 /* Do this even for aborted journals: an abort still
1839                  * completes the commit thread, it just doesn't write
1840                  * anything to disk. */
1841
1842                 jbd_debug(2, "transaction too old, requesting commit for "
1843                                         "handle %p\n", handle);
1844                 /* This is non-blocking */
1845                 jbd2_log_start_commit(journal, transaction->t_tid);
1846
1847                 /*
1848                  * Special case: JBD2_SYNC synchronous updates require us
1849                  * to wait for the commit to complete.
1850                  */
1851                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1852                         wait_for_commit = 1;
1853         }
1854
1855         /*
1856          * Once we drop t_updates, if it goes to zero the transaction
1857          * could start committing on us and eventually disappear.  So
1858          * once we do this, we must not dereference transaction
1859          * pointer again.
1860          */
1861         tid = transaction->t_tid;
1862         if (atomic_dec_and_test(&transaction->t_updates)) {
1863                 wake_up(&journal->j_wait_updates);
1864                 if (journal->j_barrier_count)
1865                         wake_up(&journal->j_wait_transaction_locked);
1866         }
1867
1868         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1869
1870         if (wait_for_commit)
1871                 err = jbd2_log_wait_commit(journal, tid);
1872
1873         if (handle->h_rsv_handle)
1874                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1875 free_and_exit:
1876         /*
1877          * Scope of the GFP_NOFS context is over here and so we can restore the
1878          * original alloc context.
1879          */
1880         memalloc_nofs_restore(handle->saved_alloc_context);
1881         jbd2_free_handle(handle);
1882         return err;
1883 }
1884
1885 /*
1886  *
1887  * List management code snippets: various functions for manipulating the
1888  * transaction buffer lists.
1889  *
1890  */
1891
1892 /*
1893  * Append a buffer to a transaction list, given the transaction's list head
1894  * pointer.
1895  *
1896  * j_list_lock is held.
1897  *
1898  * jbd_lock_bh_state(jh2bh(jh)) is held.
1899  */
1900
1901 static inline void
1902 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1903 {
1904         if (!*list) {
1905                 jh->b_tnext = jh->b_tprev = jh;
1906                 *list = jh;
1907         } else {
1908                 /* Insert at the tail of the list to preserve order */
1909                 struct journal_head *first = *list, *last = first->b_tprev;
1910                 jh->b_tprev = last;
1911                 jh->b_tnext = first;
1912                 last->b_tnext = first->b_tprev = jh;
1913         }
1914 }
1915
1916 /*
1917  * Remove a buffer from a transaction list, given the transaction's list
1918  * head pointer.
1919  *
1920  * Called with j_list_lock held, and the journal may not be locked.
1921  *
1922  * jbd_lock_bh_state(jh2bh(jh)) is held.
1923  */
1924
1925 static inline void
1926 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1927 {
1928         if (*list == jh) {
1929                 *list = jh->b_tnext;
1930                 if (*list == jh)
1931                         *list = NULL;
1932         }
1933         jh->b_tprev->b_tnext = jh->b_tnext;
1934         jh->b_tnext->b_tprev = jh->b_tprev;
1935 }
1936
1937 /*
1938  * Remove a buffer from the appropriate transaction list.
1939  *
1940  * Note that this function can *change* the value of
1941  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1942  * t_reserved_list.  If the caller is holding onto a copy of one of these
1943  * pointers, it could go bad.  Generally the caller needs to re-read the
1944  * pointer from the transaction_t.
1945  *
1946  * Called under j_list_lock.
