GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int jbd2_journal_create_slab(size_t slab_size);
100
101 #ifdef CONFIG_JBD2_DEBUG
102 void __jbd2_debug(int level, const char *file, const char *func,
103                   unsigned int line, const char *fmt, ...)
104 {
105         struct va_format vaf;
106         va_list args;
107
108         if (level > jbd2_journal_enable_debug)
109                 return;
110         va_start(args, fmt);
111         vaf.fmt = fmt;
112         vaf.va = &args;
113         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114         va_end(args);
115 }
116 EXPORT_SYMBOL(__jbd2_debug);
117 #endif
118
119 /* Checksumming functions */
120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
121 {
122         if (!jbd2_journal_has_csum_v2or3_feature(j))
123                 return 1;
124
125         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
126 }
127
128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
129 {
130         __u32 csum;
131         __be32 old_csum;
132
133         old_csum = sb->s_checksum;
134         sb->s_checksum = 0;
135         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136         sb->s_checksum = old_csum;
137
138         return cpu_to_be32(csum);
139 }
140
141 /*
142  * Helper function used to manage commit timeouts
143  */
144
145 static void commit_timeout(struct timer_list *t)
146 {
147         journal_t *journal = from_timer(journal, t, j_commit_timer);
148
149         wake_up_process(journal->j_task);
150 }
151
152 /*
153  * kjournald2: The main thread function used to manage a logging device
154  * journal.
155  *
156  * This kernel thread is responsible for two things:
157  *
158  * 1) COMMIT:  Every so often we need to commit the current state of the
159  *    filesystem to disk.  The journal thread is responsible for writing
160  *    all of the metadata buffers to disk.
161  *
162  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163  *    of the data in that part of the log has been rewritten elsewhere on
164  *    the disk.  Flushing these old buffers to reclaim space in the log is
165  *    known as checkpointing, and this thread is responsible for that job.
166  */
167
168 static int kjournald2(void *arg)
169 {
170         journal_t *journal = arg;
171         transaction_t *transaction;
172
173         /*
174          * Set up an interval timer which can be used to trigger a commit wakeup
175          * after the commit interval expires
176          */
177         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178
179         set_freezable();
180
181         /* Record that the journal thread is running */
182         journal->j_task = current;
183         wake_up(&journal->j_wait_done_commit);
184
185         /*
186          * Make sure that no allocations from this kernel thread will ever
187          * recurse to the fs layer because we are responsible for the
188          * transaction commit and any fs involvement might get stuck waiting for
189          * the trasn. commit.
190          */
191         memalloc_nofs_save();
192
193         /*
194          * And now, wait forever for commit wakeup events.
195          */
196         write_lock(&journal->j_state_lock);
197
198 loop:
199         if (journal->j_flags & JBD2_UNMOUNT)
200                 goto end_loop;
201
202         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203                 journal->j_commit_sequence, journal->j_commit_request);
204
205         if (journal->j_commit_sequence != journal->j_commit_request) {
206                 jbd_debug(1, "OK, requests differ\n");
207                 write_unlock(&journal->j_state_lock);
208                 del_timer_sync(&journal->j_commit_timer);
209                 jbd2_journal_commit_transaction(journal);
210                 write_lock(&journal->j_state_lock);
211                 goto loop;
212         }
213
214         wake_up(&journal->j_wait_done_commit);
215         if (freezing(current)) {
216                 /*
217                  * The simpler the better. Flushing journal isn't a
218                  * good idea, because that depends on threads that may
219                  * be already stopped.
220                  */
221                 jbd_debug(1, "Now suspending kjournald2\n");
222                 write_unlock(&journal->j_state_lock);
223                 try_to_freeze();
224                 write_lock(&journal->j_state_lock);
225         } else {
226                 /*
227                  * We assume on resume that commits are already there,
228                  * so we don't sleep
229                  */
230                 DEFINE_WAIT(wait);
231                 int should_sleep = 1;
232
233                 prepare_to_wait(&journal->j_wait_commit, &wait,
234                                 TASK_INTERRUPTIBLE);
235                 if (journal->j_commit_sequence != journal->j_commit_request)
236                         should_sleep = 0;
237                 transaction = journal->j_running_transaction;
238                 if (transaction && time_after_eq(jiffies,
239                                                 transaction->t_expires))
240                         should_sleep = 0;
241                 if (journal->j_flags & JBD2_UNMOUNT)
242                         should_sleep = 0;
243                 if (should_sleep) {
244                         write_unlock(&journal->j_state_lock);
245                         schedule();
246                         write_lock(&journal->j_state_lock);
247                 }
248                 finish_wait(&journal->j_wait_commit, &wait);
249         }
250
251         jbd_debug(1, "kjournald2 wakes\n");
252
253         /*
254          * Were we woken up by a commit wakeup event?
255          */
256         transaction = journal->j_running_transaction;
257         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258                 journal->j_commit_request = transaction->t_tid;
259                 jbd_debug(1, "woke because of timeout\n");
260         }
261         goto loop;
262
263 end_loop:
264         del_timer_sync(&journal->j_commit_timer);
265         journal->j_task = NULL;
266         wake_up(&journal->j_wait_done_commit);
267         jbd_debug(1, "Journal thread exiting.\n");
268         write_unlock(&journal->j_state_lock);
269         return 0;
270 }
271
272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274         struct task_struct *t;
275
276         t = kthread_run(kjournald2, journal, "jbd2/%s",
277                         journal->j_devname);
278         if (IS_ERR(t))
279                 return PTR_ERR(t);
280
281         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282         return 0;
283 }
284
285 static void journal_kill_thread(journal_t *journal)
286 {
287         write_lock(&journal->j_state_lock);
288         journal->j_flags |= JBD2_UNMOUNT;
289
290         while (journal->j_task) {
291                 write_unlock(&journal->j_state_lock);
292                 wake_up(&journal->j_wait_commit);
293                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294                 write_lock(&journal->j_state_lock);
295         }
296         write_unlock(&journal->j_state_lock);
297 }
298
299 /*
300  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301  *
302  * Writes a metadata buffer to a given disk block.  The actual IO is not
303  * performed but a new buffer_head is constructed which labels the data
304  * to be written with the correct destination disk block.
305  *
306  * Any magic-number escaping which needs to be done will cause a
307  * copy-out here.  If the buffer happens to start with the
308  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309  * magic number is only written to the log for descripter blocks.  In
310  * this case, we copy the data and replace the first word with 0, and we
311  * return a result code which indicates that this buffer needs to be
312  * marked as an escaped buffer in the corresponding log descriptor
313  * block.  The missing word can then be restored when the block is read
314  * during recovery.
315  *
316  * If the source buffer has already been modified by a new transaction
317  * since we took the last commit snapshot, we use the frozen copy of
318  * that data for IO. If we end up using the existing buffer_head's data
319  * for the write, then we have to make sure nobody modifies it while the
320  * IO is in progress. do_get_write_access() handles this.
321  *
322  * The function returns a pointer to the buffer_head to be used for IO.
323  *
324  *
325  * Return value:
326  *  <0: Error
327  * >=0: Finished OK
328  *
329  * On success:
330  * Bit 0 set == escape performed on the data
331  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332  */
333
334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335                                   struct journal_head  *jh_in,
336                                   struct buffer_head **bh_out,
337                                   sector_t blocknr)
338 {
339         int need_copy_out = 0;
340         int done_copy_out = 0;
341         int do_escape = 0;
342         char *mapped_data;
343         struct buffer_head *new_bh;
344         struct page *new_page;
345         unsigned int new_offset;
346         struct buffer_head *bh_in = jh2bh(jh_in);
347         journal_t *journal = transaction->t_journal;
348
349         /*
350          * The buffer really shouldn't be locked: only the current committing
351          * transaction is allowed to write it, so nobody else is allowed
352          * to do any IO.
353          *
354          * akpm: except if we're journalling data, and write() output is
355          * also part of a shared mapping, and another thread has
356          * decided to launch a writepage() against this buffer.
357          */
358         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359
360         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361
362         /* keep subsequent assertions sane */
363         atomic_set(&new_bh->b_count, 1);
364
365         jbd_lock_bh_state(bh_in);
366 repeat:
367         /*
368          * If a new transaction has already done a buffer copy-out, then
369          * we use that version of the data for the commit.
370          */
371         if (jh_in->b_frozen_data) {
372                 done_copy_out = 1;
373                 new_page = virt_to_page(jh_in->b_frozen_data);
374                 new_offset = offset_in_page(jh_in->b_frozen_data);
375         } else {
376                 new_page = jh2bh(jh_in)->b_page;
377                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378         }
379
380         mapped_data = kmap_atomic(new_page);
381         /*
382          * Fire data frozen trigger if data already wasn't frozen.  Do this
383          * before checking for escaping, as the trigger may modify the magic
384          * offset.  If a copy-out happens afterwards, it will have the correct
385          * data in the buffer.
386          */
387         if (!done_copy_out)
388                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389                                            jh_in->b_triggers);
390
391         /*
392          * Check for escaping
393          */
394         if (*((__be32 *)(mapped_data + new_offset)) ==
395                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396                 need_copy_out = 1;
397                 do_escape = 1;
398         }
399         kunmap_atomic(mapped_data);
400
401         /*
402          * Do we need to do a data copy?
403          */
404         if (need_copy_out && !done_copy_out) {
405                 char *tmp;
406
407                 jbd_unlock_bh_state(bh_in);
408                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409                 if (!tmp) {
410                         brelse(new_bh);
411                         return -ENOMEM;
412                 }
413                 jbd_lock_bh_state(bh_in);
414                 if (jh_in->b_frozen_data) {
415                         jbd2_free(tmp, bh_in->b_size);
416                         goto repeat;
417                 }
418
419                 jh_in->b_frozen_data = tmp;
420                 mapped_data = kmap_atomic(new_page);
421                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422                 kunmap_atomic(mapped_data);
423
424                 new_page = virt_to_page(tmp);
425                 new_offset = offset_in_page(tmp);
426                 done_copy_out = 1;
427
428                 /*
429                  * This isn't strictly necessary, as we're using frozen
430                  * data for the escaping, but it keeps consistency with
431                  * b_frozen_data usage.
