GNU Linux-libre 5.15.137-gnu
[releases.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         atomic_set(&transaction->t_updates, 0);
111         atomic_set(&transaction->t_outstanding_credits,
112                    jbd2_descriptor_blocks_per_trans(journal) +
113                    atomic_read(&journal->j_reserved_credits));
114         atomic_set(&transaction->t_outstanding_revokes, 0);
115         atomic_set(&transaction->t_handle_count, 0);
116         INIT_LIST_HEAD(&transaction->t_inode_list);
117         INIT_LIST_HEAD(&transaction->t_private_list);
118
119         /* Set up the commit timer for the new transaction. */
120         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
121         add_timer(&journal->j_commit_timer);
122
123         J_ASSERT(journal->j_running_transaction == NULL);
124         journal->j_running_transaction = transaction;
125         transaction->t_max_wait = 0;
126         transaction->t_start = jiffies;
127         transaction->t_requested = 0;
128 }
129
130 /*
131  * Handle management.
132  *
133  * A handle_t is an object which represents a single atomic update to a
134  * filesystem, and which tracks all of the modifications which form part
135  * of that one update.
136  */
137
138 /*
139  * Update transaction's maximum wait time, if debugging is enabled.
140  *
141  * t_max_wait is carefully updated here with use of atomic compare exchange.
142  * Note that there could be multiplre threads trying to do this simultaneously
143  * hence using cmpxchg to avoid any use of locks in this case.
144  */
145 static inline void update_t_max_wait(transaction_t *transaction,
146                                      unsigned long ts)
147 {
148 #ifdef CONFIG_JBD2_DEBUG
149         unsigned long oldts, newts;
150         if (jbd2_journal_enable_debug &&
151             time_after(transaction->t_start, ts)) {
152                 newts = jbd2_time_diff(ts, transaction->t_start);
153                 oldts = READ_ONCE(transaction->t_max_wait);
154                 while (oldts < newts)
155                         oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156         }
157 #endif
158 }
159
160 /*
161  * Wait until running transaction passes to T_FLUSH state and new transaction
162  * can thus be started. Also starts the commit if needed. The function expects
163  * running transaction to exist and releases j_state_lock.
164  */
165 static void wait_transaction_locked(journal_t *journal)
166         __releases(journal->j_state_lock)
167 {
168         DEFINE_WAIT(wait);
169         int need_to_start;
170         tid_t tid = journal->j_running_transaction->t_tid;
171
172         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
173                         TASK_UNINTERRUPTIBLE);
174         need_to_start = !tid_geq(journal->j_commit_request, tid);
175         read_unlock(&journal->j_state_lock);
176         if (need_to_start)
177                 jbd2_log_start_commit(journal, tid);
178         jbd2_might_wait_for_commit(journal);
179         schedule();
180         finish_wait(&journal->j_wait_transaction_locked, &wait);
181 }
182
183 /*
184  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
185  * state and new transaction can thus be started. The function releases
186  * j_state_lock.
187  */
188 static void wait_transaction_switching(journal_t *journal)
189         __releases(journal->j_state_lock)
190 {
191         DEFINE_WAIT(wait);
192
193         if (WARN_ON(!journal->j_running_transaction ||
194                     journal->j_running_transaction->t_state != T_SWITCH)) {
195                 read_unlock(&journal->j_state_lock);
196                 return;
197         }
198         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
199                         TASK_UNINTERRUPTIBLE);
200         read_unlock(&journal->j_state_lock);
201         /*
202          * We don't call jbd2_might_wait_for_commit() here as there's no
203          * waiting for outstanding handles happening anymore in T_SWITCH state
204          * and handling of reserved handles actually relies on that for
205          * correctness.
206          */
207         schedule();
208         finish_wait(&journal->j_wait_transaction_locked, &wait);
209 }
210
211 static void sub_reserved_credits(journal_t *journal, int blocks)
212 {
213         atomic_sub(blocks, &journal->j_reserved_credits);
214         wake_up(&journal->j_wait_reserved);
215 }
216
217 /*
218  * Wait until we can add credits for handle to the running transaction.  Called
219  * with j_state_lock held for reading. Returns 0 if handle joined the running
220  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
221  * caller must retry.
222  *
223  * Note: because j_state_lock may be dropped depending on the return
224  * value, we need to fake out sparse so ti doesn't complain about a
225  * locking imbalance.  Callers of add_transaction_credits will need to
226  * make a similar accomodation.
227  */
228 static int add_transaction_credits(journal_t *journal, int blocks,
229                                    int rsv_blocks)
230 __must_hold(&journal->j_state_lock)
231 {
232         transaction_t *t = journal->j_running_transaction;
233         int needed;
234         int total = blocks + rsv_blocks;
235
236         /*
237          * If the current transaction is locked down for commit, wait
238          * for the lock to be released.
239          */
240         if (t->t_state != T_RUNNING) {
241                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
242                 wait_transaction_locked(journal);
243                 __acquire(&journal->j_state_lock); /* fake out sparse */
244                 return 1;
245         }
246
247         /*
248          * If there is not enough space left in the log to write all
249          * potential buffers requested by this operation, we need to
250          * stall pending a log checkpoint to free some more log space.
251          */
252         needed = atomic_add_return(total, &t->t_outstanding_credits);
253         if (needed > journal->j_max_transaction_buffers) {
254                 /*
255                  * If the current transaction is already too large,
256                  * then start to commit it: we can then go back and
257                  * attach this handle to a new transaction.
258                  */
259                 atomic_sub(total, &t->t_outstanding_credits);
260
261                 /*
262                  * Is the number of reserved credits in the current transaction too
263                  * big to fit this handle? Wait until reserved credits are freed.
264                  */
265                 if (atomic_read(&journal->j_reserved_credits) + total >
266                     journal->j_max_transaction_buffers) {
267                         read_unlock(&journal->j_state_lock);
268                         jbd2_might_wait_for_commit(journal);
269                         wait_event(journal->j_wait_reserved,
270                                    atomic_read(&journal->j_reserved_credits) + total <=
271                                    journal->j_max_transaction_buffers);
272                         __acquire(&journal->j_state_lock); /* fake out sparse */
273                         return 1;
274                 }
275
276                 wait_transaction_locked(journal);
277                 __acquire(&journal->j_state_lock); /* fake out sparse */
278                 return 1;
279         }
280
281         /*
282          * The commit code assumes that it can get enough log space
283          * without forcing a checkpoint.  This is *critical* for
284          * correctness: a checkpoint of a buffer which is also
285          * associated with a committing transaction creates a deadlock,
286          * so commit simply cannot force through checkpoints.
287          *
288          * We must therefore ensure the necessary space in the journal
289          * *before* starting to dirty potentially checkpointed buffers
290          * in the new transaction.
291          */
292         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
293                 atomic_sub(total, &t->t_outstanding_credits);
294                 read_unlock(&journal->j_state_lock);
295                 jbd2_might_wait_for_commit(journal);
296                 write_lock(&journal->j_state_lock);
297                 if (jbd2_log_space_left(journal) <
298                                         journal->j_max_transaction_buffers)
299                         __jbd2_log_wait_for_space(journal);
300                 write_unlock(&journal->j_state_lock);
301                 __acquire(&journal->j_state_lock); /* fake out sparse */
302                 return 1;
303         }
304
305         /* No reservation? We are done... */
306         if (!rsv_blocks)
307                 return 0;
308
309         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
310         /* We allow at most half of a transaction to be reserved */
311         if (needed > journal->j_max_transaction_buffers / 2) {
312                 sub_reserved_credits(journal, rsv_blocks);
313                 atomic_sub(total, &t->t_outstanding_credits);
314                 read_unlock(&journal->j_state_lock);
315                 jbd2_might_wait_for_commit(journal);
316                 wait_event(journal->j_wait_reserved,
317                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
318                          <= journal->j_max_transaction_buffers / 2);
319                 __acquire(&journal->j_state_lock); /* fake out sparse */
320                 return 1;
321         }
322         return 0;
323 }
324
325 /*
326  * start_this_handle: Given a handle, deal with any locking or stalling
327  * needed to make sure that there is enough journal space for the handle
328  * to begin.  Attach the handle to a transaction and set up the
329  * transaction's buffer credits.
330  */
331
332 static int start_this_handle(journal_t *journal, handle_t *handle,
333                              gfp_t gfp_mask)
334 {
335         transaction_t   *transaction, *new_transaction = NULL;
336         int             blocks = handle->h_total_credits;
337         int             rsv_blocks = 0;
338         unsigned long ts = jiffies;
339
340         if (handle->h_rsv_handle)
341                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
342
343         /*
344          * Limit the number of reserved credits to 1/2 of maximum transaction
345          * size and limit the number of total credits to not exceed maximum
346          * transaction size per operation.
347          */
348         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
349             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
350                 printk(KERN_ERR "JBD2: %s wants too many credits "
351                        "credits:%d rsv_credits:%d max:%d\n",
352                        current->comm, blocks, rsv_blocks,
353                        journal->j_max_transaction_buffers);
354                 WARN_ON(1);
355                 return -ENOSPC;
356         }
357
358 alloc_transaction:
359         /*
360          * This check is racy but it is just an optimization of allocating new
361          * transaction early if there are high chances we'll need it. If we
362          * guess wrong, we'll retry or free unused transaction.
363          */
364         if (!data_race(journal->j_running_transaction)) {
365                 /*
366                  * If __GFP_FS is not present, then we may be being called from
367                  * inside the fs writeback layer, so we MUST NOT fail.
368                  */
369                 if ((gfp_mask & __GFP_FS) == 0)
370                         gfp_mask |= __GFP_NOFAIL;
371                 new_transaction = kmem_cache_zalloc(transaction_cache,
372                                                     gfp_mask);
373                 if (!new_transaction)
374                         return -ENOMEM;
375         }
376
377         jbd2_debug(3, "New handle %p going live.\n", handle);
378
379         /*
380          * We need to hold j_state_lock until t_updates has been incremented,
381          * for proper journal barrier handling
382          */
383 repeat:
384         read_lock(&journal->j_state_lock);
385         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
386         if (is_journal_aborted(journal) ||
387             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
388                 read_unlock(&journal->j_state_lock);
389                 jbd2_journal_free_transaction(new_transaction);
390                 return -EROFS;
391         }
392
393         /*
394          * Wait on the journal's transaction barrier if necessary. Specifically
395          * we allow reserved handles to proceed because otherwise commit could
396          * deadlock on page writeback not being able to complete.
397          */
398         if (!handle->h_reserved && journal->j_barrier_count) {
399                 read_unlock(&journal->j_state_lock);
400                 wait_event(journal->j_wait_transaction_locked,
401                                 journal->j_barrier_count == 0);
402                 goto repeat;
403         }
404
405         if (!journal->j_running_transaction) {
406                 read_unlock(&journal->j_state_lock);
407                 if (!new_transaction)
408                         goto alloc_transaction;
409                 write_lock(&journal->j_state_lock);
410                 if (!journal->j_running_transaction &&
411                     (handle->h_reserved || !journal->j_barrier_count)) {
412                         jbd2_get_transaction(journal, new_transaction);
413                         new_transaction = NULL;
414                 }
415                 write_unlock(&journal->j_state_lock);
416                 goto repeat;
417         }
418
419         transaction = journal->j_running_transaction;
420
421         if (!handle->h_reserved) {
422                 /* We may have dropped j_state_lock - restart in that case */
423                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
424                         /*
425                          * add_transaction_credits releases
426                          * j_state_lock on a non-zero return
427                          */
428                         __release(&journal->j_state_lock);
429                         goto repeat;
430                 }
431         } else {
432                 /*
433                  * We have handle reserved so we are allowed to join T_LOCKED
434                  * transaction and we don't have to check for transaction size
435                  * and journal space. But we still have to wait while running
436                  * transaction is being switched to a committing one as it
437                  * won't wait for any handles anymore.
