GNU Linux-libre 4.14.328-gnu1
[releases.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33
34 #include <trace/events/jbd2.h>
35
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42         J_ASSERT(!transaction_cache);
43         transaction_cache = kmem_cache_create("jbd2_transaction_s",
44                                         sizeof(transaction_t),
45                                         0,
46                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47                                         NULL);
48         if (transaction_cache)
49                 return 0;
50         return -ENOMEM;
51 }
52
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55         if (transaction_cache) {
56                 kmem_cache_destroy(transaction_cache);
57                 transaction_cache = NULL;
58         }
59 }
60
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64                 return;
65         kmem_cache_free(transaction_cache, transaction);
66 }
67
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *      The journal MUST be locked.  We don't perform atomic mallocs on the
78  *      new transaction and we can't block without protecting against other
79  *      processes trying to touch the journal while it is in transition.
80  *
81  */
82
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86         transaction->t_journal = journal;
87         transaction->t_state = T_RUNNING;
88         transaction->t_start_time = ktime_get();
89         transaction->t_tid = journal->j_transaction_sequence++;
90         transaction->t_expires = jiffies + journal->j_commit_interval;
91         spin_lock_init(&transaction->t_handle_lock);
92         atomic_set(&transaction->t_updates, 0);
93         atomic_set(&transaction->t_outstanding_credits,
94                    atomic_read(&journal->j_reserved_credits));
95         atomic_set(&transaction->t_handle_count, 0);
96         INIT_LIST_HEAD(&transaction->t_inode_list);
97         INIT_LIST_HEAD(&transaction->t_private_list);
98
99         /* Set up the commit timer for the new transaction. */
100         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101         add_timer(&journal->j_commit_timer);
102
103         J_ASSERT(journal->j_running_transaction == NULL);
104         journal->j_running_transaction = transaction;
105         transaction->t_max_wait = 0;
106         transaction->t_start = jiffies;
107         transaction->t_requested = 0;
108
109         return transaction;
110 }
111
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131                                      unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134         if (jbd2_journal_enable_debug &&
135             time_after(transaction->t_start, ts)) {
136                 ts = jbd2_time_diff(ts, transaction->t_start);
137                 spin_lock(&transaction->t_handle_lock);
138                 if (ts > transaction->t_max_wait)
139                         transaction->t_max_wait = ts;
140                 spin_unlock(&transaction->t_handle_lock);
141         }
142 #endif
143 }
144
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151         __releases(journal->j_state_lock)
152 {
153         DEFINE_WAIT(wait);
154         int need_to_start;
155         tid_t tid = journal->j_running_transaction->t_tid;
156
157         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158                         TASK_UNINTERRUPTIBLE);
159         need_to_start = !tid_geq(journal->j_commit_request, tid);
160         read_unlock(&journal->j_state_lock);
161         if (need_to_start)
162                 jbd2_log_start_commit(journal, tid);
163         jbd2_might_wait_for_commit(journal);
164         schedule();
165         finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170         atomic_sub(blocks, &journal->j_reserved_credits);
171         wake_up(&journal->j_wait_reserved);
172 }
173
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181                                    int rsv_blocks)
182 {
183         transaction_t *t = journal->j_running_transaction;
184         int needed;
185         int total = blocks + rsv_blocks;
186
187         /*
188          * If the current transaction is locked down for commit, wait
189          * for the lock to be released.
190          */
191         if (t->t_state == T_LOCKED) {
192                 wait_transaction_locked(journal);
193                 return 1;
194         }
195
196         /*
197          * If there is not enough space left in the log to write all
198          * potential buffers requested by this operation, we need to
199          * stall pending a log checkpoint to free some more log space.
200          */
201         needed = atomic_add_return(total, &t->t_outstanding_credits);
202         if (needed > journal->j_max_transaction_buffers) {
203                 /*
204                  * If the current transaction is already too large,
205                  * then start to commit it: we can then go back and
206                  * attach this handle to a new transaction.
207                  */
208                 atomic_sub(total, &t->t_outstanding_credits);
209
210                 /*
211                  * Is the number of reserved credits in the current transaction too
212                  * big to fit this handle? Wait until reserved credits are freed.
213                  */
214                 if (atomic_read(&journal->j_reserved_credits) + total >
215                     journal->j_max_transaction_buffers) {
216                         read_unlock(&journal->j_state_lock);
217                         jbd2_might_wait_for_commit(journal);
218                         wait_event(journal->j_wait_reserved,
219                                    atomic_read(&journal->j_reserved_credits) + total <=
220                                    journal->j_max_transaction_buffers);
221                         return 1;
222                 }
223
224                 wait_transaction_locked(journal);
225                 return 1;
226         }
227
228         /*
229          * The commit code assumes that it can get enough log space
230          * without forcing a checkpoint.  This is *critical* for
231          * correctness: a checkpoint of a buffer which is also
232          * associated with a committing transaction creates a deadlock,
233          * so commit simply cannot force through checkpoints.
234          *
235          * We must therefore ensure the necessary space in the journal
236          * *before* starting to dirty potentially checkpointed buffers
237          * in the new transaction.
238          */
239         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 jbd2_might_wait_for_commit(journal);
243                 write_lock(&journal->j_state_lock);
244                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245                         __jbd2_log_wait_for_space(journal);
246                 write_unlock(&journal->j_state_lock);
247                 return 1;
248         }
249
250         /* No reservation? We are done... */
251         if (!rsv_blocks)
252                 return 0;
253
254         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255         /* We allow at most half of a transaction to be reserved */
256         if (needed > journal->j_max_transaction_buffers / 2) {
257                 sub_reserved_credits(journal, rsv_blocks);
258                 atomic_sub(total, &t->t_outstanding_credits);
259                 read_unlock(&journal->j_state_lock);
260                 jbd2_might_wait_for_commit(journal);
261                 wait_event(journal->j_wait_reserved,
262                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
263                          <= journal->j_max_transaction_buffers / 2);
264                 return 1;
265         }
266         return 0;
267 }
268
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277                              gfp_t gfp_mask)
278 {
279         transaction_t   *transaction, *new_transaction = NULL;
280         int             blocks = handle->h_buffer_credits;
281         int             rsv_blocks = 0;
282         unsigned long ts = jiffies;
283
284         if (handle->h_rsv_handle)
285                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
287         /*
288          * Limit the number of reserved credits to 1/2 of maximum transaction
289          * size and limit the number of total credits to not exceed maximum
290          * transaction size per operation.
291          */
292         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294                 printk(KERN_ERR "JBD2: %s wants too many credits "
295                        "credits:%d rsv_credits:%d max:%d\n",
296                        current->comm, blocks, rsv_blocks,
297                        journal->j_max_transaction_buffers);
298                 WARN_ON(1);
299                 return -ENOSPC;
300         }
301
302 alloc_transaction:
303         if (!journal->j_running_transaction) {
304                 /*
305                  * If __GFP_FS is not present, then we may be being called from
306                  * inside the fs writeback layer, so we MUST NOT fail.
307                  */
308                 if ((gfp_mask & __GFP_FS) == 0)
309                         gfp_mask |= __GFP_NOFAIL;
310                 new_transaction = kmem_cache_zalloc(transaction_cache,
311                                                     gfp_mask);
312                 if (!new_transaction)
313                         return -ENOMEM;
314         }
315
316         jbd_debug(3, "New handle %p going live.\n", handle);
317
318         /*
319          * We need to hold j_state_lock until t_updates has been incremented,
320          * for proper journal barrier handling
321          */
322 repeat:
323         read_lock(&journal->j_state_lock);
324         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325         if (is_journal_aborted(journal) ||
326             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327                 read_unlock(&journal->j_state_lock);
328                 jbd2_journal_free_transaction(new_transaction);
329                 return -EROFS;
330         }
331
332         /*
333          * Wait on the journal's transaction barrier if necessary. Specifically
334          * we allow reserved handles to proceed because otherwise commit could
335          * deadlock on page writeback not being able to complete.
336          */
337         if (!handle->h_reserved && journal->j_barrier_count) {
338                 read_unlock(&journal->j_state_lock);
339                 wait_event(journal->j_wait_transaction_locked,
340                                 journal->j_barrier_count == 0);
341                 goto repeat;
342         }
343
344         if (!journal->j_running_transaction) {
345                 read_unlock(&journal->j_state_lock);
346                 if (!new_transaction)
347                         goto alloc_transaction;
348                 write_lock(&journal->j_state_lock);
349                 if (!journal->j_running_transaction &&
350                     (handle->h_reserved || !journal->j_barrier_count)) {
351                         jbd2_get_transaction(journal, new_transaction);
352                         new_transaction = NULL;
353                 }
354                 write_unlock(&journal->j_state_lock);
355                 goto repeat;
356         }
357
358         transaction = journal->j_running_transaction;
359
360         if (!handle->h_reserved) {
361                 /* We may have dropped j_state_lock - restart in that case */
362                 if (add_transaction_credits(journal, blocks, rsv_blocks))
363                         goto repeat;
364         } else {
365                 /*
366                  * We have handle reserved so we are allowed to join T_LOCKED
367                  * transaction and we don't have to check for transaction size
368                  * and journal space.
369                  */
370                 sub_reserved_credits(journal, blocks);
371                 handle->h_reserved = 0;
372         }
373
374         /* OK, account for the buffers that this operation expects to
375          * use and add the handle to the running transaction. 
376          */
377         update_t_max_wait(transaction, ts);
378         handle->h_transaction = transaction;
379         handle->h_requested_credits = blocks;
380         handle->h_start_jiffies = jiffies;
381         atomic_inc(&transaction->t_updates);
382         atomic_inc(&transaction->t_handle_count);
383         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384                   handle, blocks,
385                   atomic_read(&transaction->t_outstanding_credits),
386                   jbd2_log_space_left(journal));
387         read_unlock(&journal->j_state_lock);
388         current->journal_info = handle;
389
390         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391         jbd2_journal_free_transaction(new_transaction);
392         /*
393          * Ensure that no allocations done while the transaction is open are
394          * going to recurse back to the fs layer.
395          */
396         handle->saved_alloc_context = memalloc_nofs_save();
397         return 0;
398 }
399
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404         if (!handle)
405                 return NULL;
406         handle->h_buffer_credits = nblocks;
407         handle->h_ref = 1;
408
409         return handle;
410 }
411
412 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
413                               gfp_t gfp_mask, unsigned int type,
414                               unsigned int line_no)
415 {
416         handle_t *handle = journal_current_handle();
417         int err;
418
419         if (!journal)
420                 return ERR_PTR(-EROFS);
421
422         if (handle) {
423                 J_ASSERT(handle->h_transaction->t_journal == journal);
424                 handle->h_ref++;
425                 return handle;
426         }
427
428         handle = new_handle(nblocks);
429         if (!handle)
430                 return ERR_PTR(-ENOMEM);
431         if (rsv_blocks) {
432                 handle_t *rsv_handle;
433
434                 rsv_handle = new_handle(rsv_blocks);
435                 if (!rsv_handle) {
436                         jbd2_free_handle(handle);
437                         return ERR_PTR(-ENOMEM);
438                 }
439                 rsv_handle->h_reserved = 1;
440                 rsv_handle->h_journal = journal;
441                 handle->h_rsv_handle = rsv_handle;
442         }
443
444         err = start_this_handle(journal, handle, gfp_mask);
445         if (err < 0) {
446                 if (handle->h_rsv_handle)
447                         jbd2_free_handle(handle->h_rsv_handle);
448                 jbd2_free_handle(handle);
449                 return ERR_PTR(err);
450         }
451         handle->h_type = type;
452         handle->h_line_no = line_no;
453         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
454                                 handle->h_transaction->t_tid, type,
455                                 line_no, nblocks);
456
457         return handle;
458 }
459 EXPORT_SYMBOL(jbd2__journal_start);
460
461
462 /**
463  * handle_t *jbd2_journal_start() - Obtain a new handle.