432                  */
433                 jh_in->b_frozen_triggers = jh_in->b_triggers;
434         }
435
436         /*
437          * Did we need to do an escaping?  Now we've done all the
438          * copying, we can finally do so.
439          */
440         if (do_escape) {
441                 mapped_data = kmap_atomic(new_page);
442                 *((unsigned int *)(mapped_data + new_offset)) = 0;
443                 kunmap_atomic(mapped_data);
444         }
445
446         set_bh_page(new_bh, new_page, new_offset);
447         new_bh->b_size = bh_in->b_size;
448         new_bh->b_bdev = journal->j_dev;
449         new_bh->b_blocknr = blocknr;
450         new_bh->b_private = bh_in;
451         set_buffer_mapped(new_bh);
452         set_buffer_dirty(new_bh);
453
454         *bh_out = new_bh;
455
456         /*
457          * The to-be-written buffer needs to get moved to the io queue,
458          * and the original buffer whose contents we are shadowing or
459          * copying is moved to the transaction's shadow queue.
460          */
461         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462         spin_lock(&journal->j_list_lock);
463         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464         spin_unlock(&journal->j_list_lock);
465         set_buffer_shadow(bh_in);
466         jbd_unlock_bh_state(bh_in);
467
468         return do_escape | (done_copy_out << 1);
469 }
470
471 /*
472  * Allocation code for the journal file.  Manage the space left in the
473  * journal, so that we can begin checkpointing when appropriate.
474  */
475
476 /*
477  * Called with j_state_lock locked for writing.
478  * Returns true if a transaction commit was started.
479  */
480 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 {
482         /* Return if the txn has already requested to be committed */
483         if (journal->j_commit_request == target)
484                 return 0;
485
486         /*
487          * The only transaction we can possibly wait upon is the
488          * currently running transaction (if it exists).  Otherwise,
489          * the target tid must be an old one.
490          */
491         if (journal->j_running_transaction &&
492             journal->j_running_transaction->t_tid == target) {
493                 /*
494                  * We want a new commit: OK, mark the request and wakeup the
495                  * commit thread.  We do _not_ do the commit ourselves.
496                  */
497
498                 journal->j_commit_request = target;
499                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500                           journal->j_commit_request,
501                           journal->j_commit_sequence);
502                 journal->j_running_transaction->t_requested = jiffies;
503                 wake_up(&journal->j_wait_commit);
504                 return 1;
505         } else if (!tid_geq(journal->j_commit_request, target))
506                 /* This should never happen, but if it does, preserve
507                    the evidence before kjournald goes into a loop and
508                    increments j_commit_sequence beyond all recognition. */
509                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510                           journal->j_commit_request,
511                           journal->j_commit_sequence,
512                           target, journal->j_running_transaction ?
513                           journal->j_running_transaction->t_tid : 0);
514         return 0;
515 }
516
517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518 {
519         int ret;
520
521         write_lock(&journal->j_state_lock);
522         ret = __jbd2_log_start_commit(journal, tid);
523         write_unlock(&journal->j_state_lock);
524         return ret;
525 }
526
527 /*
528  * Force and wait any uncommitted transactions.  We can only force the running
529  * transaction if we don't have an active handle, otherwise, we will deadlock.
530  * Returns: <0 in case of error,
531  *           0 if nothing to commit,
532  *           1 if transaction was successfully committed.
533  */
534 static int __jbd2_journal_force_commit(journal_t *journal)
535 {
536         transaction_t *transaction = NULL;
537         tid_t tid;
538         int need_to_start = 0, ret = 0;
539
540         read_lock(&journal->j_state_lock);
541         if (journal->j_running_transaction && !current->journal_info) {
542                 transaction = journal->j_running_transaction;
543                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544                         need_to_start = 1;
545         } else if (journal->j_committing_transaction)
546                 transaction = journal->j_committing_transaction;
547
548         if (!transaction) {
549                 /* Nothing to commit */
550                 read_unlock(&journal->j_state_lock);
551                 return 0;
552         }
553         tid = transaction->t_tid;
554         read_unlock(&journal->j_state_lock);
555         if (need_to_start)
556                 jbd2_log_start_commit(journal, tid);
557         ret = jbd2_log_wait_commit(journal, tid);
558         if (!ret)
559                 ret = 1;
560
561         return ret;
562 }
563
564 /**
565  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
566  * calling process is not within transaction.
567  *
568  * @journal: journal to force
569  * Returns true if progress was made.
570  *
571  * This is used for forcing out undo-protected data which contains
572  * bitmaps, when the fs is running out of space.
573  */
574 int jbd2_journal_force_commit_nested(journal_t *journal)
575 {
576         int ret;
577
578         ret = __jbd2_journal_force_commit(journal);
579         return ret > 0;
580 }
581
582 /**
583  * jbd2_journal_force_commit() - force any uncommitted transactions
584  * @journal: journal to force
585  *
586  * Caller want unconditional commit. We can only force the running transaction
587  * if we don't have an active handle, otherwise, we will deadlock.
588  */
589 int jbd2_journal_force_commit(journal_t *journal)
590 {
591         int ret;
592
593         J_ASSERT(!current->journal_info);
594         ret = __jbd2_journal_force_commit(journal);
595         if (ret > 0)
596                 ret = 0;
597         return ret;
598 }
599
600 /*
601  * Start a commit of the current running transaction (if any).  Returns true
602  * if a transaction is going to be committed (or is currently already
603  * committing), and fills its tid in at *ptid
604  */
605 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
606 {
607         int ret = 0;
608
609         write_lock(&journal->j_state_lock);
610         if (journal->j_running_transaction) {
611                 tid_t tid = journal->j_running_transaction->t_tid;
612
613                 __jbd2_log_start_commit(journal, tid);
614                 /* There's a running transaction and we've just made sure
615                  * it's commit has been scheduled. */
616                 if (ptid)
617                         *ptid = tid;
618                 ret = 1;
619         } else if (journal->j_committing_transaction) {
620                 /*
621                  * If commit has been started, then we have to wait for
622                  * completion of that transaction.
623                  */
624                 if (ptid)
625                         *ptid = journal->j_committing_transaction->t_tid;
626                 ret = 1;
627         }
628         write_unlock(&journal->j_state_lock);
629         return ret;
630 }
631
632 /*
633  * Return 1 if a given transaction has not yet sent barrier request
634  * connected with a transaction commit. If 0 is returned, transaction
635  * may or may not have sent the barrier. Used to avoid sending barrier
636  * twice in common cases.
637  */
638 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
639 {
640         int ret = 0;
641         transaction_t *commit_trans;
642
643         if (!(journal->j_flags & JBD2_BARRIER))
644                 return 0;
645         read_lock(&journal->j_state_lock);
646         /* Transaction already committed? */
647         if (tid_geq(journal->j_commit_sequence, tid))
648                 goto out;
649         commit_trans = journal->j_committing_transaction;
650         if (!commit_trans || commit_trans->t_tid != tid) {
651                 ret = 1;
652                 goto out;
653         }
654         /*
655          * Transaction is being committed and we already proceeded to
656          * submitting a flush to fs partition?
657          */
658         if (journal->j_fs_dev != journal->j_dev) {
659                 if (!commit_trans->t_need_data_flush ||
660                     commit_trans->t_state >= T_COMMIT_DFLUSH)
661                         goto out;
662         } else {
663                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
664                         goto out;
665         }
666         ret = 1;
667 out:
668         read_unlock(&journal->j_state_lock);
669         return ret;
670 }
671 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
672
673 /*
674  * Wait for a specified commit to complete.
675  * The caller may not hold the journal lock.
676  */
677 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
678 {
679         int err = 0;
680
681         read_lock(&journal->j_state_lock);
682 #ifdef CONFIG_PROVE_LOCKING
683         /*
684          * Some callers make sure transaction is already committing and in that
685          * case we cannot block on open handles anymore. So don't warn in that
686          * case.
687          */
688         if (tid_gt(tid, journal->j_commit_sequence) &&
689             (!journal->j_committing_transaction ||
690              journal->j_committing_transaction->t_tid != tid)) {
691                 read_unlock(&journal->j_state_lock);
692                 jbd2_might_wait_for_commit(journal);
693                 read_lock(&journal->j_state_lock);
694         }
695 #endif
696 #ifdef CONFIG_JBD2_DEBUG
697         if (!tid_geq(journal->j_commit_request, tid)) {
698                 printk(KERN_ERR
699                        "%s: error: j_commit_request=%u, tid=%u\n",
700                        __func__, journal->j_commit_request, tid);
701         }
702 #endif
703         while (tid_gt(tid, journal->j_commit_sequence)) {
704                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
705                                   tid, journal->j_commit_sequence);
706                 read_unlock(&journal->j_state_lock);
707                 wake_up(&journal->j_wait_commit);
708                 wait_event(journal->j_wait_done_commit,
709                                 !tid_gt(tid, journal->j_commit_sequence));
710                 read_lock(&journal->j_state_lock);
711         }
712         read_unlock(&journal->j_state_lock);
713
714         if (unlikely(is_journal_aborted(journal)))
715                 err = -EIO;
716         return err;
717 }
718
719 /* Return 1 when transaction with given tid has already committed. */
720 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
721 {
722         int ret = 1;
723
724         read_lock(&journal->j_state_lock);
725         if (journal->j_running_transaction &&
726             journal->j_running_transaction->t_tid == tid)
727                 ret = 0;
728         if (journal->j_committing_transaction &&
729             journal->j_committing_transaction->t_tid == tid)
730                 ret = 0;
731         read_unlock(&journal->j_state_lock);
732         return ret;
733 }
734 EXPORT_SYMBOL(jbd2_transaction_committed);
735
736 /*
737  * When this function returns the transaction corresponding to tid
738  * will be completed.  If the transaction has currently running, start
739  * committing that transaction before waiting for it to complete.  If
740  * the transaction id is stale, it is by definition already completed,
741  * so just return SUCCESS.
