GNU Linux-libre 4.19.314-gnu1
[releases.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109                   unsigned int line, const char *fmt, ...)
110 {
111         struct va_format vaf;
112         va_list args;
113
114         if (level > jbd2_journal_enable_debug)
115                 return;
116         va_start(args, fmt);
117         vaf.fmt = fmt;
118         vaf.va = &args;
119         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
120         va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128         if (!jbd2_journal_has_csum_v2or3_feature(j))
129                 return 1;
130
131         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136         __u32 csum;
137         __be32 old_csum;
138
139         old_csum = sb->s_checksum;
140         sb->s_checksum = 0;
141         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142         sb->s_checksum = old_csum;
143
144         return cpu_to_be32(csum);
145 }
146
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149         if (!jbd2_journal_has_csum_v2or3(j))
150                 return 1;
151
152         return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157         if (!jbd2_journal_has_csum_v2or3(j))
158                 return;
159
160         sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162
163 /*
164  * Helper function used to manage commit timeouts
165  */
166
167 static void commit_timeout(struct timer_list *t)
168 {
169         journal_t *journal = from_timer(journal, t, j_commit_timer);
170
171         wake_up_process(journal->j_task);
172 }
173
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189
190 static int kjournald2(void *arg)
191 {
192         journal_t *journal = arg;
193         transaction_t *transaction;
194
195         /*
196          * Set up an interval timer which can be used to trigger a commit wakeup
197          * after the commit interval expires
198          */
199         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
200
201         set_freezable();
202
203         /* Record that the journal thread is running */
204         journal->j_task = current;
205         wake_up(&journal->j_wait_done_commit);
206
207         /*
208          * Make sure that no allocations from this kernel thread will ever
209          * recurse to the fs layer because we are responsible for the
210          * transaction commit and any fs involvement might get stuck waiting for
211          * the trasn. commit.
212          */
213         memalloc_nofs_save();
214
215         /*
216          * And now, wait forever for commit wakeup events.
217          */
218         write_lock(&journal->j_state_lock);
219
220 loop:
221         if (journal->j_flags & JBD2_UNMOUNT)
222                 goto end_loop;
223
224         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
225                 journal->j_commit_sequence, journal->j_commit_request);
226
227         if (journal->j_commit_sequence != journal->j_commit_request) {
228                 jbd_debug(1, "OK, requests differ\n");
229                 write_unlock(&journal->j_state_lock);
230                 del_timer_sync(&journal->j_commit_timer);
231                 jbd2_journal_commit_transaction(journal);
232                 write_lock(&journal->j_state_lock);
233                 goto loop;
234         }
235
236         wake_up(&journal->j_wait_done_commit);
237         if (freezing(current)) {
238                 /*
239                  * The simpler the better. Flushing journal isn't a
240                  * good idea, because that depends on threads that may
241                  * be already stopped.
242                  */
243                 jbd_debug(1, "Now suspending kjournald2\n");
244                 write_unlock(&journal->j_state_lock);
245                 try_to_freeze();
246                 write_lock(&journal->j_state_lock);
247         } else {
248                 /*
249                  * We assume on resume that commits are already there,
250                  * so we don't sleep
251                  */
252                 DEFINE_WAIT(wait);
253                 int should_sleep = 1;
254
255                 prepare_to_wait(&journal->j_wait_commit, &wait,
256                                 TASK_INTERRUPTIBLE);
257                 if (journal->j_commit_sequence != journal->j_commit_request)
258                         should_sleep = 0;
259                 transaction = journal->j_running_transaction;
260                 if (transaction && time_after_eq(jiffies,
261                                                 transaction->t_expires))
262                         should_sleep = 0;
263                 if (journal->j_flags & JBD2_UNMOUNT)
264                         should_sleep = 0;
265                 if (should_sleep) {
266                         write_unlock(&journal->j_state_lock);
267                         schedule();
268                         write_lock(&journal->j_state_lock);
269                 }
270                 finish_wait(&journal->j_wait_commit, &wait);
271         }
272
273         jbd_debug(1, "kjournald2 wakes\n");
274
275         /*
276          * Were we woken up by a commit wakeup event?
277          */
278         transaction = journal->j_running_transaction;
279         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
280                 journal->j_commit_request = transaction->t_tid;
281                 jbd_debug(1, "woke because of timeout\n");
282         }
283         goto loop;
284
285 end_loop:
286         del_timer_sync(&journal->j_commit_timer);
287         journal->j_task = NULL;
288         wake_up(&journal->j_wait_done_commit);
289         jbd_debug(1, "Journal thread exiting.\n");
290         write_unlock(&journal->j_state_lock);
291         return 0;
292 }
293
294 static int jbd2_journal_start_thread(journal_t *journal)
295 {
296         struct task_struct *t;
297
298         t = kthread_run(kjournald2, journal, "jbd2/%s",
299                         journal->j_devname);
300         if (IS_ERR(t))
301                 return PTR_ERR(t);
302
303         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
304         return 0;
305 }
306
307 static void journal_kill_thread(journal_t *journal)
308 {
309         write_lock(&journal->j_state_lock);
310         journal->j_flags |= JBD2_UNMOUNT;
311
312         while (journal->j_task) {
313                 write_unlock(&journal->j_state_lock);
314                 wake_up(&journal->j_wait_commit);
315                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
316                 write_lock(&journal->j_state_lock);
317         }
318         write_unlock(&journal->j_state_lock);
319 }
320
321 /*
322  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
323  *
324  * Writes a metadata buffer to a given disk block.  The actual IO is not
325  * performed but a new buffer_head is constructed which labels the data
326  * to be written with the correct destination disk block.