464  * @journal: Journal to start transaction on.
465  * @nblocks: number of block buffer we might modify
466  *
467  * We make sure that the transaction can guarantee at least nblocks of
468  * modified buffers in the log.  We block until the log can guarantee
469  * that much space. Additionally, if rsv_blocks > 0, we also create another
470  * handle with rsv_blocks reserved blocks in the journal. This handle is
471  * is stored in h_rsv_handle. It is not attached to any particular transaction
472  * and thus doesn't block transaction commit. If the caller uses this reserved
473  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
474  * on the parent handle will dispose the reserved one. Reserved handle has to
475  * be converted to a normal handle using jbd2_journal_start_reserved() before
476  * it can be used.
477  *
478  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
479  * on failure.
480  */
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489         journal_t *journal = handle->h_journal;
490
491         WARN_ON(!handle->h_reserved);
492         sub_reserved_credits(journal, handle->h_buffer_credits);
493         jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497 /**
498  * int jbd2_journal_start_reserved() - start reserved handle
499  * @handle: handle to start
500  * @type: for handle statistics
501  * @line_no: for handle statistics
502  *
503  * Start handle that has been previously reserved with jbd2_journal_reserve().
504  * This attaches @handle to the running transaction (or creates one if there's
505  * not transaction running). Unlike jbd2_journal_start() this function cannot
506  * block on journal commit, checkpointing, or similar stuff. It can block on
507  * memory allocation or frozen journal though.
508  *
509  * Return 0 on success, non-zero on error - handle is freed in that case.
510  */
511 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
512                                 unsigned int line_no)
513 {
514         journal_t *journal = handle->h_journal;
515         int ret = -EIO;
516
517         if (WARN_ON(!handle->h_reserved)) {
518                 /* Someone passed in normal handle? Just stop it. */
519                 jbd2_journal_stop(handle);
520                 return ret;
521         }
522         /*
523          * Usefulness of mixing of reserved and unreserved handles is
524          * questionable. So far nobody seems to need it so just error out.
525          */
526         if (WARN_ON(current->journal_info)) {
527                 jbd2_journal_free_reserved(handle);
528                 return ret;
529         }
530
531         handle->h_journal = NULL;
532         /*
533          * GFP_NOFS is here because callers are likely from writeback or
534          * similarly constrained call sites
535          */
536         ret = start_this_handle(journal, handle, GFP_NOFS);
537         if (ret < 0) {
538                 handle->h_journal = journal;
539                 jbd2_journal_free_reserved(handle);
540                 return ret;
541         }
542         handle->h_type = type;
543         handle->h_line_no = line_no;
544         return 0;
545 }
546 EXPORT_SYMBOL(jbd2_journal_start_reserved);
547
548 /**
549  * int jbd2_journal_extend() - extend buffer credits.
550  * @handle:  handle to 'extend'
551  * @nblocks: nr blocks to try to extend by.
552  *
553  * Some transactions, such as large extends and truncates, can be done
554  * atomically all at once or in several stages.  The operation requests
555  * a credit for a number of buffer modifications in advance, but can
556  * extend its credit if it needs more.
557  *
558  * jbd2_journal_extend tries to give the running handle more buffer credits.
559  * It does not guarantee that allocation - this is a best-effort only.
560  * The calling process MUST be able to deal cleanly with a failure to
561  * extend here.
562  *
563  * Return 0 on success, non-zero on failure.
564  *
565  * return code < 0 implies an error
566  * return code > 0 implies normal transaction-full status.
567  */
568 int jbd2_journal_extend(handle_t *handle, int nblocks)
569 {
570         transaction_t *transaction = handle->h_transaction;
571         journal_t *journal;
572         int result;
573         int wanted;
574
575         if (is_handle_aborted(handle))
576                 return -EROFS;
577         journal = transaction->t_journal;
578
579         result = 1;
580
581         read_lock(&journal->j_state_lock);
582
583         /* Don't extend a locked-down transaction! */
584         if (transaction->t_state != T_RUNNING) {
585                 jbd_debug(3, "denied handle %p %d blocks: "
586                           "transaction not running\n", handle, nblocks);
587                 goto error_out;
588         }
589
590         spin_lock(&transaction->t_handle_lock);
591         wanted = atomic_add_return(nblocks,
592                                    &transaction->t_outstanding_credits);
593
594         if (wanted > journal->j_max_transaction_buffers) {
595                 jbd_debug(3, "denied handle %p %d blocks: "
596                           "transaction too large\n", handle, nblocks);
597                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
598                 goto unlock;
599         }
600
601         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
602             jbd2_log_space_left(journal)) {
603                 jbd_debug(3, "denied handle %p %d blocks: "
604                           "insufficient log space\n", handle, nblocks);
605                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
606                 goto unlock;
607         }
608
609         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
610                                  transaction->t_tid,
611                                  handle->h_type, handle->h_line_no,
612                                  handle->h_buffer_credits,
613                                  nblocks);
614
615         handle->h_buffer_credits += nblocks;
616         handle->h_requested_credits += nblocks;
617         result = 0;
618
619         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
620 unlock:
621         spin_unlock(&transaction->t_handle_lock);
622 error_out:
623         read_unlock(&journal->j_state_lock);
624         return result;
625 }
626
627
628 /**
629  * int jbd2_journal_restart() - restart a handle .
630  * @handle:  handle to restart
631  * @nblocks: nr credits requested
632  * @gfp_mask: memory allocation flags (for start_this_handle)
633  *
634  * Restart a handle for a multi-transaction filesystem
635  * operation.
636  *
637  * If the jbd2_journal_extend() call above fails to grant new buffer credits
638  * to a running handle, a call to jbd2_journal_restart will commit the
639  * handle's transaction so far and reattach the handle to a new
640  * transaction capable of guaranteeing the requested number of
641  * credits. We preserve reserved handle if there's any attached to the
642  * passed in handle.
643  */
644 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
645 {
646         transaction_t *transaction = handle->h_transaction;
647         journal_t *journal;
648         tid_t           tid;
649         int             need_to_start, ret;
650
651         /* If we've had an abort of any type, don't even think about
652          * actually doing the restart! */
653         if (is_handle_aborted(handle))
654                 return 0;
655         journal = transaction->t_journal;
656
657         /*
658          * First unlink the handle from its current transaction, and start the
659          * commit on that.
660          */
661         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
662         J_ASSERT(journal_current_handle() == handle);
663
664         read_lock(&journal->j_state_lock);
665         spin_lock(&transaction->t_handle_lock);
666         atomic_sub(handle->h_buffer_credits,
667                    &transaction->t_outstanding_credits);
668         if (handle->h_rsv_handle) {
669                 sub_reserved_credits(journal,
670                                      handle->h_rsv_handle->h_buffer_credits);
671         }
672         if (atomic_dec_and_test(&transaction->t_updates))
673                 wake_up(&journal->j_wait_updates);
674         tid = transaction->t_tid;
675         spin_unlock(&transaction->t_handle_lock);
676         handle->h_transaction = NULL;
677         current->journal_info = NULL;
678
679         jbd_debug(2, "restarting handle %p\n", handle);
680         need_to_start = !tid_geq(journal->j_commit_request, tid);
681         read_unlock(&journal->j_state_lock);
682         if (need_to_start)
683                 jbd2_log_start_commit(journal, tid);
684
685         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
686         handle->h_buffer_credits = nblocks;
687         /*
688          * Restore the original nofs context because the journal restart
689          * is basically the same thing as journal stop and start.
690          * start_this_handle will start a new nofs context.
691          */
692         memalloc_nofs_restore(handle->saved_alloc_context);
693         ret = start_this_handle(journal, handle, gfp_mask);
694         return ret;
695 }
696 EXPORT_SYMBOL(jbd2__journal_restart);
697
698
699 int jbd2_journal_restart(handle_t *handle, int nblocks)
700 {
701         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
702 }
703 EXPORT_SYMBOL(jbd2_journal_restart);
704
705 /**
706  * void jbd2_journal_lock_updates () - establish a transaction barrier.
707  * @journal:  Journal to establish a barrier on.
708  *
709  * This locks out any further updates from being started, and blocks
710  * until all existing updates have completed, returning only once the
711  * journal is in a quiescent state with no updates running.
712  *
713  * The journal lock should not be held on entry.
714  */
715 void jbd2_journal_lock_updates(journal_t *journal)
716 {
717         DEFINE_WAIT(wait);
718
719         jbd2_might_wait_for_commit(journal);
720
721         write_lock(&journal->j_state_lock);
722         ++journal->j_barrier_count;
723
724         /* Wait until there are no reserved handles */
725         if (atomic_read(&journal->j_reserved_credits)) {
726                 write_unlock(&journal->j_state_lock);
727                 wait_event(journal->j_wait_reserved,
728                            atomic_read(&journal->j_reserved_credits) == 0);
729                 write_lock(&journal->j_state_lock);
730         }
731
732         /* Wait until there are no running updates */
733         while (1) {
734                 transaction_t *transaction = journal->j_running_transaction;
735
736                 if (!transaction)
737                         break;
738
739                 spin_lock(&transaction->t_handle_lock);
740                 prepare_to_wait(&journal->j_wait_updates, &wait,
741                                 TASK_UNINTERRUPTIBLE);
742                 if (!atomic_read(&transaction->t_updates)) {
743                         spin_unlock(&transaction->t_handle_lock);
744                         finish_wait(&journal->j_wait_updates, &wait);
745                         break;
746                 }
747                 spin_unlock(&transaction->t_handle_lock);
748                 write_unlock(&journal->j_state_lock);
749                 schedule();
750                 finish_wait(&journal->j_wait_updates, &wait);
751                 write_lock(&journal->j_state_lock);
752         }
753         write_unlock(&journal->j_state_lock);
754
755         /*
756          * We have now established a barrier against other normal updates, but
757          * we also need to barrier against other jbd2_journal_lock_updates() calls
758          * to make sure that we serialise special journal-locked operations
759          * too.
760          */
761         mutex_lock(&journal->j_barrier);
762 }
763
764 /**
765  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
766  * @journal:  Journal to release the barrier on.
767  *
768  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
769  *
770  * Should be called without the journal lock held.
