GNU Linux-libre 4.14.290-gnu1
[releases.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
101 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
102 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
103 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
104 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
105 EXPORT_SYMBOL(jbd2_inode_cache);
106
107 static void __journal_abort_soft (journal_t *journal, int errno);
108 static int jbd2_journal_create_slab(size_t slab_size);
109
110 #ifdef CONFIG_JBD2_DEBUG
111 void __jbd2_debug(int level, const char *file, const char *func,
112                   unsigned int line, const char *fmt, ...)
113 {
114         struct va_format vaf;
115         va_list args;
116
117         if (level > jbd2_journal_enable_debug)
118                 return;
119         va_start(args, fmt);
120         vaf.fmt = fmt;
121         vaf.va = &args;
122         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
123         va_end(args);
124 }
125 EXPORT_SYMBOL(__jbd2_debug);
126 #endif
127
128 /* Checksumming functions */
129 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
130 {
131         if (!jbd2_journal_has_csum_v2or3_feature(j))
132                 return 1;
133
134         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
135 }
136
137 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
138 {
139         __u32 csum;
140         __be32 old_csum;
141
142         old_csum = sb->s_checksum;
143         sb->s_checksum = 0;
144         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
145         sb->s_checksum = old_csum;
146
147         return cpu_to_be32(csum);
148 }
149
150 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
151 {
152         if (!jbd2_journal_has_csum_v2or3(j))
153                 return 1;
154
155         return sb->s_checksum == jbd2_superblock_csum(j, sb);
156 }
157
158 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
159 {
160         if (!jbd2_journal_has_csum_v2or3(j))
161                 return;
162
163         sb->s_checksum = jbd2_superblock_csum(j, sb);
164 }
165
166 /*
167  * Helper function used to manage commit timeouts
168  */
169
170 static void commit_timeout(unsigned long __data)
171 {
172         struct task_struct * p = (struct task_struct *) __data;
173
174         wake_up_process(p);
175 }
176
177 /*
178  * kjournald2: The main thread function used to manage a logging device
179  * journal.
180  *
181  * This kernel thread is responsible for two things:
182  *
183  * 1) COMMIT:  Every so often we need to commit the current state of the
184  *    filesystem to disk.  The journal thread is responsible for writing
185  *    all of the metadata buffers to disk.
186  *
187  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
188  *    of the data in that part of the log has been rewritten elsewhere on
189  *    the disk.  Flushing these old buffers to reclaim space in the log is
190  *    known as checkpointing, and this thread is responsible for that job.
191  */
192
193 static int kjournald2(void *arg)
194 {
195         journal_t *journal = arg;
196         transaction_t *transaction;
197
198         /*
199          * Set up an interval timer which can be used to trigger a commit wakeup
200          * after the commit interval expires
201          */
202         setup_timer(&journal->j_commit_timer, commit_timeout,
203                         (unsigned long)current);
204
205         set_freezable();
206
207         /* Record that the journal thread is running */
208         journal->j_task = current;
209         wake_up(&journal->j_wait_done_commit);
210
211         /*
212          * Make sure that no allocations from this kernel thread will ever
213          * recurse to the fs layer because we are responsible for the
214          * transaction commit and any fs involvement might get stuck waiting for
215          * the trasn. commit.
216          */
217         memalloc_nofs_save();
218
219         /*
220          * And now, wait forever for commit wakeup events.
221          */
222         write_lock(&journal->j_state_lock);
223
224 loop:
225         if (journal->j_flags & JBD2_UNMOUNT)
226                 goto end_loop;
227
228         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
229                 journal->j_commit_sequence, journal->j_commit_request);
230
231         if (journal->j_commit_sequence != journal->j_commit_request) {
232                 jbd_debug(1, "OK, requests differ\n");
233                 write_unlock(&journal->j_state_lock);
234                 del_timer_sync(&journal->j_commit_timer);
235                 jbd2_journal_commit_transaction(journal);
236                 write_lock(&journal->j_state_lock);
237                 goto loop;
238         }
239
240         wake_up(&journal->j_wait_done_commit);
241         if (freezing(current)) {
242                 /*
243                  * The simpler the better. Flushing journal isn't a
244                  * good idea, because that depends on threads that may
245                  * be already stopped.
246                  */
247                 jbd_debug(1, "Now suspending kjournald2\n");
248                 write_unlock(&journal->j_state_lock);
249                 try_to_freeze();
250                 write_lock(&journal->j_state_lock);
251         } else {
252                 /*
253                  * We assume on resume that commits are already there,
254                  * so we don't sleep
255                  */
256                 DEFINE_WAIT(wait);
257                 int should_sleep = 1;
258
259                 prepare_to_wait(&journal->j_wait_commit, &wait,
260                                 TASK_INTERRUPTIBLE);
261                 if (journal->j_commit_sequence != journal->j_commit_request)
262                         should_sleep = 0;
263                 transaction = journal->j_running_transaction;
264                 if (transaction && time_after_eq(jiffies,
265                                                 transaction->t_expires))
266                         should_sleep = 0;
267                 if (journal->j_flags & JBD2_UNMOUNT)
268                         should_sleep = 0;
269                 if (should_sleep) {
270                         write_unlock(&journal->j_state_lock);
271                         schedule();
272                         write_lock(&journal->j_state_lock);
273                 }
274                 finish_wait(&journal->j_wait_commit, &wait);
275         }
276
277         jbd_debug(1, "kjournald2 wakes\n");
278
279         /*
280          * Were we woken up by a commit wakeup event?
281          */
282         transaction = journal->j_running_transaction;
283         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
284                 journal->j_commit_request = transaction->t_tid;
285                 jbd_debug(1, "woke because of timeout\n");
286         }
287         goto loop;
288
289 end_loop:
290         del_timer_sync(&journal->j_commit_timer);
291         journal->j_task = NULL;
292         wake_up(&journal->j_wait_done_commit);
293         jbd_debug(1, "Journal thread exiting.\n");
294         write_unlock(&journal->j_state_lock);
295         return 0;
296 }
297
298 static int jbd2_journal_start_thread(journal_t *journal)
299 {
300         struct task_struct *t;
301
302         t = kthread_run(kjournald2, journal, "jbd2/%s",
303                         journal->j_devname);
304         if (IS_ERR(t))
305                 return PTR_ERR(t);
306
307         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
308         return 0;
309 }
310
311 static void journal_kill_thread(journal_t *journal)
312 {
313         write_lock(&journal->j_state_lock);
314         journal->j_flags |= JBD2_UNMOUNT;
315
316         while (journal->j_task) {
317                 write_unlock(&journal->j_state_lock);
318                 wake_up(&journal->j_wait_commit);
319                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
320                 write_lock(&journal->j_state_lock);
321         }
322         write_unlock(&journal->j_state_lock);
323 }
324
325 /*
326  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
327  *
328  * Writes a metadata buffer to a given disk block.  The actual IO is not
329  * performed but a new buffer_head is constructed which labels the data
330  * to be written with the correct destination disk block.
331  *
332  * Any magic-number escaping which needs to be done will cause a
333  * copy-out here.  If the buffer happens to start with the
334  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
335  * magic number is only written to the log for descripter blocks.  In
336  * this case, we copy the data and replace the first word with 0, and we
337  * return a result code which indicates that this buffer needs to be
338  * marked as an escaped buffer in the corresponding log descriptor
339  * block.  The missing word can then be restored when the block is read
340  * during recovery.
341  *
342  * If the source buffer has already been modified by a new transaction
343  * since we took the last commit snapshot, we use the frozen copy of
344  * that data for IO. If we end up using the existing buffer_head's data
345  * for the write, then we have to make sure nobody modifies it while the
346  * IO is in progress. do_get_write_access() handles this.
347  *
348  * The function returns a pointer to the buffer_head to be used for IO.
349  * 
350  *
351  * Return value:
352  *  <0: Error
353  * >=0: Finished OK
354  *
355  * On success:
356  * Bit 0 set == escape performed on the data
357  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
358  */
359
360 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
361                                   struct journal_head  *jh_in,
362                                   struct buffer_head **bh_out,
363                                   sector_t blocknr)
364 {
365         int need_copy_out = 0;
366         int done_copy_out = 0;
367         int do_escape = 0;
368         char *mapped_data;
369         struct buffer_head *new_bh;
370         struct page *new_page;
371         unsigned int new_offset;
372         struct buffer_head *bh_in = jh2bh(jh_in);
373         journal_t *journal = transaction->t_journal;
374
375         /*
376          * The buffer really shouldn't be locked: only the current committing
377          * transaction is allowed to write it, so nobody else is allowed
378          * to do any IO.
379          *
380          * akpm: except if we're journalling data, and write() output is
381          * also part of a shared mapping, and another thread has
382          * decided to launch a writepage() against this buffer.
383          */
384         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
385
386         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
387
388         /* keep subsequent assertions sane */
389         atomic_set(&new_bh->b_count, 1);
390
391         jbd_lock_bh_state(bh_in);
392 repeat:
393         /*
394          * If a new transaction has already done a buffer copy-out, then
395          * we use that version of the data for the commit.
396          */
397         if (jh_in->b_frozen_data) {
398                 done_copy_out = 1;
399                 new_page = virt_to_page(jh_in->b_frozen_data);
400                 new_offset = offset_in_page(jh_in->b_frozen_data);
401         } else {
402                 new_page = jh2bh(jh_in)->b_page;
403                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
404         }
405
406         mapped_data = kmap_atomic(new_page);
407         /*
408          * Fire data frozen trigger if data already wasn't frozen.  Do this
409          * before checking for escaping, as the trigger may modify the magic
410          * offset.  If a copy-out happens afterwards, it will have the correct
411          * data in the buffer.
412          */
413         if (!done_copy_out)
414                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
415                                            jh_in->b_triggers);
416
417         /*
418          * Check for escaping
419          */
420         if (*((__be32 *)(mapped_data + new_offset)) ==
421                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
422                 need_copy_out = 1;
423                 do_escape = 1;
424         }
425         kunmap_atomic(mapped_data);
426
427         /*
428          * Do we need to do a data copy?
