GNU Linux-libre 4.9.308-gnu1
[releases.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         jbd2_might_wait_for_commit(journal);
163         schedule();
164         finish_wait(&journal->j_wait_transaction_locked, &wait);
165 }
166
167 static void sub_reserved_credits(journal_t *journal, int blocks)
168 {
169         atomic_sub(blocks, &journal->j_reserved_credits);
170         wake_up(&journal->j_wait_reserved);
171 }
172
173 /*
174  * Wait until we can add credits for handle to the running transaction.  Called
175  * with j_state_lock held for reading. Returns 0 if handle joined the running
176  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
177  * caller must retry.
178  */
179 static int add_transaction_credits(journal_t *journal, int blocks,
180                                    int rsv_blocks)
181 {
182         transaction_t *t = journal->j_running_transaction;
183         int needed;
184         int total = blocks + rsv_blocks;
185
186         /*
187          * If the current transaction is locked down for commit, wait
188          * for the lock to be released.
189          */
190         if (t->t_state == T_LOCKED) {
191                 wait_transaction_locked(journal);
192                 return 1;
193         }
194
195         /*
196          * If there is not enough space left in the log to write all
197          * potential buffers requested by this operation, we need to
198          * stall pending a log checkpoint to free some more log space.
199          */
200         needed = atomic_add_return(total, &t->t_outstanding_credits);
201         if (needed > journal->j_max_transaction_buffers) {
202                 /*
203                  * If the current transaction is already too large,
204                  * then start to commit it: we can then go back and
205                  * attach this handle to a new transaction.
206                  */
207                 atomic_sub(total, &t->t_outstanding_credits);
208
209                 /*
210                  * Is the number of reserved credits in the current transaction too
211                  * big to fit this handle? Wait until reserved credits are freed.
212                  */
213                 if (atomic_read(&journal->j_reserved_credits) + total >
214                     journal->j_max_transaction_buffers) {
215                         read_unlock(&journal->j_state_lock);
216                         jbd2_might_wait_for_commit(journal);
217                         wait_event(journal->j_wait_reserved,
218                                    atomic_read(&journal->j_reserved_credits) + total <=
219                                    journal->j_max_transaction_buffers);
220                         return 1;
221                 }
222
223                 wait_transaction_locked(journal);
224                 return 1;
225         }
226
227         /*
228          * The commit code assumes that it can get enough log space
229          * without forcing a checkpoint.  This is *critical* for
230          * correctness: a checkpoint of a buffer which is also
231          * associated with a committing transaction creates a deadlock,
232          * so commit simply cannot force through checkpoints.
233          *
234          * We must therefore ensure the necessary space in the journal
235          * *before* starting to dirty potentially checkpointed buffers
236          * in the new transaction.
237          */
238         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239                 atomic_sub(total, &t->t_outstanding_credits);
240                 read_unlock(&journal->j_state_lock);
241                 jbd2_might_wait_for_commit(journal);
242                 write_lock(&journal->j_state_lock);
243                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
244                         __jbd2_log_wait_for_space(journal);
245                 write_unlock(&journal->j_state_lock);
246                 return 1;
247         }
248
249         /* No reservation? We are done... */
250         if (!rsv_blocks)
251                 return 0;
252
253         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
254         /* We allow at most half of a transaction to be reserved */
255         if (needed > journal->j_max_transaction_buffers / 2) {
256                 sub_reserved_credits(journal, rsv_blocks);
257                 atomic_sub(total, &t->t_outstanding_credits);
258                 read_unlock(&journal->j_state_lock);
259                 jbd2_might_wait_for_commit(journal);
260                 wait_event(journal->j_wait_reserved,
261                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
262                          <= journal->j_max_transaction_buffers / 2);
263                 return 1;
264         }
265         return 0;
266 }
267
268 /*
269  * start_this_handle: Given a handle, deal with any locking or stalling
270  * needed to make sure that there is enough journal space for the handle
271  * to begin.  Attach the handle to a transaction and set up the
272  * transaction's buffer credits.
273  */
274
275 static int start_this_handle(journal_t *journal, handle_t *handle,
276                              gfp_t gfp_mask)
277 {
278         transaction_t   *transaction, *new_transaction = NULL;
279         int             blocks = handle->h_buffer_credits;
280         int             rsv_blocks = 0;
281         unsigned long ts = jiffies;
282
283         if (handle->h_rsv_handle)
284                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
285
286         /*
287          * Limit the number of reserved credits to 1/2 of maximum transaction
288          * size and limit the number of total credits to not exceed maximum
289          * transaction size per operation.
290          */
291         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
292             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
293                 printk(KERN_ERR "JBD2: %s wants too many credits "
294                        "credits:%d rsv_credits:%d max:%d\n",
295                        current->comm, blocks, rsv_blocks,
296                        journal->j_max_transaction_buffers);
297                 WARN_ON(1);
298                 return -ENOSPC;
299         }
300
301 alloc_transaction:
302         if (!journal->j_running_transaction) {
303                 /*
304                  * If __GFP_FS is not present, then we may be being called from
305                  * inside the fs writeback layer, so we MUST NOT fail.
306                  */
307                 if ((gfp_mask & __GFP_FS) == 0)
308                         gfp_mask |= __GFP_NOFAIL;
309                 new_transaction = kmem_cache_zalloc(transaction_cache,
310                                                     gfp_mask);
311                 if (!new_transaction)
312                         return -ENOMEM;
313         }
314
315         jbd_debug(3, "New handle %p going live.\n", handle);
316
317         /*
318          * We need to hold j_state_lock until t_updates has been incremented,
319          * for proper journal barrier handling
320          */
321 repeat:
322         read_lock(&journal->j_state_lock);
323         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
324         if (is_journal_aborted(journal) ||
325             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
326                 read_unlock(&journal->j_state_lock);
327                 jbd2_journal_free_transaction(new_transaction);
328                 return -EROFS;
329         }
330
331         /*
332          * Wait on the journal's transaction barrier if necessary. Specifically
333          * we allow reserved handles to proceed because otherwise commit could
334          * deadlock on page writeback not being able to complete.
335          */
336         if (!handle->h_reserved && journal->j_barrier_count) {
337                 read_unlock(&journal->j_state_lock);
338                 wait_event(journal->j_wait_transaction_locked,
339                                 journal->j_barrier_count == 0);
340                 goto repeat;
341         }
342
343         if (!journal->j_running_transaction) {
344                 read_unlock(&journal->j_state_lock);
345                 if (!new_transaction)
346                         goto alloc_transaction;
347                 write_lock(&journal->j_state_lock);
348                 if (!journal->j_running_transaction &&
349                     (handle->h_reserved || !journal->j_barrier_count)) {
350                         jbd2_get_transaction(journal, new_transaction);
351                         new_transaction = NULL;
352                 }
353                 write_unlock(&journal->j_state_lock);
354                 goto repeat;
355         }
356
357         transaction = journal->j_running_transaction;
358
359         if (!handle->h_reserved) {
360                 /* We may have dropped j_state_lock - restart in that case */
361                 if (add_transaction_credits(journal, blocks, rsv_blocks))
362                         goto repeat;
363         } else {
364                 /*
365                  * We have handle reserved so we are allowed to join T_LOCKED
366                  * transaction and we don't have to check for transaction size
367                  * and journal space.
368                  */
369                 sub_reserved_credits(journal, blocks);
370                 handle->h_reserved = 0;
371         }
372
373         /* OK, account for the buffers that this operation expects to
374          * use and add the handle to the running transaction. 
375          */
376         update_t_max_wait(transaction, ts);
377         handle->h_transaction = transaction;
378         handle->h_requested_credits = blocks;
379         handle->h_start_jiffies = jiffies;
380         atomic_inc(&transaction->t_updates);
381         atomic_inc(&transaction->t_handle_count);
382         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
383                   handle, blocks,
384                   atomic_read(&transaction->t_outstanding_credits),
385                   jbd2_log_space_left(journal));
386         read_unlock(&journal->j_state_lock);
387         current->journal_info = handle;
388
389         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
390         jbd2_journal_free_transaction(new_transaction);
391         return 0;
392 }
393
394 /* Allocate a new handle.  This should probably be in a slab... */
395 static handle_t *new_handle(int nblocks)
396 {
397         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
398         if (!handle)
399                 return NULL;
400         handle->h_buffer_credits = nblocks;
401         handle->h_ref = 1;
402
403         return handle;
404 }
405
406 /**
407  * handle_t *jbd2_journal_start() - Obtain a new handle.
408  * @journal: Journal to start transaction on.
409  * @nblocks: number of block buffer we might modify
410  *
411  * We make sure that the transaction can guarantee at least nblocks of
412  * modified buffers in the log.  We block until the log can guarantee
413  * that much space. Additionally, if rsv_blocks > 0, we also create another
414  * handle with rsv_blocks reserved blocks in the journal. This handle is
415  * is stored in h_rsv_handle. It is not attached to any particular transaction
416  * and thus doesn't block transaction commit. If the caller uses this reserved
417  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
418  * on the parent handle will dispose the reserved one. Reserved handle has to
419  * be converted to a normal handle using jbd2_journal_start_reserved() before
420  * it can be used.
421  *
422  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
423  * on failure.
424  */
425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
426                               gfp_t gfp_mask, unsigned int type,
427                               unsigned int line_no)
428 {
429         handle_t *handle = journal_current_handle();
430         int err;
431
432         if (!journal)
433                 return ERR_PTR(-EROFS);
434
435         if (handle) {
436                 J_ASSERT(handle->h_transaction->t_journal == journal);
437                 handle->h_ref++;
438                 return handle;
439         }
440
441         handle = new_handle(nblocks);
442         if (!handle)
443                 return ERR_PTR(-ENOMEM);
444         if (rsv_blocks) {
445                 handle_t *rsv_handle;
446
447                 rsv_handle = new_handle(rsv_blocks);
448                 if (!rsv_handle) {
449                         jbd2_free_handle(handle);
450                         return ERR_PTR(-ENOMEM);
451                 }
452                 rsv_handle->h_reserved = 1;
453                 rsv_handle->h_journal = journal;
454                 handle->h_rsv_handle = rsv_handle;
455         }
456
457         err = start_this_handle(journal, handle, gfp_mask);
458         if (err < 0) {
459                 if (handle->h_rsv_handle)
460                         jbd2_free_handle(handle->h_rsv_handle);
461                 jbd2_free_handle(handle);
462                 return ERR_PTR(err);
463         }
464         handle->h_type = type;
465         handle->h_line_no = line_no;
466         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
467                                 handle->h_transaction->t_tid, type,
468                                 line_no, nblocks);
469         return handle;
470 }
471 EXPORT_SYMBOL(jbd2__journal_start);
472
473
474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
475 {
476         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
477 }
478 EXPORT_SYMBOL(jbd2_journal_start);
479
480 void jbd2_journal_free_reserved(handle_t *handle)
481 {
482         journal_t *journal = handle->h_journal;
483
484         WARN_ON(!handle->h_reserved);
485         sub_reserved_credits(journal, handle->h_buffer_credits);
486         jbd2_free_handle(handle);
487 }
488 EXPORT_SYMBOL(jbd2_journal_free_reserved);
489
490 /**
491  * int jbd2_journal_start_reserved() - start reserved handle
492  * @handle: handle to start
493  * @type: for handle statistics
494  * @line_no: for handle statistics
495  *
496  * Start handle that has been previously reserved with jbd2_journal_reserve().