771  */
772 void jbd2_journal_unlock_updates (journal_t *journal)
773 {
774         J_ASSERT(journal->j_barrier_count != 0);
775
776         mutex_unlock(&journal->j_barrier);
777         write_lock(&journal->j_state_lock);
778         --journal->j_barrier_count;
779         write_unlock(&journal->j_state_lock);
780         wake_up(&journal->j_wait_transaction_locked);
781 }
782
783 static void warn_dirty_buffer(struct buffer_head *bh)
784 {
785         printk(KERN_WARNING
786                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
787                "There's a risk of filesystem corruption in case of system "
788                "crash.\n",
789                bh->b_bdev, (unsigned long long)bh->b_blocknr);
790 }
791
792 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
793 static void jbd2_freeze_jh_data(struct journal_head *jh)
794 {
795         struct page *page;
796         int offset;
797         char *source;
798         struct buffer_head *bh = jh2bh(jh);
799
800         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
801         page = bh->b_page;
802         offset = offset_in_page(bh->b_data);
803         source = kmap_atomic(page);
804         /* Fire data frozen trigger just before we copy the data */
805         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
806         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
807         kunmap_atomic(source);
808
809         /*
810          * Now that the frozen data is saved off, we need to store any matching
811          * triggers.
812          */
813         jh->b_frozen_triggers = jh->b_triggers;
814 }
815
816 /*
817  * If the buffer is already part of the current transaction, then there
818  * is nothing we need to do.  If it is already part of a prior
819  * transaction which we are still committing to disk, then we need to
820  * make sure that we do not overwrite the old copy: we do copy-out to
821  * preserve the copy going to disk.  We also account the buffer against
822  * the handle's metadata buffer credits (unless the buffer is already
823  * part of the transaction, that is).
824  *
825  */
826 static int
827 do_get_write_access(handle_t *handle, struct journal_head *jh,
828                         int force_copy)
829 {
830         struct buffer_head *bh;
831         transaction_t *transaction = handle->h_transaction;
832         journal_t *journal;
833         int error;
834         char *frozen_buffer = NULL;
835         unsigned long start_lock, time_lock;
836
837         if (is_handle_aborted(handle))
838                 return -EROFS;
839         journal = transaction->t_journal;
840
841         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
842
843         JBUFFER_TRACE(jh, "entry");
844 repeat:
845         bh = jh2bh(jh);
846
847         /* @@@ Need to check for errors here at some point. */
848
849         start_lock = jiffies;
850         lock_buffer(bh);
851         jbd_lock_bh_state(bh);
852
853         /* If it takes too long to lock the buffer, trace it */
854         time_lock = jbd2_time_diff(start_lock, jiffies);
855         if (time_lock > HZ/10)
856                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
857                         jiffies_to_msecs(time_lock));
858
859         /* We now hold the buffer lock so it is safe to query the buffer
860          * state.  Is the buffer dirty?
861          *
862          * If so, there are two possibilities.  The buffer may be
863          * non-journaled, and undergoing a quite legitimate writeback.
864          * Otherwise, it is journaled, and we don't expect dirty buffers
865          * in that state (the buffers should be marked JBD_Dirty
866          * instead.)  So either the IO is being done under our own
867          * control and this is a bug, or it's a third party IO such as
868          * dump(8) (which may leave the buffer scheduled for read ---
869          * ie. locked but not dirty) or tune2fs (which may actually have
870          * the buffer dirtied, ugh.)  */
871
872         if (buffer_dirty(bh)) {
873                 /*
874                  * First question: is this buffer already part of the current
875                  * transaction or the existing committing transaction?
876                  */
877                 if (jh->b_transaction) {
878                         J_ASSERT_JH(jh,
879                                 jh->b_transaction == transaction ||
880                                 jh->b_transaction ==
881                                         journal->j_committing_transaction);
882                         if (jh->b_next_transaction)
883                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
884                                                         transaction);
885                         warn_dirty_buffer(bh);
886                 }
887                 /*
888                  * In any case we need to clean the dirty flag and we must
889                  * do it under the buffer lock to be sure we don't race
890                  * with running write-out.
891                  */
892                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
893                 clear_buffer_dirty(bh);
894                 set_buffer_jbddirty(bh);
895         }
896
897         unlock_buffer(bh);
898
899         error = -EROFS;
900         if (is_handle_aborted(handle)) {
901                 jbd_unlock_bh_state(bh);
902                 goto out;
903         }
904         error = 0;
905
906         /*
907          * The buffer is already part of this transaction if b_transaction or
908          * b_next_transaction points to it
909          */
910         if (jh->b_transaction == transaction ||
911             jh->b_next_transaction == transaction)
912                 goto done;
913
914         /*
915          * this is the first time this transaction is touching this buffer,
916          * reset the modified flag
917          */
918        jh->b_modified = 0;
919
920         /*
921          * If the buffer is not journaled right now, we need to make sure it
922          * doesn't get written to disk before the caller actually commits the
923          * new data
924          */
925         if (!jh->b_transaction) {
926                 JBUFFER_TRACE(jh, "no transaction");
927                 J_ASSERT_JH(jh, !jh->b_next_transaction);
928                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
929                 /*
930                  * Make sure all stores to jh (b_modified, b_frozen_data) are
931                  * visible before attaching it to the running transaction.
932                  * Paired with barrier in jbd2_write_access_granted()
933                  */
934                 smp_wmb();
935                 spin_lock(&journal->j_list_lock);
936                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
937                 spin_unlock(&journal->j_list_lock);
938                 goto done;
939         }
940         /*
941          * If there is already a copy-out version of this buffer, then we don't
942          * need to make another one
943          */
944         if (jh->b_frozen_data) {
945                 JBUFFER_TRACE(jh, "has frozen data");
946                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947                 goto attach_next;
948         }
949
950         JBUFFER_TRACE(jh, "owned by older transaction");
951         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
952         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
953
954         /*
955          * There is one case we have to be very careful about.  If the
956          * committing transaction is currently writing this buffer out to disk
957          * and has NOT made a copy-out, then we cannot modify the buffer
958          * contents at all right now.  The essence of copy-out is that it is
959          * the extra copy, not the primary copy, which gets journaled.  If the
960          * primary copy is already going to disk then we cannot do copy-out
961          * here.
962          */
963         if (buffer_shadow(bh)) {
964                 JBUFFER_TRACE(jh, "on shadow: sleep");
965                 jbd_unlock_bh_state(bh);
966                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
967                 goto repeat;
968         }
969
970         /*
971          * Only do the copy if the currently-owning transaction still needs it.
972          * If buffer isn't on BJ_Metadata list, the committing transaction is
973          * past that stage (here we use the fact that BH_Shadow is set under
974          * bh_state lock together with refiling to BJ_Shadow list and at this
975          * point we know the buffer doesn't have BH_Shadow set).
976          *
977          * Subtle point, though: if this is a get_undo_access, then we will be
978          * relying on the frozen_data to contain the new value of the
979          * committed_data record after the transaction, so we HAVE to force the
980          * frozen_data copy in that case.
981          */
982         if (jh->b_jlist == BJ_Metadata || force_copy) {
983                 JBUFFER_TRACE(jh, "generate frozen data");
984                 if (!frozen_buffer) {
985                         JBUFFER_TRACE(jh, "allocate memory for buffer");
986                         jbd_unlock_bh_state(bh);
987                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
988                                                    GFP_NOFS | __GFP_NOFAIL);
989                         goto repeat;
990                 }
991                 jh->b_frozen_data = frozen_buffer;
992                 frozen_buffer = NULL;
993                 jbd2_freeze_jh_data(jh);
994         }
995 attach_next:
996         /*
997          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
998          * before attaching it to the running transaction. Paired with barrier
999          * in jbd2_write_access_granted()
1000          */
1001         smp_wmb();
1002         jh->b_next_transaction = transaction;
1003
1004 done:
1005         jbd_unlock_bh_state(bh);
1006
1007         /*
1008          * If we are about to journal a buffer, then any revoke pending on it is
1009          * no longer valid
1010          */
1011         jbd2_journal_cancel_revoke(handle, jh);
1012
1013 out:
1014         if (unlikely(frozen_buffer))    /* It's usually NULL */
1015                 jbd2_free(frozen_buffer, bh->b_size);
1016
1017         JBUFFER_TRACE(jh, "exit");
1018         return error;
1019 }
1020
1021 /* Fast check whether buffer is already attached to the required transaction */
1022 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1023                                                         bool undo)
1024 {
1025         struct journal_head *jh;
1026         bool ret = false;
1027
1028         /* Dirty buffers require special handling... */
1029         if (buffer_dirty(bh))
1030                 return false;
1031
1032         /*
1033          * RCU protects us from dereferencing freed pages. So the checks we do
1034          * are guaranteed not to oops. However the jh slab object can get freed
1035          * & reallocated while we work with it. So we have to be careful. When
1036          * we see jh attached to the running transaction, we know it must stay
1037          * so until the transaction is committed. Thus jh won't be freed and
1038          * will be attached to the same bh while we run.  However it can
1039          * happen jh gets freed, reallocated, and attached to the transaction
1040          * just after we get pointer to it from bh. So we have to be careful
1041          * and recheck jh still belongs to our bh before we return success.
1042          */
1043         rcu_read_lock();
1044         if (!buffer_jbd(bh))
1045                 goto out;
1046         /* This should be bh2jh() but that doesn't work with inline functions */
1047         jh = READ_ONCE(bh->b_private);
1048         if (!jh)
1049                 goto out;
1050         /* For undo access buffer must have data copied */
1051         if (undo && !jh->b_committed_data)
1052                 goto out;
1053         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1054             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1055                 goto out;
1056         /*
1057          * There are two reasons for the barrier here:
1058          * 1) Make sure to fetch b_bh after we did previous checks so that we
1059          * detect when jh went through free, realloc, attach to transaction
1060          * while we were checking. Paired with implicit barrier in that path.
1061          * 2) So that access to bh done after jbd2_write_access_granted()
1062          * doesn't get reordered and see inconsistent state of concurrent
1063          * do_get_write_access().
1064          */
1065         smp_mb();
1066         if (unlikely(jh->b_bh != bh))
1067                 goto out;
1068         ret = true;
1069 out:
1070         rcu_read_unlock();
1071         return ret;
1072 }
1073
1074 /**
1075  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1076  * @handle: transaction to add buffer modifications to
1077  * @bh:     bh to be used for metadata writes
1078  *
1079  * Returns: error code or 0 on success.
1080  *
1081  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1082  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1083  */
1084
1085 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1086 {
1087         struct journal_head *jh;
1088         int rc;
1089
1090         if (jbd2_write_access_granted(handle, bh, false))
1091                 return 0;
1092
1093         jh = jbd2_journal_add_journal_head(bh);
1094         /* We do not want to get caught playing with fields which the
1095          * log thread also manipulates.  Make sure that the buffer
1096          * completes any outstanding IO before proceeding. */
1097         rc = do_get_write_access(handle, jh, 0);
1098         jbd2_journal_put_journal_head(jh);
1099         return rc;
1100 }
1101
1102
1103 /*
1104  * When the user wants to journal a newly created buffer_head
1105  * (ie. getblk() returned a new buffer and we are going to populate it
1106  * manually rather than reading off disk), then we need to keep the
1107  * buffer_head locked until it has been completely filled with new
1108  * data.  In this case, we should be able to make the assertion that
1109  * the bh is not already part of an existing transaction.
