GNU Linux-libre 4.19.211-gnu1
[releases.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109                   unsigned int line, const char *fmt, ...)
110 {
111         struct va_format vaf;
112         va_list args;
113
114         if (level > jbd2_journal_enable_debug)
115                 return;
116         va_start(args, fmt);
117         vaf.fmt = fmt;
118         vaf.va = &args;
119         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
120         va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128         if (!jbd2_journal_has_csum_v2or3_feature(j))
129                 return 1;
130
131         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136         __u32 csum;
137         __be32 old_csum;
138
139         old_csum = sb->s_checksum;
140         sb->s_checksum = 0;
141         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142         sb->s_checksum = old_csum;
143
144         return cpu_to_be32(csum);
145 }
146
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149         if (!jbd2_journal_has_csum_v2or3(j))
150                 return 1;
151
152         return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157         if (!jbd2_journal_has_csum_v2or3(j))
158                 return;
159
160         sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162
163 /*
164  * Helper function used to manage commit timeouts
165  */
166
167 static void commit_timeout(struct timer_list *t)
168 {
169         journal_t *journal = from_timer(journal, t, j_commit_timer);
170
171         wake_up_process(journal->j_task);
172 }
173
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189
190 static int kjournald2(void *arg)
191 {
192         journal_t *journal = arg;
193         transaction_t *transaction;
194
195         /*
196          * Set up an interval timer which can be used to trigger a commit wakeup
197          * after the commit interval expires
198          */
199         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
200
201         set_freezable();
202
203         /* Record that the journal thread is running */
204         journal->j_task = current;
205         wake_up(&journal->j_wait_done_commit);
206
207         /*
208          * Make sure that no allocations from this kernel thread will ever
209          * recurse to the fs layer because we are responsible for the
210          * transaction commit and any fs involvement might get stuck waiting for
211          * the trasn. commit.
212          */
213         memalloc_nofs_save();
214
215         /*
216          * And now, wait forever for commit wakeup events.
217          */
218         write_lock(&journal->j_state_lock);
219
220 loop:
221         if (journal->j_flags & JBD2_UNMOUNT)
222                 goto end_loop;
223
224         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
225                 journal->j_commit_sequence, journal->j_commit_request);
226
227         if (journal->j_commit_sequence != journal->j_commit_request) {
228                 jbd_debug(1, "OK, requests differ\n");
229                 write_unlock(&journal->j_state_lock);
230                 del_timer_sync(&journal->j_commit_timer);
231                 jbd2_journal_commit_transaction(journal);
232                 write_lock(&journal->j_state_lock);
233                 goto loop;
234         }
235
236         wake_up(&journal->j_wait_done_commit);
237         if (freezing(current)) {
238                 /*
239                  * The simpler the better. Flushing journal isn't a
240                  * good idea, because that depends on threads that may
241                  * be already stopped.
242                  */
243                 jbd_debug(1, "Now suspending kjournald2\n");
244                 write_unlock(&journal->j_state_lock);
245                 try_to_freeze();
246                 write_lock(&journal->j_state_lock);
247         } else {
248                 /*
249                  * We assume on resume that commits are already there,
250                  * so we don't sleep
251                  */
252                 DEFINE_WAIT(wait);
253                 int should_sleep = 1;
254
255                 prepare_to_wait(&journal->j_wait_commit, &wait,
256                                 TASK_INTERRUPTIBLE);
257                 if (journal->j_commit_sequence != journal->j_commit_request)
258                         should_sleep = 0;
259                 transaction = journal->j_running_transaction;
260                 if (transaction && time_after_eq(jiffies,
261                                                 transaction->t_expires))
262                         should_sleep = 0;
263                 if (journal->j_flags & JBD2_UNMOUNT)
264                         should_sleep = 0;
265                 if (should_sleep) {
266                         write_unlock(&journal->j_state_lock);
267                         schedule();
268                         write_lock(&journal->j_state_lock);
269                 }
270                 finish_wait(&journal->j_wait_commit, &wait);
271         }
272
273         jbd_debug(1, "kjournald2 wakes\n");
274
275         /*
276          * Were we woken up by a commit wakeup event?
277          */
278         transaction = journal->j_running_transaction;
279         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
280                 journal->j_commit_request = transaction->t_tid;
281                 jbd_debug(1, "woke because of timeout\n");
282         }
283         goto loop;
284
285 end_loop:
286         del_timer_sync(&journal->j_commit_timer);
287         journal->j_task = NULL;
288         wake_up(&journal->j_wait_done_commit);
289         jbd_debug(1, "Journal thread exiting.\n");
290         write_unlock(&journal->j_state_lock);
291         return 0;
292 }
293
294 static int jbd2_journal_start_thread(journal_t *journal)
295 {
296         struct task_struct *t;
297
298         t = kthread_run(kjournald2, journal, "jbd2/%s",
299                         journal->j_devname);
300         if (IS_ERR(t))
301                 return PTR_ERR(t);
302
303         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
304         return 0;
305 }
306
307 static void journal_kill_thread(journal_t *journal)
308 {
309         write_lock(&journal->j_state_lock);
310         journal->j_flags |= JBD2_UNMOUNT;
311
312         while (journal->j_task) {
313                 write_unlock(&journal->j_state_lock);
314                 wake_up(&journal->j_wait_commit);
315                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
316                 write_lock(&journal->j_state_lock);
317         }
318         write_unlock(&journal->j_state_lock);
319 }
320
321 /*
322  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
323  *
324  * Writes a metadata buffer to a given disk block.  The actual IO is not
325  * performed but a new buffer_head is constructed which labels the data
326  * to be written with the correct destination disk block.
327  *
328  * Any magic-number escaping which needs to be done will cause a
329  * copy-out here.  If the buffer happens to start with the
330  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
331  * magic number is only written to the log for descripter blocks.  In
332  * this case, we copy the data and replace the first word with 0, and we
333  * return a result code which indicates that this buffer needs to be
334  * marked as an escaped buffer in the corresponding log descriptor
335  * block.  The missing word can then be restored when the block is read
336  * during recovery.
337  *
338  * If the source buffer has already been modified by a new transaction
339  * since we took the last commit snapshot, we use the frozen copy of
340  * that data for IO. If we end up using the existing buffer_head's data
341  * for the write, then we have to make sure nobody modifies it while the
342  * IO is in progress. do_get_write_access() handles this.
343  *
344  * The function returns a pointer to the buffer_head to be used for IO.
345  * 
346  *
347  * Return value:
348  *  <0: Error
349  * >=0: Finished OK
350  *
351  * On success:
352  * Bit 0 set == escape performed on the data
353  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
354  */
355
356 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
357                                   struct journal_head  *jh_in,
358                                   struct buffer_head **bh_out,
359                                   sector_t blocknr)
360 {
361         int need_copy_out = 0;
362         int done_copy_out = 0;
363         int do_escape = 0;
364         char *mapped_data;
365         struct buffer_head *new_bh;
366         struct page *new_page;
367         unsigned int new_offset;
368         struct buffer_head *bh_in = jh2bh(jh_in);
369         journal_t *journal = transaction->t_journal;
370
371         /*
372          * The buffer really shouldn't be locked: only the current committing
373          * transaction is allowed to write it, so nobody else is allowed
374          * to do any IO.
375          *
376          * akpm: except if we're journalling data, and write() output is
377          * also part of a shared mapping, and another thread has
378          * decided to launch a writepage() against this buffer.
379          */
380         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
381
382         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
383
384         /* keep subsequent assertions sane */
385         atomic_set(&new_bh->b_count, 1);
386
387         jbd_lock_bh_state(bh_in);
388 repeat:
389         /*
390          * If a new transaction has already done a buffer copy-out, then
391          * we use that version of the data for the commit.
392          */
393         if (jh_in->b_frozen_data) {
394                 done_copy_out = 1;
395                 new_page = virt_to_page(jh_in->b_frozen_data);
396                 new_offset = offset_in_page(jh_in->b_frozen_data);
397         } else {
398                 new_page = jh2bh(jh_in)->b_page;
399                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
400         }
401
402         mapped_data = kmap_atomic(new_page);
403         /*
404          * Fire data frozen trigger if data already wasn't frozen.  Do this
405          * before checking for escaping, as the trigger may modify the magic
406          * offset.  If a copy-out happens afterwards, it will have the correct
407          * data in the buffer.
408          */
409         if (!done_copy_out)
410                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
411                                            jh_in->b_triggers);
412
413         /*
414          * Check for escaping
415          */
416         if (*((__be32 *)(mapped_data + new_offset)) ==
417                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
418                 need_copy_out = 1;
419                 do_escape = 1;
420         }
421         kunmap_atomic(mapped_data);
422
423         /*
424          * Do we need to do a data copy?
425          */
426         if (need_copy_out && !done_copy_out) {
427                 char *tmp;
428
429                 jbd_unlock_bh_state(bh_in);
430                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
431                 if (!tmp) {
432                         brelse(new_bh);
433                         return -ENOMEM;
434                 }
435                 jbd_lock_bh_state(bh_in);
436                 if (jh_in->b_frozen_data) {
437                         jbd2_free(tmp, bh_in->b_size);
438                         goto repeat;
439                 }
440
441                 jh_in->b_frozen_data = tmp;
442                 mapped_data = kmap_atomic(new_page);
443                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
444                 kunmap_atomic(mapped_data);
445
446                 new_page = virt_to_page(tmp);
447                 new_offset = offset_in_page(tmp);
448                 done_copy_out = 1;
449
450                 /*
451                  * This isn't strictly necessary, as we're using frozen
452                  * data for the escaping, but it keeps consistency with
453                  * b_frozen_data usage.
454                  */
455                 jh_in->b_frozen_triggers = jh_in->b_triggers;
456         }
457
458         /*
459          * Did we need to do an escaping?  Now we've done all the
460          * copying, we can finally do so.
461          */
462         if (do_escape) {
463                 mapped_data = kmap_atomic(new_page);
464                 *((unsigned int *)(mapped_data + new_offset)) = 0;
465                 kunmap_atomic(mapped_data);
466         }
467
468         set_bh_page(new_bh, new_page, new_offset);
469         new_bh->b_size = bh_in->b_size;
470         new_bh->b_bdev = journal->j_dev;
471         new_bh->b_blocknr = blocknr;
472         new_bh->b_private = bh_in;
473         set_buffer_mapped(new_bh);
474         set_buffer_dirty(new_bh);
475
476         *bh_out = new_bh;
477
478         /*
479          * The to-be-written buffer needs to get moved to the io queue,
480          * and the original buffer whose contents we are shadowing or
481          * copying is moved to the transaction's shadow queue.