429          */
430         if (need_copy_out && !done_copy_out) {
431                 char *tmp;
432
433                 jbd_unlock_bh_state(bh_in);
434                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
435                 if (!tmp) {
436                         brelse(new_bh);
437                         return -ENOMEM;
438                 }
439                 jbd_lock_bh_state(bh_in);
440                 if (jh_in->b_frozen_data) {
441                         jbd2_free(tmp, bh_in->b_size);
442                         goto repeat;
443                 }
444
445                 jh_in->b_frozen_data = tmp;
446                 mapped_data = kmap_atomic(new_page);
447                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
448                 kunmap_atomic(mapped_data);
449
450                 new_page = virt_to_page(tmp);
451                 new_offset = offset_in_page(tmp);
452                 done_copy_out = 1;
453
454                 /*
455                  * This isn't strictly necessary, as we're using frozen
456                  * data for the escaping, but it keeps consistency with
457                  * b_frozen_data usage.
458                  */
459                 jh_in->b_frozen_triggers = jh_in->b_triggers;
460         }
461
462         /*
463          * Did we need to do an escaping?  Now we've done all the
464          * copying, we can finally do so.
465          */
466         if (do_escape) {
467                 mapped_data = kmap_atomic(new_page);
468                 *((unsigned int *)(mapped_data + new_offset)) = 0;
469                 kunmap_atomic(mapped_data);
470         }
471
472         set_bh_page(new_bh, new_page, new_offset);
473         new_bh->b_size = bh_in->b_size;
474         new_bh->b_bdev = journal->j_dev;
475         new_bh->b_blocknr = blocknr;
476         new_bh->b_private = bh_in;
477         set_buffer_mapped(new_bh);
478         set_buffer_dirty(new_bh);
479
480         *bh_out = new_bh;
481
482         /*
483          * The to-be-written buffer needs to get moved to the io queue,
484          * and the original buffer whose contents we are shadowing or
485          * copying is moved to the transaction's shadow queue.
486          */
487         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
488         spin_lock(&journal->j_list_lock);
489         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
490         spin_unlock(&journal->j_list_lock);
491         set_buffer_shadow(bh_in);
492         jbd_unlock_bh_state(bh_in);
493
494         return do_escape | (done_copy_out << 1);
495 }
496
497 /*
498  * Allocation code for the journal file.  Manage the space left in the
499  * journal, so that we can begin checkpointing when appropriate.
500  */
501
502 /*
503  * Called with j_state_lock locked for writing.
504  * Returns true if a transaction commit was started.
505  */
506 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
507 {
508         /* Return if the txn has already requested to be committed */
509         if (journal->j_commit_request == target)
510                 return 0;
511
512         /*
513          * The only transaction we can possibly wait upon is the
514          * currently running transaction (if it exists).  Otherwise,
515          * the target tid must be an old one.
516          */
517         if (journal->j_running_transaction &&
518             journal->j_running_transaction->t_tid == target) {
519                 /*
520                  * We want a new commit: OK, mark the request and wakeup the
521                  * commit thread.  We do _not_ do the commit ourselves.
522                  */
523
524                 journal->j_commit_request = target;
525                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
526                           journal->j_commit_request,
527                           journal->j_commit_sequence);
528                 journal->j_running_transaction->t_requested = jiffies;
529                 wake_up(&journal->j_wait_commit);
530                 return 1;
531         } else if (!tid_geq(journal->j_commit_request, target))
532                 /* This should never happen, but if it does, preserve
533                    the evidence before kjournald goes into a loop and
534                    increments j_commit_sequence beyond all recognition. */
535                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
536                           journal->j_commit_request,
537                           journal->j_commit_sequence,
538                           target, journal->j_running_transaction ? 
539                           journal->j_running_transaction->t_tid : 0);
540         return 0;
541 }
542
543 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
544 {
545         int ret;
546
547         write_lock(&journal->j_state_lock);
548         ret = __jbd2_log_start_commit(journal, tid);
549         write_unlock(&journal->j_state_lock);
550         return ret;
551 }
552
553 /*
554  * Force and wait any uncommitted transactions.  We can only force the running
555  * transaction if we don't have an active handle, otherwise, we will deadlock.
556  * Returns: <0 in case of error,
557  *           0 if nothing to commit,
558  *           1 if transaction was successfully committed.
559  */
560 static int __jbd2_journal_force_commit(journal_t *journal)
561 {
562         transaction_t *transaction = NULL;
563         tid_t tid;
564         int need_to_start = 0, ret = 0;
565
566         read_lock(&journal->j_state_lock);
567         if (journal->j_running_transaction && !current->journal_info) {
568                 transaction = journal->j_running_transaction;
569                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
570                         need_to_start = 1;
571         } else if (journal->j_committing_transaction)
572                 transaction = journal->j_committing_transaction;
573
574         if (!transaction) {
575                 /* Nothing to commit */
576                 read_unlock(&journal->j_state_lock);
577                 return 0;
578         }
579         tid = transaction->t_tid;
580         read_unlock(&journal->j_state_lock);
581         if (need_to_start)
582                 jbd2_log_start_commit(journal, tid);
583         ret = jbd2_log_wait_commit(journal, tid);
584         if (!ret)
585                 ret = 1;
586
587         return ret;
588 }
589
590 /**
591  * Force and wait upon a commit if the calling process is not within
592  * transaction.  This is used for forcing out undo-protected data which contains
593  * bitmaps, when the fs is running out of space.
594  *
595  * @journal: journal to force
596  * Returns true if progress was made.
597  */
598 int jbd2_journal_force_commit_nested(journal_t *journal)
599 {
600         int ret;
601
602         ret = __jbd2_journal_force_commit(journal);
603         return ret > 0;
604 }
605
606 /**
607  * int journal_force_commit() - force any uncommitted transactions
608  * @journal: journal to force
609  *
610  * Caller want unconditional commit. We can only force the running transaction
611  * if we don't have an active handle, otherwise, we will deadlock.
612  */
613 int jbd2_journal_force_commit(journal_t *journal)
614 {
615         int ret;
616
617         J_ASSERT(!current->journal_info);
618         ret = __jbd2_journal_force_commit(journal);
619         if (ret > 0)
620                 ret = 0;
621         return ret;
622 }
623
624 /*
625  * Start a commit of the current running transaction (if any).  Returns true
626  * if a transaction is going to be committed (or is currently already
627  * committing), and fills its tid in at *ptid
628  */
629 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
630 {
631         int ret = 0;
632
633         write_lock(&journal->j_state_lock);
634         if (journal->j_running_transaction) {
635                 tid_t tid = journal->j_running_transaction->t_tid;
636
637                 __jbd2_log_start_commit(journal, tid);
638                 /* There's a running transaction and we've just made sure
639                  * it's commit has been scheduled. */
640                 if (ptid)
641                         *ptid = tid;
642                 ret = 1;
643         } else if (journal->j_committing_transaction) {
644                 /*
645                  * If commit has been started, then we have to wait for
646                  * completion of that transaction.
647                  */
648                 if (ptid)
649                         *ptid = journal->j_committing_transaction->t_tid;
650                 ret = 1;
651         }
652         write_unlock(&journal->j_state_lock);
653         return ret;
654 }
655
656 /*
657  * Return 1 if a given transaction has not yet sent barrier request
658  * connected with a transaction commit. If 0 is returned, transaction
659  * may or may not have sent the barrier. Used to avoid sending barrier
660  * twice in common cases.
661  */
662 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
663 {
664         int ret = 0;
665         transaction_t *commit_trans;
666
667         if (!(journal->j_flags & JBD2_BARRIER))
668                 return 0;
669         read_lock(&journal->j_state_lock);
670         /* Transaction already committed? */
671         if (tid_geq(journal->j_commit_sequence, tid))
672                 goto out;
673         commit_trans = journal->j_committing_transaction;
674         if (!commit_trans || commit_trans->t_tid != tid) {
675                 ret = 1;
676                 goto out;
677         }
678         /*
679          * Transaction is being committed and we already proceeded to
680          * submitting a flush to fs partition?
681          */
682         if (journal->j_fs_dev != journal->j_dev) {
683                 if (!commit_trans->t_need_data_flush ||
684                     commit_trans->t_state >= T_COMMIT_DFLUSH)
685                         goto out;
686         } else {
687                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
688                         goto out;
689         }
690         ret = 1;
691 out:
692         read_unlock(&journal->j_state_lock);
693         return ret;
694 }
695 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
696
697 /*
698  * Wait for a specified commit to complete.
699  * The caller may not hold the journal lock.
700  */
701 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
702 {
703         int err = 0;
704
705         read_lock(&journal->j_state_lock);
706 #ifdef CONFIG_PROVE_LOCKING
707         /*
708          * Some callers make sure transaction is already committing and in that
709          * case we cannot block on open handles anymore. So don't warn in that
710          * case.
711          */
712         if (tid_gt(tid, journal->j_commit_sequence) &&
713             (!journal->j_committing_transaction ||
714              journal->j_committing_transaction->t_tid != tid)) {
715                 read_unlock(&journal->j_state_lock);
716                 jbd2_might_wait_for_commit(journal);
717                 read_lock(&journal->j_state_lock);
718         }
719 #endif
720 #ifdef CONFIG_JBD2_DEBUG
721         if (!tid_geq(journal->j_commit_request, tid)) {
722                 printk(KERN_ERR
723                        "%s: error: j_commit_request=%d, tid=%d\n",
724                        __func__, journal->j_commit_request, tid);
725         }
726 #endif
727         while (tid_gt(tid, journal->j_commit_sequence)) {
728                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
729                                   tid, journal->j_commit_sequence);
730                 read_unlock(&journal->j_state_lock);
731                 wake_up(&journal->j_wait_commit);
732                 wait_event(journal->j_wait_done_commit,
733                                 !tid_gt(tid, journal->j_commit_sequence));
734                 read_lock(&journal->j_state_lock);
735         }
736         read_unlock(&journal->j_state_lock);
737
738         if (unlikely(is_journal_aborted(journal)))
739                 err = -EIO;
740         return err;
741 }
742
743 /*
744  * When this function returns the transaction corresponding to tid
745  * will be completed.  If the transaction has currently running, start
746  * committing that transaction before waiting for it to complete.  If
747  * the transaction id is stale, it is by definition already completed,
748  * so just return SUCCESS.