1947  */
1948 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1949 {
1950         struct journal_head **list = NULL;
1951         transaction_t *transaction;
1952         struct buffer_head *bh = jh2bh(jh);
1953
1954         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1955         transaction = jh->b_transaction;
1956         if (transaction)
1957                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1958
1959         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1960         if (jh->b_jlist != BJ_None)
1961                 J_ASSERT_JH(jh, transaction != NULL);
1962
1963         switch (jh->b_jlist) {
1964         case BJ_None:
1965                 return;
1966         case BJ_Metadata:
1967                 transaction->t_nr_buffers--;
1968                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1969                 list = &transaction->t_buffers;
1970                 break;
1971         case BJ_Forget:
1972                 list = &transaction->t_forget;
1973                 break;
1974         case BJ_Shadow:
1975                 list = &transaction->t_shadow_list;
1976                 break;
1977         case BJ_Reserved:
1978                 list = &transaction->t_reserved_list;
1979                 break;
1980         }
1981
1982         __blist_del_buffer(list, jh);
1983         jh->b_jlist = BJ_None;
1984         if (transaction && is_journal_aborted(transaction->t_journal))
1985                 clear_buffer_jbddirty(bh);
1986         else if (test_clear_buffer_jbddirty(bh))
1987                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1988 }
1989
1990 /*
1991  * Remove buffer from all transactions.
1992  *
1993  * Called with bh_state lock and j_list_lock
1994  *
1995  * jh and bh may be already freed when this function returns.
1996  */
1997 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1998 {
1999         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2000         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2001
2002         __jbd2_journal_temp_unlink_buffer(jh);
2003         jh->b_transaction = NULL;
2004         jbd2_journal_put_journal_head(jh);
2005 }
2006
2007 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2008 {
2009         struct buffer_head *bh = jh2bh(jh);
2010
2011         /* Get reference so that buffer cannot be freed before we unlock it */
2012         get_bh(bh);
2013         jbd_lock_bh_state(bh);
2014         spin_lock(&journal->j_list_lock);
2015         __jbd2_journal_unfile_buffer(jh);
2016         spin_unlock(&journal->j_list_lock);
2017         jbd_unlock_bh_state(bh);
2018         __brelse(bh);
2019 }
2020
2021 /*
2022  * Called from jbd2_journal_try_to_free_buffers().
2023  *
2024  * Called under jbd_lock_bh_state(bh)
2025  */
2026 static void
2027 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2028 {
2029         struct journal_head *jh;
2030
2031         jh = bh2jh(bh);
2032
2033         if (buffer_locked(bh) || buffer_dirty(bh))
2034                 goto out;
2035
2036         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2037                 goto out;
2038
2039         spin_lock(&journal->j_list_lock);
2040         if (jh->b_cp_transaction != NULL) {
2041                 /* written-back checkpointed metadata buffer */
2042                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2043                 __jbd2_journal_remove_checkpoint(jh);
2044         }
2045         spin_unlock(&journal->j_list_lock);
2046 out:
2047         return;
2048 }
2049
2050 /**
2051  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2052  * @journal: journal for operation
2053  * @page: to try and free
2054  * @gfp_mask: we use the mask to detect how hard should we try to release
2055  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2056  * code to release the buffers.
2057  *
2058  *
2059  * For all the buffers on this page,
2060  * if they are fully written out ordered data, move them onto BUF_CLEAN
2061  * so try_to_free_buffers() can reap them.
2062  *
2063  * This function returns non-zero if we wish try_to_free_buffers()
2064  * to be called. We do this if the page is releasable by try_to_free_buffers().
2065  * We also do it if the page has locked or dirty buffers and the caller wants
2066  * us to perform sync or async writeout.
2067  *
2068  * This complicates JBD locking somewhat.  We aren't protected by the
2069  * BKL here.  We wish to remove the buffer from its committing or
2070  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2071  *
2072  * This may *change* the value of transaction_t->t_datalist, so anyone
2073  * who looks at t_datalist needs to lock against this function.
2074  *
2075  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2076  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2077  * will come out of the lock with the buffer dirty, which makes it
2078  * ineligible for release here.
2079  *
2080  * Who else is affected by this?  hmm...  Really the only contender
2081  * is do_get_write_access() - it could be looking at the buffer while
2082  * journal_try_to_free_buffer() is changing its state.  But that
2083  * cannot happen because we never reallocate freed data as metadata
2084  * while the data is part of a transaction.  Yes?