1110  *
1111  * The buffer should already be locked by the caller by this point.
1112  * There is no lock ranking violation: it was a newly created,
1113  * unlocked buffer beforehand. */
1114
1115 /**
1116  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1117  * @handle: transaction to new buffer to
1118  * @bh: new buffer.
1119  *
1120  * Call this if you create a new bh.
1121  */
1122 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1123 {
1124         transaction_t *transaction = handle->h_transaction;
1125         journal_t *journal;
1126         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1127         int err;
1128
1129         jbd_debug(5, "journal_head %p\n", jh);
1130         err = -EROFS;
1131         if (is_handle_aborted(handle))
1132                 goto out;
1133         journal = transaction->t_journal;
1134         err = 0;
1135
1136         JBUFFER_TRACE(jh, "entry");
1137         /*
1138          * The buffer may already belong to this transaction due to pre-zeroing
1139          * in the filesystem's new_block code.  It may also be on the previous,
1140          * committing transaction's lists, but it HAS to be in Forget state in
1141          * that case: the transaction must have deleted the buffer for it to be
1142          * reused here.
1143          */
1144         jbd_lock_bh_state(bh);
1145         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1146                 jh->b_transaction == NULL ||
1147                 (jh->b_transaction == journal->j_committing_transaction &&
1148                           jh->b_jlist == BJ_Forget)));
1149
1150         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1151         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1152
1153         if (jh->b_transaction == NULL) {
1154                 /*
1155                  * Previous jbd2_journal_forget() could have left the buffer
1156                  * with jbddirty bit set because it was being committed. When
1157                  * the commit finished, we've filed the buffer for
1158                  * checkpointing and marked it dirty. Now we are reallocating
1159                  * the buffer so the transaction freeing it must have
1160                  * committed and so it's safe to clear the dirty bit.
1161                  */
1162                 clear_buffer_dirty(jh2bh(jh));
1163                 /* first access by this transaction */
1164                 jh->b_modified = 0;
1165
1166                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1167                 spin_lock(&journal->j_list_lock);
1168                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1169                 spin_unlock(&journal->j_list_lock);
1170         } else if (jh->b_transaction == journal->j_committing_transaction) {
1171                 /* first access by this transaction */
1172                 jh->b_modified = 0;
1173
1174                 JBUFFER_TRACE(jh, "set next transaction");
1175                 spin_lock(&journal->j_list_lock);
1176                 jh->b_next_transaction = transaction;
1177                 spin_unlock(&journal->j_list_lock);
1178         }
1179         jbd_unlock_bh_state(bh);
1180
1181         /*
1182          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1183          * blocks which contain freed but then revoked metadata.  We need
1184          * to cancel the revoke in case we end up freeing it yet again
1185          * and the reallocating as data - this would cause a second revoke,
1186          * which hits an assertion error.
1187          */
1188         JBUFFER_TRACE(jh, "cancelling revoke");
1189         jbd2_journal_cancel_revoke(handle, jh);
1190 out:
1191         jbd2_journal_put_journal_head(jh);
1192         return err;
1193 }
1194
1195 /**
1196  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1197  *     non-rewindable consequences
1198  * @handle: transaction
1199  * @bh: buffer to undo
1200  *
1201  * Sometimes there is a need to distinguish between metadata which has
1202  * been committed to disk and that which has not.  The ext3fs code uses
1203  * this for freeing and allocating space, we have to make sure that we
1204  * do not reuse freed space until the deallocation has been committed,
1205  * since if we overwrote that space we would make the delete
1206  * un-rewindable in case of a crash.
1207  *
1208  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1209  * buffer for parts of non-rewindable operations such as delete
1210  * operations on the bitmaps.  The journaling code must keep a copy of
1211  * the buffer's contents prior to the undo_access call until such time
1212  * as we know that the buffer has definitely been committed to disk.
1213  *
1214  * We never need to know which transaction the committed data is part
1215  * of, buffers touched here are guaranteed to be dirtied later and so
1216  * will be committed to a new transaction in due course, at which point
1217  * we can discard the old committed data pointer.
1218  *
1219  * Returns error number or 0 on success.
1220  */
1221 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1222 {
1223         int err;
1224         struct journal_head *jh;
1225         char *committed_data = NULL;
1226
1227         if (jbd2_write_access_granted(handle, bh, true))
1228                 return 0;
1229
1230         jh = jbd2_journal_add_journal_head(bh);
1231         JBUFFER_TRACE(jh, "entry");
1232
1233         /*
1234          * Do this first --- it can drop the journal lock, so we want to
1235          * make sure that obtaining the committed_data is done
1236          * atomically wrt. completion of any outstanding commits.
1237          */
1238         err = do_get_write_access(handle, jh, 1);
1239         if (err)
1240                 goto out;
1241
1242 repeat:
1243         if (!jh->b_committed_data)
1244                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1245                                             GFP_NOFS|__GFP_NOFAIL);
1246
1247         jbd_lock_bh_state(bh);
1248         if (!jh->b_committed_data) {
1249                 /* Copy out the current buffer contents into the
1250                  * preserved, committed copy. */
1251                 JBUFFER_TRACE(jh, "generate b_committed data");
1252                 if (!committed_data) {
1253                         jbd_unlock_bh_state(bh);
1254                         goto repeat;
1255                 }
1256
1257                 jh->b_committed_data = committed_data;
1258                 committed_data = NULL;
1259                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1260         }
1261         jbd_unlock_bh_state(bh);
1262 out:
1263         jbd2_journal_put_journal_head(jh);
1264         if (unlikely(committed_data))
1265                 jbd2_free(committed_data, bh->b_size);
1266         return err;
1267 }
1268
1269 /**
1270  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1271  * @bh: buffer to trigger on
1272  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1273  *
1274  * Set any triggers on this journal_head.  This is always safe, because
1275  * triggers for a committing buffer will be saved off, and triggers for
1276  * a running transaction will match the buffer in that transaction.
1277  *
1278  * Call with NULL to clear the triggers.
1279  */
1280 void jbd2_journal_set_triggers(struct buffer_head *bh,
1281                                struct jbd2_buffer_trigger_type *type)
1282 {
1283         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1284
1285         if (WARN_ON(!jh))
1286                 return;
1287         jh->b_triggers = type;
1288         jbd2_journal_put_journal_head(jh);
1289 }
1290
1291 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1292                                 struct jbd2_buffer_trigger_type *triggers)
1293 {
1294         struct buffer_head *bh = jh2bh(jh);
1295
1296         if (!triggers || !triggers->t_frozen)
1297                 return;
1298
1299         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1300 }
1301
1302 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1303                                struct jbd2_buffer_trigger_type *triggers)
1304 {
1305         if (!triggers || !triggers->t_abort)
1306                 return;
1307
1308         triggers->t_abort(triggers, jh2bh(jh));
1309 }
1310
1311 /**
1312  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1313  * @handle: transaction to add buffer to.
1314  * @bh: buffer to mark
1315  *
1316  * mark dirty metadata which needs to be journaled as part of the current
1317  * transaction.
1318  *
1319  * The buffer must have previously had jbd2_journal_get_write_access()
1320  * called so that it has a valid journal_head attached to the buffer
1321  * head.
1322  *
1323  * The buffer is placed on the transaction's metadata list and is marked
1324  * as belonging to the transaction.
1325  *
1326  * Returns error number or 0 on success.
1327  *
1328  * Special care needs to be taken if the buffer already belongs to the
1329  * current committing transaction (in which case we should have frozen
1330  * data present for that commit).  In that case, we don't relink the
1331  * buffer: that only gets done when the old transaction finally
1332  * completes its commit.
1333  */
1334 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1335 {
1336         transaction_t *transaction = handle->h_transaction;
1337         journal_t *journal;
1338         struct journal_head *jh;
1339         int ret = 0;
1340
1341         if (!buffer_jbd(bh))
1342                 return -EUCLEAN;
1343
1344         /*
1345          * We don't grab jh reference here since the buffer must be part
1346          * of the running transaction.
1347          */
1348         jh = bh2jh(bh);
1349         jbd_debug(5, "journal_head %p\n", jh);
1350         JBUFFER_TRACE(jh, "entry");
1351
1352         /*
1353          * This and the following assertions are unreliable since we may see jh
1354          * in inconsistent state unless we grab bh_state lock. But this is
1355          * crucial to catch bugs so let's do a reliable check until the
1356          * lockless handling is fully proven.
1357          */
1358         if (jh->b_transaction != transaction &&
1359             jh->b_next_transaction != transaction) {
1360                 jbd_lock_bh_state(bh);
1361                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1362                                 jh->b_next_transaction == transaction);
1363                 jbd_unlock_bh_state(bh);
1364         }
1365         if (jh->b_modified == 1) {
1366                 /* If it's in our transaction it must be in BJ_Metadata list. */
1367                 if (jh->b_transaction == transaction &&
1368                     jh->b_jlist != BJ_Metadata) {
1369                         jbd_lock_bh_state(bh);
1370                         if (jh->b_transaction == transaction &&
1371                             jh->b_jlist != BJ_Metadata)
1372                                 pr_err("JBD2: assertion failure: h_type=%u "
1373                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1374                                        handle->h_type, handle->h_line_no,
1375                                        (unsigned long long) bh->b_blocknr,
1376                                        jh->b_jlist);
1377                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1378                                         jh->b_jlist == BJ_Metadata);
1379                         jbd_unlock_bh_state(bh);
1380                 }
1381                 goto out;
1382         }
1383
1384         journal = transaction->t_journal;
1385         jbd_lock_bh_state(bh);
1386
1387         if (is_handle_aborted(handle)) {
1388                 /*
1389                  * Check journal aborting with @jh->b_state_lock locked,
1390                  * since 'jh->b_transaction' could be replaced with
1391                  * 'jh->b_next_transaction' during old transaction
1392                  * committing if journal aborted, which may fail
1393                  * assertion on 'jh->b_frozen_data == NULL'.
1394                  */
1395                 ret = -EROFS;
1396                 goto out_unlock_bh;
1397         }
1398
1399         if (jh->b_modified == 0) {
1400                 /*
1401                  * This buffer's got modified and becoming part
1402                  * of the transaction. This needs to be done
1403                  * once a transaction -bzzz
1404                  */
1405                 if (handle->h_buffer_credits <= 0) {
1406                         ret = -ENOSPC;
1407                         goto out_unlock_bh;
1408                 }
1409                 jh->b_modified = 1;
1410                 handle->h_buffer_credits--;
1411         }
1412
1413         /*
1414          * fastpath, to avoid expensive locking.  If this buffer is already
1415          * on the running transaction's metadata list there is nothing to do.
