2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
72 EXPORT_SYMBOL(journal_sync_buffer);
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109 unsigned int line, const char *fmt, ...)
111 struct va_format vaf;
114 if (level > jbd2_journal_enable_debug)
119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
122 EXPORT_SYMBOL(__jbd2_debug);
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 if (!jbd2_journal_has_csum_v2or3_feature(j))
131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
139 old_csum = sb->s_checksum;
141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 sb->s_checksum = old_csum;
144 return cpu_to_be32(csum);
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 if (!jbd2_journal_has_csum_v2or3(j))
152 return sb->s_checksum == jbd2_superblock_csum(j, sb);
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 if (!jbd2_journal_has_csum_v2or3(j))
160 sb->s_checksum = jbd2_superblock_csum(j, sb);
164 * Helper function used to manage commit timeouts
167 static void commit_timeout(unsigned long __data)
169 struct task_struct * p = (struct task_struct *) __data;
175 * kjournald2: The main thread function used to manage a logging device
178 * This kernel thread is responsible for two things:
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
190 static int kjournald2(void *arg)
192 journal_t *journal = arg;
193 transaction_t *transaction;
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
199 setup_timer(&journal->j_commit_timer, commit_timeout,
200 (unsigned long)current);
204 /* Record that the journal thread is running */
205 journal->j_task = current;
206 wake_up(&journal->j_wait_done_commit);
209 * And now, wait forever for commit wakeup events.
211 write_lock(&journal->j_state_lock);
214 if (journal->j_flags & JBD2_UNMOUNT)
217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 journal->j_commit_sequence, journal->j_commit_request);
220 if (journal->j_commit_sequence != journal->j_commit_request) {
221 jbd_debug(1, "OK, requests differ\n");
222 write_unlock(&journal->j_state_lock);
223 del_timer_sync(&journal->j_commit_timer);
224 jbd2_journal_commit_transaction(journal);
225 write_lock(&journal->j_state_lock);
229 wake_up(&journal->j_wait_done_commit);
230 if (freezing(current)) {
232 * The simpler the better. Flushing journal isn't a
233 * good idea, because that depends on threads that may
234 * be already stopped.
236 jbd_debug(1, "Now suspending kjournald2\n");
237 write_unlock(&journal->j_state_lock);
239 write_lock(&journal->j_state_lock);
242 * We assume on resume that commits are already there,
246 int should_sleep = 1;
248 prepare_to_wait(&journal->j_wait_commit, &wait,
250 if (journal->j_commit_sequence != journal->j_commit_request)
252 transaction = journal->j_running_transaction;
253 if (transaction && time_after_eq(jiffies,
254 transaction->t_expires))
256 if (journal->j_flags & JBD2_UNMOUNT)
259 write_unlock(&journal->j_state_lock);
261 write_lock(&journal->j_state_lock);
263 finish_wait(&journal->j_wait_commit, &wait);
266 jbd_debug(1, "kjournald2 wakes\n");
269 * Were we woken up by a commit wakeup event?
271 transaction = journal->j_running_transaction;
272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 journal->j_commit_request = transaction->t_tid;
274 jbd_debug(1, "woke because of timeout\n");
279 del_timer_sync(&journal->j_commit_timer);
280 journal->j_task = NULL;
281 wake_up(&journal->j_wait_done_commit);
282 jbd_debug(1, "Journal thread exiting.\n");
283 write_unlock(&journal->j_state_lock);
287 static int jbd2_journal_start_thread(journal_t *journal)
289 struct task_struct *t;
291 t = kthread_run(kjournald2, journal, "jbd2/%s",
296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
300 static void journal_kill_thread(journal_t *journal)
302 write_lock(&journal->j_state_lock);
303 journal->j_flags |= JBD2_UNMOUNT;
305 while (journal->j_task) {
306 write_unlock(&journal->j_state_lock);
307 wake_up(&journal->j_wait_commit);
308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 write_lock(&journal->j_state_lock);
311 write_unlock(&journal->j_state_lock);
315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
317 * Writes a metadata buffer to a given disk block. The actual IO is not
318 * performed but a new buffer_head is constructed which labels the data
319 * to be written with the correct destination disk block.
321 * Any magic-number escaping which needs to be done will cause a
322 * copy-out here. If the buffer happens to start with the
323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324 * magic number is only written to the log for descripter blocks. In
325 * this case, we copy the data and replace the first word with 0, and we
326 * return a result code which indicates that this buffer needs to be
327 * marked as an escaped buffer in the corresponding log descriptor
328 * block. The missing word can then be restored when the block is read
331 * If the source buffer has already been modified by a new transaction
332 * since we took the last commit snapshot, we use the frozen copy of
333 * that data for IO. If we end up using the existing buffer_head's data
334 * for the write, then we have to make sure nobody modifies it while the
335 * IO is in progress. do_get_write_access() handles this.
337 * The function returns a pointer to the buffer_head to be used for IO.
345 * Bit 0 set == escape performed on the data
346 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 struct journal_head *jh_in,
351 struct buffer_head **bh_out,
354 int need_copy_out = 0;
355 int done_copy_out = 0;
358 struct buffer_head *new_bh;
359 struct page *new_page;
360 unsigned int new_offset;
361 struct buffer_head *bh_in = jh2bh(jh_in);
362 journal_t *journal = transaction->t_journal;
365 * The buffer really shouldn't be locked: only the current committing
366 * transaction is allowed to write it, so nobody else is allowed
369 * akpm: except if we're journalling data, and write() output is
370 * also part of a shared mapping, and another thread has
371 * decided to launch a writepage() against this buffer.
373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
377 /* keep subsequent assertions sane */
378 atomic_set(&new_bh->b_count, 1);
380 jbd_lock_bh_state(bh_in);
383 * If a new transaction has already done a buffer copy-out, then
384 * we use that version of the data for the commit.
386 if (jh_in->b_frozen_data) {
388 new_page = virt_to_page(jh_in->b_frozen_data);
389 new_offset = offset_in_page(jh_in->b_frozen_data);
391 new_page = jh2bh(jh_in)->b_page;
392 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
395 mapped_data = kmap_atomic(new_page);
397 * Fire data frozen trigger if data already wasn't frozen. Do this
398 * before checking for escaping, as the trigger may modify the magic
399 * offset. If a copy-out happens afterwards, it will have the correct
400 * data in the buffer.
403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
409 if (*((__be32 *)(mapped_data + new_offset)) ==
410 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
414 kunmap_atomic(mapped_data);
417 * Do we need to do a data copy?
419 if (need_copy_out && !done_copy_out) {
422 jbd_unlock_bh_state(bh_in);
423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
428 jbd_lock_bh_state(bh_in);
429 if (jh_in->b_frozen_data) {
430 jbd2_free(tmp, bh_in->b_size);
434 jh_in->b_frozen_data = tmp;
435 mapped_data = kmap_atomic(new_page);
436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 kunmap_atomic(mapped_data);
439 new_page = virt_to_page(tmp);
440 new_offset = offset_in_page(tmp);
444 * This isn't strictly necessary, as we're using frozen
445 * data for the escaping, but it keeps consistency with
446 * b_frozen_data usage.
448 jh_in->b_frozen_triggers = jh_in->b_triggers;
452 * Did we need to do an escaping? Now we've done all the
453 * copying, we can finally do so.
456 mapped_data = kmap_atomic(new_page);
457 *((unsigned int *)(mapped_data + new_offset)) = 0;
458 kunmap_atomic(mapped_data);
461 set_bh_page(new_bh, new_page, new_offset);
462 new_bh->b_size = bh_in->b_size;
463 new_bh->b_bdev = journal->j_dev;
464 new_bh->b_blocknr = blocknr;
465 new_bh->b_private = bh_in;
466 set_buffer_mapped(new_bh);
467 set_buffer_dirty(new_bh);
472 * The to-be-written buffer needs to get moved to the io queue,
473 * and the original buffer whose contents we are shadowing or
474 * copying is moved to the transaction's shadow queue.