742  */
743 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
744 {
745         int     need_to_wait = 1;
746
747         read_lock(&journal->j_state_lock);
748         if (journal->j_running_transaction &&
749             journal->j_running_transaction->t_tid == tid) {
750                 if (journal->j_commit_request != tid) {
751                         /* transaction not yet started, so request it */
752                         read_unlock(&journal->j_state_lock);
753                         jbd2_log_start_commit(journal, tid);
754                         goto wait_commit;
755                 }
756         } else if (!(journal->j_committing_transaction &&
757                      journal->j_committing_transaction->t_tid == tid))
758                 need_to_wait = 0;
759         read_unlock(&journal->j_state_lock);
760         if (!need_to_wait)
761                 return 0;
762 wait_commit:
763         return jbd2_log_wait_commit(journal, tid);
764 }
765 EXPORT_SYMBOL(jbd2_complete_transaction);
766
767 /*
768  * Log buffer allocation routines:
769  */
770
771 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
772 {
773         unsigned long blocknr;
774
775         write_lock(&journal->j_state_lock);
776         J_ASSERT(journal->j_free > 1);
777
778         blocknr = journal->j_head;
779         journal->j_head++;
780         journal->j_free--;
781         if (journal->j_head == journal->j_last)
782                 journal->j_head = journal->j_first;
783         write_unlock(&journal->j_state_lock);
784         return jbd2_journal_bmap(journal, blocknr, retp);
785 }
786
787 /*
788  * Conversion of logical to physical block numbers for the journal
789  *
790  * On external journals the journal blocks are identity-mapped, so
791  * this is a no-op.  If needed, we can use j_blk_offset - everything is
792  * ready.
793  */
794 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
795                  unsigned long long *retp)
796 {
797         int err = 0;
798         unsigned long long ret;
799
800         if (journal->j_inode) {
801                 ret = bmap(journal->j_inode, blocknr);
802                 if (ret)
803                         *retp = ret;
804                 else {
805                         printk(KERN_ALERT "%s: journal block not found "
806                                         "at offset %lu on %s\n",
807                                __func__, blocknr, journal->j_devname);
808                         err = -EIO;
809                         jbd2_journal_abort(journal, err);
810                 }
811         } else {
812                 *retp = blocknr; /* +journal->j_blk_offset */
813         }
814         return err;
815 }
816
817 /*
818  * We play buffer_head aliasing tricks to write data/metadata blocks to
819  * the journal without copying their contents, but for journal
820  * descriptor blocks we do need to generate bona fide buffers.
821  *
822  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
823  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
824  * But we don't bother doing that, so there will be coherency problems with
825  * mmaps of blockdevs which hold live JBD-controlled filesystems.
826  */
827 struct buffer_head *
828 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
829 {
830         journal_t *journal = transaction->t_journal;
831         struct buffer_head *bh;
832         unsigned long long blocknr;
833         journal_header_t *header;
834         int err;
835
836         err = jbd2_journal_next_log_block(journal, &blocknr);
837
838         if (err)
839                 return NULL;
840
841         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
842         if (!bh)
843                 return NULL;
844         lock_buffer(bh);
845         memset(bh->b_data, 0, journal->j_blocksize);
846         header = (journal_header_t *)bh->b_data;
847         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
848         header->h_blocktype = cpu_to_be32(type);
849         header->h_sequence = cpu_to_be32(transaction->t_tid);
850         set_buffer_uptodate(bh);
851         unlock_buffer(bh);
852         BUFFER_TRACE(bh, "return this buffer");
853         return bh;
854 }
855
856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 {
858         struct jbd2_journal_block_tail *tail;
859         __u32 csum;
860
861         if (!jbd2_journal_has_csum_v2or3(j))
862                 return;
863
864         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
865                         sizeof(struct jbd2_journal_block_tail));
866         tail->t_checksum = 0;
867         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
868         tail->t_checksum = cpu_to_be32(csum);
869 }
870
871 /*
872  * Return tid of the oldest transaction in the journal and block in the journal
873  * where the transaction starts.
874  *
875  * If the journal is now empty, return which will be the next transaction ID
876  * we will write and where will that transaction start.
877  *
878  * The return value is 0 if journal tail cannot be pushed any further, 1 if
879  * it can.
880  */
881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
882                               unsigned long *block)
883 {
884         transaction_t *transaction;
885         int ret;
886
887         read_lock(&journal->j_state_lock);
888         spin_lock(&journal->j_list_lock);
889         transaction = journal->j_checkpoint_transactions;
890         if (transaction) {
891                 *tid = transaction->t_tid;
892                 *block = transaction->t_log_start;
893         } else if ((transaction = journal->j_committing_transaction) != NULL) {
894                 *tid = transaction->t_tid;
895                 *block = transaction->t_log_start;
896         } else if ((transaction = journal->j_running_transaction) != NULL) {
897                 *tid = transaction->t_tid;
898                 *block = journal->j_head;
899         } else {
900                 *tid = journal->j_transaction_sequence;
901                 *block = journal->j_head;
902         }
903         ret = tid_gt(*tid, journal->j_tail_sequence);
904         spin_unlock(&journal->j_list_lock);
905         read_unlock(&journal->j_state_lock);
906
907         return ret;
908 }
909
910 /*
911  * Update information in journal structure and in on disk journal superblock
912  * about log tail. This function does not check whether information passed in
913  * really pushes log tail further. It's responsibility of the caller to make
914  * sure provided log tail information is valid (e.g. by holding
915  * j_checkpoint_mutex all the time between computing log tail and calling this
916  * function as is the case with jbd2_cleanup_journal_tail()).
917  *
918  * Requires j_checkpoint_mutex
919  */
920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 {
922         unsigned long freed;
923         int ret;
924
925         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
926
927         /*
928          * We cannot afford for write to remain in drive's caches since as
929          * soon as we update j_tail, next transaction can start reusing journal
930          * space and if we lose sb update during power failure we'd replay
931          * old transaction with possibly newly overwritten data.
932          */
933         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
934                                               REQ_SYNC | REQ_FUA);
935         if (ret)
936                 goto out;
937
938         write_lock(&journal->j_state_lock);
939         freed = block - journal->j_tail;
940         if (block < journal->j_tail)
941                 freed += journal->j_last - journal->j_first;
942
943         trace_jbd2_update_log_tail(journal, tid, block, freed);
944         jbd_debug(1,
945                   "Cleaning journal tail from %u to %u (offset %lu), "
946                   "freeing %lu\n",
947                   journal->j_tail_sequence, tid, block, freed);
948
949         journal->j_free += freed;
950         journal->j_tail_sequence = tid;
951         journal->j_tail = block;
952         write_unlock(&journal->j_state_lock);
953
954 out:
955         return ret;
956 }
957
958 /*
959  * This is a variation of __jbd2_update_log_tail which checks for validity of
960  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
961  * with other threads updating log tail.
962  */
963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 {
965         mutex_lock_io(&journal->j_checkpoint_mutex);
966         if (tid_gt(tid, journal->j_tail_sequence))
967                 __jbd2_update_log_tail(journal, tid, block);
968         mutex_unlock(&journal->j_checkpoint_mutex);
969 }
970
971 struct jbd2_stats_proc_session {
972         journal_t *journal;
973         struct transaction_stats_s *stats;
974         int start;
975         int max;
976 };
977
978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 {
980         return *pos ? NULL : SEQ_START_TOKEN;
981 }
982
983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 {
985         (*pos)++;
986         return NULL;
987 }
988
989 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 {
991         struct jbd2_stats_proc_session *s = seq->private;
992
993         if (v != SEQ_START_TOKEN)
994                 return 0;
995         seq_printf(seq, "%lu transactions (%lu requested), "
996                    "each up to %u blocks\n",
997                    s->stats->ts_tid, s->stats->ts_requested,
998                    s->journal->j_max_transaction_buffers);
999         if (s->stats->ts_tid == 0)
1000                 return 0;
1001         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1002             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003         seq_printf(seq, "  %ums request delay\n",
1004             (s->stats->ts_requested == 0) ? 0 :
1005             jiffies_to_msecs(s->stats->run.rs_request_delay /
1006                              s->stats->ts_requested));
1007         seq_printf(seq, "  %ums running transaction\n",
1008             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009         seq_printf(seq, "  %ums transaction was being locked\n",
1010             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1012             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013         seq_printf(seq, "  %ums logging transaction\n",
1014             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015         seq_printf(seq, "  %lluus average transaction commit time\n",
1016                    div_u64(s->journal->j_average_commit_time, 1000));
1017         seq_printf(seq, "  %lu handles per transaction\n",
1018             s->stats->run.rs_handle_count / s->stats->ts_tid);
1019         seq_printf(seq, "  %lu blocks per transaction\n",
1020             s->stats->run.rs_blocks / s->stats->ts_tid);
1021         seq_printf(seq, "  %lu logged blocks per transaction\n",
1022             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023         return 0;
1024 }
1025
1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027 {
1028 }
1029
1030 static const struct seq_operations jbd2_seq_info_ops = {
1031         .start  = jbd2_seq_info_start,
1032         .next   = jbd2_seq_info_next,
1033         .stop   = jbd2_seq_info_stop,
1034         .show   = jbd2_seq_info_show,
1035 };
1036
1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 {
1039         journal_t *journal = PDE_DATA(inode);
1040         struct jbd2_stats_proc_session *s;
1041         int rc, size;
1042
1043         s = kmalloc(sizeof(*s), GFP_KERNEL);
1044         if (s == NULL)
1045                 return -ENOMEM;
1046         size = sizeof(struct transaction_stats_s);
1047         s->stats = kmalloc(size, GFP_KERNEL);
1048         if (s->stats == NULL) {
1049                 kfree(s);
1050                 return -ENOMEM;
1051         }
1052         spin_lock(&journal->j_history_lock);
1053         memcpy(s->stats, &journal->j_stats, size);
1054         s->journal = journal;
1055         spin_unlock(&journal->j_history_lock);
1056
1057         rc = seq_open(file, &jbd2_seq_info_ops);
1058         if (rc == 0) {
1059                 struct seq_file *m = file->private_data;
1060                 m->private = s;
1061         } else {
1062                 kfree(s->stats);
1063                 kfree(s);
1064         }
1065         return rc;
1066
1067 }
1068
1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 {
1071         struct seq_file *seq = file->private_data;
1072         struct jbd2_stats_proc_session *s = seq->private;
1073         kfree(s->stats);
1074         kfree(s);
1075         return seq_release(inode, file);
1076 }
1077
1078 static const struct file_operations jbd2_seq_info_fops = {
1079         .owner          = THIS_MODULE,
1080         .open           = jbd2_seq_info_open,
1081         .read           = seq_read,
1082         .llseek         = seq_lseek,