497  * This attaches @handle to the running transaction (or creates one if there's
498  * not transaction running). Unlike jbd2_journal_start() this function cannot
499  * block on journal commit, checkpointing, or similar stuff. It can block on
500  * memory allocation or frozen journal though.
501  *
502  * Return 0 on success, non-zero on error - handle is freed in that case.
503  */
504 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
505                                 unsigned int line_no)
506 {
507         journal_t *journal = handle->h_journal;
508         int ret = -EIO;
509
510         if (WARN_ON(!handle->h_reserved)) {
511                 /* Someone passed in normal handle? Just stop it. */
512                 jbd2_journal_stop(handle);
513                 return ret;
514         }
515         /*
516          * Usefulness of mixing of reserved and unreserved handles is
517          * questionable. So far nobody seems to need it so just error out.
518          */
519         if (WARN_ON(current->journal_info)) {
520                 jbd2_journal_free_reserved(handle);
521                 return ret;
522         }
523
524         handle->h_journal = NULL;
525         /*
526          * GFP_NOFS is here because callers are likely from writeback or
527          * similarly constrained call sites
528          */
529         ret = start_this_handle(journal, handle, GFP_NOFS);
530         if (ret < 0) {
531                 handle->h_journal = journal;
532                 jbd2_journal_free_reserved(handle);
533                 return ret;
534         }
535         handle->h_type = type;
536         handle->h_line_no = line_no;
537         return 0;
538 }
539 EXPORT_SYMBOL(jbd2_journal_start_reserved);
540
541 /**
542  * int jbd2_journal_extend() - extend buffer credits.
543  * @handle:  handle to 'extend'
544  * @nblocks: nr blocks to try to extend by.
545  *
546  * Some transactions, such as large extends and truncates, can be done
547  * atomically all at once or in several stages.  The operation requests
548  * a credit for a number of buffer modifications in advance, but can
549  * extend its credit if it needs more.
550  *
551  * jbd2_journal_extend tries to give the running handle more buffer credits.
552  * It does not guarantee that allocation - this is a best-effort only.
553  * The calling process MUST be able to deal cleanly with a failure to
554  * extend here.
555  *
556  * Return 0 on success, non-zero on failure.
557  *
558  * return code < 0 implies an error
559  * return code > 0 implies normal transaction-full status.
560  */
561 int jbd2_journal_extend(handle_t *handle, int nblocks)
562 {
563         transaction_t *transaction = handle->h_transaction;
564         journal_t *journal;
565         int result;
566         int wanted;
567
568         if (is_handle_aborted(handle))
569                 return -EROFS;
570         journal = transaction->t_journal;
571
572         result = 1;
573
574         read_lock(&journal->j_state_lock);
575
576         /* Don't extend a locked-down transaction! */
577         if (transaction->t_state != T_RUNNING) {
578                 jbd_debug(3, "denied handle %p %d blocks: "
579                           "transaction not running\n", handle, nblocks);
580                 goto error_out;
581         }
582
583         spin_lock(&transaction->t_handle_lock);
584         wanted = atomic_add_return(nblocks,
585                                    &transaction->t_outstanding_credits);
586
587         if (wanted > journal->j_max_transaction_buffers) {
588                 jbd_debug(3, "denied handle %p %d blocks: "
589                           "transaction too large\n", handle, nblocks);
590                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
591                 goto unlock;
592         }
593
594         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
595             jbd2_log_space_left(journal)) {
596                 jbd_debug(3, "denied handle %p %d blocks: "
597                           "insufficient log space\n", handle, nblocks);
598                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
599                 goto unlock;
600         }
601
602         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
603                                  transaction->t_tid,
604                                  handle->h_type, handle->h_line_no,
605                                  handle->h_buffer_credits,
606                                  nblocks);
607
608         handle->h_buffer_credits += nblocks;
609         handle->h_requested_credits += nblocks;
610         result = 0;
611
612         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
613 unlock:
614         spin_unlock(&transaction->t_handle_lock);
615 error_out:
616         read_unlock(&journal->j_state_lock);
617         return result;
618 }
619
620
621 /**
622  * int jbd2_journal_restart() - restart a handle .
623  * @handle:  handle to restart
624  * @nblocks: nr credits requested
625  * @gfp_mask: memory allocation flags (for start_this_handle)
626  *
627  * Restart a handle for a multi-transaction filesystem
628  * operation.
629  *
630  * If the jbd2_journal_extend() call above fails to grant new buffer credits
631  * to a running handle, a call to jbd2_journal_restart will commit the
632  * handle's transaction so far and reattach the handle to a new
633  * transaction capable of guaranteeing the requested number of
634  * credits. We preserve reserved handle if there's any attached to the
635  * passed in handle.
636  */
637 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
638 {
639         transaction_t *transaction = handle->h_transaction;
640         journal_t *journal;
641         tid_t           tid;
642         int             need_to_start, ret;
643
644         /* If we've had an abort of any type, don't even think about
645          * actually doing the restart! */
646         if (is_handle_aborted(handle))
647                 return 0;
648         journal = transaction->t_journal;
649
650         /*
651          * First unlink the handle from its current transaction, and start the
652          * commit on that.
653          */
654         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
655         J_ASSERT(journal_current_handle() == handle);
656
657         read_lock(&journal->j_state_lock);
658         spin_lock(&transaction->t_handle_lock);
659         atomic_sub(handle->h_buffer_credits,
660                    &transaction->t_outstanding_credits);
661         if (handle->h_rsv_handle) {
662                 sub_reserved_credits(journal,
663                                      handle->h_rsv_handle->h_buffer_credits);
664         }
665         if (atomic_dec_and_test(&transaction->t_updates))
666                 wake_up(&journal->j_wait_updates);
667         tid = transaction->t_tid;
668         spin_unlock(&transaction->t_handle_lock);
669         handle->h_transaction = NULL;
670         current->journal_info = NULL;
671
672         jbd_debug(2, "restarting handle %p\n", handle);
673         need_to_start = !tid_geq(journal->j_commit_request, tid);
674         read_unlock(&journal->j_state_lock);
675         if (need_to_start)
676                 jbd2_log_start_commit(journal, tid);
677
678         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
679         handle->h_buffer_credits = nblocks;
680         ret = start_this_handle(journal, handle, gfp_mask);
681         return ret;
682 }
683 EXPORT_SYMBOL(jbd2__journal_restart);
684
685
686 int jbd2_journal_restart(handle_t *handle, int nblocks)
687 {
688         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
689 }
690 EXPORT_SYMBOL(jbd2_journal_restart);
691
692 /**
693  * void jbd2_journal_lock_updates () - establish a transaction barrier.
694  * @journal:  Journal to establish a barrier on.
695  *
696  * This locks out any further updates from being started, and blocks
697  * until all existing updates have completed, returning only once the
698  * journal is in a quiescent state with no updates running.
699  *
700  * The journal lock should not be held on entry.
701  */
702 void jbd2_journal_lock_updates(journal_t *journal)
703 {
704         DEFINE_WAIT(wait);
705
706         jbd2_might_wait_for_commit(journal);
707
708         write_lock(&journal->j_state_lock);
709         ++journal->j_barrier_count;
710
711         /* Wait until there are no reserved handles */
712         if (atomic_read(&journal->j_reserved_credits)) {
713                 write_unlock(&journal->j_state_lock);
714                 wait_event(journal->j_wait_reserved,
715                            atomic_read(&journal->j_reserved_credits) == 0);
716                 write_lock(&journal->j_state_lock);
717         }
718
719         /* Wait until there are no running updates */
720         while (1) {
721                 transaction_t *transaction = journal->j_running_transaction;
722
723                 if (!transaction)
724                         break;
725
726                 spin_lock(&transaction->t_handle_lock);
727                 prepare_to_wait(&journal->j_wait_updates, &wait,
728                                 TASK_UNINTERRUPTIBLE);
729                 if (!atomic_read(&transaction->t_updates)) {
730                         spin_unlock(&transaction->t_handle_lock);
731                         finish_wait(&journal->j_wait_updates, &wait);
732                         break;
733                 }
734                 spin_unlock(&transaction->t_handle_lock);
735                 write_unlock(&journal->j_state_lock);
736                 schedule();
737                 finish_wait(&journal->j_wait_updates, &wait);
738                 write_lock(&journal->j_state_lock);
739         }
740         write_unlock(&journal->j_state_lock);
741
742         /*
743          * We have now established a barrier against other normal updates, but
744          * we also need to barrier against other jbd2_journal_lock_updates() calls
745          * to make sure that we serialise special journal-locked operations
746          * too.
747          */
748         mutex_lock(&journal->j_barrier);
749 }
750
751 /**
752  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
753  * @journal:  Journal to release the barrier on.
754  *
755  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
756  *
757  * Should be called without the journal lock held.
758  */
759 void jbd2_journal_unlock_updates (journal_t *journal)
760 {
761         J_ASSERT(journal->j_barrier_count != 0);
762
763         mutex_unlock(&journal->j_barrier);
764         write_lock(&journal->j_state_lock);
765         --journal->j_barrier_count;
766         write_unlock(&journal->j_state_lock);
767         wake_up(&journal->j_wait_transaction_locked);
768 }
769
770 static void warn_dirty_buffer(struct buffer_head *bh)
771 {
772         printk(KERN_WARNING
773                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
774                "There's a risk of filesystem corruption in case of system "
775                "crash.\n",
776                bh->b_bdev, (unsigned long long)bh->b_blocknr);
777 }
778
779 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
780 static void jbd2_freeze_jh_data(struct journal_head *jh)
781 {
782         struct page *page;
783         int offset;
784         char *source;
785         struct buffer_head *bh = jh2bh(jh);
786
787         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
788         page = bh->b_page;
789         offset = offset_in_page(bh->b_data);
790         source = kmap_atomic(page);
791         /* Fire data frozen trigger just before we copy the data */
792         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
793         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
794         kunmap_atomic(source);
795
796         /*
797          * Now that the frozen data is saved off, we need to store any matching
798          * triggers.