476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 spin_lock(&journal->j_list_lock);
478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 spin_unlock(&journal->j_list_lock);
480 set_buffer_shadow(bh_in);
481 jbd_unlock_bh_state(bh_in);
483 return do_escape | (done_copy_out << 1);
487 * Allocation code for the journal file. Manage the space left in the
488 * journal, so that we can begin checkpointing when appropriate.
492 * Called with j_state_lock locked for writing.
493 * Returns true if a transaction commit was started.
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
497 /* Return if the txn has already requested to be committed */
498 if (journal->j_commit_request == target)
502 * The only transaction we can possibly wait upon is the
503 * currently running transaction (if it exists). Otherwise,
504 * the target tid must be an old one.
506 if (journal->j_running_transaction &&
507 journal->j_running_transaction->t_tid == target) {
509 * We want a new commit: OK, mark the request and wakeup the
510 * commit thread. We do _not_ do the commit ourselves.
513 journal->j_commit_request = target;
514 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 journal->j_commit_request,
516 journal->j_commit_sequence);
517 journal->j_running_transaction->t_requested = jiffies;
518 wake_up(&journal->j_wait_commit);
520 } else if (!tid_geq(journal->j_commit_request, target))
521 /* This should never happen, but if it does, preserve
522 the evidence before kjournald goes into a loop and
523 increments j_commit_sequence beyond all recognition. */
524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 journal->j_commit_request,
526 journal->j_commit_sequence,
527 target, journal->j_running_transaction ?
528 journal->j_running_transaction->t_tid : 0);
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
536 write_lock(&journal->j_state_lock);
537 ret = __jbd2_log_start_commit(journal, tid);
538 write_unlock(&journal->j_state_lock);
543 * Force and wait any uncommitted transactions. We can only force the running
544 * transaction if we don't have an active handle, otherwise, we will deadlock.
545 * Returns: <0 in case of error,
546 * 0 if nothing to commit,
547 * 1 if transaction was successfully committed.
549 static int __jbd2_journal_force_commit(journal_t *journal)
551 transaction_t *transaction = NULL;
553 int need_to_start = 0, ret = 0;
555 read_lock(&journal->j_state_lock);
556 if (journal->j_running_transaction && !current->journal_info) {
557 transaction = journal->j_running_transaction;
558 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
560 } else if (journal->j_committing_transaction)
561 transaction = journal->j_committing_transaction;
564 /* Nothing to commit */
565 read_unlock(&journal->j_state_lock);
568 tid = transaction->t_tid;
569 read_unlock(&journal->j_state_lock);
571 jbd2_log_start_commit(journal, tid);
572 ret = jbd2_log_wait_commit(journal, tid);
580 * Force and wait upon a commit if the calling process is not within
581 * transaction. This is used for forcing out undo-protected data which contains
582 * bitmaps, when the fs is running out of space.
584 * @journal: journal to force
585 * Returns true if progress was made.
587 int jbd2_journal_force_commit_nested(journal_t *journal)
591 ret = __jbd2_journal_force_commit(journal);
596 * int journal_force_commit() - force any uncommitted transactions
597 * @journal: journal to force
599 * Caller want unconditional commit. We can only force the running transaction
600 * if we don't have an active handle, otherwise, we will deadlock.
602 int jbd2_journal_force_commit(journal_t *journal)
606 J_ASSERT(!current->journal_info);
607 ret = __jbd2_journal_force_commit(journal);
614 * Start a commit of the current running transaction (if any). Returns true
615 * if a transaction is going to be committed (or is currently already
616 * committing), and fills its tid in at *ptid
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
622 write_lock(&journal->j_state_lock);
623 if (journal->j_running_transaction) {
624 tid_t tid = journal->j_running_transaction->t_tid;
626 __jbd2_log_start_commit(journal, tid);
627 /* There's a running transaction and we've just made sure
628 * it's commit has been scheduled. */
632 } else if (journal->j_committing_transaction) {
634 * If commit has been started, then we have to wait for
635 * completion of that transaction.
638 *ptid = journal->j_committing_transaction->t_tid;
641 write_unlock(&journal->j_state_lock);
646 * Return 1 if a given transaction has not yet sent barrier request
647 * connected with a transaction commit. If 0 is returned, transaction
648 * may or may not have sent the barrier. Used to avoid sending barrier
649 * twice in common cases.
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
654 transaction_t *commit_trans;
656 if (!(journal->j_flags & JBD2_BARRIER))
658 read_lock(&journal->j_state_lock);
659 /* Transaction already committed? */
660 if (tid_geq(journal->j_commit_sequence, tid))
662 commit_trans = journal->j_committing_transaction;
663 if (!commit_trans || commit_trans->t_tid != tid) {
668 * Transaction is being committed and we already proceeded to
669 * submitting a flush to fs partition?
671 if (journal->j_fs_dev != journal->j_dev) {
672 if (!commit_trans->t_need_data_flush ||
673 commit_trans->t_state >= T_COMMIT_DFLUSH)
676 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
681 read_unlock(&journal->j_state_lock);
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
687 * Wait for a specified commit to complete.
688 * The caller may not hold the journal lock.
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
694 read_lock(&journal->j_state_lock);
695 #ifdef CONFIG_PROVE_LOCKING
697 * Some callers make sure transaction is already committing and in that
698 * case we cannot block on open handles anymore. So don't warn in that
701 if (tid_gt(tid, journal->j_commit_sequence) &&
702 (!journal->j_committing_transaction ||
703 journal->j_committing_transaction->t_tid != tid)) {
704 read_unlock(&journal->j_state_lock);
705 jbd2_might_wait_for_commit(journal);
706 read_lock(&journal->j_state_lock);
709 #ifdef CONFIG_JBD2_DEBUG
710 if (!tid_geq(journal->j_commit_request, tid)) {
712 "%s: error: j_commit_request=%d, tid=%d\n",
713 __func__, journal->j_commit_request, tid);
716 while (tid_gt(tid, journal->j_commit_sequence)) {
717 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
718 tid, journal->j_commit_sequence);
719 read_unlock(&journal->j_state_lock);
720 wake_up(&journal->j_wait_commit);
721 wait_event(journal->j_wait_done_commit,
722 !tid_gt(tid, journal->j_commit_sequence));
723 read_lock(&journal->j_state_lock);
725 read_unlock(&journal->j_state_lock);
727 if (unlikely(is_journal_aborted(journal)))
733 * When this function returns the transaction corresponding to tid
734 * will be completed. If the transaction has currently running, start
735 * committing that transaction before waiting for it to complete. If
736 * the transaction id is stale, it is by definition already completed,
737 * so just return SUCCESS.
739 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
741 int need_to_wait = 1;
743 read_lock(&journal->j_state_lock);
744 if (journal->j_running_transaction &&
745 journal->j_running_transaction->t_tid == tid) {
746 if (journal->j_commit_request != tid) {
747 /* transaction not yet started, so request it */
748 read_unlock(&journal->j_state_lock);
749 jbd2_log_start_commit(journal, tid);
752 } else if (!(journal->j_committing_transaction &&
753 journal->j_committing_transaction->t_tid == tid))
755 read_unlock(&journal->j_state_lock);
759 return jbd2_log_wait_commit(journal, tid);
761 EXPORT_SYMBOL(jbd2_complete_transaction);
764 * Log buffer allocation routines:
767 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
769 unsigned long blocknr;
771 write_lock(&journal->j_state_lock);
772 J_ASSERT(journal->j_free > 1);
774 blocknr = journal->j_head;
777 if (journal->j_head == journal->j_last)
778 journal->j_head = journal->j_first;
779 write_unlock(&journal->j_state_lock);
780 return jbd2_journal_bmap(journal, blocknr, retp);
784 * Conversion of logical to physical block numbers for the journal
786 * On external journals the journal blocks are identity-mapped, so
787 * this is a no-op. If needed, we can use j_blk_offset - everything is
790 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
791 unsigned long long *retp)
794 unsigned long long ret;
796 if (journal->j_inode) {
797 ret = bmap(journal->j_inode, blocknr);
801 printk(KERN_ALERT "%s: journal block not found "
802 "at offset %lu on %s\n",
803 __func__, blocknr, journal->j_devname);
805 __journal_abort_soft(journal, err);
808 *retp = blocknr; /* +journal->j_blk_offset */
814 * We play buffer_head aliasing tricks to write data/metadata blocks to
815 * the journal without copying their contents, but for journal
816 * descriptor blocks we do need to generate bona fide buffers.
