GNU Linux-libre 5.10.153-gnu1
[releases.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH)) {
199                 read_unlock(&journal->j_state_lock);
200                 return;
201         }
202         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
203                         TASK_UNINTERRUPTIBLE);
204         read_unlock(&journal->j_state_lock);
205         /*
206          * We don't call jbd2_might_wait_for_commit() here as there's no
207          * waiting for outstanding handles happening anymore in T_SWITCH state
208          * and handling of reserved handles actually relies on that for
209          * correctness.
210          */
211         schedule();
212         finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217         atomic_sub(blocks, &journal->j_reserved_credits);
218         wake_up(&journal->j_wait_reserved);
219 }
220
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 {
230         transaction_t *t = journal->j_running_transaction;
231         int needed;
232         int total = blocks + rsv_blocks;
233
234         /*
235          * If the current transaction is locked down for commit, wait
236          * for the lock to be released.
237          */
238         if (t->t_state != T_RUNNING) {
239                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
240                 wait_transaction_locked(journal);
241                 return 1;
242         }
243
244         /*
245          * If there is not enough space left in the log to write all
246          * potential buffers requested by this operation, we need to
247          * stall pending a log checkpoint to free some more log space.
248          */
249         needed = atomic_add_return(total, &t->t_outstanding_credits);
250         if (needed > journal->j_max_transaction_buffers) {
251                 /*
252                  * If the current transaction is already too large,
253                  * then start to commit it: we can then go back and
254                  * attach this handle to a new transaction.
255                  */
256                 atomic_sub(total, &t->t_outstanding_credits);
257
258                 /*
259                  * Is the number of reserved credits in the current transaction too
260                  * big to fit this handle? Wait until reserved credits are freed.
261                  */
262                 if (atomic_read(&journal->j_reserved_credits) + total >
263                     journal->j_max_transaction_buffers) {
264                         read_unlock(&journal->j_state_lock);
265                         jbd2_might_wait_for_commit(journal);
266                         wait_event(journal->j_wait_reserved,
267                                    atomic_read(&journal->j_reserved_credits) + total <=
268                                    journal->j_max_transaction_buffers);
269                         return 1;
270                 }
271
272                 wait_transaction_locked(journal);
273                 return 1;
274         }
275
276         /*
277          * The commit code assumes that it can get enough log space
278          * without forcing a checkpoint.  This is *critical* for
279          * correctness: a checkpoint of a buffer which is also
280          * associated with a committing transaction creates a deadlock,
281          * so commit simply cannot force through checkpoints.
282          *
283          * We must therefore ensure the necessary space in the journal
284          * *before* starting to dirty potentially checkpointed buffers
285          * in the new transaction.
286          */
287         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288                 atomic_sub(total, &t->t_outstanding_credits);
289                 read_unlock(&journal->j_state_lock);
290                 jbd2_might_wait_for_commit(journal);
291                 write_lock(&journal->j_state_lock);
292                 if (jbd2_log_space_left(journal) <
293                                         journal->j_max_transaction_buffers)
294                         __jbd2_log_wait_for_space(journal);
295                 write_unlock(&journal->j_state_lock);
296                 return 1;
297         }
298
299         /* No reservation? We are done... */
300         if (!rsv_blocks)
301                 return 0;
302
303         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304         /* We allow at most half of a transaction to be reserved */
305         if (needed > journal->j_max_transaction_buffers / 2) {
306                 sub_reserved_credits(journal, rsv_blocks);
307                 atomic_sub(total, &t->t_outstanding_credits);
308                 read_unlock(&journal->j_state_lock);
309                 jbd2_might_wait_for_commit(journal);
310                 wait_event(journal->j_wait_reserved,
311                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
312                          <= journal->j_max_transaction_buffers / 2);
313                 return 1;
314         }
315         return 0;
316 }
317
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324
325 static int start_this_handle(journal_t *journal, handle_t *handle,
326                              gfp_t gfp_mask)
327 {
328         transaction_t   *transaction, *new_transaction = NULL;
329         int             blocks = handle->h_total_credits;
330         int             rsv_blocks = 0;
331         unsigned long ts = jiffies;
332
333         if (handle->h_rsv_handle)
334                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
335
336         /*
337          * Limit the number of reserved credits to 1/2 of maximum transaction
338          * size and limit the number of total credits to not exceed maximum
339          * transaction size per operation.
340          */
341         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343                 printk(KERN_ERR "JBD2: %s wants too many credits "
344                        "credits:%d rsv_credits:%d max:%d\n",
345                        current->comm, blocks, rsv_blocks,
346                        journal->j_max_transaction_buffers);
347                 WARN_ON(1);
348                 return -ENOSPC;
349         }
350
351 alloc_transaction:
352         /*
353          * This check is racy but it is just an optimization of allocating new
354          * transaction early if there are high chances we'll need it. If we
355          * guess wrong, we'll retry or free unused transaction.
356          */
357         if (!data_race(journal->j_running_transaction)) {
358                 /*
359                  * If __GFP_FS is not present, then we may be being called from
360                  * inside the fs writeback layer, so we MUST NOT fail.
361                  */
362                 if ((gfp_mask & __GFP_FS) == 0)
363                         gfp_mask |= __GFP_NOFAIL;
364                 new_transaction = kmem_cache_zalloc(transaction_cache,
365                                                     gfp_mask);
366                 if (!new_transaction)
367                         return -ENOMEM;
368         }
369
370         jbd_debug(3, "New handle %p going live.\n", handle);
371
372         /*
373          * We need to hold j_state_lock until t_updates has been incremented,
374          * for proper journal barrier handling
375          */
376 repeat:
377         read_lock(&journal->j_state_lock);
378         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
379         if (is_journal_aborted(journal) ||
380             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
381                 read_unlock(&journal->j_state_lock);
382                 jbd2_journal_free_transaction(new_transaction);
383                 return -EROFS;
384         }
385
386         /*
387          * Wait on the journal's transaction barrier if necessary. Specifically
388          * we allow reserved handles to proceed because otherwise commit could
389          * deadlock on page writeback not being able to complete.
390          */
391         if (!handle->h_reserved && journal->j_barrier_count) {
392                 read_unlock(&journal->j_state_lock);
393                 wait_event(journal->j_wait_transaction_locked,
394                                 journal->j_barrier_count == 0);
395                 goto repeat;
396         }
397
398         if (!journal->j_running_transaction) {
399                 read_unlock(&journal->j_state_lock);
400                 if (!new_transaction)
401                         goto alloc_transaction;
402                 write_lock(&journal->j_state_lock);
403                 if (!journal->j_running_transaction &&
404                     (handle->h_reserved || !journal->j_barrier_count)) {
405                         jbd2_get_transaction(journal, new_transaction);
406                         new_transaction = NULL;
407                 }
408                 write_unlock(&journal->j_state_lock);
409                 goto repeat;
410         }
411
412         transaction = journal->j_running_transaction;
413
414         if (!handle->h_reserved) {
415                 /* We may have dropped j_state_lock - restart in that case */
416                 if (add_transaction_credits(journal, blocks, rsv_blocks))
417                         goto repeat;
418         } else {
419                 /*
420                  * We have handle reserved so we are allowed to join T_LOCKED
421                  * transaction and we don't have to check for transaction size
422                  * and journal space. But we still have to wait while running
423                  * transaction is being switched to a committing one as it
424                  * won't wait for any handles anymore.
425                  */
426                 if (transaction->t_state == T_SWITCH) {
427                         wait_transaction_switching(journal);
428                         goto repeat;
429                 }
430                 sub_reserved_credits(journal, blocks);
431                 handle->h_reserved = 0;
432         }
433
434         /* OK, account for the buffers that this operation expects to
435          * use and add the handle to the running transaction. 
436          */
437         update_t_max_wait(transaction, ts);
438         handle->h_transaction = transaction;
439         handle->h_requested_credits = blocks;
440         handle->h_revoke_credits_requested = handle->h_revoke_credits;
441         handle->h_start_jiffies = jiffies;
442         atomic_inc(&transaction->t_updates);
443         atomic_inc(&transaction->t_handle_count);
444         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
445                   handle, blocks,
446                   atomic_read(&transaction->t_outstanding_credits),
447                   jbd2_log_space_left(journal));
448         read_unlock(&journal->j_state_lock);
449         current->journal_info = handle;
450
451         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
452         jbd2_journal_free_transaction(new_transaction);
453         /*
454          * Ensure that no allocations done while the transaction is open are
455          * going to recurse back to the fs layer.
456          */
457         handle->saved_alloc_context = memalloc_nofs_save();
458         return 0;
459 }
460
461 /* Allocate a new handle.  This should probably be in a slab... */
462 static handle_t *new_handle(int nblocks)
463 {
464         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
465         if (!handle)
466                 return NULL;
467         handle->h_total_credits = nblocks;
468         handle->h_ref = 1;
469
470         return handle;
471 }
472
473 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
474                               int revoke_records, gfp_t gfp_mask,
475                               unsigned int type, unsigned int line_no)
476 {
477         handle_t *handle = journal_current_handle();
478         int err;
479
480         if (!journal)
481                 return ERR_PTR(-EROFS);
482
483         if (handle) {
484                 J_ASSERT(handle->h_transaction->t_journal == journal);
485                 handle->h_ref++;
486                 return handle;
487         }
488
489         nblocks += DIV_ROUND_UP(revoke_records,
490                                 journal->j_revoke_records_per_block);
491         handle = new_handle(nblocks);
492         if (!handle)
493                 return ERR_PTR(-ENOMEM);
494         if (rsv_blocks) {
495                 handle_t *rsv_handle;
496
497                 rsv_handle = new_handle(rsv_blocks);
498                 if (!rsv_handle) {
499                         jbd2_free_handle(handle);
500                         return ERR_PTR(-ENOMEM);
501                 }
502                 rsv_handle->h_reserved = 1;
503                 rsv_handle->h_journal = journal;
504                 handle->h_rsv_handle = rsv_handle;
505         }
506         handle->h_revoke_credits = revoke_records;
507
508         err = start_this_handle(journal, handle, gfp_mask);
509         if (err < 0) {
510                 if (handle->h_rsv_handle)
511                         jbd2_free_handle(handle->h_rsv_handle);
512                 jbd2_free_handle(handle);
513                 return ERR_PTR(err);
514         }
515         handle->h_type = type;
516         handle->h_line_no = line_no;
517         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
518                                 handle->h_transaction->t_tid, type,
519                                 line_no, nblocks);
520
521         return handle;
522 }
523 EXPORT_SYMBOL(jbd2__journal_start);
524
525
526 /**
527  * jbd2_journal_start() - Obtain a new handle.
528  * @journal: Journal to start transaction on.
529  * @nblocks: number of block buffer we might modify
530  *
531  * We make sure that the transaction can guarantee at least nblocks of
532  * modified buffers in the log.  We block until the log can guarantee
533  * that much space. Additionally, if rsv_blocks > 0, we also create another
534  * handle with rsv_blocks reserved blocks in the journal. This handle is
535  * stored in h_rsv_handle. It is not attached to any particular transaction
536  * and thus doesn't block transaction commit. If the caller uses this reserved
537  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
538  * on the parent handle will dispose the reserved one. Reserved handle has to
539  * be converted to a normal handle using jbd2_journal_start_reserved() before
540  * it can be used.
