GNU Linux-libre 5.10.215-gnu1
[releases.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH)) {
199                 read_unlock(&journal->j_state_lock);
200                 return;
201         }
202         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
203                         TASK_UNINTERRUPTIBLE);
204         read_unlock(&journal->j_state_lock);
205         /*
206          * We don't call jbd2_might_wait_for_commit() here as there's no
207          * waiting for outstanding handles happening anymore in T_SWITCH state
208          * and handling of reserved handles actually relies on that for
209          * correctness.
210          */
211         schedule();
212         finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217         atomic_sub(blocks, &journal->j_reserved_credits);
218         wake_up(&journal->j_wait_reserved);
219 }
220
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 {
230         transaction_t *t = journal->j_running_transaction;
231         int needed;
232         int total = blocks + rsv_blocks;
233
234         /*
235          * If the current transaction is locked down for commit, wait
236          * for the lock to be released.
237          */
238         if (t->t_state != T_RUNNING) {
239                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
240                 wait_transaction_locked(journal);
241                 return 1;
242         }
243
244         /*
245          * If there is not enough space left in the log to write all
246          * potential buffers requested by this operation, we need to
247          * stall pending a log checkpoint to free some more log space.
248          */
249         needed = atomic_add_return(total, &t->t_outstanding_credits);
250         if (needed > journal->j_max_transaction_buffers) {
251                 /*
252                  * If the current transaction is already too large,
253                  * then start to commit it: we can then go back and
254                  * attach this handle to a new transaction.
255                  */
256                 atomic_sub(total, &t->t_outstanding_credits);
257
258                 /*
259                  * Is the number of reserved credits in the current transaction too
260                  * big to fit this handle? Wait until reserved credits are freed.
261                  */
262                 if (atomic_read(&journal->j_reserved_credits) + total >
263                     journal->j_max_transaction_buffers) {
264                         read_unlock(&journal->j_state_lock);
265                         jbd2_might_wait_for_commit(journal);
266                         wait_event(journal->j_wait_reserved,
267                                    atomic_read(&journal->j_reserved_credits) + total <=
268                                    journal->j_max_transaction_buffers);
269                         return 1;
270                 }
271
272                 wait_transaction_locked(journal);
273                 return 1;
274         }
275
276         /*
277          * The commit code assumes that it can get enough log space
278          * without forcing a checkpoint.  This is *critical* for
279          * correctness: a checkpoint of a buffer which is also
280          * associated with a committing transaction creates a deadlock,
281          * so commit simply cannot force through checkpoints.
282          *
283          * We must therefore ensure the necessary space in the journal
284          * *before* starting to dirty potentially checkpointed buffers
285          * in the new transaction.
286          */
287         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288                 atomic_sub(total, &t->t_outstanding_credits);
289                 read_unlock(&journal->j_state_lock);
290                 jbd2_might_wait_for_commit(journal);
291                 write_lock(&journal->j_state_lock);
292                 if (jbd2_log_space_left(journal) <
293                                         journal->j_max_transaction_buffers)
294                         __jbd2_log_wait_for_space(journal);
295                 write_unlock(&journal->j_state_lock);
296                 return 1;
297         }
298
299         /* No reservation? We are done... */
300         if (!rsv_blocks)
301                 return 0;
302
303         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304         /* We allow at most half of a transaction to be reserved */
305         if (needed > journal->j_max_transaction_buffers / 2) {
306                 sub_reserved_credits(journal, rsv_blocks);
307                 atomic_sub(total, &t->t_outstanding_credits);
308                 read_unlock(&journal->j_state_lock);
309                 jbd2_might_wait_for_commit(journal);
310                 wait_event(journal->j_wait_reserved,
311                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
312                          <= journal->j_max_transaction_buffers / 2);
313                 return 1;
314         }
315         return 0;
316 }
317
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324
325 static int start_this_handle(journal_t *journal, handle_t *handle,
326                              gfp_t gfp_mask)
327 {
328         transaction_t   *transaction, *new_transaction = NULL;
329         int             blocks = handle->h_total_credits;
330         int             rsv_blocks = 0;
331         unsigned long ts = jiffies;
332
333         if (handle->h_rsv_handle)
334                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
335
336         /*
337          * Limit the number of reserved credits to 1/2 of maximum transaction
338          * size and limit the number of total credits to not exceed maximum
339          * transaction size per operation.
340          */
341         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343                 printk(KERN_ERR "JBD2: %s wants too many credits "
344                        "credits:%d rsv_credits:%d max:%d\n",
345                        current->comm, blocks, rsv_blocks,
346                        journal->j_max_transaction_buffers);
347                 WARN_ON(1);
348                 return -ENOSPC;
349         }
350
351 alloc_transaction:
352         /*
353          * This check is racy but it is just an optimization of allocating new
354          * transaction early if there are high chances we'll need it. If we
355          * guess wrong, we'll retry or free unused transaction.
356          */
357         if (!data_race(journal->j_running_transaction)) {
358                 /*
359                  * If __GFP_FS is not present, then we may be being called from
360                  * inside the fs writeback layer, so we MUST NOT fail.
361                  */
362                 if ((gfp_mask & __GFP_FS) == 0)
363                         gfp_mask |= __GFP_NOFAIL;
364                 new_transaction = kmem_cache_zalloc(transaction_cache,
365                                                     gfp_mask);
366                 if (!new_transaction)
367                         return -ENOMEM;
368         }
369
370         jbd_debug(3, "New handle %p going live.\n", handle);
371
372         /*
373          * We need to hold j_state_lock until t_updates has been incremented,
374          * for proper journal barrier handling
375          */
376 repeat:
377         read_lock(&journal->j_state_lock);
378         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
379         if (is_journal_aborted(journal) ||
380             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
381                 read_unlock(&journal->j_state_lock);
382                 jbd2_journal_free_transaction(new_transaction);
383                 return -EROFS;
384         }
385
386         /*
387          * Wait on the journal's transaction barrier if necessary. Specifically
388          * we allow reserved handles to proceed because otherwise commit could
389          * deadlock on page writeback not being able to complete.
390          */
391         if (!handle->h_reserved && journal->j_barrier_count) {
392                 read_unlock(&journal->j_state_lock);
393                 wait_event(journal->j_wait_transaction_locked,
394                                 journal->j_barrier_count == 0);
395                 goto repeat;
396         }
397
398         if (!journal->j_running_transaction) {
399                 read_unlock(&journal->j_state_lock);
400                 if (!new_transaction)
401                         goto alloc_transaction;
402                 write_lock(&journal->j_state_lock);
403                 if (!journal->j_running_transaction &&
404                     (handle->h_reserved || !journal->j_barrier_count)) {
405                         jbd2_get_transaction(journal, new_transaction);
406                         new_transaction = NULL;
407                 }
408                 write_unlock(&journal->j_state_lock);
409                 goto repeat;
410         }
411
412         transaction = journal->j_running_transaction;
413
414         if (!handle->h_reserved) {
415                 /* We may have dropped j_state_lock - restart in that case */
416                 if (add_transaction_credits(journal, blocks, rsv_blocks))
417                         goto repeat;
418         } else {
419                 /*
420                  * We have handle reserved so we are allowed to join T_LOCKED
421                  * transaction and we don't have to check for transaction size
422                  * and journal space. But we still have to wait while running
423                  * transaction is being switched to a committing one as it
424                  * won't wait for any handles anymore.
425                  */
426                 if (transaction->t_state == T_SWITCH) {
427                         wait_transaction_switching(journal);
428                         goto repeat;
429                 }
430                 sub_reserved_credits(journal, blocks);
431                 handle->h_reserved = 0;
432         }
433
434         /* OK, account for the buffers that this operation expects to
435          * use and add the handle to the running transaction. 
436          */
437         update_t_max_wait(transaction, ts);
438         handle->h_transaction = transaction;
439         handle->h_requested_credits = blocks;
440         handle->h_revoke_credits_requested = handle->h_revoke_credits;
441         handle->h_start_jiffies = jiffies;
442         atomic_inc(&transaction->t_updates);
443         atomic_inc(&transaction->t_handle_count);
444         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
445                   handle, blocks,
446                   atomic_read(&transaction->t_outstanding_credits),
447                   jbd2_log_space_left(journal));
448         read_unlock(&journal->j_state_lock);
449         current->journal_info = handle;
450
451         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
452         jbd2_journal_free_transaction(new_transaction);
453         /*
454          * Ensure that no allocations done while the transaction is open are
455          * going to recurse back to the fs layer.
456          */
457         handle->saved_alloc_context = memalloc_nofs_save();
458         return 0;
459 }
460
461 /* Allocate a new handle.  This should probably be in a slab... */
462 static handle_t *new_handle(int nblocks)
463 {
464         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
465         if (!handle)
466                 return NULL;
467         handle->h_total_credits = nblocks;
468         handle->h_ref = 1;
469
470         return handle;
471 }
472
473 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
474                               int revoke_records, gfp_t gfp_mask,
475                               unsigned int type, unsigned int line_no)
476 {
477         handle_t *handle = journal_current_handle();
478         int err;
479
480         if (!journal)
481                 return ERR_PTR(-EROFS);
482
483         if (handle) {
484                 J_ASSERT(handle->h_transaction->t_journal == journal);
485                 handle->h_ref++;
486                 return handle;
487         }
488
489         nblocks += DIV_ROUND_UP(revoke_records,
490                                 journal->j_revoke_records_per_block);
491         handle = new_handle(nblocks);
492         if (!handle)
493                 return ERR_PTR(-ENOMEM);
494         if (rsv_blocks) {
495                 handle_t *rsv_handle;
496
497                 rsv_handle = new_handle(rsv_blocks);
498                 if (!rsv_handle) {
499                         jbd2_free_handle(handle);
500                         return ERR_PTR(-ENOMEM);
501                 }
502                 rsv_handle->h_reserved = 1;
503                 rsv_handle->h_journal = journal;
504                 handle->h_rsv_handle = rsv_handle;
505         }
506         handle->h_revoke_credits = revoke_records;
507
508         err = start_this_handle(journal, handle, gfp_mask);
509         if (err < 0) {
510                 if (handle->h_rsv_handle)
511                         jbd2_free_handle(handle->h_rsv_handle);
512                 jbd2_free_handle(handle);
513                 return ERR_PTR(err);
514         }
515         handle->h_type = type;
516         handle->h_line_no = line_no;
517         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
518                                 handle->h_transaction->t_tid, type,
519                                 line_no, nblocks);
520
521         return handle;
522 }
523 EXPORT_SYMBOL(jbd2__journal_start);
524
525
526 /**
527  * jbd2_journal_start() - Obtain a new handle.
528  * @journal: Journal to start transaction on.
529  * @nblocks: number of block buffer we might modify
530  *
531  * We make sure that the transaction can guarantee at least nblocks of
532  * modified buffers in the log.  We block until the log can guarantee
533  * that much space. Additionally, if rsv_blocks > 0, we also create another
534  * handle with rsv_blocks reserved blocks in the journal. This handle is
535  * stored in h_rsv_handle. It is not attached to any particular transaction
536  * and thus doesn't block transaction commit. If the caller uses this reserved
537  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
538  * on the parent handle will dispose the reserved one. Reserved handle has to
539  * be converted to a normal handle using jbd2_journal_start_reserved() before
540  * it can be used.