818 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
819 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
820 * But we don't bother doing that, so there will be coherency problems with
821 * mmaps of blockdevs which hold live JBD-controlled filesystems.
824 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
826 journal_t *journal = transaction->t_journal;
827 struct buffer_head *bh;
828 unsigned long long blocknr;
829 journal_header_t *header;
832 err = jbd2_journal_next_log_block(journal, &blocknr);
837 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841 memset(bh->b_data, 0, journal->j_blocksize);
842 header = (journal_header_t *)bh->b_data;
843 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
844 header->h_blocktype = cpu_to_be32(type);
845 header->h_sequence = cpu_to_be32(transaction->t_tid);
846 set_buffer_uptodate(bh);
848 BUFFER_TRACE(bh, "return this buffer");
852 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
854 struct jbd2_journal_block_tail *tail;
857 if (!jbd2_journal_has_csum_v2or3(j))
860 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
861 sizeof(struct jbd2_journal_block_tail));
862 tail->t_checksum = 0;
863 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
864 tail->t_checksum = cpu_to_be32(csum);
868 * Return tid of the oldest transaction in the journal and block in the journal
869 * where the transaction starts.
871 * If the journal is now empty, return which will be the next transaction ID
872 * we will write and where will that transaction start.
874 * The return value is 0 if journal tail cannot be pushed any further, 1 if
877 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
878 unsigned long *block)
880 transaction_t *transaction;
883 read_lock(&journal->j_state_lock);
884 spin_lock(&journal->j_list_lock);
885 transaction = journal->j_checkpoint_transactions;
887 *tid = transaction->t_tid;
888 *block = transaction->t_log_start;
889 } else if ((transaction = journal->j_committing_transaction) != NULL) {
890 *tid = transaction->t_tid;
891 *block = transaction->t_log_start;
892 } else if ((transaction = journal->j_running_transaction) != NULL) {
893 *tid = transaction->t_tid;
894 *block = journal->j_head;
896 *tid = journal->j_transaction_sequence;
897 *block = journal->j_head;
899 ret = tid_gt(*tid, journal->j_tail_sequence);
900 spin_unlock(&journal->j_list_lock);
901 read_unlock(&journal->j_state_lock);
907 * Update information in journal structure and in on disk journal superblock
908 * about log tail. This function does not check whether information passed in
909 * really pushes log tail further. It's responsibility of the caller to make
910 * sure provided log tail information is valid (e.g. by holding
911 * j_checkpoint_mutex all the time between computing log tail and calling this
912 * function as is the case with jbd2_cleanup_journal_tail()).
914 * Requires j_checkpoint_mutex
916 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
924 * We cannot afford for write to remain in drive's caches since as
925 * soon as we update j_tail, next transaction can start reusing journal
926 * space and if we lose sb update during power failure we'd replay
927 * old transaction with possibly newly overwritten data.
929 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
933 write_lock(&journal->j_state_lock);
934 freed = block - journal->j_tail;
935 if (block < journal->j_tail)
936 freed += journal->j_last - journal->j_first;
938 trace_jbd2_update_log_tail(journal, tid, block, freed);
940 "Cleaning journal tail from %d to %d (offset %lu), "
942 journal->j_tail_sequence, tid, block, freed);
944 journal->j_free += freed;
945 journal->j_tail_sequence = tid;
946 journal->j_tail = block;
947 write_unlock(&journal->j_state_lock);
954 * This is a variation of __jbd2_update_log_tail which checks for validity of
955 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
956 * with other threads updating log tail.
958 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
960 mutex_lock(&journal->j_checkpoint_mutex);
961 if (tid_gt(tid, journal->j_tail_sequence))
962 __jbd2_update_log_tail(journal, tid, block);
963 mutex_unlock(&journal->j_checkpoint_mutex);
966 struct jbd2_stats_proc_session {
968 struct transaction_stats_s *stats;
973 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
975 return *pos ? NULL : SEQ_START_TOKEN;
978 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
983 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
985 struct jbd2_stats_proc_session *s = seq->private;
987 if (v != SEQ_START_TOKEN)
989 seq_printf(seq, "%lu transactions (%lu requested), "
990 "each up to %u blocks\n",
991 s->stats->ts_tid, s->stats->ts_requested,
992 s->journal->j_max_transaction_buffers);
993 if (s->stats->ts_tid == 0)
995 seq_printf(seq, "average: \n %ums waiting for transaction\n",
996 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
997 seq_printf(seq, " %ums request delay\n",
998 (s->stats->ts_requested == 0) ? 0 :
999 jiffies_to_msecs(s->stats->run.rs_request_delay /
1000 s->stats->ts_requested));
1001 seq_printf(seq, " %ums running transaction\n",
1002 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1003 seq_printf(seq, " %ums transaction was being locked\n",
1004 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1005 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1006 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1007 seq_printf(seq, " %ums logging transaction\n",
1008 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1009 seq_printf(seq, " %lluus average transaction commit time\n",
1010 div_u64(s->journal->j_average_commit_time, 1000));
1011 seq_printf(seq, " %lu handles per transaction\n",
1012 s->stats->run.rs_handle_count / s->stats->ts_tid);
1013 seq_printf(seq, " %lu blocks per transaction\n",
1014 s->stats->run.rs_blocks / s->stats->ts_tid);
1015 seq_printf(seq, " %lu logged blocks per transaction\n",
1016 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1020 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1024 static const struct seq_operations jbd2_seq_info_ops = {
1025 .start = jbd2_seq_info_start,
1026 .next = jbd2_seq_info_next,
1027 .stop = jbd2_seq_info_stop,
1028 .show = jbd2_seq_info_show,
1031 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1033 journal_t *journal = PDE_DATA(inode);
1034 struct jbd2_stats_proc_session *s;
1037 s = kmalloc(sizeof(*s), GFP_KERNEL);
1040 size = sizeof(struct transaction_stats_s);
1041 s->stats = kmalloc(size, GFP_KERNEL);
1042 if (s->stats == NULL) {
1046 spin_lock(&journal->j_history_lock);
1047 memcpy(s->stats, &journal->j_stats, size);
1048 s->journal = journal;
1049 spin_unlock(&journal->j_history_lock);
1051 rc = seq_open(file, &jbd2_seq_info_ops);
1053 struct seq_file *m = file->private_data;
1063 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1065 struct seq_file *seq = file->private_data;
1066 struct jbd2_stats_proc_session *s = seq->private;
1069 return seq_release(inode, file);
1072 static const struct file_operations jbd2_seq_info_fops = {
1073 .owner = THIS_MODULE,
1074 .open = jbd2_seq_info_open,
1076 .llseek = seq_lseek,
1077 .release = jbd2_seq_info_release,
1080 static struct proc_dir_entry *proc_jbd2_stats;
1082 static void jbd2_stats_proc_init(journal_t *journal)
1084 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1085 if (journal->j_proc_entry) {
1086 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1087 &jbd2_seq_info_fops, journal);
1091 static void jbd2_stats_proc_exit(journal_t *journal)
1093 remove_proc_entry("info", journal->j_proc_entry);
1094 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1098 * Management for journal control blocks: functions to create and
1099 * destroy journal_t structures, and to initialise and read existing
1100 * journal blocks from disk. */
1102 /* First: create and setup a journal_t object in memory. We initialise
1103 * very few fields yet: that has to wait until we have created the
1104 * journal structures from from scratch, or loaded them from disk. */
1106 static journal_t *journal_init_common(struct block_device *bdev,
1107 struct block_device *fs_dev,
1108 unsigned long long start, int len, int blocksize)