482          */
483         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
484         spin_lock(&journal->j_list_lock);
485         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
486         spin_unlock(&journal->j_list_lock);
487         set_buffer_shadow(bh_in);
488         jbd_unlock_bh_state(bh_in);
489
490         return do_escape | (done_copy_out << 1);
491 }
492
493 /*
494  * Allocation code for the journal file.  Manage the space left in the
495  * journal, so that we can begin checkpointing when appropriate.
496  */
497
498 /*
499  * Called with j_state_lock locked for writing.
500  * Returns true if a transaction commit was started.
501  */
502 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
503 {
504         /* Return if the txn has already requested to be committed */
505         if (journal->j_commit_request == target)
506                 return 0;
507
508         /*
509          * The only transaction we can possibly wait upon is the
510          * currently running transaction (if it exists).  Otherwise,
511          * the target tid must be an old one.
512          */
513         if (journal->j_running_transaction &&
514             journal->j_running_transaction->t_tid == target) {
515                 /*
516                  * We want a new commit: OK, mark the request and wakeup the
517                  * commit thread.  We do _not_ do the commit ourselves.
518                  */
519
520                 journal->j_commit_request = target;
521                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522                           journal->j_commit_request,
523                           journal->j_commit_sequence);
524                 journal->j_running_transaction->t_requested = jiffies;
525                 wake_up(&journal->j_wait_commit);
526                 return 1;
527         } else if (!tid_geq(journal->j_commit_request, target))
528                 /* This should never happen, but if it does, preserve
529                    the evidence before kjournald goes into a loop and
530                    increments j_commit_sequence beyond all recognition. */
531                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532                           journal->j_commit_request,
533                           journal->j_commit_sequence,
534                           target, journal->j_running_transaction ? 
535                           journal->j_running_transaction->t_tid : 0);
536         return 0;
537 }
538
539 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
540 {
541         int ret;
542
543         write_lock(&journal->j_state_lock);
544         ret = __jbd2_log_start_commit(journal, tid);
545         write_unlock(&journal->j_state_lock);
546         return ret;
547 }
548
549 /*
550  * Force and wait any uncommitted transactions.  We can only force the running
551  * transaction if we don't have an active handle, otherwise, we will deadlock.
552  * Returns: <0 in case of error,
553  *           0 if nothing to commit,
554  *           1 if transaction was successfully committed.
555  */
556 static int __jbd2_journal_force_commit(journal_t *journal)
557 {
558         transaction_t *transaction = NULL;
559         tid_t tid;
560         int need_to_start = 0, ret = 0;
561
562         read_lock(&journal->j_state_lock);
563         if (journal->j_running_transaction && !current->journal_info) {
564                 transaction = journal->j_running_transaction;
565                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
566                         need_to_start = 1;
567         } else if (journal->j_committing_transaction)
568                 transaction = journal->j_committing_transaction;
569
570         if (!transaction) {
571                 /* Nothing to commit */
572                 read_unlock(&journal->j_state_lock);
573                 return 0;
574         }
575         tid = transaction->t_tid;
576         read_unlock(&journal->j_state_lock);
577         if (need_to_start)
578                 jbd2_log_start_commit(journal, tid);
579         ret = jbd2_log_wait_commit(journal, tid);
580         if (!ret)
581                 ret = 1;
582
583         return ret;
584 }
585
586 /**
587  * Force and wait upon a commit if the calling process is not within
588  * transaction.  This is used for forcing out undo-protected data which contains
589  * bitmaps, when the fs is running out of space.
590  *
591  * @journal: journal to force
592  * Returns true if progress was made.
593  */
594 int jbd2_journal_force_commit_nested(journal_t *journal)
595 {
596         int ret;
597
598         ret = __jbd2_journal_force_commit(journal);
599         return ret > 0;
600 }
601
602 /**
603  * int journal_force_commit() - force any uncommitted transactions
604  * @journal: journal to force
605  *
606  * Caller want unconditional commit. We can only force the running transaction
607  * if we don't have an active handle, otherwise, we will deadlock.
608  */
609 int jbd2_journal_force_commit(journal_t *journal)
610 {
611         int ret;
612
613         J_ASSERT(!current->journal_info);
614         ret = __jbd2_journal_force_commit(journal);
615         if (ret > 0)
616                 ret = 0;
617         return ret;
618 }
619
620 /*
621  * Start a commit of the current running transaction (if any).  Returns true
622  * if a transaction is going to be committed (or is currently already
623  * committing), and fills its tid in at *ptid
624  */
625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
626 {
627         int ret = 0;
628
629         write_lock(&journal->j_state_lock);
630         if (journal->j_running_transaction) {
631                 tid_t tid = journal->j_running_transaction->t_tid;
632
633                 __jbd2_log_start_commit(journal, tid);
634                 /* There's a running transaction and we've just made sure
635                  * it's commit has been scheduled. */
636                 if (ptid)
637                         *ptid = tid;
638                 ret = 1;
639         } else if (journal->j_committing_transaction) {
640                 /*
641                  * If commit has been started, then we have to wait for
642                  * completion of that transaction.
643                  */
644                 if (ptid)
645                         *ptid = journal->j_committing_transaction->t_tid;
646                 ret = 1;
647         }
648         write_unlock(&journal->j_state_lock);
649         return ret;
650 }
651
652 /*
653  * Return 1 if a given transaction has not yet sent barrier request
654  * connected with a transaction commit. If 0 is returned, transaction
655  * may or may not have sent the barrier. Used to avoid sending barrier
656  * twice in common cases.
657  */
658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
659 {
660         int ret = 0;
661         transaction_t *commit_trans;
662
663         if (!(journal->j_flags & JBD2_BARRIER))
664                 return 0;
665         read_lock(&journal->j_state_lock);
666         /* Transaction already committed? */
667         if (tid_geq(journal->j_commit_sequence, tid))
668                 goto out;
669         commit_trans = journal->j_committing_transaction;
670         if (!commit_trans || commit_trans->t_tid != tid) {
671                 ret = 1;
672                 goto out;
673         }
674         /*
675          * Transaction is being committed and we already proceeded to
676          * submitting a flush to fs partition?
677          */
678         if (journal->j_fs_dev != journal->j_dev) {
679                 if (!commit_trans->t_need_data_flush ||
680                     commit_trans->t_state >= T_COMMIT_DFLUSH)
681                         goto out;
682         } else {
683                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
684                         goto out;
685         }
686         ret = 1;
687 out:
688         read_unlock(&journal->j_state_lock);
689         return ret;
690 }
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
692
693 /*
694  * Wait for a specified commit to complete.
695  * The caller may not hold the journal lock.
696  */
697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
698 {
699         int err = 0;
700
701         read_lock(&journal->j_state_lock);
702 #ifdef CONFIG_PROVE_LOCKING
703         /*
704          * Some callers make sure transaction is already committing and in that
705          * case we cannot block on open handles anymore. So don't warn in that
706          * case.
707          */
708         if (tid_gt(tid, journal->j_commit_sequence) &&
709             (!journal->j_committing_transaction ||
710              journal->j_committing_transaction->t_tid != tid)) {
711                 read_unlock(&journal->j_state_lock);
712                 jbd2_might_wait_for_commit(journal);
713                 read_lock(&journal->j_state_lock);
714         }
715 #endif
716 #ifdef CONFIG_JBD2_DEBUG
717         if (!tid_geq(journal->j_commit_request, tid)) {
718                 printk(KERN_ERR
719                        "%s: error: j_commit_request=%d, tid=%d\n",
720                        __func__, journal->j_commit_request, tid);
721         }
722 #endif
723         while (tid_gt(tid, journal->j_commit_sequence)) {
724                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
725                                   tid, journal->j_commit_sequence);
726                 read_unlock(&journal->j_state_lock);
727                 wake_up(&journal->j_wait_commit);
728                 wait_event(journal->j_wait_done_commit,
729                                 !tid_gt(tid, journal->j_commit_sequence));
730                 read_lock(&journal->j_state_lock);
731         }
732         read_unlock(&journal->j_state_lock);
733
734         if (unlikely(is_journal_aborted(journal)))
735                 err = -EIO;
736         return err;
737 }
738
739 /* Return 1 when transaction with given tid has already committed. */
740 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
741 {
742         int ret = 1;
743
744         read_lock(&journal->j_state_lock);
745         if (journal->j_running_transaction &&
746             journal->j_running_transaction->t_tid == tid)
747                 ret = 0;
748         if (journal->j_committing_transaction &&
749             journal->j_committing_transaction->t_tid == tid)
750                 ret = 0;
751         read_unlock(&journal->j_state_lock);
752         return ret;
753 }
754 EXPORT_SYMBOL(jbd2_transaction_committed);
755
756 /*
757  * When this function returns the transaction corresponding to tid
758  * will be completed.  If the transaction has currently running, start
759  * committing that transaction before waiting for it to complete.  If
760  * the transaction id is stale, it is by definition already completed,
761  * so just return SUCCESS.
762  */
763 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
764 {
765         int     need_to_wait = 1;
766
767         read_lock(&journal->j_state_lock);
768         if (journal->j_running_transaction &&
769             journal->j_running_transaction->t_tid == tid) {
770                 if (journal->j_commit_request != tid) {
771                         /* transaction not yet started, so request it */
772                         read_unlock(&journal->j_state_lock);
773                         jbd2_log_start_commit(journal, tid);
774                         goto wait_commit;
775                 }
776         } else if (!(journal->j_committing_transaction &&
777                      journal->j_committing_transaction->t_tid == tid))
778                 need_to_wait = 0;
779         read_unlock(&journal->j_state_lock);
780         if (!need_to_wait)
781                 return 0;
782 wait_commit:
783         return jbd2_log_wait_commit(journal, tid);
784 }
785 EXPORT_SYMBOL(jbd2_complete_transaction);
786
787 /*
788  * Log buffer allocation routines:
789  */
790
791 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
792 {
793         unsigned long blocknr;
794
795         write_lock(&journal->j_state_lock);
796         J_ASSERT(journal->j_free > 1);
797
798         blocknr = journal->j_head;
799         journal->j_head++;
800         journal->j_free--;
801         if (journal->j_head == journal->j_last)
802                 journal->j_head = journal->j_first;
803         write_unlock(&journal->j_state_lock);
804         return jbd2_journal_bmap(journal, blocknr, retp);
805 }
806
807 /*
808  * Conversion of logical to physical block numbers for the journal
809  *
810  * On external journals the journal blocks are identity-mapped, so
811  * this is a no-op.  If needed, we can use j_blk_offset - everything is
812  * ready.