749  */
750 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
751 {
752         int     need_to_wait = 1;
753
754         read_lock(&journal->j_state_lock);
755         if (journal->j_running_transaction &&
756             journal->j_running_transaction->t_tid == tid) {
757                 if (journal->j_commit_request != tid) {
758                         /* transaction not yet started, so request it */
759                         read_unlock(&journal->j_state_lock);
760                         jbd2_log_start_commit(journal, tid);
761                         goto wait_commit;
762                 }
763         } else if (!(journal->j_committing_transaction &&
764                      journal->j_committing_transaction->t_tid == tid))
765                 need_to_wait = 0;
766         read_unlock(&journal->j_state_lock);
767         if (!need_to_wait)
768                 return 0;
769 wait_commit:
770         return jbd2_log_wait_commit(journal, tid);
771 }
772 EXPORT_SYMBOL(jbd2_complete_transaction);
773
774 /*
775  * Log buffer allocation routines:
776  */
777
778 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
779 {
780         unsigned long blocknr;
781
782         write_lock(&journal->j_state_lock);
783         J_ASSERT(journal->j_free > 1);
784
785         blocknr = journal->j_head;
786         journal->j_head++;
787         journal->j_free--;
788         if (journal->j_head == journal->j_last)
789                 journal->j_head = journal->j_first;
790         write_unlock(&journal->j_state_lock);
791         return jbd2_journal_bmap(journal, blocknr, retp);
792 }
793
794 /*
795  * Conversion of logical to physical block numbers for the journal
796  *
797  * On external journals the journal blocks are identity-mapped, so
798  * this is a no-op.  If needed, we can use j_blk_offset - everything is
799  * ready.
800  */
801 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
802                  unsigned long long *retp)
803 {
804         int err = 0;
805         unsigned long long ret;
806
807         if (journal->j_inode) {
808                 ret = bmap(journal->j_inode, blocknr);
809                 if (ret)
810                         *retp = ret;
811                 else {
812                         printk(KERN_ALERT "%s: journal block not found "
813                                         "at offset %lu on %s\n",
814                                __func__, blocknr, journal->j_devname);
815                         err = -EIO;
816                         __journal_abort_soft(journal, err);
817                 }
818         } else {
819                 *retp = blocknr; /* +journal->j_blk_offset */
820         }
821         return err;
822 }
823
824 /*
825  * We play buffer_head aliasing tricks to write data/metadata blocks to
826  * the journal without copying their contents, but for journal
827  * descriptor blocks we do need to generate bona fide buffers.
828  *
829  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
830  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
831  * But we don't bother doing that, so there will be coherency problems with
832  * mmaps of blockdevs which hold live JBD-controlled filesystems.
833  */
834 struct buffer_head *
835 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
836 {
837         journal_t *journal = transaction->t_journal;
838         struct buffer_head *bh;
839         unsigned long long blocknr;
840         journal_header_t *header;
841         int err;
842
843         err = jbd2_journal_next_log_block(journal, &blocknr);
844
845         if (err)
846                 return NULL;
847
848         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
849         if (!bh)
850                 return NULL;
851         lock_buffer(bh);
852         memset(bh->b_data, 0, journal->j_blocksize);
853         header = (journal_header_t *)bh->b_data;
854         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
855         header->h_blocktype = cpu_to_be32(type);
856         header->h_sequence = cpu_to_be32(transaction->t_tid);
857         set_buffer_uptodate(bh);
858         unlock_buffer(bh);
859         BUFFER_TRACE(bh, "return this buffer");
860         return bh;
861 }
862
863 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
864 {
865         struct jbd2_journal_block_tail *tail;
866         __u32 csum;
867
868         if (!jbd2_journal_has_csum_v2or3(j))
869                 return;
870
871         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
872                         sizeof(struct jbd2_journal_block_tail));
873         tail->t_checksum = 0;
874         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
875         tail->t_checksum = cpu_to_be32(csum);
876 }
877
878 /*
879  * Return tid of the oldest transaction in the journal and block in the journal
880  * where the transaction starts.
881  *
882  * If the journal is now empty, return which will be the next transaction ID
883  * we will write and where will that transaction start.
884  *
885  * The return value is 0 if journal tail cannot be pushed any further, 1 if
886  * it can.
887  */
888 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
889                               unsigned long *block)
890 {
891         transaction_t *transaction;
892         int ret;
893
894         read_lock(&journal->j_state_lock);
895         spin_lock(&journal->j_list_lock);
896         transaction = journal->j_checkpoint_transactions;
897         if (transaction) {
898                 *tid = transaction->t_tid;
899                 *block = transaction->t_log_start;
900         } else if ((transaction = journal->j_committing_transaction) != NULL) {
901                 *tid = transaction->t_tid;
902                 *block = transaction->t_log_start;
903         } else if ((transaction = journal->j_running_transaction) != NULL) {
904                 *tid = transaction->t_tid;
905                 *block = journal->j_head;
906         } else {
907                 *tid = journal->j_transaction_sequence;
908                 *block = journal->j_head;
909         }
910         ret = tid_gt(*tid, journal->j_tail_sequence);
911         spin_unlock(&journal->j_list_lock);
912         read_unlock(&journal->j_state_lock);
913
914         return ret;
915 }
916
917 /*
918  * Update information in journal structure and in on disk journal superblock
919  * about log tail. This function does not check whether information passed in
920  * really pushes log tail further. It's responsibility of the caller to make
921  * sure provided log tail information is valid (e.g. by holding
922  * j_checkpoint_mutex all the time between computing log tail and calling this
923  * function as is the case with jbd2_cleanup_journal_tail()).
924  *
925  * Requires j_checkpoint_mutex
926  */
927 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
928 {
929         unsigned long freed;
930         int ret;
931
932         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
933
934         /*
935          * We cannot afford for write to remain in drive's caches since as
936          * soon as we update j_tail, next transaction can start reusing journal
937          * space and if we lose sb update during power failure we'd replay
938          * old transaction with possibly newly overwritten data.
939          */
940         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
941                                               REQ_SYNC | REQ_FUA);
942         if (ret)
943                 goto out;
944
945         write_lock(&journal->j_state_lock);
946         freed = block - journal->j_tail;
947         if (block < journal->j_tail)
948                 freed += journal->j_last - journal->j_first;
949
950         trace_jbd2_update_log_tail(journal, tid, block, freed);
951         jbd_debug(1,
952                   "Cleaning journal tail from %d to %d (offset %lu), "
953                   "freeing %lu\n",
954                   journal->j_tail_sequence, tid, block, freed);
955
956         journal->j_free += freed;
957         journal->j_tail_sequence = tid;
958         journal->j_tail = block;
959         write_unlock(&journal->j_state_lock);
960
961 out:
962         return ret;
963 }
964
965 /*
966  * This is a variation of __jbd2_update_log_tail which checks for validity of
967  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
968  * with other threads updating log tail.
969  */
970 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
971 {
972         mutex_lock_io(&journal->j_checkpoint_mutex);
973         if (tid_gt(tid, journal->j_tail_sequence))
974                 __jbd2_update_log_tail(journal, tid, block);
975         mutex_unlock(&journal->j_checkpoint_mutex);
976 }
977
978 struct jbd2_stats_proc_session {
979         journal_t *journal;
980         struct transaction_stats_s *stats;
981         int start;
982         int max;
983 };
984
985 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
986 {
987         return *pos ? NULL : SEQ_START_TOKEN;
988 }
989
990 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
991 {
992         return NULL;
993 }
994
995 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
996 {
997         struct jbd2_stats_proc_session *s = seq->private;
998
999         if (v != SEQ_START_TOKEN)
1000                 return 0;
1001         seq_printf(seq, "%lu transactions (%lu requested), "
1002                    "each up to %u blocks\n",
1003                    s->stats->ts_tid, s->stats->ts_requested,
1004                    s->journal->j_max_transaction_buffers);
1005         if (s->stats->ts_tid == 0)
1006                 return 0;
1007         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1008             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1009         seq_printf(seq, "  %ums request delay\n",
1010             (s->stats->ts_requested == 0) ? 0 :
1011             jiffies_to_msecs(s->stats->run.rs_request_delay /
1012                              s->stats->ts_requested));
1013         seq_printf(seq, "  %ums running transaction\n",
1014             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1015         seq_printf(seq, "  %ums transaction was being locked\n",
1016             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1017         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1018             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1019         seq_printf(seq, "  %ums logging transaction\n",
1020             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1021         seq_printf(seq, "  %lluus average transaction commit time\n",
1022                    div_u64(s->journal->j_average_commit_time, 1000));
1023         seq_printf(seq, "  %lu handles per transaction\n",
1024             s->stats->run.rs_handle_count / s->stats->ts_tid);
1025         seq_printf(seq, "  %lu blocks per transaction\n",
1026             s->stats->run.rs_blocks / s->stats->ts_tid);
1027         seq_printf(seq, "  %lu logged blocks per transaction\n",
1028             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1029         return 0;
1030 }
1031
1032 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1033 {
1034 }
1035
1036 static const struct seq_operations jbd2_seq_info_ops = {
1037         .start  = jbd2_seq_info_start,
1038         .next   = jbd2_seq_info_next,
1039         .stop   = jbd2_seq_info_stop,
1040         .show   = jbd2_seq_info_show,
1041 };
1042
1043 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1044 {
1045         journal_t *journal = PDE_DATA(inode);
1046         struct jbd2_stats_proc_session *s;
1047         int rc, size;
1048
1049         s = kmalloc(sizeof(*s), GFP_KERNEL);
1050         if (s == NULL)
1051                 return -ENOMEM;
1052         size = sizeof(struct transaction_stats_s);
1053         s->stats = kmalloc(size, GFP_KERNEL);
1054         if (s->stats == NULL) {
1055                 kfree(s);
1056                 return -ENOMEM;
1057         }
1058         spin_lock(&journal->j_history_lock);
1059         memcpy(s->stats, &journal->j_stats, size);
1060         s->journal = journal;
1061         spin_unlock(&journal->j_history_lock);
1062
1063         rc = seq_open(file, &jbd2_seq_info_ops);
1064         if (rc == 0) {
1065                 struct seq_file *m = file->private_data;
1066                 m->private = s;
1067         } else {
1068                 kfree(s->stats);
1069                 kfree(s);
1070         }
1071         return rc;
1072
1073 }
1074
1075 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1076 {
1077         struct seq_file *seq = file->private_data;
1078         struct jbd2_stats_proc_session *s = seq->private;
1079         kfree(s->stats);
1080         kfree(s);
1081         return seq_release(inode, file);
1082 }
1083
1084 static const struct file_operations jbd2_seq_info_fops = {
1085         .owner          = THIS_MODULE,
1086         .open           = jbd2_seq_info_open,