1083         .release        = jbd2_seq_info_release,
1084 };
1085
1086 static struct proc_dir_entry *proc_jbd2_stats;
1087
1088 static void jbd2_stats_proc_init(journal_t *journal)
1089 {
1090         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091         if (journal->j_proc_entry) {
1092                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093                                  &jbd2_seq_info_fops, journal);
1094         }
1095 }
1096
1097 static void jbd2_stats_proc_exit(journal_t *journal)
1098 {
1099         remove_proc_entry("info", journal->j_proc_entry);
1100         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101 }
1102
1103 /*
1104  * Management for journal control blocks: functions to create and
1105  * destroy journal_t structures, and to initialise and read existing
1106  * journal blocks from disk.  */
1107
1108 /* First: create and setup a journal_t object in memory.  We initialise
1109  * very few fields yet: that has to wait until we have created the
1110  * journal structures from from scratch, or loaded them from disk. */
1111
1112 static journal_t *journal_init_common(struct block_device *bdev,
1113                         struct block_device *fs_dev,
1114                         unsigned long long start, int len, int blocksize)
1115 {
1116         static struct lock_class_key jbd2_trans_commit_key;
1117         journal_t *journal;
1118         int err;
1119         struct buffer_head *bh;
1120         int n;
1121
1122         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1123         if (!journal)
1124                 return NULL;
1125
1126         init_waitqueue_head(&journal->j_wait_transaction_locked);
1127         init_waitqueue_head(&journal->j_wait_done_commit);
1128         init_waitqueue_head(&journal->j_wait_commit);
1129         init_waitqueue_head(&journal->j_wait_updates);
1130         init_waitqueue_head(&journal->j_wait_reserved);
1131         mutex_init(&journal->j_barrier);
1132         mutex_init(&journal->j_checkpoint_mutex);
1133         spin_lock_init(&journal->j_revoke_lock);
1134         spin_lock_init(&journal->j_list_lock);
1135         rwlock_init(&journal->j_state_lock);
1136
1137         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1138         journal->j_min_batch_time = 0;
1139         journal->j_max_batch_time = 15000; /* 15ms */
1140         atomic_set(&journal->j_reserved_credits, 0);
1141
1142         /* The journal is marked for error until we succeed with recovery! */
1143         journal->j_flags = JBD2_ABORT;
1144
1145         /* Set up a default-sized revoke table for the new mount. */
1146         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1147         if (err)
1148                 goto err_cleanup;
1149
1150         spin_lock_init(&journal->j_history_lock);
1151
1152         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1153                          &jbd2_trans_commit_key, 0);
1154
1155         /* journal descriptor can store up to n blocks -bzzz */
1156         journal->j_blocksize = blocksize;
1157         journal->j_dev = bdev;
1158         journal->j_fs_dev = fs_dev;
1159         journal->j_blk_offset = start;
1160         journal->j_maxlen = len;
1161         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162         journal->j_wbufsize = n;
1163         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1164                                         GFP_KERNEL);
1165         if (!journal->j_wbuf)
1166                 goto err_cleanup;
1167
1168         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1169         if (!bh) {
1170                 pr_err("%s: Cannot get buffer for journal superblock\n",
1171                         __func__);
1172                 goto err_cleanup;
1173         }
1174         journal->j_sb_buffer = bh;
1175         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176
1177         return journal;
1178
1179 err_cleanup:
1180         kfree(journal->j_wbuf);
1181         jbd2_journal_destroy_revoke(journal);
1182         kfree(journal);
1183         return NULL;
1184 }
1185
1186 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187  *
1188  * Create a journal structure assigned some fixed set of disk blocks to
1189  * the journal.  We don't actually touch those disk blocks yet, but we
1190  * need to set up all of the mapping information to tell the journaling
1191  * system where the journal blocks are.
1192  *
1193  */
1194
1195 /**
1196  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1197  *  @bdev: Block device on which to create the journal
1198  *  @fs_dev: Device which hold journalled filesystem for this journal.
1199  *  @start: Block nr Start of journal.
1200  *  @len:  Length of the journal in blocks.
1201  *  @blocksize: blocksize of journalling device
1202  *
1203  *  Returns: a newly created journal_t *
1204  *
1205  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1206  *  range of blocks on an arbitrary block device.
1207  *
1208  */
1209 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1210                         struct block_device *fs_dev,
1211                         unsigned long long start, int len, int blocksize)
1212 {
1213         journal_t *journal;
1214
1215         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1216         if (!journal)
1217                 return NULL;
1218
1219         bdevname(journal->j_dev, journal->j_devname);
1220         strreplace(journal->j_devname, '/', '!');
1221         jbd2_stats_proc_init(journal);
1222
1223         return journal;
1224 }
1225
1226 /**
1227  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1228  *  @inode: An inode to create the journal in
1229  *
1230  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1231  * the journal.  The inode must exist already, must support bmap() and
1232  * must have all data blocks preallocated.
1233  */
1234 journal_t *jbd2_journal_init_inode(struct inode *inode)
1235 {
1236         journal_t *journal;
1237         char *p;
1238         unsigned long long blocknr;
1239
1240         blocknr = bmap(inode, 0);
1241         if (!blocknr) {
1242                 pr_err("%s: Cannot locate journal superblock\n",
1243                         __func__);
1244                 return NULL;
1245         }
1246
1247         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1248                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1249                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250
1251         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1252                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1253                         inode->i_sb->s_blocksize);
1254         if (!journal)
1255                 return NULL;
1256
1257         journal->j_inode = inode;
1258         bdevname(journal->j_dev, journal->j_devname);
1259         p = strreplace(journal->j_devname, '/', '!');
1260         sprintf(p, "-%lu", journal->j_inode->i_ino);
1261         jbd2_stats_proc_init(journal);
1262
1263         return journal;
1264 }
1265
1266 /*
1267  * If the journal init or create aborts, we need to mark the journal
1268  * superblock as being NULL to prevent the journal destroy from writing
1269  * back a bogus superblock.
1270  */
1271 static void journal_fail_superblock(journal_t *journal)
1272 {
1273         struct buffer_head *bh = journal->j_sb_buffer;
1274         brelse(bh);
1275         journal->j_sb_buffer = NULL;
1276 }
1277
1278 /*
1279  * Given a journal_t structure, initialise the various fields for
1280  * startup of a new journaling session.  We use this both when creating
1281  * a journal, and after recovering an old journal to reset it for
1282  * subsequent use.
1283  */
1284
1285 static int journal_reset(journal_t *journal)
1286 {
1287         journal_superblock_t *sb = journal->j_superblock;
1288         unsigned long long first, last;
1289
1290         first = be32_to_cpu(sb->s_first);
1291         last = be32_to_cpu(sb->s_maxlen);
1292         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1293                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1294                        first, last);
1295                 journal_fail_superblock(journal);
1296                 return -EINVAL;
1297         }
1298
1299         journal->j_first = first;
1300         journal->j_last = last;
1301
1302         journal->j_head = first;
1303         journal->j_tail = first;
1304         journal->j_free = last - first;
1305
1306         journal->j_tail_sequence = journal->j_transaction_sequence;
1307         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1308         journal->j_commit_request = journal->j_commit_sequence;
1309
1310         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1311
1312         /*
1313          * As a special case, if the on-disk copy is already marked as needing
1314          * no recovery (s_start == 0), then we can safely defer the superblock
1315          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1316          * attempting a write to a potential-readonly device.
1317          */
1318         if (sb->s_start == 0) {
1319                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1320                         "(start %ld, seq %u, errno %d)\n",
1321                         journal->j_tail, journal->j_tail_sequence,
1322                         journal->j_errno);
1323                 journal->j_flags |= JBD2_FLUSHED;
1324         } else {
1325                 /* Lock here to make assertions happy... */
1326                 mutex_lock_io(&journal->j_checkpoint_mutex);
1327                 /*
1328                  * Update log tail information. We use REQ_FUA since new
1329                  * transaction will start reusing journal space and so we
1330                  * must make sure information about current log tail is on
1331                  * disk before that.
1332                  */
1333                 jbd2_journal_update_sb_log_tail(journal,
1334                                                 journal->j_tail_sequence,
1335                                                 journal->j_tail,
1336                                                 REQ_SYNC | REQ_FUA);
1337                 mutex_unlock(&journal->j_checkpoint_mutex);
1338         }
1339         return jbd2_journal_start_thread(journal);
1340 }
1341
1342 /*
1343  * This function expects that the caller will have locked the journal
1344  * buffer head, and will return with it unlocked
1345  */
1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348         struct buffer_head *bh = journal->j_sb_buffer;
1349         journal_superblock_t *sb = journal->j_superblock;
1350         int ret;
1351
1352         /* Buffer got discarded which means block device got invalidated */
1353         if (!buffer_mapped(bh)) {
1354                 unlock_buffer(bh);
1355                 return -EIO;
1356         }
1357
1358         trace_jbd2_write_superblock(journal, write_flags);
1359         if (!(journal->j_flags & JBD2_BARRIER))
1360                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1361         if (buffer_write_io_error(bh)) {
1362                 /*
1363                  * Oh, dear.  A previous attempt to write the journal
1364                  * superblock failed.  This could happen because the
1365                  * USB device was yanked out.  Or it could happen to
1366                  * be a transient write error and maybe the block will
1367                  * be remapped.  Nothing we can do but to retry the
1368                  * write and hope for the best.
1369                  */
1370                 printk(KERN_ERR "JBD2: previous I/O error detected "
1371                        "for journal superblock update for %s.\n",
1372                        journal->j_devname);
1373                 clear_buffer_write_io_error(bh);
1374                 set_buffer_uptodate(bh);
1375         }
1376         if (jbd2_journal_has_csum_v2or3(journal))
1377                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1378         get_bh(bh);
1379         bh->b_end_io = end_buffer_write_sync;
1380         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1381         wait_on_buffer(bh);
1382         if (buffer_write_io_error(bh)) {
1383                 clear_buffer_write_io_error(bh);
1384                 set_buffer_uptodate(bh);
1385                 ret = -EIO;
1386         }
1387         if (ret) {
1388                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1389                        "journal superblock for %s.\n", ret,
1390                        journal->j_devname);
1391                 jbd2_journal_abort(journal, ret);
1392         }
1393
1394         return ret;
1395 }
1396
1397 /**
1398  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1399  * @journal: The journal to update.