813  */
814 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
815                  unsigned long long *retp)
816 {
817         int err = 0;
818         unsigned long long ret;
819
820         if (journal->j_inode) {
821                 ret = bmap(journal->j_inode, blocknr);
822                 if (ret)
823                         *retp = ret;
824                 else {
825                         printk(KERN_ALERT "%s: journal block not found "
826                                         "at offset %lu on %s\n",
827                                __func__, blocknr, journal->j_devname);
828                         err = -EIO;
829                         __journal_abort_soft(journal, err);
830                 }
831         } else {
832                 *retp = blocknr; /* +journal->j_blk_offset */
833         }
834         return err;
835 }
836
837 /*
838  * We play buffer_head aliasing tricks to write data/metadata blocks to
839  * the journal without copying their contents, but for journal
840  * descriptor blocks we do need to generate bona fide buffers.
841  *
842  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
843  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
844  * But we don't bother doing that, so there will be coherency problems with
845  * mmaps of blockdevs which hold live JBD-controlled filesystems.
846  */
847 struct buffer_head *
848 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
849 {
850         journal_t *journal = transaction->t_journal;
851         struct buffer_head *bh;
852         unsigned long long blocknr;
853         journal_header_t *header;
854         int err;
855
856         err = jbd2_journal_next_log_block(journal, &blocknr);
857
858         if (err)
859                 return NULL;
860
861         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
862         if (!bh)
863                 return NULL;
864         lock_buffer(bh);
865         memset(bh->b_data, 0, journal->j_blocksize);
866         header = (journal_header_t *)bh->b_data;
867         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
868         header->h_blocktype = cpu_to_be32(type);
869         header->h_sequence = cpu_to_be32(transaction->t_tid);
870         set_buffer_uptodate(bh);
871         unlock_buffer(bh);
872         BUFFER_TRACE(bh, "return this buffer");
873         return bh;
874 }
875
876 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
877 {
878         struct jbd2_journal_block_tail *tail;
879         __u32 csum;
880
881         if (!jbd2_journal_has_csum_v2or3(j))
882                 return;
883
884         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
885                         sizeof(struct jbd2_journal_block_tail));
886         tail->t_checksum = 0;
887         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
888         tail->t_checksum = cpu_to_be32(csum);
889 }
890
891 /*
892  * Return tid of the oldest transaction in the journal and block in the journal
893  * where the transaction starts.
894  *
895  * If the journal is now empty, return which will be the next transaction ID
896  * we will write and where will that transaction start.
897  *
898  * The return value is 0 if journal tail cannot be pushed any further, 1 if
899  * it can.
900  */
901 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
902                               unsigned long *block)
903 {
904         transaction_t *transaction;
905         int ret;
906
907         read_lock(&journal->j_state_lock);
908         spin_lock(&journal->j_list_lock);
909         transaction = journal->j_checkpoint_transactions;
910         if (transaction) {
911                 *tid = transaction->t_tid;
912                 *block = transaction->t_log_start;
913         } else if ((transaction = journal->j_committing_transaction) != NULL) {
914                 *tid = transaction->t_tid;
915                 *block = transaction->t_log_start;
916         } else if ((transaction = journal->j_running_transaction) != NULL) {
917                 *tid = transaction->t_tid;
918                 *block = journal->j_head;
919         } else {
920                 *tid = journal->j_transaction_sequence;
921                 *block = journal->j_head;
922         }
923         ret = tid_gt(*tid, journal->j_tail_sequence);
924         spin_unlock(&journal->j_list_lock);
925         read_unlock(&journal->j_state_lock);
926
927         return ret;
928 }
929
930 /*
931  * Update information in journal structure and in on disk journal superblock
932  * about log tail. This function does not check whether information passed in
933  * really pushes log tail further. It's responsibility of the caller to make
934  * sure provided log tail information is valid (e.g. by holding
935  * j_checkpoint_mutex all the time between computing log tail and calling this
936  * function as is the case with jbd2_cleanup_journal_tail()).
937  *
938  * Requires j_checkpoint_mutex
939  */
940 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
941 {
942         unsigned long freed;
943         int ret;
944
945         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
946
947         /*
948          * We cannot afford for write to remain in drive's caches since as
949          * soon as we update j_tail, next transaction can start reusing journal
950          * space and if we lose sb update during power failure we'd replay
951          * old transaction with possibly newly overwritten data.
952          */
953         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
954                                               REQ_SYNC | REQ_FUA);
955         if (ret)
956                 goto out;
957
958         write_lock(&journal->j_state_lock);
959         freed = block - journal->j_tail;
960         if (block < journal->j_tail)
961                 freed += journal->j_last - journal->j_first;
962
963         trace_jbd2_update_log_tail(journal, tid, block, freed);
964         jbd_debug(1,
965                   "Cleaning journal tail from %d to %d (offset %lu), "
966                   "freeing %lu\n",
967                   journal->j_tail_sequence, tid, block, freed);
968
969         journal->j_free += freed;
970         journal->j_tail_sequence = tid;
971         journal->j_tail = block;
972         write_unlock(&journal->j_state_lock);
973
974 out:
975         return ret;
976 }
977
978 /*
979  * This is a variation of __jbd2_update_log_tail which checks for validity of
980  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
981  * with other threads updating log tail.
982  */
983 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
984 {
985         mutex_lock_io(&journal->j_checkpoint_mutex);
986         if (tid_gt(tid, journal->j_tail_sequence))
987                 __jbd2_update_log_tail(journal, tid, block);
988         mutex_unlock(&journal->j_checkpoint_mutex);
989 }
990
991 struct jbd2_stats_proc_session {
992         journal_t *journal;
993         struct transaction_stats_s *stats;
994         int start;
995         int max;
996 };
997
998 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
999 {
1000         return *pos ? NULL : SEQ_START_TOKEN;
1001 }
1002
1003 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1004 {
1005         (*pos)++;
1006         return NULL;
1007 }
1008
1009 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010 {
1011         struct jbd2_stats_proc_session *s = seq->private;
1012
1013         if (v != SEQ_START_TOKEN)
1014                 return 0;
1015         seq_printf(seq, "%lu transactions (%lu requested), "
1016                    "each up to %u blocks\n",
1017                    s->stats->ts_tid, s->stats->ts_requested,
1018                    s->journal->j_max_transaction_buffers);
1019         if (s->stats->ts_tid == 0)
1020                 return 0;
1021         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1022             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023         seq_printf(seq, "  %ums request delay\n",
1024             (s->stats->ts_requested == 0) ? 0 :
1025             jiffies_to_msecs(s->stats->run.rs_request_delay /
1026                              s->stats->ts_requested));
1027         seq_printf(seq, "  %ums running transaction\n",
1028             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029         seq_printf(seq, "  %ums transaction was being locked\n",
1030             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1032             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033         seq_printf(seq, "  %ums logging transaction\n",
1034             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035         seq_printf(seq, "  %lluus average transaction commit time\n",
1036                    div_u64(s->journal->j_average_commit_time, 1000));
1037         seq_printf(seq, "  %lu handles per transaction\n",
1038             s->stats->run.rs_handle_count / s->stats->ts_tid);
1039         seq_printf(seq, "  %lu blocks per transaction\n",
1040             s->stats->run.rs_blocks / s->stats->ts_tid);
1041         seq_printf(seq, "  %lu logged blocks per transaction\n",
1042             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043         return 0;
1044 }
1045
1046 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 {
1048 }
1049
1050 static const struct seq_operations jbd2_seq_info_ops = {
1051         .start  = jbd2_seq_info_start,
1052         .next   = jbd2_seq_info_next,
1053         .stop   = jbd2_seq_info_stop,
1054         .show   = jbd2_seq_info_show,
1055 };
1056
1057 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058 {
1059         journal_t *journal = PDE_DATA(inode);
1060         struct jbd2_stats_proc_session *s;
1061         int rc, size;
1062
1063         s = kmalloc(sizeof(*s), GFP_KERNEL);
1064         if (s == NULL)
1065                 return -ENOMEM;
1066         size = sizeof(struct transaction_stats_s);
1067         s->stats = kmalloc(size, GFP_KERNEL);
1068         if (s->stats == NULL) {
1069                 kfree(s);
1070                 return -ENOMEM;
1071         }
1072         spin_lock(&journal->j_history_lock);
1073         memcpy(s->stats, &journal->j_stats, size);
1074         s->journal = journal;
1075         spin_unlock(&journal->j_history_lock);
1076
1077         rc = seq_open(file, &jbd2_seq_info_ops);
1078         if (rc == 0) {
1079                 struct seq_file *m = file->private_data;
1080                 m->private = s;
1081         } else {
1082                 kfree(s->stats);
1083                 kfree(s);
1084         }
1085         return rc;
1086
1087 }
1088
1089 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090 {
1091         struct seq_file *seq = file->private_data;
1092         struct jbd2_stats_proc_session *s = seq->private;
1093         kfree(s->stats);
1094         kfree(s);
1095         return seq_release(inode, file);
1096 }
1097
1098 static const struct file_operations jbd2_seq_info_fops = {
1099         .owner          = THIS_MODULE,
1100         .open           = jbd2_seq_info_open,
1101         .read           = seq_read,
1102         .llseek         = seq_lseek,
1103         .release        = jbd2_seq_info_release,
1104 };
1105
1106 static struct proc_dir_entry *proc_jbd2_stats;
1107
1108 static void jbd2_stats_proc_init(journal_t *journal)
1109 {
1110         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111         if (journal->j_proc_entry) {
1112                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113                                  &jbd2_seq_info_fops, journal);
1114         }
1115 }
1116
1117 static void jbd2_stats_proc_exit(journal_t *journal)
1118 {
1119         remove_proc_entry("info", journal->j_proc_entry);
1120         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 }
1122
1123 /*
1124  * Management for journal control blocks: functions to create and
1125  * destroy journal_t structures, and to initialise and read existing
1126  * journal blocks from disk.  */
1127