1416          * Nobody can take it off again because there is a handle open.
1417          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1418          * result in this test being false, so we go in and take the locks.
1419          */
1420         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1421                 JBUFFER_TRACE(jh, "fastpath");
1422                 if (unlikely(jh->b_transaction !=
1423                              journal->j_running_transaction)) {
1424                         printk(KERN_ERR "JBD2: %s: "
1425                                "jh->b_transaction (%llu, %p, %u) != "
1426                                "journal->j_running_transaction (%p, %u)\n",
1427                                journal->j_devname,
1428                                (unsigned long long) bh->b_blocknr,
1429                                jh->b_transaction,
1430                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1431                                journal->j_running_transaction,
1432                                journal->j_running_transaction ?
1433                                journal->j_running_transaction->t_tid : 0);
1434                         ret = -EINVAL;
1435                 }
1436                 goto out_unlock_bh;
1437         }
1438
1439         set_buffer_jbddirty(bh);
1440
1441         /*
1442          * Metadata already on the current transaction list doesn't
1443          * need to be filed.  Metadata on another transaction's list must
1444          * be committing, and will be refiled once the commit completes:
1445          * leave it alone for now.
1446          */
1447         if (jh->b_transaction != transaction) {
1448                 JBUFFER_TRACE(jh, "already on other transaction");
1449                 if (unlikely(((jh->b_transaction !=
1450                                journal->j_committing_transaction)) ||
1451                              (jh->b_next_transaction != transaction))) {
1452                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1453                                "bad jh for block %llu: "
1454                                "transaction (%p, %u), "
1455                                "jh->b_transaction (%p, %u), "
1456                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1457                                journal->j_devname,
1458                                (unsigned long long) bh->b_blocknr,
1459                                transaction, transaction->t_tid,
1460                                jh->b_transaction,
1461                                jh->b_transaction ?
1462                                jh->b_transaction->t_tid : 0,
1463                                jh->b_next_transaction,
1464                                jh->b_next_transaction ?
1465                                jh->b_next_transaction->t_tid : 0,
1466                                jh->b_jlist);
1467                         WARN_ON(1);
1468                         ret = -EINVAL;
1469                 }
1470                 /* And this case is illegal: we can't reuse another
1471                  * transaction's data buffer, ever. */
1472                 goto out_unlock_bh;
1473         }
1474
1475         /* That test should have eliminated the following case: */
1476         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1477
1478         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1479         spin_lock(&journal->j_list_lock);
1480         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1481         spin_unlock(&journal->j_list_lock);
1482 out_unlock_bh:
1483         jbd_unlock_bh_state(bh);
1484 out:
1485         JBUFFER_TRACE(jh, "exit");
1486         return ret;
1487 }
1488
1489 /**
1490  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1491  * @handle: transaction handle
1492  * @bh:     bh to 'forget'
1493  *
1494  * We can only do the bforget if there are no commits pending against the
1495  * buffer.  If the buffer is dirty in the current running transaction we
1496  * can safely unlink it.
1497  *
1498  * bh may not be a journalled buffer at all - it may be a non-JBD
1499  * buffer which came off the hashtable.  Check for this.
1500  *
1501  * Decrements bh->b_count by one.
1502  *
1503  * Allow this call even if the handle has aborted --- it may be part of
1504  * the caller's cleanup after an abort.
1505  */
1506 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1507 {
1508         transaction_t *transaction = handle->h_transaction;
1509         journal_t *journal;
1510         struct journal_head *jh;
1511         int drop_reserve = 0;
1512         int err = 0;
1513         int was_modified = 0;
1514
1515         if (is_handle_aborted(handle))
1516                 return -EROFS;
1517         journal = transaction->t_journal;
1518
1519         BUFFER_TRACE(bh, "entry");
1520
1521         jbd_lock_bh_state(bh);
1522
1523         if (!buffer_jbd(bh))
1524                 goto not_jbd;
1525         jh = bh2jh(bh);
1526
1527         /* Critical error: attempting to delete a bitmap buffer, maybe?
1528          * Don't do any jbd operations, and return an error. */
1529         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1530                          "inconsistent data on disk")) {
1531                 err = -EIO;
1532                 goto not_jbd;
1533         }
1534
1535         /* keep track of whether or not this transaction modified us */
1536         was_modified = jh->b_modified;
1537
1538         /*
1539          * The buffer's going from the transaction, we must drop
1540          * all references -bzzz
1541          */
1542         jh->b_modified = 0;
1543
1544         if (jh->b_transaction == transaction) {
1545                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1546
1547                 /* If we are forgetting a buffer which is already part
1548                  * of this transaction, then we can just drop it from
1549                  * the transaction immediately. */
1550                 clear_buffer_dirty(bh);
1551                 clear_buffer_jbddirty(bh);
1552
1553                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1554
1555                 /*
1556                  * we only want to drop a reference if this transaction
1557                  * modified the buffer
1558                  */
1559                 if (was_modified)
1560                         drop_reserve = 1;
1561
1562                 /*
1563                  * We are no longer going to journal this buffer.
1564                  * However, the commit of this transaction is still
1565                  * important to the buffer: the delete that we are now
1566                  * processing might obsolete an old log entry, so by
1567                  * committing, we can satisfy the buffer's checkpoint.
1568                  *
1569                  * So, if we have a checkpoint on the buffer, we should
1570                  * now refile the buffer on our BJ_Forget list so that
1571                  * we know to remove the checkpoint after we commit.
1572                  */
1573
1574                 spin_lock(&journal->j_list_lock);
1575                 if (jh->b_cp_transaction) {
1576                         __jbd2_journal_temp_unlink_buffer(jh);
1577                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1578                 } else {
1579                         __jbd2_journal_unfile_buffer(jh);
1580                         if (!buffer_jbd(bh)) {
1581                                 spin_unlock(&journal->j_list_lock);
1582                                 jbd_unlock_bh_state(bh);
1583                                 __bforget(bh);
1584                                 goto drop;
1585                         }
1586                 }
1587                 spin_unlock(&journal->j_list_lock);
1588         } else if (jh->b_transaction) {
1589                 J_ASSERT_JH(jh, (jh->b_transaction ==
1590                                  journal->j_committing_transaction));
1591                 /* However, if the buffer is still owned by a prior
1592                  * (committing) transaction, we can't drop it yet... */
1593                 JBUFFER_TRACE(jh, "belongs to older transaction");
1594                 /* ... but we CAN drop it from the new transaction through
1595                  * marking the buffer as freed and set j_next_transaction to
1596                  * the new transaction, so that not only the commit code
1597                  * knows it should clear dirty bits when it is done with the
1598                  * buffer, but also the buffer can be checkpointed only
1599                  * after the new transaction commits. */
1600
1601                 set_buffer_freed(bh);
1602
1603                 if (!jh->b_next_transaction) {
1604                         spin_lock(&journal->j_list_lock);
1605                         jh->b_next_transaction = transaction;
1606                         spin_unlock(&journal->j_list_lock);
1607                 } else {
1608                         J_ASSERT(jh->b_next_transaction == transaction);
1609
1610                         /*
1611                          * only drop a reference if this transaction modified
1612                          * the buffer
1613                          */
1614                         if (was_modified)
1615                                 drop_reserve = 1;
1616                 }
1617         }
1618
1619 not_jbd:
1620         jbd_unlock_bh_state(bh);
1621         __brelse(bh);
1622 drop:
1623         if (drop_reserve) {
1624                 /* no need to reserve log space for this block -bzzz */
1625                 handle->h_buffer_credits++;
1626         }
1627         return err;
1628 }
1629
1630 /**
1631  * int jbd2_journal_stop() - complete a transaction
1632  * @handle: transaction to complete.
1633  *
1634  * All done for a particular handle.
1635  *
1636  * There is not much action needed here.  We just return any remaining
1637  * buffer credits to the transaction and remove the handle.  The only
1638  * complication is that we need to start a commit operation if the
1639  * filesystem is marked for synchronous update.
1640  *
1641  * jbd2_journal_stop itself will not usually return an error, but it may
1642  * do so in unusual circumstances.  In particular, expect it to
1643  * return -EIO if a jbd2_journal_abort has been executed since the
1644  * transaction began.
1645  */
1646 int jbd2_journal_stop(handle_t *handle)
1647 {
1648         transaction_t *transaction = handle->h_transaction;
1649         journal_t *journal;
1650         int err = 0, wait_for_commit = 0;
1651         tid_t tid;
1652         pid_t pid;
1653
1654         if (!transaction) {
1655                 /*
1656                  * Handle is already detached from the transaction so
1657                  * there is nothing to do other than decrease a refcount,
1658                  * or free the handle if refcount drops to zero
1659                  */
1660                 if (--handle->h_ref > 0) {
1661                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1662                                                          handle->h_ref);
1663                         return err;
1664                 } else {
1665                         if (handle->h_rsv_handle)
1666                                 jbd2_free_handle(handle->h_rsv_handle);
1667                         goto free_and_exit;
1668                 }
1669         }
1670         journal = transaction->t_journal;
1671
1672         J_ASSERT(journal_current_handle() == handle);
1673
1674         if (is_handle_aborted(handle))
1675                 err = -EIO;
1676         else
1677                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1678
1679         if (--handle->h_ref > 0) {
1680                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1681                           handle->h_ref);
1682                 return err;
1683         }
1684
1685         jbd_debug(4, "Handle %p going down\n", handle);
1686         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1687                                 transaction->t_tid,
1688                                 handle->h_type, handle->h_line_no,
1689                                 jiffies - handle->h_start_jiffies,
1690                                 handle->h_sync, handle->h_requested_credits,
1691                                 (handle->h_requested_credits -
1692                                  handle->h_buffer_credits));
1693
1694         /*
1695          * Implement synchronous transaction batching.  If the handle
1696          * was synchronous, don't force a commit immediately.  Let's
1697          * yield and let another thread piggyback onto this
1698          * transaction.  Keep doing that while new threads continue to
1699          * arrive.  It doesn't cost much - we're about to run a commit
1700          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1701          * operations by 30x or more...
1702          *
1703          * We try and optimize the sleep time against what the
1704          * underlying disk can do, instead of having a static sleep
1705          * time.  This is useful for the case where our storage is so
1706          * fast that it is more optimal to go ahead and force a flush
1707          * and wait for the transaction to be committed than it is to
1708          * wait for an arbitrary amount of time for new writers to
1709          * join the transaction.  We achieve this by measuring how
1710          * long it takes to commit a transaction, and compare it with
1711          * how long this transaction has been running, and if run time
1712          * < commit time then we sleep for the delta and commit.  This
1713          * greatly helps super fast disks that would see slowdowns as
1714          * more threads started doing fsyncs.
1715          *
1716          * But don't do this if this process was the most recent one
1717          * to perform a synchronous write.  We do this to detect the
1718          * case where a single process is doing a stream of sync
1719          * writes.  No point in waiting for joiners in that case.
1720          *
1721          * Setting max_batch_time to 0 disables this completely.