799          */
800         jh->b_frozen_triggers = jh->b_triggers;
801 }
802
803 /*
804  * If the buffer is already part of the current transaction, then there
805  * is nothing we need to do.  If it is already part of a prior
806  * transaction which we are still committing to disk, then we need to
807  * make sure that we do not overwrite the old copy: we do copy-out to
808  * preserve the copy going to disk.  We also account the buffer against
809  * the handle's metadata buffer credits (unless the buffer is already
810  * part of the transaction, that is).
811  *
812  */
813 static int
814 do_get_write_access(handle_t *handle, struct journal_head *jh,
815                         int force_copy)
816 {
817         struct buffer_head *bh;
818         transaction_t *transaction = handle->h_transaction;
819         journal_t *journal;
820         int error;
821         char *frozen_buffer = NULL;
822         unsigned long start_lock, time_lock;
823
824         if (is_handle_aborted(handle))
825                 return -EROFS;
826         journal = transaction->t_journal;
827
828         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
829
830         JBUFFER_TRACE(jh, "entry");
831 repeat:
832         bh = jh2bh(jh);
833
834         /* @@@ Need to check for errors here at some point. */
835
836         start_lock = jiffies;
837         lock_buffer(bh);
838         jbd_lock_bh_state(bh);
839
840         /* If it takes too long to lock the buffer, trace it */
841         time_lock = jbd2_time_diff(start_lock, jiffies);
842         if (time_lock > HZ/10)
843                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
844                         jiffies_to_msecs(time_lock));
845
846         /* We now hold the buffer lock so it is safe to query the buffer
847          * state.  Is the buffer dirty?
848          *
849          * If so, there are two possibilities.  The buffer may be
850          * non-journaled, and undergoing a quite legitimate writeback.
851          * Otherwise, it is journaled, and we don't expect dirty buffers
852          * in that state (the buffers should be marked JBD_Dirty
853          * instead.)  So either the IO is being done under our own
854          * control and this is a bug, or it's a third party IO such as
855          * dump(8) (which may leave the buffer scheduled for read ---
856          * ie. locked but not dirty) or tune2fs (which may actually have
857          * the buffer dirtied, ugh.)  */
858
859         if (buffer_dirty(bh)) {
860                 /*
861                  * First question: is this buffer already part of the current
862                  * transaction or the existing committing transaction?
863                  */
864                 if (jh->b_transaction) {
865                         J_ASSERT_JH(jh,
866                                 jh->b_transaction == transaction ||
867                                 jh->b_transaction ==
868                                         journal->j_committing_transaction);
869                         if (jh->b_next_transaction)
870                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
871                                                         transaction);
872                         warn_dirty_buffer(bh);
873                 }
874                 /*
875                  * In any case we need to clean the dirty flag and we must
876                  * do it under the buffer lock to be sure we don't race
877                  * with running write-out.
878                  */
879                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
880                 clear_buffer_dirty(bh);
881                 set_buffer_jbddirty(bh);
882         }
883
884         unlock_buffer(bh);
885
886         error = -EROFS;
887         if (is_handle_aborted(handle)) {
888                 jbd_unlock_bh_state(bh);
889                 goto out;
890         }
891         error = 0;
892
893         /*
894          * The buffer is already part of this transaction if b_transaction or
895          * b_next_transaction points to it
896          */
897         if (jh->b_transaction == transaction ||
898             jh->b_next_transaction == transaction)
899                 goto done;
900
901         /*
902          * this is the first time this transaction is touching this buffer,
903          * reset the modified flag
904          */
905        jh->b_modified = 0;
906
907         /*
908          * If the buffer is not journaled right now, we need to make sure it
909          * doesn't get written to disk before the caller actually commits the
910          * new data
911          */
912         if (!jh->b_transaction) {
913                 JBUFFER_TRACE(jh, "no transaction");
914                 J_ASSERT_JH(jh, !jh->b_next_transaction);
915                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
916                 /*
917                  * Make sure all stores to jh (b_modified, b_frozen_data) are
918                  * visible before attaching it to the running transaction.
919                  * Paired with barrier in jbd2_write_access_granted()
920                  */
921                 smp_wmb();
922                 spin_lock(&journal->j_list_lock);
923                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
924                 spin_unlock(&journal->j_list_lock);
925                 goto done;
926         }
927         /*
928          * If there is already a copy-out version of this buffer, then we don't
929          * need to make another one
930          */
931         if (jh->b_frozen_data) {
932                 JBUFFER_TRACE(jh, "has frozen data");
933                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
934                 goto attach_next;
935         }
936
937         JBUFFER_TRACE(jh, "owned by older transaction");
938         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
939         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
940
941         /*
942          * There is one case we have to be very careful about.  If the
943          * committing transaction is currently writing this buffer out to disk
944          * and has NOT made a copy-out, then we cannot modify the buffer
945          * contents at all right now.  The essence of copy-out is that it is
946          * the extra copy, not the primary copy, which gets journaled.  If the
947          * primary copy is already going to disk then we cannot do copy-out
948          * here.
949          */
950         if (buffer_shadow(bh)) {
951                 JBUFFER_TRACE(jh, "on shadow: sleep");
952                 jbd_unlock_bh_state(bh);
953                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
954                 goto repeat;
955         }
956
957         /*
958          * Only do the copy if the currently-owning transaction still needs it.
959          * If buffer isn't on BJ_Metadata list, the committing transaction is
960          * past that stage (here we use the fact that BH_Shadow is set under
961          * bh_state lock together with refiling to BJ_Shadow list and at this
962          * point we know the buffer doesn't have BH_Shadow set).
963          *
964          * Subtle point, though: if this is a get_undo_access, then we will be
965          * relying on the frozen_data to contain the new value of the
966          * committed_data record after the transaction, so we HAVE to force the
967          * frozen_data copy in that case.
968          */
969         if (jh->b_jlist == BJ_Metadata || force_copy) {
970                 JBUFFER_TRACE(jh, "generate frozen data");
971                 if (!frozen_buffer) {
972                         JBUFFER_TRACE(jh, "allocate memory for buffer");
973                         jbd_unlock_bh_state(bh);
974                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
975                                                    GFP_NOFS | __GFP_NOFAIL);
976                         goto repeat;
977                 }
978                 jh->b_frozen_data = frozen_buffer;
979                 frozen_buffer = NULL;
980                 jbd2_freeze_jh_data(jh);
981         }
982 attach_next:
983         /*
984          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
985          * before attaching it to the running transaction. Paired with barrier
986          * in jbd2_write_access_granted()
987          */
988         smp_wmb();
989         jh->b_next_transaction = transaction;
990
991 done:
992         jbd_unlock_bh_state(bh);
993
994         /*
995          * If we are about to journal a buffer, then any revoke pending on it is
996          * no longer valid
997          */
998         jbd2_journal_cancel_revoke(handle, jh);
999
1000 out:
1001         if (unlikely(frozen_buffer))    /* It's usually NULL */
1002                 jbd2_free(frozen_buffer, bh->b_size);
1003
1004         JBUFFER_TRACE(jh, "exit");
1005         return error;
1006 }
1007
1008 /* Fast check whether buffer is already attached to the required transaction */
1009 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1010                                                         bool undo)
1011 {
1012         struct journal_head *jh;
1013         bool ret = false;
1014
1015         /* Dirty buffers require special handling... */
1016         if (buffer_dirty(bh))
1017                 return false;
1018
1019         /*
1020          * RCU protects us from dereferencing freed pages. So the checks we do
1021          * are guaranteed not to oops. However the jh slab object can get freed
1022          * & reallocated while we work with it. So we have to be careful. When
1023          * we see jh attached to the running transaction, we know it must stay
1024          * so until the transaction is committed. Thus jh won't be freed and
1025          * will be attached to the same bh while we run.  However it can
1026          * happen jh gets freed, reallocated, and attached to the transaction
1027          * just after we get pointer to it from bh. So we have to be careful
1028          * and recheck jh still belongs to our bh before we return success.
1029          */
1030         rcu_read_lock();
1031         if (!buffer_jbd(bh))
1032                 goto out;
1033         /* This should be bh2jh() but that doesn't work with inline functions */
1034         jh = READ_ONCE(bh->b_private);
1035         if (!jh)
1036                 goto out;
1037         /* For undo access buffer must have data copied */
1038         if (undo && !jh->b_committed_data)
1039                 goto out;
1040         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1041             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1042                 goto out;
1043         /*
1044          * There are two reasons for the barrier here:
1045          * 1) Make sure to fetch b_bh after we did previous checks so that we
1046          * detect when jh went through free, realloc, attach to transaction
1047          * while we were checking. Paired with implicit barrier in that path.
1048          * 2) So that access to bh done after jbd2_write_access_granted()
1049          * doesn't get reordered and see inconsistent state of concurrent
1050          * do_get_write_access().
1051          */
1052         smp_mb();
1053         if (unlikely(jh->b_bh != bh))
1054                 goto out;
1055         ret = true;
1056 out:
1057         rcu_read_unlock();
1058         return ret;
1059 }
1060
1061 /**
1062  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1063  * @handle: transaction to add buffer modifications to
1064  * @bh:     bh to be used for metadata writes
1065  *
1066  * Returns an error code or 0 on success.
1067  *
1068  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1069  * because we're write()ing a buffer which is also part of a shared mapping.
1070  */
1071
1072 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1073 {
1074         struct journal_head *jh;
1075         int rc;
1076
1077         if (jbd2_write_access_granted(handle, bh, false))
1078                 return 0;
1079
1080         jh = jbd2_journal_add_journal_head(bh);
1081         /* We do not want to get caught playing with fields which the
1082          * log thread also manipulates.  Make sure that the buffer
1083          * completes any outstanding IO before proceeding. */
1084         rc = do_get_write_access(handle, jh, 0);
1085         jbd2_journal_put_journal_head(jh);
1086         return rc;
1087 }
1088
1089
1090 /*
1091  * When the user wants to journal a newly created buffer_head
1092  * (ie. getblk() returned a new buffer and we are going to populate it
1093  * manually rather than reading off disk), then we need to keep the
1094  * buffer_head locked until it has been completely filled with new
1095  * data.  In this case, we should be able to make the assertion that
1096  * the bh is not already part of an existing transaction.
1097  *
1098  * The buffer should already be locked by the caller by this point.
1099  * There is no lock ranking violation: it was a newly created,
1100  * unlocked buffer beforehand. */
1101
1102 /**
1103  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1104  * @handle: transaction to new buffer to
1105  * @bh: new buffer.
1106  *
1107  * Call this if you create a new bh.