2085  *
2086  * Return 0 on failure, 1 on success
2087  */
2088 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2089                                 struct page *page, gfp_t gfp_mask)
2090 {
2091         struct buffer_head *head;
2092         struct buffer_head *bh;
2093         bool has_write_io_error = false;
2094         int ret = 0;
2095
2096         J_ASSERT(PageLocked(page));
2097
2098         head = page_buffers(page);
2099         bh = head;
2100         do {
2101                 struct journal_head *jh;
2102
2103                 /*
2104                  * We take our own ref against the journal_head here to avoid
2105                  * having to add tons of locking around each instance of
2106                  * jbd2_journal_put_journal_head().
2107                  */
2108                 jh = jbd2_journal_grab_journal_head(bh);
2109                 if (!jh)
2110                         continue;
2111
2112                 jbd_lock_bh_state(bh);
2113                 __journal_try_to_free_buffer(journal, bh);
2114                 jbd2_journal_put_journal_head(jh);
2115                 jbd_unlock_bh_state(bh);
2116                 if (buffer_jbd(bh))
2117                         goto busy;
2118
2119                 /*
2120                  * If we free a metadata buffer which has been failed to
2121                  * write out, the jbd2 checkpoint procedure will not detect
2122                  * this failure and may lead to filesystem inconsistency
2123                  * after cleanup journal tail.
2124                  */
2125                 if (buffer_write_io_error(bh)) {
2126                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2127                                (unsigned long long)bh->b_blocknr);
2128                         has_write_io_error = true;
2129                 }
2130         } while ((bh = bh->b_this_page) != head);
2131
2132         ret = try_to_free_buffers(page);
2133
2134 busy:
2135         if (has_write_io_error)
2136                 jbd2_journal_abort(journal, -EIO);
2137
2138         return ret;
2139 }
2140
2141 /*
2142  * This buffer is no longer needed.  If it is on an older transaction's
2143  * checkpoint list we need to record it on this transaction's forget list
2144  * to pin this buffer (and hence its checkpointing transaction) down until
2145  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2146  * release it.
2147  * Returns non-zero if JBD no longer has an interest in the buffer.
2148  *
2149  * Called under j_list_lock.
2150  *
2151  * Called under jbd_lock_bh_state(bh).
2152  */
2153 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2154 {
2155         int may_free = 1;
2156         struct buffer_head *bh = jh2bh(jh);
2157
2158         if (jh->b_cp_transaction) {
2159                 JBUFFER_TRACE(jh, "on running+cp transaction");
2160                 __jbd2_journal_temp_unlink_buffer(jh);
2161                 /*
2162                  * We don't want to write the buffer anymore, clear the
2163                  * bit so that we don't confuse checks in
2164                  * __journal_file_buffer
2165                  */
2166                 clear_buffer_dirty(bh);
2167                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2168                 may_free = 0;
2169         } else {
2170                 JBUFFER_TRACE(jh, "on running transaction");
2171                 __jbd2_journal_unfile_buffer(jh);
2172         }
2173         return may_free;
2174 }
2175
2176 /*
2177  * jbd2_journal_invalidatepage
2178  *
2179  * This code is tricky.  It has a number of cases to deal with.
2180  *
2181  * There are two invariants which this code relies on:
2182  *
2183  * i_size must be updated on disk before we start calling invalidatepage on the
2184  * data.
2185  *
2186  *  This is done in ext3 by defining an ext3_setattr method which
2187  *  updates i_size before truncate gets going.  By maintaining this
2188  *  invariant, we can be sure that it is safe to throw away any buffers
2189  *  attached to the current transaction: once the transaction commits,
2190  *  we know that the data will not be needed.
2191  *
2192  *  Note however that we can *not* throw away data belonging to the
2193  *  previous, committing transaction!