1110 static struct lock_class_key jbd2_trans_commit_key;
1113 struct buffer_head *bh;
1116 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1120 init_waitqueue_head(&journal->j_wait_transaction_locked);
1121 init_waitqueue_head(&journal->j_wait_done_commit);
1122 init_waitqueue_head(&journal->j_wait_commit);
1123 init_waitqueue_head(&journal->j_wait_updates);
1124 init_waitqueue_head(&journal->j_wait_reserved);
1125 mutex_init(&journal->j_barrier);
1126 mutex_init(&journal->j_checkpoint_mutex);
1127 spin_lock_init(&journal->j_revoke_lock);
1128 spin_lock_init(&journal->j_list_lock);
1129 rwlock_init(&journal->j_state_lock);
1131 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1132 journal->j_min_batch_time = 0;
1133 journal->j_max_batch_time = 15000; /* 15ms */
1134 atomic_set(&journal->j_reserved_credits, 0);
1136 /* The journal is marked for error until we succeed with recovery! */
1137 journal->j_flags = JBD2_ABORT;
1139 /* Set up a default-sized revoke table for the new mount. */
1140 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1144 spin_lock_init(&journal->j_history_lock);
1146 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1147 &jbd2_trans_commit_key, 0);
1149 /* journal descriptor can store up to n blocks -bzzz */
1150 journal->j_blocksize = blocksize;
1151 journal->j_dev = bdev;
1152 journal->j_fs_dev = fs_dev;
1153 journal->j_blk_offset = start;
1154 journal->j_maxlen = len;
1155 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1156 journal->j_wbufsize = n;
1157 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1159 if (!journal->j_wbuf)
1162 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1164 pr_err("%s: Cannot get buffer for journal superblock\n",
1168 journal->j_sb_buffer = bh;
1169 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1174 kfree(journal->j_wbuf);
1175 jbd2_journal_destroy_revoke(journal);
1180 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1182 * Create a journal structure assigned some fixed set of disk blocks to
1183 * the journal. We don't actually touch those disk blocks yet, but we
1184 * need to set up all of the mapping information to tell the journaling
1185 * system where the journal blocks are.
1190 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1191 * @bdev: Block device on which to create the journal
1192 * @fs_dev: Device which hold journalled filesystem for this journal.
1193 * @start: Block nr Start of journal.
1194 * @len: Length of the journal in blocks.
1195 * @blocksize: blocksize of journalling device
1197 * Returns: a newly created journal_t *
1199 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1200 * range of blocks on an arbitrary block device.
1203 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1204 struct block_device *fs_dev,
1205 unsigned long long start, int len, int blocksize)
1209 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1213 bdevname(journal->j_dev, journal->j_devname);
1214 strreplace(journal->j_devname, '/', '!');
1215 jbd2_stats_proc_init(journal);
1221 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1222 * @inode: An inode to create the journal in
1224 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1225 * the journal. The inode must exist already, must support bmap() and
1226 * must have all data blocks preallocated.
1228 journal_t *jbd2_journal_init_inode(struct inode *inode)
1232 unsigned long long blocknr;
1234 blocknr = bmap(inode, 0);
1236 pr_err("%s: Cannot locate journal superblock\n",
1241 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1242 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1243 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1245 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1246 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1247 inode->i_sb->s_blocksize);
1251 journal->j_inode = inode;
1252 bdevname(journal->j_dev, journal->j_devname);
1253 p = strreplace(journal->j_devname, '/', '!');
1254 sprintf(p, "-%lu", journal->j_inode->i_ino);
1255 jbd2_stats_proc_init(journal);
1261 * If the journal init or create aborts, we need to mark the journal
1262 * superblock as being NULL to prevent the journal destroy from writing
1263 * back a bogus superblock.
1265 static void journal_fail_superblock (journal_t *journal)
1267 struct buffer_head *bh = journal->j_sb_buffer;
1269 journal->j_sb_buffer = NULL;
1273 * Given a journal_t structure, initialise the various fields for
1274 * startup of a new journaling session. We use this both when creating
1275 * a journal, and after recovering an old journal to reset it for
1279 static int journal_reset(journal_t *journal)
1281 journal_superblock_t *sb = journal->j_superblock;
1282 unsigned long long first, last;
1284 first = be32_to_cpu(sb->s_first);
1285 last = be32_to_cpu(sb->s_maxlen);
1286 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1287 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1289 journal_fail_superblock(journal);
1293 journal->j_first = first;
1294 journal->j_last = last;
1296 journal->j_head = first;
1297 journal->j_tail = first;
1298 journal->j_free = last - first;
1300 journal->j_tail_sequence = journal->j_transaction_sequence;
1301 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1302 journal->j_commit_request = journal->j_commit_sequence;
1304 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1307 * As a special case, if the on-disk copy is already marked as needing
1308 * no recovery (s_start == 0), then we can safely defer the superblock
1309 * update until the next commit by setting JBD2_FLUSHED. This avoids
1310 * attempting a write to a potential-readonly device.
1312 if (sb->s_start == 0) {
1313 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 "(start %ld, seq %d, errno %d)\n",
1315 journal->j_tail, journal->j_tail_sequence,
1317 journal->j_flags |= JBD2_FLUSHED;
1319 /* Lock here to make assertions happy... */
1320 mutex_lock(&journal->j_checkpoint_mutex);
1322 * Update log tail information. We use WRITE_FUA since new
1323 * transaction will start reusing journal space and so we
1324 * must make sure information about current log tail is on
1327 jbd2_journal_update_sb_log_tail(journal,
1328 journal->j_tail_sequence,
1331 mutex_unlock(&journal->j_checkpoint_mutex);
1333 return jbd2_journal_start_thread(journal);
1336 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1338 struct buffer_head *bh = journal->j_sb_buffer;
1339 journal_superblock_t *sb = journal->j_superblock;
1342 /* Buffer got discarded which means block device got invalidated */
1343 if (!buffer_mapped(bh))
1346 trace_jbd2_write_superblock(journal, write_flags);
1347 if (!(journal->j_flags & JBD2_BARRIER))
1348 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1350 if (buffer_write_io_error(bh)) {
1352 * Oh, dear. A previous attempt to write the journal
1353 * superblock failed. This could happen because the
1354 * USB device was yanked out. Or it could happen to
1355 * be a transient write error and maybe the block will
1356 * be remapped. Nothing we can do but to retry the
1357 * write and hope for the best.
1359 printk(KERN_ERR "JBD2: previous I/O error detected "
1360 "for journal superblock update for %s.\n",
1361 journal->j_devname);
1362 clear_buffer_write_io_error(bh);
1363 set_buffer_uptodate(bh);
1365 jbd2_superblock_csum_set(journal, sb);
1367 bh->b_end_io = end_buffer_write_sync;
1368 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1370 if (buffer_write_io_error(bh)) {
1371 clear_buffer_write_io_error(bh);
1372 set_buffer_uptodate(bh);
1376 printk(KERN_ERR "JBD2: Error %d detected when updating "
1377 "journal superblock for %s.\n", ret,
1378 journal->j_devname);
1379 jbd2_journal_abort(journal, ret);
1386 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1387 * @journal: The journal to update.
1388 * @tail_tid: TID of the new transaction at the tail of the log
1389 * @tail_block: The first block of the transaction at the tail of the log
1390 * @write_op: With which operation should we write the journal sb
1392 * Update a journal's superblock information about log tail and write it to
1393 * disk, waiting for the IO to complete.