1722          */
1723         pid = current->pid;
1724         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1725             journal->j_max_batch_time) {
1726                 u64 commit_time, trans_time;
1727
1728                 journal->j_last_sync_writer = pid;
1729
1730                 read_lock(&journal->j_state_lock);
1731                 commit_time = journal->j_average_commit_time;
1732                 read_unlock(&journal->j_state_lock);
1733
1734                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1735                                                    transaction->t_start_time));
1736
1737                 commit_time = max_t(u64, commit_time,
1738                                     1000*journal->j_min_batch_time);
1739                 commit_time = min_t(u64, commit_time,
1740                                     1000*journal->j_max_batch_time);
1741
1742                 if (trans_time < commit_time) {
1743                         ktime_t expires = ktime_add_ns(ktime_get(),
1744                                                        commit_time);
1745                         set_current_state(TASK_UNINTERRUPTIBLE);
1746                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1747                 }
1748         }
1749
1750         if (handle->h_sync)
1751                 transaction->t_synchronous_commit = 1;
1752         current->journal_info = NULL;
1753         atomic_sub(handle->h_buffer_credits,
1754                    &transaction->t_outstanding_credits);
1755
1756         /*
1757          * If the handle is marked SYNC, we need to set another commit
1758          * going!  We also want to force a commit if the current
1759          * transaction is occupying too much of the log, or if the
1760          * transaction is too old now.
1761          */
1762         if (handle->h_sync ||
1763             (atomic_read(&transaction->t_outstanding_credits) >
1764              journal->j_max_transaction_buffers) ||
1765             time_after_eq(jiffies, transaction->t_expires)) {
1766                 /* Do this even for aborted journals: an abort still
1767                  * completes the commit thread, it just doesn't write
1768                  * anything to disk. */
1769
1770                 jbd_debug(2, "transaction too old, requesting commit for "
1771                                         "handle %p\n", handle);
1772                 /* This is non-blocking */
1773                 jbd2_log_start_commit(journal, transaction->t_tid);
1774
1775                 /*
1776                  * Special case: JBD2_SYNC synchronous updates require us
1777                  * to wait for the commit to complete.
1778                  */
1779                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1780                         wait_for_commit = 1;
1781         }
1782
1783         /*
1784          * Once we drop t_updates, if it goes to zero the transaction
1785          * could start committing on us and eventually disappear.  So
1786          * once we do this, we must not dereference transaction
1787          * pointer again.
1788          */
1789         tid = transaction->t_tid;
1790         if (atomic_dec_and_test(&transaction->t_updates)) {
1791                 wake_up(&journal->j_wait_updates);
1792                 if (journal->j_barrier_count)
1793                         wake_up(&journal->j_wait_transaction_locked);
1794         }
1795
1796         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1797
1798         if (wait_for_commit)
1799                 err = jbd2_log_wait_commit(journal, tid);
1800
1801         if (handle->h_rsv_handle)
1802                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1803 free_and_exit:
1804         /*
1805          * Scope of the GFP_NOFS context is over here and so we can restore the
1806          * original alloc context.
1807          */
1808         memalloc_nofs_restore(handle->saved_alloc_context);
1809         jbd2_free_handle(handle);
1810         return err;
1811 }
1812
1813 /*
1814  *
1815  * List management code snippets: various functions for manipulating the
1816  * transaction buffer lists.
1817  *
1818  */
1819
1820 /*
1821  * Append a buffer to a transaction list, given the transaction's list head
1822  * pointer.
1823  *
1824  * j_list_lock is held.
1825  *
1826  * jbd_lock_bh_state(jh2bh(jh)) is held.
1827  */
1828
1829 static inline void
1830 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1831 {
1832         if (!*list) {
1833                 jh->b_tnext = jh->b_tprev = jh;
1834                 *list = jh;
1835         } else {
1836                 /* Insert at the tail of the list to preserve order */
1837                 struct journal_head *first = *list, *last = first->b_tprev;
1838                 jh->b_tprev = last;
1839                 jh->b_tnext = first;
1840                 last->b_tnext = first->b_tprev = jh;
1841         }
1842 }
1843
1844 /*
1845  * Remove a buffer from a transaction list, given the transaction's list
1846  * head pointer.
1847  *
1848  * Called with j_list_lock held, and the journal may not be locked.
1849  *
1850  * jbd_lock_bh_state(jh2bh(jh)) is held.
1851  */
1852
1853 static inline void
1854 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1855 {
1856         if (*list == jh) {
1857                 *list = jh->b_tnext;
1858                 if (*list == jh)
1859                         *list = NULL;
1860         }
1861         jh->b_tprev->b_tnext = jh->b_tnext;
1862         jh->b_tnext->b_tprev = jh->b_tprev;
1863 }
1864
1865 /*
1866  * Remove a buffer from the appropriate transaction list.
1867  *
1868  * Note that this function can *change* the value of
1869  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1870  * t_reserved_list.  If the caller is holding onto a copy of one of these
1871  * pointers, it could go bad.  Generally the caller needs to re-read the
1872  * pointer from the transaction_t.
1873  *
1874  * Called under j_list_lock.
1875  */
1876 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1877 {
1878         struct journal_head **list = NULL;
1879         transaction_t *transaction;
1880         struct buffer_head *bh = jh2bh(jh);
1881
1882         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1883         transaction = jh->b_transaction;
1884         if (transaction)
1885                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1886
1887         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1888         if (jh->b_jlist != BJ_None)
1889                 J_ASSERT_JH(jh, transaction != NULL);
1890
1891         switch (jh->b_jlist) {
1892         case BJ_None:
1893                 return;
1894         case BJ_Metadata:
1895                 transaction->t_nr_buffers--;
1896                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1897                 list = &transaction->t_buffers;
1898                 break;
1899         case BJ_Forget:
1900                 list = &transaction->t_forget;
1901                 break;
1902         case BJ_Shadow:
1903                 list = &transaction->t_shadow_list;
1904                 break;
1905         case BJ_Reserved:
1906                 list = &transaction->t_reserved_list;
1907                 break;
1908         }
1909
1910         __blist_del_buffer(list, jh);
1911         jh->b_jlist = BJ_None;
1912         if (transaction && is_journal_aborted(transaction->t_journal))
1913                 clear_buffer_jbddirty(bh);
1914         else if (test_clear_buffer_jbddirty(bh))
1915                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1916 }
1917
1918 /*
1919  * Remove buffer from all transactions.
1920  *
1921  * Called with bh_state lock and j_list_lock
1922  *
1923  * jh and bh may be already freed when this function returns.
1924  */
1925 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1926 {
1927         J_ASSERT_JH(jh, jh->b_transaction != NULL);
1928         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1929
1930         __jbd2_journal_temp_unlink_buffer(jh);
1931         jh->b_transaction = NULL;
1932         jbd2_journal_put_journal_head(jh);
1933 }
1934
1935 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1936 {
1937         struct buffer_head *bh = jh2bh(jh);
1938
1939         /* Get reference so that buffer cannot be freed before we unlock it */
1940         get_bh(bh);
1941         jbd_lock_bh_state(bh);
1942         spin_lock(&journal->j_list_lock);
1943         __jbd2_journal_unfile_buffer(jh);
1944         spin_unlock(&journal->j_list_lock);
1945         jbd_unlock_bh_state(bh);
1946         __brelse(bh);
1947 }
1948
1949 /*
1950  * Called from jbd2_journal_try_to_free_buffers().
1951  *
1952  * Called under jbd_lock_bh_state(bh)
1953  */
1954 static void
1955 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1956 {
1957         struct journal_head *jh;
1958
1959         jh = bh2jh(bh);
1960
1961         if (buffer_locked(bh) || buffer_dirty(bh))
1962                 goto out;
1963
1964         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1965                 goto out;
1966
1967         spin_lock(&journal->j_list_lock);
1968         if (jh->b_cp_transaction != NULL) {
1969                 /* written-back checkpointed metadata buffer */
1970                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1971                 __jbd2_journal_remove_checkpoint(jh);
1972         }
1973         spin_unlock(&journal->j_list_lock);
1974 out:
1975         return;
1976 }
1977
1978 /**
1979  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1980  * @journal: journal for operation
1981  * @page: to try and free
1982  * @gfp_mask: we use the mask to detect how hard should we try to release
1983  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1984  * code to release the buffers.
1985  *
1986  *
1987  * For all the buffers on this page,
1988  * if they are fully written out ordered data, move them onto BUF_CLEAN
1989  * so try_to_free_buffers() can reap them.
1990  *
1991  * This function returns non-zero if we wish try_to_free_buffers()
1992  * to be called. We do this if the page is releasable by try_to_free_buffers().
1993  * We also do it if the page has locked or dirty buffers and the caller wants
1994  * us to perform sync or async writeout.
1995  *
1996  * This complicates JBD locking somewhat.  We aren't protected by the
1997  * BKL here.  We wish to remove the buffer from its committing or
1998  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1999  *
2000  * This may *change* the value of transaction_t->t_datalist, so anyone
2001  * who looks at t_datalist needs to lock against this function.
2002  *
2003  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2004  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2005  * will come out of the lock with the buffer dirty, which makes it
2006  * ineligible for release here.
2007  *
2008  * Who else is affected by this?  hmm...  Really the only contender
2009  * is do_get_write_access() - it could be looking at the buffer while
2010  * journal_try_to_free_buffer() is changing its state.  But that
2011  * cannot happen because we never reallocate freed data as metadata
2012  * while the data is part of a transaction.  Yes?
2013  *
2014  * Return 0 on failure, 1 on success
2015  */
2016 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2017                                 struct page *page, gfp_t gfp_mask)
2018 {
2019         struct buffer_head *head;
2020         struct buffer_head *bh;
2021         bool has_write_io_error = false;
2022         int ret = 0;
2023
2024         J_ASSERT(PageLocked(page));
2025
2026         head = page_buffers(page);
2027         bh = head;
2028         do {
2029                 struct journal_head *jh;
2030
2031                 /*
2032                  * We take our own ref against the journal_head here to avoid
2033                  * having to add tons of locking around each instance of
2034                  * jbd2_journal_put_journal_head().
2035                  */
2036                 jh = jbd2_journal_grab_journal_head(bh);
2037                 if (!jh)
2038                         continue;
2039
2040                 jbd_lock_bh_state(bh);
2041                 __journal_try_to_free_buffer(journal, bh);
2042                 jbd2_journal_put_journal_head(jh);
2043                 jbd_unlock_bh_state(bh);
2044                 if (buffer_jbd(bh))
2045                         goto busy;
2046
2047                 /*
2048                  * If we free a metadata buffer which has been failed to
2049                  * write out, the jbd2 checkpoint procedure will not detect
2050                  * this failure and may lead to filesystem inconsistency
2051                  * after cleanup journal tail.