541  *
542  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
543  * on failure.
544  */
545 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
546 {
547         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
548 }
549 EXPORT_SYMBOL(jbd2_journal_start);
550
551 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
552 {
553         journal_t *journal = handle->h_journal;
554
555         WARN_ON(!handle->h_reserved);
556         sub_reserved_credits(journal, handle->h_total_credits);
557         if (t)
558                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
559 }
560
561 void jbd2_journal_free_reserved(handle_t *handle)
562 {
563         journal_t *journal = handle->h_journal;
564
565         /* Get j_state_lock to pin running transaction if it exists */
566         read_lock(&journal->j_state_lock);
567         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
568         read_unlock(&journal->j_state_lock);
569         jbd2_free_handle(handle);
570 }
571 EXPORT_SYMBOL(jbd2_journal_free_reserved);
572
573 /**
574  * jbd2_journal_start_reserved() - start reserved handle
575  * @handle: handle to start
576  * @type: for handle statistics
577  * @line_no: for handle statistics
578  *
579  * Start handle that has been previously reserved with jbd2_journal_reserve().
580  * This attaches @handle to the running transaction (or creates one if there's
581  * not transaction running). Unlike jbd2_journal_start() this function cannot
582  * block on journal commit, checkpointing, or similar stuff. It can block on
583  * memory allocation or frozen journal though.
584  *
585  * Return 0 on success, non-zero on error - handle is freed in that case.
586  */
587 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
588                                 unsigned int line_no)
589 {
590         journal_t *journal = handle->h_journal;
591         int ret = -EIO;
592
593         if (WARN_ON(!handle->h_reserved)) {
594                 /* Someone passed in normal handle? Just stop it. */
595                 jbd2_journal_stop(handle);
596                 return ret;
597         }
598         /*
599          * Usefulness of mixing of reserved and unreserved handles is
600          * questionable. So far nobody seems to need it so just error out.
601          */
602         if (WARN_ON(current->journal_info)) {
603                 jbd2_journal_free_reserved(handle);
604                 return ret;
605         }
606
607         handle->h_journal = NULL;
608         /*
609          * GFP_NOFS is here because callers are likely from writeback or
610          * similarly constrained call sites
611          */
612         ret = start_this_handle(journal, handle, GFP_NOFS);
613         if (ret < 0) {
614                 handle->h_journal = journal;
615                 jbd2_journal_free_reserved(handle);
616                 return ret;
617         }
618         handle->h_type = type;
619         handle->h_line_no = line_no;
620         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
621                                 handle->h_transaction->t_tid, type,
622                                 line_no, handle->h_total_credits);
623         return 0;
624 }
625 EXPORT_SYMBOL(jbd2_journal_start_reserved);
626
627 /**
628  * jbd2_journal_extend() - extend buffer credits.
629  * @handle:  handle to 'extend'
630  * @nblocks: nr blocks to try to extend by.
631  * @revoke_records: number of revoke records to try to extend by.
632  *
633  * Some transactions, such as large extends and truncates, can be done
634  * atomically all at once or in several stages.  The operation requests
635  * a credit for a number of buffer modifications in advance, but can
636  * extend its credit if it needs more.
637  *
638  * jbd2_journal_extend tries to give the running handle more buffer credits.
639  * It does not guarantee that allocation - this is a best-effort only.
640  * The calling process MUST be able to deal cleanly with a failure to
641  * extend here.
642  *
643  * Return 0 on success, non-zero on failure.
644  *
645  * return code < 0 implies an error
646  * return code > 0 implies normal transaction-full status.
647  */
648 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
649 {
650         transaction_t *transaction = handle->h_transaction;
651         journal_t *journal;
652         int result;
653         int wanted;
654
655         if (is_handle_aborted(handle))
656                 return -EROFS;
657         journal = transaction->t_journal;
658
659         result = 1;
660
661         read_lock(&journal->j_state_lock);
662
663         /* Don't extend a locked-down transaction! */
664         if (transaction->t_state != T_RUNNING) {
665                 jbd_debug(3, "denied handle %p %d blocks: "
666                           "transaction not running\n", handle, nblocks);
667                 goto error_out;
668         }
669
670         nblocks += DIV_ROUND_UP(
671                         handle->h_revoke_credits_requested + revoke_records,
672                         journal->j_revoke_records_per_block) -
673                 DIV_ROUND_UP(
674                         handle->h_revoke_credits_requested,
675                         journal->j_revoke_records_per_block);
676         spin_lock(&transaction->t_handle_lock);
677         wanted = atomic_add_return(nblocks,
678                                    &transaction->t_outstanding_credits);
679
680         if (wanted > journal->j_max_transaction_buffers) {
681                 jbd_debug(3, "denied handle %p %d blocks: "
682                           "transaction too large\n", handle, nblocks);
683                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
684                 goto unlock;
685         }
686
687         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
688                                  transaction->t_tid,
689                                  handle->h_type, handle->h_line_no,
690                                  handle->h_total_credits,
691                                  nblocks);
692
693         handle->h_total_credits += nblocks;
694         handle->h_requested_credits += nblocks;
695         handle->h_revoke_credits += revoke_records;
696         handle->h_revoke_credits_requested += revoke_records;
697         result = 0;
698
699         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
700 unlock:
701         spin_unlock(&transaction->t_handle_lock);
702 error_out:
703         read_unlock(&journal->j_state_lock);
704         return result;
705 }
706
707 static void stop_this_handle(handle_t *handle)
708 {
709         transaction_t *transaction = handle->h_transaction;
710         journal_t *journal = transaction->t_journal;
711         int revokes;
712
713         J_ASSERT(journal_current_handle() == handle);
714         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
715         current->journal_info = NULL;
716         /*
717          * Subtract necessary revoke descriptor blocks from handle credits. We
718          * take care to account only for revoke descriptor blocks the
719          * transaction will really need as large sequences of transactions with
720          * small numbers of revokes are relatively common.
721          */
722         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
723         if (revokes) {
724                 int t_revokes, revoke_descriptors;
725                 int rr_per_blk = journal->j_revoke_records_per_block;
726
727                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
728                                 > handle->h_total_credits);
729                 t_revokes = atomic_add_return(revokes,
730                                 &transaction->t_outstanding_revokes);
731                 revoke_descriptors =
732                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
733                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
734                 handle->h_total_credits -= revoke_descriptors;
735         }
736         atomic_sub(handle->h_total_credits,
737                    &transaction->t_outstanding_credits);
738         if (handle->h_rsv_handle)
739                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
740                                                 transaction);
741         if (atomic_dec_and_test(&transaction->t_updates))
742                 wake_up(&journal->j_wait_updates);
743
744         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
745         /*
746          * Scope of the GFP_NOFS context is over here and so we can restore the
747          * original alloc context.
748          */
749         memalloc_nofs_restore(handle->saved_alloc_context);
750 }
751
752 /**
753  * jbd2__journal_restart() - restart a handle .
754  * @handle:  handle to restart
755  * @nblocks: nr credits requested
756  * @revoke_records: number of revoke record credits requested
757  * @gfp_mask: memory allocation flags (for start_this_handle)
758  *
759  * Restart a handle for a multi-transaction filesystem
760  * operation.
761  *
762  * If the jbd2_journal_extend() call above fails to grant new buffer credits
763  * to a running handle, a call to jbd2_journal_restart will commit the
764  * handle's transaction so far and reattach the handle to a new
765  * transaction capable of guaranteeing the requested number of
766  * credits. We preserve reserved handle if there's any attached to the
767  * passed in handle.
768  */
769 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
770                           gfp_t gfp_mask)
771 {
772         transaction_t *transaction = handle->h_transaction;
773         journal_t *journal;
774         tid_t           tid;
775         int             need_to_start;
776         int             ret;
777
778         /* If we've had an abort of any type, don't even think about
779          * actually doing the restart! */
780         if (is_handle_aborted(handle))
781                 return 0;
782         journal = transaction->t_journal;
783         tid = transaction->t_tid;
784
785         /*
786          * First unlink the handle from its current transaction, and start the
787          * commit on that.
788          */
789         jbd_debug(2, "restarting handle %p\n", handle);
790         stop_this_handle(handle);
791         handle->h_transaction = NULL;
792
793         /*
794          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
795          * get rid of pointless j_state_lock traffic like this.
796          */
797         read_lock(&journal->j_state_lock);
798         need_to_start = !tid_geq(journal->j_commit_request, tid);
799         read_unlock(&journal->j_state_lock);
800         if (need_to_start)
801                 jbd2_log_start_commit(journal, tid);
802         handle->h_total_credits = nblocks +
803                 DIV_ROUND_UP(revoke_records,
804                              journal->j_revoke_records_per_block);
805         handle->h_revoke_credits = revoke_records;
806         ret = start_this_handle(journal, handle, gfp_mask);
807         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
808                                  ret ? 0 : handle->h_transaction->t_tid,
809                                  handle->h_type, handle->h_line_no,
810                                  handle->h_total_credits);
811         return ret;
812 }
813 EXPORT_SYMBOL(jbd2__journal_restart);
814
815
816 int jbd2_journal_restart(handle_t *handle, int nblocks)
817 {
818         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
819 }
820 EXPORT_SYMBOL(jbd2_journal_restart);
821
822 /**
823  * jbd2_journal_lock_updates () - establish a transaction barrier.
824  * @journal:  Journal to establish a barrier on.
825  *
826  * This locks out any further updates from being started, and blocks
827  * until all existing updates have completed, returning only once the
828  * journal is in a quiescent state with no updates running.
829  *
830  * The journal lock should not be held on entry.
831  */
832 void jbd2_journal_lock_updates(journal_t *journal)
833 {
834         DEFINE_WAIT(wait);
835
836         jbd2_might_wait_for_commit(journal);
837
838         write_lock(&journal->j_state_lock);
839         ++journal->j_barrier_count;
840
841         /* Wait until there are no reserved handles */
842         if (atomic_read(&journal->j_reserved_credits)) {
843                 write_unlock(&journal->j_state_lock);
844                 wait_event(journal->j_wait_reserved,
845                            atomic_read(&journal->j_reserved_credits) == 0);
846                 write_lock(&journal->j_state_lock);
847         }
848
849         /* Wait until there are no running updates */
850         while (1) {
851                 transaction_t *transaction = journal->j_running_transaction;
852
853                 if (!transaction)
854                         break;
855
856                 spin_lock(&transaction->t_handle_lock);
857                 prepare_to_wait(&journal->j_wait_updates, &wait,
858                                 TASK_UNINTERRUPTIBLE);
859                 if (!atomic_read(&transaction->t_updates)) {
860                         spin_unlock(&transaction->t_handle_lock);
861                         finish_wait(&journal->j_wait_updates, &wait);
862                         break;
863                 }
864                 spin_unlock(&transaction->t_handle_lock);
865                 write_unlock(&journal->j_state_lock);
866                 schedule();
867                 finish_wait(&journal->j_wait_updates, &wait);
868                 write_lock(&journal->j_state_lock);
869         }
870         write_unlock(&journal->j_state_lock);
871
872         /*
873          * We have now established a barrier against other normal updates, but
874          * we also need to barrier against other jbd2_journal_lock_updates() calls
875          * to make sure that we serialise special journal-locked operations
876          * too.