1087         .read           = seq_read,
1088         .llseek         = seq_lseek,
1089         .release        = jbd2_seq_info_release,
1090 };
1091
1092 static struct proc_dir_entry *proc_jbd2_stats;
1093
1094 static void jbd2_stats_proc_init(journal_t *journal)
1095 {
1096         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1097         if (journal->j_proc_entry) {
1098                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1099                                  &jbd2_seq_info_fops, journal);
1100         }
1101 }
1102
1103 static void jbd2_stats_proc_exit(journal_t *journal)
1104 {
1105         remove_proc_entry("info", journal->j_proc_entry);
1106         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1107 }
1108
1109 /*
1110  * Management for journal control blocks: functions to create and
1111  * destroy journal_t structures, and to initialise and read existing
1112  * journal blocks from disk.  */
1113
1114 /* First: create and setup a journal_t object in memory.  We initialise
1115  * very few fields yet: that has to wait until we have created the
1116  * journal structures from from scratch, or loaded them from disk. */
1117
1118 static journal_t *journal_init_common(struct block_device *bdev,
1119                         struct block_device *fs_dev,
1120                         unsigned long long start, int len, int blocksize)
1121 {
1122         static struct lock_class_key jbd2_trans_commit_key;
1123         journal_t *journal;
1124         int err;
1125         struct buffer_head *bh;
1126         int n;
1127
1128         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1129         if (!journal)
1130                 return NULL;
1131
1132         init_waitqueue_head(&journal->j_wait_transaction_locked);
1133         init_waitqueue_head(&journal->j_wait_done_commit);
1134         init_waitqueue_head(&journal->j_wait_commit);
1135         init_waitqueue_head(&journal->j_wait_updates);
1136         init_waitqueue_head(&journal->j_wait_reserved);
1137         mutex_init(&journal->j_barrier);
1138         mutex_init(&journal->j_checkpoint_mutex);
1139         spin_lock_init(&journal->j_revoke_lock);
1140         spin_lock_init(&journal->j_list_lock);
1141         rwlock_init(&journal->j_state_lock);
1142
1143         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1144         journal->j_min_batch_time = 0;
1145         journal->j_max_batch_time = 15000; /* 15ms */
1146         atomic_set(&journal->j_reserved_credits, 0);
1147
1148         /* The journal is marked for error until we succeed with recovery! */
1149         journal->j_flags = JBD2_ABORT;
1150
1151         /* Set up a default-sized revoke table for the new mount. */
1152         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1153         if (err)
1154                 goto err_cleanup;
1155
1156         spin_lock_init(&journal->j_history_lock);
1157
1158         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1159                          &jbd2_trans_commit_key, 0);
1160
1161         /* journal descriptor can store up to n blocks -bzzz */
1162         journal->j_blocksize = blocksize;
1163         journal->j_dev = bdev;
1164         journal->j_fs_dev = fs_dev;
1165         journal->j_blk_offset = start;
1166         journal->j_maxlen = len;
1167         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1168         journal->j_wbufsize = n;
1169         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1170                                         GFP_KERNEL);
1171         if (!journal->j_wbuf)
1172                 goto err_cleanup;
1173
1174         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1175         if (!bh) {
1176                 pr_err("%s: Cannot get buffer for journal superblock\n",
1177                         __func__);
1178                 goto err_cleanup;
1179         }
1180         journal->j_sb_buffer = bh;
1181         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1182
1183         return journal;
1184
1185 err_cleanup:
1186         kfree(journal->j_wbuf);
1187         jbd2_journal_destroy_revoke(journal);
1188         kfree(journal);
1189         return NULL;
1190 }
1191
1192 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1193  *
1194  * Create a journal structure assigned some fixed set of disk blocks to
1195  * the journal.  We don't actually touch those disk blocks yet, but we
1196  * need to set up all of the mapping information to tell the journaling
1197  * system where the journal blocks are.
1198  *
1199  */
1200
1201 /**
1202  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1203  *  @bdev: Block device on which to create the journal
1204  *  @fs_dev: Device which hold journalled filesystem for this journal.
1205  *  @start: Block nr Start of journal.
1206  *  @len:  Length of the journal in blocks.
1207  *  @blocksize: blocksize of journalling device
1208  *
1209  *  Returns: a newly created journal_t *
1210  *
1211  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1212  *  range of blocks on an arbitrary block device.
1213  *
1214  */
1215 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1216                         struct block_device *fs_dev,
1217                         unsigned long long start, int len, int blocksize)
1218 {
1219         journal_t *journal;
1220
1221         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1222         if (!journal)
1223                 return NULL;
1224
1225         bdevname(journal->j_dev, journal->j_devname);
1226         strreplace(journal->j_devname, '/', '!');
1227         jbd2_stats_proc_init(journal);
1228
1229         return journal;
1230 }
1231
1232 /**
1233  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1234  *  @inode: An inode to create the journal in
1235  *
1236  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1237  * the journal.  The inode must exist already, must support bmap() and
1238  * must have all data blocks preallocated.
1239  */
1240 journal_t *jbd2_journal_init_inode(struct inode *inode)
1241 {
1242         journal_t *journal;
1243         char *p;
1244         unsigned long long blocknr;
1245
1246         blocknr = bmap(inode, 0);
1247         if (!blocknr) {
1248                 pr_err("%s: Cannot locate journal superblock\n",
1249                         __func__);
1250                 return NULL;
1251         }
1252
1253         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1254                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1255                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1256
1257         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1258                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1259                         inode->i_sb->s_blocksize);
1260         if (!journal)
1261                 return NULL;
1262
1263         journal->j_inode = inode;
1264         bdevname(journal->j_dev, journal->j_devname);
1265         p = strreplace(journal->j_devname, '/', '!');
1266         sprintf(p, "-%lu", journal->j_inode->i_ino);
1267         jbd2_stats_proc_init(journal);
1268
1269         return journal;
1270 }
1271
1272 /*
1273  * If the journal init or create aborts, we need to mark the journal
1274  * superblock as being NULL to prevent the journal destroy from writing
1275  * back a bogus superblock.
1276  */
1277 static void journal_fail_superblock (journal_t *journal)
1278 {
1279         struct buffer_head *bh = journal->j_sb_buffer;
1280         brelse(bh);
1281         journal->j_sb_buffer = NULL;
1282 }
1283
1284 /*
1285  * Given a journal_t structure, initialise the various fields for
1286  * startup of a new journaling session.  We use this both when creating
1287  * a journal, and after recovering an old journal to reset it for
1288  * subsequent use.
1289  */
1290
1291 static int journal_reset(journal_t *journal)
1292 {
1293         journal_superblock_t *sb = journal->j_superblock;
1294         unsigned long long first, last;
1295
1296         first = be32_to_cpu(sb->s_first);
1297         last = be32_to_cpu(sb->s_maxlen);
1298         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1299                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1300                        first, last);
1301                 journal_fail_superblock(journal);
1302                 return -EINVAL;
1303         }
1304
1305         journal->j_first = first;
1306         journal->j_last = last;
1307
1308         journal->j_head = first;
1309         journal->j_tail = first;
1310         journal->j_free = last - first;
1311
1312         journal->j_tail_sequence = journal->j_transaction_sequence;
1313         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1314         journal->j_commit_request = journal->j_commit_sequence;
1315
1316         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1317
1318         /*
1319          * As a special case, if the on-disk copy is already marked as needing
1320          * no recovery (s_start == 0), then we can safely defer the superblock
1321          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1322          * attempting a write to a potential-readonly device.
1323          */
1324         if (sb->s_start == 0) {
1325                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1326                         "(start %ld, seq %d, errno %d)\n",
1327                         journal->j_tail, journal->j_tail_sequence,
1328                         journal->j_errno);
1329                 journal->j_flags |= JBD2_FLUSHED;
1330         } else {
1331                 /* Lock here to make assertions happy... */
1332                 mutex_lock_io(&journal->j_checkpoint_mutex);
1333                 /*
1334                  * Update log tail information. We use REQ_FUA since new
1335                  * transaction will start reusing journal space and so we
1336                  * must make sure information about current log tail is on
1337                  * disk before that.
1338                  */
1339                 jbd2_journal_update_sb_log_tail(journal,
1340                                                 journal->j_tail_sequence,
1341                                                 journal->j_tail,
1342                                                 REQ_SYNC | REQ_FUA);
1343                 mutex_unlock(&journal->j_checkpoint_mutex);
1344         }
1345         return jbd2_journal_start_thread(journal);
1346 }
1347
1348 /*
1349  * This function expects that the caller will have locked the journal
1350  * buffer head, and will return with it unlocked
1351  */
1352 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1353 {
1354         struct buffer_head *bh = journal->j_sb_buffer;
1355         journal_superblock_t *sb = journal->j_superblock;
1356         int ret;
1357
1358         /* Buffer got discarded which means block device got invalidated */
1359         if (!buffer_mapped(bh)) {
1360                 unlock_buffer(bh);
1361                 return -EIO;
1362         }
1363
1364         trace_jbd2_write_superblock(journal, write_flags);
1365         if (!(journal->j_flags & JBD2_BARRIER))
1366                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1367         if (buffer_write_io_error(bh)) {
1368                 /*
1369                  * Oh, dear.  A previous attempt to write the journal
1370                  * superblock failed.  This could happen because the
1371                  * USB device was yanked out.  Or it could happen to
1372                  * be a transient write error and maybe the block will
1373                  * be remapped.  Nothing we can do but to retry the
1374                  * write and hope for the best.
1375                  */
1376                 printk(KERN_ERR "JBD2: previous I/O error detected "
1377                        "for journal superblock update for %s.\n",
1378                        journal->j_devname);
1379                 clear_buffer_write_io_error(bh);
1380                 set_buffer_uptodate(bh);
1381         }
1382         jbd2_superblock_csum_set(journal, sb);
1383         get_bh(bh);
1384         bh->b_end_io = end_buffer_write_sync;
1385         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1386         wait_on_buffer(bh);
1387         if (buffer_write_io_error(bh)) {
1388                 clear_buffer_write_io_error(bh);
1389                 set_buffer_uptodate(bh);
1390                 ret = -EIO;
1391         }
1392         if (ret) {
1393                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1394                        "journal superblock for %s.\n", ret,
1395                        journal->j_devname);
1396                 jbd2_journal_abort(journal, ret);
1397         }
1398
1399         return ret;
1400 }
1401
1402 /**
1403  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1404  * @journal: The journal to update.