541  *
542  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
543  * on failure.
544  */
545 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
546 {
547         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
548 }
549 EXPORT_SYMBOL(jbd2_journal_start);
550
551 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
552 {
553         journal_t *journal = handle->h_journal;
554
555         WARN_ON(!handle->h_reserved);
556         sub_reserved_credits(journal, handle->h_total_credits);
557         if (t)
558                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
559 }
560
561 void jbd2_journal_free_reserved(handle_t *handle)
562 {
563         journal_t *journal = handle->h_journal;
564
565         /* Get j_state_lock to pin running transaction if it exists */
566         read_lock(&journal->j_state_lock);
567         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
568         read_unlock(&journal->j_state_lock);
569         jbd2_free_handle(handle);
570 }
571 EXPORT_SYMBOL(jbd2_journal_free_reserved);
572
573 /**
574  * jbd2_journal_start_reserved() - start reserved handle
575  * @handle: handle to start
576  * @type: for handle statistics
577  * @line_no: for handle statistics
578  *
579  * Start handle that has been previously reserved with jbd2_journal_reserve().
580  * This attaches @handle to the running transaction (or creates one if there's
581  * not transaction running). Unlike jbd2_journal_start() this function cannot
582  * block on journal commit, checkpointing, or similar stuff. It can block on
583  * memory allocation or frozen journal though.
584  *
585  * Return 0 on success, non-zero on error - handle is freed in that case.
586  */
587 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
588                                 unsigned int line_no)
589 {
590         journal_t *journal = handle->h_journal;
591         int ret = -EIO;
592
593         if (WARN_ON(!handle->h_reserved)) {
594                 /* Someone passed in normal handle? Just stop it. */
595                 jbd2_journal_stop(handle);
596                 return ret;
597         }
598         /*
599          * Usefulness of mixing of reserved and unreserved handles is
600          * questionable. So far nobody seems to need it so just error out.
601          */
602         if (WARN_ON(current->journal_info)) {
603                 jbd2_journal_free_reserved(handle);
604                 return ret;
605         }
606
607         handle->h_journal = NULL;
608         /*
609          * GFP_NOFS is here because callers are likely from writeback or
610          * similarly constrained call sites
611          */
612         ret = start_this_handle(journal, handle, GFP_NOFS);
613         if (ret < 0) {
614                 handle->h_journal = journal;
615                 jbd2_journal_free_reserved(handle);
616                 return ret;
617         }
618         handle->h_type = type;
619         handle->h_line_no = line_no;
620         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
621                                 handle->h_transaction->t_tid, type,
622                                 line_no, handle->h_total_credits);
623         return 0;
624 }
625 EXPORT_SYMBOL(jbd2_journal_start_reserved);
626
627 /**
628  * jbd2_journal_extend() - extend buffer credits.
629  * @handle:  handle to 'extend'
630  * @nblocks: nr blocks to try to extend by.
631  * @revoke_records: number of revoke records to try to extend by.
632  *
633  * Some transactions, such as large extends and truncates, can be done
634  * atomically all at once or in several stages.  The operation requests
635  * a credit for a number of buffer modifications in advance, but can
636  * extend its credit if it needs more.
637  *
638  * jbd2_journal_extend tries to give the running handle more buffer credits.
639  * It does not guarantee that allocation - this is a best-effort only.
640  * The calling process MUST be able to deal cleanly with a failure to
641  * extend here.
642  *
643  * Return 0 on success, non-zero on failure.
644  *
645  * return code < 0 implies an error
646  * return code > 0 implies normal transaction-full status.
647  */
648 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
649 {
650         transaction_t *transaction = handle->h_transaction;
651         journal_t *journal;
652         int result;
653         int wanted;
654
655         if (is_handle_aborted(handle))
656                 return -EROFS;
657         journal = transaction->t_journal;
658
659         result = 1;
660
661         read_lock(&journal->j_state_lock);
662
663         /* Don't extend a locked-down transaction! */
664         if (transaction->t_state != T_RUNNING) {
665                 jbd_debug(3, "denied handle %p %d blocks: "
666                           "transaction not running\n", handle, nblocks);
667                 goto error_out;
668         }
669
670         nblocks += DIV_ROUND_UP(
671                         handle->h_revoke_credits_requested + revoke_records,
672                         journal->j_revoke_records_per_block) -
673                 DIV_ROUND_UP(
674                         handle->h_revoke_credits_requested,
675                         journal->j_revoke_records_per_block);
676         spin_lock(&transaction->t_handle_lock);
677         wanted = atomic_add_return(nblocks,
678                                    &transaction->t_outstanding_credits);
679
680         if (wanted > journal->j_max_transaction_buffers) {
681                 jbd_debug(3, "denied handle %p %d blocks: "
682                           "transaction too large\n", handle, nblocks);
683                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
684                 goto unlock;
685         }
686
687         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
688                                  transaction->t_tid,
689                                  handle->h_type, handle->h_line_no,
690                                  handle->h_total_credits,
691                                  nblocks);
692
693         handle->h_total_credits += nblocks;
694         handle->h_requested_credits += nblocks;
695         handle->h_revoke_credits += revoke_records;
696         handle->h_revoke_credits_requested += revoke_records;
697         result = 0;
698
699         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
700 unlock:
701         spin_unlock(&transaction->t_handle_lock);
702 error_out:
703         read_unlock(&journal->j_state_lock);
704         return result;
705 }
706
707 static void stop_this_handle(handle_t *handle)
708 {
709         transaction_t *transaction = handle->h_transaction;
710         journal_t *journal = transaction->t_journal;
711         int revokes;
712
713         J_ASSERT(journal_current_handle() == handle);
714         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
715         current->journal_info = NULL;
716         /*
717          * Subtract necessary revoke descriptor blocks from handle credits. We
718          * take care to account only for revoke descriptor blocks the
719          * transaction will really need as large sequences of transactions with
720          * small numbers of revokes are relatively common.
721          */
722         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
723         if (revokes) {
724                 int t_revokes, revoke_descriptors;
725                 int rr_per_blk = journal->j_revoke_records_per_block;
726
727                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
728                                 > handle->h_total_credits);
729                 t_revokes = atomic_add_return(revokes,
730                                 &transaction->t_outstanding_revokes);
731                 revoke_descriptors =
732                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
733                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
734                 handle->h_total_credits -= revoke_descriptors;
735         }
736         atomic_sub(handle->h_total_credits,
737                    &transaction->t_outstanding_credits);
738         if (handle->h_rsv_handle)
739                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
740                                                 transaction);
741         if (atomic_dec_and_test(&transaction->t_updates))
742                 wake_up(&journal->j_wait_updates);
743
744         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
745         /*
746          * Scope of the GFP_NOFS context is over here and so we can restore the
747          * original alloc context.
748          */
749         memalloc_nofs_restore(handle->saved_alloc_context);
750 }
751
752 /**
753  * jbd2__journal_restart() - restart a handle .
754  * @handle:  handle to restart
755  * @nblocks: nr credits requested
756  * @revoke_records: number of revoke record credits requested
757  * @gfp_mask: memory allocation flags (for start_this_handle)
758  *
759  * Restart a handle for a multi-transaction filesystem
760  * operation.
761  *
762  * If the jbd2_journal_extend() call above fails to grant new buffer credits
763  * to a running handle, a call to jbd2_journal_restart will commit the
764  * handle's transaction so far and reattach the handle to a new
765  * transaction capable of guaranteeing the requested number of
766  * credits. We preserve reserved handle if there's any attached to the
767  * passed in handle.
768  */
769 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
770                           gfp_t gfp_mask)
771 {
772         transaction_t *transaction = handle->h_transaction;
773         journal_t *journal;
774         tid_t           tid;
775         int             need_to_start;
776         int             ret;
777
778         /* If we've had an abort of any type, don't even think about
779          * actually doing the restart! */
780         if (is_handle_aborted(handle))
781                 return 0;
782         journal = transaction->t_journal;
783         tid = transaction->t_tid;
784
785         /*
786          * First unlink the handle from its current transaction, and start the
787          * commit on that.
788          */
789         jbd_debug(2, "restarting handle %p\n", handle);
790         stop_this_handle(handle);
791         handle->h_transaction = NULL;
792
793         /*
794          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
795          * get rid of pointless j_state_lock traffic like this.
796          */
797         read_lock(&journal->j_state_lock);
798         need_to_start = !tid_geq(journal->j_commit_request, tid);
799         read_unlock(&journal->j_state_lock);
800         if (need_to_start)
801                 jbd2_log_start_commit(journal, tid);
802         handle->h_total_credits = nblocks +
803                 DIV_ROUND_UP(revoke_records,
804                              journal->j_revoke_records_per_block);
805         handle->h_revoke_credits = revoke_records;
806         ret = start_this_handle(journal, handle, gfp_mask);
807         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
808                                  ret ? 0 : handle->h_transaction->t_tid,
809                                  handle->h_type, handle->h_line_no,
810                                  handle->h_total_credits);
811         return ret;
812 }
813 EXPORT_SYMBOL(jbd2__journal_restart);
814
815
816 int jbd2_journal_restart(handle_t *handle, int nblocks)
817 {
818         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
819 }
820 EXPORT_SYMBOL(jbd2_journal_restart);
821
822 /**
823  * jbd2_journal_lock_updates () - establish a transaction barrier.
824  * @journal:  Journal to establish a barrier on.
825  *
826  * This locks out any further updates from being started, and blocks
827  * until all existing updates have completed, returning only once the
828  * journal is in a quiescent state with no updates running.
829  *
830  * The journal lock should not be held on entry.
831  */
832 void jbd2_journal_lock_updates(journal_t *journal)
833 {
834         DEFINE_WAIT(wait);
835
836         jbd2_might_wait_for_commit(journal);
837
838         write_lock(&journal->j_state_lock);
839         ++journal->j_barrier_count;
840
841         /* Wait until there are no reserved handles */
842         if (atomic_read(&journal->j_reserved_credits)) {
843                 write_unlock(&journal->j_state_lock);
844                 wait_event(journal->j_wait_reserved,
845                            atomic_read(&journal->j_reserved_credits) == 0);
846                 write_lock(&journal->j_state_lock);
847         }
848
849         /* Wait until there are no running updates */
850         while (1) {
851                 transaction_t *transaction = journal->j_running_transaction;
852
853                 if (!transaction)
854                         break;
855
856                 spin_lock(&transaction->t_handle_lock);
857                 prepare_to_wait(&journal->j_wait_updates, &wait,
858                                 TASK_UNINTERRUPTIBLE);
859                 if (!atomic_read(&transaction->t_updates)) {
860                         spin_unlock(&transaction->t_handle_lock);
861                         finish_wait(&journal->j_wait_updates, &wait);
862                         break;
863                 }
864                 spin_unlock(&transaction->t_handle_lock);
865                 write_unlock(&journal->j_state_lock);
866                 schedule();
867                 finish_wait(&journal->j_wait_updates, &wait);
868                 write_lock(&journal->j_state_lock);
869         }
870         write_unlock(&journal->j_state_lock);
871
872         /*
873          * We have now established a barrier against other normal updates, but
874          * we also need to barrier against other jbd2_journal_lock_updates() calls
875          * to make sure that we serialise special journal-locked operations
876          * too.