877          */
878         mutex_lock(&journal->j_barrier);
879 }
880
881 /**
882  * jbd2_journal_unlock_updates () - release barrier
883  * @journal:  Journal to release the barrier on.
884  *
885  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
886  *
887  * Should be called without the journal lock held.
888  */
889 void jbd2_journal_unlock_updates (journal_t *journal)
890 {
891         J_ASSERT(journal->j_barrier_count != 0);
892
893         mutex_unlock(&journal->j_barrier);
894         write_lock(&journal->j_state_lock);
895         --journal->j_barrier_count;
896         write_unlock(&journal->j_state_lock);
897         wake_up_all(&journal->j_wait_transaction_locked);
898 }
899
900 static void warn_dirty_buffer(struct buffer_head *bh)
901 {
902         printk(KERN_WARNING
903                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
904                "There's a risk of filesystem corruption in case of system "
905                "crash.\n",
906                bh->b_bdev, (unsigned long long)bh->b_blocknr);
907 }
908
909 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
910 static void jbd2_freeze_jh_data(struct journal_head *jh)
911 {
912         struct page *page;
913         int offset;
914         char *source;
915         struct buffer_head *bh = jh2bh(jh);
916
917         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
918         page = bh->b_page;
919         offset = offset_in_page(bh->b_data);
920         source = kmap_atomic(page);
921         /* Fire data frozen trigger just before we copy the data */
922         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
923         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
924         kunmap_atomic(source);
925
926         /*
927          * Now that the frozen data is saved off, we need to store any matching
928          * triggers.
929          */
930         jh->b_frozen_triggers = jh->b_triggers;
931 }
932
933 /*
934  * If the buffer is already part of the current transaction, then there
935  * is nothing we need to do.  If it is already part of a prior
936  * transaction which we are still committing to disk, then we need to
937  * make sure that we do not overwrite the old copy: we do copy-out to
938  * preserve the copy going to disk.  We also account the buffer against
939  * the handle's metadata buffer credits (unless the buffer is already
940  * part of the transaction, that is).
941  *
942  */
943 static int
944 do_get_write_access(handle_t *handle, struct journal_head *jh,
945                         int force_copy)
946 {
947         struct buffer_head *bh;
948         transaction_t *transaction = handle->h_transaction;
949         journal_t *journal;
950         int error;
951         char *frozen_buffer = NULL;
952         unsigned long start_lock, time_lock;
953
954         journal = transaction->t_journal;
955
956         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
957
958         JBUFFER_TRACE(jh, "entry");
959 repeat:
960         bh = jh2bh(jh);
961
962         /* @@@ Need to check for errors here at some point. */
963
964         start_lock = jiffies;
965         lock_buffer(bh);
966         spin_lock(&jh->b_state_lock);
967
968         /* If it takes too long to lock the buffer, trace it */
969         time_lock = jbd2_time_diff(start_lock, jiffies);
970         if (time_lock > HZ/10)
971                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
972                         jiffies_to_msecs(time_lock));
973
974         /* We now hold the buffer lock so it is safe to query the buffer
975          * state.  Is the buffer dirty?
976          *
977          * If so, there are two possibilities.  The buffer may be
978          * non-journaled, and undergoing a quite legitimate writeback.
979          * Otherwise, it is journaled, and we don't expect dirty buffers
980          * in that state (the buffers should be marked JBD_Dirty
981          * instead.)  So either the IO is being done under our own
982          * control and this is a bug, or it's a third party IO such as
983          * dump(8) (which may leave the buffer scheduled for read ---
984          * ie. locked but not dirty) or tune2fs (which may actually have
985          * the buffer dirtied, ugh.)  */
986
987         if (buffer_dirty(bh)) {
988                 /*
989                  * First question: is this buffer already part of the current
990                  * transaction or the existing committing transaction?
991                  */
992                 if (jh->b_transaction) {
993                         J_ASSERT_JH(jh,
994                                 jh->b_transaction == transaction ||
995                                 jh->b_transaction ==
996                                         journal->j_committing_transaction);
997                         if (jh->b_next_transaction)
998                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
999                                                         transaction);
1000                         warn_dirty_buffer(bh);
1001                 }
1002                 /*
1003                  * In any case we need to clean the dirty flag and we must
1004                  * do it under the buffer lock to be sure we don't race
1005                  * with running write-out.
1006                  */
1007                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1008                 clear_buffer_dirty(bh);
1009                 set_buffer_jbddirty(bh);
1010         }
1011
1012         unlock_buffer(bh);
1013
1014         error = -EROFS;
1015         if (is_handle_aborted(handle)) {
1016                 spin_unlock(&jh->b_state_lock);
1017                 goto out;
1018         }
1019         error = 0;
1020
1021         /*
1022          * The buffer is already part of this transaction if b_transaction or
1023          * b_next_transaction points to it
1024          */
1025         if (jh->b_transaction == transaction ||
1026             jh->b_next_transaction == transaction)
1027                 goto done;
1028
1029         /*
1030          * this is the first time this transaction is touching this buffer,
1031          * reset the modified flag
1032          */
1033         jh->b_modified = 0;
1034
1035         /*
1036          * If the buffer is not journaled right now, we need to make sure it
1037          * doesn't get written to disk before the caller actually commits the
1038          * new data
1039          */
1040         if (!jh->b_transaction) {
1041                 JBUFFER_TRACE(jh, "no transaction");
1042                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1043                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1044                 /*
1045                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1046                  * visible before attaching it to the running transaction.
1047                  * Paired with barrier in jbd2_write_access_granted()
1048                  */
1049                 smp_wmb();
1050                 spin_lock(&journal->j_list_lock);
1051                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1052                 spin_unlock(&journal->j_list_lock);
1053                 goto done;
1054         }
1055         /*
1056          * If there is already a copy-out version of this buffer, then we don't
1057          * need to make another one
1058          */
1059         if (jh->b_frozen_data) {
1060                 JBUFFER_TRACE(jh, "has frozen data");
1061                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062                 goto attach_next;
1063         }
1064
1065         JBUFFER_TRACE(jh, "owned by older transaction");
1066         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1067         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1068
1069         /*
1070          * There is one case we have to be very careful about.  If the
1071          * committing transaction is currently writing this buffer out to disk
1072          * and has NOT made a copy-out, then we cannot modify the buffer
1073          * contents at all right now.  The essence of copy-out is that it is
1074          * the extra copy, not the primary copy, which gets journaled.  If the
1075          * primary copy is already going to disk then we cannot do copy-out
1076          * here.
1077          */
1078         if (buffer_shadow(bh)) {
1079                 JBUFFER_TRACE(jh, "on shadow: sleep");
1080                 spin_unlock(&jh->b_state_lock);
1081                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1082                 goto repeat;
1083         }
1084
1085         /*
1086          * Only do the copy if the currently-owning transaction still needs it.
1087          * If buffer isn't on BJ_Metadata list, the committing transaction is
1088          * past that stage (here we use the fact that BH_Shadow is set under
1089          * bh_state lock together with refiling to BJ_Shadow list and at this
1090          * point we know the buffer doesn't have BH_Shadow set).
1091          *
1092          * Subtle point, though: if this is a get_undo_access, then we will be
1093          * relying on the frozen_data to contain the new value of the
1094          * committed_data record after the transaction, so we HAVE to force the
1095          * frozen_data copy in that case.
1096          */
1097         if (jh->b_jlist == BJ_Metadata || force_copy) {
1098                 JBUFFER_TRACE(jh, "generate frozen data");
1099                 if (!frozen_buffer) {
1100                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1101                         spin_unlock(&jh->b_state_lock);
1102                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1103                                                    GFP_NOFS | __GFP_NOFAIL);
1104                         goto repeat;
1105                 }
1106                 jh->b_frozen_data = frozen_buffer;
1107                 frozen_buffer = NULL;
1108                 jbd2_freeze_jh_data(jh);
1109         }
1110 attach_next:
1111         /*
1112          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1113          * before attaching it to the running transaction. Paired with barrier
1114          * in jbd2_write_access_granted()
1115          */
1116         smp_wmb();
1117         jh->b_next_transaction = transaction;
1118
1119 done:
1120         spin_unlock(&jh->b_state_lock);
1121
1122         /*
1123          * If we are about to journal a buffer, then any revoke pending on it is
1124          * no longer valid
1125          */
1126         jbd2_journal_cancel_revoke(handle, jh);
1127
1128 out:
1129         if (unlikely(frozen_buffer))    /* It's usually NULL */
1130                 jbd2_free(frozen_buffer, bh->b_size);
1131
1132         JBUFFER_TRACE(jh, "exit");
1133         return error;
1134 }
1135
1136 /* Fast check whether buffer is already attached to the required transaction */
1137 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1138                                                         bool undo)
1139 {
1140         struct journal_head *jh;
1141         bool ret = false;
1142
1143         /* Dirty buffers require special handling... */
1144         if (buffer_dirty(bh))
1145                 return false;
1146
1147         /*
1148          * RCU protects us from dereferencing freed pages. So the checks we do
1149          * are guaranteed not to oops. However the jh slab object can get freed
1150          * & reallocated while we work with it. So we have to be careful. When
1151          * we see jh attached to the running transaction, we know it must stay
1152          * so until the transaction is committed. Thus jh won't be freed and
1153          * will be attached to the same bh while we run.  However it can
1154          * happen jh gets freed, reallocated, and attached to the transaction
1155          * just after we get pointer to it from bh. So we have to be careful
1156          * and recheck jh still belongs to our bh before we return success.
1157          */
1158         rcu_read_lock();
1159         if (!buffer_jbd(bh))
1160                 goto out;
1161         /* This should be bh2jh() but that doesn't work with inline functions */
1162         jh = READ_ONCE(bh->b_private);
1163         if (!jh)
1164                 goto out;
1165         /* For undo access buffer must have data copied */
1166         if (undo && !jh->b_committed_data)
1167                 goto out;
1168         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1169             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1170                 goto out;
1171         /*
1172          * There are two reasons for the barrier here:
1173          * 1) Make sure to fetch b_bh after we did previous checks so that we
1174          * detect when jh went through free, realloc, attach to transaction
1175          * while we were checking. Paired with implicit barrier in that path.
1176          * 2) So that access to bh done after jbd2_write_access_granted()
1177          * doesn't get reordered and see inconsistent state of concurrent
1178          * do_get_write_access().
1179          */
1180         smp_mb();
1181         if (unlikely(jh->b_bh != bh))
1182                 goto out;
1183         ret = true;
1184 out:
1185         rcu_read_unlock();
1186         return ret;
1187 }
1188
1189 /**
1190  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1191  *                                   for metadata (not data) update.
1192  * @handle: transaction to add buffer modifications to
1193  * @bh:     bh to be used for metadata writes
1194  *
1195  * Returns: error code or 0 on success.