438                  */
439                 if (transaction->t_state == T_SWITCH) {
440                         wait_transaction_switching(journal);
441                         goto repeat;
442                 }
443                 sub_reserved_credits(journal, blocks);
444                 handle->h_reserved = 0;
445         }
446
447         /* OK, account for the buffers that this operation expects to
448          * use and add the handle to the running transaction.
449          */
450         update_t_max_wait(transaction, ts);
451         handle->h_transaction = transaction;
452         handle->h_requested_credits = blocks;
453         handle->h_revoke_credits_requested = handle->h_revoke_credits;
454         handle->h_start_jiffies = jiffies;
455         atomic_inc(&transaction->t_updates);
456         atomic_inc(&transaction->t_handle_count);
457         jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
458                   handle, blocks,
459                   atomic_read(&transaction->t_outstanding_credits),
460                   jbd2_log_space_left(journal));
461         read_unlock(&journal->j_state_lock);
462         current->journal_info = handle;
463
464         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
465         jbd2_journal_free_transaction(new_transaction);
466         /*
467          * Ensure that no allocations done while the transaction is open are
468          * going to recurse back to the fs layer.
469          */
470         handle->saved_alloc_context = memalloc_nofs_save();
471         return 0;
472 }
473
474 /* Allocate a new handle.  This should probably be in a slab... */
475 static handle_t *new_handle(int nblocks)
476 {
477         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
478         if (!handle)
479                 return NULL;
480         handle->h_total_credits = nblocks;
481         handle->h_ref = 1;
482
483         return handle;
484 }
485
486 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
487                               int revoke_records, gfp_t gfp_mask,
488                               unsigned int type, unsigned int line_no)
489 {
490         handle_t *handle = journal_current_handle();
491         int err;
492
493         if (!journal)
494                 return ERR_PTR(-EROFS);
495
496         if (handle) {
497                 J_ASSERT(handle->h_transaction->t_journal == journal);
498                 handle->h_ref++;
499                 return handle;
500         }
501
502         nblocks += DIV_ROUND_UP(revoke_records,
503                                 journal->j_revoke_records_per_block);
504         handle = new_handle(nblocks);
505         if (!handle)
506                 return ERR_PTR(-ENOMEM);
507         if (rsv_blocks) {
508                 handle_t *rsv_handle;
509
510                 rsv_handle = new_handle(rsv_blocks);
511                 if (!rsv_handle) {
512                         jbd2_free_handle(handle);
513                         return ERR_PTR(-ENOMEM);
514                 }
515                 rsv_handle->h_reserved = 1;
516                 rsv_handle->h_journal = journal;
517                 handle->h_rsv_handle = rsv_handle;
518         }
519         handle->h_revoke_credits = revoke_records;
520
521         err = start_this_handle(journal, handle, gfp_mask);
522         if (err < 0) {
523                 if (handle->h_rsv_handle)
524                         jbd2_free_handle(handle->h_rsv_handle);
525                 jbd2_free_handle(handle);
526                 return ERR_PTR(err);
527         }
528         handle->h_type = type;
529         handle->h_line_no = line_no;
530         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
531                                 handle->h_transaction->t_tid, type,
532                                 line_no, nblocks);
533
534         return handle;
535 }
536 EXPORT_SYMBOL(jbd2__journal_start);
537
538
539 /**
540  * jbd2_journal_start() - Obtain a new handle.
541  * @journal: Journal to start transaction on.
542  * @nblocks: number of block buffer we might modify
543  *
544  * We make sure that the transaction can guarantee at least nblocks of
545  * modified buffers in the log.  We block until the log can guarantee
546  * that much space. Additionally, if rsv_blocks > 0, we also create another
547  * handle with rsv_blocks reserved blocks in the journal. This handle is
548  * stored in h_rsv_handle. It is not attached to any particular transaction
549  * and thus doesn't block transaction commit. If the caller uses this reserved
550  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
551  * on the parent handle will dispose the reserved one. Reserved handle has to
552  * be converted to a normal handle using jbd2_journal_start_reserved() before
553  * it can be used.
554  *
555  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
556  * on failure.
557  */
558 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
559 {
560         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
561 }
562 EXPORT_SYMBOL(jbd2_journal_start);
563
564 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
565 {
566         journal_t *journal = handle->h_journal;
567
568         WARN_ON(!handle->h_reserved);
569         sub_reserved_credits(journal, handle->h_total_credits);
570         if (t)
571                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
572 }
573
574 void jbd2_journal_free_reserved(handle_t *handle)
575 {
576         journal_t *journal = handle->h_journal;
577
578         /* Get j_state_lock to pin running transaction if it exists */
579         read_lock(&journal->j_state_lock);
580         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
581         read_unlock(&journal->j_state_lock);
582         jbd2_free_handle(handle);
583 }
584 EXPORT_SYMBOL(jbd2_journal_free_reserved);
585
586 /**
587  * jbd2_journal_start_reserved() - start reserved handle
588  * @handle: handle to start
589  * @type: for handle statistics
590  * @line_no: for handle statistics
591  *
592  * Start handle that has been previously reserved with jbd2_journal_reserve().
593  * This attaches @handle to the running transaction (or creates one if there's
594  * not transaction running). Unlike jbd2_journal_start() this function cannot
595  * block on journal commit, checkpointing, or similar stuff. It can block on
596  * memory allocation or frozen journal though.
597  *
598  * Return 0 on success, non-zero on error - handle is freed in that case.
599  */
600 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
601                                 unsigned int line_no)
602 {
603         journal_t *journal = handle->h_journal;
604         int ret = -EIO;
605
606         if (WARN_ON(!handle->h_reserved)) {
607                 /* Someone passed in normal handle? Just stop it. */
608                 jbd2_journal_stop(handle);
609                 return ret;
610         }
611         /*
612          * Usefulness of mixing of reserved and unreserved handles is
613          * questionable. So far nobody seems to need it so just error out.
614          */
615         if (WARN_ON(current->journal_info)) {
616                 jbd2_journal_free_reserved(handle);
617                 return ret;
618         }
619
620         handle->h_journal = NULL;
621         /*
622          * GFP_NOFS is here because callers are likely from writeback or
623          * similarly constrained call sites
624          */
625         ret = start_this_handle(journal, handle, GFP_NOFS);
626         if (ret < 0) {
627                 handle->h_journal = journal;
628                 jbd2_journal_free_reserved(handle);
629                 return ret;
630         }
631         handle->h_type = type;
632         handle->h_line_no = line_no;
633         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
634                                 handle->h_transaction->t_tid, type,
635                                 line_no, handle->h_total_credits);
636         return 0;
637 }
638 EXPORT_SYMBOL(jbd2_journal_start_reserved);
639
640 /**
641  * jbd2_journal_extend() - extend buffer credits.
642  * @handle:  handle to 'extend'
643  * @nblocks: nr blocks to try to extend by.
644  * @revoke_records: number of revoke records to try to extend by.
645  *
646  * Some transactions, such as large extends and truncates, can be done
647  * atomically all at once or in several stages.  The operation requests
648  * a credit for a number of buffer modifications in advance, but can
649  * extend its credit if it needs more.
650  *
651  * jbd2_journal_extend tries to give the running handle more buffer credits.
652  * It does not guarantee that allocation - this is a best-effort only.
653  * The calling process MUST be able to deal cleanly with a failure to
654  * extend here.
655  *
656  * Return 0 on success, non-zero on failure.
657  *
658  * return code < 0 implies an error
659  * return code > 0 implies normal transaction-full status.
660  */
661 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
662 {
663         transaction_t *transaction = handle->h_transaction;
664         journal_t *journal;
665         int result;
666         int wanted;
667
668         if (is_handle_aborted(handle))
669                 return -EROFS;
670         journal = transaction->t_journal;
671
672         result = 1;
673
674         read_lock(&journal->j_state_lock);
675
676         /* Don't extend a locked-down transaction! */
677         if (transaction->t_state != T_RUNNING) {
678                 jbd2_debug(3, "denied handle %p %d blocks: "
679                           "transaction not running\n", handle, nblocks);
680                 goto error_out;
681         }
682
683         nblocks += DIV_ROUND_UP(
684                         handle->h_revoke_credits_requested + revoke_records,
685                         journal->j_revoke_records_per_block) -
686                 DIV_ROUND_UP(
687                         handle->h_revoke_credits_requested,
688                         journal->j_revoke_records_per_block);
689         wanted = atomic_add_return(nblocks,
690                                    &transaction->t_outstanding_credits);
691
692         if (wanted > journal->j_max_transaction_buffers) {
693                 jbd2_debug(3, "denied handle %p %d blocks: "
694                           "transaction too large\n", handle, nblocks);
695                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
696                 goto error_out;
697         }
698
699         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
700                                  transaction->t_tid,
701                                  handle->h_type, handle->h_line_no,
702                                  handle->h_total_credits,
703                                  nblocks);
704
705         handle->h_total_credits += nblocks;
706         handle->h_requested_credits += nblocks;
707         handle->h_revoke_credits += revoke_records;
708         handle->h_revoke_credits_requested += revoke_records;
709         result = 0;
710
711         jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
712 error_out:
713         read_unlock(&journal->j_state_lock);
714         return result;
715 }
716
717 static void stop_this_handle(handle_t *handle)
718 {
719         transaction_t *transaction = handle->h_transaction;
720         journal_t *journal = transaction->t_journal;
721         int revokes;
722
723         J_ASSERT(journal_current_handle() == handle);
724         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
725         current->journal_info = NULL;
726         /*
727          * Subtract necessary revoke descriptor blocks from handle credits. We
728          * take care to account only for revoke descriptor blocks the
729          * transaction will really need as large sequences of transactions with
730          * small numbers of revokes are relatively common.
731          */
732         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
733         if (revokes) {
734                 int t_revokes, revoke_descriptors;
735                 int rr_per_blk = journal->j_revoke_records_per_block;
736
737                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
738                                 > handle->h_total_credits);
739                 t_revokes = atomic_add_return(revokes,
740                                 &transaction->t_outstanding_revokes);
741                 revoke_descriptors =
742                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
743                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
744                 handle->h_total_credits -= revoke_descriptors;
745         }
746         atomic_sub(handle->h_total_credits,
747                    &transaction->t_outstanding_credits);
748         if (handle->h_rsv_handle)
749                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
750                                                 transaction);
751         if (atomic_dec_and_test(&transaction->t_updates))
752                 wake_up(&journal->j_wait_updates);
753
754         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
755         /*
756          * Scope of the GFP_NOFS context is over here and so we can restore the
757          * original alloc context.
758          */
759         memalloc_nofs_restore(handle->saved_alloc_context);
760 }
761
762 /**
763  * jbd2__journal_restart() - restart a handle .
764  * @handle:  handle to restart
765  * @nblocks: nr credits requested
766  * @revoke_records: number of revoke record credits requested
767  * @gfp_mask: memory allocation flags (for start_this_handle)
768  *
769  * Restart a handle for a multi-transaction filesystem
770  * operation.
771  *
772  * If the jbd2_journal_extend() call above fails to grant new buffer credits
773  * to a running handle, a call to jbd2_journal_restart will commit the
774  * handle's transaction so far and reattach the handle to a new
775  * transaction capable of guaranteeing the requested number of
776  * credits. We preserve reserved handle if there's any attached to the
777  * passed in handle.