1405  * @tail_tid: TID of the new transaction at the tail of the log
1406  * @tail_block: The first block of the transaction at the tail of the log
1407  * @write_op: With which operation should we write the journal sb
1408  *
1409  * Update a journal's superblock information about log tail and write it to
1410  * disk, waiting for the IO to complete.
1411  */
1412 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1413                                      unsigned long tail_block, int write_op)
1414 {
1415         journal_superblock_t *sb = journal->j_superblock;
1416         int ret;
1417
1418         if (is_journal_aborted(journal))
1419                 return -EIO;
1420
1421         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1422         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1423                   tail_block, tail_tid);
1424
1425         lock_buffer(journal->j_sb_buffer);
1426         sb->s_sequence = cpu_to_be32(tail_tid);
1427         sb->s_start    = cpu_to_be32(tail_block);
1428
1429         ret = jbd2_write_superblock(journal, write_op);
1430         if (ret)
1431                 goto out;
1432
1433         /* Log is no longer empty */
1434         write_lock(&journal->j_state_lock);
1435         WARN_ON(!sb->s_sequence);
1436         journal->j_flags &= ~JBD2_FLUSHED;
1437         write_unlock(&journal->j_state_lock);
1438
1439 out:
1440         return ret;
1441 }
1442
1443 /**
1444  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1445  * @journal: The journal to update.
1446  * @write_op: With which operation should we write the journal sb
1447  *
1448  * Update a journal's dynamic superblock fields to show that journal is empty.
1449  * Write updated superblock to disk waiting for IO to complete.
1450  */
1451 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1452 {
1453         journal_superblock_t *sb = journal->j_superblock;
1454
1455         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1456         lock_buffer(journal->j_sb_buffer);
1457         if (sb->s_start == 0) {         /* Is it already empty? */
1458                 unlock_buffer(journal->j_sb_buffer);
1459                 return;
1460         }
1461
1462         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1463                   journal->j_tail_sequence);
1464
1465         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1466         sb->s_start    = cpu_to_be32(0);
1467
1468         jbd2_write_superblock(journal, write_op);
1469
1470         /* Log is no longer empty */
1471         write_lock(&journal->j_state_lock);
1472         journal->j_flags |= JBD2_FLUSHED;
1473         write_unlock(&journal->j_state_lock);
1474 }
1475
1476
1477 /**
1478  * jbd2_journal_update_sb_errno() - Update error in the journal.
1479  * @journal: The journal to update.
1480  *
1481  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1482  * to complete.
1483  */
1484 void jbd2_journal_update_sb_errno(journal_t *journal)
1485 {
1486         journal_superblock_t *sb = journal->j_superblock;
1487         int errcode;
1488
1489         lock_buffer(journal->j_sb_buffer);
1490         errcode = journal->j_errno;
1491         if (errcode == -ESHUTDOWN)
1492                 errcode = 0;
1493         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1494         sb->s_errno    = cpu_to_be32(errcode);
1495
1496         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1497 }
1498 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1499
1500 /*
1501  * Read the superblock for a given journal, performing initial
1502  * validation of the format.
1503  */
1504 static int journal_get_superblock(journal_t *journal)
1505 {
1506         struct buffer_head *bh;
1507         journal_superblock_t *sb;
1508         int err = -EIO;
1509
1510         bh = journal->j_sb_buffer;
1511
1512         J_ASSERT(bh != NULL);
1513         if (!buffer_uptodate(bh)) {
1514                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1515                 wait_on_buffer(bh);
1516                 if (!buffer_uptodate(bh)) {
1517                         printk(KERN_ERR
1518                                 "JBD2: IO error reading journal superblock\n");
1519                         goto out;
1520                 }
1521         }
1522
1523         if (buffer_verified(bh))
1524                 return 0;
1525
1526         sb = journal->j_superblock;
1527
1528         err = -EINVAL;
1529
1530         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1531             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1532                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1533                 goto out;
1534         }
1535
1536         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1537         case JBD2_SUPERBLOCK_V1:
1538                 journal->j_format_version = 1;
1539                 break;
1540         case JBD2_SUPERBLOCK_V2:
1541                 journal->j_format_version = 2;
1542                 break;
1543         default:
1544                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1545                 goto out;
1546         }
1547
1548         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1549                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1550         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1551                 printk(KERN_WARNING "JBD2: journal file too short\n");
1552                 goto out;
1553         }
1554
1555         if (be32_to_cpu(sb->s_first) == 0 ||
1556             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1557                 printk(KERN_WARNING
1558                         "JBD2: Invalid start block of journal: %u\n",
1559                         be32_to_cpu(sb->s_first));
1560                 goto out;
1561         }
1562
1563         if (jbd2_has_feature_csum2(journal) &&
1564             jbd2_has_feature_csum3(journal)) {
1565                 /* Can't have checksum v2 and v3 at the same time! */
1566                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1567                        "at the same time!\n");
1568                 goto out;
1569         }
1570
1571         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1572             jbd2_has_feature_checksum(journal)) {
1573                 /* Can't have checksum v1 and v2 on at the same time! */
1574                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1575                        "at the same time!\n");
1576                 goto out;
1577         }
1578
1579         if (!jbd2_verify_csum_type(journal, sb)) {
1580                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1581                 goto out;
1582         }
1583
1584         /* Load the checksum driver */
1585         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1586                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1587                 if (IS_ERR(journal->j_chksum_driver)) {
1588                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1589                         err = PTR_ERR(journal->j_chksum_driver);
1590                         journal->j_chksum_driver = NULL;
1591                         goto out;
1592                 }
1593         }
1594
1595         /* Check superblock checksum */
1596         if (!jbd2_superblock_csum_verify(journal, sb)) {
1597                 printk(KERN_ERR "JBD2: journal checksum error\n");
1598                 err = -EFSBADCRC;
1599                 goto out;
1600         }
1601
1602         /* Precompute checksum seed for all metadata */
1603         if (jbd2_journal_has_csum_v2or3(journal))
1604                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1605                                                    sizeof(sb->s_uuid));
1606
1607         set_buffer_verified(bh);
1608
1609         return 0;
1610
1611 out:
1612         journal_fail_superblock(journal);
1613         return err;
1614 }
1615
1616 /*
1617  * Load the on-disk journal superblock and read the key fields into the
1618  * journal_t.
1619  */
1620
1621 static int load_superblock(journal_t *journal)
1622 {
1623         int err;
1624         journal_superblock_t *sb;
1625
1626         err = journal_get_superblock(journal);
1627         if (err)
1628                 return err;
1629
1630         sb = journal->j_superblock;
1631
1632         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1633         journal->j_tail = be32_to_cpu(sb->s_start);
1634         journal->j_first = be32_to_cpu(sb->s_first);
1635         journal->j_last = be32_to_cpu(sb->s_maxlen);
1636         journal->j_errno = be32_to_cpu(sb->s_errno);
1637
1638         return 0;
1639 }
1640
1641
1642 /**
1643  * int jbd2_journal_load() - Read journal from disk.
1644  * @journal: Journal to act on.
1645  *
1646  * Given a journal_t structure which tells us which disk blocks contain
1647  * a journal, read the journal from disk to initialise the in-memory
1648  * structures.
1649  */
1650 int jbd2_journal_load(journal_t *journal)
1651 {
1652         int err;
1653         journal_superblock_t *sb;
1654
1655         err = load_superblock(journal);
1656         if (err)
1657                 return err;
1658
1659         sb = journal->j_superblock;
1660         /* If this is a V2 superblock, then we have to check the
1661          * features flags on it. */
1662
1663         if (journal->j_format_version >= 2) {
1664                 if ((sb->s_feature_ro_compat &
1665                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1666                     (sb->s_feature_incompat &
1667                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1668                         printk(KERN_WARNING
1669                                 "JBD2: Unrecognised features on journal\n");
1670                         return -EINVAL;
1671                 }
1672         }
1673
1674         /*
1675          * Create a slab for this blocksize
1676          */
1677         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1678         if (err)
1679                 return err;
1680
1681         /* Let the recovery code check whether it needs to recover any
1682          * data from the journal. */
1683         if (jbd2_journal_recover(journal))
1684                 goto recovery_error;
1685
1686         if (journal->j_failed_commit) {
1687                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1688                        "is corrupt.\n", journal->j_failed_commit,
1689                        journal->j_devname);
1690                 return -EFSCORRUPTED;
1691         }
1692         /*
1693          * clear JBD2_ABORT flag initialized in journal_init_common
1694          * here to update log tail information with the newest seq.
1695          */
1696         journal->j_flags &= ~JBD2_ABORT;
1697
1698         /* OK, we've finished with the dynamic journal bits:
1699          * reinitialise the dynamic contents of the superblock in memory
1700          * and reset them on disk. */
1701         if (journal_reset(journal))
1702                 goto recovery_error;
1703
1704         journal->j_flags |= JBD2_LOADED;
1705         return 0;
1706
1707 recovery_error:
1708         printk(KERN_WARNING "JBD2: recovery failed\n");
1709         return -EIO;
1710 }
1711
1712 /**
1713  * void jbd2_journal_destroy() - Release a journal_t structure.
1714  * @journal: Journal to act on.
1715  *
1716  * Release a journal_t structure once it is no longer in use by the
1717  * journaled object.
1718  * Return <0 if we couldn't clean up the journal.