1395 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1396 unsigned long tail_block, int write_op)
1398 journal_superblock_t *sb = journal->j_superblock;
1401 if (is_journal_aborted(journal))
1404 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1405 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1406 tail_block, tail_tid);
1408 sb->s_sequence = cpu_to_be32(tail_tid);
1409 sb->s_start = cpu_to_be32(tail_block);
1411 ret = jbd2_write_superblock(journal, write_op);
1415 /* Log is no longer empty */
1416 write_lock(&journal->j_state_lock);
1417 WARN_ON(!sb->s_sequence);
1418 journal->j_flags &= ~JBD2_FLUSHED;
1419 write_unlock(&journal->j_state_lock);
1426 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1427 * @journal: The journal to update.
1428 * @write_op: With which operation should we write the journal sb
1430 * Update a journal's dynamic superblock fields to show that journal is empty.
1431 * Write updated superblock to disk waiting for IO to complete.
1433 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1435 journal_superblock_t *sb = journal->j_superblock;
1437 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1438 read_lock(&journal->j_state_lock);
1439 /* Is it already empty? */
1440 if (sb->s_start == 0) {
1441 read_unlock(&journal->j_state_lock);
1444 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1445 journal->j_tail_sequence);
1447 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1448 sb->s_start = cpu_to_be32(0);
1449 read_unlock(&journal->j_state_lock);
1451 jbd2_write_superblock(journal, write_op);
1453 /* Log is no longer empty */
1454 write_lock(&journal->j_state_lock);
1455 journal->j_flags |= JBD2_FLUSHED;
1456 write_unlock(&journal->j_state_lock);
1461 * jbd2_journal_update_sb_errno() - Update error in the journal.
1462 * @journal: The journal to update.
1464 * Update a journal's errno. Write updated superblock to disk waiting for IO
1467 void jbd2_journal_update_sb_errno(journal_t *journal)
1469 journal_superblock_t *sb = journal->j_superblock;
1471 read_lock(&journal->j_state_lock);
1472 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1474 sb->s_errno = cpu_to_be32(journal->j_errno);
1475 read_unlock(&journal->j_state_lock);
1477 jbd2_write_superblock(journal, WRITE_FUA);
1479 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1482 * Read the superblock for a given journal, performing initial
1483 * validation of the format.
1485 static int journal_get_superblock(journal_t *journal)
1487 struct buffer_head *bh;
1488 journal_superblock_t *sb;
1491 bh = journal->j_sb_buffer;
1493 J_ASSERT(bh != NULL);
1494 if (!buffer_uptodate(bh)) {
1495 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1497 if (!buffer_uptodate(bh)) {
1499 "JBD2: IO error reading journal superblock\n");
1504 if (buffer_verified(bh))
1507 sb = journal->j_superblock;
1511 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1512 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1513 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1517 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1518 case JBD2_SUPERBLOCK_V1:
1519 journal->j_format_version = 1;
1521 case JBD2_SUPERBLOCK_V2:
1522 journal->j_format_version = 2;
1525 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1529 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1530 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1531 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1532 printk(KERN_WARNING "JBD2: journal file too short\n");
1536 if (be32_to_cpu(sb->s_first) == 0 ||
1537 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1539 "JBD2: Invalid start block of journal: %u\n",
1540 be32_to_cpu(sb->s_first));
1544 if (jbd2_has_feature_csum2(journal) &&
1545 jbd2_has_feature_csum3(journal)) {
1546 /* Can't have checksum v2 and v3 at the same time! */
1547 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1548 "at the same time!\n");
1552 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1553 jbd2_has_feature_checksum(journal)) {
1554 /* Can't have checksum v1 and v2 on at the same time! */
1555 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1556 "at the same time!\n");
1560 if (!jbd2_verify_csum_type(journal, sb)) {
1561 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1565 /* Load the checksum driver */
1566 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1567 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1568 if (IS_ERR(journal->j_chksum_driver)) {
1569 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1570 err = PTR_ERR(journal->j_chksum_driver);
1571 journal->j_chksum_driver = NULL;
1576 /* Check superblock checksum */
1577 if (!jbd2_superblock_csum_verify(journal, sb)) {
1578 printk(KERN_ERR "JBD2: journal checksum error\n");
1583 /* Precompute checksum seed for all metadata */
1584 if (jbd2_journal_has_csum_v2or3(journal))
1585 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1586 sizeof(sb->s_uuid));
1588 set_buffer_verified(bh);
1593 journal_fail_superblock(journal);
1598 * Load the on-disk journal superblock and read the key fields into the
1602 static int load_superblock(journal_t *journal)
1605 journal_superblock_t *sb;
1607 err = journal_get_superblock(journal);
1611 sb = journal->j_superblock;
1613 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1614 journal->j_tail = be32_to_cpu(sb->s_start);
1615 journal->j_first = be32_to_cpu(sb->s_first);
1616 journal->j_last = be32_to_cpu(sb->s_maxlen);
1617 journal->j_errno = be32_to_cpu(sb->s_errno);
1624 * int jbd2_journal_load() - Read journal from disk.
1625 * @journal: Journal to act on.
1627 * Given a journal_t structure which tells us which disk blocks contain
1628 * a journal, read the journal from disk to initialise the in-memory
1631 int jbd2_journal_load(journal_t *journal)
1634 journal_superblock_t *sb;
1636 err = load_superblock(journal);
1640 sb = journal->j_superblock;
1641 /* If this is a V2 superblock, then we have to check the
1642 * features flags on it. */
1644 if (journal->j_format_version >= 2) {
1645 if ((sb->s_feature_ro_compat &
1646 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1647 (sb->s_feature_incompat &
1648 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1650 "JBD2: Unrecognised features on journal\n");
1656 * Create a slab for this blocksize
1658 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1662 /* Let the recovery code check whether it needs to recover any
1663 * data from the journal. */
1664 if (jbd2_journal_recover(journal))
1665 goto recovery_error;
1667 if (journal->j_failed_commit) {
1668 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1669 "is corrupt.\n", journal->j_failed_commit,
1670 journal->j_devname);
1671 return -EFSCORRUPTED;
1674 * clear JBD2_ABORT flag initialized in journal_init_common
1675 * here to update log tail information with the newest seq.
1677 journal->j_flags &= ~JBD2_ABORT;
1679 /* OK, we've finished with the dynamic journal bits:
1680 * reinitialise the dynamic contents of the superblock in memory
1681 * and reset them on disk. */
1682 if (journal_reset(journal))
1683 goto recovery_error;
1685 journal->j_flags |= JBD2_LOADED;
1689 printk(KERN_WARNING "JBD2: recovery failed\n");
1694 * void jbd2_journal_destroy() - Release a journal_t structure.
1695 * @journal: Journal to act on.
1697 * Release a journal_t structure once it is no longer in use by the
1699 * Return <0 if we couldn't clean up the journal.
1701 int jbd2_journal_destroy(journal_t *journal)
1705 /* Wait for the commit thread to wake up and die. */
1706 journal_kill_thread(journal);
1708 /* Force a final log commit */
1709 if (journal->j_running_transaction)
1710 jbd2_journal_commit_transaction(journal);
1712 /* Force any old transactions to disk */
1714 /* Totally anal locking here... */
1715 spin_lock(&journal->j_list_lock);
1716 while (journal->j_checkpoint_transactions != NULL) {
1717 spin_unlock(&journal->j_list_lock);
1718 mutex_lock(&journal->j_checkpoint_mutex);
1719 err = jbd2_log_do_checkpoint(journal);
1720 mutex_unlock(&journal->j_checkpoint_mutex);
1722 * If checkpointing failed, just free the buffers to avoid
1726 jbd2_journal_destroy_checkpoint(journal);
1727 spin_lock(&journal->j_list_lock);
1730 spin_lock(&journal->j_list_lock);
1733 J_ASSERT(journal->j_running_transaction == NULL);
1734 J_ASSERT(journal->j_committing_transaction == NULL);
1735 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1736 spin_unlock(&journal->j_list_lock);
1738 if (journal->j_sb_buffer) {
1739 if (!is_journal_aborted(journal)) {
1740 mutex_lock(&journal->j_checkpoint_mutex);
1742 write_lock(&journal->j_state_lock);
1743 journal->j_tail_sequence =
1744 ++journal->j_transaction_sequence;
1745 write_unlock(&journal->j_state_lock);
1747 jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1748 mutex_unlock(&journal->j_checkpoint_mutex);
1751 brelse(journal->j_sb_buffer);
1754 if (journal->j_proc_entry)
1755 jbd2_stats_proc_exit(journal);
1756 iput(journal->j_inode);
1757 if (journal->j_revoke)
1758 jbd2_journal_destroy_revoke(journal);
1759 if (journal->j_chksum_driver)
1760 crypto_free_shash(journal->j_chksum_driver);
1761 kfree(journal->j_wbuf);
1769 *int jbd2_journal_check_used_features () - Check if features specified are used.