1196  *
1197  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1198  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1199  */
1200
1201 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1202 {
1203         struct journal_head *jh;
1204         int rc;
1205
1206         if (is_handle_aborted(handle))
1207                 return -EROFS;
1208
1209         if (jbd2_write_access_granted(handle, bh, false))
1210                 return 0;
1211
1212         jh = jbd2_journal_add_journal_head(bh);
1213         /* We do not want to get caught playing with fields which the
1214          * log thread also manipulates.  Make sure that the buffer
1215          * completes any outstanding IO before proceeding. */
1216         rc = do_get_write_access(handle, jh, 0);
1217         jbd2_journal_put_journal_head(jh);
1218         return rc;
1219 }
1220
1221
1222 /*
1223  * When the user wants to journal a newly created buffer_head
1224  * (ie. getblk() returned a new buffer and we are going to populate it
1225  * manually rather than reading off disk), then we need to keep the
1226  * buffer_head locked until it has been completely filled with new
1227  * data.  In this case, we should be able to make the assertion that
1228  * the bh is not already part of an existing transaction.
1229  *
1230  * The buffer should already be locked by the caller by this point.
1231  * There is no lock ranking violation: it was a newly created,
1232  * unlocked buffer beforehand. */
1233
1234 /**
1235  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1236  * @handle: transaction to new buffer to
1237  * @bh: new buffer.
1238  *
1239  * Call this if you create a new bh.
1240  */
1241 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1242 {
1243         transaction_t *transaction = handle->h_transaction;
1244         journal_t *journal;
1245         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1246         int err;
1247
1248         jbd_debug(5, "journal_head %p\n", jh);
1249         err = -EROFS;
1250         if (is_handle_aborted(handle))
1251                 goto out;
1252         journal = transaction->t_journal;
1253         err = 0;
1254
1255         JBUFFER_TRACE(jh, "entry");
1256         /*
1257          * The buffer may already belong to this transaction due to pre-zeroing
1258          * in the filesystem's new_block code.  It may also be on the previous,
1259          * committing transaction's lists, but it HAS to be in Forget state in
1260          * that case: the transaction must have deleted the buffer for it to be
1261          * reused here.
1262          */
1263         spin_lock(&jh->b_state_lock);
1264         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1265                 jh->b_transaction == NULL ||
1266                 (jh->b_transaction == journal->j_committing_transaction &&
1267                           jh->b_jlist == BJ_Forget)));
1268
1269         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1270         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1271
1272         if (jh->b_transaction == NULL) {
1273                 /*
1274                  * Previous jbd2_journal_forget() could have left the buffer
1275                  * with jbddirty bit set because it was being committed. When
1276                  * the commit finished, we've filed the buffer for
1277                  * checkpointing and marked it dirty. Now we are reallocating
1278                  * the buffer so the transaction freeing it must have
1279                  * committed and so it's safe to clear the dirty bit.
1280                  */
1281                 clear_buffer_dirty(jh2bh(jh));
1282                 /* first access by this transaction */
1283                 jh->b_modified = 0;
1284
1285                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1286                 spin_lock(&journal->j_list_lock);
1287                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1288                 spin_unlock(&journal->j_list_lock);
1289         } else if (jh->b_transaction == journal->j_committing_transaction) {
1290                 /* first access by this transaction */
1291                 jh->b_modified = 0;
1292
1293                 JBUFFER_TRACE(jh, "set next transaction");
1294                 spin_lock(&journal->j_list_lock);
1295                 jh->b_next_transaction = transaction;
1296                 spin_unlock(&journal->j_list_lock);
1297         }
1298         spin_unlock(&jh->b_state_lock);
1299
1300         /*
1301          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1302          * blocks which contain freed but then revoked metadata.  We need
1303          * to cancel the revoke in case we end up freeing it yet again
1304          * and the reallocating as data - this would cause a second revoke,
1305          * which hits an assertion error.
1306          */
1307         JBUFFER_TRACE(jh, "cancelling revoke");
1308         jbd2_journal_cancel_revoke(handle, jh);
1309 out:
1310         jbd2_journal_put_journal_head(jh);
1311         return err;
1312 }
1313
1314 /**
1315  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1316  *     non-rewindable consequences
1317  * @handle: transaction
1318  * @bh: buffer to undo
1319  *
1320  * Sometimes there is a need to distinguish between metadata which has
1321  * been committed to disk and that which has not.  The ext3fs code uses
1322  * this for freeing and allocating space, we have to make sure that we
1323  * do not reuse freed space until the deallocation has been committed,
1324  * since if we overwrote that space we would make the delete
1325  * un-rewindable in case of a crash.
1326  *
1327  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1328  * buffer for parts of non-rewindable operations such as delete
1329  * operations on the bitmaps.  The journaling code must keep a copy of
1330  * the buffer's contents prior to the undo_access call until such time
1331  * as we know that the buffer has definitely been committed to disk.
1332  *
1333  * We never need to know which transaction the committed data is part
1334  * of, buffers touched here are guaranteed to be dirtied later and so
1335  * will be committed to a new transaction in due course, at which point
1336  * we can discard the old committed data pointer.
1337  *
1338  * Returns error number or 0 on success.
1339  */
1340 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1341 {
1342         int err;
1343         struct journal_head *jh;
1344         char *committed_data = NULL;
1345
1346         if (is_handle_aborted(handle))
1347                 return -EROFS;
1348
1349         if (jbd2_write_access_granted(handle, bh, true))
1350                 return 0;
1351
1352         jh = jbd2_journal_add_journal_head(bh);
1353         JBUFFER_TRACE(jh, "entry");
1354
1355         /*
1356          * Do this first --- it can drop the journal lock, so we want to
1357          * make sure that obtaining the committed_data is done
1358          * atomically wrt. completion of any outstanding commits.
1359          */
1360         err = do_get_write_access(handle, jh, 1);
1361         if (err)
1362                 goto out;
1363
1364 repeat:
1365         if (!jh->b_committed_data)
1366                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1367                                             GFP_NOFS|__GFP_NOFAIL);
1368
1369         spin_lock(&jh->b_state_lock);
1370         if (!jh->b_committed_data) {
1371                 /* Copy out the current buffer contents into the
1372                  * preserved, committed copy. */
1373                 JBUFFER_TRACE(jh, "generate b_committed data");
1374                 if (!committed_data) {
1375                         spin_unlock(&jh->b_state_lock);
1376                         goto repeat;
1377                 }
1378
1379                 jh->b_committed_data = committed_data;
1380                 committed_data = NULL;
1381                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1382         }
1383         spin_unlock(&jh->b_state_lock);
1384 out:
1385         jbd2_journal_put_journal_head(jh);
1386         if (unlikely(committed_data))
1387                 jbd2_free(committed_data, bh->b_size);
1388         return err;
1389 }
1390
1391 /**
1392  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1393  * @bh: buffer to trigger on
1394  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1395  *
1396  * Set any triggers on this journal_head.  This is always safe, because
1397  * triggers for a committing buffer will be saved off, and triggers for
1398  * a running transaction will match the buffer in that transaction.
1399  *
1400  * Call with NULL to clear the triggers.
1401  */
1402 void jbd2_journal_set_triggers(struct buffer_head *bh,
1403                                struct jbd2_buffer_trigger_type *type)
1404 {
1405         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1406
1407         if (WARN_ON(!jh))
1408                 return;
1409         jh->b_triggers = type;
1410         jbd2_journal_put_journal_head(jh);
1411 }
1412
1413 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1414                                 struct jbd2_buffer_trigger_type *triggers)
1415 {
1416         struct buffer_head *bh = jh2bh(jh);
1417
1418         if (!triggers || !triggers->t_frozen)
1419                 return;
1420
1421         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1422 }
1423
1424 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1425                                struct jbd2_buffer_trigger_type *triggers)
1426 {
1427         if (!triggers || !triggers->t_abort)
1428                 return;
1429
1430         triggers->t_abort(triggers, jh2bh(jh));
1431 }
1432
1433 /**
1434  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1435  * @handle: transaction to add buffer to.
1436  * @bh: buffer to mark
1437  *
1438  * mark dirty metadata which needs to be journaled as part of the current
1439  * transaction.
1440  *
1441  * The buffer must have previously had jbd2_journal_get_write_access()
1442  * called so that it has a valid journal_head attached to the buffer
1443  * head.
1444  *
1445  * The buffer is placed on the transaction's metadata list and is marked
1446  * as belonging to the transaction.
1447  *
1448  * Returns error number or 0 on success.
1449  *
1450  * Special care needs to be taken if the buffer already belongs to the
1451  * current committing transaction (in which case we should have frozen
1452  * data present for that commit).  In that case, we don't relink the
1453  * buffer: that only gets done when the old transaction finally
1454  * completes its commit.
1455  */
1456 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1457 {
1458         transaction_t *transaction = handle->h_transaction;
1459         journal_t *journal;
1460         struct journal_head *jh;
1461         int ret = 0;
1462
1463         if (!buffer_jbd(bh))
1464                 return -EUCLEAN;
1465
1466         /*
1467          * We don't grab jh reference here since the buffer must be part
1468          * of the running transaction.
1469          */
1470         jh = bh2jh(bh);
1471         jbd_debug(5, "journal_head %p\n", jh);
1472         JBUFFER_TRACE(jh, "entry");
1473
1474         /*
1475          * This and the following assertions are unreliable since we may see jh
1476          * in inconsistent state unless we grab bh_state lock. But this is
1477          * crucial to catch bugs so let's do a reliable check until the
1478          * lockless handling is fully proven.
1479          */
1480         if (data_race(jh->b_transaction != transaction &&
1481             jh->b_next_transaction != transaction)) {
1482                 spin_lock(&jh->b_state_lock);
1483                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1484                                 jh->b_next_transaction == transaction);
1485                 spin_unlock(&jh->b_state_lock);
1486         }
1487         if (jh->b_modified == 1) {
1488                 /* If it's in our transaction it must be in BJ_Metadata list. */
1489                 if (data_race(jh->b_transaction == transaction &&
1490                     jh->b_jlist != BJ_Metadata)) {
1491                         spin_lock(&jh->b_state_lock);
1492                         if (jh->b_transaction == transaction &&
1493                             jh->b_jlist != BJ_Metadata)
1494                                 pr_err("JBD2: assertion failure: h_type=%u "
1495                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1496                                        handle->h_type, handle->h_line_no,
1497                                        (unsigned long long) bh->b_blocknr,
1498                                        jh->b_jlist);
1499                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1500                                         jh->b_jlist == BJ_Metadata);
1501                         spin_unlock(&jh->b_state_lock);
1502                 }
1503                 goto out;
1504         }
1505
1506         journal = transaction->t_journal;
1507         spin_lock(&jh->b_state_lock);
1508
1509         if (is_handle_aborted(handle)) {
1510                 /*
1511                  * Check journal aborting with @jh->b_state_lock locked,
1512                  * since 'jh->b_transaction' could be replaced with
1513                  * 'jh->b_next_transaction' during old transaction
1514                  * committing if journal aborted, which may fail
1515                  * assertion on 'jh->b_frozen_data == NULL'.