1400  * @tail_tid: TID of the new transaction at the tail of the log
1401  * @tail_block: The first block of the transaction at the tail of the log
1402  * @write_op: With which operation should we write the journal sb
1403  *
1404  * Update a journal's superblock information about log tail and write it to
1405  * disk, waiting for the IO to complete.
1406  */
1407 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1408                                      unsigned long tail_block, int write_op)
1409 {
1410         journal_superblock_t *sb = journal->j_superblock;
1411         int ret;
1412
1413         if (is_journal_aborted(journal))
1414                 return -EIO;
1415
1416         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1417         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1418                   tail_block, tail_tid);
1419
1420         lock_buffer(journal->j_sb_buffer);
1421         sb->s_sequence = cpu_to_be32(tail_tid);
1422         sb->s_start    = cpu_to_be32(tail_block);
1423
1424         ret = jbd2_write_superblock(journal, write_op);
1425         if (ret)
1426                 goto out;
1427
1428         /* Log is no longer empty */
1429         write_lock(&journal->j_state_lock);
1430         WARN_ON(!sb->s_sequence);
1431         journal->j_flags &= ~JBD2_FLUSHED;
1432         write_unlock(&journal->j_state_lock);
1433
1434 out:
1435         return ret;
1436 }
1437
1438 /**
1439  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1440  * @journal: The journal to update.
1441  * @write_op: With which operation should we write the journal sb
1442  *
1443  * Update a journal's dynamic superblock fields to show that journal is empty.
1444  * Write updated superblock to disk waiting for IO to complete.
1445  */
1446 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1447 {
1448         journal_superblock_t *sb = journal->j_superblock;
1449
1450         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1451         lock_buffer(journal->j_sb_buffer);
1452         if (sb->s_start == 0) {         /* Is it already empty? */
1453                 unlock_buffer(journal->j_sb_buffer);
1454                 return;
1455         }
1456
1457         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1458                   journal->j_tail_sequence);
1459
1460         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1461         sb->s_start    = cpu_to_be32(0);
1462
1463         jbd2_write_superblock(journal, write_op);
1464
1465         /* Log is no longer empty */
1466         write_lock(&journal->j_state_lock);
1467         journal->j_flags |= JBD2_FLUSHED;
1468         write_unlock(&journal->j_state_lock);
1469 }
1470
1471
1472 /**
1473  * jbd2_journal_update_sb_errno() - Update error in the journal.
1474  * @journal: The journal to update.
1475  *
1476  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1477  * to complete.
1478  */
1479 void jbd2_journal_update_sb_errno(journal_t *journal)
1480 {
1481         journal_superblock_t *sb = journal->j_superblock;
1482         int errcode;
1483
1484         lock_buffer(journal->j_sb_buffer);
1485         errcode = journal->j_errno;
1486         if (errcode == -ESHUTDOWN)
1487                 errcode = 0;
1488         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1489         sb->s_errno    = cpu_to_be32(errcode);
1490
1491         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1492 }
1493 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1494
1495 /*
1496  * Read the superblock for a given journal, performing initial
1497  * validation of the format.
1498  */
1499 static int journal_get_superblock(journal_t *journal)
1500 {
1501         struct buffer_head *bh;
1502         journal_superblock_t *sb;
1503         int err = -EIO;
1504
1505         bh = journal->j_sb_buffer;
1506
1507         J_ASSERT(bh != NULL);
1508         if (!buffer_uptodate(bh)) {
1509                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1510                 wait_on_buffer(bh);
1511                 if (!buffer_uptodate(bh)) {
1512                         printk(KERN_ERR
1513                                 "JBD2: IO error reading journal superblock\n");
1514                         goto out;
1515                 }
1516         }
1517
1518         if (buffer_verified(bh))
1519                 return 0;
1520
1521         sb = journal->j_superblock;
1522
1523         err = -EINVAL;
1524
1525         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1526             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1527                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1528                 goto out;
1529         }
1530
1531         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1532         case JBD2_SUPERBLOCK_V1:
1533                 journal->j_format_version = 1;
1534                 break;
1535         case JBD2_SUPERBLOCK_V2:
1536                 journal->j_format_version = 2;
1537                 break;
1538         default:
1539                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1540                 goto out;
1541         }
1542
1543         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1544                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1545         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1546                 printk(KERN_WARNING "JBD2: journal file too short\n");
1547                 goto out;
1548         }
1549
1550         if (be32_to_cpu(sb->s_first) == 0 ||
1551             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1552                 printk(KERN_WARNING
1553                         "JBD2: Invalid start block of journal: %u\n",
1554                         be32_to_cpu(sb->s_first));
1555                 goto out;
1556         }
1557
1558         if (jbd2_has_feature_csum2(journal) &&
1559             jbd2_has_feature_csum3(journal)) {
1560                 /* Can't have checksum v2 and v3 at the same time! */
1561                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1562                        "at the same time!\n");
1563                 goto out;
1564         }
1565
1566         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1567             jbd2_has_feature_checksum(journal)) {
1568                 /* Can't have checksum v1 and v2 on at the same time! */
1569                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1570                        "at the same time!\n");
1571                 goto out;
1572         }
1573
1574         if (!jbd2_verify_csum_type(journal, sb)) {
1575                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1576                 goto out;
1577         }
1578
1579         /* Load the checksum driver */
1580         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1581                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1582                 if (IS_ERR(journal->j_chksum_driver)) {
1583                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1584                         err = PTR_ERR(journal->j_chksum_driver);
1585                         journal->j_chksum_driver = NULL;
1586                         goto out;
1587                 }
1588         }
1589
1590         if (jbd2_journal_has_csum_v2or3(journal)) {
1591                 /* Check superblock checksum */
1592                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1593                         printk(KERN_ERR "JBD2: journal checksum error\n");
1594                         err = -EFSBADCRC;
1595                         goto out;
1596                 }
1597
1598                 /* Precompute checksum seed for all metadata */
1599                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1600                                                    sizeof(sb->s_uuid));
1601         }
1602
1603         set_buffer_verified(bh);
1604
1605         return 0;
1606
1607 out:
1608         journal_fail_superblock(journal);
1609         return err;
1610 }
1611
1612 /*
1613  * Load the on-disk journal superblock and read the key fields into the
1614  * journal_t.
1615  */
1616
1617 static int load_superblock(journal_t *journal)
1618 {
1619         int err;
1620         journal_superblock_t *sb;
1621
1622         err = journal_get_superblock(journal);
1623         if (err)
1624                 return err;
1625
1626         sb = journal->j_superblock;
1627
1628         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1629         journal->j_tail = be32_to_cpu(sb->s_start);
1630         journal->j_first = be32_to_cpu(sb->s_first);
1631         journal->j_last = be32_to_cpu(sb->s_maxlen);
1632         journal->j_errno = be32_to_cpu(sb->s_errno);
1633
1634         return 0;
1635 }
1636
1637
1638 /**
1639  * jbd2_journal_load() - Read journal from disk.
1640  * @journal: Journal to act on.
1641  *
1642  * Given a journal_t structure which tells us which disk blocks contain
1643  * a journal, read the journal from disk to initialise the in-memory
1644  * structures.
1645  */
1646 int jbd2_journal_load(journal_t *journal)
1647 {
1648         int err;
1649         journal_superblock_t *sb;
1650
1651         err = load_superblock(journal);
1652         if (err)
1653                 return err;
1654
1655         sb = journal->j_superblock;
1656         /* If this is a V2 superblock, then we have to check the
1657          * features flags on it. */
1658
1659         if (journal->j_format_version >= 2) {
1660                 if ((sb->s_feature_ro_compat &
1661                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1662                     (sb->s_feature_incompat &
1663                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1664                         printk(KERN_WARNING
1665                                 "JBD2: Unrecognised features on journal\n");
1666                         return -EINVAL;
1667                 }
1668         }
1669
1670         /*
1671          * Create a slab for this blocksize
1672          */
1673         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1674         if (err)
1675                 return err;
1676
1677         /* Let the recovery code check whether it needs to recover any
1678          * data from the journal. */
1679         if (jbd2_journal_recover(journal))
1680                 goto recovery_error;
1681
1682         if (journal->j_failed_commit) {
1683                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1684                        "is corrupt.\n", journal->j_failed_commit,
1685                        journal->j_devname);
1686                 return -EFSCORRUPTED;
1687         }
1688         /*
1689          * clear JBD2_ABORT flag initialized in journal_init_common
1690          * here to update log tail information with the newest seq.
1691          */
1692         journal->j_flags &= ~JBD2_ABORT;
1693
1694         /* OK, we've finished with the dynamic journal bits:
1695          * reinitialise the dynamic contents of the superblock in memory
1696          * and reset them on disk. */
1697         if (journal_reset(journal))
1698                 goto recovery_error;
1699
1700         journal->j_flags |= JBD2_LOADED;
1701         return 0;
1702
1703 recovery_error:
1704         printk(KERN_WARNING "JBD2: recovery failed\n");
1705         return -EIO;
1706 }
1707
1708 /**
1709  * jbd2_journal_destroy() - Release a journal_t structure.
1710  * @journal: Journal to act on.
1711  *
1712  * Release a journal_t structure once it is no longer in use by the
1713  * journaled object.
1714  * Return <0 if we couldn't clean up the journal.