1770 * @journal: Journal to check.
1771 * @compat: bitmask of compatible features
1772 * @ro: bitmask of features that force read-only mount
1773 * @incompat: bitmask of incompatible features
1775 * Check whether the journal uses all of a given set of
1776 * features. Return true (non-zero) if it does.
1779 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1780 unsigned long ro, unsigned long incompat)
1782 journal_superblock_t *sb;
1784 if (!compat && !ro && !incompat)
1786 /* Load journal superblock if it is not loaded yet. */
1787 if (journal->j_format_version == 0 &&
1788 journal_get_superblock(journal) != 0)
1790 if (journal->j_format_version == 1)
1793 sb = journal->j_superblock;
1795 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1796 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1797 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1804 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1805 * @journal: Journal to check.
1806 * @compat: bitmask of compatible features
1807 * @ro: bitmask of features that force read-only mount
1808 * @incompat: bitmask of incompatible features
1810 * Check whether the journaling code supports the use of
1811 * all of a given set of features on this journal. Return true
1812 * (non-zero) if it can. */
1814 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1815 unsigned long ro, unsigned long incompat)
1817 if (!compat && !ro && !incompat)
1820 /* We can support any known requested features iff the
1821 * superblock is in version 2. Otherwise we fail to support any
1822 * extended sb features. */
1824 if (journal->j_format_version != 2)
1827 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1828 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1829 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1836 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1837 * @journal: Journal to act on.
1838 * @compat: bitmask of compatible features
1839 * @ro: bitmask of features that force read-only mount
1840 * @incompat: bitmask of incompatible features
1842 * Mark a given journal feature as present on the
1843 * superblock. Returns true if the requested features could be set.
1847 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1848 unsigned long ro, unsigned long incompat)
1850 #define INCOMPAT_FEATURE_ON(f) \
1851 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1852 #define COMPAT_FEATURE_ON(f) \
1853 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1854 journal_superblock_t *sb;
1856 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1859 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1862 /* If enabling v2 checksums, turn on v3 instead */
1863 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1864 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1865 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1868 /* Asking for checksumming v3 and v1? Only give them v3. */
1869 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1870 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1871 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1873 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1874 compat, ro, incompat);
1876 sb = journal->j_superblock;
1878 /* If enabling v3 checksums, update superblock */
1879 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1880 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1881 sb->s_feature_compat &=
1882 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1884 /* Load the checksum driver */
1885 if (journal->j_chksum_driver == NULL) {
1886 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1888 if (IS_ERR(journal->j_chksum_driver)) {
1889 printk(KERN_ERR "JBD2: Cannot load crc32c "
1891 journal->j_chksum_driver = NULL;
1895 /* Precompute checksum seed for all metadata */
1896 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1898 sizeof(sb->s_uuid));
1902 /* If enabling v1 checksums, downgrade superblock */
1903 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1904 sb->s_feature_incompat &=
1905 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1906 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1908 sb->s_feature_compat |= cpu_to_be32(compat);
1909 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1910 sb->s_feature_incompat |= cpu_to_be32(incompat);
1913 #undef COMPAT_FEATURE_ON
1914 #undef INCOMPAT_FEATURE_ON
1918 * jbd2_journal_clear_features () - Clear a given journal feature in the
1920 * @journal: Journal to act on.
1921 * @compat: bitmask of compatible features
1922 * @ro: bitmask of features that force read-only mount
1923 * @incompat: bitmask of incompatible features
1925 * Clear a given journal feature as present on the
1928 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1929 unsigned long ro, unsigned long incompat)
1931 journal_superblock_t *sb;
1933 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1934 compat, ro, incompat);
1936 sb = journal->j_superblock;
1938 sb->s_feature_compat &= ~cpu_to_be32(compat);
1939 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1940 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1942 EXPORT_SYMBOL(jbd2_journal_clear_features);
1945 * int jbd2_journal_flush () - Flush journal
1946 * @journal: Journal to act on.
1948 * Flush all data for a given journal to disk and empty the journal.
1949 * Filesystems can use this when remounting readonly to ensure that
1950 * recovery does not need to happen on remount.
1953 int jbd2_journal_flush(journal_t *journal)
1956 transaction_t *transaction = NULL;
1958 write_lock(&journal->j_state_lock);
1960 /* Force everything buffered to the log... */
1961 if (journal->j_running_transaction) {
1962 transaction = journal->j_running_transaction;
1963 __jbd2_log_start_commit(journal, transaction->t_tid);
1964 } else if (journal->j_committing_transaction)
1965 transaction = journal->j_committing_transaction;
1967 /* Wait for the log commit to complete... */
1969 tid_t tid = transaction->t_tid;
1971 write_unlock(&journal->j_state_lock);
1972 jbd2_log_wait_commit(journal, tid);
1974 write_unlock(&journal->j_state_lock);
1977 /* ...and flush everything in the log out to disk. */
1978 spin_lock(&journal->j_list_lock);
1979 while (!err && journal->j_checkpoint_transactions != NULL) {
1980 spin_unlock(&journal->j_list_lock);
1981 mutex_lock(&journal->j_checkpoint_mutex);
1982 err = jbd2_log_do_checkpoint(journal);
1983 mutex_unlock(&journal->j_checkpoint_mutex);
1984 spin_lock(&journal->j_list_lock);
1986 spin_unlock(&journal->j_list_lock);
1988 if (is_journal_aborted(journal))
1991 mutex_lock(&journal->j_checkpoint_mutex);
1993 err = jbd2_cleanup_journal_tail(journal);
1995 mutex_unlock(&journal->j_checkpoint_mutex);
2001 /* Finally, mark the journal as really needing no recovery.
2002 * This sets s_start==0 in the underlying superblock, which is
2003 * the magic code for a fully-recovered superblock. Any future
2004 * commits of data to the journal will restore the current
2006 jbd2_mark_journal_empty(journal, WRITE_FUA);
2007 mutex_unlock(&journal->j_checkpoint_mutex);
2008 write_lock(&journal->j_state_lock);
2009 J_ASSERT(!journal->j_running_transaction);
2010 J_ASSERT(!journal->j_committing_transaction);
2011 J_ASSERT(!journal->j_checkpoint_transactions);
2012 J_ASSERT(journal->j_head == journal->j_tail);
2013 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2014 write_unlock(&journal->j_state_lock);
2020 * int jbd2_journal_wipe() - Wipe journal contents
2021 * @journal: Journal to act on.
2022 * @write: flag (see below)
2024 * Wipe out all of the contents of a journal, safely. This will produce
2025 * a warning if the journal contains any valid recovery information.
2026 * Must be called between journal_init_*() and jbd2_journal_load().
2028 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2029 * we merely suppress recovery.