1108  */
1109 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1110 {
1111         transaction_t *transaction = handle->h_transaction;
1112         journal_t *journal;
1113         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1114         int err;
1115
1116         jbd_debug(5, "journal_head %p\n", jh);
1117         err = -EROFS;
1118         if (is_handle_aborted(handle))
1119                 goto out;
1120         journal = transaction->t_journal;
1121         err = 0;
1122
1123         JBUFFER_TRACE(jh, "entry");
1124         /*
1125          * The buffer may already belong to this transaction due to pre-zeroing
1126          * in the filesystem's new_block code.  It may also be on the previous,
1127          * committing transaction's lists, but it HAS to be in Forget state in
1128          * that case: the transaction must have deleted the buffer for it to be
1129          * reused here.
1130          */
1131         jbd_lock_bh_state(bh);
1132         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1133                 jh->b_transaction == NULL ||
1134                 (jh->b_transaction == journal->j_committing_transaction &&
1135                           jh->b_jlist == BJ_Forget)));
1136
1137         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1138         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1139
1140         if (jh->b_transaction == NULL) {
1141                 /*
1142                  * Previous jbd2_journal_forget() could have left the buffer
1143                  * with jbddirty bit set because it was being committed. When
1144                  * the commit finished, we've filed the buffer for
1145                  * checkpointing and marked it dirty. Now we are reallocating
1146                  * the buffer so the transaction freeing it must have
1147                  * committed and so it's safe to clear the dirty bit.
1148                  */
1149                 clear_buffer_dirty(jh2bh(jh));
1150                 /* first access by this transaction */
1151                 jh->b_modified = 0;
1152
1153                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1154                 spin_lock(&journal->j_list_lock);
1155                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1156                 spin_unlock(&journal->j_list_lock);
1157         } else if (jh->b_transaction == journal->j_committing_transaction) {
1158                 /* first access by this transaction */
1159                 jh->b_modified = 0;
1160
1161                 JBUFFER_TRACE(jh, "set next transaction");
1162                 spin_lock(&journal->j_list_lock);
1163                 jh->b_next_transaction = transaction;
1164                 spin_unlock(&journal->j_list_lock);
1165         }
1166         jbd_unlock_bh_state(bh);
1167
1168         /*
1169          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1170          * blocks which contain freed but then revoked metadata.  We need
1171          * to cancel the revoke in case we end up freeing it yet again
1172          * and the reallocating as data - this would cause a second revoke,
1173          * which hits an assertion error.
1174          */
1175         JBUFFER_TRACE(jh, "cancelling revoke");
1176         jbd2_journal_cancel_revoke(handle, jh);
1177 out:
1178         jbd2_journal_put_journal_head(jh);
1179         return err;
1180 }
1181
1182 /**
1183  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1184  *     non-rewindable consequences
1185  * @handle: transaction
1186  * @bh: buffer to undo
1187  *
1188  * Sometimes there is a need to distinguish between metadata which has
1189  * been committed to disk and that which has not.  The ext3fs code uses
1190  * this for freeing and allocating space, we have to make sure that we
1191  * do not reuse freed space until the deallocation has been committed,
1192  * since if we overwrote that space we would make the delete
1193  * un-rewindable in case of a crash.
1194  *
1195  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1196  * buffer for parts of non-rewindable operations such as delete
1197  * operations on the bitmaps.  The journaling code must keep a copy of
1198  * the buffer's contents prior to the undo_access call until such time
1199  * as we know that the buffer has definitely been committed to disk.
1200  *
1201  * We never need to know which transaction the committed data is part
1202  * of, buffers touched here are guaranteed to be dirtied later and so
1203  * will be committed to a new transaction in due course, at which point
1204  * we can discard the old committed data pointer.
1205  *
1206  * Returns error number or 0 on success.
1207  */
1208 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1209 {
1210         int err;
1211         struct journal_head *jh;
1212         char *committed_data = NULL;
1213
1214         if (jbd2_write_access_granted(handle, bh, true))
1215                 return 0;
1216
1217         jh = jbd2_journal_add_journal_head(bh);
1218         JBUFFER_TRACE(jh, "entry");
1219
1220         /*
1221          * Do this first --- it can drop the journal lock, so we want to
1222          * make sure that obtaining the committed_data is done
1223          * atomically wrt. completion of any outstanding commits.
1224          */
1225         err = do_get_write_access(handle, jh, 1);
1226         if (err)
1227                 goto out;
1228
1229 repeat:
1230         if (!jh->b_committed_data)
1231                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1232                                             GFP_NOFS|__GFP_NOFAIL);
1233
1234         jbd_lock_bh_state(bh);
1235         if (!jh->b_committed_data) {
1236                 /* Copy out the current buffer contents into the
1237                  * preserved, committed copy. */
1238                 JBUFFER_TRACE(jh, "generate b_committed data");
1239                 if (!committed_data) {
1240                         jbd_unlock_bh_state(bh);
1241                         goto repeat;
1242                 }
1243
1244                 jh->b_committed_data = committed_data;
1245                 committed_data = NULL;
1246                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1247         }
1248         jbd_unlock_bh_state(bh);
1249 out:
1250         jbd2_journal_put_journal_head(jh);
1251         if (unlikely(committed_data))
1252                 jbd2_free(committed_data, bh->b_size);
1253         return err;
1254 }
1255
1256 /**
1257  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1258  * @bh: buffer to trigger on
1259  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1260  *
1261  * Set any triggers on this journal_head.  This is always safe, because
1262  * triggers for a committing buffer will be saved off, and triggers for
1263  * a running transaction will match the buffer in that transaction.
1264  *
1265  * Call with NULL to clear the triggers.
1266  */
1267 void jbd2_journal_set_triggers(struct buffer_head *bh,
1268                                struct jbd2_buffer_trigger_type *type)
1269 {
1270         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1271
1272         if (WARN_ON(!jh))
1273                 return;
1274         jh->b_triggers = type;
1275         jbd2_journal_put_journal_head(jh);
1276 }
1277
1278 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1279                                 struct jbd2_buffer_trigger_type *triggers)
1280 {
1281         struct buffer_head *bh = jh2bh(jh);
1282
1283         if (!triggers || !triggers->t_frozen)
1284                 return;
1285
1286         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1287 }
1288
1289 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1290                                struct jbd2_buffer_trigger_type *triggers)
1291 {
1292         if (!triggers || !triggers->t_abort)
1293                 return;
1294
1295         triggers->t_abort(triggers, jh2bh(jh));
1296 }
1297
1298 /**
1299  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1300  * @handle: transaction to add buffer to.
1301  * @bh: buffer to mark
1302  *
1303  * mark dirty metadata which needs to be journaled as part of the current
1304  * transaction.
1305  *
1306  * The buffer must have previously had jbd2_journal_get_write_access()
1307  * called so that it has a valid journal_head attached to the buffer
1308  * head.
1309  *
1310  * The buffer is placed on the transaction's metadata list and is marked
1311  * as belonging to the transaction.
1312  *
1313  * Returns error number or 0 on success.
1314  *
1315  * Special care needs to be taken if the buffer already belongs to the
1316  * current committing transaction (in which case we should have frozen
1317  * data present for that commit).  In that case, we don't relink the
1318  * buffer: that only gets done when the old transaction finally
1319  * completes its commit.
1320  */
1321 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1322 {
1323         transaction_t *transaction = handle->h_transaction;
1324         journal_t *journal;
1325         struct journal_head *jh;
1326         int ret = 0;
1327
1328         if (is_handle_aborted(handle))
1329                 return -EROFS;
1330         if (!buffer_jbd(bh))
1331                 return -EUCLEAN;
1332
1333         /*
1334          * We don't grab jh reference here since the buffer must be part
1335          * of the running transaction.
1336          */
1337         jh = bh2jh(bh);
1338         jbd_debug(5, "journal_head %p\n", jh);
1339         JBUFFER_TRACE(jh, "entry");
1340
1341         /*
1342          * This and the following assertions are unreliable since we may see jh
1343          * in inconsistent state unless we grab bh_state lock. But this is
1344          * crucial to catch bugs so let's do a reliable check until the
1345          * lockless handling is fully proven.
1346          */
1347         if (jh->b_transaction != transaction &&
1348             jh->b_next_transaction != transaction) {
1349                 jbd_lock_bh_state(bh);
1350                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1351                                 jh->b_next_transaction == transaction);
1352                 jbd_unlock_bh_state(bh);
1353         }
1354         if (jh->b_modified == 1) {
1355                 /* If it's in our transaction it must be in BJ_Metadata list. */
1356                 if (jh->b_transaction == transaction &&
1357                     jh->b_jlist != BJ_Metadata) {
1358                         jbd_lock_bh_state(bh);
1359                         if (jh->b_transaction == transaction &&
1360                             jh->b_jlist != BJ_Metadata)
1361                                 pr_err("JBD2: assertion failure: h_type=%u "
1362                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1363                                        handle->h_type, handle->h_line_no,
1364                                        (unsigned long long) bh->b_blocknr,
1365                                        jh->b_jlist);
1366                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1367                                         jh->b_jlist == BJ_Metadata);
1368                         jbd_unlock_bh_state(bh);
1369                 }
1370                 goto out;
1371         }
1372
1373         journal = transaction->t_journal;
1374         jbd_lock_bh_state(bh);
1375
1376         if (jh->b_modified == 0) {
1377                 /*
1378                  * This buffer's got modified and becoming part
1379                  * of the transaction. This needs to be done
1380                  * once a transaction -bzzz
1381                  */
1382                 if (handle->h_buffer_credits <= 0) {
1383                         ret = -ENOSPC;
1384                         goto out_unlock_bh;
1385                 }
1386                 jh->b_modified = 1;
1387                 handle->h_buffer_credits--;
1388         }
1389
1390         /*
1391          * fastpath, to avoid expensive locking.  If this buffer is already
1392          * on the running transaction's metadata list there is nothing to do.
1393          * Nobody can take it off again because there is a handle open.
1394          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1395          * result in this test being false, so we go in and take the locks.
1396          */
1397         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1398                 JBUFFER_TRACE(jh, "fastpath");
1399                 if (unlikely(jh->b_transaction !=
1400                              journal->j_running_transaction)) {
1401                         printk(KERN_ERR "JBD2: %s: "
1402                                "jh->b_transaction (%llu, %p, %u) != "
1403                                "journal->j_running_transaction (%p, %u)\n",
1404                                journal->j_devname,
1405                                (unsigned long long) bh->b_blocknr,
1406                                jh->b_transaction,
1407                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1408                                journal->j_running_transaction,
1409                                journal->j_running_transaction ?
1410                                journal->j_running_transaction->t_tid : 0);
1411                         ret = -EINVAL;
1412                 }
1413                 goto out_unlock_bh;
1414         }
1415
1416         set_buffer_jbddirty(bh);
1417
1418         /*
1419          * Metadata already on the current transaction list doesn't
1420          * need to be filed.  Metadata on another transaction's list must
1421          * be committing, and will be refiled once the commit completes:
1422          * leave it alone for now.