327  *
328  * Any magic-number escaping which needs to be done will cause a
329  * copy-out here.  If the buffer happens to start with the
330  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
331  * magic number is only written to the log for descripter blocks.  In
332  * this case, we copy the data and replace the first word with 0, and we
333  * return a result code which indicates that this buffer needs to be
334  * marked as an escaped buffer in the corresponding log descriptor
335  * block.  The missing word can then be restored when the block is read
336  * during recovery.
337  *
338  * If the source buffer has already been modified by a new transaction
339  * since we took the last commit snapshot, we use the frozen copy of
340  * that data for IO. If we end up using the existing buffer_head's data
341  * for the write, then we have to make sure nobody modifies it while the
342  * IO is in progress. do_get_write_access() handles this.
343  *
344  * The function returns a pointer to the buffer_head to be used for IO.
345  * 
346  *
347  * Return value:
348  *  <0: Error
349  * >=0: Finished OK
350  *
351  * On success:
352  * Bit 0 set == escape performed on the data
353  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
354  */
355
356 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
357                                   struct journal_head  *jh_in,
358                                   struct buffer_head **bh_out,
359                                   sector_t blocknr)
360 {
361         int need_copy_out = 0;
362         int done_copy_out = 0;
363         int do_escape = 0;
364         char *mapped_data;
365         struct buffer_head *new_bh;
366         struct page *new_page;
367         unsigned int new_offset;
368         struct buffer_head *bh_in = jh2bh(jh_in);
369         journal_t *journal = transaction->t_journal;
370
371         /*
372          * The buffer really shouldn't be locked: only the current committing
373          * transaction is allowed to write it, so nobody else is allowed
374          * to do any IO.
375          *
376          * akpm: except if we're journalling data, and write() output is
377          * also part of a shared mapping, and another thread has
378          * decided to launch a writepage() against this buffer.
379          */
380         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
381
382         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
383
384         /* keep subsequent assertions sane */
385         atomic_set(&new_bh->b_count, 1);
386
387         jbd_lock_bh_state(bh_in);
388 repeat:
389         /*
390          * If a new transaction has already done a buffer copy-out, then
391          * we use that version of the data for the commit.
392          */
393         if (jh_in->b_frozen_data) {
394                 done_copy_out = 1;
395                 new_page = virt_to_page(jh_in->b_frozen_data);
396                 new_offset = offset_in_page(jh_in->b_frozen_data);
397         } else {
398                 new_page = jh2bh(jh_in)->b_page;
399                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
400         }
401
402         mapped_data = kmap_atomic(new_page);
403         /*
404          * Fire data frozen trigger if data already wasn't frozen.  Do this
405          * before checking for escaping, as the trigger may modify the magic
406          * offset.  If a copy-out happens afterwards, it will have the correct
407          * data in the buffer.
408          */
409         if (!done_copy_out)
410                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
411                                            jh_in->b_triggers);
412
413         /*
414          * Check for escaping
415          */
416         if (*((__be32 *)(mapped_data + new_offset)) ==
417                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
418                 need_copy_out = 1;
419                 do_escape = 1;
420         }
421         kunmap_atomic(mapped_data);
422
423         /*
424          * Do we need to do a data copy?
425          */
426         if (need_copy_out && !done_copy_out) {
427                 char *tmp;
428
429                 jbd_unlock_bh_state(bh_in);
430                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
431                 if (!tmp) {
432                         brelse(new_bh);
433                         return -ENOMEM;
434                 }
435                 jbd_lock_bh_state(bh_in);
436                 if (jh_in->b_frozen_data) {
437                         jbd2_free(tmp, bh_in->b_size);
438                         goto repeat;
439                 }
440
441                 jh_in->b_frozen_data = tmp;
442                 mapped_data = kmap_atomic(new_page);
443                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
444                 kunmap_atomic(mapped_data);
445
446                 new_page = virt_to_page(tmp);
447                 new_offset = offset_in_page(tmp);
448                 done_copy_out = 1;
449
450                 /*
451                  * This isn't strictly necessary, as we're using frozen
452                  * data for the escaping, but it keeps consistency with
453                  * b_frozen_data usage.
454                  */
455                 jh_in->b_frozen_triggers = jh_in->b_triggers;
456         }
457
458         /*
459          * Did we need to do an escaping?  Now we've done all the
460          * copying, we can finally do so.