1715  */
1716 int jbd2_journal_destroy(journal_t *journal)
1717 {
1718         int err = 0;
1719
1720         /* Wait for the commit thread to wake up and die. */
1721         journal_kill_thread(journal);
1722
1723         /* Force a final log commit */
1724         if (journal->j_running_transaction)
1725                 jbd2_journal_commit_transaction(journal);
1726
1727         /* Force any old transactions to disk */
1728
1729         /* Totally anal locking here... */
1730         spin_lock(&journal->j_list_lock);
1731         while (journal->j_checkpoint_transactions != NULL) {
1732                 spin_unlock(&journal->j_list_lock);
1733                 mutex_lock_io(&journal->j_checkpoint_mutex);
1734                 err = jbd2_log_do_checkpoint(journal);
1735                 mutex_unlock(&journal->j_checkpoint_mutex);
1736                 /*
1737                  * If checkpointing failed, just free the buffers to avoid
1738                  * looping forever
1739                  */
1740                 if (err) {
1741                         jbd2_journal_destroy_checkpoint(journal);
1742                         spin_lock(&journal->j_list_lock);
1743                         break;
1744                 }
1745                 spin_lock(&journal->j_list_lock);
1746         }
1747
1748         J_ASSERT(journal->j_running_transaction == NULL);
1749         J_ASSERT(journal->j_committing_transaction == NULL);
1750         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1751         spin_unlock(&journal->j_list_lock);
1752
1753         if (journal->j_sb_buffer) {
1754                 if (!is_journal_aborted(journal)) {
1755                         mutex_lock_io(&journal->j_checkpoint_mutex);
1756
1757                         write_lock(&journal->j_state_lock);
1758                         journal->j_tail_sequence =
1759                                 ++journal->j_transaction_sequence;
1760                         write_unlock(&journal->j_state_lock);
1761
1762                         jbd2_mark_journal_empty(journal,
1763                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1764                         mutex_unlock(&journal->j_checkpoint_mutex);
1765                 } else
1766                         err = -EIO;
1767                 brelse(journal->j_sb_buffer);
1768         }
1769
1770         if (journal->j_proc_entry)
1771                 jbd2_stats_proc_exit(journal);
1772         iput(journal->j_inode);
1773         if (journal->j_revoke)
1774                 jbd2_journal_destroy_revoke(journal);
1775         if (journal->j_chksum_driver)
1776                 crypto_free_shash(journal->j_chksum_driver);
1777         kfree(journal->j_wbuf);
1778         kfree(journal);
1779
1780         return err;
1781 }
1782
1783
1784 /**
1785  * jbd2_journal_check_used_features() - Check if features specified are used.
1786  * @journal: Journal to check.
1787  * @compat: bitmask of compatible features
1788  * @ro: bitmask of features that force read-only mount
1789  * @incompat: bitmask of incompatible features
1790  *
1791  * Check whether the journal uses all of a given set of
1792  * features.  Return true (non-zero) if it does.
1793  **/
1794
1795 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
1796                                  unsigned long ro, unsigned long incompat)
1797 {
1798         journal_superblock_t *sb;
1799
1800         if (!compat && !ro && !incompat)
1801                 return 1;
1802         /* Load journal superblock if it is not loaded yet. */
1803         if (journal->j_format_version == 0 &&
1804             journal_get_superblock(journal) != 0)
1805                 return 0;
1806         if (journal->j_format_version == 1)
1807                 return 0;
1808
1809         sb = journal->j_superblock;
1810
1811         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1812             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1813             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1814                 return 1;
1815
1816         return 0;
1817 }
1818
1819 /**
1820  * jbd2_journal_check_available_features() - Check feature set in journalling layer
1821  * @journal: Journal to check.
1822  * @compat: bitmask of compatible features
1823  * @ro: bitmask of features that force read-only mount
1824  * @incompat: bitmask of incompatible features
1825  *
1826  * Check whether the journaling code supports the use of
1827  * all of a given set of features on this journal.  Return true
1828  * (non-zero) if it can. */
1829
1830 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
1831                                       unsigned long ro, unsigned long incompat)
1832 {
1833         if (!compat && !ro && !incompat)
1834                 return 1;
1835
1836         /* We can support any known requested features iff the
1837          * superblock is in version 2.  Otherwise we fail to support any
1838          * extended sb features. */
1839
1840         if (journal->j_format_version != 2)
1841                 return 0;
1842
1843         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1844             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1845             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1846                 return 1;
1847
1848         return 0;
1849 }
1850
1851 /**
1852  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
1853  * @journal: Journal to act on.
1854  * @compat: bitmask of compatible features
1855  * @ro: bitmask of features that force read-only mount
1856  * @incompat: bitmask of incompatible features
1857  *
1858  * Mark a given journal feature as present on the
1859  * superblock.  Returns true if the requested features could be set.
1860  *
1861  */
1862
1863 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
1864                           unsigned long ro, unsigned long incompat)
1865 {
1866 #define INCOMPAT_FEATURE_ON(f) \
1867                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1868 #define COMPAT_FEATURE_ON(f) \
1869                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1870         journal_superblock_t *sb;
1871
1872         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1873                 return 1;
1874
1875         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1876                 return 0;
1877
1878         /* If enabling v2 checksums, turn on v3 instead */
1879         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1880                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1881                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1882         }
1883
1884         /* Asking for checksumming v3 and v1?  Only give them v3. */
1885         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1886             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1887                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1888
1889         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1890                   compat, ro, incompat);
1891
1892         sb = journal->j_superblock;
1893
1894         /* Load the checksum driver if necessary */
1895         if ((journal->j_chksum_driver == NULL) &&
1896             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1897                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1898                 if (IS_ERR(journal->j_chksum_driver)) {
1899                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1900                         journal->j_chksum_driver = NULL;
1901                         return 0;
1902                 }
1903                 /* Precompute checksum seed for all metadata */
1904                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1905                                                    sizeof(sb->s_uuid));
1906         }
1907
1908         lock_buffer(journal->j_sb_buffer);
1909
1910         /* If enabling v3 checksums, update superblock */
1911         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1912                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1913                 sb->s_feature_compat &=
1914                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1915         }
1916
1917         /* If enabling v1 checksums, downgrade superblock */
1918         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1919                 sb->s_feature_incompat &=
1920                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1921                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1922
1923         sb->s_feature_compat    |= cpu_to_be32(compat);
1924         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1925         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1926         unlock_buffer(journal->j_sb_buffer);
1927
1928         return 1;
1929 #undef COMPAT_FEATURE_ON
1930 #undef INCOMPAT_FEATURE_ON
1931 }
1932
1933 /*
1934  * jbd2_journal_clear_features() - Clear a given journal feature in the
1935  *                                  superblock
1936  * @journal: Journal to act on.
1937  * @compat: bitmask of compatible features
1938  * @ro: bitmask of features that force read-only mount
1939  * @incompat: bitmask of incompatible features
1940  *
1941  * Clear a given journal feature as present on the
1942  * superblock.
1943  */
1944 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1945                                 unsigned long ro, unsigned long incompat)
1946 {
1947         journal_superblock_t *sb;
1948
1949         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1950                   compat, ro, incompat);
1951
1952         sb = journal->j_superblock;
1953
1954         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1955         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1956         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1957 }
1958 EXPORT_SYMBOL(jbd2_journal_clear_features);
1959
1960 /**
1961  * jbd2_journal_flush() - Flush journal
1962  * @journal: Journal to act on.
1963  *
1964  * Flush all data for a given journal to disk and empty the journal.
1965  * Filesystems can use this when remounting readonly to ensure that
1966  * recovery does not need to happen on remount.
1967  */
1968
1969 int jbd2_journal_flush(journal_t *journal)
1970 {
1971         int err = 0;
1972         transaction_t *transaction = NULL;
1973
1974         write_lock(&journal->j_state_lock);
1975
1976         /* Force everything buffered to the log... */
1977         if (journal->j_running_transaction) {
1978                 transaction = journal->j_running_transaction;
1979                 __jbd2_log_start_commit(journal, transaction->t_tid);
1980         } else if (journal->j_committing_transaction)
1981                 transaction = journal->j_committing_transaction;
1982
1983         /* Wait for the log commit to complete... */
1984         if (transaction) {
1985                 tid_t tid = transaction->t_tid;
1986
1987                 write_unlock(&journal->j_state_lock);
1988                 jbd2_log_wait_commit(journal, tid);
1989         } else {
1990                 write_unlock(&journal->j_state_lock);
1991         }
1992
1993         /* ...and flush everything in the log out to disk. */
1994         spin_lock(&journal->j_list_lock);
1995         while (!err && journal->j_checkpoint_transactions != NULL) {
1996                 spin_unlock(&journal->j_list_lock);
1997                 mutex_lock_io(&journal->j_checkpoint_mutex);
1998                 err = jbd2_log_do_checkpoint(journal);
1999                 mutex_unlock(&journal->j_checkpoint_mutex);
2000                 spin_lock(&journal->j_list_lock);
2001         }
2002         spin_unlock(&journal->j_list_lock);
2003
2004         if (is_journal_aborted(journal))
2005                 return -EIO;
2006
2007         mutex_lock_io(&journal->j_checkpoint_mutex);
2008         if (!err) {
2009                 err = jbd2_cleanup_journal_tail(journal);
2010                 if (err < 0) {
2011                         mutex_unlock(&journal->j_checkpoint_mutex);
2012                         goto out;
2013                 }
2014                 err = 0;
2015         }
2016
2017         /* Finally, mark the journal as really needing no recovery.
2018          * This sets s_start==0 in the underlying superblock, which is
2019          * the magic code for a fully-recovered superblock.  Any future
2020          * commits of data to the journal will restore the current
2021          * s_start value. */
2022         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2023         mutex_unlock(&journal->j_checkpoint_mutex);
2024         write_lock(&journal->j_state_lock);
2025         J_ASSERT(!journal->j_running_transaction);
2026         J_ASSERT(!journal->j_committing_transaction);
2027         J_ASSERT(!journal->j_checkpoint_transactions);
2028         J_ASSERT(journal->j_head == journal->j_tail);
2029         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2030         write_unlock(&journal->j_state_lock);
2031 out:
2032         return err;
2033 }
2034
2035 /**
2036  * jbd2_journal_wipe() - Wipe journal contents
2037  * @journal: Journal to act on.
2038  * @write: flag (see below)
2039  *
2040  * Wipe out all of the contents of a journal, safely.  This will produce
2041  * a warning if the journal contains any valid recovery information.
2042  * Must be called between journal_init_*() and jbd2_journal_load().
2043  *
2044  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2045  * we merely suppress recovery.
2046  */
2047
2048 int jbd2_journal_wipe(journal_t *journal, int write)
2049 {
2050         int err = 0;
2051
2052         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2053
2054         err = load_superblock(journal);
2055         if (err)
2056                 return err;
2057
2058         if (!journal->j_tail)
2059                 goto no_recovery;
2060
2061         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2062                 write ? "Clearing" : "Ignoring");
2063
2064         err = jbd2_journal_skip_recovery(journal);
2065         if (write) {
2066                 /* Lock to make assertions happy... */
2067                 mutex_lock_io(&journal->j_checkpoint_mutex);
2068                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2069                 mutex_unlock(&journal->j_checkpoint_mutex);
2070         }
2071
2072  no_recovery:
2073         return err;
2074 }
2075
2076 /**
2077  * jbd2_journal_abort () - Shutdown the journal immediately.