1423          */
1424         if (jh->b_transaction != transaction) {
1425                 JBUFFER_TRACE(jh, "already on other transaction");
1426                 if (unlikely(((jh->b_transaction !=
1427                                journal->j_committing_transaction)) ||
1428                              (jh->b_next_transaction != transaction))) {
1429                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1430                                "bad jh for block %llu: "
1431                                "transaction (%p, %u), "
1432                                "jh->b_transaction (%p, %u), "
1433                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1434                                journal->j_devname,
1435                                (unsigned long long) bh->b_blocknr,
1436                                transaction, transaction->t_tid,
1437                                jh->b_transaction,
1438                                jh->b_transaction ?
1439                                jh->b_transaction->t_tid : 0,
1440                                jh->b_next_transaction,
1441                                jh->b_next_transaction ?
1442                                jh->b_next_transaction->t_tid : 0,
1443                                jh->b_jlist);
1444                         WARN_ON(1);
1445                         ret = -EINVAL;
1446                 }
1447                 /* And this case is illegal: we can't reuse another
1448                  * transaction's data buffer, ever. */
1449                 goto out_unlock_bh;
1450         }
1451
1452         /* That test should have eliminated the following case: */
1453         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1454
1455         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1456         spin_lock(&journal->j_list_lock);
1457         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1458         spin_unlock(&journal->j_list_lock);
1459 out_unlock_bh:
1460         jbd_unlock_bh_state(bh);
1461 out:
1462         JBUFFER_TRACE(jh, "exit");
1463         return ret;
1464 }
1465
1466 /**
1467  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1468  * @handle: transaction handle
1469  * @bh:     bh to 'forget'
1470  *
1471  * We can only do the bforget if there are no commits pending against the
1472  * buffer.  If the buffer is dirty in the current running transaction we
1473  * can safely unlink it.
1474  *
1475  * bh may not be a journalled buffer at all - it may be a non-JBD
1476  * buffer which came off the hashtable.  Check for this.
1477  *
1478  * Decrements bh->b_count by one.
1479  *
1480  * Allow this call even if the handle has aborted --- it may be part of
1481  * the caller's cleanup after an abort.
1482  */
1483 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1484 {
1485         transaction_t *transaction = handle->h_transaction;
1486         journal_t *journal;
1487         struct journal_head *jh;
1488         int drop_reserve = 0;
1489         int err = 0;
1490         int was_modified = 0;
1491
1492         if (is_handle_aborted(handle))
1493                 return -EROFS;
1494         journal = transaction->t_journal;
1495
1496         BUFFER_TRACE(bh, "entry");
1497
1498         jbd_lock_bh_state(bh);
1499
1500         if (!buffer_jbd(bh))
1501                 goto not_jbd;
1502         jh = bh2jh(bh);
1503
1504         /* Critical error: attempting to delete a bitmap buffer, maybe?
1505          * Don't do any jbd operations, and return an error. */
1506         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1507                          "inconsistent data on disk")) {
1508                 err = -EIO;
1509                 goto not_jbd;
1510         }
1511
1512         /* keep track of whether or not this transaction modified us */
1513         was_modified = jh->b_modified;
1514
1515         /*
1516          * The buffer's going from the transaction, we must drop
1517          * all references -bzzz
1518          */
1519         jh->b_modified = 0;
1520
1521         if (jh->b_transaction == transaction) {
1522                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1523
1524                 /* If we are forgetting a buffer which is already part
1525                  * of this transaction, then we can just drop it from
1526                  * the transaction immediately. */
1527                 clear_buffer_dirty(bh);
1528                 clear_buffer_jbddirty(bh);
1529
1530                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1531
1532                 /*
1533                  * we only want to drop a reference if this transaction
1534                  * modified the buffer
1535                  */
1536                 if (was_modified)
1537                         drop_reserve = 1;
1538
1539                 /*
1540                  * We are no longer going to journal this buffer.
1541                  * However, the commit of this transaction is still
1542                  * important to the buffer: the delete that we are now
1543                  * processing might obsolete an old log entry, so by
1544                  * committing, we can satisfy the buffer's checkpoint.
1545                  *
1546                  * So, if we have a checkpoint on the buffer, we should
1547                  * now refile the buffer on our BJ_Forget list so that
1548                  * we know to remove the checkpoint after we commit.
1549                  */
1550
1551                 spin_lock(&journal->j_list_lock);
1552                 if (jh->b_cp_transaction) {
1553                         __jbd2_journal_temp_unlink_buffer(jh);
1554                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1555                 } else {
1556                         __jbd2_journal_unfile_buffer(jh);
1557                         if (!buffer_jbd(bh)) {
1558                                 spin_unlock(&journal->j_list_lock);
1559                                 jbd_unlock_bh_state(bh);
1560                                 __bforget(bh);
1561                                 goto drop;
1562                         }
1563                 }
1564                 spin_unlock(&journal->j_list_lock);
1565         } else if (jh->b_transaction) {
1566                 J_ASSERT_JH(jh, (jh->b_transaction ==
1567                                  journal->j_committing_transaction));
1568                 /* However, if the buffer is still owned by a prior
1569                  * (committing) transaction, we can't drop it yet... */
1570                 JBUFFER_TRACE(jh, "belongs to older transaction");
1571                 /* ... but we CAN drop it from the new transaction through
1572                  * marking the buffer as freed and set j_next_transaction to
1573                  * the new transaction, so that not only the commit code
1574                  * knows it should clear dirty bits when it is done with the
1575                  * buffer, but also the buffer can be checkpointed only
1576                  * after the new transaction commits. */
1577
1578                 set_buffer_freed(bh);
1579
1580                 if (!jh->b_next_transaction) {
1581                         spin_lock(&journal->j_list_lock);
1582                         jh->b_next_transaction = transaction;
1583                         spin_unlock(&journal->j_list_lock);
1584                 } else {
1585                         J_ASSERT(jh->b_next_transaction == transaction);
1586
1587                         /*
1588                          * only drop a reference if this transaction modified
1589                          * the buffer
1590                          */
1591                         if (was_modified)
1592                                 drop_reserve = 1;
1593                 }
1594         }
1595
1596 not_jbd:
1597         jbd_unlock_bh_state(bh);
1598         __brelse(bh);
1599 drop:
1600         if (drop_reserve) {
1601                 /* no need to reserve log space for this block -bzzz */
1602                 handle->h_buffer_credits++;
1603         }
1604         return err;
1605 }
1606
1607 /**
1608  * int jbd2_journal_stop() - complete a transaction
1609  * @handle: transaction to complete.
1610  *
1611  * All done for a particular handle.
1612  *
1613  * There is not much action needed here.  We just return any remaining
1614  * buffer credits to the transaction and remove the handle.  The only
1615  * complication is that we need to start a commit operation if the
1616  * filesystem is marked for synchronous update.
1617  *
1618  * jbd2_journal_stop itself will not usually return an error, but it may
1619  * do so in unusual circumstances.  In particular, expect it to
1620  * return -EIO if a jbd2_journal_abort has been executed since the
1621  * transaction began.
1622  */
1623 int jbd2_journal_stop(handle_t *handle)
1624 {
1625         transaction_t *transaction = handle->h_transaction;
1626         journal_t *journal;
1627         int err = 0, wait_for_commit = 0;
1628         tid_t tid;
1629         pid_t pid;
1630
1631         if (!transaction) {
1632                 /*
1633                  * Handle is already detached from the transaction so
1634                  * there is nothing to do other than decrease a refcount,
1635                  * or free the handle if refcount drops to zero
1636                  */
1637                 if (--handle->h_ref > 0) {
1638                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1639                                                          handle->h_ref);
1640                         return err;
1641                 } else {
1642                         if (handle->h_rsv_handle)
1643                                 jbd2_free_handle(handle->h_rsv_handle);
1644                         goto free_and_exit;
1645                 }
1646         }
1647         journal = transaction->t_journal;
1648
1649         J_ASSERT(journal_current_handle() == handle);
1650
1651         if (is_handle_aborted(handle))
1652                 err = -EIO;
1653         else
1654                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1655
1656         if (--handle->h_ref > 0) {
1657                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1658                           handle->h_ref);
1659                 return err;
1660         }
1661
1662         jbd_debug(4, "Handle %p going down\n", handle);
1663         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1664                                 transaction->t_tid,
1665                                 handle->h_type, handle->h_line_no,
1666                                 jiffies - handle->h_start_jiffies,
1667                                 handle->h_sync, handle->h_requested_credits,
1668                                 (handle->h_requested_credits -
1669                                  handle->h_buffer_credits));
1670
1671         /*
1672          * Implement synchronous transaction batching.  If the handle
1673          * was synchronous, don't force a commit immediately.  Let's
1674          * yield and let another thread piggyback onto this
1675          * transaction.  Keep doing that while new threads continue to
1676          * arrive.  It doesn't cost much - we're about to run a commit
1677          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1678          * operations by 30x or more...
1679          *
1680          * We try and optimize the sleep time against what the
1681          * underlying disk can do, instead of having a static sleep
1682          * time.  This is useful for the case where our storage is so
1683          * fast that it is more optimal to go ahead and force a flush
1684          * and wait for the transaction to be committed than it is to
1685          * wait for an arbitrary amount of time for new writers to
1686          * join the transaction.  We achieve this by measuring how
1687          * long it takes to commit a transaction, and compare it with
1688          * how long this transaction has been running, and if run time
1689          * < commit time then we sleep for the delta and commit.  This
1690          * greatly helps super fast disks that would see slowdowns as
1691          * more threads started doing fsyncs.
1692          *
1693          * But don't do this if this process was the most recent one
1694          * to perform a synchronous write.  We do this to detect the
1695          * case where a single process is doing a stream of sync
1696          * writes.  No point in waiting for joiners in that case.
1697          *
1698          * Setting max_batch_time to 0 disables this completely.
1699          */
1700         pid = current->pid;
1701         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1702             journal->j_max_batch_time) {
1703                 u64 commit_time, trans_time;
1704
1705                 journal->j_last_sync_writer = pid;
1706
1707                 read_lock(&journal->j_state_lock);
1708                 commit_time = journal->j_average_commit_time;
1709                 read_unlock(&journal->j_state_lock);
1710
1711                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1712                                                    transaction->t_start_time));
1713
1714                 commit_time = max_t(u64, commit_time,
1715                                     1000*journal->j_min_batch_time);
1716                 commit_time = min_t(u64, commit_time,
1717                                     1000*journal->j_max_batch_time);
1718
1719                 if (trans_time < commit_time) {
1720                         ktime_t expires = ktime_add_ns(ktime_get(),
1721                                                        commit_time);
1722                         set_current_state(TASK_UNINTERRUPTIBLE);
1723                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1724                 }
1725         }
1726
1727         if (handle->h_sync)
1728                 transaction->t_synchronous_commit = 1;
1729         current->journal_info = NULL;
1730         atomic_sub(handle->h_buffer_credits,
1731                    &transaction->t_outstanding_credits);
1732
1733         /*
1734          * If the handle is marked SYNC, we need to set another commit
1735          * going!  We also want to force a commit if the current
1736          * transaction is occupying too much of the log, or if the
1737          * transaction is too old now.