877          */
878         mutex_lock(&journal->j_barrier);
879 }
880
881 /**
882  * jbd2_journal_unlock_updates () - release barrier
883  * @journal:  Journal to release the barrier on.
884  *
885  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
886  *
887  * Should be called without the journal lock held.
888  */
889 void jbd2_journal_unlock_updates (journal_t *journal)
890 {
891         J_ASSERT(journal->j_barrier_count != 0);
892
893         mutex_unlock(&journal->j_barrier);
894         write_lock(&journal->j_state_lock);
895         --journal->j_barrier_count;
896         write_unlock(&journal->j_state_lock);
897         wake_up_all(&journal->j_wait_transaction_locked);
898 }
899
900 static void warn_dirty_buffer(struct buffer_head *bh)
901 {
902         printk(KERN_WARNING
903                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
904                "There's a risk of filesystem corruption in case of system "
905                "crash.\n",
906                bh->b_bdev, (unsigned long long)bh->b_blocknr);
907 }
908
909 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
910 static void jbd2_freeze_jh_data(struct journal_head *jh)
911 {
912         struct page *page;
913         int offset;
914         char *source;
915         struct buffer_head *bh = jh2bh(jh);
916
917         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
918         page = bh->b_page;
919         offset = offset_in_page(bh->b_data);
920         source = kmap_atomic(page);
921         /* Fire data frozen trigger just before we copy the data */
922         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
923         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
924         kunmap_atomic(source);
925
926         /*
927          * Now that the frozen data is saved off, we need to store any matching
928          * triggers.
929          */
930         jh->b_frozen_triggers = jh->b_triggers;
931 }
932
933 /*
934  * If the buffer is already part of the current transaction, then there
935  * is nothing we need to do.  If it is already part of a prior
936  * transaction which we are still committing to disk, then we need to
937  * make sure that we do not overwrite the old copy: we do copy-out to
938  * preserve the copy going to disk.  We also account the buffer against
939  * the handle's metadata buffer credits (unless the buffer is already
940  * part of the transaction, that is).
941  *
942  */
943 static int
944 do_get_write_access(handle_t *handle, struct journal_head *jh,
945                         int force_copy)
946 {
947         struct buffer_head *bh;
948         transaction_t *transaction = handle->h_transaction;
949         journal_t *journal;
950         int error;
951         char *frozen_buffer = NULL;
952         unsigned long start_lock, time_lock;
953
954         journal = transaction->t_journal;
955
956         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
957
958         JBUFFER_TRACE(jh, "entry");
959 repeat:
960         bh = jh2bh(jh);
961
962         /* @@@ Need to check for errors here at some point. */
963
964         start_lock = jiffies;
965         lock_buffer(bh);
966         spin_lock(&jh->b_state_lock);
967
968         /* If it takes too long to lock the buffer, trace it */
969         time_lock = jbd2_time_diff(start_lock, jiffies);
970         if (time_lock > HZ/10)
971                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
972                         jiffies_to_msecs(time_lock));
973
974         /* We now hold the buffer lock so it is safe to query the buffer
975          * state.  Is the buffer dirty?
976          *
977          * If so, there are two possibilities.  The buffer may be
978          * non-journaled, and undergoing a quite legitimate writeback.
979          * Otherwise, it is journaled, and we don't expect dirty buffers
980          * in that state (the buffers should be marked JBD_Dirty
981          * instead.)  So either the IO is being done under our own
982          * control and this is a bug, or it's a third party IO such as
983          * dump(8) (which may leave the buffer scheduled for read ---
984          * ie. locked but not dirty) or tune2fs (which may actually have
985          * the buffer dirtied, ugh.)  */
986
987         if (buffer_dirty(bh) && jh->b_transaction) {
988                 warn_dirty_buffer(bh);
989                 /*
990                  * We need to clean the dirty flag and we must do it under the
991                  * buffer lock to be sure we don't race with running write-out.
992                  */
993                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
994                 clear_buffer_dirty(bh);
995                 /*
996                  * The buffer is going to be added to BJ_Reserved list now and
997                  * nothing guarantees jbd2_journal_dirty_metadata() will be
998                  * ever called for it. So we need to set jbddirty bit here to
999                  * make sure the buffer is dirtied and written out when the
1000                  * journaling machinery is done with it.
1001                  */
1002                 set_buffer_jbddirty(bh);
1003         }
1004
1005         error = -EROFS;
1006         if (is_handle_aborted(handle)) {
1007                 spin_unlock(&jh->b_state_lock);
1008                 unlock_buffer(bh);
1009                 goto out;
1010         }
1011         error = 0;
1012
1013         /*
1014          * The buffer is already part of this transaction if b_transaction or
1015          * b_next_transaction points to it
1016          */
1017         if (jh->b_transaction == transaction ||
1018             jh->b_next_transaction == transaction) {
1019                 unlock_buffer(bh);
1020                 goto done;
1021         }
1022
1023         /*
1024          * this is the first time this transaction is touching this buffer,
1025          * reset the modified flag
1026          */
1027         jh->b_modified = 0;
1028
1029         /*
1030          * If the buffer is not journaled right now, we need to make sure it
1031          * doesn't get written to disk before the caller actually commits the
1032          * new data
1033          */
1034         if (!jh->b_transaction) {
1035                 JBUFFER_TRACE(jh, "no transaction");
1036                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1037                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1038                 /*
1039                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1040                  * visible before attaching it to the running transaction.
1041                  * Paired with barrier in jbd2_write_access_granted()
1042                  */
1043                 smp_wmb();
1044                 spin_lock(&journal->j_list_lock);
1045                 if (test_clear_buffer_dirty(bh)) {
1046                         /*
1047                          * Execute buffer dirty clearing and jh->b_transaction
1048                          * assignment under journal->j_list_lock locked to
1049                          * prevent bh being removed from checkpoint list if
1050                          * the buffer is in an intermediate state (not dirty
1051                          * and jh->b_transaction is NULL).
1052                          */
1053                         JBUFFER_TRACE(jh, "Journalling dirty buffer");
1054                         set_buffer_jbddirty(bh);
1055                 }
1056                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1057                 spin_unlock(&journal->j_list_lock);
1058                 unlock_buffer(bh);
1059                 goto done;
1060         }
1061         unlock_buffer(bh);
1062
1063         /*
1064          * If there is already a copy-out version of this buffer, then we don't
1065          * need to make another one
1066          */
1067         if (jh->b_frozen_data) {
1068                 JBUFFER_TRACE(jh, "has frozen data");
1069                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1070                 goto attach_next;
1071         }
1072
1073         JBUFFER_TRACE(jh, "owned by older transaction");
1074         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1075         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1076
1077         /*
1078          * There is one case we have to be very careful about.  If the
1079          * committing transaction is currently writing this buffer out to disk
1080          * and has NOT made a copy-out, then we cannot modify the buffer
1081          * contents at all right now.  The essence of copy-out is that it is
1082          * the extra copy, not the primary copy, which gets journaled.  If the
1083          * primary copy is already going to disk then we cannot do copy-out
1084          * here.
1085          */
1086         if (buffer_shadow(bh)) {
1087                 JBUFFER_TRACE(jh, "on shadow: sleep");
1088                 spin_unlock(&jh->b_state_lock);
1089                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1090                 goto repeat;
1091         }
1092
1093         /*
1094          * Only do the copy if the currently-owning transaction still needs it.
1095          * If buffer isn't on BJ_Metadata list, the committing transaction is
1096          * past that stage (here we use the fact that BH_Shadow is set under
1097          * bh_state lock together with refiling to BJ_Shadow list and at this
1098          * point we know the buffer doesn't have BH_Shadow set).
1099          *
1100          * Subtle point, though: if this is a get_undo_access, then we will be
1101          * relying on the frozen_data to contain the new value of the
1102          * committed_data record after the transaction, so we HAVE to force the
1103          * frozen_data copy in that case.
1104          */
1105         if (jh->b_jlist == BJ_Metadata || force_copy) {
1106                 JBUFFER_TRACE(jh, "generate frozen data");
1107                 if (!frozen_buffer) {
1108                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1109                         spin_unlock(&jh->b_state_lock);
1110                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1111                                                    GFP_NOFS | __GFP_NOFAIL);
1112                         goto repeat;
1113                 }
1114                 jh->b_frozen_data = frozen_buffer;
1115                 frozen_buffer = NULL;
1116                 jbd2_freeze_jh_data(jh);
1117         }
1118 attach_next:
1119         /*
1120          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1121          * before attaching it to the running transaction. Paired with barrier
1122          * in jbd2_write_access_granted()
1123          */
1124         smp_wmb();
1125         jh->b_next_transaction = transaction;
1126
1127 done:
1128         spin_unlock(&jh->b_state_lock);
1129
1130         /*
1131          * If we are about to journal a buffer, then any revoke pending on it is
1132          * no longer valid
1133          */
1134         jbd2_journal_cancel_revoke(handle, jh);
1135
1136 out:
1137         if (unlikely(frozen_buffer))    /* It's usually NULL */
1138                 jbd2_free(frozen_buffer, bh->b_size);
1139
1140         JBUFFER_TRACE(jh, "exit");
1141         return error;
1142 }
1143
1144 /* Fast check whether buffer is already attached to the required transaction */
1145 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1146                                                         bool undo)
1147 {
1148         struct journal_head *jh;
1149         bool ret = false;
1150
1151         /* Dirty buffers require special handling... */
1152         if (buffer_dirty(bh))
1153                 return false;
1154
1155         /*
1156          * RCU protects us from dereferencing freed pages. So the checks we do
1157          * are guaranteed not to oops. However the jh slab object can get freed
1158          * & reallocated while we work with it. So we have to be careful. When
1159          * we see jh attached to the running transaction, we know it must stay
1160          * so until the transaction is committed. Thus jh won't be freed and
1161          * will be attached to the same bh while we run.  However it can
1162          * happen jh gets freed, reallocated, and attached to the transaction
1163          * just after we get pointer to it from bh. So we have to be careful
1164          * and recheck jh still belongs to our bh before we return success.
1165          */
1166         rcu_read_lock();
1167         if (!buffer_jbd(bh))
1168                 goto out;
1169         /* This should be bh2jh() but that doesn't work with inline functions */
1170         jh = READ_ONCE(bh->b_private);
1171         if (!jh)
1172                 goto out;
1173         /* For undo access buffer must have data copied */
1174         if (undo && !jh->b_committed_data)
1175                 goto out;
1176         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1177             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1178                 goto out;
1179         /*
1180          * There are two reasons for the barrier here:
1181          * 1) Make sure to fetch b_bh after we did previous checks so that we
1182          * detect when jh went through free, realloc, attach to transaction
1183          * while we were checking. Paired with implicit barrier in that path.
1184          * 2) So that access to bh done after jbd2_write_access_granted()
1185          * doesn't get reordered and see inconsistent state of concurrent
1186          * do_get_write_access().