2194  *
2195  * Any disk blocks which *are* part of the previous, committing
2196  * transaction (and which therefore cannot be discarded immediately) are
2197  * not going to be reused in the new running transaction
2198  *
2199  *  The bitmap committed_data images guarantee this: any block which is
2200  *  allocated in one transaction and removed in the next will be marked
2201  *  as in-use in the committed_data bitmap, so cannot be reused until
2202  *  the next transaction to delete the block commits.  This means that
2203  *  leaving committing buffers dirty is quite safe: the disk blocks
2204  *  cannot be reallocated to a different file and so buffer aliasing is
2205  *  not possible.
2206  *
2207  *
2208  * The above applies mainly to ordered data mode.  In writeback mode we
2209  * don't make guarantees about the order in which data hits disk --- in
2210  * particular we don't guarantee that new dirty data is flushed before
2211  * transaction commit --- so it is always safe just to discard data
2212  * immediately in that mode.  --sct
2213  */
2214
2215 /*
2216  * The journal_unmap_buffer helper function returns zero if the buffer
2217  * concerned remains pinned as an anonymous buffer belonging to an older
2218  * transaction.
2219  *
2220  * We're outside-transaction here.  Either or both of j_running_transaction
2221  * and j_committing_transaction may be NULL.
2222  */
2223 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2224                                 int partial_page)
2225 {
2226         transaction_t *transaction;
2227         struct journal_head *jh;
2228         int may_free = 1;
2229
2230         BUFFER_TRACE(bh, "entry");
2231
2232         /*
2233          * It is safe to proceed here without the j_list_lock because the
2234          * buffers cannot be stolen by try_to_free_buffers as long as we are
2235          * holding the page lock. --sct
2236          */
2237
2238         if (!buffer_jbd(bh))
2239                 goto zap_buffer_unlocked;
2240
2241         /* OK, we have data buffer in journaled mode */
2242         write_lock(&journal->j_state_lock);
2243         jbd_lock_bh_state(bh);
2244         spin_lock(&journal->j_list_lock);
2245
2246         jh = jbd2_journal_grab_journal_head(bh);
2247         if (!jh)
2248                 goto zap_buffer_no_jh;
2249
2250         /*
2251          * We cannot remove the buffer from checkpoint lists until the
2252          * transaction adding inode to orphan list (let's call it T)
2253          * is committed.  Otherwise if the transaction changing the
2254          * buffer would be cleaned from the journal before T is
2255          * committed, a crash will cause that the correct contents of
2256          * the buffer will be lost.  On the other hand we have to
2257          * clear the buffer dirty bit at latest at the moment when the
2258          * transaction marking the buffer as freed in the filesystem
2259          * structures is committed because from that moment on the
2260          * block can be reallocated and used by a different page.
2261          * Since the block hasn't been freed yet but the inode has
2262          * already been added to orphan list, it is safe for us to add
2263          * the buffer to BJ_Forget list of the newest transaction.
2264          *
2265          * Also we have to clear buffer_mapped flag of a truncated buffer
2266          * because the buffer_head may be attached to the page straddling
2267          * i_size (can happen only when blocksize < pagesize) and thus the
2268          * buffer_head can be reused when the file is extended again. So we end
2269          * up keeping around invalidated buffers attached to transactions'
2270          * BJ_Forget list just to stop checkpointing code from cleaning up
2271          * the transaction this buffer was modified in.