1738          */
1739         if (handle->h_sync ||
1740             (atomic_read(&transaction->t_outstanding_credits) >
1741              journal->j_max_transaction_buffers) ||
1742             time_after_eq(jiffies, transaction->t_expires)) {
1743                 /* Do this even for aborted journals: an abort still
1744                  * completes the commit thread, it just doesn't write
1745                  * anything to disk. */
1746
1747                 jbd_debug(2, "transaction too old, requesting commit for "
1748                                         "handle %p\n", handle);
1749                 /* This is non-blocking */
1750                 jbd2_log_start_commit(journal, transaction->t_tid);
1751
1752                 /*
1753                  * Special case: JBD2_SYNC synchronous updates require us
1754                  * to wait for the commit to complete.
1755                  */
1756                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1757                         wait_for_commit = 1;
1758         }
1759
1760         /*
1761          * Once we drop t_updates, if it goes to zero the transaction
1762          * could start committing on us and eventually disappear.  So
1763          * once we do this, we must not dereference transaction
1764          * pointer again.
1765          */
1766         tid = transaction->t_tid;
1767         if (atomic_dec_and_test(&transaction->t_updates)) {
1768                 wake_up(&journal->j_wait_updates);
1769                 if (journal->j_barrier_count)
1770                         wake_up(&journal->j_wait_transaction_locked);
1771         }
1772
1773         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1774
1775         if (wait_for_commit)
1776                 err = jbd2_log_wait_commit(journal, tid);
1777
1778         if (handle->h_rsv_handle)
1779                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1780 free_and_exit:
1781         jbd2_free_handle(handle);
1782         return err;
1783 }
1784
1785 /*
1786  *
1787  * List management code snippets: various functions for manipulating the
1788  * transaction buffer lists.
1789  *
1790  */
1791
1792 /*
1793  * Append a buffer to a transaction list, given the transaction's list head
1794  * pointer.
1795  *
1796  * j_list_lock is held.
1797  *
1798  * jbd_lock_bh_state(jh2bh(jh)) is held.
1799  */
1800
1801 static inline void
1802 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1803 {
1804         if (!*list) {
1805                 jh->b_tnext = jh->b_tprev = jh;
1806                 *list = jh;
1807         } else {
1808                 /* Insert at the tail of the list to preserve order */
1809                 struct journal_head *first = *list, *last = first->b_tprev;
1810                 jh->b_tprev = last;
1811                 jh->b_tnext = first;
1812                 last->b_tnext = first->b_tprev = jh;
1813         }
1814 }
1815
1816 /*
1817  * Remove a buffer from a transaction list, given the transaction's list
1818  * head pointer.
1819  *
1820  * Called with j_list_lock held, and the journal may not be locked.
1821  *
1822  * jbd_lock_bh_state(jh2bh(jh)) is held.
1823  */
1824
1825 static inline void
1826 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1827 {
1828         if (*list == jh) {
1829                 *list = jh->b_tnext;
1830                 if (*list == jh)
1831                         *list = NULL;
1832         }
1833         jh->b_tprev->b_tnext = jh->b_tnext;
1834         jh->b_tnext->b_tprev = jh->b_tprev;
1835 }
1836
1837 /*
1838  * Remove a buffer from the appropriate transaction list.
1839  *
1840  * Note that this function can *change* the value of
1841  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1842  * t_reserved_list.  If the caller is holding onto a copy of one of these
1843  * pointers, it could go bad.  Generally the caller needs to re-read the
1844  * pointer from the transaction_t.
1845  *
1846  * Called under j_list_lock.
1847  */
1848 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1849 {
1850         struct journal_head **list = NULL;
1851         transaction_t *transaction;
1852         struct buffer_head *bh = jh2bh(jh);
1853
1854         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1855         transaction = jh->b_transaction;
1856         if (transaction)
1857                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1858
1859         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1860         if (jh->b_jlist != BJ_None)
1861                 J_ASSERT_JH(jh, transaction != NULL);
1862
1863         switch (jh->b_jlist) {
1864         case BJ_None:
1865                 return;
1866         case BJ_Metadata:
1867                 transaction->t_nr_buffers--;
1868                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1869                 list = &transaction->t_buffers;
1870                 break;
1871         case BJ_Forget:
1872                 list = &transaction->t_forget;
1873                 break;
1874         case BJ_Shadow:
1875                 list = &transaction->t_shadow_list;
1876                 break;
1877         case BJ_Reserved:
1878                 list = &transaction->t_reserved_list;
1879                 break;
1880         }
1881
1882         __blist_del_buffer(list, jh);
1883         jh->b_jlist = BJ_None;
1884         if (transaction && is_journal_aborted(transaction->t_journal))
1885                 clear_buffer_jbddirty(bh);
1886         else if (test_clear_buffer_jbddirty(bh))
1887                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1888 }
1889
1890 /*
1891  * Remove buffer from all transactions.
1892  *
1893  * Called with bh_state lock and j_list_lock
1894  *
1895  * jh and bh may be already freed when this function returns.
1896  */
1897 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1898 {
1899         J_ASSERT_JH(jh, jh->b_transaction != NULL);
1900         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1901
1902         __jbd2_journal_temp_unlink_buffer(jh);
1903         jh->b_transaction = NULL;
1904         jbd2_journal_put_journal_head(jh);
1905 }
1906
1907 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1908 {
1909         struct buffer_head *bh = jh2bh(jh);
1910
1911         /* Get reference so that buffer cannot be freed before we unlock it */
1912         get_bh(bh);
1913         jbd_lock_bh_state(bh);
1914         spin_lock(&journal->j_list_lock);
1915         __jbd2_journal_unfile_buffer(jh);
1916         spin_unlock(&journal->j_list_lock);
1917         jbd_unlock_bh_state(bh);
1918         __brelse(bh);
1919 }
1920
1921 /*
1922  * Called from jbd2_journal_try_to_free_buffers().
1923  *
1924  * Called under jbd_lock_bh_state(bh)
1925  */
1926 static void
1927 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1928 {
1929         struct journal_head *jh;
1930
1931         jh = bh2jh(bh);
1932
1933         if (buffer_locked(bh) || buffer_dirty(bh))
1934                 goto out;
1935
1936         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1937                 goto out;
1938
1939         spin_lock(&journal->j_list_lock);
1940         if (jh->b_cp_transaction != NULL) {
1941                 /* written-back checkpointed metadata buffer */
1942                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1943                 __jbd2_journal_remove_checkpoint(jh);
1944         }
1945         spin_unlock(&journal->j_list_lock);
1946 out:
1947         return;
1948 }
1949
1950 /**
1951  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1952  * @journal: journal for operation
1953  * @page: to try and free
1954  * @gfp_mask: we use the mask to detect how hard should we try to release
1955  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1956  * code to release the buffers.
1957  *
1958  *
1959  * For all the buffers on this page,
1960  * if they are fully written out ordered data, move them onto BUF_CLEAN
1961  * so try_to_free_buffers() can reap them.
1962  *
1963  * This function returns non-zero if we wish try_to_free_buffers()
1964  * to be called. We do this if the page is releasable by try_to_free_buffers().
1965  * We also do it if the page has locked or dirty buffers and the caller wants
1966  * us to perform sync or async writeout.
1967  *
1968  * This complicates JBD locking somewhat.  We aren't protected by the
1969  * BKL here.  We wish to remove the buffer from its committing or
1970  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1971  *
1972  * This may *change* the value of transaction_t->t_datalist, so anyone
1973  * who looks at t_datalist needs to lock against this function.
1974  *
1975  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1976  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1977  * will come out of the lock with the buffer dirty, which makes it
1978  * ineligible for release here.
1979  *
1980  * Who else is affected by this?  hmm...  Really the only contender
1981  * is do_get_write_access() - it could be looking at the buffer while
1982  * journal_try_to_free_buffer() is changing its state.  But that
1983  * cannot happen because we never reallocate freed data as metadata
1984  * while the data is part of a transaction.  Yes?
1985  *
1986  * Return 0 on failure, 1 on success
1987  */
1988 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1989                                 struct page *page, gfp_t gfp_mask)
1990 {
1991         struct buffer_head *head;
1992         struct buffer_head *bh;
1993         bool has_write_io_error = false;
1994         int ret = 0;
1995
1996         J_ASSERT(PageLocked(page));
1997
1998         head = page_buffers(page);
1999         bh = head;
2000         do {
2001                 struct journal_head *jh;
2002
2003                 /*
2004                  * We take our own ref against the journal_head here to avoid
2005                  * having to add tons of locking around each instance of
2006                  * jbd2_journal_put_journal_head().
2007                  */
2008                 jh = jbd2_journal_grab_journal_head(bh);
2009                 if (!jh)
2010                         continue;
2011
2012                 jbd_lock_bh_state(bh);
2013                 __journal_try_to_free_buffer(journal, bh);
2014                 jbd2_journal_put_journal_head(jh);
2015                 jbd_unlock_bh_state(bh);
2016                 if (buffer_jbd(bh))
2017                         goto busy;
2018
2019                 /*
2020                  * If we free a metadata buffer which has been failed to
2021                  * write out, the jbd2 checkpoint procedure will not detect
2022                  * this failure and may lead to filesystem inconsistency
2023                  * after cleanup journal tail.
2024                  */
2025                 if (buffer_write_io_error(bh)) {
2026                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2027                                (unsigned long long)bh->b_blocknr);
2028                         has_write_io_error = true;
2029                 }
2030         } while ((bh = bh->b_this_page) != head);
2031
2032         ret = try_to_free_buffers(page);
2033
2034 busy:
2035         if (has_write_io_error)
2036                 jbd2_journal_abort(journal, -EIO);
2037
2038         return ret;
2039 }
2040
2041 /*
2042  * This buffer is no longer needed.  If it is on an older transaction's
2043  * checkpoint list we need to record it on this transaction's forget list
2044  * to pin this buffer (and hence its checkpointing transaction) down until
2045  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2046  * release it.
2047  * Returns non-zero if JBD no longer has an interest in the buffer.
2048  *
2049  * Called under j_list_lock.
2050  *
2051  * Called under jbd_lock_bh_state(bh).