1719  */
1720 int jbd2_journal_destroy(journal_t *journal)
1721 {
1722         int err = 0;
1723
1724         /* Wait for the commit thread to wake up and die. */
1725         journal_kill_thread(journal);
1726
1727         /* Force a final log commit */
1728         if (journal->j_running_transaction)
1729                 jbd2_journal_commit_transaction(journal);
1730
1731         /* Force any old transactions to disk */
1732
1733         /* Totally anal locking here... */
1734         spin_lock(&journal->j_list_lock);
1735         while (journal->j_checkpoint_transactions != NULL) {
1736                 spin_unlock(&journal->j_list_lock);
1737                 mutex_lock_io(&journal->j_checkpoint_mutex);
1738                 err = jbd2_log_do_checkpoint(journal);
1739                 mutex_unlock(&journal->j_checkpoint_mutex);
1740                 /*
1741                  * If checkpointing failed, just free the buffers to avoid
1742                  * looping forever
1743                  */
1744                 if (err) {
1745                         jbd2_journal_destroy_checkpoint(journal);
1746                         spin_lock(&journal->j_list_lock);
1747                         break;
1748                 }
1749                 spin_lock(&journal->j_list_lock);
1750         }
1751
1752         J_ASSERT(journal->j_running_transaction == NULL);
1753         J_ASSERT(journal->j_committing_transaction == NULL);
1754         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1755         spin_unlock(&journal->j_list_lock);
1756
1757         if (journal->j_sb_buffer) {
1758                 if (!is_journal_aborted(journal)) {
1759                         mutex_lock_io(&journal->j_checkpoint_mutex);
1760
1761                         write_lock(&journal->j_state_lock);
1762                         journal->j_tail_sequence =
1763                                 ++journal->j_transaction_sequence;
1764                         write_unlock(&journal->j_state_lock);
1765
1766                         jbd2_mark_journal_empty(journal,
1767                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1768                         mutex_unlock(&journal->j_checkpoint_mutex);
1769                 } else
1770                         err = -EIO;
1771                 brelse(journal->j_sb_buffer);
1772         }
1773
1774         if (journal->j_proc_entry)
1775                 jbd2_stats_proc_exit(journal);
1776         iput(journal->j_inode);
1777         if (journal->j_revoke)
1778                 jbd2_journal_destroy_revoke(journal);
1779         if (journal->j_chksum_driver)
1780                 crypto_free_shash(journal->j_chksum_driver);
1781         kfree(journal->j_wbuf);
1782         kfree(journal);
1783
1784         return err;
1785 }
1786
1787
1788 /**
1789  *int jbd2_journal_check_used_features () - Check if features specified are used.
1790  * @journal: Journal to check.
1791  * @compat: bitmask of compatible features
1792  * @ro: bitmask of features that force read-only mount
1793  * @incompat: bitmask of incompatible features
1794  *
1795  * Check whether the journal uses all of a given set of
1796  * features.  Return true (non-zero) if it does.
1797  **/
1798
1799 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1800                                  unsigned long ro, unsigned long incompat)
1801 {
1802         journal_superblock_t *sb;
1803
1804         if (!compat && !ro && !incompat)
1805                 return 1;
1806         /* Load journal superblock if it is not loaded yet. */
1807         if (journal->j_format_version == 0 &&
1808             journal_get_superblock(journal) != 0)
1809                 return 0;
1810         if (journal->j_format_version == 1)
1811                 return 0;
1812
1813         sb = journal->j_superblock;
1814
1815         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1816             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1817             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1818                 return 1;
1819
1820         return 0;
1821 }
1822
1823 /**
1824  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1825  * @journal: Journal to check.
1826  * @compat: bitmask of compatible features
1827  * @ro: bitmask of features that force read-only mount
1828  * @incompat: bitmask of incompatible features
1829  *
1830  * Check whether the journaling code supports the use of
1831  * all of a given set of features on this journal.  Return true
1832  * (non-zero) if it can. */
1833
1834 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1835                                       unsigned long ro, unsigned long incompat)
1836 {
1837         if (!compat && !ro && !incompat)
1838                 return 1;
1839
1840         /* We can support any known requested features iff the
1841          * superblock is in version 2.  Otherwise we fail to support any
1842          * extended sb features. */
1843
1844         if (journal->j_format_version != 2)
1845                 return 0;
1846
1847         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1848             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1849             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1850                 return 1;
1851
1852         return 0;
1853 }
1854
1855 /**
1856  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1857  * @journal: Journal to act on.
1858  * @compat: bitmask of compatible features
1859  * @ro: bitmask of features that force read-only mount
1860  * @incompat: bitmask of incompatible features
1861  *
1862  * Mark a given journal feature as present on the
1863  * superblock.  Returns true if the requested features could be set.
1864  *
1865  */
1866
1867 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1868                           unsigned long ro, unsigned long incompat)
1869 {
1870 #define INCOMPAT_FEATURE_ON(f) \
1871                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1872 #define COMPAT_FEATURE_ON(f) \
1873                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1874         journal_superblock_t *sb;
1875
1876         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1877                 return 1;
1878
1879         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1880                 return 0;
1881
1882         /* If enabling v2 checksums, turn on v3 instead */
1883         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1884                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1885                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1886         }
1887
1888         /* Asking for checksumming v3 and v1?  Only give them v3. */
1889         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1890             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1891                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1892
1893         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1894                   compat, ro, incompat);
1895
1896         sb = journal->j_superblock;
1897
1898         /* Load the checksum driver if necessary */
1899         if ((journal->j_chksum_driver == NULL) &&
1900             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1901                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1902                 if (IS_ERR(journal->j_chksum_driver)) {
1903                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1904                         journal->j_chksum_driver = NULL;
1905                         return 0;
1906                 }
1907                 /* Precompute checksum seed for all metadata */
1908                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1909                                                    sizeof(sb->s_uuid));
1910         }
1911
1912         lock_buffer(journal->j_sb_buffer);
1913
1914         /* If enabling v3 checksums, update superblock */
1915         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1916                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1917                 sb->s_feature_compat &=
1918                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1919         }
1920
1921         /* If enabling v1 checksums, downgrade superblock */
1922         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1923                 sb->s_feature_incompat &=
1924                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1925                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1926
1927         sb->s_feature_compat    |= cpu_to_be32(compat);
1928         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1929         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1930         unlock_buffer(journal->j_sb_buffer);
1931
1932         return 1;
1933 #undef COMPAT_FEATURE_ON
1934 #undef INCOMPAT_FEATURE_ON
1935 }
1936
1937 /*
1938  * jbd2_journal_clear_features () - Clear a given journal feature in the
1939  *                                  superblock
1940  * @journal: Journal to act on.
1941  * @compat: bitmask of compatible features
1942  * @ro: bitmask of features that force read-only mount
1943  * @incompat: bitmask of incompatible features
1944  *
1945  * Clear a given journal feature as present on the
1946  * superblock.
1947  */
1948 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1949                                 unsigned long ro, unsigned long incompat)
1950 {
1951         journal_superblock_t *sb;
1952
1953         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1954                   compat, ro, incompat);
1955
1956         sb = journal->j_superblock;
1957
1958         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1959         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1960         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1961 }
1962 EXPORT_SYMBOL(jbd2_journal_clear_features);
1963
1964 /**
1965  * int jbd2_journal_flush () - Flush journal
1966  * @journal: Journal to act on.
1967  *
1968  * Flush all data for a given journal to disk and empty the journal.
1969  * Filesystems can use this when remounting readonly to ensure that
1970  * recovery does not need to happen on remount.
1971  */
1972
1973 int jbd2_journal_flush(journal_t *journal)
1974 {
1975         int err = 0;
1976         transaction_t *transaction = NULL;
1977
1978         write_lock(&journal->j_state_lock);
1979
1980         /* Force everything buffered to the log... */
1981         if (journal->j_running_transaction) {
1982                 transaction = journal->j_running_transaction;
1983                 __jbd2_log_start_commit(journal, transaction->t_tid);
1984         } else if (journal->j_committing_transaction)
1985                 transaction = journal->j_committing_transaction;
1986
1987         /* Wait for the log commit to complete... */
1988         if (transaction) {
1989                 tid_t tid = transaction->t_tid;
1990
1991                 write_unlock(&journal->j_state_lock);
1992                 jbd2_log_wait_commit(journal, tid);
1993         } else {
1994                 write_unlock(&journal->j_state_lock);
1995         }
1996
1997         /* ...and flush everything in the log out to disk. */
1998         spin_lock(&journal->j_list_lock);
1999         while (!err && journal->j_checkpoint_transactions != NULL) {
2000                 spin_unlock(&journal->j_list_lock);
2001                 mutex_lock_io(&journal->j_checkpoint_mutex);
2002                 err = jbd2_log_do_checkpoint(journal);
2003                 mutex_unlock(&journal->j_checkpoint_mutex);
2004                 spin_lock(&journal->j_list_lock);
2005         }
2006         spin_unlock(&journal->j_list_lock);
2007
2008         if (is_journal_aborted(journal))
2009                 return -EIO;
2010
2011         mutex_lock_io(&journal->j_checkpoint_mutex);
2012         if (!err) {
2013                 err = jbd2_cleanup_journal_tail(journal);
2014                 if (err < 0) {
2015                         mutex_unlock(&journal->j_checkpoint_mutex);
2016                         goto out;
2017                 }
2018                 err = 0;
2019         }
2020
2021         /* Finally, mark the journal as really needing no recovery.
2022          * This sets s_start==0 in the underlying superblock, which is
2023          * the magic code for a fully-recovered superblock.  Any future
2024          * commits of data to the journal will restore the current
2025          * s_start value. */
2026         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2027         mutex_unlock(&journal->j_checkpoint_mutex);
2028         write_lock(&journal->j_state_lock);
2029         J_ASSERT(!journal->j_running_transaction);
2030         J_ASSERT(!journal->j_committing_transaction);
2031         J_ASSERT(!journal->j_checkpoint_transactions);
2032         J_ASSERT(journal->j_head == journal->j_tail);
2033         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2034         write_unlock(&journal->j_state_lock);
2035 out:
2036         return err;
2037 }
2038
2039 /**
2040  * int jbd2_journal_wipe() - Wipe journal contents
2041  * @journal: Journal to act on.
2042  * @write: flag (see below)
2043  *
2044  * Wipe out all of the contents of a journal, safely.  This will produce
2045  * a warning if the journal contains any valid recovery information.
2046  * Must be called between journal_init_*() and jbd2_journal_load().
2047  *
2048  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2049  * we merely suppress recovery.
2050  */
2051
2052 int jbd2_journal_wipe(journal_t *journal, int write)
2053 {
2054         int err = 0;
2055
2056         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2057
2058         err = load_superblock(journal);
2059         if (err)
2060                 return err;
2061
2062         if (!journal->j_tail)
2063                 goto no_recovery;
2064
2065         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2066                 write ? "Clearing" : "Ignoring");
2067
2068         err = jbd2_journal_skip_recovery(journal);
2069         if (write) {
2070                 /* Lock to make assertions happy... */
2071                 mutex_lock(&journal->j_checkpoint_mutex);
2072                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2073                 mutex_unlock(&journal->j_checkpoint_mutex);
2074         }
2075
2076  no_recovery:
2077         return err;
2078 }
2079
2080 /*
2081  * Journal abort has very specific semantics, which we describe
2082  * for journal abort.