1187          */
1188         smp_mb();
1189         if (unlikely(jh->b_bh != bh))
1190                 goto out;
1191         ret = true;
1192 out:
1193         rcu_read_unlock();
1194         return ret;
1195 }
1196
1197 /**
1198  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1199  *                                   for metadata (not data) update.
1200  * @handle: transaction to add buffer modifications to
1201  * @bh:     bh to be used for metadata writes
1202  *
1203  * Returns: error code or 0 on success.
1204  *
1205  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1206  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1207  */
1208
1209 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1210 {
1211         struct journal_head *jh;
1212         int rc;
1213
1214         if (is_handle_aborted(handle))
1215                 return -EROFS;
1216
1217         if (jbd2_write_access_granted(handle, bh, false))
1218                 return 0;
1219
1220         jh = jbd2_journal_add_journal_head(bh);
1221         /* We do not want to get caught playing with fields which the
1222          * log thread also manipulates.  Make sure that the buffer
1223          * completes any outstanding IO before proceeding. */
1224         rc = do_get_write_access(handle, jh, 0);
1225         jbd2_journal_put_journal_head(jh);
1226         return rc;
1227 }
1228
1229
1230 /*
1231  * When the user wants to journal a newly created buffer_head
1232  * (ie. getblk() returned a new buffer and we are going to populate it
1233  * manually rather than reading off disk), then we need to keep the
1234  * buffer_head locked until it has been completely filled with new
1235  * data.  In this case, we should be able to make the assertion that
1236  * the bh is not already part of an existing transaction.
1237  *
1238  * The buffer should already be locked by the caller by this point.
1239  * There is no lock ranking violation: it was a newly created,
1240  * unlocked buffer beforehand. */
1241
1242 /**
1243  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1244  * @handle: transaction to new buffer to
1245  * @bh: new buffer.
1246  *
1247  * Call this if you create a new bh.
1248  */
1249 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1250 {
1251         transaction_t *transaction = handle->h_transaction;
1252         journal_t *journal;
1253         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1254         int err;
1255
1256         jbd_debug(5, "journal_head %p\n", jh);
1257         err = -EROFS;
1258         if (is_handle_aborted(handle))
1259                 goto out;
1260         journal = transaction->t_journal;
1261         err = 0;
1262
1263         JBUFFER_TRACE(jh, "entry");
1264         /*
1265          * The buffer may already belong to this transaction due to pre-zeroing
1266          * in the filesystem's new_block code.  It may also be on the previous,
1267          * committing transaction's lists, but it HAS to be in Forget state in
1268          * that case: the transaction must have deleted the buffer for it to be
1269          * reused here.
1270          */
1271         spin_lock(&jh->b_state_lock);
1272         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1273                 jh->b_transaction == NULL ||
1274                 (jh->b_transaction == journal->j_committing_transaction &&
1275                           jh->b_jlist == BJ_Forget)));
1276
1277         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1278         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1279
1280         if (jh->b_transaction == NULL) {
1281                 /*
1282                  * Previous jbd2_journal_forget() could have left the buffer
1283                  * with jbddirty bit set because it was being committed. When
1284                  * the commit finished, we've filed the buffer for
1285                  * checkpointing and marked it dirty. Now we are reallocating
1286                  * the buffer so the transaction freeing it must have
1287                  * committed and so it's safe to clear the dirty bit.
1288                  */
1289                 clear_buffer_dirty(jh2bh(jh));
1290                 /* first access by this transaction */
1291                 jh->b_modified = 0;
1292
1293                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1294                 spin_lock(&journal->j_list_lock);
1295                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1296                 spin_unlock(&journal->j_list_lock);
1297         } else if (jh->b_transaction == journal->j_committing_transaction) {
1298                 /* first access by this transaction */
1299                 jh->b_modified = 0;
1300
1301                 JBUFFER_TRACE(jh, "set next transaction");
1302                 spin_lock(&journal->j_list_lock);
1303                 jh->b_next_transaction = transaction;
1304                 spin_unlock(&journal->j_list_lock);
1305         }
1306         spin_unlock(&jh->b_state_lock);
1307
1308         /*
1309          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1310          * blocks which contain freed but then revoked metadata.  We need
1311          * to cancel the revoke in case we end up freeing it yet again
1312          * and the reallocating as data - this would cause a second revoke,
1313          * which hits an assertion error.
1314          */
1315         JBUFFER_TRACE(jh, "cancelling revoke");
1316         jbd2_journal_cancel_revoke(handle, jh);
1317 out:
1318         jbd2_journal_put_journal_head(jh);
1319         return err;
1320 }
1321
1322 /**
1323  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1324  *     non-rewindable consequences
1325  * @handle: transaction
1326  * @bh: buffer to undo
1327  *
1328  * Sometimes there is a need to distinguish between metadata which has
1329  * been committed to disk and that which has not.  The ext3fs code uses
1330  * this for freeing and allocating space, we have to make sure that we
1331  * do not reuse freed space until the deallocation has been committed,
1332  * since if we overwrote that space we would make the delete
1333  * un-rewindable in case of a crash.
1334  *
1335  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1336  * buffer for parts of non-rewindable operations such as delete
1337  * operations on the bitmaps.  The journaling code must keep a copy of
1338  * the buffer's contents prior to the undo_access call until such time
1339  * as we know that the buffer has definitely been committed to disk.
1340  *
1341  * We never need to know which transaction the committed data is part
1342  * of, buffers touched here are guaranteed to be dirtied later and so
1343  * will be committed to a new transaction in due course, at which point
1344  * we can discard the old committed data pointer.
1345  *
1346  * Returns error number or 0 on success.
1347  */
1348 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1349 {
1350         int err;
1351         struct journal_head *jh;
1352         char *committed_data = NULL;
1353
1354         if (is_handle_aborted(handle))
1355                 return -EROFS;
1356
1357         if (jbd2_write_access_granted(handle, bh, true))
1358                 return 0;
1359
1360         jh = jbd2_journal_add_journal_head(bh);
1361         JBUFFER_TRACE(jh, "entry");
1362
1363         /*
1364          * Do this first --- it can drop the journal lock, so we want to
1365          * make sure that obtaining the committed_data is done
1366          * atomically wrt. completion of any outstanding commits.
1367          */
1368         err = do_get_write_access(handle, jh, 1);
1369         if (err)
1370                 goto out;
1371
1372 repeat:
1373         if (!jh->b_committed_data)
1374                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1375                                             GFP_NOFS|__GFP_NOFAIL);
1376
1377         spin_lock(&jh->b_state_lock);
1378         if (!jh->b_committed_data) {
1379                 /* Copy out the current buffer contents into the
1380                  * preserved, committed copy. */
1381                 JBUFFER_TRACE(jh, "generate b_committed data");
1382                 if (!committed_data) {
1383                         spin_unlock(&jh->b_state_lock);
1384                         goto repeat;
1385                 }
1386
1387                 jh->b_committed_data = committed_data;
1388                 committed_data = NULL;
1389                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1390         }
1391         spin_unlock(&jh->b_state_lock);
1392 out:
1393         jbd2_journal_put_journal_head(jh);
1394         if (unlikely(committed_data))
1395                 jbd2_free(committed_data, bh->b_size);
1396         return err;
1397 }
1398
1399 /**
1400  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1401  * @bh: buffer to trigger on
1402  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1403  *
1404  * Set any triggers on this journal_head.  This is always safe, because
1405  * triggers for a committing buffer will be saved off, and triggers for
1406  * a running transaction will match the buffer in that transaction.
1407  *
1408  * Call with NULL to clear the triggers.
1409  */
1410 void jbd2_journal_set_triggers(struct buffer_head *bh,
1411                                struct jbd2_buffer_trigger_type *type)
1412 {
1413         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1414
1415         if (WARN_ON(!jh))
1416                 return;
1417         jh->b_triggers = type;
1418         jbd2_journal_put_journal_head(jh);
1419 }
1420
1421 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1422                                 struct jbd2_buffer_trigger_type *triggers)
1423 {
1424         struct buffer_head *bh = jh2bh(jh);
1425
1426         if (!triggers || !triggers->t_frozen)
1427                 return;
1428
1429         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1430 }
1431
1432 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1433                                struct jbd2_buffer_trigger_type *triggers)
1434 {
1435         if (!triggers || !triggers->t_abort)
1436                 return;
1437
1438         triggers->t_abort(triggers, jh2bh(jh));
1439 }
1440
1441 /**
1442  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1443  * @handle: transaction to add buffer to.
1444  * @bh: buffer to mark
1445  *
1446  * mark dirty metadata which needs to be journaled as part of the current
1447  * transaction.
1448  *
1449  * The buffer must have previously had jbd2_journal_get_write_access()
1450  * called so that it has a valid journal_head attached to the buffer
1451  * head.
1452  *
1453  * The buffer is placed on the transaction's metadata list and is marked
1454  * as belonging to the transaction.
1455  *
1456  * Returns error number or 0 on success.
1457  *
1458  * Special care needs to be taken if the buffer already belongs to the
1459  * current committing transaction (in which case we should have frozen
1460  * data present for that commit).  In that case, we don't relink the
1461  * buffer: that only gets done when the old transaction finally
1462  * completes its commit.
1463  */
1464 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1465 {
1466         transaction_t *transaction = handle->h_transaction;
1467         journal_t *journal;
1468         struct journal_head *jh;
1469         int ret = 0;
1470
1471         if (!buffer_jbd(bh))
1472                 return -EUCLEAN;
1473
1474         /*
1475          * We don't grab jh reference here since the buffer must be part
1476          * of the running transaction.
1477          */
1478         jh = bh2jh(bh);
1479         jbd_debug(5, "journal_head %p\n", jh);
1480         JBUFFER_TRACE(jh, "entry");
1481
1482         /*
1483          * This and the following assertions are unreliable since we may see jh
1484          * in inconsistent state unless we grab bh_state lock. But this is
1485          * crucial to catch bugs so let's do a reliable check until the
1486          * lockless handling is fully proven.
1487          */
1488         if (data_race(jh->b_transaction != transaction &&
1489             jh->b_next_transaction != transaction)) {
1490                 spin_lock(&jh->b_state_lock);
1491                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1492                                 jh->b_next_transaction == transaction);
1493                 spin_unlock(&jh->b_state_lock);
1494         }
1495         if (jh->b_modified == 1) {
1496                 /* If it's in our transaction it must be in BJ_Metadata list. */
1497                 if (data_race(jh->b_transaction == transaction &&
1498                     jh->b_jlist != BJ_Metadata)) {
1499                         spin_lock(&jh->b_state_lock);
1500                         if (jh->b_transaction == transaction &&
1501                             jh->b_jlist != BJ_Metadata)
1502                                 pr_err("JBD2: assertion failure: h_type=%u "
1503                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1504                                        handle->h_type, handle->h_line_no,
1505                                        (unsigned long long) bh->b_blocknr,
1506                                        jh->b_jlist);
1507                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1508                                         jh->b_jlist == BJ_Metadata);
1509                         spin_unlock(&jh->b_state_lock);
1510                 }
1511                 goto out;
1512         }
1513
1514         journal = transaction->t_journal;
1515         spin_lock(&jh->b_state_lock);
1516
1517         if (is_handle_aborted(handle)) {
1518                 /*
1519                  * Check journal aborting with @jh->b_state_lock locked,
1520                  * since 'jh->b_transaction' could be replaced with
1521                  * 'jh->b_next_transaction' during old transaction
1522                  * committing if journal aborted, which may fail
1523                  * assertion on 'jh->b_frozen_data == NULL'.