2032 int jbd2_journal_wipe(journal_t *journal, int write)
2036 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2038 err = load_superblock(journal);
2042 if (!journal->j_tail)
2045 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2046 write ? "Clearing" : "Ignoring");
2048 err = jbd2_journal_skip_recovery(journal);
2050 /* Lock to make assertions happy... */
2051 mutex_lock(&journal->j_checkpoint_mutex);
2052 jbd2_mark_journal_empty(journal, WRITE_FUA);
2053 mutex_unlock(&journal->j_checkpoint_mutex);
2061 * Journal abort has very specific semantics, which we describe
2062 * for journal abort.
2064 * Two internal functions, which provide abort to the jbd layer
2069 * Quick version for internal journal use (doesn't lock the journal).
2070 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2071 * and don't attempt to make any other journal updates.
2073 void __jbd2_journal_abort_hard(journal_t *journal)
2075 transaction_t *transaction;
2077 if (journal->j_flags & JBD2_ABORT)
2080 printk(KERN_ERR "Aborting journal on device %s.\n",
2081 journal->j_devname);
2083 write_lock(&journal->j_state_lock);
2084 journal->j_flags |= JBD2_ABORT;
2085 transaction = journal->j_running_transaction;
2087 __jbd2_log_start_commit(journal, transaction->t_tid);
2088 write_unlock(&journal->j_state_lock);
2091 /* Soft abort: record the abort error status in the journal superblock,
2092 * but don't do any other IO. */
2093 static void __journal_abort_soft (journal_t *journal, int errno)
2095 if (journal->j_flags & JBD2_ABORT)
2098 if (!journal->j_errno)
2099 journal->j_errno = errno;
2101 __jbd2_journal_abort_hard(journal);
2103 jbd2_journal_update_sb_errno(journal);
2104 write_lock(&journal->j_state_lock);
2105 journal->j_flags |= JBD2_REC_ERR;
2106 write_unlock(&journal->j_state_lock);
2110 * void jbd2_journal_abort () - Shutdown the journal immediately.
2111 * @journal: the journal to shutdown.
2112 * @errno: an error number to record in the journal indicating
2113 * the reason for the shutdown.
2115 * Perform a complete, immediate shutdown of the ENTIRE
2116 * journal (not of a single transaction). This operation cannot be
2117 * undone without closing and reopening the journal.
2119 * The jbd2_journal_abort function is intended to support higher level error
2120 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2123 * Journal abort has very specific semantics. Any existing dirty,
2124 * unjournaled buffers in the main filesystem will still be written to
2125 * disk by bdflush, but the journaling mechanism will be suspended
2126 * immediately and no further transaction commits will be honoured.
2128 * Any dirty, journaled buffers will be written back to disk without
2129 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2130 * filesystem, but we _do_ attempt to leave as much data as possible
2131 * behind for fsck to use for cleanup.
2133 * Any attempt to get a new transaction handle on a journal which is in
2134 * ABORT state will just result in an -EROFS error return. A
2135 * jbd2_journal_stop on an existing handle will return -EIO if we have
2136 * entered abort state during the update.
2138 * Recursive transactions are not disturbed by journal abort until the
2139 * final jbd2_journal_stop, which will receive the -EIO error.
2141 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2142 * which will be recorded (if possible) in the journal superblock. This
2143 * allows a client to record failure conditions in the middle of a
2144 * transaction without having to complete the transaction to record the
2145 * failure to disk. ext3_error, for example, now uses this
2150 void jbd2_journal_abort(journal_t *journal, int errno)
2152 __journal_abort_soft(journal, errno);
2156 * int jbd2_journal_errno () - returns the journal's error state.
2157 * @journal: journal to examine.
2159 * This is the errno number set with jbd2_journal_abort(), the last
2160 * time the journal was mounted - if the journal was stopped
2161 * without calling abort this will be 0.
2163 * If the journal has been aborted on this mount time -EROFS will
2166 int jbd2_journal_errno(journal_t *journal)
2170 read_lock(&journal->j_state_lock);
2171 if (journal->j_flags & JBD2_ABORT)
2174 err = journal->j_errno;
2175 read_unlock(&journal->j_state_lock);
2180 * int jbd2_journal_clear_err () - clears the journal's error state
2181 * @journal: journal to act on.
2183 * An error must be cleared or acked to take a FS out of readonly
2186 int jbd2_journal_clear_err(journal_t *journal)
2190 write_lock(&journal->j_state_lock);
2191 if (journal->j_flags & JBD2_ABORT)
2194 journal->j_errno = 0;
2195 write_unlock(&journal->j_state_lock);
2200 * void jbd2_journal_ack_err() - Ack journal err.
2201 * @journal: journal to act on.
2203 * An error must be cleared or acked to take a FS out of readonly
2206 void jbd2_journal_ack_err(journal_t *journal)
2208 write_lock(&journal->j_state_lock);
2209 if (journal->j_errno)
2210 journal->j_flags |= JBD2_ACK_ERR;
2211 write_unlock(&journal->j_state_lock);
2214 int jbd2_journal_blocks_per_page(struct inode *inode)
2216 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2220 * helper functions to deal with 32 or 64bit block numbers.
2222 size_t journal_tag_bytes(journal_t *journal)
2226 if (jbd2_has_feature_csum3(journal))
2227 return sizeof(journal_block_tag3_t);
2229 sz = sizeof(journal_block_tag_t);
2231 if (jbd2_has_feature_csum2(journal))
2232 sz += sizeof(__u16);
2234 if (jbd2_has_feature_64bit(journal))
2237 return sz - sizeof(__u32);
2241 * JBD memory management
2243 * These functions are used to allocate block-sized chunks of memory
2244 * used for making copies of buffer_head data. Very often it will be
2245 * page-sized chunks of data, but sometimes it will be in
2246 * sub-page-size chunks. (For example, 16k pages on Power systems
2247 * with a 4k block file system.) For blocks smaller than a page, we
2248 * use a SLAB allocator. There are slab caches for each block size,
2249 * which are allocated at mount time, if necessary, and we only free
2250 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2251 * this reason we don't need to a mutex to protect access to
2252 * jbd2_slab[] allocating or releasing memory; only in
2253 * jbd2_journal_create_slab().
2255 #define JBD2_MAX_SLABS 8
2256 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2258 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2259 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2260 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2264 static void jbd2_journal_destroy_slabs(void)
2268 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2270 kmem_cache_destroy(jbd2_slab[i]);
2271 jbd2_slab[i] = NULL;
2275 static int jbd2_journal_create_slab(size_t size)
2277 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2278 int i = order_base_2(size) - 10;
2281 if (size == PAGE_SIZE)
2284 if (i >= JBD2_MAX_SLABS)
2287 if (unlikely(i < 0))
2289 mutex_lock(&jbd2_slab_create_mutex);
2291 mutex_unlock(&jbd2_slab_create_mutex);
2292 return 0; /* Already created */
2295 slab_size = 1 << (i+10);
2296 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2297 slab_size, 0, NULL);
2298 mutex_unlock(&jbd2_slab_create_mutex);
2299 if (!jbd2_slab[i]) {
2300 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2306 static struct kmem_cache *get_slab(size_t size)
2308 int i = order_base_2(size) - 10;
2310 BUG_ON(i >= JBD2_MAX_SLABS);
2311 if (unlikely(i < 0))
2313 BUG_ON(jbd2_slab[i] == NULL);
2314 return jbd2_slab[i];
2317 void *jbd2_alloc(size_t size, gfp_t flags)
2321 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2323 if (size < PAGE_SIZE)
2324 ptr = kmem_cache_alloc(get_slab(size), flags);
2326 ptr = (void *)__get_free_pages(flags, get_order(size));
2328 /* Check alignment; SLUB has gotten this wrong in the past,
2329 * and this can lead to user data corruption! */
2330 BUG_ON(((unsigned long) ptr) & (size-1));
2335 void jbd2_free(void *ptr, size_t size)
2337 if (size < PAGE_SIZE)
2338 kmem_cache_free(get_slab(size), ptr);
2340 free_pages((unsigned long)ptr, get_order(size));
2344 * Journal_head storage management
2346 static struct kmem_cache *jbd2_journal_head_cache;
2347 #ifdef CONFIG_JBD2_DEBUG
2348 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2351 static int jbd2_journal_init_journal_head_cache(void)
2355 J_ASSERT(jbd2_journal_head_cache == NULL);
2356 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2357 sizeof(struct journal_head),
2359 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2362 if (!jbd2_journal_head_cache) {
2364 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2369 static void jbd2_journal_destroy_journal_head_cache(void)
2371 if (jbd2_journal_head_cache) {
2372 kmem_cache_destroy(jbd2_journal_head_cache);
2373 jbd2_journal_head_cache = NULL;
2378 * journal_head splicing and dicing
2380 static struct journal_head *journal_alloc_journal_head(void)
2382 struct journal_head *ret;
2384 #ifdef CONFIG_JBD2_DEBUG
2385 atomic_inc(&nr_journal_heads);
2387 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2389 jbd_debug(1, "out of memory for journal_head\n");
2390 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2391 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2392 GFP_NOFS | __GFP_NOFAIL);
2397 static void journal_free_journal_head(struct journal_head *jh)
2399 #ifdef CONFIG_JBD2_DEBUG
2400 atomic_dec(&nr_journal_heads);
2401 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2403 kmem_cache_free(jbd2_journal_head_cache, jh);
2407 * A journal_head is attached to a buffer_head whenever JBD has an
2408 * interest in the buffer.