2083  *
2084  * Two internal functions, which provide abort to the jbd layer
2085  * itself are here.
2086  */
2087
2088 /*
2089  * Quick version for internal journal use (doesn't lock the journal).
2090  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2091  * and don't attempt to make any other journal updates.
2092  */
2093 void __jbd2_journal_abort_hard(journal_t *journal)
2094 {
2095         transaction_t *transaction;
2096
2097         if (journal->j_flags & JBD2_ABORT)
2098                 return;
2099
2100         printk(KERN_ERR "Aborting journal on device %s.\n",
2101                journal->j_devname);
2102
2103         write_lock(&journal->j_state_lock);
2104         journal->j_flags |= JBD2_ABORT;
2105         transaction = journal->j_running_transaction;
2106         if (transaction)
2107                 __jbd2_log_start_commit(journal, transaction->t_tid);
2108         write_unlock(&journal->j_state_lock);
2109 }
2110
2111 /* Soft abort: record the abort error status in the journal superblock,
2112  * but don't do any other IO. */
2113 static void __journal_abort_soft (journal_t *journal, int errno)
2114 {
2115         int old_errno;
2116
2117         write_lock(&journal->j_state_lock);
2118         old_errno = journal->j_errno;
2119         if (!journal->j_errno || errno == -ESHUTDOWN)
2120                 journal->j_errno = errno;
2121
2122         if (journal->j_flags & JBD2_ABORT) {
2123                 write_unlock(&journal->j_state_lock);
2124                 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN)
2125                         jbd2_journal_update_sb_errno(journal);
2126                 return;
2127         }
2128         write_unlock(&journal->j_state_lock);
2129
2130         __jbd2_journal_abort_hard(journal);
2131
2132         jbd2_journal_update_sb_errno(journal);
2133         write_lock(&journal->j_state_lock);
2134         journal->j_flags |= JBD2_REC_ERR;
2135         write_unlock(&journal->j_state_lock);
2136 }
2137
2138 /**
2139  * void jbd2_journal_abort () - Shutdown the journal immediately.
2140  * @journal: the journal to shutdown.
2141  * @errno:   an error number to record in the journal indicating
2142  *           the reason for the shutdown.
2143  *
2144  * Perform a complete, immediate shutdown of the ENTIRE
2145  * journal (not of a single transaction).  This operation cannot be
2146  * undone without closing and reopening the journal.
2147  *
2148  * The jbd2_journal_abort function is intended to support higher level error
2149  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2150  * mode.
2151  *
2152  * Journal abort has very specific semantics.  Any existing dirty,
2153  * unjournaled buffers in the main filesystem will still be written to
2154  * disk by bdflush, but the journaling mechanism will be suspended
2155  * immediately and no further transaction commits will be honoured.
2156  *
2157  * Any dirty, journaled buffers will be written back to disk without
2158  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2159  * filesystem, but we _do_ attempt to leave as much data as possible
2160  * behind for fsck to use for cleanup.
2161  *
2162  * Any attempt to get a new transaction handle on a journal which is in
2163  * ABORT state will just result in an -EROFS error return.  A
2164  * jbd2_journal_stop on an existing handle will return -EIO if we have
2165  * entered abort state during the update.
2166  *
2167  * Recursive transactions are not disturbed by journal abort until the
2168  * final jbd2_journal_stop, which will receive the -EIO error.
2169  *
2170  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2171  * which will be recorded (if possible) in the journal superblock.  This
2172  * allows a client to record failure conditions in the middle of a
2173  * transaction without having to complete the transaction to record the
2174  * failure to disk.  ext3_error, for example, now uses this
2175  * functionality.
2176  *
2177  */
2178
2179 void jbd2_journal_abort(journal_t *journal, int errno)
2180 {
2181         __journal_abort_soft(journal, errno);
2182 }
2183
2184 /**
2185  * int jbd2_journal_errno () - returns the journal's error state.
2186  * @journal: journal to examine.
2187  *
2188  * This is the errno number set with jbd2_journal_abort(), the last
2189  * time the journal was mounted - if the journal was stopped
2190  * without calling abort this will be 0.
2191  *
2192  * If the journal has been aborted on this mount time -EROFS will
2193  * be returned.
2194  */
2195 int jbd2_journal_errno(journal_t *journal)
2196 {
2197         int err;
2198
2199         read_lock(&journal->j_state_lock);
2200         if (journal->j_flags & JBD2_ABORT)
2201                 err = -EROFS;
2202         else
2203                 err = journal->j_errno;
2204         read_unlock(&journal->j_state_lock);
2205         return err;
2206 }
2207
2208 /**
2209  * int jbd2_journal_clear_err () - clears the journal's error state
2210  * @journal: journal to act on.
2211  *
2212  * An error must be cleared or acked to take a FS out of readonly
2213  * mode.
2214  */
2215 int jbd2_journal_clear_err(journal_t *journal)
2216 {
2217         int err = 0;
2218
2219         write_lock(&journal->j_state_lock);
2220         if (journal->j_flags & JBD2_ABORT)
2221                 err = -EROFS;
2222         else
2223                 journal->j_errno = 0;
2224         write_unlock(&journal->j_state_lock);
2225         return err;
2226 }
2227
2228 /**
2229  * void jbd2_journal_ack_err() - Ack journal err.
2230  * @journal: journal to act on.
2231  *
2232  * An error must be cleared or acked to take a FS out of readonly
2233  * mode.
2234  */
2235 void jbd2_journal_ack_err(journal_t *journal)
2236 {
2237         write_lock(&journal->j_state_lock);
2238         if (journal->j_errno)
2239                 journal->j_flags |= JBD2_ACK_ERR;
2240         write_unlock(&journal->j_state_lock);
2241 }
2242
2243 int jbd2_journal_blocks_per_page(struct inode *inode)
2244 {
2245         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2246 }
2247
2248 /*
2249  * helper functions to deal with 32 or 64bit block numbers.
2250  */
2251 size_t journal_tag_bytes(journal_t *journal)
2252 {
2253         size_t sz;
2254
2255         if (jbd2_has_feature_csum3(journal))
2256                 return sizeof(journal_block_tag3_t);
2257
2258         sz = sizeof(journal_block_tag_t);
2259
2260         if (jbd2_has_feature_csum2(journal))
2261                 sz += sizeof(__u16);
2262
2263         if (jbd2_has_feature_64bit(journal))
2264                 return sz;
2265         else
2266                 return sz - sizeof(__u32);
2267 }
2268
2269 /*
2270  * JBD memory management
2271  *
2272  * These functions are used to allocate block-sized chunks of memory
2273  * used for making copies of buffer_head data.  Very often it will be
2274  * page-sized chunks of data, but sometimes it will be in
2275  * sub-page-size chunks.  (For example, 16k pages on Power systems
2276  * with a 4k block file system.)  For blocks smaller than a page, we
2277  * use a SLAB allocator.  There are slab caches for each block size,
2278  * which are allocated at mount time, if necessary, and we only free
2279  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2280  * this reason we don't need to a mutex to protect access to
2281  * jbd2_slab[] allocating or releasing memory; only in
2282  * jbd2_journal_create_slab().
2283  */
2284 #define JBD2_MAX_SLABS 8
2285 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2286
2287 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2288         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2289         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2290 };
2291
2292
2293 static void jbd2_journal_destroy_slabs(void)
2294 {
2295         int i;
2296
2297         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2298                 if (jbd2_slab[i])
2299                         kmem_cache_destroy(jbd2_slab[i]);
2300                 jbd2_slab[i] = NULL;
2301         }
2302 }
2303
2304 static int jbd2_journal_create_slab(size_t size)
2305 {
2306         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2307         int i = order_base_2(size) - 10;
2308         size_t slab_size;
2309
2310         if (size == PAGE_SIZE)
2311                 return 0;
2312
2313         if (i >= JBD2_MAX_SLABS)
2314                 return -EINVAL;
2315
2316         if (unlikely(i < 0))
2317                 i = 0;
2318         mutex_lock(&jbd2_slab_create_mutex);
2319         if (jbd2_slab[i]) {
2320                 mutex_unlock(&jbd2_slab_create_mutex);
2321                 return 0;       /* Already created */
2322         }
2323
2324         slab_size = 1 << (i+10);
2325         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2326                                          slab_size, 0, NULL);
2327         mutex_unlock(&jbd2_slab_create_mutex);
2328         if (!jbd2_slab[i]) {
2329                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2330                 return -ENOMEM;
2331         }
2332         return 0;
2333 }
2334
2335 static struct kmem_cache *get_slab(size_t size)
2336 {
2337         int i = order_base_2(size) - 10;
2338
2339         BUG_ON(i >= JBD2_MAX_SLABS);
2340         if (unlikely(i < 0))
2341                 i = 0;
2342         BUG_ON(jbd2_slab[i] == NULL);
2343         return jbd2_slab[i];
2344 }
2345
2346 void *jbd2_alloc(size_t size, gfp_t flags)
2347 {
2348         void *ptr;
2349
2350         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2351
2352         if (size < PAGE_SIZE)
2353                 ptr = kmem_cache_alloc(get_slab(size), flags);
2354         else
2355                 ptr = (void *)__get_free_pages(flags, get_order(size));
2356
2357         /* Check alignment; SLUB has gotten this wrong in the past,
2358          * and this can lead to user data corruption! */
2359         BUG_ON(((unsigned long) ptr) & (size-1));
2360
2361         return ptr;
2362 }
2363
2364 void jbd2_free(void *ptr, size_t size)
2365 {
2366         if (size < PAGE_SIZE)
2367                 kmem_cache_free(get_slab(size), ptr);
2368         else
2369                 free_pages((unsigned long)ptr, get_order(size));
2370 };
2371
2372 /*
2373  * Journal_head storage management
2374  */
2375 static struct kmem_cache *jbd2_journal_head_cache;
2376 #ifdef CONFIG_JBD2_DEBUG
2377 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2378 #endif
2379
2380 static int jbd2_journal_init_journal_head_cache(void)
2381 {
2382         int retval;
2383
2384         J_ASSERT(jbd2_journal_head_cache == NULL);
2385         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2386                                 sizeof(struct journal_head),
2387                                 0,              /* offset */
2388                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2389                                 NULL);          /* ctor */
2390         retval = 0;
2391         if (!jbd2_journal_head_cache) {
2392                 retval = -ENOMEM;
2393                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2394         }
2395         return retval;
2396 }
2397
2398 static void jbd2_journal_destroy_journal_head_cache(void)
2399 {
2400         if (jbd2_journal_head_cache) {
2401                 kmem_cache_destroy(jbd2_journal_head_cache);
2402                 jbd2_journal_head_cache = NULL;
2403         }
2404 }
2405
2406 /*
2407  * journal_head splicing and dicing
2408  */
2409 static struct journal_head *journal_alloc_journal_head(void)
2410 {
2411         struct journal_head *ret;
2412
2413 #ifdef CONFIG_JBD2_DEBUG
2414         atomic_inc(&nr_journal_heads);
2415 #endif
2416         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2417         if (!ret) {
2418                 jbd_debug(1, "out of memory for journal_head\n");
2419                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2420                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2421                                 GFP_NOFS | __GFP_NOFAIL);
2422         }
2423         return ret;
2424 }
2425
2426 static void journal_free_journal_head(struct journal_head *jh)
2427 {
2428 #ifdef CONFIG_JBD2_DEBUG
2429         atomic_dec(&nr_journal_heads);
2430         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2431 #endif
2432         kmem_cache_free(jbd2_journal_head_cache, jh);
2433 }
2434
2435 /*
2436  * A journal_head is attached to a buffer_head whenever JBD has an
2437  * interest in the buffer.