2052  */
2053 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2054 {
2055         int may_free = 1;
2056         struct buffer_head *bh = jh2bh(jh);
2057
2058         if (jh->b_cp_transaction) {
2059                 JBUFFER_TRACE(jh, "on running+cp transaction");
2060                 __jbd2_journal_temp_unlink_buffer(jh);
2061                 /*
2062                  * We don't want to write the buffer anymore, clear the
2063                  * bit so that we don't confuse checks in
2064                  * __journal_file_buffer
2065                  */
2066                 clear_buffer_dirty(bh);
2067                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2068                 may_free = 0;
2069         } else {
2070                 JBUFFER_TRACE(jh, "on running transaction");
2071                 __jbd2_journal_unfile_buffer(jh);
2072         }
2073         return may_free;
2074 }
2075
2076 /*
2077  * jbd2_journal_invalidatepage
2078  *
2079  * This code is tricky.  It has a number of cases to deal with.
2080  *
2081  * There are two invariants which this code relies on:
2082  *
2083  * i_size must be updated on disk before we start calling invalidatepage on the
2084  * data.
2085  *
2086  *  This is done in ext3 by defining an ext3_setattr method which
2087  *  updates i_size before truncate gets going.  By maintaining this
2088  *  invariant, we can be sure that it is safe to throw away any buffers
2089  *  attached to the current transaction: once the transaction commits,
2090  *  we know that the data will not be needed.
2091  *
2092  *  Note however that we can *not* throw away data belonging to the
2093  *  previous, committing transaction!
2094  *
2095  * Any disk blocks which *are* part of the previous, committing
2096  * transaction (and which therefore cannot be discarded immediately) are
2097  * not going to be reused in the new running transaction
2098  *
2099  *  The bitmap committed_data images guarantee this: any block which is
2100  *  allocated in one transaction and removed in the next will be marked
2101  *  as in-use in the committed_data bitmap, so cannot be reused until
2102  *  the next transaction to delete the block commits.  This means that
2103  *  leaving committing buffers dirty is quite safe: the disk blocks
2104  *  cannot be reallocated to a different file and so buffer aliasing is
2105  *  not possible.
2106  *
2107  *
2108  * The above applies mainly to ordered data mode.  In writeback mode we
2109  * don't make guarantees about the order in which data hits disk --- in
2110  * particular we don't guarantee that new dirty data is flushed before
2111  * transaction commit --- so it is always safe just to discard data
2112  * immediately in that mode.  --sct
2113  */
2114
2115 /*
2116  * The journal_unmap_buffer helper function returns zero if the buffer
2117  * concerned remains pinned as an anonymous buffer belonging to an older
2118  * transaction.
2119  *
2120  * We're outside-transaction here.  Either or both of j_running_transaction
2121  * and j_committing_transaction may be NULL.
2122  */
2123 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2124                                 int partial_page)
2125 {
2126         transaction_t *transaction;
2127         struct journal_head *jh;
2128         int may_free = 1;
2129
2130         BUFFER_TRACE(bh, "entry");
2131
2132         /*
2133          * It is safe to proceed here without the j_list_lock because the
2134          * buffers cannot be stolen by try_to_free_buffers as long as we are
2135          * holding the page lock. --sct
2136          */
2137
2138         if (!buffer_jbd(bh))
2139                 goto zap_buffer_unlocked;
2140
2141         /* OK, we have data buffer in journaled mode */
2142         write_lock(&journal->j_state_lock);
2143         jbd_lock_bh_state(bh);
2144         spin_lock(&journal->j_list_lock);
2145
2146         jh = jbd2_journal_grab_journal_head(bh);
2147         if (!jh)
2148                 goto zap_buffer_no_jh;
2149
2150         /*
2151          * We cannot remove the buffer from checkpoint lists until the
2152          * transaction adding inode to orphan list (let's call it T)
2153          * is committed.  Otherwise if the transaction changing the
2154          * buffer would be cleaned from the journal before T is
2155          * committed, a crash will cause that the correct contents of
2156          * the buffer will be lost.  On the other hand we have to
2157          * clear the buffer dirty bit at latest at the moment when the
2158          * transaction marking the buffer as freed in the filesystem
2159          * structures is committed because from that moment on the
2160          * block can be reallocated and used by a different page.
2161          * Since the block hasn't been freed yet but the inode has
2162          * already been added to orphan list, it is safe for us to add
2163          * the buffer to BJ_Forget list of the newest transaction.
2164          *
2165          * Also we have to clear buffer_mapped flag of a truncated buffer
2166          * because the buffer_head may be attached to the page straddling
2167          * i_size (can happen only when blocksize < pagesize) and thus the
2168          * buffer_head can be reused when the file is extended again. So we end
2169          * up keeping around invalidated buffers attached to transactions'
2170          * BJ_Forget list just to stop checkpointing code from cleaning up
2171          * the transaction this buffer was modified in.
2172          */
2173         transaction = jh->b_transaction;
2174         if (transaction == NULL) {
2175                 /* First case: not on any transaction.  If it
2176                  * has no checkpoint link, then we can zap it:
2177                  * it's a writeback-mode buffer so we don't care
2178                  * if it hits disk safely. */
2179                 if (!jh->b_cp_transaction) {
2180                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2181                         goto zap_buffer;
2182                 }
2183
2184                 if (!buffer_dirty(bh)) {
2185                         /* bdflush has written it.  We can drop it now */
2186                         __jbd2_journal_remove_checkpoint(jh);
2187                         goto zap_buffer;
2188                 }
2189
2190                 /* OK, it must be in the journal but still not
2191                  * written fully to disk: it's metadata or
2192                  * journaled data... */
2193
2194                 if (journal->j_running_transaction) {
2195                         /* ... and once the current transaction has
2196                          * committed, the buffer won't be needed any
2197                          * longer. */
2198                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2199                         may_free = __dispose_buffer(jh,
2200                                         journal->j_running_transaction);
2201                         goto zap_buffer;
2202                 } else {
2203                         /* There is no currently-running transaction. So the
2204                          * orphan record which we wrote for this file must have
2205                          * passed into commit.  We must attach this buffer to
2206                          * the committing transaction, if it exists. */
2207                         if (journal->j_committing_transaction) {
2208                                 JBUFFER_TRACE(jh, "give to committing trans");
2209                                 may_free = __dispose_buffer(jh,
2210                                         journal->j_committing_transaction);
2211                                 goto zap_buffer;
2212                         } else {
2213                                 /* The orphan record's transaction has
2214                                  * committed.  We can cleanse this buffer */
2215                                 clear_buffer_jbddirty(bh);
2216                                 __jbd2_journal_remove_checkpoint(jh);
2217                                 goto zap_buffer;
2218                         }
2219                 }
2220         } else if (transaction == journal->j_committing_transaction) {
2221                 JBUFFER_TRACE(jh, "on committing transaction");
2222                 /*
2223                  * The buffer is committing, we simply cannot touch
2224                  * it. If the page is straddling i_size we have to wait
2225                  * for commit and try again.
2226                  */
2227                 if (partial_page) {
2228                         jbd2_journal_put_journal_head(jh);
2229                         spin_unlock(&journal->j_list_lock);
2230                         jbd_unlock_bh_state(bh);
2231                         write_unlock(&journal->j_state_lock);
2232                         return -EBUSY;
2233                 }
2234                 /*
2235                  * OK, buffer won't be reachable after truncate. We just clear
2236                  * b_modified to not confuse transaction credit accounting, and
2237                  * set j_next_transaction to the running transaction (if there
2238                  * is one) and mark buffer as freed so that commit code knows
2239                  * it should clear dirty bits when it is done with the buffer.
2240                  */
2241                 set_buffer_freed(bh);
2242                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2243                         jh->b_next_transaction = journal->j_running_transaction;
2244                 jh->b_modified = 0;
2245                 jbd2_journal_put_journal_head(jh);
2246                 spin_unlock(&journal->j_list_lock);
2247                 jbd_unlock_bh_state(bh);
2248                 write_unlock(&journal->j_state_lock);
2249                 return 0;
2250         } else {
2251                 /* Good, the buffer belongs to the running transaction.
2252                  * We are writing our own transaction's data, not any
2253                  * previous one's, so it is safe to throw it away
2254                  * (remember that we expect the filesystem to have set
2255                  * i_size already for this truncate so recovery will not
2256                  * expose the disk blocks we are discarding here.) */
2257                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2258                 JBUFFER_TRACE(jh, "on running transaction");
2259                 may_free = __dispose_buffer(jh, transaction);
2260         }
2261
2262 zap_buffer:
2263         /*
2264          * This is tricky. Although the buffer is truncated, it may be reused
2265          * if blocksize < pagesize and it is attached to the page straddling
2266          * EOF. Since the buffer might have been added to BJ_Forget list of the
2267          * running transaction, journal_get_write_access() won't clear
2268          * b_modified and credit accounting gets confused. So clear b_modified
2269          * here.
2270          */
2271         jh->b_modified = 0;
2272         jbd2_journal_put_journal_head(jh);
2273 zap_buffer_no_jh:
2274         spin_unlock(&journal->j_list_lock);
2275         jbd_unlock_bh_state(bh);
2276         write_unlock(&journal->j_state_lock);
2277 zap_buffer_unlocked:
2278         clear_buffer_dirty(bh);
2279         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2280         clear_buffer_mapped(bh);
2281         clear_buffer_req(bh);
2282         clear_buffer_new(bh);
2283         clear_buffer_delay(bh);
2284         clear_buffer_unwritten(bh);
2285         bh->b_bdev = NULL;
2286         return may_free;
2287 }
2288
2289 /**
2290  * void jbd2_journal_invalidatepage()
2291  * @journal: journal to use for flush...
2292  * @page:    page to flush
2293  * @offset:  start of the range to invalidate
2294  * @length:  length of the range to invalidate
2295  *
2296  * Reap page buffers containing data after in the specified range in page.
2297  * Can return -EBUSY if buffers are part of the committing transaction and
2298  * the page is straddling i_size. Caller then has to wait for current commit
2299  * and try again.
2300  */
2301 int jbd2_journal_invalidatepage(journal_t *journal,
2302                                 struct page *page,
2303                                 unsigned int offset,
2304                                 unsigned int length)
2305 {
2306         struct buffer_head *head, *bh, *next;
2307         unsigned int stop = offset + length;
2308         unsigned int curr_off = 0;
2309         int partial_page = (offset || length < PAGE_SIZE);
2310         int may_free = 1;
2311         int ret = 0;
2312
2313         if (!PageLocked(page))
2314                 BUG();
2315         if (!page_has_buffers(page))
2316                 return 0;
2317
2318         BUG_ON(stop > PAGE_SIZE || stop < length);
2319
2320         /* We will potentially be playing with lists other than just the
2321          * data lists (especially for journaled data mode), so be
2322          * cautious in our locking. */
2323
2324         head = bh = page_buffers(page);
2325         do {
2326                 unsigned int next_off = curr_off + bh->b_size;
2327                 next = bh->b_this_page;
2328
2329                 if (next_off > stop)
2330                         return 0;
2331
2332                 if (offset <= curr_off) {
2333                         /* This block is wholly outside the truncation point */
2334                         lock_buffer(bh);
2335                         ret = journal_unmap_buffer(journal, bh, partial_page);
2336                         unlock_buffer(bh);
2337                         if (ret < 0)
2338                                 return ret;
2339                         may_free &= ret;
2340                 }
2341                 curr_off = next_off;
2342                 bh = next;
2343
2344         } while (bh != head);
2345
2346         if (!partial_page) {
2347                 if (may_free && try_to_free_buffers(page))
2348                         J_ASSERT(!page_has_buffers(page));
2349         }
2350         return 0;
2351 }
2352
2353 /*
2354  * File a buffer on the given transaction list.