2078  * @journal: the journal to shutdown.
2079  * @errno:   an error number to record in the journal indicating
2080  *           the reason for the shutdown.
2081  *
2082  * Perform a complete, immediate shutdown of the ENTIRE
2083  * journal (not of a single transaction).  This operation cannot be
2084  * undone without closing and reopening the journal.
2085  *
2086  * The jbd2_journal_abort function is intended to support higher level error
2087  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2088  * mode.
2089  *
2090  * Journal abort has very specific semantics.  Any existing dirty,
2091  * unjournaled buffers in the main filesystem will still be written to
2092  * disk by bdflush, but the journaling mechanism will be suspended
2093  * immediately and no further transaction commits will be honoured.
2094  *
2095  * Any dirty, journaled buffers will be written back to disk without
2096  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2097  * filesystem, but we _do_ attempt to leave as much data as possible
2098  * behind for fsck to use for cleanup.
2099  *
2100  * Any attempt to get a new transaction handle on a journal which is in
2101  * ABORT state will just result in an -EROFS error return.  A
2102  * jbd2_journal_stop on an existing handle will return -EIO if we have
2103  * entered abort state during the update.
2104  *
2105  * Recursive transactions are not disturbed by journal abort until the
2106  * final jbd2_journal_stop, which will receive the -EIO error.
2107  *
2108  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2109  * which will be recorded (if possible) in the journal superblock.  This
2110  * allows a client to record failure conditions in the middle of a
2111  * transaction without having to complete the transaction to record the
2112  * failure to disk.  ext3_error, for example, now uses this
2113  * functionality.
2114  *
2115  */
2116
2117 void jbd2_journal_abort(journal_t *journal, int errno)
2118 {
2119         transaction_t *transaction;
2120
2121         /*
2122          * ESHUTDOWN always takes precedence because a file system check
2123          * caused by any other journal abort error is not required after
2124          * a shutdown triggered.
2125          */
2126         write_lock(&journal->j_state_lock);
2127         if (journal->j_flags & JBD2_ABORT) {
2128                 int old_errno = journal->j_errno;
2129
2130                 write_unlock(&journal->j_state_lock);
2131                 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2132                         journal->j_errno = errno;
2133                         jbd2_journal_update_sb_errno(journal);
2134                 }
2135                 return;
2136         }
2137
2138         /*
2139          * Mark the abort as occurred and start current running transaction
2140          * to release all journaled buffer.
2141          */
2142         pr_err("Aborting journal on device %s.\n", journal->j_devname);
2143
2144         journal->j_flags |= JBD2_ABORT;
2145         journal->j_errno = errno;
2146         transaction = journal->j_running_transaction;
2147         if (transaction)
2148                 __jbd2_log_start_commit(journal, transaction->t_tid);
2149         write_unlock(&journal->j_state_lock);
2150
2151         /*
2152          * Record errno to the journal super block, so that fsck and jbd2
2153          * layer could realise that a filesystem check is needed.
2154          */
2155         jbd2_journal_update_sb_errno(journal);
2156
2157         write_lock(&journal->j_state_lock);
2158         journal->j_flags |= JBD2_REC_ERR;
2159         write_unlock(&journal->j_state_lock);
2160 }
2161
2162 /**
2163  * jbd2_journal_errno() - returns the journal's error state.
2164  * @journal: journal to examine.
2165  *
2166  * This is the errno number set with jbd2_journal_abort(), the last
2167  * time the journal was mounted - if the journal was stopped
2168  * without calling abort this will be 0.
2169  *
2170  * If the journal has been aborted on this mount time -EROFS will
2171  * be returned.
2172  */
2173 int jbd2_journal_errno(journal_t *journal)
2174 {
2175         int err;
2176
2177         read_lock(&journal->j_state_lock);
2178         if (journal->j_flags & JBD2_ABORT)
2179                 err = -EROFS;
2180         else
2181                 err = journal->j_errno;
2182         read_unlock(&journal->j_state_lock);
2183         return err;
2184 }
2185
2186 /**
2187  * jbd2_journal_clear_err() - clears the journal's error state
2188  * @journal: journal to act on.
2189  *
2190  * An error must be cleared or acked to take a FS out of readonly
2191  * mode.
2192  */
2193 int jbd2_journal_clear_err(journal_t *journal)
2194 {
2195         int err = 0;
2196
2197         write_lock(&journal->j_state_lock);
2198         if (journal->j_flags & JBD2_ABORT)
2199                 err = -EROFS;
2200         else
2201                 journal->j_errno = 0;
2202         write_unlock(&journal->j_state_lock);
2203         return err;
2204 }
2205
2206 /**
2207  * jbd2_journal_ack_err() - Ack journal err.
2208  * @journal: journal to act on.
2209  *
2210  * An error must be cleared or acked to take a FS out of readonly
2211  * mode.
2212  */
2213 void jbd2_journal_ack_err(journal_t *journal)
2214 {
2215         write_lock(&journal->j_state_lock);
2216         if (journal->j_errno)
2217                 journal->j_flags |= JBD2_ACK_ERR;
2218         write_unlock(&journal->j_state_lock);
2219 }
2220
2221 int jbd2_journal_blocks_per_page(struct inode *inode)
2222 {
2223         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2224 }
2225
2226 /*
2227  * helper functions to deal with 32 or 64bit block numbers.
2228  */
2229 size_t journal_tag_bytes(journal_t *journal)
2230 {
2231         size_t sz;
2232
2233         if (jbd2_has_feature_csum3(journal))
2234                 return sizeof(journal_block_tag3_t);
2235
2236         sz = sizeof(journal_block_tag_t);
2237
2238         if (jbd2_has_feature_csum2(journal))
2239                 sz += sizeof(__u16);
2240
2241         if (jbd2_has_feature_64bit(journal))
2242                 return sz;
2243         else
2244                 return sz - sizeof(__u32);
2245 }
2246
2247 /*
2248  * JBD memory management
2249  *
2250  * These functions are used to allocate block-sized chunks of memory
2251  * used for making copies of buffer_head data.  Very often it will be
2252  * page-sized chunks of data, but sometimes it will be in
2253  * sub-page-size chunks.  (For example, 16k pages on Power systems
2254  * with a 4k block file system.)  For blocks smaller than a page, we
2255  * use a SLAB allocator.  There are slab caches for each block size,
2256  * which are allocated at mount time, if necessary, and we only free
2257  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2258  * this reason we don't need to a mutex to protect access to
2259  * jbd2_slab[] allocating or releasing memory; only in
2260  * jbd2_journal_create_slab().
2261  */
2262 #define JBD2_MAX_SLABS 8
2263 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2264
2265 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2266         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2267         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2268 };
2269
2270
2271 static void jbd2_journal_destroy_slabs(void)
2272 {
2273         int i;
2274
2275         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2276                 kmem_cache_destroy(jbd2_slab[i]);
2277                 jbd2_slab[i] = NULL;
2278         }
2279 }
2280
2281 static int jbd2_journal_create_slab(size_t size)
2282 {
2283         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2284         int i = order_base_2(size) - 10;
2285         size_t slab_size;
2286
2287         if (size == PAGE_SIZE)
2288                 return 0;
2289
2290         if (i >= JBD2_MAX_SLABS)
2291                 return -EINVAL;
2292
2293         if (unlikely(i < 0))
2294                 i = 0;
2295         mutex_lock(&jbd2_slab_create_mutex);
2296         if (jbd2_slab[i]) {
2297                 mutex_unlock(&jbd2_slab_create_mutex);
2298                 return 0;       /* Already created */
2299         }
2300
2301         slab_size = 1 << (i+10);
2302         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2303                                          slab_size, 0, NULL);
2304         mutex_unlock(&jbd2_slab_create_mutex);
2305         if (!jbd2_slab[i]) {
2306                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2307                 return -ENOMEM;
2308         }
2309         return 0;
2310 }
2311
2312 static struct kmem_cache *get_slab(size_t size)
2313 {
2314         int i = order_base_2(size) - 10;
2315
2316         BUG_ON(i >= JBD2_MAX_SLABS);
2317         if (unlikely(i < 0))
2318                 i = 0;
2319         BUG_ON(jbd2_slab[i] == NULL);
2320         return jbd2_slab[i];
2321 }
2322
2323 void *jbd2_alloc(size_t size, gfp_t flags)
2324 {
2325         void *ptr;
2326
2327         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2328
2329         if (size < PAGE_SIZE)
2330                 ptr = kmem_cache_alloc(get_slab(size), flags);
2331         else
2332                 ptr = (void *)__get_free_pages(flags, get_order(size));
2333
2334         /* Check alignment; SLUB has gotten this wrong in the past,
2335          * and this can lead to user data corruption! */
2336         BUG_ON(((unsigned long) ptr) & (size-1));
2337
2338         return ptr;
2339 }
2340
2341 void jbd2_free(void *ptr, size_t size)
2342 {
2343         if (size < PAGE_SIZE)
2344                 kmem_cache_free(get_slab(size), ptr);
2345         else
2346                 free_pages((unsigned long)ptr, get_order(size));
2347 };
2348
2349 /*
2350  * Journal_head storage management
2351  */
2352 static struct kmem_cache *jbd2_journal_head_cache;
2353 #ifdef CONFIG_JBD2_DEBUG
2354 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2355 #endif
2356
2357 static int __init jbd2_journal_init_journal_head_cache(void)
2358 {
2359         J_ASSERT(!jbd2_journal_head_cache);
2360         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2361                                 sizeof(struct journal_head),
2362                                 0,              /* offset */
2363                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2364                                 NULL);          /* ctor */
2365         if (!jbd2_journal_head_cache) {
2366                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2367                 return -ENOMEM;
2368         }
2369         return 0;
2370 }
2371
2372 static void jbd2_journal_destroy_journal_head_cache(void)
2373 {
2374         kmem_cache_destroy(jbd2_journal_head_cache);
2375         jbd2_journal_head_cache = NULL;
2376 }
2377
2378 /*
2379  * journal_head splicing and dicing
2380  */
2381 static struct journal_head *journal_alloc_journal_head(void)
2382 {
2383         struct journal_head *ret;
2384
2385 #ifdef CONFIG_JBD2_DEBUG
2386         atomic_inc(&nr_journal_heads);
2387 #endif
2388         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2389         if (!ret) {
2390                 jbd_debug(1, "out of memory for journal_head\n");
2391                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2392                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2393                                 GFP_NOFS | __GFP_NOFAIL);
2394         }
2395         return ret;
2396 }
2397
2398 static void journal_free_journal_head(struct journal_head *jh)
2399 {
2400 #ifdef CONFIG_JBD2_DEBUG
2401         atomic_dec(&nr_journal_heads);
2402         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2403 #endif
2404         kmem_cache_free(jbd2_journal_head_cache, jh);
2405 }
2406
2407 /*
2408  * A journal_head is attached to a buffer_head whenever JBD has an
2409  * interest in the buffer.