1524                  */
1525                 ret = -EROFS;
1526                 goto out_unlock_bh;
1527         }
1528
1529         if (jh->b_modified == 0) {
1530                 /*
1531                  * This buffer's got modified and becoming part
1532                  * of the transaction. This needs to be done
1533                  * once a transaction -bzzz
1534                  */
1535                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1536                         ret = -ENOSPC;
1537                         goto out_unlock_bh;
1538                 }
1539                 jh->b_modified = 1;
1540                 handle->h_total_credits--;
1541         }
1542
1543         /*
1544          * fastpath, to avoid expensive locking.  If this buffer is already
1545          * on the running transaction's metadata list there is nothing to do.
1546          * Nobody can take it off again because there is a handle open.
1547          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1548          * result in this test being false, so we go in and take the locks.
1549          */
1550         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1551                 JBUFFER_TRACE(jh, "fastpath");
1552                 if (unlikely(jh->b_transaction !=
1553                              journal->j_running_transaction)) {
1554                         printk(KERN_ERR "JBD2: %s: "
1555                                "jh->b_transaction (%llu, %p, %u) != "
1556                                "journal->j_running_transaction (%p, %u)\n",
1557                                journal->j_devname,
1558                                (unsigned long long) bh->b_blocknr,
1559                                jh->b_transaction,
1560                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1561                                journal->j_running_transaction,
1562                                journal->j_running_transaction ?
1563                                journal->j_running_transaction->t_tid : 0);
1564                         ret = -EINVAL;
1565                 }
1566                 goto out_unlock_bh;
1567         }
1568
1569         set_buffer_jbddirty(bh);
1570
1571         /*
1572          * Metadata already on the current transaction list doesn't
1573          * need to be filed.  Metadata on another transaction's list must
1574          * be committing, and will be refiled once the commit completes:
1575          * leave it alone for now.
1576          */
1577         if (jh->b_transaction != transaction) {
1578                 JBUFFER_TRACE(jh, "already on other transaction");
1579                 if (unlikely(((jh->b_transaction !=
1580                                journal->j_committing_transaction)) ||
1581                              (jh->b_next_transaction != transaction))) {
1582                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1583                                "bad jh for block %llu: "
1584                                "transaction (%p, %u), "
1585                                "jh->b_transaction (%p, %u), "
1586                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1587                                journal->j_devname,
1588                                (unsigned long long) bh->b_blocknr,
1589                                transaction, transaction->t_tid,
1590                                jh->b_transaction,
1591                                jh->b_transaction ?
1592                                jh->b_transaction->t_tid : 0,
1593                                jh->b_next_transaction,
1594                                jh->b_next_transaction ?
1595                                jh->b_next_transaction->t_tid : 0,
1596                                jh->b_jlist);
1597                         WARN_ON(1);
1598                         ret = -EINVAL;
1599                 }
1600                 /* And this case is illegal: we can't reuse another
1601                  * transaction's data buffer, ever. */
1602                 goto out_unlock_bh;
1603         }
1604
1605         /* That test should have eliminated the following case: */
1606         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1607
1608         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1609         spin_lock(&journal->j_list_lock);
1610         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1611         spin_unlock(&journal->j_list_lock);
1612 out_unlock_bh:
1613         spin_unlock(&jh->b_state_lock);
1614 out:
1615         JBUFFER_TRACE(jh, "exit");
1616         return ret;
1617 }
1618
1619 /**
1620  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1621  * @handle: transaction handle
1622  * @bh:     bh to 'forget'
1623  *
1624  * We can only do the bforget if there are no commits pending against the
1625  * buffer.  If the buffer is dirty in the current running transaction we
1626  * can safely unlink it.
1627  *
1628  * bh may not be a journalled buffer at all - it may be a non-JBD
1629  * buffer which came off the hashtable.  Check for this.
1630  *
1631  * Decrements bh->b_count by one.
1632  *
1633  * Allow this call even if the handle has aborted --- it may be part of
1634  * the caller's cleanup after an abort.
1635  */
1636 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1637 {
1638         transaction_t *transaction = handle->h_transaction;
1639         journal_t *journal;
1640         struct journal_head *jh;
1641         int drop_reserve = 0;
1642         int err = 0;
1643         int was_modified = 0;
1644
1645         if (is_handle_aborted(handle))
1646                 return -EROFS;
1647         journal = transaction->t_journal;
1648
1649         BUFFER_TRACE(bh, "entry");
1650
1651         jh = jbd2_journal_grab_journal_head(bh);
1652         if (!jh) {
1653                 __bforget(bh);
1654                 return 0;
1655         }
1656
1657         spin_lock(&jh->b_state_lock);
1658
1659         /* Critical error: attempting to delete a bitmap buffer, maybe?
1660          * Don't do any jbd operations, and return an error. */
1661         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1662                          "inconsistent data on disk")) {
1663                 err = -EIO;
1664                 goto drop;
1665         }
1666
1667         /* keep track of whether or not this transaction modified us */
1668         was_modified = jh->b_modified;
1669
1670         /*
1671          * The buffer's going from the transaction, we must drop
1672          * all references -bzzz
1673          */
1674         jh->b_modified = 0;
1675
1676         if (jh->b_transaction == transaction) {
1677                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1678
1679                 /* If we are forgetting a buffer which is already part
1680                  * of this transaction, then we can just drop it from
1681                  * the transaction immediately. */
1682                 clear_buffer_dirty(bh);
1683                 clear_buffer_jbddirty(bh);
1684
1685                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1686
1687                 /*
1688                  * we only want to drop a reference if this transaction
1689                  * modified the buffer
1690                  */
1691                 if (was_modified)
1692                         drop_reserve = 1;
1693
1694                 /*
1695                  * We are no longer going to journal this buffer.
1696                  * However, the commit of this transaction is still
1697                  * important to the buffer: the delete that we are now
1698                  * processing might obsolete an old log entry, so by
1699                  * committing, we can satisfy the buffer's checkpoint.
1700                  *
1701                  * So, if we have a checkpoint on the buffer, we should
1702                  * now refile the buffer on our BJ_Forget list so that
1703                  * we know to remove the checkpoint after we commit.
1704                  */
1705
1706                 spin_lock(&journal->j_list_lock);
1707                 if (jh->b_cp_transaction) {
1708                         __jbd2_journal_temp_unlink_buffer(jh);
1709                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1710                 } else {
1711                         __jbd2_journal_unfile_buffer(jh);
1712                         jbd2_journal_put_journal_head(jh);
1713                 }
1714                 spin_unlock(&journal->j_list_lock);
1715         } else if (jh->b_transaction) {
1716                 J_ASSERT_JH(jh, (jh->b_transaction ==
1717                                  journal->j_committing_transaction));
1718                 /* However, if the buffer is still owned by a prior
1719                  * (committing) transaction, we can't drop it yet... */
1720                 JBUFFER_TRACE(jh, "belongs to older transaction");
1721                 /* ... but we CAN drop it from the new transaction through
1722                  * marking the buffer as freed and set j_next_transaction to
1723                  * the new transaction, so that not only the commit code
1724                  * knows it should clear dirty bits when it is done with the
1725                  * buffer, but also the buffer can be checkpointed only
1726                  * after the new transaction commits. */
1727
1728                 set_buffer_freed(bh);
1729
1730                 if (!jh->b_next_transaction) {
1731                         spin_lock(&journal->j_list_lock);
1732                         jh->b_next_transaction = transaction;
1733                         spin_unlock(&journal->j_list_lock);
1734                 } else {
1735                         J_ASSERT(jh->b_next_transaction == transaction);
1736
1737                         /*
1738                          * only drop a reference if this transaction modified
1739                          * the buffer
1740                          */
1741                         if (was_modified)
1742                                 drop_reserve = 1;
1743                 }
1744         } else {
1745                 /*
1746                  * Finally, if the buffer is not belongs to any
1747                  * transaction, we can just drop it now if it has no
1748                  * checkpoint.
1749                  */
1750                 spin_lock(&journal->j_list_lock);
1751                 if (!jh->b_cp_transaction) {
1752                         JBUFFER_TRACE(jh, "belongs to none transaction");
1753                         spin_unlock(&journal->j_list_lock);
1754                         goto drop;
1755                 }
1756
1757                 /*
1758                  * Otherwise, if the buffer has been written to disk,
1759                  * it is safe to remove the checkpoint and drop it.
1760                  */
1761                 if (!buffer_dirty(bh)) {
1762                         __jbd2_journal_remove_checkpoint(jh);
1763                         spin_unlock(&journal->j_list_lock);
1764                         goto drop;
1765                 }
1766
1767                 /*
1768                  * The buffer is still not written to disk, we should
1769                  * attach this buffer to current transaction so that the
1770                  * buffer can be checkpointed only after the current
1771                  * transaction commits.
1772                  */
1773                 clear_buffer_dirty(bh);
1774                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1775                 spin_unlock(&journal->j_list_lock);
1776         }
1777 drop:
1778         __brelse(bh);
1779         spin_unlock(&jh->b_state_lock);
1780         jbd2_journal_put_journal_head(jh);
1781         if (drop_reserve) {
1782                 /* no need to reserve log space for this block -bzzz */
1783                 handle->h_total_credits++;
1784         }
1785         return err;
1786 }
1787
1788 /**
1789  * jbd2_journal_stop() - complete a transaction
1790  * @handle: transaction to complete.
1791  *
1792  * All done for a particular handle.
1793  *
1794  * There is not much action needed here.  We just return any remaining
1795  * buffer credits to the transaction and remove the handle.  The only
1796  * complication is that we need to start a commit operation if the
1797  * filesystem is marked for synchronous update.
1798  *
1799  * jbd2_journal_stop itself will not usually return an error, but it may
1800  * do so in unusual circumstances.  In particular, expect it to
1801  * return -EIO if a jbd2_journal_abort has been executed since the
1802  * transaction began.
1803  */
1804 int jbd2_journal_stop(handle_t *handle)
1805 {
1806         transaction_t *transaction = handle->h_transaction;
1807         journal_t *journal;
1808         int err = 0, wait_for_commit = 0;
1809         tid_t tid;
1810         pid_t pid;
1811
1812         if (--handle->h_ref > 0) {
1813                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1814                                                  handle->h_ref);
1815                 if (is_handle_aborted(handle))
1816                         return -EIO;
1817                 return 0;
1818         }
1819         if (!transaction) {
1820                 /*
1821                  * Handle is already detached from the transaction so there is
1822                  * nothing to do other than free the handle.