1128 /* First: create and setup a journal_t object in memory.  We initialise
1129  * very few fields yet: that has to wait until we have created the
1130  * journal structures from from scratch, or loaded them from disk. */
1131
1132 static journal_t *journal_init_common(struct block_device *bdev,
1133                         struct block_device *fs_dev,
1134                         unsigned long long start, int len, int blocksize)
1135 {
1136         static struct lock_class_key jbd2_trans_commit_key;
1137         journal_t *journal;
1138         int err;
1139         struct buffer_head *bh;
1140         int n;
1141
1142         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143         if (!journal)
1144                 return NULL;
1145
1146         init_waitqueue_head(&journal->j_wait_transaction_locked);
1147         init_waitqueue_head(&journal->j_wait_done_commit);
1148         init_waitqueue_head(&journal->j_wait_commit);
1149         init_waitqueue_head(&journal->j_wait_updates);
1150         init_waitqueue_head(&journal->j_wait_reserved);
1151         mutex_init(&journal->j_barrier);
1152         mutex_init(&journal->j_checkpoint_mutex);
1153         spin_lock_init(&journal->j_revoke_lock);
1154         spin_lock_init(&journal->j_list_lock);
1155         rwlock_init(&journal->j_state_lock);
1156
1157         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158         journal->j_min_batch_time = 0;
1159         journal->j_max_batch_time = 15000; /* 15ms */
1160         atomic_set(&journal->j_reserved_credits, 0);
1161
1162         /* The journal is marked for error until we succeed with recovery! */
1163         journal->j_flags = JBD2_ABORT;
1164
1165         /* Set up a default-sized revoke table for the new mount. */
1166         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167         if (err)
1168                 goto err_cleanup;
1169
1170         spin_lock_init(&journal->j_history_lock);
1171
1172         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173                          &jbd2_trans_commit_key, 0);
1174
1175         /* journal descriptor can store up to n blocks -bzzz */
1176         journal->j_blocksize = blocksize;
1177         journal->j_dev = bdev;
1178         journal->j_fs_dev = fs_dev;
1179         journal->j_blk_offset = start;
1180         journal->j_maxlen = len;
1181         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182         journal->j_wbufsize = n;
1183         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184                                         GFP_KERNEL);
1185         if (!journal->j_wbuf)
1186                 goto err_cleanup;
1187
1188         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189         if (!bh) {
1190                 pr_err("%s: Cannot get buffer for journal superblock\n",
1191                         __func__);
1192                 goto err_cleanup;
1193         }
1194         journal->j_sb_buffer = bh;
1195         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196
1197         return journal;
1198
1199 err_cleanup:
1200         kfree(journal->j_wbuf);
1201         jbd2_journal_destroy_revoke(journal);
1202         kfree(journal);
1203         return NULL;
1204 }
1205
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207  *
1208  * Create a journal structure assigned some fixed set of disk blocks to
1209  * the journal.  We don't actually touch those disk blocks yet, but we
1210  * need to set up all of the mapping information to tell the journaling
1211  * system where the journal blocks are.
1212  *
1213  */
1214
1215 /**
1216  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217  *  @bdev: Block device on which to create the journal
1218  *  @fs_dev: Device which hold journalled filesystem for this journal.
1219  *  @start: Block nr Start of journal.
1220  *  @len:  Length of the journal in blocks.
1221  *  @blocksize: blocksize of journalling device
1222  *
1223  *  Returns: a newly created journal_t *
1224  *
1225  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226  *  range of blocks on an arbitrary block device.
1227  *
1228  */
1229 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230                         struct block_device *fs_dev,
1231                         unsigned long long start, int len, int blocksize)
1232 {
1233         journal_t *journal;
1234
1235         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236         if (!journal)
1237                 return NULL;
1238
1239         bdevname(journal->j_dev, journal->j_devname);
1240         strreplace(journal->j_devname, '/', '!');
1241         jbd2_stats_proc_init(journal);
1242
1243         return journal;
1244 }
1245
1246 /**
1247  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248  *  @inode: An inode to create the journal in
1249  *
1250  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251  * the journal.  The inode must exist already, must support bmap() and
1252  * must have all data blocks preallocated.
1253  */
1254 journal_t *jbd2_journal_init_inode(struct inode *inode)
1255 {
1256         journal_t *journal;
1257         char *p;
1258         unsigned long long blocknr;
1259
1260         blocknr = bmap(inode, 0);
1261         if (!blocknr) {
1262                 pr_err("%s: Cannot locate journal superblock\n",
1263                         __func__);
1264                 return NULL;
1265         }
1266
1267         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270
1271         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273                         inode->i_sb->s_blocksize);
1274         if (!journal)
1275                 return NULL;
1276
1277         journal->j_inode = inode;
1278         bdevname(journal->j_dev, journal->j_devname);
1279         p = strreplace(journal->j_devname, '/', '!');
1280         sprintf(p, "-%lu", journal->j_inode->i_ino);
1281         jbd2_stats_proc_init(journal);
1282
1283         return journal;
1284 }
1285
1286 /*
1287  * If the journal init or create aborts, we need to mark the journal
1288  * superblock as being NULL to prevent the journal destroy from writing
1289  * back a bogus superblock.
1290  */
1291 static void journal_fail_superblock (journal_t *journal)
1292 {
1293         struct buffer_head *bh = journal->j_sb_buffer;
1294         brelse(bh);
1295         journal->j_sb_buffer = NULL;
1296 }
1297
1298 /*
1299  * Given a journal_t structure, initialise the various fields for
1300  * startup of a new journaling session.  We use this both when creating
1301  * a journal, and after recovering an old journal to reset it for
1302  * subsequent use.
1303  */
1304
1305 static int journal_reset(journal_t *journal)
1306 {
1307         journal_superblock_t *sb = journal->j_superblock;
1308         unsigned long long first, last;
1309
1310         first = be32_to_cpu(sb->s_first);
1311         last = be32_to_cpu(sb->s_maxlen);
1312         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314                        first, last);
1315                 journal_fail_superblock(journal);
1316                 return -EINVAL;
1317         }
1318
1319         journal->j_first = first;
1320         journal->j_last = last;
1321
1322         journal->j_head = first;
1323         journal->j_tail = first;
1324         journal->j_free = last - first;
1325
1326         journal->j_tail_sequence = journal->j_transaction_sequence;
1327         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328         journal->j_commit_request = journal->j_commit_sequence;
1329
1330         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331
1332         /*
1333          * As a special case, if the on-disk copy is already marked as needing
1334          * no recovery (s_start == 0), then we can safely defer the superblock
1335          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1336          * attempting a write to a potential-readonly device.
1337          */
1338         if (sb->s_start == 0) {
1339                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340                         "(start %ld, seq %d, errno %d)\n",
1341                         journal->j_tail, journal->j_tail_sequence,
1342                         journal->j_errno);
1343                 journal->j_flags |= JBD2_FLUSHED;
1344         } else {
1345                 /* Lock here to make assertions happy... */
1346                 mutex_lock_io(&journal->j_checkpoint_mutex);
1347                 /*
1348                  * Update log tail information. We use REQ_FUA since new
1349                  * transaction will start reusing journal space and so we
1350                  * must make sure information about current log tail is on
1351                  * disk before that.
1352                  */
1353                 jbd2_journal_update_sb_log_tail(journal,
1354                                                 journal->j_tail_sequence,
1355                                                 journal->j_tail,
1356                                                 REQ_SYNC | REQ_FUA);
1357                 mutex_unlock(&journal->j_checkpoint_mutex);
1358         }
1359         return jbd2_journal_start_thread(journal);
1360 }
1361
1362 /*
1363  * This function expects that the caller will have locked the journal
1364  * buffer head, and will return with it unlocked
1365  */
1366 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1367 {
1368         struct buffer_head *bh = journal->j_sb_buffer;
1369         journal_superblock_t *sb = journal->j_superblock;
1370         int ret;
1371
1372         /* Buffer got discarded which means block device got invalidated */
1373         if (!buffer_mapped(bh)) {
1374                 unlock_buffer(bh);
1375                 return -EIO;
1376         }
1377
1378         trace_jbd2_write_superblock(journal, write_flags);
1379         if (!(journal->j_flags & JBD2_BARRIER))
1380                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1381         if (buffer_write_io_error(bh)) {
1382                 /*
1383                  * Oh, dear.  A previous attempt to write the journal
1384                  * superblock failed.  This could happen because the
1385                  * USB device was yanked out.  Or it could happen to
1386                  * be a transient write error and maybe the block will
1387                  * be remapped.  Nothing we can do but to retry the
1388                  * write and hope for the best.
1389                  */
1390                 printk(KERN_ERR "JBD2: previous I/O error detected "
1391                        "for journal superblock update for %s.\n",
1392                        journal->j_devname);
1393                 clear_buffer_write_io_error(bh);
1394                 set_buffer_uptodate(bh);
1395         }
1396         jbd2_superblock_csum_set(journal, sb);
1397         get_bh(bh);
1398         bh->b_end_io = end_buffer_write_sync;
1399         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1400         wait_on_buffer(bh);
1401         if (buffer_write_io_error(bh)) {
1402                 clear_buffer_write_io_error(bh);
1403                 set_buffer_uptodate(bh);
1404                 ret = -EIO;
1405         }
1406         if (ret) {
1407                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1408                        "journal superblock for %s.\n", ret,
1409                        journal->j_devname);
1410                 jbd2_journal_abort(journal, ret);
1411         }
1412
1413         return ret;
1414 }
1415
1416 /**
1417  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1418  * @journal: The journal to update.
1419  * @tail_tid: TID of the new transaction at the tail of the log
1420  * @tail_block: The first block of the transaction at the tail of the log
1421  * @write_op: With which operation should we write the journal sb
1422  *
1423  * Update a journal's superblock information about log tail and write it to
1424  * disk, waiting for the IO to complete.