2355  */
2356 void __jbd2_journal_file_buffer(struct journal_head *jh,
2357                         transaction_t *transaction, int jlist)
2358 {
2359         struct journal_head **list = NULL;
2360         int was_dirty = 0;
2361         struct buffer_head *bh = jh2bh(jh);
2362
2363         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2364         assert_spin_locked(&transaction->t_journal->j_list_lock);
2365
2366         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2367         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2368                                 jh->b_transaction == NULL);
2369
2370         if (jh->b_transaction && jh->b_jlist == jlist)
2371                 return;
2372
2373         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2374             jlist == BJ_Shadow || jlist == BJ_Forget) {
2375                 /*
2376                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2377                  * instead of buffer_dirty. We should not see a dirty bit set
2378                  * here because we clear it in do_get_write_access but e.g.
2379                  * tune2fs can modify the sb and set the dirty bit at any time
2380                  * so we try to gracefully handle that.
2381                  */
2382                 if (buffer_dirty(bh))
2383                         warn_dirty_buffer(bh);
2384                 if (test_clear_buffer_dirty(bh) ||
2385                     test_clear_buffer_jbddirty(bh))
2386                         was_dirty = 1;
2387         }
2388
2389         if (jh->b_transaction)
2390                 __jbd2_journal_temp_unlink_buffer(jh);
2391         else
2392                 jbd2_journal_grab_journal_head(bh);
2393         jh->b_transaction = transaction;
2394
2395         switch (jlist) {
2396         case BJ_None:
2397                 J_ASSERT_JH(jh, !jh->b_committed_data);
2398                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2399                 return;
2400         case BJ_Metadata:
2401                 transaction->t_nr_buffers++;
2402                 list = &transaction->t_buffers;
2403                 break;
2404         case BJ_Forget:
2405                 list = &transaction->t_forget;
2406                 break;
2407         case BJ_Shadow:
2408                 list = &transaction->t_shadow_list;
2409                 break;
2410         case BJ_Reserved:
2411                 list = &transaction->t_reserved_list;
2412                 break;
2413         }
2414
2415         __blist_add_buffer(list, jh);
2416         jh->b_jlist = jlist;
2417
2418         if (was_dirty)
2419                 set_buffer_jbddirty(bh);
2420 }
2421
2422 void jbd2_journal_file_buffer(struct journal_head *jh,
2423                                 transaction_t *transaction, int jlist)
2424 {
2425         jbd_lock_bh_state(jh2bh(jh));
2426         spin_lock(&transaction->t_journal->j_list_lock);
2427         __jbd2_journal_file_buffer(jh, transaction, jlist);
2428         spin_unlock(&transaction->t_journal->j_list_lock);
2429         jbd_unlock_bh_state(jh2bh(jh));
2430 }
2431
2432 /*
2433  * Remove a buffer from its current buffer list in preparation for
2434  * dropping it from its current transaction entirely.  If the buffer has
2435  * already started to be used by a subsequent transaction, refile the
2436  * buffer on that transaction's metadata list.
2437  *
2438  * Called under j_list_lock
2439  * Called under jbd_lock_bh_state(jh2bh(jh))
2440  *
2441  * jh and bh may be already free when this function returns
2442  */
2443 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2444 {
2445         int was_dirty, jlist;
2446         struct buffer_head *bh = jh2bh(jh);
2447
2448         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2449         if (jh->b_transaction)
2450                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2451
2452         /* If the buffer is now unused, just drop it. */
2453         if (jh->b_next_transaction == NULL) {
2454                 __jbd2_journal_unfile_buffer(jh);
2455                 return;
2456         }
2457
2458         /*
2459          * It has been modified by a later transaction: add it to the new
2460          * transaction's metadata list.
2461          */
2462
2463         was_dirty = test_clear_buffer_jbddirty(bh);
2464         __jbd2_journal_temp_unlink_buffer(jh);
2465
2466         /*
2467          * b_transaction must be set, otherwise the new b_transaction won't
2468          * be holding jh reference
2469          */
2470         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2471
2472         /*
2473          * We set b_transaction here because b_next_transaction will inherit
2474          * our jh reference and thus __jbd2_journal_file_buffer() must not
2475          * take a new one.
2476          */
2477         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2478         WRITE_ONCE(jh->b_next_transaction, NULL);
2479         if (buffer_freed(bh))
2480                 jlist = BJ_Forget;
2481         else if (jh->b_modified)
2482                 jlist = BJ_Metadata;
2483         else
2484                 jlist = BJ_Reserved;
2485         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2486         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2487
2488         if (was_dirty)
2489                 set_buffer_jbddirty(bh);
2490 }
2491
2492 /*
2493  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2494  * bh reference so that we can safely unlock bh.
2495  *
2496  * The jh and bh may be freed by this call.
2497  */
2498 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2499 {
2500         struct buffer_head *bh = jh2bh(jh);
2501
2502         /* Get reference so that buffer cannot be freed before we unlock it */
2503         get_bh(bh);
2504         jbd_lock_bh_state(bh);
2505         spin_lock(&journal->j_list_lock);
2506         __jbd2_journal_refile_buffer(jh);
2507         jbd_unlock_bh_state(bh);
2508         spin_unlock(&journal->j_list_lock);
2509         __brelse(bh);
2510 }
2511
2512 /*
2513  * File inode in the inode list of the handle's transaction
2514  */
2515 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2516                                    unsigned long flags)
2517 {
2518         transaction_t *transaction = handle->h_transaction;
2519         journal_t *journal;
2520
2521         if (is_handle_aborted(handle))
2522                 return -EROFS;
2523         journal = transaction->t_journal;
2524
2525         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2526                         transaction->t_tid);
2527
2528         /*
2529          * First check whether inode isn't already on the transaction's
2530          * lists without taking the lock. Note that this check is safe
2531          * without the lock as we cannot race with somebody removing inode
2532          * from the transaction. The reason is that we remove inode from the
2533          * transaction only in journal_release_jbd_inode() and when we commit
2534          * the transaction. We are guarded from the first case by holding
2535          * a reference to the inode. We are safe against the second case
2536          * because if jinode->i_transaction == transaction, commit code
2537          * cannot touch the transaction because we hold reference to it,
2538          * and if jinode->i_next_transaction == transaction, commit code
2539          * will only file the inode where we want it.
2540          */
2541         if ((jinode->i_transaction == transaction ||
2542             jinode->i_next_transaction == transaction) &&
2543             (jinode->i_flags & flags) == flags)
2544                 return 0;
2545
2546         spin_lock(&journal->j_list_lock);
2547         jinode->i_flags |= flags;
2548         /* Is inode already attached where we need it? */
2549         if (jinode->i_transaction == transaction ||
2550             jinode->i_next_transaction == transaction)
2551                 goto done;
2552
2553         /*
2554          * We only ever set this variable to 1 so the test is safe. Since
2555          * t_need_data_flush is likely to be set, we do the test to save some
2556          * cacheline bouncing
2557          */
2558         if (!transaction->t_need_data_flush)
2559                 transaction->t_need_data_flush = 1;
2560         /* On some different transaction's list - should be
2561          * the committing one */
2562         if (jinode->i_transaction) {
2563                 J_ASSERT(jinode->i_next_transaction == NULL);
2564                 J_ASSERT(jinode->i_transaction ==
2565                                         journal->j_committing_transaction);
2566                 jinode->i_next_transaction = transaction;
2567                 goto done;
2568         }
2569         /* Not on any transaction list... */
2570         J_ASSERT(!jinode->i_next_transaction);
2571         jinode->i_transaction = transaction;
2572         list_add(&jinode->i_list, &transaction->t_inode_list);
2573 done:
2574         spin_unlock(&journal->j_list_lock);
2575
2576         return 0;
2577 }
2578
2579 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2580 {
2581         return jbd2_journal_file_inode(handle, jinode,
2582                                        JI_WRITE_DATA | JI_WAIT_DATA);
2583 }
2584
2585 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2586 {
2587         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2588 }
2589
2590 /*
2591  * File truncate and transaction commit interact with each other in a
2592  * non-trivial way.  If a transaction writing data block A is
2593  * committing, we cannot discard the data by truncate until we have
2594  * written them.  Otherwise if we crashed after the transaction with
2595  * write has committed but before the transaction with truncate has
2596  * committed, we could see stale data in block A.  This function is a
2597  * helper to solve this problem.  It starts writeout of the truncated
2598  * part in case it is in the committing transaction.
2599  *
2600  * Filesystem code must call this function when inode is journaled in
2601  * ordered mode before truncation happens and after the inode has been
2602  * placed on orphan list with the new inode size. The second condition
2603  * avoids the race that someone writes new data and we start
2604  * committing the transaction after this function has been called but
2605  * before a transaction for truncate is started (and furthermore it
2606  * allows us to optimize the case where the addition to orphan list
2607  * happens in the same transaction as write --- we don't have to write
2608  * any data in such case).
2609  */
2610 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2611                                         struct jbd2_inode *jinode,
2612                                         loff_t new_size)
2613 {
2614         transaction_t *inode_trans, *commit_trans;
2615         int ret = 0;
2616
2617         /* This is a quick check to avoid locking if not necessary */
2618         if (!jinode->i_transaction)
2619                 goto out;
2620         /* Locks are here just to force reading of recent values, it is
2621          * enough that the transaction was not committing before we started
2622          * a transaction adding the inode to orphan list */
2623         read_lock(&journal->j_state_lock);
2624         commit_trans = journal->j_committing_transaction;
2625         read_unlock(&journal->j_state_lock);
2626         spin_lock(&journal->j_list_lock);
2627         inode_trans = jinode->i_transaction;
2628         spin_unlock(&journal->j_list_lock);
2629         if (inode_trans == commit_trans) {
2630                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2631                         new_size, LLONG_MAX);
2632                 if (ret)
2633                         jbd2_journal_abort(journal, ret);
2634         }
2635 out:
2636         return ret;
2637 }