778  */
779 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
780                           gfp_t gfp_mask)
781 {
782         transaction_t *transaction = handle->h_transaction;
783         journal_t *journal;
784         tid_t           tid;
785         int             need_to_start;
786         int             ret;
787
788         /* If we've had an abort of any type, don't even think about
789          * actually doing the restart! */
790         if (is_handle_aborted(handle))
791                 return 0;
792         journal = transaction->t_journal;
793         tid = transaction->t_tid;
794
795         /*
796          * First unlink the handle from its current transaction, and start the
797          * commit on that.
798          */
799         jbd2_debug(2, "restarting handle %p\n", handle);
800         stop_this_handle(handle);
801         handle->h_transaction = NULL;
802
803         /*
804          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
805          * get rid of pointless j_state_lock traffic like this.
806          */
807         read_lock(&journal->j_state_lock);
808         need_to_start = !tid_geq(journal->j_commit_request, tid);
809         read_unlock(&journal->j_state_lock);
810         if (need_to_start)
811                 jbd2_log_start_commit(journal, tid);
812         handle->h_total_credits = nblocks +
813                 DIV_ROUND_UP(revoke_records,
814                              journal->j_revoke_records_per_block);
815         handle->h_revoke_credits = revoke_records;
816         ret = start_this_handle(journal, handle, gfp_mask);
817         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
818                                  ret ? 0 : handle->h_transaction->t_tid,
819                                  handle->h_type, handle->h_line_no,
820                                  handle->h_total_credits);
821         return ret;
822 }
823 EXPORT_SYMBOL(jbd2__journal_restart);
824
825
826 int jbd2_journal_restart(handle_t *handle, int nblocks)
827 {
828         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
829 }
830 EXPORT_SYMBOL(jbd2_journal_restart);
831
832 /*
833  * Waits for any outstanding t_updates to finish.
834  * This is called with write j_state_lock held.
835  */
836 void jbd2_journal_wait_updates(journal_t *journal)
837 {
838         DEFINE_WAIT(wait);
839
840         while (1) {
841                 /*
842                  * Note that the running transaction can get freed under us if
843                  * this transaction is getting committed in
844                  * jbd2_journal_commit_transaction() ->
845                  * jbd2_journal_free_transaction(). This can only happen when we
846                  * release j_state_lock -> schedule() -> acquire j_state_lock.
847                  * Hence we should everytime retrieve new j_running_transaction
848                  * value (after j_state_lock release acquire cycle), else it may
849                  * lead to use-after-free of old freed transaction.
850                  */
851                 transaction_t *transaction = journal->j_running_transaction;
852
853                 if (!transaction)
854                         break;
855
856                 prepare_to_wait(&journal->j_wait_updates, &wait,
857                                 TASK_UNINTERRUPTIBLE);
858                 if (!atomic_read(&transaction->t_updates)) {
859                         finish_wait(&journal->j_wait_updates, &wait);
860                         break;
861                 }
862                 write_unlock(&journal->j_state_lock);
863                 schedule();
864                 finish_wait(&journal->j_wait_updates, &wait);
865                 write_lock(&journal->j_state_lock);
866         }
867 }
868
869 /**
870  * jbd2_journal_lock_updates () - establish a transaction barrier.
871  * @journal:  Journal to establish a barrier on.
872  *
873  * This locks out any further updates from being started, and blocks
874  * until all existing updates have completed, returning only once the
875  * journal is in a quiescent state with no updates running.
876  *
877  * The journal lock should not be held on entry.
878  */
879 void jbd2_journal_lock_updates(journal_t *journal)
880 {
881         jbd2_might_wait_for_commit(journal);
882
883         write_lock(&journal->j_state_lock);
884         ++journal->j_barrier_count;
885
886         /* Wait until there are no reserved handles */
887         if (atomic_read(&journal->j_reserved_credits)) {
888                 write_unlock(&journal->j_state_lock);
889                 wait_event(journal->j_wait_reserved,
890                            atomic_read(&journal->j_reserved_credits) == 0);
891                 write_lock(&journal->j_state_lock);
892         }
893
894         /* Wait until there are no running t_updates */
895         jbd2_journal_wait_updates(journal);
896
897         write_unlock(&journal->j_state_lock);
898
899         /*
900          * We have now established a barrier against other normal updates, but
901          * we also need to barrier against other jbd2_journal_lock_updates() calls
902          * to make sure that we serialise special journal-locked operations
903          * too.
904          */
905         mutex_lock(&journal->j_barrier);
906 }
907
908 /**
909  * jbd2_journal_unlock_updates () - release barrier
910  * @journal:  Journal to release the barrier on.
911  *
912  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
913  *
914  * Should be called without the journal lock held.
915  */
916 void jbd2_journal_unlock_updates (journal_t *journal)
917 {
918         J_ASSERT(journal->j_barrier_count != 0);
919
920         mutex_unlock(&journal->j_barrier);
921         write_lock(&journal->j_state_lock);
922         --journal->j_barrier_count;
923         write_unlock(&journal->j_state_lock);
924         wake_up_all(&journal->j_wait_transaction_locked);
925 }
926
927 static void warn_dirty_buffer(struct buffer_head *bh)
928 {
929         printk(KERN_WARNING
930                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
931                "There's a risk of filesystem corruption in case of system "
932                "crash.\n",
933                bh->b_bdev, (unsigned long long)bh->b_blocknr);
934 }
935
936 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
937 static void jbd2_freeze_jh_data(struct journal_head *jh)
938 {
939         struct page *page;
940         int offset;
941         char *source;
942         struct buffer_head *bh = jh2bh(jh);
943
944         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
945         page = bh->b_page;
946         offset = offset_in_page(bh->b_data);
947         source = kmap_atomic(page);
948         /* Fire data frozen trigger just before we copy the data */
949         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
950         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
951         kunmap_atomic(source);
952
953         /*
954          * Now that the frozen data is saved off, we need to store any matching
955          * triggers.
956          */
957         jh->b_frozen_triggers = jh->b_triggers;
958 }
959
960 /*
961  * If the buffer is already part of the current transaction, then there
962  * is nothing we need to do.  If it is already part of a prior
963  * transaction which we are still committing to disk, then we need to
964  * make sure that we do not overwrite the old copy: we do copy-out to
965  * preserve the copy going to disk.  We also account the buffer against
966  * the handle's metadata buffer credits (unless the buffer is already
967  * part of the transaction, that is).
968  *
969  */
970 static int
971 do_get_write_access(handle_t *handle, struct journal_head *jh,
972                         int force_copy)
973 {
974         struct buffer_head *bh;
975         transaction_t *transaction = handle->h_transaction;
976         journal_t *journal;
977         int error;
978         char *frozen_buffer = NULL;
979         unsigned long start_lock, time_lock;
980
981         journal = transaction->t_journal;
982
983         jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
984
985         JBUFFER_TRACE(jh, "entry");
986 repeat:
987         bh = jh2bh(jh);
988
989         /* @@@ Need to check for errors here at some point. */
990
991         start_lock = jiffies;
992         lock_buffer(bh);
993         spin_lock(&jh->b_state_lock);
994
995         /* If it takes too long to lock the buffer, trace it */
996         time_lock = jbd2_time_diff(start_lock, jiffies);
997         if (time_lock > HZ/10)
998                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
999                         jiffies_to_msecs(time_lock));
1000
1001         /* We now hold the buffer lock so it is safe to query the buffer
1002          * state.  Is the buffer dirty?
1003          *
1004          * If so, there are two possibilities.  The buffer may be
1005          * non-journaled, and undergoing a quite legitimate writeback.
1006          * Otherwise, it is journaled, and we don't expect dirty buffers
1007          * in that state (the buffers should be marked JBD_Dirty
1008          * instead.)  So either the IO is being done under our own
1009          * control and this is a bug, or it's a third party IO such as
1010          * dump(8) (which may leave the buffer scheduled for read ---
1011          * ie. locked but not dirty) or tune2fs (which may actually have
1012          * the buffer dirtied, ugh.)  */
1013
1014         if (buffer_dirty(bh) && jh->b_transaction) {
1015                 warn_dirty_buffer(bh);
1016                 /*
1017                  * We need to clean the dirty flag and we must do it under the
1018                  * buffer lock to be sure we don't race with running write-out.
1019                  */
1020                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1021                 clear_buffer_dirty(bh);
1022                 /*
1023                  * The buffer is going to be added to BJ_Reserved list now and
1024                  * nothing guarantees jbd2_journal_dirty_metadata() will be
1025                  * ever called for it. So we need to set jbddirty bit here to
1026                  * make sure the buffer is dirtied and written out when the
1027                  * journaling machinery is done with it.
1028                  */
1029                 set_buffer_jbddirty(bh);
1030         }
1031
1032         error = -EROFS;
1033         if (is_handle_aborted(handle)) {
1034                 spin_unlock(&jh->b_state_lock);
1035                 unlock_buffer(bh);
1036                 goto out;
1037         }
1038         error = 0;
1039
1040         /*
1041          * The buffer is already part of this transaction if b_transaction or
1042          * b_next_transaction points to it
1043          */
1044         if (jh->b_transaction == transaction ||
1045             jh->b_next_transaction == transaction) {
1046                 unlock_buffer(bh);
1047                 goto done;
1048         }
1049
1050         /*
1051          * this is the first time this transaction is touching this buffer,
1052          * reset the modified flag
1053          */
1054         jh->b_modified = 0;
1055
1056         /*
1057          * If the buffer is not journaled right now, we need to make sure it
1058          * doesn't get written to disk before the caller actually commits the
1059          * new data
1060          */
1061         if (!jh->b_transaction) {
1062                 JBUFFER_TRACE(jh, "no transaction");
1063                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1064                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1065                 /*
1066                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1067                  * visible before attaching it to the running transaction.
1068                  * Paired with barrier in jbd2_write_access_granted()
1069                  */
1070                 smp_wmb();
1071                 spin_lock(&journal->j_list_lock);
1072                 if (test_clear_buffer_dirty(bh)) {
1073                         /*
1074                          * Execute buffer dirty clearing and jh->b_transaction
1075                          * assignment under journal->j_list_lock locked to
1076                          * prevent bh being removed from checkpoint list if
1077                          * the buffer is in an intermediate state (not dirty
1078                          * and jh->b_transaction is NULL).
1079                          */
1080                         JBUFFER_TRACE(jh, "Journalling dirty buffer");
1081                         set_buffer_jbddirty(bh);
1082                 }
1083                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1084                 spin_unlock(&journal->j_list_lock);
1085                 unlock_buffer(bh);
1086                 goto done;
1087         }
1088         unlock_buffer(bh);
1089
1090         /*
1091          * If there is already a copy-out version of this buffer, then we don't
1092          * need to make another one
1093          */
1094         if (jh->b_frozen_data) {
1095                 JBUFFER_TRACE(jh, "has frozen data");
1096                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1097                 goto attach_next;
1098         }
1099
1100         JBUFFER_TRACE(jh, "owned by older transaction");
1101         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1102         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1103
1104         /*
1105          * There is one case we have to be very careful about.  If the
1106          * committing transaction is currently writing this buffer out to disk
1107          * and has NOT made a copy-out, then we cannot modify the buffer
1108          * contents at all right now.  The essence of copy-out is that it is
1109          * the extra copy, not the primary copy, which gets journaled.  If the
1110          * primary copy is already going to disk then we cannot do copy-out
1111          * here.
1112          */
1113         if (buffer_shadow(bh)) {
1114                 JBUFFER_TRACE(jh, "on shadow: sleep");
1115                 spin_unlock(&jh->b_state_lock);
1116                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1117                 goto repeat;
1118         }
1119
1120         /*
1121          * Only do the copy if the currently-owning transaction still needs it.
1122          * If buffer isn't on BJ_Metadata list, the committing transaction is
1123          * past that stage (here we use the fact that BH_Shadow is set under
1124          * bh_state lock together with refiling to BJ_Shadow list and at this
1125          * point we know the buffer doesn't have BH_Shadow set).