2410  *
2411  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2412  * is set.  This bit is tested in core kernel code where we need to take
2413  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2414  * there.
2415  *
2416  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2417  *
2418  * When a buffer has its BH_JBD bit set it is immune from being released by
2419  * core kernel code, mainly via ->b_count.
2420  *
2421  * A journal_head is detached from its buffer_head when the journal_head's
2422  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2423  * transaction (b_cp_transaction) hold their references to b_jcount.
2424  *
2425  * Various places in the kernel want to attach a journal_head to a buffer_head
2426  * _before_ attaching the journal_head to a transaction.  To protect the
2427  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2428  * journal_head's b_jcount refcount by one.  The caller must call
2429  * jbd2_journal_put_journal_head() to undo this.
2430  *
2431  * So the typical usage would be:
2432  *
2433  *      (Attach a journal_head if needed.  Increments b_jcount)
2434  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2435  *      ...
2436  *      (Get another reference for transaction)
2437  *      jbd2_journal_grab_journal_head(bh);
2438  *      jh->b_transaction = xxx;
2439  *      (Put original reference)
2440  *      jbd2_journal_put_journal_head(jh);
2441  */
2442
2443 /*
2444  * Give a buffer_head a journal_head.
2445  *
2446  * May sleep.
2447  */
2448 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2449 {
2450         struct journal_head *jh;
2451         struct journal_head *new_jh = NULL;
2452
2453 repeat:
2454         if (!buffer_jbd(bh))
2455                 new_jh = journal_alloc_journal_head();
2456
2457         jbd_lock_bh_journal_head(bh);
2458         if (buffer_jbd(bh)) {
2459                 jh = bh2jh(bh);
2460         } else {
2461                 J_ASSERT_BH(bh,
2462                         (atomic_read(&bh->b_count) > 0) ||
2463                         (bh->b_page && bh->b_page->mapping));
2464
2465                 if (!new_jh) {
2466                         jbd_unlock_bh_journal_head(bh);
2467                         goto repeat;
2468                 }
2469
2470                 jh = new_jh;
2471                 new_jh = NULL;          /* We consumed it */
2472                 set_buffer_jbd(bh);
2473                 bh->b_private = jh;
2474                 jh->b_bh = bh;
2475                 get_bh(bh);
2476                 BUFFER_TRACE(bh, "added journal_head");
2477         }
2478         jh->b_jcount++;
2479         jbd_unlock_bh_journal_head(bh);
2480         if (new_jh)
2481                 journal_free_journal_head(new_jh);
2482         return bh->b_private;
2483 }
2484
2485 /*
2486  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2487  * having a journal_head, return NULL
2488  */
2489 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2490 {
2491         struct journal_head *jh = NULL;
2492
2493         jbd_lock_bh_journal_head(bh);
2494         if (buffer_jbd(bh)) {
2495                 jh = bh2jh(bh);
2496                 jh->b_jcount++;
2497         }
2498         jbd_unlock_bh_journal_head(bh);
2499         return jh;
2500 }
2501
2502 static void __journal_remove_journal_head(struct buffer_head *bh)
2503 {
2504         struct journal_head *jh = bh2jh(bh);
2505
2506         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2507         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2508         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2509         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2510         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2511         J_ASSERT_BH(bh, buffer_jbd(bh));
2512         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2513         BUFFER_TRACE(bh, "remove journal_head");
2514         if (jh->b_frozen_data) {
2515                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2516                 jbd2_free(jh->b_frozen_data, bh->b_size);
2517         }
2518         if (jh->b_committed_data) {
2519                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2520                 jbd2_free(jh->b_committed_data, bh->b_size);
2521         }
2522         bh->b_private = NULL;
2523         jh->b_bh = NULL;        /* debug, really */
2524         clear_buffer_jbd(bh);
2525         journal_free_journal_head(jh);
2526 }
2527
2528 /*
2529  * Drop a reference on the passed journal_head.  If it fell to zero then
2530  * release the journal_head from the buffer_head.
2531  */
2532 void jbd2_journal_put_journal_head(struct journal_head *jh)
2533 {
2534         struct buffer_head *bh = jh2bh(jh);
2535
2536         jbd_lock_bh_journal_head(bh);
2537         J_ASSERT_JH(jh, jh->b_jcount > 0);
2538         --jh->b_jcount;
2539         if (!jh->b_jcount) {
2540                 __journal_remove_journal_head(bh);
2541                 jbd_unlock_bh_journal_head(bh);
2542                 __brelse(bh);
2543         } else
2544                 jbd_unlock_bh_journal_head(bh);
2545 }
2546
2547 /*
2548  * Initialize jbd inode head
2549  */
2550 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2551 {
2552         jinode->i_transaction = NULL;
2553         jinode->i_next_transaction = NULL;
2554         jinode->i_vfs_inode = inode;
2555         jinode->i_flags = 0;
2556         jinode->i_dirty_start = 0;
2557         jinode->i_dirty_end = 0;
2558         INIT_LIST_HEAD(&jinode->i_list);
2559 }
2560
2561 /*
2562  * Function to be called before we start removing inode from memory (i.e.,
2563  * clear_inode() is a fine place to be called from). It removes inode from
2564  * transaction's lists.
2565  */
2566 void jbd2_journal_release_jbd_inode(journal_t *journal,
2567                                     struct jbd2_inode *jinode)
2568 {
2569         if (!journal)
2570                 return;
2571 restart:
2572         spin_lock(&journal->j_list_lock);
2573         /* Is commit writing out inode - we have to wait */
2574         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2575                 wait_queue_head_t *wq;
2576                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2577                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2578                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2579                 spin_unlock(&journal->j_list_lock);
2580                 schedule();
2581                 finish_wait(wq, &wait.wq_entry);
2582                 goto restart;
2583         }
2584
2585         if (jinode->i_transaction) {
2586                 list_del(&jinode->i_list);
2587                 jinode->i_transaction = NULL;
2588         }
2589         spin_unlock(&journal->j_list_lock);
2590 }
2591
2592
2593 #ifdef CONFIG_PROC_FS
2594
2595 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2596
2597 static void __init jbd2_create_jbd_stats_proc_entry(void)
2598 {
2599         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2600 }
2601
2602 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2603 {
2604         if (proc_jbd2_stats)
2605                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2606 }
2607
2608 #else
2609
2610 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2611 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2612
2613 #endif
2614
2615 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2616
2617 static int __init jbd2_journal_init_inode_cache(void)
2618 {
2619         J_ASSERT(!jbd2_inode_cache);
2620         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2621         if (!jbd2_inode_cache) {
2622                 pr_emerg("JBD2: failed to create inode cache\n");
2623                 return -ENOMEM;
2624         }
2625         return 0;
2626 }
2627
2628 static int __init jbd2_journal_init_handle_cache(void)
2629 {
2630         J_ASSERT(!jbd2_handle_cache);
2631         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2632         if (!jbd2_handle_cache) {
2633                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2634                 return -ENOMEM;
2635         }
2636         return 0;
2637 }
2638
2639 static void jbd2_journal_destroy_inode_cache(void)
2640 {
2641         kmem_cache_destroy(jbd2_inode_cache);
2642         jbd2_inode_cache = NULL;
2643 }
2644
2645 static void jbd2_journal_destroy_handle_cache(void)
2646 {
2647         kmem_cache_destroy(jbd2_handle_cache);
2648         jbd2_handle_cache = NULL;
2649 }
2650
2651 /*
2652  * Module startup and shutdown
2653  */
2654
2655 static int __init journal_init_caches(void)
2656 {
2657         int ret;
2658
2659         ret = jbd2_journal_init_revoke_record_cache();
2660         if (ret == 0)
2661                 ret = jbd2_journal_init_revoke_table_cache();
2662         if (ret == 0)
2663                 ret = jbd2_journal_init_journal_head_cache();
2664         if (ret == 0)
2665                 ret = jbd2_journal_init_handle_cache();
2666         if (ret == 0)
2667                 ret = jbd2_journal_init_inode_cache();
2668         if (ret == 0)
2669                 ret = jbd2_journal_init_transaction_cache();
2670         return ret;
2671 }
2672
2673 static void jbd2_journal_destroy_caches(void)
2674 {
2675         jbd2_journal_destroy_revoke_record_cache();
2676         jbd2_journal_destroy_revoke_table_cache();
2677         jbd2_journal_destroy_journal_head_cache();
2678         jbd2_journal_destroy_handle_cache();
2679         jbd2_journal_destroy_inode_cache();
2680         jbd2_journal_destroy_transaction_cache();
2681         jbd2_journal_destroy_slabs();
2682 }
2683
2684 static int __init journal_init(void)
2685 {
2686         int ret;
2687
2688         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2689
2690         ret = journal_init_caches();
2691         if (ret == 0) {
2692                 jbd2_create_jbd_stats_proc_entry();
2693         } else {
2694                 jbd2_journal_destroy_caches();
2695         }
2696         return ret;
2697 }
2698
2699 static void __exit journal_exit(void)
2700 {
2701 #ifdef CONFIG_JBD2_DEBUG
2702         int n = atomic_read(&nr_journal_heads);
2703         if (n)
2704                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2705 #endif
2706         jbd2_remove_jbd_stats_proc_entry();
2707         jbd2_journal_destroy_caches();
2708 }
2709
2710 MODULE_LICENSE("GPL");
2711 module_init(journal_init);
2712 module_exit(journal_exit);
2713