1425  */
1426 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1427                                      unsigned long tail_block, int write_op)
1428 {
1429         journal_superblock_t *sb = journal->j_superblock;
1430         int ret;
1431
1432         if (is_journal_aborted(journal))
1433                 return -EIO;
1434
1435         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1436         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1437                   tail_block, tail_tid);
1438
1439         lock_buffer(journal->j_sb_buffer);
1440         sb->s_sequence = cpu_to_be32(tail_tid);
1441         sb->s_start    = cpu_to_be32(tail_block);
1442
1443         ret = jbd2_write_superblock(journal, write_op);
1444         if (ret)
1445                 goto out;
1446
1447         /* Log is no longer empty */
1448         write_lock(&journal->j_state_lock);
1449         WARN_ON(!sb->s_sequence);
1450         journal->j_flags &= ~JBD2_FLUSHED;
1451         write_unlock(&journal->j_state_lock);
1452
1453 out:
1454         return ret;
1455 }
1456
1457 /**
1458  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1459  * @journal: The journal to update.
1460  * @write_op: With which operation should we write the journal sb
1461  *
1462  * Update a journal's dynamic superblock fields to show that journal is empty.
1463  * Write updated superblock to disk waiting for IO to complete.
1464  */
1465 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1466 {
1467         journal_superblock_t *sb = journal->j_superblock;
1468
1469         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1470         lock_buffer(journal->j_sb_buffer);
1471         if (sb->s_start == 0) {         /* Is it already empty? */
1472                 unlock_buffer(journal->j_sb_buffer);
1473                 return;
1474         }
1475
1476         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1477                   journal->j_tail_sequence);
1478
1479         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1480         sb->s_start    = cpu_to_be32(0);
1481
1482         jbd2_write_superblock(journal, write_op);
1483
1484         /* Log is no longer empty */
1485         write_lock(&journal->j_state_lock);
1486         journal->j_flags |= JBD2_FLUSHED;
1487         write_unlock(&journal->j_state_lock);
1488 }
1489
1490
1491 /**
1492  * jbd2_journal_update_sb_errno() - Update error in the journal.
1493  * @journal: The journal to update.
1494  *
1495  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1496  * to complete.
1497  */
1498 void jbd2_journal_update_sb_errno(journal_t *journal)
1499 {
1500         journal_superblock_t *sb = journal->j_superblock;
1501         int errcode;
1502
1503         lock_buffer(journal->j_sb_buffer);
1504         errcode = journal->j_errno;
1505         if (errcode == -ESHUTDOWN)
1506                 errcode = 0;
1507         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1508         sb->s_errno    = cpu_to_be32(errcode);
1509
1510         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1511 }
1512 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1513
1514 /*
1515  * Read the superblock for a given journal, performing initial
1516  * validation of the format.
1517  */
1518 static int journal_get_superblock(journal_t *journal)
1519 {
1520         struct buffer_head *bh;
1521         journal_superblock_t *sb;
1522         int err = -EIO;
1523
1524         bh = journal->j_sb_buffer;
1525
1526         J_ASSERT(bh != NULL);
1527         if (!buffer_uptodate(bh)) {
1528                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1529                 wait_on_buffer(bh);
1530                 if (!buffer_uptodate(bh)) {
1531                         printk(KERN_ERR
1532                                 "JBD2: IO error reading journal superblock\n");
1533                         goto out;
1534                 }
1535         }
1536
1537         if (buffer_verified(bh))
1538                 return 0;
1539
1540         sb = journal->j_superblock;
1541
1542         err = -EINVAL;
1543
1544         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1545             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1546                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1547                 goto out;
1548         }
1549
1550         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1551         case JBD2_SUPERBLOCK_V1:
1552                 journal->j_format_version = 1;
1553                 break;
1554         case JBD2_SUPERBLOCK_V2:
1555                 journal->j_format_version = 2;
1556                 break;
1557         default:
1558                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1559                 goto out;
1560         }
1561
1562         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1563                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1564         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1565                 printk(KERN_WARNING "JBD2: journal file too short\n");
1566                 goto out;
1567         }
1568
1569         if (be32_to_cpu(sb->s_first) == 0 ||
1570             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1571                 printk(KERN_WARNING
1572                         "JBD2: Invalid start block of journal: %u\n",
1573                         be32_to_cpu(sb->s_first));
1574                 goto out;
1575         }
1576
1577         if (jbd2_has_feature_csum2(journal) &&
1578             jbd2_has_feature_csum3(journal)) {
1579                 /* Can't have checksum v2 and v3 at the same time! */
1580                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1581                        "at the same time!\n");
1582                 goto out;
1583         }
1584
1585         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1586             jbd2_has_feature_checksum(journal)) {
1587                 /* Can't have checksum v1 and v2 on at the same time! */
1588                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1589                        "at the same time!\n");
1590                 goto out;
1591         }
1592
1593         if (!jbd2_verify_csum_type(journal, sb)) {
1594                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1595                 goto out;
1596         }
1597
1598         /* Load the checksum driver */
1599         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1600                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1601                 if (IS_ERR(journal->j_chksum_driver)) {
1602                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1603                         err = PTR_ERR(journal->j_chksum_driver);
1604                         journal->j_chksum_driver = NULL;
1605                         goto out;
1606                 }
1607         }
1608
1609         /* Check superblock checksum */
1610         if (!jbd2_superblock_csum_verify(journal, sb)) {
1611                 printk(KERN_ERR "JBD2: journal checksum error\n");
1612                 err = -EFSBADCRC;
1613                 goto out;
1614         }
1615
1616         /* Precompute checksum seed for all metadata */
1617         if (jbd2_journal_has_csum_v2or3(journal))
1618                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1619                                                    sizeof(sb->s_uuid));
1620
1621         set_buffer_verified(bh);
1622
1623         return 0;
1624
1625 out:
1626         journal_fail_superblock(journal);
1627         return err;
1628 }
1629
1630 /*
1631  * Load the on-disk journal superblock and read the key fields into the
1632  * journal_t.
1633  */
1634
1635 static int load_superblock(journal_t *journal)
1636 {
1637         int err;
1638         journal_superblock_t *sb;
1639
1640         err = journal_get_superblock(journal);
1641         if (err)
1642                 return err;
1643
1644         sb = journal->j_superblock;
1645
1646         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1647         journal->j_tail = be32_to_cpu(sb->s_start);
1648         journal->j_first = be32_to_cpu(sb->s_first);
1649         journal->j_last = be32_to_cpu(sb->s_maxlen);
1650         journal->j_errno = be32_to_cpu(sb->s_errno);
1651
1652         return 0;
1653 }
1654
1655
1656 /**
1657  * int jbd2_journal_load() - Read journal from disk.
1658  * @journal: Journal to act on.
1659  *
1660  * Given a journal_t structure which tells us which disk blocks contain
1661  * a journal, read the journal from disk to initialise the in-memory
1662  * structures.
1663  */
1664 int jbd2_journal_load(journal_t *journal)
1665 {
1666         int err;
1667         journal_superblock_t *sb;
1668
1669         err = load_superblock(journal);
1670         if (err)
1671                 return err;
1672
1673         sb = journal->j_superblock;
1674         /* If this is a V2 superblock, then we have to check the
1675          * features flags on it. */
1676
1677         if (journal->j_format_version >= 2) {
1678                 if ((sb->s_feature_ro_compat &
1679                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1680                     (sb->s_feature_incompat &
1681                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1682                         printk(KERN_WARNING
1683                                 "JBD2: Unrecognised features on journal\n");
1684                         return -EINVAL;
1685                 }
1686         }
1687
1688         /*
1689          * Create a slab for this blocksize
1690          */
1691         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1692         if (err)
1693                 return err;
1694
1695         /* Let the recovery code check whether it needs to recover any
1696          * data from the journal. */
1697         if (jbd2_journal_recover(journal))
1698                 goto recovery_error;
1699
1700         if (journal->j_failed_commit) {
1701                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1702                        "is corrupt.\n", journal->j_failed_commit,
1703                        journal->j_devname);
1704                 return -EFSCORRUPTED;
1705         }
1706         /*
1707          * clear JBD2_ABORT flag initialized in journal_init_common
1708          * here to update log tail information with the newest seq.
1709          */
1710         journal->j_flags &= ~JBD2_ABORT;
1711
1712         /* OK, we've finished with the dynamic journal bits:
1713          * reinitialise the dynamic contents of the superblock in memory
1714          * and reset them on disk. */
1715         if (journal_reset(journal))
1716                 goto recovery_error;
1717
1718         journal->j_flags |= JBD2_LOADED;
1719         return 0;
1720
1721 recovery_error:
1722         printk(KERN_WARNING "JBD2: recovery failed\n");
1723         return -EIO;
1724 }
1725
1726 /**
1727  * void jbd2_journal_destroy() - Release a journal_t structure.
1728  * @journal: Journal to act on.
1729  *
1730  * Release a journal_t structure once it is no longer in use by the
1731  * journaled object.
1732  * Return <0 if we couldn't clean up the journal.
1733  */
1734 int jbd2_journal_destroy(journal_t *journal)
1735 {
1736         int err = 0;
1737
1738         /* Wait for the commit thread to wake up and die. */
1739         journal_kill_thread(journal);
1740
1741         /* Force a final log commit */
1742         if (journal->j_running_transaction)
1743                 jbd2_journal_commit_transaction(journal);
1744
1745         /* Force any old transactions to disk */
1746
1747         /* Totally anal locking here... */
1748         spin_lock(&journal->j_list_lock);
1749         while (journal->j_checkpoint_transactions != NULL) {
1750                 spin_unlock(&journal->j_list_lock);
1751                 mutex_lock_io(&journal->j_checkpoint_mutex);
1752                 err = jbd2_log_do_checkpoint(journal);
1753                 mutex_unlock(&journal->j_checkpoint_mutex);
1754                 /*
1755                  * If checkpointing failed, just free the buffers to avoid
1756                  * looping forever
1757                  */
1758                 if (err) {
1759                         jbd2_journal_destroy_checkpoint(journal);
1760                         spin_lock(&journal->j_list_lock);
1761                         break;
1762                 }
1763                 spin_lock(&journal->j_list_lock);
1764         }
1765
1766         J_ASSERT(journal->j_running_transaction == NULL);
1767         J_ASSERT(journal->j_committing_transaction == NULL);
1768         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1769         spin_unlock(&journal->j_list_lock);
1770
1771         if (journal->j_sb_buffer) {
1772                 if (!is_journal_aborted(journal)) {
1773                         mutex_lock_io(&journal->j_checkpoint_mutex);
1774
1775                         write_lock(&journal->j_state_lock);
1776                         journal->j_tail_sequence =
1777                                 ++journal->j_transaction_sequence;
1778                         write_unlock(&journal->j_state_lock);
1779
1780                         jbd2_mark_journal_empty(journal,
1781                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1782                         mutex_unlock(&journal->j_checkpoint_mutex);
1783                 } else
1784                         err = -EIO;
1785                 brelse(journal->j_sb_buffer);
1786         }
1787
1788         if (journal->j_proc_entry)
1789                 jbd2_stats_proc_exit(journal);
1790         iput(journal->j_inode);
1791         if (journal->j_revoke)
1792                 jbd2_journal_destroy_revoke(journal);
1793         if (journal->j_chksum_driver)
1794                 crypto_free_shash(journal->j_chksum_driver);
1795         kfree(journal->j_wbuf);
1796         kfree(journal);
1797
1798         return err;
1799 }
1800
1801
1802 /**
1803  *int jbd2_journal_check_used_features () - Check if features specified are used.