1126          *
1127          * Subtle point, though: if this is a get_undo_access, then we will be
1128          * relying on the frozen_data to contain the new value of the
1129          * committed_data record after the transaction, so we HAVE to force the
1130          * frozen_data copy in that case.
1131          */
1132         if (jh->b_jlist == BJ_Metadata || force_copy) {
1133                 JBUFFER_TRACE(jh, "generate frozen data");
1134                 if (!frozen_buffer) {
1135                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1136                         spin_unlock(&jh->b_state_lock);
1137                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1138                                                    GFP_NOFS | __GFP_NOFAIL);
1139                         goto repeat;
1140                 }
1141                 jh->b_frozen_data = frozen_buffer;
1142                 frozen_buffer = NULL;
1143                 jbd2_freeze_jh_data(jh);
1144         }
1145 attach_next:
1146         /*
1147          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1148          * before attaching it to the running transaction. Paired with barrier
1149          * in jbd2_write_access_granted()
1150          */
1151         smp_wmb();
1152         jh->b_next_transaction = transaction;
1153
1154 done:
1155         spin_unlock(&jh->b_state_lock);
1156
1157         /*
1158          * If we are about to journal a buffer, then any revoke pending on it is
1159          * no longer valid
1160          */
1161         jbd2_journal_cancel_revoke(handle, jh);
1162
1163 out:
1164         if (unlikely(frozen_buffer))    /* It's usually NULL */
1165                 jbd2_free(frozen_buffer, bh->b_size);
1166
1167         JBUFFER_TRACE(jh, "exit");
1168         return error;
1169 }
1170
1171 /* Fast check whether buffer is already attached to the required transaction */
1172 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1173                                                         bool undo)
1174 {
1175         struct journal_head *jh;
1176         bool ret = false;
1177
1178         /* Dirty buffers require special handling... */
1179         if (buffer_dirty(bh))
1180                 return false;
1181
1182         /*
1183          * RCU protects us from dereferencing freed pages. So the checks we do
1184          * are guaranteed not to oops. However the jh slab object can get freed
1185          * & reallocated while we work with it. So we have to be careful. When
1186          * we see jh attached to the running transaction, we know it must stay
1187          * so until the transaction is committed. Thus jh won't be freed and
1188          * will be attached to the same bh while we run.  However it can
1189          * happen jh gets freed, reallocated, and attached to the transaction
1190          * just after we get pointer to it from bh. So we have to be careful
1191          * and recheck jh still belongs to our bh before we return success.
1192          */
1193         rcu_read_lock();
1194         if (!buffer_jbd(bh))
1195                 goto out;
1196         /* This should be bh2jh() but that doesn't work with inline functions */
1197         jh = READ_ONCE(bh->b_private);
1198         if (!jh)
1199                 goto out;
1200         /* For undo access buffer must have data copied */
1201         if (undo && !jh->b_committed_data)
1202                 goto out;
1203         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1204             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1205                 goto out;
1206         /*
1207          * There are two reasons for the barrier here:
1208          * 1) Make sure to fetch b_bh after we did previous checks so that we
1209          * detect when jh went through free, realloc, attach to transaction
1210          * while we were checking. Paired with implicit barrier in that path.
1211          * 2) So that access to bh done after jbd2_write_access_granted()
1212          * doesn't get reordered and see inconsistent state of concurrent
1213          * do_get_write_access().
1214          */
1215         smp_mb();
1216         if (unlikely(jh->b_bh != bh))
1217                 goto out;
1218         ret = true;
1219 out:
1220         rcu_read_unlock();
1221         return ret;
1222 }
1223
1224 /**
1225  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1226  *                                   for metadata (not data) update.
1227  * @handle: transaction to add buffer modifications to
1228  * @bh:     bh to be used for metadata writes
1229  *
1230  * Returns: error code or 0 on success.
1231  *
1232  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1233  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1234  */
1235
1236 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1237 {
1238         struct journal_head *jh;
1239         int rc;
1240
1241         if (is_handle_aborted(handle))
1242                 return -EROFS;
1243
1244         if (jbd2_write_access_granted(handle, bh, false))
1245                 return 0;
1246
1247         jh = jbd2_journal_add_journal_head(bh);
1248         /* We do not want to get caught playing with fields which the
1249          * log thread also manipulates.  Make sure that the buffer
1250          * completes any outstanding IO before proceeding. */
1251         rc = do_get_write_access(handle, jh, 0);
1252         jbd2_journal_put_journal_head(jh);
1253         return rc;
1254 }
1255
1256
1257 /*
1258  * When the user wants to journal a newly created buffer_head
1259  * (ie. getblk() returned a new buffer and we are going to populate it
1260  * manually rather than reading off disk), then we need to keep the
1261  * buffer_head locked until it has been completely filled with new
1262  * data.  In this case, we should be able to make the assertion that
1263  * the bh is not already part of an existing transaction.
1264  *
1265  * The buffer should already be locked by the caller by this point.
1266  * There is no lock ranking violation: it was a newly created,
1267  * unlocked buffer beforehand. */
1268
1269 /**
1270  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1271  * @handle: transaction to new buffer to
1272  * @bh: new buffer.
1273  *
1274  * Call this if you create a new bh.
1275  */
1276 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1277 {
1278         transaction_t *transaction = handle->h_transaction;
1279         journal_t *journal;
1280         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1281         int err;
1282
1283         jbd2_debug(5, "journal_head %p\n", jh);
1284         err = -EROFS;
1285         if (is_handle_aborted(handle))
1286                 goto out;
1287         journal = transaction->t_journal;
1288         err = 0;
1289
1290         JBUFFER_TRACE(jh, "entry");
1291         /*
1292          * The buffer may already belong to this transaction due to pre-zeroing
1293          * in the filesystem's new_block code.  It may also be on the previous,
1294          * committing transaction's lists, but it HAS to be in Forget state in
1295          * that case: the transaction must have deleted the buffer for it to be
1296          * reused here.
1297          */
1298         spin_lock(&jh->b_state_lock);
1299         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1300                 jh->b_transaction == NULL ||
1301                 (jh->b_transaction == journal->j_committing_transaction &&
1302                           jh->b_jlist == BJ_Forget)));
1303
1304         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1305         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1306
1307         if (jh->b_transaction == NULL) {
1308                 /*
1309                  * Previous jbd2_journal_forget() could have left the buffer
1310                  * with jbddirty bit set because it was being committed. When
1311                  * the commit finished, we've filed the buffer for
1312                  * checkpointing and marked it dirty. Now we are reallocating
1313                  * the buffer so the transaction freeing it must have
1314                  * committed and so it's safe to clear the dirty bit.
1315                  */
1316                 clear_buffer_dirty(jh2bh(jh));
1317                 /* first access by this transaction */
1318                 jh->b_modified = 0;
1319
1320                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1321                 spin_lock(&journal->j_list_lock);
1322                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1323                 spin_unlock(&journal->j_list_lock);
1324         } else if (jh->b_transaction == journal->j_committing_transaction) {
1325                 /* first access by this transaction */
1326                 jh->b_modified = 0;
1327
1328                 JBUFFER_TRACE(jh, "set next transaction");
1329                 spin_lock(&journal->j_list_lock);
1330                 jh->b_next_transaction = transaction;
1331                 spin_unlock(&journal->j_list_lock);
1332         }
1333         spin_unlock(&jh->b_state_lock);
1334
1335         /*
1336          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1337          * blocks which contain freed but then revoked metadata.  We need
1338          * to cancel the revoke in case we end up freeing it yet again
1339          * and the reallocating as data - this would cause a second revoke,
1340          * which hits an assertion error.
1341          */
1342         JBUFFER_TRACE(jh, "cancelling revoke");
1343         jbd2_journal_cancel_revoke(handle, jh);
1344 out:
1345         jbd2_journal_put_journal_head(jh);
1346         return err;
1347 }
1348
1349 /**
1350  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1351  *     non-rewindable consequences
1352  * @handle: transaction
1353  * @bh: buffer to undo
1354  *
1355  * Sometimes there is a need to distinguish between metadata which has
1356  * been committed to disk and that which has not.  The ext3fs code uses
1357  * this for freeing and allocating space, we have to make sure that we
1358  * do not reuse freed space until the deallocation has been committed,
1359  * since if we overwrote that space we would make the delete
1360  * un-rewindable in case of a crash.
1361  *
1362  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1363  * buffer for parts of non-rewindable operations such as delete
1364  * operations on the bitmaps.  The journaling code must keep a copy of
1365  * the buffer's contents prior to the undo_access call until such time
1366  * as we know that the buffer has definitely been committed to disk.
1367  *
1368  * We never need to know which transaction the committed data is part
1369  * of, buffers touched here are guaranteed to be dirtied later and so
1370  * will be committed to a new transaction in due course, at which point
1371  * we can discard the old committed data pointer.
1372  *
1373  * Returns error number or 0 on success.
1374  */
1375 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1376 {
1377         int err;
1378         struct journal_head *jh;
1379         char *committed_data = NULL;
1380
1381         if (is_handle_aborted(handle))
1382                 return -EROFS;
1383
1384         if (jbd2_write_access_granted(handle, bh, true))
1385                 return 0;
1386
1387         jh = jbd2_journal_add_journal_head(bh);
1388         JBUFFER_TRACE(jh, "entry");
1389
1390         /*
1391          * Do this first --- it can drop the journal lock, so we want to
1392          * make sure that obtaining the committed_data is done
1393          * atomically wrt. completion of any outstanding commits.
1394          */
1395         err = do_get_write_access(handle, jh, 1);
1396         if (err)
1397                 goto out;
1398
1399 repeat:
1400         if (!jh->b_committed_data)
1401                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1402                                             GFP_NOFS|__GFP_NOFAIL);
1403
1404         spin_lock(&jh->b_state_lock);
1405         if (!jh->b_committed_data) {
1406                 /* Copy out the current buffer contents into the
1407                  * preserved, committed copy. */
1408                 JBUFFER_TRACE(jh, "generate b_committed data");
1409                 if (!committed_data) {
1410                         spin_unlock(&jh->b_state_lock);
1411                         goto repeat;
1412                 }
1413
1414                 jh->b_committed_data = committed_data;
1415                 committed_data = NULL;
1416                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1417         }
1418         spin_unlock(&jh->b_state_lock);
1419 out:
1420         jbd2_journal_put_journal_head(jh);
1421         if (unlikely(committed_data))
1422                 jbd2_free(committed_data, bh->b_size);
1423         return err;
1424 }
1425
1426 /**
1427  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1428  * @bh: buffer to trigger on
1429  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1430  *
1431  * Set any triggers on this journal_head.  This is always safe, because
1432  * triggers for a committing buffer will be saved off, and triggers for
1433  * a running transaction will match the buffer in that transaction.
1434  *
1435  * Call with NULL to clear the triggers.
1436  */
1437 void jbd2_journal_set_triggers(struct buffer_head *bh,
1438                                struct jbd2_buffer_trigger_type *type)
1439 {
1440         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1441
1442         if (WARN_ON_ONCE(!jh))
1443                 return;
1444         jh->b_triggers = type;
1445         jbd2_journal_put_journal_head(jh);
1446 }
1447
1448 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1449                                 struct jbd2_buffer_trigger_type *triggers)
1450 {
1451         struct buffer_head *bh = jh2bh(jh);
1452
1453         if (!triggers || !triggers->t_frozen)
1454                 return;
1455
1456         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1457 }
1458
1459 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1460                                struct jbd2_buffer_trigger_type *triggers)
1461 {
1462         if (!triggers || !triggers->t_abort)
1463                 return;
1464
1465         triggers->t_abort(triggers, jh2bh(jh));
1466 }
1467
1468 /**
1469  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1470  * @handle: transaction to add buffer to.