2272          */
2273         transaction = jh->b_transaction;
2274         if (transaction == NULL) {
2275                 /* First case: not on any transaction.  If it
2276                  * has no checkpoint link, then we can zap it:
2277                  * it's a writeback-mode buffer so we don't care
2278                  * if it hits disk safely. */
2279                 if (!jh->b_cp_transaction) {
2280                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2281                         goto zap_buffer;
2282                 }
2283
2284                 if (!buffer_dirty(bh)) {
2285                         /* bdflush has written it.  We can drop it now */
2286                         __jbd2_journal_remove_checkpoint(jh);
2287                         goto zap_buffer;
2288                 }
2289
2290                 /* OK, it must be in the journal but still not
2291                  * written fully to disk: it's metadata or
2292                  * journaled data... */
2293
2294                 if (journal->j_running_transaction) {
2295                         /* ... and once the current transaction has
2296                          * committed, the buffer won't be needed any
2297                          * longer. */
2298                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2299                         may_free = __dispose_buffer(jh,
2300                                         journal->j_running_transaction);
2301                         goto zap_buffer;
2302                 } else {
2303                         /* There is no currently-running transaction. So the
2304                          * orphan record which we wrote for this file must have
2305                          * passed into commit.  We must attach this buffer to
2306                          * the committing transaction, if it exists. */
2307                         if (journal->j_committing_transaction) {
2308                                 JBUFFER_TRACE(jh, "give to committing trans");
2309                                 may_free = __dispose_buffer(jh,
2310                                         journal->j_committing_transaction);
2311                                 goto zap_buffer;
2312                         } else {
2313                                 /* The orphan record's transaction has
2314                                  * committed.  We can cleanse this buffer */
2315                                 clear_buffer_jbddirty(bh);
2316                                 __jbd2_journal_remove_checkpoint(jh);
2317                                 goto zap_buffer;
2318                         }
2319                 }
2320         } else if (transaction == journal->j_committing_transaction) {
2321                 JBUFFER_TRACE(jh, "on committing transaction");
2322                 /*
2323                  * The buffer is committing, we simply cannot touch
2324                  * it. If the page is straddling i_size we have to wait
2325                  * for commit and try again.
2326                  */
2327                 if (partial_page) {
2328                         jbd2_journal_put_journal_head(jh);
2329                         spin_unlock(&journal->j_list_lock);
2330                         jbd_unlock_bh_state(bh);
2331                         write_unlock(&journal->j_state_lock);
2332                         return -EBUSY;
2333                 }
2334                 /*
2335                  * OK, buffer won't be reachable after truncate. We just clear
2336                  * b_modified to not confuse transaction credit accounting, and
2337                  * set j_next_transaction to the running transaction (if there
2338                  * is one) and mark buffer as freed so that commit code knows
2339                  * it should clear dirty bits when it is done with the buffer.
2340                  */
2341                 set_buffer_freed(bh);
2342                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2343                         jh->b_next_transaction = journal->j_running_transaction;
2344                 jh->b_modified = 0;
2345                 jbd2_journal_put_journal_head(jh);
2346                 spin_unlock(&journal->j_list_lock);
2347                 jbd_unlock_bh_state(bh);
2348                 write_unlock(&journal->j_state_lock);
2349                 return 0;
2350         } else {
2351                 /* Good, the buffer belongs to the running transaction.
2352                  * We are writing our own transaction's data, not any
2353                  * previous one's, so it is safe to throw it away
2354                  * (remember that we expect the filesystem to have set
2355                  * i_size already for this truncate so recovery will not
2356                  * expose the disk blocks we are discarding here.) */
2357                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2358                 JBUFFER_TRACE(jh, "on running transaction");
2359                 may_free = __dispose_buffer(jh, transaction);
2360         }
2361
2362 zap_buffer:
2363         /*
2364          * This is tricky. Although the buffer is truncated, it may be reused
2365          * if blocksize < pagesize and it is attached to the page straddling
2366          * EOF. Since the buffer might have been added to BJ_Forget list of the
2367          * running transaction, journal_get_write_access() won't clear
2368          * b_modified and credit accounting gets confused. So clear b_modified
2369          * here.
2370          */
2371         jh->b_modified = 0;
2372         jbd2_journal_put_journal_head(jh);
2373 zap_buffer_no_jh:
2374         spin_unlock(&journal->j_list_lock);
2375         jbd_unlock_bh_state(bh);
2376         write_unlock(&journal->j_state_lock);
2377 zap_buffer_unlocked:
2378         clear_buffer_dirty(bh);
2379         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2380         clear_buffer_mapped(bh);
2381         clear_buffer_req(bh);
2382         clear_buffer_new(bh);
2383         clear_buffer_delay(bh);
2384         clear_buffer_unwritten(bh);
2385         bh->b_bdev = NULL;
2386         return may_free;
2387 }
2388
2389 /**
2390  * jbd2_journal_invalidatepage()
2391  * @journal: journal to use for flush...