1823                  */
1824                 memalloc_nofs_restore(handle->saved_alloc_context);
1825                 goto free_and_exit;
1826         }
1827         journal = transaction->t_journal;
1828         tid = transaction->t_tid;
1829
1830         if (is_handle_aborted(handle))
1831                 err = -EIO;
1832
1833         jbd_debug(4, "Handle %p going down\n", handle);
1834         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1835                                 tid, handle->h_type, handle->h_line_no,
1836                                 jiffies - handle->h_start_jiffies,
1837                                 handle->h_sync, handle->h_requested_credits,
1838                                 (handle->h_requested_credits -
1839                                  handle->h_total_credits));
1840
1841         /*
1842          * Implement synchronous transaction batching.  If the handle
1843          * was synchronous, don't force a commit immediately.  Let's
1844          * yield and let another thread piggyback onto this
1845          * transaction.  Keep doing that while new threads continue to
1846          * arrive.  It doesn't cost much - we're about to run a commit
1847          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1848          * operations by 30x or more...
1849          *
1850          * We try and optimize the sleep time against what the
1851          * underlying disk can do, instead of having a static sleep
1852          * time.  This is useful for the case where our storage is so
1853          * fast that it is more optimal to go ahead and force a flush
1854          * and wait for the transaction to be committed than it is to
1855          * wait for an arbitrary amount of time for new writers to
1856          * join the transaction.  We achieve this by measuring how
1857          * long it takes to commit a transaction, and compare it with
1858          * how long this transaction has been running, and if run time
1859          * < commit time then we sleep for the delta and commit.  This
1860          * greatly helps super fast disks that would see slowdowns as
1861          * more threads started doing fsyncs.
1862          *
1863          * But don't do this if this process was the most recent one
1864          * to perform a synchronous write.  We do this to detect the
1865          * case where a single process is doing a stream of sync
1866          * writes.  No point in waiting for joiners in that case.
1867          *
1868          * Setting max_batch_time to 0 disables this completely.
1869          */
1870         pid = current->pid;
1871         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1872             journal->j_max_batch_time) {
1873                 u64 commit_time, trans_time;
1874
1875                 journal->j_last_sync_writer = pid;
1876
1877                 read_lock(&journal->j_state_lock);
1878                 commit_time = journal->j_average_commit_time;
1879                 read_unlock(&journal->j_state_lock);
1880
1881                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1882                                                    transaction->t_start_time));
1883
1884                 commit_time = max_t(u64, commit_time,
1885                                     1000*journal->j_min_batch_time);
1886                 commit_time = min_t(u64, commit_time,
1887                                     1000*journal->j_max_batch_time);
1888
1889                 if (trans_time < commit_time) {
1890                         ktime_t expires = ktime_add_ns(ktime_get(),
1891                                                        commit_time);
1892                         set_current_state(TASK_UNINTERRUPTIBLE);
1893                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1894                 }
1895         }
1896
1897         if (handle->h_sync)
1898                 transaction->t_synchronous_commit = 1;
1899
1900         /*
1901          * If the handle is marked SYNC, we need to set another commit
1902          * going!  We also want to force a commit if the transaction is too
1903          * old now.
1904          */
1905         if (handle->h_sync ||
1906             time_after_eq(jiffies, transaction->t_expires)) {
1907                 /* Do this even for aborted journals: an abort still
1908                  * completes the commit thread, it just doesn't write
1909                  * anything to disk. */
1910
1911                 jbd_debug(2, "transaction too old, requesting commit for "
1912                                         "handle %p\n", handle);
1913                 /* This is non-blocking */
1914                 jbd2_log_start_commit(journal, tid);
1915
1916                 /*
1917                  * Special case: JBD2_SYNC synchronous updates require us
1918                  * to wait for the commit to complete.
1919                  */
1920                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1921                         wait_for_commit = 1;
1922         }
1923
1924         /*
1925          * Once stop_this_handle() drops t_updates, the transaction could start
1926          * committing on us and eventually disappear.  So we must not
1927          * dereference transaction pointer again after calling
1928          * stop_this_handle().
1929          */
1930         stop_this_handle(handle);
1931
1932         if (wait_for_commit)
1933                 err = jbd2_log_wait_commit(journal, tid);
1934
1935 free_and_exit:
1936         if (handle->h_rsv_handle)
1937                 jbd2_free_handle(handle->h_rsv_handle);
1938         jbd2_free_handle(handle);
1939         return err;
1940 }
1941
1942 /*
1943  *
1944  * List management code snippets: various functions for manipulating the
1945  * transaction buffer lists.
1946  *
1947  */
1948
1949 /*
1950  * Append a buffer to a transaction list, given the transaction's list head
1951  * pointer.
1952  *
1953  * j_list_lock is held.
1954  *
1955  * jh->b_state_lock is held.
1956  */
1957
1958 static inline void
1959 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1960 {
1961         if (!*list) {
1962                 jh->b_tnext = jh->b_tprev = jh;
1963                 *list = jh;
1964         } else {
1965                 /* Insert at the tail of the list to preserve order */
1966                 struct journal_head *first = *list, *last = first->b_tprev;
1967                 jh->b_tprev = last;
1968                 jh->b_tnext = first;
1969                 last->b_tnext = first->b_tprev = jh;
1970         }
1971 }
1972
1973 /*
1974  * Remove a buffer from a transaction list, given the transaction's list
1975  * head pointer.
1976  *
1977  * Called with j_list_lock held, and the journal may not be locked.
1978  *
1979  * jh->b_state_lock is held.
1980  */
1981
1982 static inline void
1983 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1984 {
1985         if (*list == jh) {
1986                 *list = jh->b_tnext;
1987                 if (*list == jh)
1988                         *list = NULL;
1989         }
1990         jh->b_tprev->b_tnext = jh->b_tnext;
1991         jh->b_tnext->b_tprev = jh->b_tprev;
1992 }
1993
1994 /*
1995  * Remove a buffer from the appropriate transaction list.
1996  *
1997  * Note that this function can *change* the value of
1998  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1999  * t_reserved_list.  If the caller is holding onto a copy of one of these
2000  * pointers, it could go bad.  Generally the caller needs to re-read the
2001  * pointer from the transaction_t.
2002  *
2003  * Called under j_list_lock.
2004  */
2005 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2006 {
2007         struct journal_head **list = NULL;
2008         transaction_t *transaction;
2009         struct buffer_head *bh = jh2bh(jh);
2010
2011         lockdep_assert_held(&jh->b_state_lock);
2012         transaction = jh->b_transaction;
2013         if (transaction)
2014                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2015
2016         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2017         if (jh->b_jlist != BJ_None)
2018                 J_ASSERT_JH(jh, transaction != NULL);
2019
2020         switch (jh->b_jlist) {
2021         case BJ_None:
2022                 return;
2023         case BJ_Metadata:
2024                 transaction->t_nr_buffers--;
2025                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2026                 list = &transaction->t_buffers;
2027                 break;
2028         case BJ_Forget:
2029                 list = &transaction->t_forget;
2030                 break;
2031         case BJ_Shadow:
2032                 list = &transaction->t_shadow_list;
2033                 break;
2034         case BJ_Reserved:
2035                 list = &transaction->t_reserved_list;
2036                 break;
2037         }
2038
2039         __blist_del_buffer(list, jh);
2040         jh->b_jlist = BJ_None;
2041         if (transaction && is_journal_aborted(transaction->t_journal))
2042                 clear_buffer_jbddirty(bh);
2043         else if (test_clear_buffer_jbddirty(bh))
2044                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2045 }
2046
2047 /*
2048  * Remove buffer from all transactions. The caller is responsible for dropping
2049  * the jh reference that belonged to the transaction.
2050  *
2051  * Called with bh_state lock and j_list_lock
2052  */
2053 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2054 {
2055         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2056         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2057
2058         __jbd2_journal_temp_unlink_buffer(jh);
2059         jh->b_transaction = NULL;
2060 }
2061
2062 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2063 {
2064         struct buffer_head *bh = jh2bh(jh);
2065
2066         /* Get reference so that buffer cannot be freed before we unlock it */
2067         get_bh(bh);
2068         spin_lock(&jh->b_state_lock);
2069         spin_lock(&journal->j_list_lock);
2070         __jbd2_journal_unfile_buffer(jh);
2071         spin_unlock(&journal->j_list_lock);
2072         spin_unlock(&jh->b_state_lock);
2073         jbd2_journal_put_journal_head(jh);
2074         __brelse(bh);
2075 }
2076
2077 /*
2078  * Called from jbd2_journal_try_to_free_buffers().
2079  *
2080  * Called under jh->b_state_lock
2081  */
2082 static void
2083 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2084 {
2085         struct journal_head *jh;
2086
2087         jh = bh2jh(bh);
2088
2089         if (buffer_locked(bh) || buffer_dirty(bh))
2090                 goto out;
2091
2092         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2093                 goto out;
2094
2095         spin_lock(&journal->j_list_lock);
2096         if (jh->b_cp_transaction != NULL) {
2097                 /* written-back checkpointed metadata buffer */
2098                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2099                 __jbd2_journal_remove_checkpoint(jh);
2100         }
2101         spin_unlock(&journal->j_list_lock);
2102 out:
2103         return;
2104 }
2105
2106 /**
2107  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2108  * @journal: journal for operation
2109  * @page: to try and free
2110  *
2111  * For all the buffers on this page,
2112  * if they are fully written out ordered data, move them onto BUF_CLEAN
2113  * so try_to_free_buffers() can reap them.
2114  *
2115  * This function returns non-zero if we wish try_to_free_buffers()
2116  * to be called. We do this if the page is releasable by try_to_free_buffers().
2117  * We also do it if the page has locked or dirty buffers and the caller wants
2118  * us to perform sync or async writeout.
2119  *
2120  * This complicates JBD locking somewhat.  We aren't protected by the
2121  * BKL here.  We wish to remove the buffer from its committing or
2122  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2123  *
2124  * This may *change* the value of transaction_t->t_datalist, so anyone
2125  * who looks at t_datalist needs to lock against this function.
2126  *
2127  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2128  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2129  * will come out of the lock with the buffer dirty, which makes it
2130  * ineligible for release here.
2131  *
2132  * Who else is affected by this?  hmm...  Really the only contender
2133  * is do_get_write_access() - it could be looking at the buffer while
2134  * journal_try_to_free_buffer() is changing its state.  But that
2135  * cannot happen because we never reallocate freed data as metadata
2136  * while the data is part of a transaction.  Yes?
2137  *
2138  * Return 0 on failure, 1 on success
2139  */
2140 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2141 {
2142         struct buffer_head *head;
2143         struct buffer_head *bh;
2144         bool has_write_io_error = false;
2145         int ret = 0;
2146
2147         J_ASSERT(PageLocked(page));
2148
2149         head = page_buffers(page);
2150         bh = head;
2151         do {
2152                 struct journal_head *jh;
2153
2154                 /*
2155                  * We take our own ref against the journal_head here to avoid
2156                  * having to add tons of locking around each instance of
2157                  * jbd2_journal_put_journal_head().
2158                  */
2159                 jh = jbd2_journal_grab_journal_head(bh);
2160                 if (!jh)
2161                         continue;
2162
2163                 spin_lock(&jh->b_state_lock);
2164                 __journal_try_to_free_buffer(journal, bh);
2165                 spin_unlock(&jh->b_state_lock);
2166                 jbd2_journal_put_journal_head(jh);
2167                 if (buffer_jbd(bh))
2168                         goto busy;
2169
2170                 /*
2171                  * If we free a metadata buffer which has been failed to
2172                  * write out, the jbd2 checkpoint procedure will not detect
2173                  * this failure and may lead to filesystem inconsistency
2174                  * after cleanup journal tail.