1516                  */
1517                 ret = -EROFS;
1518                 goto out_unlock_bh;
1519         }
1520
1521         if (jh->b_modified == 0) {
1522                 /*
1523                  * This buffer's got modified and becoming part
1524                  * of the transaction. This needs to be done
1525                  * once a transaction -bzzz
1526                  */
1527                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1528                         ret = -ENOSPC;
1529                         goto out_unlock_bh;
1530                 }
1531                 jh->b_modified = 1;
1532                 handle->h_total_credits--;
1533         }
1534
1535         /*
1536          * fastpath, to avoid expensive locking.  If this buffer is already
1537          * on the running transaction's metadata list there is nothing to do.
1538          * Nobody can take it off again because there is a handle open.
1539          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1540          * result in this test being false, so we go in and take the locks.
1541          */
1542         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1543                 JBUFFER_TRACE(jh, "fastpath");
1544                 if (unlikely(jh->b_transaction !=
1545                              journal->j_running_transaction)) {
1546                         printk(KERN_ERR "JBD2: %s: "
1547                                "jh->b_transaction (%llu, %p, %u) != "
1548                                "journal->j_running_transaction (%p, %u)\n",
1549                                journal->j_devname,
1550                                (unsigned long long) bh->b_blocknr,
1551                                jh->b_transaction,
1552                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1553                                journal->j_running_transaction,
1554                                journal->j_running_transaction ?
1555                                journal->j_running_transaction->t_tid : 0);
1556                         ret = -EINVAL;
1557                 }
1558                 goto out_unlock_bh;
1559         }
1560
1561         set_buffer_jbddirty(bh);
1562
1563         /*
1564          * Metadata already on the current transaction list doesn't
1565          * need to be filed.  Metadata on another transaction's list must
1566          * be committing, and will be refiled once the commit completes:
1567          * leave it alone for now.
1568          */
1569         if (jh->b_transaction != transaction) {
1570                 JBUFFER_TRACE(jh, "already on other transaction");
1571                 if (unlikely(((jh->b_transaction !=
1572                                journal->j_committing_transaction)) ||
1573                              (jh->b_next_transaction != transaction))) {
1574                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1575                                "bad jh for block %llu: "
1576                                "transaction (%p, %u), "
1577                                "jh->b_transaction (%p, %u), "
1578                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1579                                journal->j_devname,
1580                                (unsigned long long) bh->b_blocknr,
1581                                transaction, transaction->t_tid,
1582                                jh->b_transaction,
1583                                jh->b_transaction ?
1584                                jh->b_transaction->t_tid : 0,
1585                                jh->b_next_transaction,
1586                                jh->b_next_transaction ?
1587                                jh->b_next_transaction->t_tid : 0,
1588                                jh->b_jlist);
1589                         WARN_ON(1);
1590                         ret = -EINVAL;
1591                 }
1592                 /* And this case is illegal: we can't reuse another
1593                  * transaction's data buffer, ever. */
1594                 goto out_unlock_bh;
1595         }
1596
1597         /* That test should have eliminated the following case: */
1598         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1599
1600         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1601         spin_lock(&journal->j_list_lock);
1602         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1603         spin_unlock(&journal->j_list_lock);
1604 out_unlock_bh:
1605         spin_unlock(&jh->b_state_lock);
1606 out:
1607         JBUFFER_TRACE(jh, "exit");
1608         return ret;
1609 }
1610
1611 /**
1612  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1613  * @handle: transaction handle
1614  * @bh:     bh to 'forget'
1615  *
1616  * We can only do the bforget if there are no commits pending against the
1617  * buffer.  If the buffer is dirty in the current running transaction we
1618  * can safely unlink it.
1619  *
1620  * bh may not be a journalled buffer at all - it may be a non-JBD
1621  * buffer which came off the hashtable.  Check for this.
1622  *
1623  * Decrements bh->b_count by one.
1624  *
1625  * Allow this call even if the handle has aborted --- it may be part of
1626  * the caller's cleanup after an abort.
1627  */
1628 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1629 {
1630         transaction_t *transaction = handle->h_transaction;
1631         journal_t *journal;
1632         struct journal_head *jh;
1633         int drop_reserve = 0;
1634         int err = 0;
1635         int was_modified = 0;
1636
1637         if (is_handle_aborted(handle))
1638                 return -EROFS;
1639         journal = transaction->t_journal;
1640
1641         BUFFER_TRACE(bh, "entry");
1642
1643         jh = jbd2_journal_grab_journal_head(bh);
1644         if (!jh) {
1645                 __bforget(bh);
1646                 return 0;
1647         }
1648
1649         spin_lock(&jh->b_state_lock);
1650
1651         /* Critical error: attempting to delete a bitmap buffer, maybe?
1652          * Don't do any jbd operations, and return an error. */
1653         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1654                          "inconsistent data on disk")) {
1655                 err = -EIO;
1656                 goto drop;
1657         }
1658
1659         /* keep track of whether or not this transaction modified us */
1660         was_modified = jh->b_modified;
1661
1662         /*
1663          * The buffer's going from the transaction, we must drop
1664          * all references -bzzz
1665          */
1666         jh->b_modified = 0;
1667
1668         if (jh->b_transaction == transaction) {
1669                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1670
1671                 /* If we are forgetting a buffer which is already part
1672                  * of this transaction, then we can just drop it from
1673                  * the transaction immediately. */
1674                 clear_buffer_dirty(bh);
1675                 clear_buffer_jbddirty(bh);
1676
1677                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1678
1679                 /*
1680                  * we only want to drop a reference if this transaction
1681                  * modified the buffer
1682                  */
1683                 if (was_modified)
1684                         drop_reserve = 1;
1685
1686                 /*
1687                  * We are no longer going to journal this buffer.
1688                  * However, the commit of this transaction is still
1689                  * important to the buffer: the delete that we are now
1690                  * processing might obsolete an old log entry, so by
1691                  * committing, we can satisfy the buffer's checkpoint.
1692                  *
1693                  * So, if we have a checkpoint on the buffer, we should
1694                  * now refile the buffer on our BJ_Forget list so that
1695                  * we know to remove the checkpoint after we commit.
1696                  */
1697
1698                 spin_lock(&journal->j_list_lock);
1699                 if (jh->b_cp_transaction) {
1700                         __jbd2_journal_temp_unlink_buffer(jh);
1701                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1702                 } else {
1703                         __jbd2_journal_unfile_buffer(jh);
1704                         jbd2_journal_put_journal_head(jh);
1705                 }
1706                 spin_unlock(&journal->j_list_lock);
1707         } else if (jh->b_transaction) {
1708                 J_ASSERT_JH(jh, (jh->b_transaction ==
1709                                  journal->j_committing_transaction));
1710                 /* However, if the buffer is still owned by a prior
1711                  * (committing) transaction, we can't drop it yet... */
1712                 JBUFFER_TRACE(jh, "belongs to older transaction");
1713                 /* ... but we CAN drop it from the new transaction through
1714                  * marking the buffer as freed and set j_next_transaction to
1715                  * the new transaction, so that not only the commit code
1716                  * knows it should clear dirty bits when it is done with the
1717                  * buffer, but also the buffer can be checkpointed only
1718                  * after the new transaction commits. */
1719
1720                 set_buffer_freed(bh);
1721
1722                 if (!jh->b_next_transaction) {
1723                         spin_lock(&journal->j_list_lock);
1724                         jh->b_next_transaction = transaction;
1725                         spin_unlock(&journal->j_list_lock);
1726                 } else {
1727                         J_ASSERT(jh->b_next_transaction == transaction);
1728
1729                         /*
1730                          * only drop a reference if this transaction modified
1731                          * the buffer
1732                          */
1733                         if (was_modified)
1734                                 drop_reserve = 1;
1735                 }
1736         } else {
1737                 /*
1738                  * Finally, if the buffer is not belongs to any
1739                  * transaction, we can just drop it now if it has no
1740                  * checkpoint.
1741                  */
1742                 spin_lock(&journal->j_list_lock);
1743                 if (!jh->b_cp_transaction) {
1744                         JBUFFER_TRACE(jh, "belongs to none transaction");
1745                         spin_unlock(&journal->j_list_lock);
1746                         goto drop;
1747                 }
1748
1749                 /*
1750                  * Otherwise, if the buffer has been written to disk,
1751                  * it is safe to remove the checkpoint and drop it.
1752                  */
1753                 if (!buffer_dirty(bh)) {
1754                         __jbd2_journal_remove_checkpoint(jh);
1755                         spin_unlock(&journal->j_list_lock);
1756                         goto drop;
1757                 }
1758
1759                 /*
1760                  * The buffer is still not written to disk, we should
1761                  * attach this buffer to current transaction so that the
1762                  * buffer can be checkpointed only after the current
1763                  * transaction commits.
1764                  */
1765                 clear_buffer_dirty(bh);
1766                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1767                 spin_unlock(&journal->j_list_lock);
1768         }
1769 drop:
1770         __brelse(bh);
1771         spin_unlock(&jh->b_state_lock);
1772         jbd2_journal_put_journal_head(jh);
1773         if (drop_reserve) {
1774                 /* no need to reserve log space for this block -bzzz */
1775                 handle->h_total_credits++;
1776         }
1777         return err;
1778 }
1779
1780 /**
1781  * jbd2_journal_stop() - complete a transaction
1782  * @handle: transaction to complete.
1783  *
1784  * All done for a particular handle.
1785  *
1786  * There is not much action needed here.  We just return any remaining
1787  * buffer credits to the transaction and remove the handle.  The only
1788  * complication is that we need to start a commit operation if the
1789  * filesystem is marked for synchronous update.
1790  *
1791  * jbd2_journal_stop itself will not usually return an error, but it may
1792  * do so in unusual circumstances.  In particular, expect it to
1793  * return -EIO if a jbd2_journal_abort has been executed since the
1794  * transaction began.
1795  */
1796 int jbd2_journal_stop(handle_t *handle)
1797 {
1798         transaction_t *transaction = handle->h_transaction;
1799         journal_t *journal;
1800         int err = 0, wait_for_commit = 0;
1801         tid_t tid;
1802         pid_t pid;
1803
1804         if (--handle->h_ref > 0) {
1805                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1806                                                  handle->h_ref);
1807                 if (is_handle_aborted(handle))
1808                         return -EIO;
1809                 return 0;
1810         }
1811         if (!transaction) {
1812                 /*
1813                  * Handle is already detached from the transaction so there is
1814                  * nothing to do other than free the handle.
1815                  */
1816                 memalloc_nofs_restore(handle->saved_alloc_context);
1817                 goto free_and_exit;
1818         }
1819         journal = transaction->t_journal;
1820         tid = transaction->t_tid;
1821
1822         if (is_handle_aborted(handle))
1823                 err = -EIO;
1824
1825         jbd_debug(4, "Handle %p going down\n", handle);
1826         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1827                                 tid, handle->h_type, handle->h_line_no,
1828                                 jiffies - handle->h_start_jiffies,
1829                                 handle->h_sync, handle->h_requested_credits,
1830                                 (handle->h_requested_credits -
1831                                  handle->h_total_credits));
1832
1833         /*
1834          * Implement synchronous transaction batching.  If the handle
1835          * was synchronous, don't force a commit immediately.  Let's
1836          * yield and let another thread piggyback onto this
1837          * transaction.  Keep doing that while new threads continue to
1838          * arrive.  It doesn't cost much - we're about to run a commit
1839          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1840          * operations by 30x or more...