1471  * @bh: buffer to mark
1472  *
1473  * mark dirty metadata which needs to be journaled as part of the current
1474  * transaction.
1475  *
1476  * The buffer must have previously had jbd2_journal_get_write_access()
1477  * called so that it has a valid journal_head attached to the buffer
1478  * head.
1479  *
1480  * The buffer is placed on the transaction's metadata list and is marked
1481  * as belonging to the transaction.
1482  *
1483  * Returns error number or 0 on success.
1484  *
1485  * Special care needs to be taken if the buffer already belongs to the
1486  * current committing transaction (in which case we should have frozen
1487  * data present for that commit).  In that case, we don't relink the
1488  * buffer: that only gets done when the old transaction finally
1489  * completes its commit.
1490  */
1491 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1492 {
1493         transaction_t *transaction = handle->h_transaction;
1494         journal_t *journal;
1495         struct journal_head *jh;
1496         int ret = 0;
1497
1498         if (!buffer_jbd(bh))
1499                 return -EUCLEAN;
1500
1501         /*
1502          * We don't grab jh reference here since the buffer must be part
1503          * of the running transaction.
1504          */
1505         jh = bh2jh(bh);
1506         jbd2_debug(5, "journal_head %p\n", jh);
1507         JBUFFER_TRACE(jh, "entry");
1508
1509         /*
1510          * This and the following assertions are unreliable since we may see jh
1511          * in inconsistent state unless we grab bh_state lock. But this is
1512          * crucial to catch bugs so let's do a reliable check until the
1513          * lockless handling is fully proven.
1514          */
1515         if (data_race(jh->b_transaction != transaction &&
1516             jh->b_next_transaction != transaction)) {
1517                 spin_lock(&jh->b_state_lock);
1518                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1519                                 jh->b_next_transaction == transaction);
1520                 spin_unlock(&jh->b_state_lock);
1521         }
1522         if (jh->b_modified == 1) {
1523                 /* If it's in our transaction it must be in BJ_Metadata list. */
1524                 if (data_race(jh->b_transaction == transaction &&
1525                     jh->b_jlist != BJ_Metadata)) {
1526                         spin_lock(&jh->b_state_lock);
1527                         if (jh->b_transaction == transaction &&
1528                             jh->b_jlist != BJ_Metadata)
1529                                 pr_err("JBD2: assertion failure: h_type=%u "
1530                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1531                                        handle->h_type, handle->h_line_no,
1532                                        (unsigned long long) bh->b_blocknr,
1533                                        jh->b_jlist);
1534                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1535                                         jh->b_jlist == BJ_Metadata);
1536                         spin_unlock(&jh->b_state_lock);
1537                 }
1538                 goto out;
1539         }
1540
1541         journal = transaction->t_journal;
1542         spin_lock(&jh->b_state_lock);
1543
1544         if (is_handle_aborted(handle)) {
1545                 /*
1546                  * Check journal aborting with @jh->b_state_lock locked,
1547                  * since 'jh->b_transaction' could be replaced with
1548                  * 'jh->b_next_transaction' during old transaction
1549                  * committing if journal aborted, which may fail
1550                  * assertion on 'jh->b_frozen_data == NULL'.
1551                  */
1552                 ret = -EROFS;
1553                 goto out_unlock_bh;
1554         }
1555
1556         if (jh->b_modified == 0) {
1557                 /*
1558                  * This buffer's got modified and becoming part
1559                  * of the transaction. This needs to be done
1560                  * once a transaction -bzzz
1561                  */
1562                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1563                         ret = -ENOSPC;
1564                         goto out_unlock_bh;
1565                 }
1566                 jh->b_modified = 1;
1567                 handle->h_total_credits--;
1568         }
1569
1570         /*
1571          * fastpath, to avoid expensive locking.  If this buffer is already
1572          * on the running transaction's metadata list there is nothing to do.
1573          * Nobody can take it off again because there is a handle open.
1574          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1575          * result in this test being false, so we go in and take the locks.
1576          */
1577         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1578                 JBUFFER_TRACE(jh, "fastpath");
1579                 if (unlikely(jh->b_transaction !=
1580                              journal->j_running_transaction)) {
1581                         printk(KERN_ERR "JBD2: %s: "
1582                                "jh->b_transaction (%llu, %p, %u) != "
1583                                "journal->j_running_transaction (%p, %u)\n",
1584                                journal->j_devname,
1585                                (unsigned long long) bh->b_blocknr,
1586                                jh->b_transaction,
1587                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1588                                journal->j_running_transaction,
1589                                journal->j_running_transaction ?
1590                                journal->j_running_transaction->t_tid : 0);
1591                         ret = -EINVAL;
1592                 }
1593                 goto out_unlock_bh;
1594         }
1595
1596         set_buffer_jbddirty(bh);
1597
1598         /*
1599          * Metadata already on the current transaction list doesn't
1600          * need to be filed.  Metadata on another transaction's list must
1601          * be committing, and will be refiled once the commit completes:
1602          * leave it alone for now.
1603          */
1604         if (jh->b_transaction != transaction) {
1605                 JBUFFER_TRACE(jh, "already on other transaction");
1606                 if (unlikely(((jh->b_transaction !=
1607                                journal->j_committing_transaction)) ||
1608                              (jh->b_next_transaction != transaction))) {
1609                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1610                                "bad jh for block %llu: "
1611                                "transaction (%p, %u), "
1612                                "jh->b_transaction (%p, %u), "
1613                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1614                                journal->j_devname,
1615                                (unsigned long long) bh->b_blocknr,
1616                                transaction, transaction->t_tid,
1617                                jh->b_transaction,
1618                                jh->b_transaction ?
1619                                jh->b_transaction->t_tid : 0,
1620                                jh->b_next_transaction,
1621                                jh->b_next_transaction ?
1622                                jh->b_next_transaction->t_tid : 0,
1623                                jh->b_jlist);
1624                         WARN_ON(1);
1625                         ret = -EINVAL;
1626                 }
1627                 /* And this case is illegal: we can't reuse another
1628                  * transaction's data buffer, ever. */
1629                 goto out_unlock_bh;
1630         }
1631
1632         /* That test should have eliminated the following case: */
1633         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1634
1635         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1636         spin_lock(&journal->j_list_lock);
1637         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1638         spin_unlock(&journal->j_list_lock);
1639 out_unlock_bh:
1640         spin_unlock(&jh->b_state_lock);
1641 out:
1642         JBUFFER_TRACE(jh, "exit");
1643         return ret;
1644 }
1645
1646 /**
1647  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1648  * @handle: transaction handle
1649  * @bh:     bh to 'forget'
1650  *
1651  * We can only do the bforget if there are no commits pending against the
1652  * buffer.  If the buffer is dirty in the current running transaction we
1653  * can safely unlink it.
1654  *
1655  * bh may not be a journalled buffer at all - it may be a non-JBD
1656  * buffer which came off the hashtable.  Check for this.
1657  *
1658  * Decrements bh->b_count by one.
1659  *
1660  * Allow this call even if the handle has aborted --- it may be part of
1661  * the caller's cleanup after an abort.
1662  */
1663 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1664 {
1665         transaction_t *transaction = handle->h_transaction;
1666         journal_t *journal;
1667         struct journal_head *jh;
1668         int drop_reserve = 0;
1669         int err = 0;
1670         int was_modified = 0;
1671
1672         if (is_handle_aborted(handle))
1673                 return -EROFS;
1674         journal = transaction->t_journal;
1675
1676         BUFFER_TRACE(bh, "entry");
1677
1678         jh = jbd2_journal_grab_journal_head(bh);
1679         if (!jh) {
1680                 __bforget(bh);
1681                 return 0;
1682         }
1683
1684         spin_lock(&jh->b_state_lock);
1685
1686         /* Critical error: attempting to delete a bitmap buffer, maybe?
1687          * Don't do any jbd operations, and return an error. */
1688         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1689                          "inconsistent data on disk")) {
1690                 err = -EIO;
1691                 goto drop;
1692         }
1693
1694         /* keep track of whether or not this transaction modified us */
1695         was_modified = jh->b_modified;
1696
1697         /*
1698          * The buffer's going from the transaction, we must drop
1699          * all references -bzzz
1700          */
1701         jh->b_modified = 0;
1702
1703         if (jh->b_transaction == transaction) {
1704                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1705
1706                 /* If we are forgetting a buffer which is already part
1707                  * of this transaction, then we can just drop it from
1708                  * the transaction immediately. */
1709                 clear_buffer_dirty(bh);
1710                 clear_buffer_jbddirty(bh);
1711
1712                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1713
1714                 /*
1715                  * we only want to drop a reference if this transaction
1716                  * modified the buffer
1717                  */
1718                 if (was_modified)
1719                         drop_reserve = 1;
1720
1721                 /*
1722                  * We are no longer going to journal this buffer.
1723                  * However, the commit of this transaction is still
1724                  * important to the buffer: the delete that we are now
1725                  * processing might obsolete an old log entry, so by
1726                  * committing, we can satisfy the buffer's checkpoint.
1727                  *
1728                  * So, if we have a checkpoint on the buffer, we should
1729                  * now refile the buffer on our BJ_Forget list so that
1730                  * we know to remove the checkpoint after we commit.
1731                  */
1732
1733                 spin_lock(&journal->j_list_lock);
1734                 if (jh->b_cp_transaction) {
1735                         __jbd2_journal_temp_unlink_buffer(jh);
1736                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1737                 } else {
1738                         __jbd2_journal_unfile_buffer(jh);
1739                         jbd2_journal_put_journal_head(jh);
1740                 }
1741                 spin_unlock(&journal->j_list_lock);
1742         } else if (jh->b_transaction) {
1743                 J_ASSERT_JH(jh, (jh->b_transaction ==
1744                                  journal->j_committing_transaction));
1745                 /* However, if the buffer is still owned by a prior
1746                  * (committing) transaction, we can't drop it yet... */
1747                 JBUFFER_TRACE(jh, "belongs to older transaction");
1748                 /* ... but we CAN drop it from the new transaction through
1749                  * marking the buffer as freed and set j_next_transaction to
1750                  * the new transaction, so that not only the commit code
1751                  * knows it should clear dirty bits when it is done with the
1752                  * buffer, but also the buffer can be checkpointed only
1753                  * after the new transaction commits. */
1754
1755                 set_buffer_freed(bh);
1756
1757                 if (!jh->b_next_transaction) {
1758                         spin_lock(&journal->j_list_lock);
1759                         jh->b_next_transaction = transaction;
1760                         spin_unlock(&journal->j_list_lock);
1761                 } else {
1762                         J_ASSERT(jh->b_next_transaction == transaction);
1763
1764                         /*
1765                          * only drop a reference if this transaction modified
1766                          * the buffer
1767                          */
1768                         if (was_modified)
1769                                 drop_reserve = 1;
1770                 }
1771         } else {
1772                 /*
1773                  * Finally, if the buffer is not belongs to any
1774                  * transaction, we can just drop it now if it has no
1775                  * checkpoint.
1776                  */
1777                 spin_lock(&journal->j_list_lock);
1778                 if (!jh->b_cp_transaction) {
1779                         JBUFFER_TRACE(jh, "belongs to none transaction");
1780                         spin_unlock(&journal->j_list_lock);
1781                         goto drop;
1782                 }
1783
1784                 /*
1785                  * Otherwise, if the buffer has been written to disk,
1786                  * it is safe to remove the checkpoint and drop it.
1787                  */
1788                 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1789                         spin_unlock(&journal->j_list_lock);
1790                         goto drop;
1791                 }
1792
1793                 /*
1794                  * The buffer is still not written to disk, we should
1795                  * attach this buffer to current transaction so that the
1796                  * buffer can be checkpointed only after the current
1797                  * transaction commits.