1804  * @journal: Journal to check.
1805  * @compat: bitmask of compatible features
1806  * @ro: bitmask of features that force read-only mount
1807  * @incompat: bitmask of incompatible features
1808  *
1809  * Check whether the journal uses all of a given set of
1810  * features.  Return true (non-zero) if it does.
1811  **/
1812
1813 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1814                                  unsigned long ro, unsigned long incompat)
1815 {
1816         journal_superblock_t *sb;
1817
1818         if (!compat && !ro && !incompat)
1819                 return 1;
1820         /* Load journal superblock if it is not loaded yet. */
1821         if (journal->j_format_version == 0 &&
1822             journal_get_superblock(journal) != 0)
1823                 return 0;
1824         if (journal->j_format_version == 1)
1825                 return 0;
1826
1827         sb = journal->j_superblock;
1828
1829         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1830             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1831             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1832                 return 1;
1833
1834         return 0;
1835 }
1836
1837 /**
1838  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1839  * @journal: Journal to check.
1840  * @compat: bitmask of compatible features
1841  * @ro: bitmask of features that force read-only mount
1842  * @incompat: bitmask of incompatible features
1843  *
1844  * Check whether the journaling code supports the use of
1845  * all of a given set of features on this journal.  Return true
1846  * (non-zero) if it can. */
1847
1848 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1849                                       unsigned long ro, unsigned long incompat)
1850 {
1851         if (!compat && !ro && !incompat)
1852                 return 1;
1853
1854         /* We can support any known requested features iff the
1855          * superblock is in version 2.  Otherwise we fail to support any
1856          * extended sb features. */
1857
1858         if (journal->j_format_version != 2)
1859                 return 0;
1860
1861         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1862             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1863             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1864                 return 1;
1865
1866         return 0;
1867 }
1868
1869 /**
1870  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1871  * @journal: Journal to act on.
1872  * @compat: bitmask of compatible features
1873  * @ro: bitmask of features that force read-only mount
1874  * @incompat: bitmask of incompatible features
1875  *
1876  * Mark a given journal feature as present on the
1877  * superblock.  Returns true if the requested features could be set.
1878  *
1879  */
1880
1881 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1882                           unsigned long ro, unsigned long incompat)
1883 {
1884 #define INCOMPAT_FEATURE_ON(f) \
1885                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1886 #define COMPAT_FEATURE_ON(f) \
1887                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1888         journal_superblock_t *sb;
1889
1890         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1891                 return 1;
1892
1893         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1894                 return 0;
1895
1896         /* If enabling v2 checksums, turn on v3 instead */
1897         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1898                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1899                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1900         }
1901
1902         /* Asking for checksumming v3 and v1?  Only give them v3. */
1903         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1904             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1905                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1906
1907         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1908                   compat, ro, incompat);
1909
1910         sb = journal->j_superblock;
1911
1912         /* Load the checksum driver if necessary */
1913         if ((journal->j_chksum_driver == NULL) &&
1914             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1915                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1916                 if (IS_ERR(journal->j_chksum_driver)) {
1917                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1918                         journal->j_chksum_driver = NULL;
1919                         return 0;
1920                 }
1921                 /* Precompute checksum seed for all metadata */
1922                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1923                                                    sizeof(sb->s_uuid));
1924         }
1925
1926         lock_buffer(journal->j_sb_buffer);
1927
1928         /* If enabling v3 checksums, update superblock */
1929         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1930                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1931                 sb->s_feature_compat &=
1932                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1933         }
1934
1935         /* If enabling v1 checksums, downgrade superblock */
1936         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1937                 sb->s_feature_incompat &=
1938                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1939                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1940
1941         sb->s_feature_compat    |= cpu_to_be32(compat);
1942         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1943         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1944         unlock_buffer(journal->j_sb_buffer);
1945
1946         return 1;
1947 #undef COMPAT_FEATURE_ON
1948 #undef INCOMPAT_FEATURE_ON
1949 }
1950
1951 /*
1952  * jbd2_journal_clear_features () - Clear a given journal feature in the
1953  *                                  superblock
1954  * @journal: Journal to act on.
1955  * @compat: bitmask of compatible features
1956  * @ro: bitmask of features that force read-only mount
1957  * @incompat: bitmask of incompatible features
1958  *
1959  * Clear a given journal feature as present on the
1960  * superblock.
1961  */
1962 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1963                                 unsigned long ro, unsigned long incompat)
1964 {
1965         journal_superblock_t *sb;
1966
1967         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1968                   compat, ro, incompat);
1969
1970         sb = journal->j_superblock;
1971
1972         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1973         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1974         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1975 }
1976 EXPORT_SYMBOL(jbd2_journal_clear_features);
1977
1978 /**
1979  * int jbd2_journal_flush () - Flush journal
1980  * @journal: Journal to act on.
1981  *
1982  * Flush all data for a given journal to disk and empty the journal.
1983  * Filesystems can use this when remounting readonly to ensure that
1984  * recovery does not need to happen on remount.
1985  */
1986
1987 int jbd2_journal_flush(journal_t *journal)
1988 {
1989         int err = 0;
1990         transaction_t *transaction = NULL;
1991
1992         write_lock(&journal->j_state_lock);
1993
1994         /* Force everything buffered to the log... */
1995         if (journal->j_running_transaction) {
1996                 transaction = journal->j_running_transaction;
1997                 __jbd2_log_start_commit(journal, transaction->t_tid);
1998         } else if (journal->j_committing_transaction)
1999                 transaction = journal->j_committing_transaction;
2000
2001         /* Wait for the log commit to complete... */
2002         if (transaction) {
2003                 tid_t tid = transaction->t_tid;
2004
2005                 write_unlock(&journal->j_state_lock);
2006                 jbd2_log_wait_commit(journal, tid);
2007         } else {
2008                 write_unlock(&journal->j_state_lock);
2009         }
2010
2011         /* ...and flush everything in the log out to disk. */
2012         spin_lock(&journal->j_list_lock);
2013         while (!err && journal->j_checkpoint_transactions != NULL) {
2014                 spin_unlock(&journal->j_list_lock);
2015                 mutex_lock_io(&journal->j_checkpoint_mutex);
2016                 err = jbd2_log_do_checkpoint(journal);
2017                 mutex_unlock(&journal->j_checkpoint_mutex);
2018                 spin_lock(&journal->j_list_lock);
2019         }
2020         spin_unlock(&journal->j_list_lock);
2021
2022         if (is_journal_aborted(journal))
2023                 return -EIO;
2024
2025         mutex_lock_io(&journal->j_checkpoint_mutex);
2026         if (!err) {
2027                 err = jbd2_cleanup_journal_tail(journal);
2028                 if (err < 0) {
2029                         mutex_unlock(&journal->j_checkpoint_mutex);
2030                         goto out;
2031                 }
2032                 err = 0;
2033         }
2034
2035         /* Finally, mark the journal as really needing no recovery.
2036          * This sets s_start==0 in the underlying superblock, which is
2037          * the magic code for a fully-recovered superblock.  Any future
2038          * commits of data to the journal will restore the current
2039          * s_start value. */
2040         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2041         mutex_unlock(&journal->j_checkpoint_mutex);
2042         write_lock(&journal->j_state_lock);
2043         J_ASSERT(!journal->j_running_transaction);
2044         J_ASSERT(!journal->j_committing_transaction);
2045         J_ASSERT(!journal->j_checkpoint_transactions);
2046         J_ASSERT(journal->j_head == journal->j_tail);
2047         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2048         write_unlock(&journal->j_state_lock);
2049 out:
2050         return err;
2051 }
2052
2053 /**
2054  * int jbd2_journal_wipe() - Wipe journal contents
2055  * @journal: Journal to act on.
2056  * @write: flag (see below)
2057  *
2058  * Wipe out all of the contents of a journal, safely.  This will produce
2059  * a warning if the journal contains any valid recovery information.
2060  * Must be called between journal_init_*() and jbd2_journal_load().
2061  *
2062  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2063  * we merely suppress recovery.
2064  */
2065
2066 int jbd2_journal_wipe(journal_t *journal, int write)
2067 {
2068         int err = 0;
2069
2070         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2071
2072         err = load_superblock(journal);
2073         if (err)
2074                 return err;
2075
2076         if (!journal->j_tail)
2077                 goto no_recovery;
2078
2079         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2080                 write ? "Clearing" : "Ignoring");
2081
2082         err = jbd2_journal_skip_recovery(journal);
2083         if (write) {
2084                 /* Lock to make assertions happy... */
2085                 mutex_lock(&journal->j_checkpoint_mutex);
2086                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2087                 mutex_unlock(&journal->j_checkpoint_mutex);
2088         }
2089
2090  no_recovery:
2091         return err;
2092 }
2093
2094 /*
2095  * Journal abort has very specific semantics, which we describe
2096  * for journal abort.
2097  *
2098  * Two internal functions, which provide abort to the jbd layer
2099  * itself are here.
2100  */
2101
2102 /*
2103  * Quick version for internal journal use (doesn't lock the journal).
2104  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2105  * and don't attempt to make any other journal updates.