2410 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2411 * is set. This bit is tested in core kernel code where we need to take
2412 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2415 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2417 * When a buffer has its BH_JBD bit set it is immune from being released by
2418 * core kernel code, mainly via ->b_count.
2420 * A journal_head is detached from its buffer_head when the journal_head's
2421 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2422 * transaction (b_cp_transaction) hold their references to b_jcount.
2424 * Various places in the kernel want to attach a journal_head to a buffer_head
2425 * _before_ attaching the journal_head to a transaction. To protect the
2426 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2427 * journal_head's b_jcount refcount by one. The caller must call
2428 * jbd2_journal_put_journal_head() to undo this.
2430 * So the typical usage would be:
2432 * (Attach a journal_head if needed. Increments b_jcount)
2433 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2435 * (Get another reference for transaction)
2436 * jbd2_journal_grab_journal_head(bh);
2437 * jh->b_transaction = xxx;
2438 * (Put original reference)
2439 * jbd2_journal_put_journal_head(jh);
2443 * Give a buffer_head a journal_head.
2447 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2449 struct journal_head *jh;
2450 struct journal_head *new_jh = NULL;
2453 if (!buffer_jbd(bh))
2454 new_jh = journal_alloc_journal_head();
2456 jbd_lock_bh_journal_head(bh);
2457 if (buffer_jbd(bh)) {
2461 (atomic_read(&bh->b_count) > 0) ||
2462 (bh->b_page && bh->b_page->mapping));
2465 jbd_unlock_bh_journal_head(bh);
2470 new_jh = NULL; /* We consumed it */
2475 BUFFER_TRACE(bh, "added journal_head");
2478 jbd_unlock_bh_journal_head(bh);
2480 journal_free_journal_head(new_jh);
2481 return bh->b_private;
2485 * Grab a ref against this buffer_head's journal_head. If it ended up not
2486 * having a journal_head, return NULL
2488 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2490 struct journal_head *jh = NULL;
2492 jbd_lock_bh_journal_head(bh);
2493 if (buffer_jbd(bh)) {
2497 jbd_unlock_bh_journal_head(bh);
2501 static void __journal_remove_journal_head(struct buffer_head *bh)
2503 struct journal_head *jh = bh2jh(bh);
2505 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2506 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2507 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2508 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2509 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2510 J_ASSERT_BH(bh, buffer_jbd(bh));
2511 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2512 BUFFER_TRACE(bh, "remove journal_head");
2513 if (jh->b_frozen_data) {
2514 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2515 jbd2_free(jh->b_frozen_data, bh->b_size);
2517 if (jh->b_committed_data) {
2518 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2519 jbd2_free(jh->b_committed_data, bh->b_size);
2521 bh->b_private = NULL;
2522 jh->b_bh = NULL; /* debug, really */
2523 clear_buffer_jbd(bh);
2524 journal_free_journal_head(jh);
2528 * Drop a reference on the passed journal_head. If it fell to zero then
2529 * release the journal_head from the buffer_head.
2531 void jbd2_journal_put_journal_head(struct journal_head *jh)
2533 struct buffer_head *bh = jh2bh(jh);
2535 jbd_lock_bh_journal_head(bh);
2536 J_ASSERT_JH(jh, jh->b_jcount > 0);
2538 if (!jh->b_jcount) {
2539 __journal_remove_journal_head(bh);
2540 jbd_unlock_bh_journal_head(bh);
2543 jbd_unlock_bh_journal_head(bh);
2547 * Initialize jbd inode head
2549 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2551 jinode->i_transaction = NULL;
2552 jinode->i_next_transaction = NULL;
2553 jinode->i_vfs_inode = inode;
2554 jinode->i_flags = 0;
2555 INIT_LIST_HEAD(&jinode->i_list);
2559 * Function to be called before we start removing inode from memory (i.e.,
2560 * clear_inode() is a fine place to be called from). It removes inode from
2561 * transaction's lists.
2563 void jbd2_journal_release_jbd_inode(journal_t *journal,
2564 struct jbd2_inode *jinode)
2569 spin_lock(&journal->j_list_lock);
2570 /* Is commit writing out inode - we have to wait */
2571 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2572 wait_queue_head_t *wq;
2573 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2574 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2575 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2576 spin_unlock(&journal->j_list_lock);
2578 finish_wait(wq, &wait.wait);
2582 if (jinode->i_transaction) {
2583 list_del(&jinode->i_list);
2584 jinode->i_transaction = NULL;
2586 spin_unlock(&journal->j_list_lock);
2590 #ifdef CONFIG_PROC_FS
2592 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2594 static void __init jbd2_create_jbd_stats_proc_entry(void)
2596 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2599 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2601 if (proc_jbd2_stats)
2602 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2607 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2608 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2612 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2614 static int __init jbd2_journal_init_handle_cache(void)
2616 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2617 if (jbd2_handle_cache == NULL) {
2618 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2621 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2622 if (jbd2_inode_cache == NULL) {
2623 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2624 kmem_cache_destroy(jbd2_handle_cache);
2630 static void jbd2_journal_destroy_handle_cache(void)
2632 if (jbd2_handle_cache)
2633 kmem_cache_destroy(jbd2_handle_cache);
2634 if (jbd2_inode_cache)
2635 kmem_cache_destroy(jbd2_inode_cache);
2640 * Module startup and shutdown
2643 static int __init journal_init_caches(void)
2647 ret = jbd2_journal_init_revoke_caches();
2649 ret = jbd2_journal_init_journal_head_cache();
2651 ret = jbd2_journal_init_handle_cache();
2653 ret = jbd2_journal_init_transaction_cache();
2657 static void jbd2_journal_destroy_caches(void)
2659 jbd2_journal_destroy_revoke_caches();
2660 jbd2_journal_destroy_journal_head_cache();
2661 jbd2_journal_destroy_handle_cache();
2662 jbd2_journal_destroy_transaction_cache();
2663 jbd2_journal_destroy_slabs();
2666 static int __init journal_init(void)
2670 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2672 ret = journal_init_caches();
2674 jbd2_create_jbd_stats_proc_entry();
2676 jbd2_journal_destroy_caches();
2681 static void __exit journal_exit(void)
2683 #ifdef CONFIG_JBD2_DEBUG
2684 int n = atomic_read(&nr_journal_heads);
2686 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2688 jbd2_remove_jbd_stats_proc_entry();
2689 jbd2_journal_destroy_caches();
2692 MODULE_LICENSE("GPL");
2693 module_init(journal_init);
2694 module_exit(journal_exit);