1841          *
1842          * We try and optimize the sleep time against what the
1843          * underlying disk can do, instead of having a static sleep
1844          * time.  This is useful for the case where our storage is so
1845          * fast that it is more optimal to go ahead and force a flush
1846          * and wait for the transaction to be committed than it is to
1847          * wait for an arbitrary amount of time for new writers to
1848          * join the transaction.  We achieve this by measuring how
1849          * long it takes to commit a transaction, and compare it with
1850          * how long this transaction has been running, and if run time
1851          * < commit time then we sleep for the delta and commit.  This
1852          * greatly helps super fast disks that would see slowdowns as
1853          * more threads started doing fsyncs.
1854          *
1855          * But don't do this if this process was the most recent one
1856          * to perform a synchronous write.  We do this to detect the
1857          * case where a single process is doing a stream of sync
1858          * writes.  No point in waiting for joiners in that case.
1859          *
1860          * Setting max_batch_time to 0 disables this completely.
1861          */
1862         pid = current->pid;
1863         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1864             journal->j_max_batch_time) {
1865                 u64 commit_time, trans_time;
1866
1867                 journal->j_last_sync_writer = pid;
1868
1869                 read_lock(&journal->j_state_lock);
1870                 commit_time = journal->j_average_commit_time;
1871                 read_unlock(&journal->j_state_lock);
1872
1873                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1874                                                    transaction->t_start_time));
1875
1876                 commit_time = max_t(u64, commit_time,
1877                                     1000*journal->j_min_batch_time);
1878                 commit_time = min_t(u64, commit_time,
1879                                     1000*journal->j_max_batch_time);
1880
1881                 if (trans_time < commit_time) {
1882                         ktime_t expires = ktime_add_ns(ktime_get(),
1883                                                        commit_time);
1884                         set_current_state(TASK_UNINTERRUPTIBLE);
1885                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1886                 }
1887         }
1888
1889         if (handle->h_sync)
1890                 transaction->t_synchronous_commit = 1;
1891
1892         /*
1893          * If the handle is marked SYNC, we need to set another commit
1894          * going!  We also want to force a commit if the transaction is too
1895          * old now.
1896          */
1897         if (handle->h_sync ||
1898             time_after_eq(jiffies, transaction->t_expires)) {
1899                 /* Do this even for aborted journals: an abort still
1900                  * completes the commit thread, it just doesn't write
1901                  * anything to disk. */
1902
1903                 jbd_debug(2, "transaction too old, requesting commit for "
1904                                         "handle %p\n", handle);
1905                 /* This is non-blocking */
1906                 jbd2_log_start_commit(journal, tid);
1907
1908                 /*
1909                  * Special case: JBD2_SYNC synchronous updates require us
1910                  * to wait for the commit to complete.
1911                  */
1912                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1913                         wait_for_commit = 1;
1914         }
1915
1916         /*
1917          * Once stop_this_handle() drops t_updates, the transaction could start
1918          * committing on us and eventually disappear.  So we must not
1919          * dereference transaction pointer again after calling
1920          * stop_this_handle().
1921          */
1922         stop_this_handle(handle);
1923
1924         if (wait_for_commit)
1925                 err = jbd2_log_wait_commit(journal, tid);
1926
1927 free_and_exit:
1928         if (handle->h_rsv_handle)
1929                 jbd2_free_handle(handle->h_rsv_handle);
1930         jbd2_free_handle(handle);
1931         return err;
1932 }
1933
1934 /*
1935  *
1936  * List management code snippets: various functions for manipulating the
1937  * transaction buffer lists.
1938  *
1939  */
1940
1941 /*
1942  * Append a buffer to a transaction list, given the transaction's list head
1943  * pointer.
1944  *
1945  * j_list_lock is held.
1946  *
1947  * jh->b_state_lock is held.
1948  */
1949
1950 static inline void
1951 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1952 {
1953         if (!*list) {
1954                 jh->b_tnext = jh->b_tprev = jh;
1955                 *list = jh;
1956         } else {
1957                 /* Insert at the tail of the list to preserve order */
1958                 struct journal_head *first = *list, *last = first->b_tprev;
1959                 jh->b_tprev = last;
1960                 jh->b_tnext = first;
1961                 last->b_tnext = first->b_tprev = jh;
1962         }
1963 }
1964
1965 /*
1966  * Remove a buffer from a transaction list, given the transaction's list
1967  * head pointer.
1968  *
1969  * Called with j_list_lock held, and the journal may not be locked.
1970  *
1971  * jh->b_state_lock is held.
1972  */
1973
1974 static inline void
1975 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1976 {
1977         if (*list == jh) {
1978                 *list = jh->b_tnext;
1979                 if (*list == jh)
1980                         *list = NULL;
1981         }
1982         jh->b_tprev->b_tnext = jh->b_tnext;
1983         jh->b_tnext->b_tprev = jh->b_tprev;
1984 }
1985
1986 /*
1987  * Remove a buffer from the appropriate transaction list.
1988  *
1989  * Note that this function can *change* the value of
1990  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1991  * t_reserved_list.  If the caller is holding onto a copy of one of these
1992  * pointers, it could go bad.  Generally the caller needs to re-read the
1993  * pointer from the transaction_t.
1994  *
1995  * Called under j_list_lock.
1996  */
1997 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1998 {
1999         struct journal_head **list = NULL;
2000         transaction_t *transaction;
2001         struct buffer_head *bh = jh2bh(jh);
2002
2003         lockdep_assert_held(&jh->b_state_lock);
2004         transaction = jh->b_transaction;
2005         if (transaction)
2006                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2007
2008         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2009         if (jh->b_jlist != BJ_None)
2010                 J_ASSERT_JH(jh, transaction != NULL);
2011
2012         switch (jh->b_jlist) {
2013         case BJ_None:
2014                 return;
2015         case BJ_Metadata:
2016                 transaction->t_nr_buffers--;
2017                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2018                 list = &transaction->t_buffers;
2019                 break;
2020         case BJ_Forget:
2021                 list = &transaction->t_forget;
2022                 break;
2023         case BJ_Shadow:
2024                 list = &transaction->t_shadow_list;
2025                 break;
2026         case BJ_Reserved:
2027                 list = &transaction->t_reserved_list;
2028                 break;
2029         }
2030
2031         __blist_del_buffer(list, jh);
2032         jh->b_jlist = BJ_None;
2033         if (transaction && is_journal_aborted(transaction->t_journal))
2034                 clear_buffer_jbddirty(bh);
2035         else if (test_clear_buffer_jbddirty(bh))
2036                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2037 }
2038
2039 /*
2040  * Remove buffer from all transactions. The caller is responsible for dropping
2041  * the jh reference that belonged to the transaction.
2042  *
2043  * Called with bh_state lock and j_list_lock
2044  */
2045 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2046 {
2047         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2048         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2049
2050         __jbd2_journal_temp_unlink_buffer(jh);
2051         jh->b_transaction = NULL;
2052 }
2053
2054 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2055 {
2056         struct buffer_head *bh = jh2bh(jh);
2057
2058         /* Get reference so that buffer cannot be freed before we unlock it */
2059         get_bh(bh);
2060         spin_lock(&jh->b_state_lock);
2061         spin_lock(&journal->j_list_lock);
2062         __jbd2_journal_unfile_buffer(jh);
2063         spin_unlock(&journal->j_list_lock);
2064         spin_unlock(&jh->b_state_lock);
2065         jbd2_journal_put_journal_head(jh);
2066         __brelse(bh);
2067 }
2068
2069 /*
2070  * Called from jbd2_journal_try_to_free_buffers().
2071  *
2072  * Called under jh->b_state_lock
2073  */
2074 static void
2075 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2076 {
2077         struct journal_head *jh;
2078
2079         jh = bh2jh(bh);
2080
2081         if (buffer_locked(bh) || buffer_dirty(bh))
2082                 goto out;
2083
2084         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2085                 goto out;
2086
2087         spin_lock(&journal->j_list_lock);
2088         if (jh->b_cp_transaction != NULL) {
2089                 /* written-back checkpointed metadata buffer */
2090                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2091                 __jbd2_journal_remove_checkpoint(jh);
2092         }
2093         spin_unlock(&journal->j_list_lock);
2094 out:
2095         return;
2096 }
2097
2098 /**
2099  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2100  * @journal: journal for operation
2101  * @page: to try and free
2102  *
2103  * For all the buffers on this page,
2104  * if they are fully written out ordered data, move them onto BUF_CLEAN
2105  * so try_to_free_buffers() can reap them.
2106  *
2107  * This function returns non-zero if we wish try_to_free_buffers()
2108  * to be called. We do this if the page is releasable by try_to_free_buffers().
2109  * We also do it if the page has locked or dirty buffers and the caller wants
2110  * us to perform sync or async writeout.
2111  *
2112  * This complicates JBD locking somewhat.  We aren't protected by the
2113  * BKL here.  We wish to remove the buffer from its committing or
2114  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2115  *
2116  * This may *change* the value of transaction_t->t_datalist, so anyone
2117  * who looks at t_datalist needs to lock against this function.
2118  *
2119  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2120  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2121  * will come out of the lock with the buffer dirty, which makes it
2122  * ineligible for release here.
2123  *
2124  * Who else is affected by this?  hmm...  Really the only contender
2125  * is do_get_write_access() - it could be looking at the buffer while
2126  * journal_try_to_free_buffer() is changing its state.  But that
2127  * cannot happen because we never reallocate freed data as metadata
2128  * while the data is part of a transaction.  Yes?
2129  *
2130  * Return 0 on failure, 1 on success
2131  */
2132 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2133 {
2134         struct buffer_head *head;
2135         struct buffer_head *bh;
2136         bool has_write_io_error = false;
2137         int ret = 0;
2138
2139         J_ASSERT(PageLocked(page));
2140
2141         head = page_buffers(page);
2142         bh = head;
2143         do {
2144                 struct journal_head *jh;
2145
2146                 /*
2147                  * We take our own ref against the journal_head here to avoid
2148                  * having to add tons of locking around each instance of
2149                  * jbd2_journal_put_journal_head().
2150                  */
2151                 jh = jbd2_journal_grab_journal_head(bh);
2152                 if (!jh)
2153                         continue;
2154
2155                 spin_lock(&jh->b_state_lock);
2156                 __journal_try_to_free_buffer(journal, bh);
2157                 spin_unlock(&jh->b_state_lock);
2158                 jbd2_journal_put_journal_head(jh);
2159                 if (buffer_jbd(bh))
2160                         goto busy;
2161
2162                 /*
2163                  * If we free a metadata buffer which has been failed to
2164                  * write out, the jbd2 checkpoint procedure will not detect
2165                  * this failure and may lead to filesystem inconsistency
2166                  * after cleanup journal tail.