2392  * @page:    page to flush
2393  * @offset:  start of the range to invalidate
2394  * @length:  length of the range to invalidate
2395  *
2396  * Reap page buffers containing data after in the specified range in page.
2397  * Can return -EBUSY if buffers are part of the committing transaction and
2398  * the page is straddling i_size. Caller then has to wait for current commit
2399  * and try again.
2400  */
2401 int jbd2_journal_invalidatepage(journal_t *journal,
2402                                 struct page *page,
2403                                 unsigned int offset,
2404                                 unsigned int length)
2405 {
2406         struct buffer_head *head, *bh, *next;
2407         unsigned int stop = offset + length;
2408         unsigned int curr_off = 0;
2409         int partial_page = (offset || length < PAGE_SIZE);
2410         int may_free = 1;
2411         int ret = 0;
2412
2413         if (!PageLocked(page))
2414                 BUG();
2415         if (!page_has_buffers(page))
2416                 return 0;
2417
2418         BUG_ON(stop > PAGE_SIZE || stop < length);
2419
2420         /* We will potentially be playing with lists other than just the
2421          * data lists (especially for journaled data mode), so be
2422          * cautious in our locking. */
2423
2424         head = bh = page_buffers(page);
2425         do {
2426                 unsigned int next_off = curr_off + bh->b_size;
2427                 next = bh->b_this_page;
2428
2429                 if (next_off > stop)
2430                         return 0;
2431
2432                 if (offset <= curr_off) {
2433                         /* This block is wholly outside the truncation point */
2434                         lock_buffer(bh);
2435                         ret = journal_unmap_buffer(journal, bh, partial_page);
2436                         unlock_buffer(bh);
2437                         if (ret < 0)
2438                                 return ret;
2439                         may_free &= ret;
2440                 }
2441                 curr_off = next_off;
2442                 bh = next;
2443
2444         } while (bh != head);
2445
2446         if (!partial_page) {
2447                 if (may_free && try_to_free_buffers(page))
2448                         J_ASSERT(!page_has_buffers(page));
2449         }
2450         return 0;
2451 }
2452
2453 /*
2454  * File a buffer on the given transaction list.
2455  */
2456 void __jbd2_journal_file_buffer(struct journal_head *jh,
2457                         transaction_t *transaction, int jlist)
2458 {
2459         struct journal_head **list = NULL;
2460         int was_dirty = 0;
2461         struct buffer_head *bh = jh2bh(jh);
2462
2463         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2464         assert_spin_locked(&transaction->t_journal->j_list_lock);
2465
2466         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2467         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2468                                 jh->b_transaction == NULL);
2469
2470         if (jh->b_transaction && jh->b_jlist == jlist)
2471                 return;
2472
2473         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2474             jlist == BJ_Shadow || jlist == BJ_Forget) {
2475                 /*
2476                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2477                  * instead of buffer_dirty. We should not see a dirty bit set
2478                  * here because we clear it in do_get_write_access but e.g.
2479                  * tune2fs can modify the sb and set the dirty bit at any time
2480                  * so we try to gracefully handle that.