2052                  */
2053                 if (buffer_write_io_error(bh)) {
2054                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2055                                (unsigned long long)bh->b_blocknr);
2056                         has_write_io_error = true;
2057                 }
2058         } while ((bh = bh->b_this_page) != head);
2059
2060         ret = try_to_free_buffers(page);
2061
2062 busy:
2063         if (has_write_io_error)
2064                 jbd2_journal_abort(journal, -EIO);
2065
2066         return ret;
2067 }
2068
2069 /*
2070  * This buffer is no longer needed.  If it is on an older transaction's
2071  * checkpoint list we need to record it on this transaction's forget list
2072  * to pin this buffer (and hence its checkpointing transaction) down until
2073  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2074  * release it.
2075  * Returns non-zero if JBD no longer has an interest in the buffer.
2076  *
2077  * Called under j_list_lock.
2078  *
2079  * Called under jbd_lock_bh_state(bh).
2080  */
2081 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2082 {
2083         int may_free = 1;
2084         struct buffer_head *bh = jh2bh(jh);
2085
2086         if (jh->b_cp_transaction) {
2087                 JBUFFER_TRACE(jh, "on running+cp transaction");
2088                 __jbd2_journal_temp_unlink_buffer(jh);
2089                 /*
2090                  * We don't want to write the buffer anymore, clear the
2091                  * bit so that we don't confuse checks in
2092                  * __journal_file_buffer
2093                  */
2094                 clear_buffer_dirty(bh);
2095                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2096                 may_free = 0;
2097         } else {
2098                 JBUFFER_TRACE(jh, "on running transaction");
2099                 __jbd2_journal_unfile_buffer(jh);
2100         }
2101         return may_free;
2102 }
2103
2104 /*
2105  * jbd2_journal_invalidatepage
2106  *
2107  * This code is tricky.  It has a number of cases to deal with.
2108  *
2109  * There are two invariants which this code relies on:
2110  *
2111  * i_size must be updated on disk before we start calling invalidatepage on the
2112  * data.
2113  *
2114  *  This is done in ext3 by defining an ext3_setattr method which
2115  *  updates i_size before truncate gets going.  By maintaining this
2116  *  invariant, we can be sure that it is safe to throw away any buffers
2117  *  attached to the current transaction: once the transaction commits,
2118  *  we know that the data will not be needed.
2119  *
2120  *  Note however that we can *not* throw away data belonging to the
2121  *  previous, committing transaction!
2122  *
2123  * Any disk blocks which *are* part of the previous, committing
2124  * transaction (and which therefore cannot be discarded immediately) are
2125  * not going to be reused in the new running transaction
2126  *
2127  *  The bitmap committed_data images guarantee this: any block which is
2128  *  allocated in one transaction and removed in the next will be marked
2129  *  as in-use in the committed_data bitmap, so cannot be reused until
2130  *  the next transaction to delete the block commits.  This means that
2131  *  leaving committing buffers dirty is quite safe: the disk blocks
2132  *  cannot be reallocated to a different file and so buffer aliasing is
2133  *  not possible.
2134  *
2135  *
2136  * The above applies mainly to ordered data mode.  In writeback mode we
2137  * don't make guarantees about the order in which data hits disk --- in
2138  * particular we don't guarantee that new dirty data is flushed before
2139  * transaction commit --- so it is always safe just to discard data
2140  * immediately in that mode.  --sct
2141  */
2142
2143 /*
2144  * The journal_unmap_buffer helper function returns zero if the buffer
2145  * concerned remains pinned as an anonymous buffer belonging to an older
2146  * transaction.
2147  *
2148  * We're outside-transaction here.  Either or both of j_running_transaction
2149  * and j_committing_transaction may be NULL.
2150  */
2151 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2152                                 int partial_page)
2153 {
2154         transaction_t *transaction;
2155         struct journal_head *jh;
2156         int may_free = 1;
2157
2158         BUFFER_TRACE(bh, "entry");
2159
2160         /*
2161          * It is safe to proceed here without the j_list_lock because the
2162          * buffers cannot be stolen by try_to_free_buffers as long as we are
2163          * holding the page lock. --sct
2164          */
2165
2166         if (!buffer_jbd(bh))
2167                 goto zap_buffer_unlocked;
2168
2169         /* OK, we have data buffer in journaled mode */
2170         write_lock(&journal->j_state_lock);
2171         jbd_lock_bh_state(bh);
2172         spin_lock(&journal->j_list_lock);
2173
2174         jh = jbd2_journal_grab_journal_head(bh);
2175         if (!jh)
2176                 goto zap_buffer_no_jh;
2177
2178         /*
2179          * We cannot remove the buffer from checkpoint lists until the
2180          * transaction adding inode to orphan list (let's call it T)
2181          * is committed.  Otherwise if the transaction changing the
2182          * buffer would be cleaned from the journal before T is
2183          * committed, a crash will cause that the correct contents of
2184          * the buffer will be lost.  On the other hand we have to
2185          * clear the buffer dirty bit at latest at the moment when the
2186          * transaction marking the buffer as freed in the filesystem
2187          * structures is committed because from that moment on the
2188          * block can be reallocated and used by a different page.
2189          * Since the block hasn't been freed yet but the inode has
2190          * already been added to orphan list, it is safe for us to add
2191          * the buffer to BJ_Forget list of the newest transaction.
2192          *
2193          * Also we have to clear buffer_mapped flag of a truncated buffer
2194          * because the buffer_head may be attached to the page straddling
2195          * i_size (can happen only when blocksize < pagesize) and thus the
2196          * buffer_head can be reused when the file is extended again. So we end
2197          * up keeping around invalidated buffers attached to transactions'
2198          * BJ_Forget list just to stop checkpointing code from cleaning up
2199          * the transaction this buffer was modified in.
2200          */
2201         transaction = jh->b_transaction;
2202         if (transaction == NULL) {
2203                 /* First case: not on any transaction.  If it
2204                  * has no checkpoint link, then we can zap it:
2205                  * it's a writeback-mode buffer so we don't care
2206                  * if it hits disk safely. */
2207                 if (!jh->b_cp_transaction) {
2208                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2209                         goto zap_buffer;
2210                 }
2211
2212                 if (!buffer_dirty(bh)) {
2213                         /* bdflush has written it.  We can drop it now */
2214                         __jbd2_journal_remove_checkpoint(jh);
2215                         goto zap_buffer;
2216                 }
2217
2218                 /* OK, it must be in the journal but still not
2219                  * written fully to disk: it's metadata or
2220                  * journaled data... */
2221
2222                 if (journal->j_running_transaction) {
2223                         /* ... and once the current transaction has
2224                          * committed, the buffer won't be needed any
2225                          * longer. */
2226                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2227                         may_free = __dispose_buffer(jh,
2228                                         journal->j_running_transaction);
2229                         goto zap_buffer;
2230                 } else {
2231                         /* There is no currently-running transaction. So the
2232                          * orphan record which we wrote for this file must have
2233                          * passed into commit.  We must attach this buffer to
2234                          * the committing transaction, if it exists. */
2235                         if (journal->j_committing_transaction) {
2236                                 JBUFFER_TRACE(jh, "give to committing trans");
2237                                 may_free = __dispose_buffer(jh,
2238                                         journal->j_committing_transaction);
2239                                 goto zap_buffer;
2240                         } else {
2241                                 /* The orphan record's transaction has
2242                                  * committed.  We can cleanse this buffer */
2243                                 clear_buffer_jbddirty(bh);
2244                                 __jbd2_journal_remove_checkpoint(jh);
2245                                 goto zap_buffer;
2246                         }
2247                 }
2248         } else if (transaction == journal->j_committing_transaction) {
2249                 JBUFFER_TRACE(jh, "on committing transaction");
2250                 /*
2251                  * The buffer is committing, we simply cannot touch
2252                  * it. If the page is straddling i_size we have to wait
2253                  * for commit and try again.
2254                  */
2255                 if (partial_page) {
2256                         jbd2_journal_put_journal_head(jh);
2257                         spin_unlock(&journal->j_list_lock);
2258                         jbd_unlock_bh_state(bh);
2259                         write_unlock(&journal->j_state_lock);
2260                         return -EBUSY;
2261                 }
2262                 /*
2263                  * OK, buffer won't be reachable after truncate. We just clear
2264                  * b_modified to not confuse transaction credit accounting, and
2265                  * set j_next_transaction to the running transaction (if there
2266                  * is one) and mark buffer as freed so that commit code knows
2267                  * it should clear dirty bits when it is done with the buffer.
2268                  */
2269                 set_buffer_freed(bh);
2270                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2271                         jh->b_next_transaction = journal->j_running_transaction;
2272                 jh->b_modified = 0;
2273                 jbd2_journal_put_journal_head(jh);
2274                 spin_unlock(&journal->j_list_lock);
2275                 jbd_unlock_bh_state(bh);
2276                 write_unlock(&journal->j_state_lock);
2277                 return 0;
2278         } else {
2279                 /* Good, the buffer belongs to the running transaction.
2280                  * We are writing our own transaction's data, not any
2281                  * previous one's, so it is safe to throw it away
2282                  * (remember that we expect the filesystem to have set
2283                  * i_size already for this truncate so recovery will not
2284                  * expose the disk blocks we are discarding here.) */
2285                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2286                 JBUFFER_TRACE(jh, "on running transaction");
2287                 may_free = __dispose_buffer(jh, transaction);
2288         }
2289
2290 zap_buffer:
2291         /*
2292          * This is tricky. Although the buffer is truncated, it may be reused
2293          * if blocksize < pagesize and it is attached to the page straddling
2294          * EOF. Since the buffer might have been added to BJ_Forget list of the
2295          * running transaction, journal_get_write_access() won't clear
2296          * b_modified and credit accounting gets confused. So clear b_modified
2297          * here.
2298          */
2299         jh->b_modified = 0;
2300         jbd2_journal_put_journal_head(jh);
2301 zap_buffer_no_jh:
2302         spin_unlock(&journal->j_list_lock);
2303         jbd_unlock_bh_state(bh);
2304         write_unlock(&journal->j_state_lock);
2305 zap_buffer_unlocked:
2306         clear_buffer_dirty(bh);
2307         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2308         clear_buffer_mapped(bh);
2309         clear_buffer_req(bh);
2310         clear_buffer_new(bh);
2311         clear_buffer_delay(bh);
2312         clear_buffer_unwritten(bh);
2313         bh->b_bdev = NULL;
2314         return may_free;
2315 }
2316
2317 /**
2318  * void jbd2_journal_invalidatepage()
2319  * @journal: journal to use for flush...
2320  * @page:    page to flush
2321  * @offset:  start of the range to invalidate
2322  * @length:  length of the range to invalidate
2323  *
2324  * Reap page buffers containing data after in the specified range in page.
2325  * Can return -EBUSY if buffers are part of the committing transaction and
2326  * the page is straddling i_size. Caller then has to wait for current commit
2327  * and try again.