2167                  */
2168                 if (buffer_write_io_error(bh)) {
2169                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2170                                (unsigned long long)bh->b_blocknr);
2171                         has_write_io_error = true;
2172                 }
2173         } while ((bh = bh->b_this_page) != head);
2174
2175         ret = try_to_free_buffers(page);
2176
2177 busy:
2178         if (has_write_io_error)
2179                 jbd2_journal_abort(journal, -EIO);
2180
2181         return ret;
2182 }
2183
2184 /*
2185  * This buffer is no longer needed.  If it is on an older transaction's
2186  * checkpoint list we need to record it on this transaction's forget list
2187  * to pin this buffer (and hence its checkpointing transaction) down until
2188  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2189  * release it.
2190  * Returns non-zero if JBD no longer has an interest in the buffer.
2191  *
2192  * Called under j_list_lock.
2193  *
2194  * Called under jh->b_state_lock.
2195  */
2196 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2197 {
2198         int may_free = 1;
2199         struct buffer_head *bh = jh2bh(jh);
2200
2201         if (jh->b_cp_transaction) {
2202                 JBUFFER_TRACE(jh, "on running+cp transaction");
2203                 __jbd2_journal_temp_unlink_buffer(jh);
2204                 /*
2205                  * We don't want to write the buffer anymore, clear the
2206                  * bit so that we don't confuse checks in
2207                  * __journal_file_buffer
2208                  */
2209                 clear_buffer_dirty(bh);
2210                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2211                 may_free = 0;
2212         } else {
2213                 JBUFFER_TRACE(jh, "on running transaction");
2214                 __jbd2_journal_unfile_buffer(jh);
2215                 jbd2_journal_put_journal_head(jh);
2216         }
2217         return may_free;
2218 }
2219
2220 /*
2221  * jbd2_journal_invalidatepage
2222  *
2223  * This code is tricky.  It has a number of cases to deal with.
2224  *
2225  * There are two invariants which this code relies on:
2226  *
2227  * i_size must be updated on disk before we start calling invalidatepage on the
2228  * data.
2229  *
2230  *  This is done in ext3 by defining an ext3_setattr method which
2231  *  updates i_size before truncate gets going.  By maintaining this
2232  *  invariant, we can be sure that it is safe to throw away any buffers
2233  *  attached to the current transaction: once the transaction commits,
2234  *  we know that the data will not be needed.
2235  *
2236  *  Note however that we can *not* throw away data belonging to the
2237  *  previous, committing transaction!
2238  *
2239  * Any disk blocks which *are* part of the previous, committing
2240  * transaction (and which therefore cannot be discarded immediately) are
2241  * not going to be reused in the new running transaction
2242  *
2243  *  The bitmap committed_data images guarantee this: any block which is
2244  *  allocated in one transaction and removed in the next will be marked
2245  *  as in-use in the committed_data bitmap, so cannot be reused until
2246  *  the next transaction to delete the block commits.  This means that
2247  *  leaving committing buffers dirty is quite safe: the disk blocks
2248  *  cannot be reallocated to a different file and so buffer aliasing is
2249  *  not possible.
2250  *
2251  *
2252  * The above applies mainly to ordered data mode.  In writeback mode we
2253  * don't make guarantees about the order in which data hits disk --- in
2254  * particular we don't guarantee that new dirty data is flushed before
2255  * transaction commit --- so it is always safe just to discard data
2256  * immediately in that mode.  --sct
2257  */
2258
2259 /*
2260  * The journal_unmap_buffer helper function returns zero if the buffer
2261  * concerned remains pinned as an anonymous buffer belonging to an older
2262  * transaction.
2263  *
2264  * We're outside-transaction here.  Either or both of j_running_transaction
2265  * and j_committing_transaction may be NULL.
2266  */
2267 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2268                                 int partial_page)
2269 {
2270         transaction_t *transaction;
2271         struct journal_head *jh;
2272         int may_free = 1;
2273
2274         BUFFER_TRACE(bh, "entry");
2275
2276         /*
2277          * It is safe to proceed here without the j_list_lock because the
2278          * buffers cannot be stolen by try_to_free_buffers as long as we are
2279          * holding the page lock. --sct
2280          */
2281
2282         jh = jbd2_journal_grab_journal_head(bh);
2283         if (!jh)
2284                 goto zap_buffer_unlocked;
2285
2286         /* OK, we have data buffer in journaled mode */
2287         write_lock(&journal->j_state_lock);
2288         spin_lock(&jh->b_state_lock);
2289         spin_lock(&journal->j_list_lock);
2290
2291         /*
2292          * We cannot remove the buffer from checkpoint lists until the
2293          * transaction adding inode to orphan list (let's call it T)
2294          * is committed.  Otherwise if the transaction changing the
2295          * buffer would be cleaned from the journal before T is
2296          * committed, a crash will cause that the correct contents of
2297          * the buffer will be lost.  On the other hand we have to
2298          * clear the buffer dirty bit at latest at the moment when the
2299          * transaction marking the buffer as freed in the filesystem
2300          * structures is committed because from that moment on the
2301          * block can be reallocated and used by a different page.
2302          * Since the block hasn't been freed yet but the inode has
2303          * already been added to orphan list, it is safe for us to add
2304          * the buffer to BJ_Forget list of the newest transaction.
2305          *
2306          * Also we have to clear buffer_mapped flag of a truncated buffer
2307          * because the buffer_head may be attached to the page straddling
2308          * i_size (can happen only when blocksize < pagesize) and thus the
2309          * buffer_head can be reused when the file is extended again. So we end
2310          * up keeping around invalidated buffers attached to transactions'
2311          * BJ_Forget list just to stop checkpointing code from cleaning up
2312          * the transaction this buffer was modified in.
2313          */
2314         transaction = jh->b_transaction;
2315         if (transaction == NULL) {
2316                 /* First case: not on any transaction.  If it
2317                  * has no checkpoint link, then we can zap it:
2318                  * it's a writeback-mode buffer so we don't care
2319                  * if it hits disk safely. */
2320                 if (!jh->b_cp_transaction) {
2321                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2322                         goto zap_buffer;
2323                 }
2324
2325                 if (!buffer_dirty(bh)) {
2326                         /* bdflush has written it.  We can drop it now */
2327                         __jbd2_journal_remove_checkpoint(jh);
2328                         goto zap_buffer;
2329                 }
2330
2331                 /* OK, it must be in the journal but still not
2332                  * written fully to disk: it's metadata or
2333                  * journaled data... */
2334
2335                 if (journal->j_running_transaction) {
2336                         /* ... and once the current transaction has
2337                          * committed, the buffer won't be needed any
2338                          * longer. */
2339                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2340                         may_free = __dispose_buffer(jh,
2341                                         journal->j_running_transaction);
2342                         goto zap_buffer;
2343                 } else {
2344                         /* There is no currently-running transaction. So the
2345                          * orphan record which we wrote for this file must have
2346                          * passed into commit.  We must attach this buffer to
2347                          * the committing transaction, if it exists. */
2348                         if (journal->j_committing_transaction) {
2349                                 JBUFFER_TRACE(jh, "give to committing trans");
2350                                 may_free = __dispose_buffer(jh,
2351                                         journal->j_committing_transaction);
2352                                 goto zap_buffer;
2353                         } else {
2354                                 /* The orphan record's transaction has
2355                                  * committed.  We can cleanse this buffer */
2356                                 clear_buffer_jbddirty(bh);
2357                                 __jbd2_journal_remove_checkpoint(jh);
2358                                 goto zap_buffer;
2359                         }
2360                 }
2361         } else if (transaction == journal->j_committing_transaction) {
2362                 JBUFFER_TRACE(jh, "on committing transaction");
2363                 /*
2364                  * The buffer is committing, we simply cannot touch
2365                  * it. If the page is straddling i_size we have to wait
2366                  * for commit and try again.
2367                  */
2368                 if (partial_page) {
2369                         spin_unlock(&journal->j_list_lock);
2370                         spin_unlock(&jh->b_state_lock);
2371                         write_unlock(&journal->j_state_lock);
2372                         jbd2_journal_put_journal_head(jh);
2373                         return -EBUSY;
2374                 }
2375                 /*
2376                  * OK, buffer won't be reachable after truncate. We just clear
2377                  * b_modified to not confuse transaction credit accounting, and
2378                  * set j_next_transaction to the running transaction (if there
2379                  * is one) and mark buffer as freed so that commit code knows
2380                  * it should clear dirty bits when it is done with the buffer.
2381                  */
2382                 set_buffer_freed(bh);
2383                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2384                         jh->b_next_transaction = journal->j_running_transaction;
2385                 jh->b_modified = 0;
2386                 spin_unlock(&journal->j_list_lock);
2387                 spin_unlock(&jh->b_state_lock);
2388                 write_unlock(&journal->j_state_lock);
2389                 jbd2_journal_put_journal_head(jh);
2390                 return 0;
2391         } else {
2392                 /* Good, the buffer belongs to the running transaction.
2393                  * We are writing our own transaction's data, not any
2394                  * previous one's, so it is safe to throw it away
2395                  * (remember that we expect the filesystem to have set
2396                  * i_size already for this truncate so recovery will not
2397                  * expose the disk blocks we are discarding here.) */
2398                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2399                 JBUFFER_TRACE(jh, "on running transaction");
2400                 may_free = __dispose_buffer(jh, transaction);
2401         }
2402
2403 zap_buffer:
2404         /*
2405          * This is tricky. Although the buffer is truncated, it may be reused
2406          * if blocksize < pagesize and it is attached to the page straddling
2407          * EOF. Since the buffer might have been added to BJ_Forget list of the
2408          * running transaction, journal_get_write_access() won't clear
2409          * b_modified and credit accounting gets confused. So clear b_modified
2410          * here.
2411          */
2412         jh->b_modified = 0;
2413         spin_unlock(&journal->j_list_lock);
2414         spin_unlock(&jh->b_state_lock);
2415         write_unlock(&journal->j_state_lock);
2416         jbd2_journal_put_journal_head(jh);
2417 zap_buffer_unlocked:
2418         clear_buffer_dirty(bh);
2419         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2420         clear_buffer_mapped(bh);
2421         clear_buffer_req(bh);
2422         clear_buffer_new(bh);
2423         clear_buffer_delay(bh);
2424         clear_buffer_unwritten(bh);
2425         bh->b_bdev = NULL;
2426         return may_free;
2427 }
2428
2429 /**
2430  * jbd2_journal_invalidatepage()
2431  * @journal: journal to use for flush...
2432  * @page:    page to flush
2433  * @offset:  start of the range to invalidate
2434  * @length:  length of the range to invalidate
2435  *
2436  * Reap page buffers containing data after in the specified range in page.
2437  * Can return -EBUSY if buffers are part of the committing transaction and
2438  * the page is straddling i_size. Caller then has to wait for current commit
2439  * and try again.