2106  */
2107 void __jbd2_journal_abort_hard(journal_t *journal)
2108 {
2109         transaction_t *transaction;
2110
2111         if (journal->j_flags & JBD2_ABORT)
2112                 return;
2113
2114         printk(KERN_ERR "Aborting journal on device %s.\n",
2115                journal->j_devname);
2116
2117         write_lock(&journal->j_state_lock);
2118         journal->j_flags |= JBD2_ABORT;
2119         transaction = journal->j_running_transaction;
2120         if (transaction)
2121                 __jbd2_log_start_commit(journal, transaction->t_tid);
2122         write_unlock(&journal->j_state_lock);
2123 }
2124
2125 /* Soft abort: record the abort error status in the journal superblock,
2126  * but don't do any other IO. */
2127 static void __journal_abort_soft (journal_t *journal, int errno)
2128 {
2129         int old_errno;
2130
2131         write_lock(&journal->j_state_lock);
2132         old_errno = journal->j_errno;
2133         if (!journal->j_errno || errno == -ESHUTDOWN)
2134                 journal->j_errno = errno;
2135
2136         if (journal->j_flags & JBD2_ABORT) {
2137                 write_unlock(&journal->j_state_lock);
2138                 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN)
2139                         jbd2_journal_update_sb_errno(journal);
2140                 return;
2141         }
2142         write_unlock(&journal->j_state_lock);
2143
2144         __jbd2_journal_abort_hard(journal);
2145
2146         jbd2_journal_update_sb_errno(journal);
2147         write_lock(&journal->j_state_lock);
2148         journal->j_flags |= JBD2_REC_ERR;
2149         write_unlock(&journal->j_state_lock);
2150 }
2151
2152 /**
2153  * void jbd2_journal_abort () - Shutdown the journal immediately.
2154  * @journal: the journal to shutdown.
2155  * @errno:   an error number to record in the journal indicating
2156  *           the reason for the shutdown.
2157  *
2158  * Perform a complete, immediate shutdown of the ENTIRE
2159  * journal (not of a single transaction).  This operation cannot be
2160  * undone without closing and reopening the journal.
2161  *
2162  * The jbd2_journal_abort function is intended to support higher level error
2163  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2164  * mode.
2165  *
2166  * Journal abort has very specific semantics.  Any existing dirty,
2167  * unjournaled buffers in the main filesystem will still be written to
2168  * disk by bdflush, but the journaling mechanism will be suspended
2169  * immediately and no further transaction commits will be honoured.
2170  *
2171  * Any dirty, journaled buffers will be written back to disk without
2172  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2173  * filesystem, but we _do_ attempt to leave as much data as possible
2174  * behind for fsck to use for cleanup.
2175  *
2176  * Any attempt to get a new transaction handle on a journal which is in
2177  * ABORT state will just result in an -EROFS error return.  A
2178  * jbd2_journal_stop on an existing handle will return -EIO if we have
2179  * entered abort state during the update.
2180  *
2181  * Recursive transactions are not disturbed by journal abort until the
2182  * final jbd2_journal_stop, which will receive the -EIO error.
2183  *
2184  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2185  * which will be recorded (if possible) in the journal superblock.  This
2186  * allows a client to record failure conditions in the middle of a
2187  * transaction without having to complete the transaction to record the
2188  * failure to disk.  ext3_error, for example, now uses this
2189  * functionality.
2190  *
2191  */
2192
2193 void jbd2_journal_abort(journal_t *journal, int errno)
2194 {
2195         __journal_abort_soft(journal, errno);
2196 }
2197
2198 /**
2199  * int jbd2_journal_errno () - returns the journal's error state.
2200  * @journal: journal to examine.
2201  *
2202  * This is the errno number set with jbd2_journal_abort(), the last
2203  * time the journal was mounted - if the journal was stopped
2204  * without calling abort this will be 0.
2205  *
2206  * If the journal has been aborted on this mount time -EROFS will
2207  * be returned.
2208  */
2209 int jbd2_journal_errno(journal_t *journal)
2210 {
2211         int err;
2212
2213         read_lock(&journal->j_state_lock);
2214         if (journal->j_flags & JBD2_ABORT)
2215                 err = -EROFS;
2216         else
2217                 err = journal->j_errno;
2218         read_unlock(&journal->j_state_lock);
2219         return err;
2220 }
2221
2222 /**
2223  * int jbd2_journal_clear_err () - clears the journal's error state
2224  * @journal: journal to act on.
2225  *
2226  * An error must be cleared or acked to take a FS out of readonly
2227  * mode.
2228  */
2229 int jbd2_journal_clear_err(journal_t *journal)
2230 {
2231         int err = 0;
2232
2233         write_lock(&journal->j_state_lock);
2234         if (journal->j_flags & JBD2_ABORT)
2235                 err = -EROFS;
2236         else
2237                 journal->j_errno = 0;
2238         write_unlock(&journal->j_state_lock);
2239         return err;
2240 }
2241
2242 /**
2243  * void jbd2_journal_ack_err() - Ack journal err.
2244  * @journal: journal to act on.
2245  *
2246  * An error must be cleared or acked to take a FS out of readonly
2247  * mode.
2248  */
2249 void jbd2_journal_ack_err(journal_t *journal)
2250 {
2251         write_lock(&journal->j_state_lock);
2252         if (journal->j_errno)
2253                 journal->j_flags |= JBD2_ACK_ERR;
2254         write_unlock(&journal->j_state_lock);
2255 }
2256
2257 int jbd2_journal_blocks_per_page(struct inode *inode)
2258 {
2259         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2260 }
2261
2262 /*
2263  * helper functions to deal with 32 or 64bit block numbers.
2264  */
2265 size_t journal_tag_bytes(journal_t *journal)
2266 {
2267         size_t sz;
2268
2269         if (jbd2_has_feature_csum3(journal))
2270                 return sizeof(journal_block_tag3_t);
2271
2272         sz = sizeof(journal_block_tag_t);
2273
2274         if (jbd2_has_feature_csum2(journal))
2275                 sz += sizeof(__u16);
2276
2277         if (jbd2_has_feature_64bit(journal))
2278                 return sz;
2279         else
2280                 return sz - sizeof(__u32);
2281 }
2282
2283 /*
2284  * JBD memory management
2285  *
2286  * These functions are used to allocate block-sized chunks of memory
2287  * used for making copies of buffer_head data.  Very often it will be
2288  * page-sized chunks of data, but sometimes it will be in
2289  * sub-page-size chunks.  (For example, 16k pages on Power systems
2290  * with a 4k block file system.)  For blocks smaller than a page, we
2291  * use a SLAB allocator.  There are slab caches for each block size,
2292  * which are allocated at mount time, if necessary, and we only free
2293  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2294  * this reason we don't need to a mutex to protect access to
2295  * jbd2_slab[] allocating or releasing memory; only in
2296  * jbd2_journal_create_slab().
2297  */
2298 #define JBD2_MAX_SLABS 8
2299 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2300
2301 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2302         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2303         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2304 };
2305
2306
2307 static void jbd2_journal_destroy_slabs(void)
2308 {
2309         int i;
2310
2311         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2312                 kmem_cache_destroy(jbd2_slab[i]);
2313                 jbd2_slab[i] = NULL;
2314         }
2315 }
2316
2317 static int jbd2_journal_create_slab(size_t size)
2318 {
2319         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2320         int i = order_base_2(size) - 10;
2321         size_t slab_size;
2322
2323         if (size == PAGE_SIZE)
2324                 return 0;
2325
2326         if (i >= JBD2_MAX_SLABS)
2327                 return -EINVAL;
2328
2329         if (unlikely(i < 0))
2330                 i = 0;
2331         mutex_lock(&jbd2_slab_create_mutex);
2332         if (jbd2_slab[i]) {
2333                 mutex_unlock(&jbd2_slab_create_mutex);
2334                 return 0;       /* Already created */
2335         }
2336
2337         slab_size = 1 << (i+10);
2338         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2339                                          slab_size, 0, NULL);
2340         mutex_unlock(&jbd2_slab_create_mutex);
2341         if (!jbd2_slab[i]) {
2342                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2343                 return -ENOMEM;
2344         }
2345         return 0;
2346 }
2347
2348 static struct kmem_cache *get_slab(size_t size)
2349 {
2350         int i = order_base_2(size) - 10;
2351
2352         BUG_ON(i >= JBD2_MAX_SLABS);
2353         if (unlikely(i < 0))
2354                 i = 0;
2355         BUG_ON(jbd2_slab[i] == NULL);
2356         return jbd2_slab[i];
2357 }
2358
2359 void *jbd2_alloc(size_t size, gfp_t flags)
2360 {
2361         void *ptr;
2362
2363         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2364
2365         if (size < PAGE_SIZE)
2366                 ptr = kmem_cache_alloc(get_slab(size), flags);
2367         else
2368                 ptr = (void *)__get_free_pages(flags, get_order(size));
2369
2370         /* Check alignment; SLUB has gotten this wrong in the past,
2371          * and this can lead to user data corruption! */
2372         BUG_ON(((unsigned long) ptr) & (size-1));
2373
2374         return ptr;
2375 }
2376
2377 void jbd2_free(void *ptr, size_t size)
2378 {
2379         if (size < PAGE_SIZE)
2380                 kmem_cache_free(get_slab(size), ptr);
2381         else
2382                 free_pages((unsigned long)ptr, get_order(size));
2383 };
2384
2385 /*
2386  * Journal_head storage management
2387  */
2388 static struct kmem_cache *jbd2_journal_head_cache;
2389 #ifdef CONFIG_JBD2_DEBUG
2390 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2391 #endif
2392
2393 static int __init jbd2_journal_init_journal_head_cache(void)
2394 {
2395         J_ASSERT(!jbd2_journal_head_cache);
2396         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2397                                 sizeof(struct journal_head),
2398                                 0,              /* offset */
2399                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2400                                 NULL);          /* ctor */
2401         if (!jbd2_journal_head_cache) {
2402                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2403                 return -ENOMEM;
2404         }
2405         return 0;
2406 }
2407
2408 static void jbd2_journal_destroy_journal_head_cache(void)
2409 {
2410         kmem_cache_destroy(jbd2_journal_head_cache);
2411         jbd2_journal_head_cache = NULL;
2412 }
2413
2414 /*
2415  * journal_head splicing and dicing
2416  */
2417 static struct journal_head *journal_alloc_journal_head(void)
2418 {
2419         struct journal_head *ret;
2420
2421 #ifdef CONFIG_JBD2_DEBUG
2422         atomic_inc(&nr_journal_heads);
2423 #endif
2424         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2425         if (!ret) {
2426                 jbd_debug(1, "out of memory for journal_head\n");
2427                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2428                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2429                                 GFP_NOFS | __GFP_NOFAIL);
2430         }
2431         return ret;
2432 }
2433
2434 static void journal_free_journal_head(struct journal_head *jh)
2435 {
2436 #ifdef CONFIG_JBD2_DEBUG
2437         atomic_dec(&nr_journal_heads);
2438         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2439 #endif
2440         kmem_cache_free(jbd2_journal_head_cache, jh);
2441 }
2442
2443 /*
2444  * A journal_head is attached to a buffer_head whenever JBD has an
2445  * interest in the buffer.