1798                  */
1799                 clear_buffer_dirty(bh);
1800                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1801                 spin_unlock(&journal->j_list_lock);
1802         }
1803 drop:
1804         __brelse(bh);
1805         spin_unlock(&jh->b_state_lock);
1806         jbd2_journal_put_journal_head(jh);
1807         if (drop_reserve) {
1808                 /* no need to reserve log space for this block -bzzz */
1809                 handle->h_total_credits++;
1810         }
1811         return err;
1812 }
1813
1814 /**
1815  * jbd2_journal_stop() - complete a transaction
1816  * @handle: transaction to complete.
1817  *
1818  * All done for a particular handle.
1819  *
1820  * There is not much action needed here.  We just return any remaining
1821  * buffer credits to the transaction and remove the handle.  The only
1822  * complication is that we need to start a commit operation if the
1823  * filesystem is marked for synchronous update.
1824  *
1825  * jbd2_journal_stop itself will not usually return an error, but it may
1826  * do so in unusual circumstances.  In particular, expect it to
1827  * return -EIO if a jbd2_journal_abort has been executed since the
1828  * transaction began.
1829  */
1830 int jbd2_journal_stop(handle_t *handle)
1831 {
1832         transaction_t *transaction = handle->h_transaction;
1833         journal_t *journal;
1834         int err = 0, wait_for_commit = 0;
1835         tid_t tid;
1836         pid_t pid;
1837
1838         if (--handle->h_ref > 0) {
1839                 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1840                                                  handle->h_ref);
1841                 if (is_handle_aborted(handle))
1842                         return -EIO;
1843                 return 0;
1844         }
1845         if (!transaction) {
1846                 /*
1847                  * Handle is already detached from the transaction so there is
1848                  * nothing to do other than free the handle.
1849                  */
1850                 memalloc_nofs_restore(handle->saved_alloc_context);
1851                 goto free_and_exit;
1852         }
1853         journal = transaction->t_journal;
1854         tid = transaction->t_tid;
1855
1856         if (is_handle_aborted(handle))
1857                 err = -EIO;
1858
1859         jbd2_debug(4, "Handle %p going down\n", handle);
1860         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1861                                 tid, handle->h_type, handle->h_line_no,
1862                                 jiffies - handle->h_start_jiffies,
1863                                 handle->h_sync, handle->h_requested_credits,
1864                                 (handle->h_requested_credits -
1865                                  handle->h_total_credits));
1866
1867         /*
1868          * Implement synchronous transaction batching.  If the handle
1869          * was synchronous, don't force a commit immediately.  Let's
1870          * yield and let another thread piggyback onto this
1871          * transaction.  Keep doing that while new threads continue to
1872          * arrive.  It doesn't cost much - we're about to run a commit
1873          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1874          * operations by 30x or more...
1875          *
1876          * We try and optimize the sleep time against what the
1877          * underlying disk can do, instead of having a static sleep
1878          * time.  This is useful for the case where our storage is so
1879          * fast that it is more optimal to go ahead and force a flush
1880          * and wait for the transaction to be committed than it is to
1881          * wait for an arbitrary amount of time for new writers to
1882          * join the transaction.  We achieve this by measuring how
1883          * long it takes to commit a transaction, and compare it with
1884          * how long this transaction has been running, and if run time
1885          * < commit time then we sleep for the delta and commit.  This
1886          * greatly helps super fast disks that would see slowdowns as
1887          * more threads started doing fsyncs.
1888          *
1889          * But don't do this if this process was the most recent one
1890          * to perform a synchronous write.  We do this to detect the
1891          * case where a single process is doing a stream of sync
1892          * writes.  No point in waiting for joiners in that case.
1893          *
1894          * Setting max_batch_time to 0 disables this completely.
1895          */
1896         pid = current->pid;
1897         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1898             journal->j_max_batch_time) {
1899                 u64 commit_time, trans_time;
1900
1901                 journal->j_last_sync_writer = pid;
1902
1903                 read_lock(&journal->j_state_lock);
1904                 commit_time = journal->j_average_commit_time;
1905                 read_unlock(&journal->j_state_lock);
1906
1907                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1908                                                    transaction->t_start_time));
1909
1910                 commit_time = max_t(u64, commit_time,
1911                                     1000*journal->j_min_batch_time);
1912                 commit_time = min_t(u64, commit_time,
1913                                     1000*journal->j_max_batch_time);
1914
1915                 if (trans_time < commit_time) {
1916                         ktime_t expires = ktime_add_ns(ktime_get(),
1917                                                        commit_time);
1918                         set_current_state(TASK_UNINTERRUPTIBLE);
1919                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1920                 }
1921         }
1922
1923         if (handle->h_sync)
1924                 transaction->t_synchronous_commit = 1;
1925
1926         /*
1927          * If the handle is marked SYNC, we need to set another commit
1928          * going!  We also want to force a commit if the transaction is too
1929          * old now.
1930          */
1931         if (handle->h_sync ||
1932             time_after_eq(jiffies, transaction->t_expires)) {
1933                 /* Do this even for aborted journals: an abort still
1934                  * completes the commit thread, it just doesn't write
1935                  * anything to disk. */
1936
1937                 jbd2_debug(2, "transaction too old, requesting commit for "
1938                                         "handle %p\n", handle);
1939                 /* This is non-blocking */
1940                 jbd2_log_start_commit(journal, tid);
1941
1942                 /*
1943                  * Special case: JBD2_SYNC synchronous updates require us
1944                  * to wait for the commit to complete.
1945                  */
1946                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1947                         wait_for_commit = 1;
1948         }
1949
1950         /*
1951          * Once stop_this_handle() drops t_updates, the transaction could start
1952          * committing on us and eventually disappear.  So we must not
1953          * dereference transaction pointer again after calling
1954          * stop_this_handle().
1955          */
1956         stop_this_handle(handle);
1957
1958         if (wait_for_commit)
1959                 err = jbd2_log_wait_commit(journal, tid);
1960
1961 free_and_exit:
1962         if (handle->h_rsv_handle)
1963                 jbd2_free_handle(handle->h_rsv_handle);
1964         jbd2_free_handle(handle);
1965         return err;
1966 }
1967
1968 /*
1969  *
1970  * List management code snippets: various functions for manipulating the
1971  * transaction buffer lists.
1972  *
1973  */
1974
1975 /*
1976  * Append a buffer to a transaction list, given the transaction's list head
1977  * pointer.
1978  *
1979  * j_list_lock is held.
1980  *
1981  * jh->b_state_lock is held.
1982  */
1983
1984 static inline void
1985 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1986 {
1987         if (!*list) {
1988                 jh->b_tnext = jh->b_tprev = jh;
1989                 *list = jh;
1990         } else {
1991                 /* Insert at the tail of the list to preserve order */
1992                 struct journal_head *first = *list, *last = first->b_tprev;
1993                 jh->b_tprev = last;
1994                 jh->b_tnext = first;
1995                 last->b_tnext = first->b_tprev = jh;
1996         }
1997 }
1998
1999 /*
2000  * Remove a buffer from a transaction list, given the transaction's list
2001  * head pointer.
2002  *
2003  * Called with j_list_lock held, and the journal may not be locked.
2004  *
2005  * jh->b_state_lock is held.
2006  */
2007
2008 static inline void
2009 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2010 {
2011         if (*list == jh) {
2012                 *list = jh->b_tnext;
2013                 if (*list == jh)
2014                         *list = NULL;
2015         }
2016         jh->b_tprev->b_tnext = jh->b_tnext;
2017         jh->b_tnext->b_tprev = jh->b_tprev;
2018 }
2019
2020 /*
2021  * Remove a buffer from the appropriate transaction list.
2022  *
2023  * Note that this function can *change* the value of
2024  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2025  * t_reserved_list.  If the caller is holding onto a copy of one of these
2026  * pointers, it could go bad.  Generally the caller needs to re-read the
2027  * pointer from the transaction_t.
2028  *
2029  * Called under j_list_lock.
2030  */
2031 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2032 {
2033         struct journal_head **list = NULL;
2034         transaction_t *transaction;
2035         struct buffer_head *bh = jh2bh(jh);
2036
2037         lockdep_assert_held(&jh->b_state_lock);
2038         transaction = jh->b_transaction;
2039         if (transaction)
2040                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2041
2042         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2043         if (jh->b_jlist != BJ_None)
2044                 J_ASSERT_JH(jh, transaction != NULL);
2045
2046         switch (jh->b_jlist) {
2047         case BJ_None:
2048                 return;
2049         case BJ_Metadata:
2050                 transaction->t_nr_buffers--;
2051                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2052                 list = &transaction->t_buffers;
2053                 break;
2054         case BJ_Forget:
2055                 list = &transaction->t_forget;
2056                 break;
2057         case BJ_Shadow:
2058                 list = &transaction->t_shadow_list;
2059                 break;
2060         case BJ_Reserved:
2061                 list = &transaction->t_reserved_list;
2062                 break;
2063         }
2064
2065         __blist_del_buffer(list, jh);
2066         jh->b_jlist = BJ_None;
2067         if (transaction && is_journal_aborted(transaction->t_journal))
2068                 clear_buffer_jbddirty(bh);
2069         else if (test_clear_buffer_jbddirty(bh))
2070                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2071 }
2072
2073 /*
2074  * Remove buffer from all transactions. The caller is responsible for dropping
2075  * the jh reference that belonged to the transaction.
2076  *
2077  * Called with bh_state lock and j_list_lock
2078  */
2079 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2080 {
2081         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2082         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2083
2084         __jbd2_journal_temp_unlink_buffer(jh);
2085         jh->b_transaction = NULL;
2086 }
2087
2088 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2089 {
2090         struct buffer_head *bh = jh2bh(jh);
2091
2092         /* Get reference so that buffer cannot be freed before we unlock it */
2093         get_bh(bh);
2094         spin_lock(&jh->b_state_lock);
2095         spin_lock(&journal->j_list_lock);
2096         __jbd2_journal_unfile_buffer(jh);
2097         spin_unlock(&journal->j_list_lock);
2098         spin_unlock(&jh->b_state_lock);
2099         jbd2_journal_put_journal_head(jh);
2100         __brelse(bh);
2101 }
2102
2103 /*
2104  * Called from jbd2_journal_try_to_free_buffers().
2105  *
2106  * Called under jh->b_state_lock
2107  */
2108 static void
2109 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2110 {
2111         struct journal_head *jh;
2112
2113         jh = bh2jh(bh);
2114
2115         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2116                 return;
2117
2118         spin_lock(&journal->j_list_lock);
2119         /* Remove written-back checkpointed metadata buffer */
2120         if (jh->b_cp_transaction != NULL)
2121                 jbd2_journal_try_remove_checkpoint(jh);
2122         spin_unlock(&journal->j_list_lock);
2123         return;
2124 }
2125
2126 /**
2127  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2128  * @journal: journal for operation
2129  * @page: to try and free
2130  *
2131  * For all the buffers on this page,
2132  * if they are fully written out ordered data, move them onto BUF_CLEAN
2133  * so try_to_free_buffers() can reap them.
2134  *
2135  * This function returns non-zero if we wish try_to_free_buffers()
2136  * to be called. We do this if the page is releasable by try_to_free_buffers().
2137  * We also do it if the page has locked or dirty buffers and the caller wants
2138  * us to perform sync or async writeout.
2139  *
2140  * This complicates JBD locking somewhat.  We aren't protected by the
2141  * BKL here.  We wish to remove the buffer from its committing or
2142  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2143  *
2144  * This may *change* the value of transaction_t->t_datalist, so anyone
2145  * who looks at t_datalist needs to lock against this function.