2481                  */
2482                 if (buffer_dirty(bh))
2483                         warn_dirty_buffer(bh);
2484                 if (test_clear_buffer_dirty(bh) ||
2485                     test_clear_buffer_jbddirty(bh))
2486                         was_dirty = 1;
2487         }
2488
2489         if (jh->b_transaction)
2490                 __jbd2_journal_temp_unlink_buffer(jh);
2491         else
2492                 jbd2_journal_grab_journal_head(bh);
2493         jh->b_transaction = transaction;
2494
2495         switch (jlist) {
2496         case BJ_None:
2497                 J_ASSERT_JH(jh, !jh->b_committed_data);
2498                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2499                 return;
2500         case BJ_Metadata:
2501                 transaction->t_nr_buffers++;
2502                 list = &transaction->t_buffers;
2503                 break;
2504         case BJ_Forget:
2505                 list = &transaction->t_forget;
2506                 break;
2507         case BJ_Shadow:
2508                 list = &transaction->t_shadow_list;
2509                 break;
2510         case BJ_Reserved:
2511                 list = &transaction->t_reserved_list;
2512                 break;
2513         }
2514
2515         __blist_add_buffer(list, jh);
2516         jh->b_jlist = jlist;
2517
2518         if (was_dirty)
2519                 set_buffer_jbddirty(bh);
2520 }
2521
2522 void jbd2_journal_file_buffer(struct journal_head *jh,
2523                                 transaction_t *transaction, int jlist)
2524 {
2525         jbd_lock_bh_state(jh2bh(jh));
2526         spin_lock(&transaction->t_journal->j_list_lock);
2527         __jbd2_journal_file_buffer(jh, transaction, jlist);
2528         spin_unlock(&transaction->t_journal->j_list_lock);
2529         jbd_unlock_bh_state(jh2bh(jh));
2530 }
2531
2532 /*
2533  * Remove a buffer from its current buffer list in preparation for
2534  * dropping it from its current transaction entirely.  If the buffer has
2535  * already started to be used by a subsequent transaction, refile the
2536  * buffer on that transaction's metadata list.
2537  *
2538  * Called under j_list_lock
2539  * Called under jbd_lock_bh_state(jh2bh(jh))
2540  *
2541  * jh and bh may be already free when this function returns
2542  */
2543 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2544 {
2545         int was_dirty, jlist;
2546         struct buffer_head *bh = jh2bh(jh);
2547
2548         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2549         if (jh->b_transaction)
2550                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2551
2552         /* If the buffer is now unused, just drop it. */
2553         if (jh->b_next_transaction == NULL) {
2554                 __jbd2_journal_unfile_buffer(jh);
2555                 return;
2556         }
2557
2558         /*
2559          * It has been modified by a later transaction: add it to the new
2560          * transaction's metadata list.
2561          */
2562
2563         was_dirty = test_clear_buffer_jbddirty(bh);
2564         __jbd2_journal_temp_unlink_buffer(jh);
2565
2566         /*
2567          * b_transaction must be set, otherwise the new b_transaction won't
2568          * be holding jh reference
2569          */
2570         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2571
2572         /*
2573          * We set b_transaction here because b_next_transaction will inherit
2574          * our jh reference and thus __jbd2_journal_file_buffer() must not
2575          * take a new one.
2576          */
2577         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2578         WRITE_ONCE(jh->b_next_transaction, NULL);
2579         if (buffer_freed(bh))
2580                 jlist = BJ_Forget;
2581         else if (jh->b_modified)
2582                 jlist = BJ_Metadata;
2583         else
2584                 jlist = BJ_Reserved;
2585         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2586         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2587
2588         if (was_dirty)
2589                 set_buffer_jbddirty(bh);
2590 }
2591
2592 /*
2593  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2594  * bh reference so that we can safely unlock bh.
2595  *
2596  * The jh and bh may be freed by this call.