2446  *
2447  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2448  * is set.  This bit is tested in core kernel code where we need to take
2449  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2450  * there.
2451  *
2452  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2453  *
2454  * When a buffer has its BH_JBD bit set it is immune from being released by
2455  * core kernel code, mainly via ->b_count.
2456  *
2457  * A journal_head is detached from its buffer_head when the journal_head's
2458  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2459  * transaction (b_cp_transaction) hold their references to b_jcount.
2460  *
2461  * Various places in the kernel want to attach a journal_head to a buffer_head
2462  * _before_ attaching the journal_head to a transaction.  To protect the
2463  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2464  * journal_head's b_jcount refcount by one.  The caller must call
2465  * jbd2_journal_put_journal_head() to undo this.
2466  *
2467  * So the typical usage would be:
2468  *
2469  *      (Attach a journal_head if needed.  Increments b_jcount)
2470  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2471  *      ...
2472  *      (Get another reference for transaction)
2473  *      jbd2_journal_grab_journal_head(bh);
2474  *      jh->b_transaction = xxx;
2475  *      (Put original reference)
2476  *      jbd2_journal_put_journal_head(jh);
2477  */
2478
2479 /*
2480  * Give a buffer_head a journal_head.
2481  *
2482  * May sleep.
2483  */
2484 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2485 {
2486         struct journal_head *jh;
2487         struct journal_head *new_jh = NULL;
2488
2489 repeat:
2490         if (!buffer_jbd(bh))
2491                 new_jh = journal_alloc_journal_head();
2492
2493         jbd_lock_bh_journal_head(bh);
2494         if (buffer_jbd(bh)) {
2495                 jh = bh2jh(bh);
2496         } else {
2497                 J_ASSERT_BH(bh,
2498                         (atomic_read(&bh->b_count) > 0) ||
2499                         (bh->b_page && bh->b_page->mapping));
2500
2501                 if (!new_jh) {
2502                         jbd_unlock_bh_journal_head(bh);
2503                         goto repeat;
2504                 }
2505
2506                 jh = new_jh;
2507                 new_jh = NULL;          /* We consumed it */
2508                 set_buffer_jbd(bh);
2509                 bh->b_private = jh;
2510                 jh->b_bh = bh;
2511                 get_bh(bh);
2512                 BUFFER_TRACE(bh, "added journal_head");
2513         }
2514         jh->b_jcount++;
2515         jbd_unlock_bh_journal_head(bh);
2516         if (new_jh)
2517                 journal_free_journal_head(new_jh);
2518         return bh->b_private;
2519 }
2520
2521 /*
2522  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2523  * having a journal_head, return NULL
2524  */
2525 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2526 {
2527         struct journal_head *jh = NULL;
2528
2529         jbd_lock_bh_journal_head(bh);
2530         if (buffer_jbd(bh)) {
2531                 jh = bh2jh(bh);
2532                 jh->b_jcount++;
2533         }
2534         jbd_unlock_bh_journal_head(bh);
2535         return jh;
2536 }
2537
2538 static void __journal_remove_journal_head(struct buffer_head *bh)
2539 {
2540         struct journal_head *jh = bh2jh(bh);
2541
2542         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2543         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2544         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2545         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2546         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2547         J_ASSERT_BH(bh, buffer_jbd(bh));
2548         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2549         BUFFER_TRACE(bh, "remove journal_head");
2550         if (jh->b_frozen_data) {
2551                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2552                 jbd2_free(jh->b_frozen_data, bh->b_size);
2553         }
2554         if (jh->b_committed_data) {
2555                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2556                 jbd2_free(jh->b_committed_data, bh->b_size);
2557         }
2558         bh->b_private = NULL;
2559         jh->b_bh = NULL;        /* debug, really */
2560         clear_buffer_jbd(bh);
2561         journal_free_journal_head(jh);
2562 }
2563
2564 /*
2565  * Drop a reference on the passed journal_head.  If it fell to zero then
2566  * release the journal_head from the buffer_head.
2567  */
2568 void jbd2_journal_put_journal_head(struct journal_head *jh)
2569 {
2570         struct buffer_head *bh = jh2bh(jh);
2571
2572         jbd_lock_bh_journal_head(bh);
2573         J_ASSERT_JH(jh, jh->b_jcount > 0);
2574         --jh->b_jcount;
2575         if (!jh->b_jcount) {
2576                 __journal_remove_journal_head(bh);
2577                 jbd_unlock_bh_journal_head(bh);
2578                 __brelse(bh);
2579         } else
2580                 jbd_unlock_bh_journal_head(bh);
2581 }
2582
2583 /*
2584  * Initialize jbd inode head
2585  */
2586 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2587 {
2588         jinode->i_transaction = NULL;
2589         jinode->i_next_transaction = NULL;
2590         jinode->i_vfs_inode = inode;
2591         jinode->i_flags = 0;
2592         jinode->i_dirty_start = 0;
2593         jinode->i_dirty_end = 0;
2594         INIT_LIST_HEAD(&jinode->i_list);
2595 }
2596
2597 /*
2598  * Function to be called before we start removing inode from memory (i.e.,
2599  * clear_inode() is a fine place to be called from). It removes inode from
2600  * transaction's lists.
2601  */
2602 void jbd2_journal_release_jbd_inode(journal_t *journal,
2603                                     struct jbd2_inode *jinode)
2604 {
2605         if (!journal)
2606                 return;
2607 restart:
2608         spin_lock(&journal->j_list_lock);
2609         /* Is commit writing out inode - we have to wait */
2610         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2611                 wait_queue_head_t *wq;
2612                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2613                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2614                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2615                 spin_unlock(&journal->j_list_lock);
2616                 schedule();
2617                 finish_wait(wq, &wait.wq_entry);
2618                 goto restart;
2619         }
2620
2621         if (jinode->i_transaction) {
2622                 list_del(&jinode->i_list);
2623                 jinode->i_transaction = NULL;
2624         }
2625         spin_unlock(&journal->j_list_lock);
2626 }
2627
2628
2629 #ifdef CONFIG_PROC_FS
2630
2631 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2632
2633 static void __init jbd2_create_jbd_stats_proc_entry(void)
2634 {
2635         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2636 }
2637
2638 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2639 {
2640         if (proc_jbd2_stats)
2641                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2642 }
2643
2644 #else
2645
2646 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2647 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2648
2649 #endif
2650
2651 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2652
2653 static int __init jbd2_journal_init_inode_cache(void)
2654 {
2655         J_ASSERT(!jbd2_inode_cache);
2656         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2657         if (!jbd2_inode_cache) {
2658                 pr_emerg("JBD2: failed to create inode cache\n");
2659                 return -ENOMEM;
2660         }
2661         return 0;
2662 }
2663
2664 static int __init jbd2_journal_init_handle_cache(void)
2665 {
2666         J_ASSERT(!jbd2_handle_cache);
2667         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2668         if (!jbd2_handle_cache) {
2669                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2670                 return -ENOMEM;
2671         }
2672         return 0;
2673 }
2674
2675 static void jbd2_journal_destroy_inode_cache(void)
2676 {
2677         kmem_cache_destroy(jbd2_inode_cache);
2678         jbd2_inode_cache = NULL;
2679 }
2680
2681 static void jbd2_journal_destroy_handle_cache(void)
2682 {
2683         kmem_cache_destroy(jbd2_handle_cache);
2684         jbd2_handle_cache = NULL;
2685 }
2686
2687 /*
2688  * Module startup and shutdown
2689  */
2690
2691 static int __init journal_init_caches(void)
2692 {
2693         int ret;
2694
2695         ret = jbd2_journal_init_revoke_record_cache();
2696         if (ret == 0)
2697                 ret = jbd2_journal_init_revoke_table_cache();
2698         if (ret == 0)
2699                 ret = jbd2_journal_init_journal_head_cache();
2700         if (ret == 0)
2701                 ret = jbd2_journal_init_handle_cache();
2702         if (ret == 0)
2703                 ret = jbd2_journal_init_inode_cache();
2704         if (ret == 0)
2705                 ret = jbd2_journal_init_transaction_cache();
2706         return ret;
2707 }
2708
2709 static void jbd2_journal_destroy_caches(void)
2710 {
2711         jbd2_journal_destroy_revoke_record_cache();
2712         jbd2_journal_destroy_revoke_table_cache();
2713         jbd2_journal_destroy_journal_head_cache();
2714         jbd2_journal_destroy_handle_cache();
2715         jbd2_journal_destroy_inode_cache();
2716         jbd2_journal_destroy_transaction_cache();
2717         jbd2_journal_destroy_slabs();
2718 }
2719
2720 static int __init journal_init(void)
2721 {
2722         int ret;
2723
2724         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2725
2726         ret = journal_init_caches();
2727         if (ret == 0) {
2728                 jbd2_create_jbd_stats_proc_entry();
2729         } else {
2730                 jbd2_journal_destroy_caches();
2731         }
2732         return ret;
2733 }
2734
2735 static void __exit journal_exit(void)
2736 {
2737 #ifdef CONFIG_JBD2_DEBUG
2738         int n = atomic_read(&nr_journal_heads);
2739         if (n)
2740                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2741 #endif
2742         jbd2_remove_jbd_stats_proc_entry();
2743         jbd2_journal_destroy_caches();
2744 }
2745
2746 MODULE_LICENSE("GPL");
2747 module_init(journal_init);
2748 module_exit(journal_exit);
2749