2146  *
2147  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2148  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2149  * will come out of the lock with the buffer dirty, which makes it
2150  * ineligible for release here.
2151  *
2152  * Who else is affected by this?  hmm...  Really the only contender
2153  * is do_get_write_access() - it could be looking at the buffer while
2154  * journal_try_to_free_buffer() is changing its state.  But that
2155  * cannot happen because we never reallocate freed data as metadata
2156  * while the data is part of a transaction.  Yes?
2157  *
2158  * Return 0 on failure, 1 on success
2159  */
2160 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2161 {
2162         struct buffer_head *head;
2163         struct buffer_head *bh;
2164         int ret = 0;
2165
2166         J_ASSERT(PageLocked(page));
2167
2168         head = page_buffers(page);
2169         bh = head;
2170         do {
2171                 struct journal_head *jh;
2172
2173                 /*
2174                  * We take our own ref against the journal_head here to avoid
2175                  * having to add tons of locking around each instance of
2176                  * jbd2_journal_put_journal_head().
2177                  */
2178                 jh = jbd2_journal_grab_journal_head(bh);
2179                 if (!jh)
2180                         continue;
2181
2182                 spin_lock(&jh->b_state_lock);
2183                 __journal_try_to_free_buffer(journal, bh);
2184                 spin_unlock(&jh->b_state_lock);
2185                 jbd2_journal_put_journal_head(jh);
2186                 if (buffer_jbd(bh))
2187                         goto busy;
2188         } while ((bh = bh->b_this_page) != head);
2189
2190         ret = try_to_free_buffers(page);
2191 busy:
2192         return ret;
2193 }
2194
2195 /*
2196  * This buffer is no longer needed.  If it is on an older transaction's
2197  * checkpoint list we need to record it on this transaction's forget list
2198  * to pin this buffer (and hence its checkpointing transaction) down until
2199  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2200  * release it.
2201  * Returns non-zero if JBD no longer has an interest in the buffer.
2202  *
2203  * Called under j_list_lock.
2204  *
2205  * Called under jh->b_state_lock.
2206  */
2207 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2208 {
2209         int may_free = 1;
2210         struct buffer_head *bh = jh2bh(jh);
2211
2212         if (jh->b_cp_transaction) {
2213                 JBUFFER_TRACE(jh, "on running+cp transaction");
2214                 __jbd2_journal_temp_unlink_buffer(jh);
2215                 /*
2216                  * We don't want to write the buffer anymore, clear the
2217                  * bit so that we don't confuse checks in
2218                  * __journal_file_buffer
2219                  */
2220                 clear_buffer_dirty(bh);
2221                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2222                 may_free = 0;
2223         } else {
2224                 JBUFFER_TRACE(jh, "on running transaction");
2225                 __jbd2_journal_unfile_buffer(jh);
2226                 jbd2_journal_put_journal_head(jh);
2227         }
2228         return may_free;
2229 }
2230
2231 /*
2232  * jbd2_journal_invalidatepage
2233  *
2234  * This code is tricky.  It has a number of cases to deal with.
2235  *
2236  * There are two invariants which this code relies on:
2237  *
2238  * i_size must be updated on disk before we start calling invalidatepage on the
2239  * data.
2240  *
2241  *  This is done in ext3 by defining an ext3_setattr method which
2242  *  updates i_size before truncate gets going.  By maintaining this
2243  *  invariant, we can be sure that it is safe to throw away any buffers
2244  *  attached to the current transaction: once the transaction commits,
2245  *  we know that the data will not be needed.
2246  *
2247  *  Note however that we can *not* throw away data belonging to the
2248  *  previous, committing transaction!
2249  *
2250  * Any disk blocks which *are* part of the previous, committing
2251  * transaction (and which therefore cannot be discarded immediately) are
2252  * not going to be reused in the new running transaction
2253  *
2254  *  The bitmap committed_data images guarantee this: any block which is
2255  *  allocated in one transaction and removed in the next will be marked
2256  *  as in-use in the committed_data bitmap, so cannot be reused until
2257  *  the next transaction to delete the block commits.  This means that
2258  *  leaving committing buffers dirty is quite safe: the disk blocks
2259  *  cannot be reallocated to a different file and so buffer aliasing is
2260  *  not possible.
2261  *
2262  *
2263  * The above applies mainly to ordered data mode.  In writeback mode we
2264  * don't make guarantees about the order in which data hits disk --- in
2265  * particular we don't guarantee that new dirty data is flushed before
2266  * transaction commit --- so it is always safe just to discard data
2267  * immediately in that mode.  --sct
2268  */
2269
2270 /*
2271  * The journal_unmap_buffer helper function returns zero if the buffer
2272  * concerned remains pinned as an anonymous buffer belonging to an older
2273  * transaction.
2274  *
2275  * We're outside-transaction here.  Either or both of j_running_transaction
2276  * and j_committing_transaction may be NULL.
2277  */
2278 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2279                                 int partial_page)
2280 {
2281         transaction_t *transaction;
2282         struct journal_head *jh;
2283         int may_free = 1;
2284
2285         BUFFER_TRACE(bh, "entry");
2286
2287         /*
2288          * It is safe to proceed here without the j_list_lock because the
2289          * buffers cannot be stolen by try_to_free_buffers as long as we are
2290          * holding the page lock. --sct
2291          */
2292
2293         jh = jbd2_journal_grab_journal_head(bh);
2294         if (!jh)
2295                 goto zap_buffer_unlocked;
2296
2297         /* OK, we have data buffer in journaled mode */
2298         write_lock(&journal->j_state_lock);
2299         spin_lock(&jh->b_state_lock);
2300         spin_lock(&journal->j_list_lock);
2301
2302         /*
2303          * We cannot remove the buffer from checkpoint lists until the
2304          * transaction adding inode to orphan list (let's call it T)
2305          * is committed.  Otherwise if the transaction changing the
2306          * buffer would be cleaned from the journal before T is
2307          * committed, a crash will cause that the correct contents of
2308          * the buffer will be lost.  On the other hand we have to
2309          * clear the buffer dirty bit at latest at the moment when the
2310          * transaction marking the buffer as freed in the filesystem
2311          * structures is committed because from that moment on the
2312          * block can be reallocated and used by a different page.
2313          * Since the block hasn't been freed yet but the inode has
2314          * already been added to orphan list, it is safe for us to add
2315          * the buffer to BJ_Forget list of the newest transaction.
2316          *
2317          * Also we have to clear buffer_mapped flag of a truncated buffer
2318          * because the buffer_head may be attached to the page straddling
2319          * i_size (can happen only when blocksize < pagesize) and thus the
2320          * buffer_head can be reused when the file is extended again. So we end
2321          * up keeping around invalidated buffers attached to transactions'
2322          * BJ_Forget list just to stop checkpointing code from cleaning up
2323          * the transaction this buffer was modified in.
2324          */
2325         transaction = jh->b_transaction;
2326         if (transaction == NULL) {
2327                 /* First case: not on any transaction.  If it
2328                  * has no checkpoint link, then we can zap it:
2329                  * it's a writeback-mode buffer so we don't care
2330                  * if it hits disk safely. */
2331                 if (!jh->b_cp_transaction) {
2332                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2333                         goto zap_buffer;
2334                 }
2335
2336                 if (!buffer_dirty(bh)) {
2337                         /* bdflush has written it.  We can drop it now */
2338                         __jbd2_journal_remove_checkpoint(jh);
2339                         goto zap_buffer;
2340                 }
2341
2342                 /* OK, it must be in the journal but still not
2343                  * written fully to disk: it's metadata or
2344                  * journaled data... */
2345
2346                 if (journal->j_running_transaction) {
2347                         /* ... and once the current transaction has
2348                          * committed, the buffer won't be needed any
2349                          * longer. */
2350                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2351                         may_free = __dispose_buffer(jh,
2352                                         journal->j_running_transaction);
2353                         goto zap_buffer;
2354                 } else {
2355                         /* There is no currently-running transaction. So the
2356                          * orphan record which we wrote for this file must have
2357                          * passed into commit.  We must attach this buffer to
2358                          * the committing transaction, if it exists. */
2359                         if (journal->j_committing_transaction) {
2360                                 JBUFFER_TRACE(jh, "give to committing trans");
2361                                 may_free = __dispose_buffer(jh,
2362                                         journal->j_committing_transaction);
2363                                 goto zap_buffer;
2364                         } else {
2365                                 /* The orphan record's transaction has
2366                                  * committed.  We can cleanse this buffer */
2367                                 clear_buffer_jbddirty(bh);
2368                                 __jbd2_journal_remove_checkpoint(jh);
2369                                 goto zap_buffer;
2370                         }
2371                 }
2372         } else if (transaction == journal->j_committing_transaction) {
2373                 JBUFFER_TRACE(jh, "on committing transaction");
2374                 /*
2375                  * The buffer is committing, we simply cannot touch
2376                  * it. If the page is straddling i_size we have to wait
2377                  * for commit and try again.
2378                  */
2379                 if (partial_page) {
2380                         spin_unlock(&journal->j_list_lock);
2381                         spin_unlock(&jh->b_state_lock);
2382                         write_unlock(&journal->j_state_lock);
2383                         jbd2_journal_put_journal_head(jh);
2384                         /* Already zapped buffer? Nothing to do... */
2385                         if (!bh->b_bdev)
2386                                 return 0;
2387                         return -EBUSY;
2388                 }
2389                 /*
2390                  * OK, buffer won't be reachable after truncate. We just clear
2391                  * b_modified to not confuse transaction credit accounting, and
2392                  * set j_next_transaction to the running transaction (if there
2393                  * is one) and mark buffer as freed so that commit code knows
2394                  * it should clear dirty bits when it is done with the buffer.
2395                  */
2396                 set_buffer_freed(bh);
2397                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2398                         jh->b_next_transaction = journal->j_running_transaction;
2399                 jh->b_modified = 0;
2400                 spin_unlock(&journal->j_list_lock);
2401                 spin_unlock(&jh->b_state_lock);
2402                 write_unlock(&journal->j_state_lock);
2403                 jbd2_journal_put_journal_head(jh);
2404                 return 0;
2405         } else {
2406                 /* Good, the buffer belongs to the running transaction.
2407                  * We are writing our own transaction's data, not any
2408                  * previous one's, so it is safe to throw it away
2409                  * (remember that we expect the filesystem to have set
2410                  * i_size already for this truncate so recovery will not
2411                  * expose the disk blocks we are discarding here.) */
2412                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2413                 JBUFFER_TRACE(jh, "on running transaction");
2414                 may_free = __dispose_buffer(jh, transaction);
2415         }
2416
2417 zap_buffer:
2418         /*
2419          * This is tricky. Although the buffer is truncated, it may be reused
2420          * if blocksize < pagesize and it is attached to the page straddling
2421          * EOF. Since the buffer might have been added to BJ_Forget list of the
2422          * running transaction, journal_get_write_access() won't clear
2423          * b_modified and credit accounting gets confused. So clear b_modified
2424          * here.
2425          */
2426         jh->b_modified = 0;
2427         spin_unlock(&journal->j_list_lock);
2428         spin_unlock(&jh->b_state_lock);
2429         write_unlock(&journal->j_state_lock);
2430         jbd2_journal_put_journal_head(jh);
2431 zap_buffer_unlocked:
2432         clear_buffer_dirty(bh);
2433         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2434         clear_buffer_mapped(bh);
2435         clear_buffer_req(bh);
2436         clear_buffer_new(bh);
2437         clear_buffer_delay(bh);
2438         clear_buffer_unwritten(bh);
2439         bh->b_bdev = NULL;
2440         return may_free;
2441 }
2442
2443 /**
2444  * jbd2_journal_invalidatepage()
2445  * @journal: journal to use for flush...