2597  */
2598 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2599 {
2600         struct buffer_head *bh = jh2bh(jh);
2601
2602         /* Get reference so that buffer cannot be freed before we unlock it */
2603         get_bh(bh);
2604         jbd_lock_bh_state(bh);
2605         spin_lock(&journal->j_list_lock);
2606         __jbd2_journal_refile_buffer(jh);
2607         jbd_unlock_bh_state(bh);
2608         spin_unlock(&journal->j_list_lock);
2609         __brelse(bh);
2610 }
2611
2612 /*
2613  * File inode in the inode list of the handle's transaction
2614  */
2615 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2616                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2617 {
2618         transaction_t *transaction = handle->h_transaction;
2619         journal_t *journal;
2620
2621         if (is_handle_aborted(handle))
2622                 return -EROFS;
2623         journal = transaction->t_journal;
2624
2625         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2626                         transaction->t_tid);
2627
2628         spin_lock(&journal->j_list_lock);
2629         jinode->i_flags |= flags;
2630
2631         if (jinode->i_dirty_end) {
2632                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2633                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2634         } else {
2635                 jinode->i_dirty_start = start_byte;
2636                 jinode->i_dirty_end = end_byte;
2637         }
2638
2639         /* Is inode already attached where we need it? */
2640         if (jinode->i_transaction == transaction ||
2641             jinode->i_next_transaction == transaction)
2642                 goto done;
2643
2644         /*
2645          * We only ever set this variable to 1 so the test is safe. Since
2646          * t_need_data_flush is likely to be set, we do the test to save some
2647          * cacheline bouncing
2648          */
2649         if (!transaction->t_need_data_flush)
2650                 transaction->t_need_data_flush = 1;
2651         /* On some different transaction's list - should be
2652          * the committing one */
2653         if (jinode->i_transaction) {
2654                 J_ASSERT(jinode->i_next_transaction == NULL);
2655                 J_ASSERT(jinode->i_transaction ==
2656                                         journal->j_committing_transaction);
2657                 jinode->i_next_transaction = transaction;
2658                 goto done;
2659         }
2660         /* Not on any transaction list... */
2661         J_ASSERT(!jinode->i_next_transaction);
2662         jinode->i_transaction = transaction;
2663         list_add(&jinode->i_list, &transaction->t_inode_list);
2664 done:
2665         spin_unlock(&journal->j_list_lock);
2666
2667         return 0;
2668 }
2669
2670 int jbd2_journal_inode_ranged_write(handle_t *handle,
2671                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2672 {
2673         return jbd2_journal_file_inode(handle, jinode,
2674                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2675                         start_byte + length - 1);
2676 }
2677
2678 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2679                 loff_t start_byte, loff_t length)
2680 {
2681         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2682                         start_byte, start_byte + length - 1);
2683 }
2684
2685 /*
2686  * File truncate and transaction commit interact with each other in a
2687  * non-trivial way.  If a transaction writing data block A is
2688  * committing, we cannot discard the data by truncate until we have
2689  * written them.  Otherwise if we crashed after the transaction with
2690  * write has committed but before the transaction with truncate has
2691  * committed, we could see stale data in block A.  This function is a
2692  * helper to solve this problem.  It starts writeout of the truncated
2693  * part in case it is in the committing transaction.
2694  *
2695  * Filesystem code must call this function when inode is journaled in
2696  * ordered mode before truncation happens and after the inode has been
2697  * placed on orphan list with the new inode size. The second condition
2698  * avoids the race that someone writes new data and we start
2699  * committing the transaction after this function has been called but
2700  * before a transaction for truncate is started (and furthermore it
2701  * allows us to optimize the case where the addition to orphan list
2702  * happens in the same transaction as write --- we don't have to write
2703  * any data in such case).
2704  */
2705 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2706                                         struct jbd2_inode *jinode,
2707                                         loff_t new_size)
2708 {
2709         transaction_t *inode_trans, *commit_trans;
2710         int ret = 0;
2711
2712         /* This is a quick check to avoid locking if not necessary */
2713         if (!jinode->i_transaction)
2714                 goto out;
2715         /* Locks are here just to force reading of recent values, it is
2716          * enough that the transaction was not committing before we started
2717          * a transaction adding the inode to orphan list */
2718         read_lock(&journal->j_state_lock);
2719         commit_trans = journal->j_committing_transaction;
2720         read_unlock(&journal->j_state_lock);
2721         spin_lock(&journal->j_list_lock);
2722         inode_trans = jinode->i_transaction;
2723         spin_unlock(&journal->j_list_lock);
2724         if (inode_trans == commit_trans) {
2725                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2726                         new_size, LLONG_MAX);
2727                 if (ret)
2728                         jbd2_journal_abort(journal, ret);
2729         }
2730 out:
2731         return ret;
2732 }