2440  */
2441 int jbd2_journal_invalidatepage(journal_t *journal,
2442                                 struct page *page,
2443                                 unsigned int offset,
2444                                 unsigned int length)
2445 {
2446         struct buffer_head *head, *bh, *next;
2447         unsigned int stop = offset + length;
2448         unsigned int curr_off = 0;
2449         int partial_page = (offset || length < PAGE_SIZE);
2450         int may_free = 1;
2451         int ret = 0;
2452
2453         if (!PageLocked(page))
2454                 BUG();
2455         if (!page_has_buffers(page))
2456                 return 0;
2457
2458         BUG_ON(stop > PAGE_SIZE || stop < length);
2459
2460         /* We will potentially be playing with lists other than just the
2461          * data lists (especially for journaled data mode), so be
2462          * cautious in our locking. */
2463
2464         head = bh = page_buffers(page);
2465         do {
2466                 unsigned int next_off = curr_off + bh->b_size;
2467                 next = bh->b_this_page;
2468
2469                 if (next_off > stop)
2470                         return 0;
2471
2472                 if (offset <= curr_off) {
2473                         /* This block is wholly outside the truncation point */
2474                         lock_buffer(bh);
2475                         ret = journal_unmap_buffer(journal, bh, partial_page);
2476                         unlock_buffer(bh);
2477                         if (ret < 0)
2478                                 return ret;
2479                         may_free &= ret;
2480                 }
2481                 curr_off = next_off;
2482                 bh = next;
2483
2484         } while (bh != head);
2485
2486         if (!partial_page) {
2487                 if (may_free && try_to_free_buffers(page))
2488                         J_ASSERT(!page_has_buffers(page));
2489         }
2490         return 0;
2491 }
2492
2493 /*
2494  * File a buffer on the given transaction list.
2495  */
2496 void __jbd2_journal_file_buffer(struct journal_head *jh,
2497                         transaction_t *transaction, int jlist)
2498 {
2499         struct journal_head **list = NULL;
2500         int was_dirty = 0;
2501         struct buffer_head *bh = jh2bh(jh);
2502
2503         lockdep_assert_held(&jh->b_state_lock);
2504         assert_spin_locked(&transaction->t_journal->j_list_lock);
2505
2506         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2507         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2508                                 jh->b_transaction == NULL);
2509
2510         if (jh->b_transaction && jh->b_jlist == jlist)
2511                 return;
2512
2513         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2514             jlist == BJ_Shadow || jlist == BJ_Forget) {
2515                 /*
2516                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2517                  * instead of buffer_dirty. We should not see a dirty bit set
2518                  * here because we clear it in do_get_write_access but e.g.
2519                  * tune2fs can modify the sb and set the dirty bit at any time
2520                  * so we try to gracefully handle that.
2521                  */
2522                 if (buffer_dirty(bh))
2523                         warn_dirty_buffer(bh);
2524                 if (test_clear_buffer_dirty(bh) ||
2525                     test_clear_buffer_jbddirty(bh))
2526                         was_dirty = 1;
2527         }
2528
2529         if (jh->b_transaction)
2530                 __jbd2_journal_temp_unlink_buffer(jh);
2531         else
2532                 jbd2_journal_grab_journal_head(bh);
2533         jh->b_transaction = transaction;
2534
2535         switch (jlist) {
2536         case BJ_None:
2537                 J_ASSERT_JH(jh, !jh->b_committed_data);
2538                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2539                 return;
2540         case BJ_Metadata:
2541                 transaction->t_nr_buffers++;
2542                 list = &transaction->t_buffers;
2543                 break;
2544         case BJ_Forget:
2545                 list = &transaction->t_forget;
2546                 break;
2547         case BJ_Shadow:
2548                 list = &transaction->t_shadow_list;
2549                 break;
2550         case BJ_Reserved:
2551                 list = &transaction->t_reserved_list;
2552                 break;
2553         }
2554
2555         __blist_add_buffer(list, jh);
2556         jh->b_jlist = jlist;
2557
2558         if (was_dirty)
2559                 set_buffer_jbddirty(bh);
2560 }
2561
2562 void jbd2_journal_file_buffer(struct journal_head *jh,
2563                                 transaction_t *transaction, int jlist)
2564 {
2565         spin_lock(&jh->b_state_lock);
2566         spin_lock(&transaction->t_journal->j_list_lock);
2567         __jbd2_journal_file_buffer(jh, transaction, jlist);
2568         spin_unlock(&transaction->t_journal->j_list_lock);
2569         spin_unlock(&jh->b_state_lock);
2570 }
2571
2572 /*
2573  * Remove a buffer from its current buffer list in preparation for
2574  * dropping it from its current transaction entirely.  If the buffer has
2575  * already started to be used by a subsequent transaction, refile the
2576  * buffer on that transaction's metadata list.
2577  *
2578  * Called under j_list_lock
2579  * Called under jh->b_state_lock
2580  *
2581  * When this function returns true, there's no next transaction to refile to
2582  * and the caller has to drop jh reference through
2583  * jbd2_journal_put_journal_head().
2584  */
2585 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2586 {
2587         int was_dirty, jlist;
2588         struct buffer_head *bh = jh2bh(jh);
2589
2590         lockdep_assert_held(&jh->b_state_lock);
2591         if (jh->b_transaction)
2592                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2593
2594         /* If the buffer is now unused, just drop it. */
2595         if (jh->b_next_transaction == NULL) {
2596                 __jbd2_journal_unfile_buffer(jh);
2597                 return true;
2598         }
2599
2600         /*
2601          * It has been modified by a later transaction: add it to the new
2602          * transaction's metadata list.
2603          */
2604
2605         was_dirty = test_clear_buffer_jbddirty(bh);
2606         __jbd2_journal_temp_unlink_buffer(jh);
2607
2608         /*
2609          * b_transaction must be set, otherwise the new b_transaction won't
2610          * be holding jh reference
2611          */
2612         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2613
2614         /*
2615          * We set b_transaction here because b_next_transaction will inherit
2616          * our jh reference and thus __jbd2_journal_file_buffer() must not
2617          * take a new one.
2618          */
2619         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2620         WRITE_ONCE(jh->b_next_transaction, NULL);
2621         if (buffer_freed(bh))
2622                 jlist = BJ_Forget;
2623         else if (jh->b_modified)
2624                 jlist = BJ_Metadata;
2625         else
2626                 jlist = BJ_Reserved;
2627         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2628         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2629
2630         if (was_dirty)
2631                 set_buffer_jbddirty(bh);
2632         return false;
2633 }
2634
2635 /*
2636  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2637  * bh reference so that we can safely unlock bh.
2638  *
2639  * The jh and bh may be freed by this call.
2640  */
2641 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2642 {
2643         bool drop;
2644
2645         spin_lock(&jh->b_state_lock);
2646         spin_lock(&journal->j_list_lock);
2647         drop = __jbd2_journal_refile_buffer(jh);
2648         spin_unlock(&jh->b_state_lock);
2649         spin_unlock(&journal->j_list_lock);
2650         if (drop)
2651                 jbd2_journal_put_journal_head(jh);
2652 }
2653
2654 /*
2655  * File inode in the inode list of the handle's transaction
2656  */
2657 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2658                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2659 {
2660         transaction_t *transaction = handle->h_transaction;
2661         journal_t *journal;
2662
2663         if (is_handle_aborted(handle))
2664                 return -EROFS;
2665         journal = transaction->t_journal;
2666
2667         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2668                         transaction->t_tid);
2669
2670         spin_lock(&journal->j_list_lock);
2671         jinode->i_flags |= flags;
2672
2673         if (jinode->i_dirty_end) {
2674                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2675                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2676         } else {
2677                 jinode->i_dirty_start = start_byte;
2678                 jinode->i_dirty_end = end_byte;
2679         }
2680
2681         /* Is inode already attached where we need it? */
2682         if (jinode->i_transaction == transaction ||
2683             jinode->i_next_transaction == transaction)
2684                 goto done;
2685
2686         /*
2687          * We only ever set this variable to 1 so the test is safe. Since
2688          * t_need_data_flush is likely to be set, we do the test to save some
2689          * cacheline bouncing
2690          */
2691         if (!transaction->t_need_data_flush)
2692                 transaction->t_need_data_flush = 1;
2693         /* On some different transaction's list - should be
2694          * the committing one */
2695         if (jinode->i_transaction) {
2696                 J_ASSERT(jinode->i_next_transaction == NULL);
2697                 J_ASSERT(jinode->i_transaction ==
2698                                         journal->j_committing_transaction);
2699                 jinode->i_next_transaction = transaction;
2700                 goto done;
2701         }
2702         /* Not on any transaction list... */
2703         J_ASSERT(!jinode->i_next_transaction);
2704         jinode->i_transaction = transaction;
2705         list_add(&jinode->i_list, &transaction->t_inode_list);
2706 done:
2707         spin_unlock(&journal->j_list_lock);
2708
2709         return 0;
2710 }
2711
2712 int jbd2_journal_inode_ranged_write(handle_t *handle,
2713                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2714 {
2715         return jbd2_journal_file_inode(handle, jinode,
2716                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2717                         start_byte + length - 1);
2718 }
2719
2720 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2721                 loff_t start_byte, loff_t length)
2722 {
2723         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2724                         start_byte, start_byte + length - 1);
2725 }
2726
2727 /*
2728  * File truncate and transaction commit interact with each other in a
2729  * non-trivial way.  If a transaction writing data block A is
2730  * committing, we cannot discard the data by truncate until we have
2731  * written them.  Otherwise if we crashed after the transaction with
2732  * write has committed but before the transaction with truncate has
2733  * committed, we could see stale data in block A.  This function is a
2734  * helper to solve this problem.  It starts writeout of the truncated
2735  * part in case it is in the committing transaction.
2736  *
2737  * Filesystem code must call this function when inode is journaled in
2738  * ordered mode before truncation happens and after the inode has been
2739  * placed on orphan list with the new inode size. The second condition
2740  * avoids the race that someone writes new data and we start
2741  * committing the transaction after this function has been called but
2742  * before a transaction for truncate is started (and furthermore it
2743  * allows us to optimize the case where the addition to orphan list
2744  * happens in the same transaction as write --- we don't have to write
2745  * any data in such case).
2746  */
2747 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2748                                         struct jbd2_inode *jinode,
2749                                         loff_t new_size)
2750 {
2751         transaction_t *inode_trans, *commit_trans;
2752         int ret = 0;
2753
2754         /* This is a quick check to avoid locking if not necessary */
2755         if (!jinode->i_transaction)
2756                 goto out;
2757         /* Locks are here just to force reading of recent values, it is
2758          * enough that the transaction was not committing before we started
2759          * a transaction adding the inode to orphan list */
2760         read_lock(&journal->j_state_lock);
2761         commit_trans = journal->j_committing_transaction;
2762         read_unlock(&journal->j_state_lock);
2763         spin_lock(&journal->j_list_lock);
2764         inode_trans = jinode->i_transaction;
2765         spin_unlock(&journal->j_list_lock);
2766         if (inode_trans == commit_trans) {
2767                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2768                         new_size, LLONG_MAX);
2769                 if (ret)
2770                         jbd2_journal_abort(journal, ret);
2771         }
2772 out:
2773         return ret;
2774 }