2175                  */
2176                 if (buffer_write_io_error(bh)) {
2177                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2178                                (unsigned long long)bh->b_blocknr);
2179                         has_write_io_error = true;
2180                 }
2181         } while ((bh = bh->b_this_page) != head);
2182
2183         ret = try_to_free_buffers(page);
2184
2185 busy:
2186         if (has_write_io_error)
2187                 jbd2_journal_abort(journal, -EIO);
2188
2189         return ret;
2190 }
2191
2192 /*
2193  * This buffer is no longer needed.  If it is on an older transaction's
2194  * checkpoint list we need to record it on this transaction's forget list
2195  * to pin this buffer (and hence its checkpointing transaction) down until
2196  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2197  * release it.
2198  * Returns non-zero if JBD no longer has an interest in the buffer.
2199  *
2200  * Called under j_list_lock.
2201  *
2202  * Called under jh->b_state_lock.
2203  */
2204 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2205 {
2206         int may_free = 1;
2207         struct buffer_head *bh = jh2bh(jh);
2208
2209         if (jh->b_cp_transaction) {
2210                 JBUFFER_TRACE(jh, "on running+cp transaction");
2211                 __jbd2_journal_temp_unlink_buffer(jh);
2212                 /*
2213                  * We don't want to write the buffer anymore, clear the
2214                  * bit so that we don't confuse checks in
2215                  * __journal_file_buffer
2216                  */
2217                 clear_buffer_dirty(bh);
2218                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2219                 may_free = 0;
2220         } else {
2221                 JBUFFER_TRACE(jh, "on running transaction");
2222                 __jbd2_journal_unfile_buffer(jh);
2223                 jbd2_journal_put_journal_head(jh);
2224         }
2225         return may_free;
2226 }
2227
2228 /*
2229  * jbd2_journal_invalidatepage
2230  *
2231  * This code is tricky.  It has a number of cases to deal with.
2232  *
2233  * There are two invariants which this code relies on:
2234  *
2235  * i_size must be updated on disk before we start calling invalidatepage on the
2236  * data.
2237  *
2238  *  This is done in ext3 by defining an ext3_setattr method which
2239  *  updates i_size before truncate gets going.  By maintaining this
2240  *  invariant, we can be sure that it is safe to throw away any buffers
2241  *  attached to the current transaction: once the transaction commits,
2242  *  we know that the data will not be needed.
2243  *
2244  *  Note however that we can *not* throw away data belonging to the
2245  *  previous, committing transaction!
2246  *
2247  * Any disk blocks which *are* part of the previous, committing
2248  * transaction (and which therefore cannot be discarded immediately) are
2249  * not going to be reused in the new running transaction
2250  *
2251  *  The bitmap committed_data images guarantee this: any block which is
2252  *  allocated in one transaction and removed in the next will be marked
2253  *  as in-use in the committed_data bitmap, so cannot be reused until
2254  *  the next transaction to delete the block commits.  This means that
2255  *  leaving committing buffers dirty is quite safe: the disk blocks
2256  *  cannot be reallocated to a different file and so buffer aliasing is
2257  *  not possible.
2258  *
2259  *
2260  * The above applies mainly to ordered data mode.  In writeback mode we
2261  * don't make guarantees about the order in which data hits disk --- in
2262  * particular we don't guarantee that new dirty data is flushed before
2263  * transaction commit --- so it is always safe just to discard data
2264  * immediately in that mode.  --sct
2265  */
2266
2267 /*
2268  * The journal_unmap_buffer helper function returns zero if the buffer
2269  * concerned remains pinned as an anonymous buffer belonging to an older
2270  * transaction.
2271  *
2272  * We're outside-transaction here.  Either or both of j_running_transaction
2273  * and j_committing_transaction may be NULL.
2274  */
2275 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2276                                 int partial_page)
2277 {
2278         transaction_t *transaction;
2279         struct journal_head *jh;
2280         int may_free = 1;
2281
2282         BUFFER_TRACE(bh, "entry");
2283
2284         /*
2285          * It is safe to proceed here without the j_list_lock because the
2286          * buffers cannot be stolen by try_to_free_buffers as long as we are
2287          * holding the page lock. --sct
2288          */
2289
2290         jh = jbd2_journal_grab_journal_head(bh);
2291         if (!jh)
2292                 goto zap_buffer_unlocked;
2293
2294         /* OK, we have data buffer in journaled mode */
2295         write_lock(&journal->j_state_lock);
2296         spin_lock(&jh->b_state_lock);
2297         spin_lock(&journal->j_list_lock);
2298
2299         /*
2300          * We cannot remove the buffer from checkpoint lists until the
2301          * transaction adding inode to orphan list (let's call it T)
2302          * is committed.  Otherwise if the transaction changing the
2303          * buffer would be cleaned from the journal before T is
2304          * committed, a crash will cause that the correct contents of
2305          * the buffer will be lost.  On the other hand we have to
2306          * clear the buffer dirty bit at latest at the moment when the
2307          * transaction marking the buffer as freed in the filesystem
2308          * structures is committed because from that moment on the
2309          * block can be reallocated and used by a different page.
2310          * Since the block hasn't been freed yet but the inode has
2311          * already been added to orphan list, it is safe for us to add
2312          * the buffer to BJ_Forget list of the newest transaction.
2313          *
2314          * Also we have to clear buffer_mapped flag of a truncated buffer
2315          * because the buffer_head may be attached to the page straddling
2316          * i_size (can happen only when blocksize < pagesize) and thus the
2317          * buffer_head can be reused when the file is extended again. So we end
2318          * up keeping around invalidated buffers attached to transactions'
2319          * BJ_Forget list just to stop checkpointing code from cleaning up
2320          * the transaction this buffer was modified in.
2321          */
2322         transaction = jh->b_transaction;
2323         if (transaction == NULL) {
2324                 /* First case: not on any transaction.  If it
2325                  * has no checkpoint link, then we can zap it:
2326                  * it's a writeback-mode buffer so we don't care
2327                  * if it hits disk safely. */
2328                 if (!jh->b_cp_transaction) {
2329                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2330                         goto zap_buffer;
2331                 }
2332
2333                 if (!buffer_dirty(bh)) {
2334                         /* bdflush has written it.  We can drop it now */
2335                         __jbd2_journal_remove_checkpoint(jh);
2336                         goto zap_buffer;
2337                 }
2338
2339                 /* OK, it must be in the journal but still not
2340                  * written fully to disk: it's metadata or
2341                  * journaled data... */
2342
2343                 if (journal->j_running_transaction) {
2344                         /* ... and once the current transaction has
2345                          * committed, the buffer won't be needed any
2346                          * longer. */
2347                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2348                         may_free = __dispose_buffer(jh,
2349                                         journal->j_running_transaction);
2350                         goto zap_buffer;
2351                 } else {
2352                         /* There is no currently-running transaction. So the
2353                          * orphan record which we wrote for this file must have
2354                          * passed into commit.  We must attach this buffer to
2355                          * the committing transaction, if it exists. */
2356                         if (journal->j_committing_transaction) {
2357                                 JBUFFER_TRACE(jh, "give to committing trans");
2358                                 may_free = __dispose_buffer(jh,
2359                                         journal->j_committing_transaction);
2360                                 goto zap_buffer;
2361                         } else {
2362                                 /* The orphan record's transaction has
2363                                  * committed.  We can cleanse this buffer */
2364                                 clear_buffer_jbddirty(bh);
2365                                 __jbd2_journal_remove_checkpoint(jh);
2366                                 goto zap_buffer;
2367                         }
2368                 }
2369         } else if (transaction == journal->j_committing_transaction) {
2370                 JBUFFER_TRACE(jh, "on committing transaction");
2371                 /*
2372                  * The buffer is committing, we simply cannot touch
2373                  * it. If the page is straddling i_size we have to wait
2374                  * for commit and try again.
2375                  */
2376                 if (partial_page) {
2377                         spin_unlock(&journal->j_list_lock);
2378                         spin_unlock(&jh->b_state_lock);
2379                         write_unlock(&journal->j_state_lock);
2380                         jbd2_journal_put_journal_head(jh);
2381                         /* Already zapped buffer? Nothing to do... */
2382                         if (!bh->b_bdev)
2383                                 return 0;
2384                         return -EBUSY;
2385                 }
2386                 /*
2387                  * OK, buffer won't be reachable after truncate. We just clear
2388                  * b_modified to not confuse transaction credit accounting, and
2389                  * set j_next_transaction to the running transaction (if there
2390                  * is one) and mark buffer as freed so that commit code knows
2391                  * it should clear dirty bits when it is done with the buffer.
2392                  */
2393                 set_buffer_freed(bh);
2394                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2395                         jh->b_next_transaction = journal->j_running_transaction;
2396                 jh->b_modified = 0;
2397                 spin_unlock(&journal->j_list_lock);
2398                 spin_unlock(&jh->b_state_lock);
2399                 write_unlock(&journal->j_state_lock);
2400                 jbd2_journal_put_journal_head(jh);
2401                 return 0;
2402         } else {
2403                 /* Good, the buffer belongs to the running transaction.
2404                  * We are writing our own transaction's data, not any
2405                  * previous one's, so it is safe to throw it away
2406                  * (remember that we expect the filesystem to have set
2407                  * i_size already for this truncate so recovery will not
2408                  * expose the disk blocks we are discarding here.) */
2409                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2410                 JBUFFER_TRACE(jh, "on running transaction");
2411                 may_free = __dispose_buffer(jh, transaction);
2412         }
2413
2414 zap_buffer:
2415         /*
2416          * This is tricky. Although the buffer is truncated, it may be reused
2417          * if blocksize < pagesize and it is attached to the page straddling
2418          * EOF. Since the buffer might have been added to BJ_Forget list of the
2419          * running transaction, journal_get_write_access() won't clear
2420          * b_modified and credit accounting gets confused. So clear b_modified
2421          * here.
2422          */
2423         jh->b_modified = 0;
2424         spin_unlock(&journal->j_list_lock);
2425         spin_unlock(&jh->b_state_lock);
2426         write_unlock(&journal->j_state_lock);
2427         jbd2_journal_put_journal_head(jh);
2428 zap_buffer_unlocked:
2429         clear_buffer_dirty(bh);
2430         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2431         clear_buffer_mapped(bh);
2432         clear_buffer_req(bh);
2433         clear_buffer_new(bh);
2434         clear_buffer_delay(bh);
2435         clear_buffer_unwritten(bh);
2436         bh->b_bdev = NULL;
2437         return may_free;
2438 }
2439
2440 /**
2441  * jbd2_journal_invalidatepage()
2442  * @journal: journal to use for flush...
2443  * @page:    page to flush
2444  * @offset:  start of the range to invalidate
2445  * @length:  length of the range to invalidate
2446  *
2447  * Reap page buffers containing data after in the specified range in page.
2448  * Can return -EBUSY if buffers are part of the committing transaction and
2449  * the page is straddling i_size. Caller then has to wait for current commit
2450  * and try again.