2438  *
2439  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2440  * is set.  This bit is tested in core kernel code where we need to take
2441  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2442  * there.
2443  *
2444  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2445  *
2446  * When a buffer has its BH_JBD bit set it is immune from being released by
2447  * core kernel code, mainly via ->b_count.
2448  *
2449  * A journal_head is detached from its buffer_head when the journal_head's
2450  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2451  * transaction (b_cp_transaction) hold their references to b_jcount.
2452  *
2453  * Various places in the kernel want to attach a journal_head to a buffer_head
2454  * _before_ attaching the journal_head to a transaction.  To protect the
2455  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2456  * journal_head's b_jcount refcount by one.  The caller must call
2457  * jbd2_journal_put_journal_head() to undo this.
2458  *
2459  * So the typical usage would be:
2460  *
2461  *      (Attach a journal_head if needed.  Increments b_jcount)
2462  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2463  *      ...
2464  *      (Get another reference for transaction)
2465  *      jbd2_journal_grab_journal_head(bh);
2466  *      jh->b_transaction = xxx;
2467  *      (Put original reference)
2468  *      jbd2_journal_put_journal_head(jh);
2469  */
2470
2471 /*
2472  * Give a buffer_head a journal_head.
2473  *
2474  * May sleep.
2475  */
2476 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2477 {
2478         struct journal_head *jh;
2479         struct journal_head *new_jh = NULL;
2480
2481 repeat:
2482         if (!buffer_jbd(bh))
2483                 new_jh = journal_alloc_journal_head();
2484
2485         jbd_lock_bh_journal_head(bh);
2486         if (buffer_jbd(bh)) {
2487                 jh = bh2jh(bh);
2488         } else {
2489                 J_ASSERT_BH(bh,
2490                         (atomic_read(&bh->b_count) > 0) ||
2491                         (bh->b_page && bh->b_page->mapping));
2492
2493                 if (!new_jh) {
2494                         jbd_unlock_bh_journal_head(bh);
2495                         goto repeat;
2496                 }
2497
2498                 jh = new_jh;
2499                 new_jh = NULL;          /* We consumed it */
2500                 set_buffer_jbd(bh);
2501                 bh->b_private = jh;
2502                 jh->b_bh = bh;
2503                 get_bh(bh);
2504                 BUFFER_TRACE(bh, "added journal_head");
2505         }
2506         jh->b_jcount++;
2507         jbd_unlock_bh_journal_head(bh);
2508         if (new_jh)
2509                 journal_free_journal_head(new_jh);
2510         return bh->b_private;
2511 }
2512
2513 /*
2514  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2515  * having a journal_head, return NULL
2516  */
2517 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2518 {
2519         struct journal_head *jh = NULL;
2520
2521         jbd_lock_bh_journal_head(bh);
2522         if (buffer_jbd(bh)) {
2523                 jh = bh2jh(bh);
2524                 jh->b_jcount++;
2525         }
2526         jbd_unlock_bh_journal_head(bh);
2527         return jh;
2528 }
2529
2530 static void __journal_remove_journal_head(struct buffer_head *bh)
2531 {
2532         struct journal_head *jh = bh2jh(bh);
2533
2534         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2535         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2536         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2537         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2538         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2539         J_ASSERT_BH(bh, buffer_jbd(bh));
2540         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2541         BUFFER_TRACE(bh, "remove journal_head");
2542         if (jh->b_frozen_data) {
2543                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2544                 jbd2_free(jh->b_frozen_data, bh->b_size);
2545         }
2546         if (jh->b_committed_data) {
2547                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2548                 jbd2_free(jh->b_committed_data, bh->b_size);
2549         }
2550         bh->b_private = NULL;
2551         jh->b_bh = NULL;        /* debug, really */
2552         clear_buffer_jbd(bh);
2553         journal_free_journal_head(jh);
2554 }
2555
2556 /*
2557  * Drop a reference on the passed journal_head.  If it fell to zero then
2558  * release the journal_head from the buffer_head.
2559  */
2560 void jbd2_journal_put_journal_head(struct journal_head *jh)
2561 {
2562         struct buffer_head *bh = jh2bh(jh);
2563
2564         jbd_lock_bh_journal_head(bh);
2565         J_ASSERT_JH(jh, jh->b_jcount > 0);
2566         --jh->b_jcount;
2567         if (!jh->b_jcount) {
2568                 __journal_remove_journal_head(bh);
2569                 jbd_unlock_bh_journal_head(bh);
2570                 __brelse(bh);
2571         } else
2572                 jbd_unlock_bh_journal_head(bh);
2573 }
2574
2575 /*
2576  * Initialize jbd inode head
2577  */
2578 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2579 {
2580         jinode->i_transaction = NULL;
2581         jinode->i_next_transaction = NULL;
2582         jinode->i_vfs_inode = inode;
2583         jinode->i_flags = 0;
2584         jinode->i_dirty_start = 0;
2585         jinode->i_dirty_end = 0;
2586         INIT_LIST_HEAD(&jinode->i_list);
2587 }
2588
2589 /*
2590  * Function to be called before we start removing inode from memory (i.e.,
2591  * clear_inode() is a fine place to be called from). It removes inode from
2592  * transaction's lists.
2593  */
2594 void jbd2_journal_release_jbd_inode(journal_t *journal,
2595                                     struct jbd2_inode *jinode)
2596 {
2597         if (!journal)
2598                 return;
2599 restart:
2600         spin_lock(&journal->j_list_lock);
2601         /* Is commit writing out inode - we have to wait */
2602         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2603                 wait_queue_head_t *wq;
2604                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2605                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2606                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2607                 spin_unlock(&journal->j_list_lock);
2608                 schedule();
2609                 finish_wait(wq, &wait.wq_entry);
2610                 goto restart;
2611         }
2612
2613         if (jinode->i_transaction) {
2614                 list_del(&jinode->i_list);
2615                 jinode->i_transaction = NULL;
2616         }
2617         spin_unlock(&journal->j_list_lock);
2618 }
2619
2620
2621 #ifdef CONFIG_PROC_FS
2622
2623 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2624
2625 static void __init jbd2_create_jbd_stats_proc_entry(void)
2626 {
2627         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2628 }
2629
2630 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2631 {
2632         if (proc_jbd2_stats)
2633                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2634 }
2635
2636 #else
2637
2638 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2639 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2640
2641 #endif
2642
2643 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2644
2645 static int __init jbd2_journal_init_handle_cache(void)
2646 {
2647         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2648         if (jbd2_handle_cache == NULL) {
2649                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2650                 return -ENOMEM;
2651         }
2652         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2653         if (jbd2_inode_cache == NULL) {
2654                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2655                 kmem_cache_destroy(jbd2_handle_cache);
2656                 return -ENOMEM;
2657         }
2658         return 0;
2659 }
2660
2661 static void jbd2_journal_destroy_handle_cache(void)
2662 {
2663         if (jbd2_handle_cache)
2664                 kmem_cache_destroy(jbd2_handle_cache);
2665         if (jbd2_inode_cache)
2666                 kmem_cache_destroy(jbd2_inode_cache);
2667
2668 }
2669
2670 /*
2671  * Module startup and shutdown
2672  */
2673
2674 static int __init journal_init_caches(void)
2675 {
2676         int ret;
2677
2678         ret = jbd2_journal_init_revoke_caches();
2679         if (ret == 0)
2680                 ret = jbd2_journal_init_journal_head_cache();
2681         if (ret == 0)
2682                 ret = jbd2_journal_init_handle_cache();
2683         if (ret == 0)
2684                 ret = jbd2_journal_init_transaction_cache();
2685         return ret;
2686 }
2687
2688 static void jbd2_journal_destroy_caches(void)
2689 {
2690         jbd2_journal_destroy_revoke_caches();
2691         jbd2_journal_destroy_journal_head_cache();
2692         jbd2_journal_destroy_handle_cache();
2693         jbd2_journal_destroy_transaction_cache();
2694         jbd2_journal_destroy_slabs();
2695 }
2696
2697 static int __init journal_init(void)
2698 {
2699         int ret;
2700
2701         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2702
2703         ret = journal_init_caches();
2704         if (ret == 0) {
2705                 jbd2_create_jbd_stats_proc_entry();
2706         } else {
2707                 jbd2_journal_destroy_caches();
2708         }
2709         return ret;
2710 }
2711
2712 static void __exit journal_exit(void)
2713 {
2714 #ifdef CONFIG_JBD2_DEBUG
2715         int n = atomic_read(&nr_journal_heads);
2716         if (n)
2717                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2718 #endif
2719         jbd2_remove_jbd_stats_proc_entry();
2720         jbd2_journal_destroy_caches();
2721 }
2722
2723 MODULE_LICENSE("GPL");
2724 module_init(journal_init);
2725 module_exit(journal_exit);
2726