2328  */
2329 int jbd2_journal_invalidatepage(journal_t *journal,
2330                                 struct page *page,
2331                                 unsigned int offset,
2332                                 unsigned int length)
2333 {
2334         struct buffer_head *head, *bh, *next;
2335         unsigned int stop = offset + length;
2336         unsigned int curr_off = 0;
2337         int partial_page = (offset || length < PAGE_SIZE);
2338         int may_free = 1;
2339         int ret = 0;
2340
2341         if (!PageLocked(page))
2342                 BUG();
2343         if (!page_has_buffers(page))
2344                 return 0;
2345
2346         BUG_ON(stop > PAGE_SIZE || stop < length);
2347
2348         /* We will potentially be playing with lists other than just the
2349          * data lists (especially for journaled data mode), so be
2350          * cautious in our locking. */
2351
2352         head = bh = page_buffers(page);
2353         do {
2354                 unsigned int next_off = curr_off + bh->b_size;
2355                 next = bh->b_this_page;
2356
2357                 if (next_off > stop)
2358                         return 0;
2359
2360                 if (offset <= curr_off) {
2361                         /* This block is wholly outside the truncation point */
2362                         lock_buffer(bh);
2363                         ret = journal_unmap_buffer(journal, bh, partial_page);
2364                         unlock_buffer(bh);
2365                         if (ret < 0)
2366                                 return ret;
2367                         may_free &= ret;
2368                 }
2369                 curr_off = next_off;
2370                 bh = next;
2371
2372         } while (bh != head);
2373
2374         if (!partial_page) {
2375                 if (may_free && try_to_free_buffers(page))
2376                         J_ASSERT(!page_has_buffers(page));
2377         }
2378         return 0;
2379 }
2380
2381 /*
2382  * File a buffer on the given transaction list.
2383  */
2384 void __jbd2_journal_file_buffer(struct journal_head *jh,
2385                         transaction_t *transaction, int jlist)
2386 {
2387         struct journal_head **list = NULL;
2388         int was_dirty = 0;
2389         struct buffer_head *bh = jh2bh(jh);
2390
2391         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2392         assert_spin_locked(&transaction->t_journal->j_list_lock);
2393
2394         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2395         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2396                                 jh->b_transaction == NULL);
2397
2398         if (jh->b_transaction && jh->b_jlist == jlist)
2399                 return;
2400
2401         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2402             jlist == BJ_Shadow || jlist == BJ_Forget) {
2403                 /*
2404                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2405                  * instead of buffer_dirty. We should not see a dirty bit set
2406                  * here because we clear it in do_get_write_access but e.g.
2407                  * tune2fs can modify the sb and set the dirty bit at any time
2408                  * so we try to gracefully handle that.
2409                  */
2410                 if (buffer_dirty(bh))
2411                         warn_dirty_buffer(bh);
2412                 if (test_clear_buffer_dirty(bh) ||
2413                     test_clear_buffer_jbddirty(bh))
2414                         was_dirty = 1;
2415         }
2416
2417         if (jh->b_transaction)
2418                 __jbd2_journal_temp_unlink_buffer(jh);
2419         else
2420                 jbd2_journal_grab_journal_head(bh);
2421         jh->b_transaction = transaction;
2422
2423         switch (jlist) {
2424         case BJ_None:
2425                 J_ASSERT_JH(jh, !jh->b_committed_data);
2426                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2427                 return;
2428         case BJ_Metadata:
2429                 transaction->t_nr_buffers++;
2430                 list = &transaction->t_buffers;
2431                 break;
2432         case BJ_Forget:
2433                 list = &transaction->t_forget;
2434                 break;
2435         case BJ_Shadow:
2436                 list = &transaction->t_shadow_list;
2437                 break;
2438         case BJ_Reserved:
2439                 list = &transaction->t_reserved_list;
2440                 break;
2441         }
2442
2443         __blist_add_buffer(list, jh);
2444         jh->b_jlist = jlist;
2445
2446         if (was_dirty)
2447                 set_buffer_jbddirty(bh);
2448 }
2449
2450 void jbd2_journal_file_buffer(struct journal_head *jh,
2451                                 transaction_t *transaction, int jlist)
2452 {
2453         jbd_lock_bh_state(jh2bh(jh));
2454         spin_lock(&transaction->t_journal->j_list_lock);
2455         __jbd2_journal_file_buffer(jh, transaction, jlist);
2456         spin_unlock(&transaction->t_journal->j_list_lock);
2457         jbd_unlock_bh_state(jh2bh(jh));
2458 }
2459
2460 /*
2461  * Remove a buffer from its current buffer list in preparation for
2462  * dropping it from its current transaction entirely.  If the buffer has
2463  * already started to be used by a subsequent transaction, refile the
2464  * buffer on that transaction's metadata list.
2465  *
2466  * Called under j_list_lock
2467  * Called under jbd_lock_bh_state(jh2bh(jh))
2468  *
2469  * jh and bh may be already free when this function returns
2470  */
2471 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2472 {
2473         int was_dirty, jlist;
2474         struct buffer_head *bh = jh2bh(jh);
2475
2476         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2477         if (jh->b_transaction)
2478                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2479
2480         /* If the buffer is now unused, just drop it. */
2481         if (jh->b_next_transaction == NULL) {
2482                 __jbd2_journal_unfile_buffer(jh);
2483                 return;
2484         }
2485
2486         /*
2487          * It has been modified by a later transaction: add it to the new
2488          * transaction's metadata list.
2489          */
2490
2491         was_dirty = test_clear_buffer_jbddirty(bh);
2492         __jbd2_journal_temp_unlink_buffer(jh);
2493
2494         /*
2495          * b_transaction must be set, otherwise the new b_transaction won't
2496          * be holding jh reference
2497          */
2498         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2499
2500         /*
2501          * We set b_transaction here because b_next_transaction will inherit
2502          * our jh reference and thus __jbd2_journal_file_buffer() must not
2503          * take a new one.
2504          */
2505         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2506         WRITE_ONCE(jh->b_next_transaction, NULL);
2507         if (buffer_freed(bh))
2508                 jlist = BJ_Forget;
2509         else if (jh->b_modified)
2510                 jlist = BJ_Metadata;
2511         else
2512                 jlist = BJ_Reserved;
2513         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2514         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2515
2516         if (was_dirty)
2517                 set_buffer_jbddirty(bh);
2518 }
2519
2520 /*
2521  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2522  * bh reference so that we can safely unlock bh.
2523  *
2524  * The jh and bh may be freed by this call.
2525  */
2526 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2527 {
2528         struct buffer_head *bh = jh2bh(jh);
2529
2530         /* Get reference so that buffer cannot be freed before we unlock it */
2531         get_bh(bh);
2532         jbd_lock_bh_state(bh);
2533         spin_lock(&journal->j_list_lock);
2534         __jbd2_journal_refile_buffer(jh);
2535         jbd_unlock_bh_state(bh);
2536         spin_unlock(&journal->j_list_lock);
2537         __brelse(bh);
2538 }
2539
2540 /*
2541  * File inode in the inode list of the handle's transaction
2542  */
2543 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2544                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2545 {
2546         transaction_t *transaction = handle->h_transaction;
2547         journal_t *journal;
2548
2549         if (is_handle_aborted(handle))
2550                 return -EROFS;
2551         journal = transaction->t_journal;
2552
2553         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2554                         transaction->t_tid);
2555
2556         spin_lock(&journal->j_list_lock);
2557         jinode->i_flags |= flags;
2558
2559         if (jinode->i_dirty_end) {
2560                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2561                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2562         } else {
2563                 jinode->i_dirty_start = start_byte;
2564                 jinode->i_dirty_end = end_byte;
2565         }
2566
2567         /* Is inode already attached where we need it? */
2568         if (jinode->i_transaction == transaction ||
2569             jinode->i_next_transaction == transaction)
2570                 goto done;
2571
2572         /*
2573          * We only ever set this variable to 1 so the test is safe. Since
2574          * t_need_data_flush is likely to be set, we do the test to save some
2575          * cacheline bouncing
2576          */
2577         if (!transaction->t_need_data_flush)
2578                 transaction->t_need_data_flush = 1;
2579         /* On some different transaction's list - should be
2580          * the committing one */
2581         if (jinode->i_transaction) {
2582                 J_ASSERT(jinode->i_next_transaction == NULL);
2583                 J_ASSERT(jinode->i_transaction ==
2584                                         journal->j_committing_transaction);
2585                 jinode->i_next_transaction = transaction;
2586                 goto done;
2587         }
2588         /* Not on any transaction list... */
2589         J_ASSERT(!jinode->i_next_transaction);
2590         jinode->i_transaction = transaction;
2591         list_add(&jinode->i_list, &transaction->t_inode_list);
2592 done:
2593         spin_unlock(&journal->j_list_lock);
2594
2595         return 0;
2596 }
2597
2598 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2599 {
2600         return jbd2_journal_file_inode(handle, jinode,
2601                         JI_WRITE_DATA | JI_WAIT_DATA, 0, LLONG_MAX);
2602 }
2603
2604 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2605 {
2606         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 0,
2607                         LLONG_MAX);
2608 }
2609
2610 int jbd2_journal_inode_ranged_write(handle_t *handle,
2611                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2612 {
2613         return jbd2_journal_file_inode(handle, jinode,
2614                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2615                         start_byte + length - 1);
2616 }
2617
2618 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2619                 loff_t start_byte, loff_t length)
2620 {
2621         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2622                         start_byte, start_byte + length - 1);
2623 }
2624
2625 /*
2626  * File truncate and transaction commit interact with each other in a
2627  * non-trivial way.  If a transaction writing data block A is
2628  * committing, we cannot discard the data by truncate until we have
2629  * written them.  Otherwise if we crashed after the transaction with
2630  * write has committed but before the transaction with truncate has
2631  * committed, we could see stale data in block A.  This function is a
2632  * helper to solve this problem.  It starts writeout of the truncated
2633  * part in case it is in the committing transaction.
2634  *
2635  * Filesystem code must call this function when inode is journaled in
2636  * ordered mode before truncation happens and after the inode has been
2637  * placed on orphan list with the new inode size. The second condition
2638  * avoids the race that someone writes new data and we start
2639  * committing the transaction after this function has been called but
2640  * before a transaction for truncate is started (and furthermore it
2641  * allows us to optimize the case where the addition to orphan list
2642  * happens in the same transaction as write --- we don't have to write
2643  * any data in such case).
2644  */
2645 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2646                                         struct jbd2_inode *jinode,
2647                                         loff_t new_size)
2648 {
2649         transaction_t *inode_trans, *commit_trans;
2650         int ret = 0;
2651
2652         /* This is a quick check to avoid locking if not necessary */
2653         if (!jinode->i_transaction)
2654                 goto out;
2655         /* Locks are here just to force reading of recent values, it is
2656          * enough that the transaction was not committing before we started
2657          * a transaction adding the inode to orphan list */
2658         read_lock(&journal->j_state_lock);
2659         commit_trans = journal->j_committing_transaction;
2660         read_unlock(&journal->j_state_lock);
2661         spin_lock(&journal->j_list_lock);
2662         inode_trans = jinode->i_transaction;
2663         spin_unlock(&journal->j_list_lock);
2664         if (inode_trans == commit_trans) {
2665                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2666                         new_size, LLONG_MAX);
2667                 if (ret)
2668                         jbd2_journal_abort(journal, ret);
2669         }
2670 out:
2671         return ret;
2672 }