2451  */
2452 int jbd2_journal_invalidatepage(journal_t *journal,
2453                                 struct page *page,
2454                                 unsigned int offset,
2455                                 unsigned int length)
2456 {
2457         struct buffer_head *head, *bh, *next;
2458         unsigned int stop = offset + length;
2459         unsigned int curr_off = 0;
2460         int partial_page = (offset || length < PAGE_SIZE);
2461         int may_free = 1;
2462         int ret = 0;
2463
2464         if (!PageLocked(page))
2465                 BUG();
2466         if (!page_has_buffers(page))
2467                 return 0;
2468
2469         BUG_ON(stop > PAGE_SIZE || stop < length);
2470
2471         /* We will potentially be playing with lists other than just the
2472          * data lists (especially for journaled data mode), so be
2473          * cautious in our locking. */
2474
2475         head = bh = page_buffers(page);
2476         do {
2477                 unsigned int next_off = curr_off + bh->b_size;
2478                 next = bh->b_this_page;
2479
2480                 if (next_off > stop)
2481                         return 0;
2482
2483                 if (offset <= curr_off) {
2484                         /* This block is wholly outside the truncation point */
2485                         lock_buffer(bh);
2486                         ret = journal_unmap_buffer(journal, bh, partial_page);
2487                         unlock_buffer(bh);
2488                         if (ret < 0)
2489                                 return ret;
2490                         may_free &= ret;
2491                 }
2492                 curr_off = next_off;
2493                 bh = next;
2494
2495         } while (bh != head);
2496
2497         if (!partial_page) {
2498                 if (may_free && try_to_free_buffers(page))
2499                         J_ASSERT(!page_has_buffers(page));
2500         }
2501         return 0;
2502 }
2503
2504 /*
2505  * File a buffer on the given transaction list.
2506  */
2507 void __jbd2_journal_file_buffer(struct journal_head *jh,
2508                         transaction_t *transaction, int jlist)
2509 {
2510         struct journal_head **list = NULL;
2511         int was_dirty = 0;
2512         struct buffer_head *bh = jh2bh(jh);
2513
2514         lockdep_assert_held(&jh->b_state_lock);
2515         assert_spin_locked(&transaction->t_journal->j_list_lock);
2516
2517         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2518         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2519                                 jh->b_transaction == NULL);
2520
2521         if (jh->b_transaction && jh->b_jlist == jlist)
2522                 return;
2523
2524         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2525             jlist == BJ_Shadow || jlist == BJ_Forget) {
2526                 /*
2527                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2528                  * instead of buffer_dirty. We should not see a dirty bit set
2529                  * here because we clear it in do_get_write_access but e.g.
2530                  * tune2fs can modify the sb and set the dirty bit at any time
2531                  * so we try to gracefully handle that.
2532                  */
2533                 if (buffer_dirty(bh))
2534                         warn_dirty_buffer(bh);
2535                 if (test_clear_buffer_dirty(bh) ||
2536                     test_clear_buffer_jbddirty(bh))
2537                         was_dirty = 1;
2538         }
2539
2540         if (jh->b_transaction)
2541                 __jbd2_journal_temp_unlink_buffer(jh);
2542         else
2543                 jbd2_journal_grab_journal_head(bh);
2544         jh->b_transaction = transaction;
2545
2546         switch (jlist) {
2547         case BJ_None:
2548                 J_ASSERT_JH(jh, !jh->b_committed_data);
2549                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2550                 return;
2551         case BJ_Metadata:
2552                 transaction->t_nr_buffers++;
2553                 list = &transaction->t_buffers;
2554                 break;
2555         case BJ_Forget:
2556                 list = &transaction->t_forget;
2557                 break;
2558         case BJ_Shadow:
2559                 list = &transaction->t_shadow_list;
2560                 break;
2561         case BJ_Reserved:
2562                 list = &transaction->t_reserved_list;
2563                 break;
2564         }
2565
2566         __blist_add_buffer(list, jh);
2567         jh->b_jlist = jlist;
2568
2569         if (was_dirty)
2570                 set_buffer_jbddirty(bh);
2571 }
2572
2573 void jbd2_journal_file_buffer(struct journal_head *jh,
2574                                 transaction_t *transaction, int jlist)
2575 {
2576         spin_lock(&jh->b_state_lock);
2577         spin_lock(&transaction->t_journal->j_list_lock);
2578         __jbd2_journal_file_buffer(jh, transaction, jlist);
2579         spin_unlock(&transaction->t_journal->j_list_lock);
2580         spin_unlock(&jh->b_state_lock);
2581 }
2582
2583 /*
2584  * Remove a buffer from its current buffer list in preparation for
2585  * dropping it from its current transaction entirely.  If the buffer has
2586  * already started to be used by a subsequent transaction, refile the
2587  * buffer on that transaction's metadata list.
2588  *
2589  * Called under j_list_lock
2590  * Called under jh->b_state_lock
2591  *
2592  * When this function returns true, there's no next transaction to refile to
2593  * and the caller has to drop jh reference through
2594  * jbd2_journal_put_journal_head().
2595  */
2596 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2597 {
2598         int was_dirty, jlist;
2599         struct buffer_head *bh = jh2bh(jh);
2600
2601         lockdep_assert_held(&jh->b_state_lock);
2602         if (jh->b_transaction)
2603                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2604
2605         /* If the buffer is now unused, just drop it. */
2606         if (jh->b_next_transaction == NULL) {
2607                 __jbd2_journal_unfile_buffer(jh);
2608                 return true;
2609         }
2610
2611         /*
2612          * It has been modified by a later transaction: add it to the new
2613          * transaction's metadata list.
2614          */
2615
2616         was_dirty = test_clear_buffer_jbddirty(bh);
2617         __jbd2_journal_temp_unlink_buffer(jh);
2618
2619         /*
2620          * b_transaction must be set, otherwise the new b_transaction won't
2621          * be holding jh reference
2622          */
2623         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2624
2625         /*
2626          * We set b_transaction here because b_next_transaction will inherit
2627          * our jh reference and thus __jbd2_journal_file_buffer() must not
2628          * take a new one.
2629          */
2630         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2631         WRITE_ONCE(jh->b_next_transaction, NULL);
2632         if (buffer_freed(bh))
2633                 jlist = BJ_Forget;
2634         else if (jh->b_modified)
2635                 jlist = BJ_Metadata;
2636         else
2637                 jlist = BJ_Reserved;
2638         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2639         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2640
2641         if (was_dirty)
2642                 set_buffer_jbddirty(bh);
2643         return false;
2644 }
2645
2646 /*
2647  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2648  * bh reference so that we can safely unlock bh.
2649  *
2650  * The jh and bh may be freed by this call.
2651  */
2652 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2653 {
2654         bool drop;
2655
2656         spin_lock(&jh->b_state_lock);
2657         spin_lock(&journal->j_list_lock);
2658         drop = __jbd2_journal_refile_buffer(jh);
2659         spin_unlock(&jh->b_state_lock);
2660         spin_unlock(&journal->j_list_lock);
2661         if (drop)
2662                 jbd2_journal_put_journal_head(jh);
2663 }
2664
2665 /*
2666  * File inode in the inode list of the handle's transaction
2667  */
2668 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2669                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2670 {
2671         transaction_t *transaction = handle->h_transaction;
2672         journal_t *journal;
2673
2674         if (is_handle_aborted(handle))
2675                 return -EROFS;
2676         journal = transaction->t_journal;
2677
2678         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2679                         transaction->t_tid);
2680
2681         spin_lock(&journal->j_list_lock);
2682         jinode->i_flags |= flags;
2683
2684         if (jinode->i_dirty_end) {
2685                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2686                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2687         } else {
2688                 jinode->i_dirty_start = start_byte;
2689                 jinode->i_dirty_end = end_byte;
2690         }
2691
2692         /* Is inode already attached where we need it? */
2693         if (jinode->i_transaction == transaction ||
2694             jinode->i_next_transaction == transaction)
2695                 goto done;
2696
2697         /*
2698          * We only ever set this variable to 1 so the test is safe. Since
2699          * t_need_data_flush is likely to be set, we do the test to save some
2700          * cacheline bouncing
2701          */
2702         if (!transaction->t_need_data_flush)
2703                 transaction->t_need_data_flush = 1;
2704         /* On some different transaction's list - should be
2705          * the committing one */
2706         if (jinode->i_transaction) {
2707                 J_ASSERT(jinode->i_next_transaction == NULL);
2708                 J_ASSERT(jinode->i_transaction ==
2709                                         journal->j_committing_transaction);
2710                 jinode->i_next_transaction = transaction;
2711                 goto done;
2712         }
2713         /* Not on any transaction list... */
2714         J_ASSERT(!jinode->i_next_transaction);
2715         jinode->i_transaction = transaction;
2716         list_add(&jinode->i_list, &transaction->t_inode_list);
2717 done:
2718         spin_unlock(&journal->j_list_lock);
2719
2720         return 0;
2721 }
2722
2723 int jbd2_journal_inode_ranged_write(handle_t *handle,
2724                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2725 {
2726         return jbd2_journal_file_inode(handle, jinode,
2727                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2728                         start_byte + length - 1);
2729 }
2730
2731 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2732                 loff_t start_byte, loff_t length)
2733 {
2734         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2735                         start_byte, start_byte + length - 1);
2736 }
2737
2738 /*
2739  * File truncate and transaction commit interact with each other in a
2740  * non-trivial way.  If a transaction writing data block A is
2741  * committing, we cannot discard the data by truncate until we have
2742  * written them.  Otherwise if we crashed after the transaction with
2743  * write has committed but before the transaction with truncate has
2744  * committed, we could see stale data in block A.  This function is a
2745  * helper to solve this problem.  It starts writeout of the truncated
2746  * part in case it is in the committing transaction.
2747  *
2748  * Filesystem code must call this function when inode is journaled in
2749  * ordered mode before truncation happens and after the inode has been
2750  * placed on orphan list with the new inode size. The second condition
2751  * avoids the race that someone writes new data and we start
2752  * committing the transaction after this function has been called but
2753  * before a transaction for truncate is started (and furthermore it
2754  * allows us to optimize the case where the addition to orphan list
2755  * happens in the same transaction as write --- we don't have to write
2756  * any data in such case).
2757  */
2758 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2759                                         struct jbd2_inode *jinode,
2760                                         loff_t new_size)
2761 {
2762         transaction_t *inode_trans, *commit_trans;
2763         int ret = 0;
2764
2765         /* This is a quick check to avoid locking if not necessary */
2766         if (!jinode->i_transaction)
2767                 goto out;
2768         /* Locks are here just to force reading of recent values, it is
2769          * enough that the transaction was not committing before we started
2770          * a transaction adding the inode to orphan list */
2771         read_lock(&journal->j_state_lock);
2772         commit_trans = journal->j_committing_transaction;
2773         read_unlock(&journal->j_state_lock);
2774         spin_lock(&journal->j_list_lock);
2775         inode_trans = jinode->i_transaction;
2776         spin_unlock(&journal->j_list_lock);
2777         if (inode_trans == commit_trans) {
2778                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2779                         new_size, LLONG_MAX);
2780                 if (ret)
2781                         jbd2_journal_abort(journal, ret);
2782         }
2783 out:
2784         return ret;
2785 }