2446  * @page:    page to flush
2447  * @offset:  start of the range to invalidate
2448  * @length:  length of the range to invalidate
2449  *
2450  * Reap page buffers containing data after in the specified range in page.
2451  * Can return -EBUSY if buffers are part of the committing transaction and
2452  * the page is straddling i_size. Caller then has to wait for current commit
2453  * and try again.
2454  */
2455 int jbd2_journal_invalidatepage(journal_t *journal,
2456                                 struct page *page,
2457                                 unsigned int offset,
2458                                 unsigned int length)
2459 {
2460         struct buffer_head *head, *bh, *next;
2461         unsigned int stop = offset + length;
2462         unsigned int curr_off = 0;
2463         int partial_page = (offset || length < PAGE_SIZE);
2464         int may_free = 1;
2465         int ret = 0;
2466
2467         if (!PageLocked(page))
2468                 BUG();
2469         if (!page_has_buffers(page))
2470                 return 0;
2471
2472         BUG_ON(stop > PAGE_SIZE || stop < length);
2473
2474         /* We will potentially be playing with lists other than just the
2475          * data lists (especially for journaled data mode), so be
2476          * cautious in our locking. */
2477
2478         head = bh = page_buffers(page);
2479         do {
2480                 unsigned int next_off = curr_off + bh->b_size;
2481                 next = bh->b_this_page;
2482
2483                 if (next_off > stop)
2484                         return 0;
2485
2486                 if (offset <= curr_off) {
2487                         /* This block is wholly outside the truncation point */
2488                         lock_buffer(bh);
2489                         ret = journal_unmap_buffer(journal, bh, partial_page);
2490                         unlock_buffer(bh);
2491                         if (ret < 0)
2492                                 return ret;
2493                         may_free &= ret;
2494                 }
2495                 curr_off = next_off;
2496                 bh = next;
2497
2498         } while (bh != head);
2499
2500         if (!partial_page) {
2501                 if (may_free && try_to_free_buffers(page))
2502                         J_ASSERT(!page_has_buffers(page));
2503         }
2504         return 0;
2505 }
2506
2507 /*
2508  * File a buffer on the given transaction list.
2509  */
2510 void __jbd2_journal_file_buffer(struct journal_head *jh,
2511                         transaction_t *transaction, int jlist)
2512 {
2513         struct journal_head **list = NULL;
2514         int was_dirty = 0;
2515         struct buffer_head *bh = jh2bh(jh);
2516
2517         lockdep_assert_held(&jh->b_state_lock);
2518         assert_spin_locked(&transaction->t_journal->j_list_lock);
2519
2520         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2521         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2522                                 jh->b_transaction == NULL);
2523
2524         if (jh->b_transaction && jh->b_jlist == jlist)
2525                 return;
2526
2527         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2528             jlist == BJ_Shadow || jlist == BJ_Forget) {
2529                 /*
2530                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2531                  * instead of buffer_dirty. We should not see a dirty bit set
2532                  * here because we clear it in do_get_write_access but e.g.
2533                  * tune2fs can modify the sb and set the dirty bit at any time
2534                  * so we try to gracefully handle that.
2535                  */
2536                 if (buffer_dirty(bh))
2537                         warn_dirty_buffer(bh);
2538                 if (test_clear_buffer_dirty(bh) ||
2539                     test_clear_buffer_jbddirty(bh))
2540                         was_dirty = 1;
2541         }
2542
2543         if (jh->b_transaction)
2544                 __jbd2_journal_temp_unlink_buffer(jh);
2545         else
2546                 jbd2_journal_grab_journal_head(bh);
2547         jh->b_transaction = transaction;
2548
2549         switch (jlist) {
2550         case BJ_None:
2551                 J_ASSERT_JH(jh, !jh->b_committed_data);
2552                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2553                 return;
2554         case BJ_Metadata:
2555                 transaction->t_nr_buffers++;
2556                 list = &transaction->t_buffers;
2557                 break;
2558         case BJ_Forget:
2559                 list = &transaction->t_forget;
2560                 break;
2561         case BJ_Shadow:
2562                 list = &transaction->t_shadow_list;
2563                 break;
2564         case BJ_Reserved:
2565                 list = &transaction->t_reserved_list;
2566                 break;
2567         }
2568
2569         __blist_add_buffer(list, jh);
2570         jh->b_jlist = jlist;
2571
2572         if (was_dirty)
2573                 set_buffer_jbddirty(bh);
2574 }
2575
2576 void jbd2_journal_file_buffer(struct journal_head *jh,
2577                                 transaction_t *transaction, int jlist)
2578 {
2579         spin_lock(&jh->b_state_lock);
2580         spin_lock(&transaction->t_journal->j_list_lock);
2581         __jbd2_journal_file_buffer(jh, transaction, jlist);
2582         spin_unlock(&transaction->t_journal->j_list_lock);
2583         spin_unlock(&jh->b_state_lock);
2584 }
2585
2586 /*
2587  * Remove a buffer from its current buffer list in preparation for
2588  * dropping it from its current transaction entirely.  If the buffer has
2589  * already started to be used by a subsequent transaction, refile the
2590  * buffer on that transaction's metadata list.
2591  *
2592  * Called under j_list_lock
2593  * Called under jh->b_state_lock
2594  *
2595  * When this function returns true, there's no next transaction to refile to
2596  * and the caller has to drop jh reference through
2597  * jbd2_journal_put_journal_head().
2598  */
2599 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2600 {
2601         int was_dirty, jlist;
2602         struct buffer_head *bh = jh2bh(jh);
2603
2604         lockdep_assert_held(&jh->b_state_lock);
2605         if (jh->b_transaction)
2606                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2607
2608         /* If the buffer is now unused, just drop it. */
2609         if (jh->b_next_transaction == NULL) {
2610                 __jbd2_journal_unfile_buffer(jh);
2611                 return true;
2612         }
2613
2614         /*
2615          * It has been modified by a later transaction: add it to the new
2616          * transaction's metadata list.
2617          */
2618
2619         was_dirty = test_clear_buffer_jbddirty(bh);
2620         __jbd2_journal_temp_unlink_buffer(jh);
2621
2622         /*
2623          * b_transaction must be set, otherwise the new b_transaction won't
2624          * be holding jh reference
2625          */
2626         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2627
2628         /*
2629          * We set b_transaction here because b_next_transaction will inherit
2630          * our jh reference and thus __jbd2_journal_file_buffer() must not
2631          * take a new one.
2632          */
2633         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2634         WRITE_ONCE(jh->b_next_transaction, NULL);
2635         if (buffer_freed(bh))
2636                 jlist = BJ_Forget;
2637         else if (jh->b_modified)
2638                 jlist = BJ_Metadata;
2639         else
2640                 jlist = BJ_Reserved;
2641         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2642         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2643
2644         if (was_dirty)
2645                 set_buffer_jbddirty(bh);
2646         return false;
2647 }
2648
2649 /*
2650  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2651  * bh reference so that we can safely unlock bh.
2652  *
2653  * The jh and bh may be freed by this call.
2654  */
2655 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2656 {
2657         bool drop;
2658
2659         spin_lock(&jh->b_state_lock);
2660         spin_lock(&journal->j_list_lock);
2661         drop = __jbd2_journal_refile_buffer(jh);
2662         spin_unlock(&jh->b_state_lock);
2663         spin_unlock(&journal->j_list_lock);
2664         if (drop)
2665                 jbd2_journal_put_journal_head(jh);
2666 }
2667
2668 /*
2669  * File inode in the inode list of the handle's transaction
2670  */
2671 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2672                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2673 {
2674         transaction_t *transaction = handle->h_transaction;
2675         journal_t *journal;
2676
2677         if (is_handle_aborted(handle))
2678                 return -EROFS;
2679         journal = transaction->t_journal;
2680
2681         jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2682                         transaction->t_tid);
2683
2684         spin_lock(&journal->j_list_lock);
2685         jinode->i_flags |= flags;
2686
2687         if (jinode->i_dirty_end) {
2688                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2689                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2690         } else {
2691                 jinode->i_dirty_start = start_byte;
2692                 jinode->i_dirty_end = end_byte;
2693         }
2694
2695         /* Is inode already attached where we need it? */
2696         if (jinode->i_transaction == transaction ||
2697             jinode->i_next_transaction == transaction)
2698                 goto done;
2699
2700         /*
2701          * We only ever set this variable to 1 so the test is safe. Since
2702          * t_need_data_flush is likely to be set, we do the test to save some
2703          * cacheline bouncing
2704          */
2705         if (!transaction->t_need_data_flush)
2706                 transaction->t_need_data_flush = 1;
2707         /* On some different transaction's list - should be
2708          * the committing one */
2709         if (jinode->i_transaction) {
2710                 J_ASSERT(jinode->i_next_transaction == NULL);
2711                 J_ASSERT(jinode->i_transaction ==
2712                                         journal->j_committing_transaction);
2713                 jinode->i_next_transaction = transaction;
2714                 goto done;
2715         }
2716         /* Not on any transaction list... */
2717         J_ASSERT(!jinode->i_next_transaction);
2718         jinode->i_transaction = transaction;
2719         list_add(&jinode->i_list, &transaction->t_inode_list);
2720 done:
2721         spin_unlock(&journal->j_list_lock);
2722
2723         return 0;
2724 }
2725
2726 int jbd2_journal_inode_ranged_write(handle_t *handle,
2727                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2728 {
2729         return jbd2_journal_file_inode(handle, jinode,
2730                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2731                         start_byte + length - 1);
2732 }
2733
2734 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2735                 loff_t start_byte, loff_t length)
2736 {
2737         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2738                         start_byte, start_byte + length - 1);
2739 }
2740
2741 /*
2742  * File truncate and transaction commit interact with each other in a
2743  * non-trivial way.  If a transaction writing data block A is
2744  * committing, we cannot discard the data by truncate until we have
2745  * written them.  Otherwise if we crashed after the transaction with
2746  * write has committed but before the transaction with truncate has
2747  * committed, we could see stale data in block A.  This function is a
2748  * helper to solve this problem.  It starts writeout of the truncated
2749  * part in case it is in the committing transaction.
2750  *
2751  * Filesystem code must call this function when inode is journaled in
2752  * ordered mode before truncation happens and after the inode has been
2753  * placed on orphan list with the new inode size. The second condition
2754  * avoids the race that someone writes new data and we start
2755  * committing the transaction after this function has been called but
2756  * before a transaction for truncate is started (and furthermore it
2757  * allows us to optimize the case where the addition to orphan list
2758  * happens in the same transaction as write --- we don't have to write
2759  * any data in such case).
2760  */
2761 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2762                                         struct jbd2_inode *jinode,
2763                                         loff_t new_size)
2764 {
2765         transaction_t *inode_trans, *commit_trans;
2766         int ret = 0;
2767
2768         /* This is a quick check to avoid locking if not necessary */
2769         if (!jinode->i_transaction)
2770                 goto out;
2771         /* Locks are here just to force reading of recent values, it is
2772          * enough that the transaction was not committing before we started
2773          * a transaction adding the inode to orphan list */
2774         read_lock(&journal->j_state_lock);
2775         commit_trans = journal->j_committing_transaction;
2776         read_unlock(&journal->j_state_lock);
2777         spin_lock(&journal->j_list_lock);
2778         inode_trans = jinode->i_transaction;
2779         spin_unlock(&journal->j_list_lock);
2780         if (inode_trans == commit_trans) {
2781                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2782                         new_size, LLONG_MAX);
2783                 if (ret)
2784                         jbd2_journal_abort(journal, ret);
2785         }
2786 out:
2787         return ret;
2788 }