461          */
462         if (do_escape) {
463                 mapped_data = kmap_atomic(new_page);
464                 *((unsigned int *)(mapped_data + new_offset)) = 0;
465                 kunmap_atomic(mapped_data);
466         }
467
468         set_bh_page(new_bh, new_page, new_offset);
469         new_bh->b_size = bh_in->b_size;
470         new_bh->b_bdev = journal->j_dev;
471         new_bh->b_blocknr = blocknr;
472         new_bh->b_private = bh_in;
473         set_buffer_mapped(new_bh);
474         set_buffer_dirty(new_bh);
475
476         *bh_out = new_bh;
477
478         /*
479          * The to-be-written buffer needs to get moved to the io queue,
480          * and the original buffer whose contents we are shadowing or
481          * copying is moved to the transaction's shadow queue.
482          */
483         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
484         spin_lock(&journal->j_list_lock);
485         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
486         spin_unlock(&journal->j_list_lock);
487         set_buffer_shadow(bh_in);
488         jbd_unlock_bh_state(bh_in);
489
490         return do_escape | (done_copy_out << 1);
491 }
492
493 /*
494  * Allocation code for the journal file.  Manage the space left in the
495  * journal, so that we can begin checkpointing when appropriate.
496  */
497
498 /*
499  * Called with j_state_lock locked for writing.
500  * Returns true if a transaction commit was started.
501  */
502 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
503 {
504         /* Return if the txn has already requested to be committed */
505         if (journal->j_commit_request == target)
506                 return 0;
507
508         /*
509          * The only transaction we can possibly wait upon is the
510          * currently running transaction (if it exists).  Otherwise,
511          * the target tid must be an old one.
512          */
513         if (journal->j_running_transaction &&
514             journal->j_running_transaction->t_tid == target) {
515                 /*
516                  * We want a new commit: OK, mark the request and wakeup the
517                  * commit thread.  We do _not_ do the commit ourselves.
518                  */
519
520                 journal->j_commit_request = target;
521                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522                           journal->j_commit_request,
523                           journal->j_commit_sequence);
524                 journal->j_running_transaction->t_requested = jiffies;
525                 wake_up(&journal->j_wait_commit);
526                 return 1;
527         } else if (!tid_geq(journal->j_commit_request, target))
528                 /* This should never happen, but if it does, preserve
529                    the evidence before kjournald goes into a loop and
530                    increments j_commit_sequence beyond all recognition. */
531                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532                           journal->j_commit_request,
533                           journal->j_commit_sequence,
534                           target, journal->j_running_transaction ? 
535                           journal->j_running_transaction->t_tid : 0);
536         return 0;
537 }
538
539 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
540 {
541         int ret;
542
543         write_lock(&journal->j_state_lock);
544         ret = __jbd2_log_start_commit(journal, tid);
545         write_unlock(&journal->j_state_lock);
546         return ret;
547 }
548
549 /*
550  * Force and wait any uncommitted transactions.  We can only force the running
551  * transaction if we don't have an active handle, otherwise, we will deadlock.
552  * Returns: <0 in case of error,
553  *           0 if nothing to commit,
554  *           1 if transaction was successfully committed.
555  */
556 static int __jbd2_journal_force_commit(journal_t *journal)
557 {
558         transaction_t *transaction = NULL;
559         tid_t tid;
560         int need_to_start = 0, ret = 0;
561
562         read_lock(&journal->j_state_lock);
563         if (journal->j_running_transaction && !current->journal_info) {
564                 transaction = journal->j_running_transaction;
565                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
566                         need_to_start = 1;
567         } else if (journal->j_committing_transaction)
568                 transaction = journal->j_committing_transaction;
569
570         if (!transaction) {
571                 /* Nothing to commit */
572                 read_unlock(&journal->j_state_lock);
573                 return 0;
574         }
575         tid = transaction->t_tid;
576         read_unlock(&journal->j_state_lock);
577         if (need_to_start)
578                 jbd2_log_start_commit(journal, tid);
579         ret = jbd2_log_wait_commit(journal, tid);
580         if (!ret)
581                 ret = 1;
582
583         return ret;
584 }
585
586 /**
587  * Force and wait upon a commit if the calling process is not within
588  * transaction.  This is used for forcing out undo-protected data which contains
589  * bitmaps, when the fs is running out of space.
590  *
591  * @journal: journal to force
592  * Returns true if progress was made.
593  */
594 int jbd2_journal_force_commit_nested(journal_t *journal)
595 {
596         int ret;
597
598         ret = __jbd2_journal_force_commit(journal);
599         return ret > 0;
600 }
601
602 /**
603  * int journal_force_commit() - force any uncommitted transactions
604  * @journal: journal to force
605  *
606  * Caller want unconditional commit. We can only force the running transaction
607  * if we don't have an active handle, otherwise, we will deadlock.
608  */
609 int jbd2_journal_force_commit(journal_t *journal)
610 {
611         int ret;
612
613         J_ASSERT(!current->journal_info);
614         ret = __jbd2_journal_force_commit(journal);
615         if (ret > 0)
616                 ret = 0;
617         return ret;
618 }
619
620 /*
621  * Start a commit of the current running transaction (if any).  Returns true
622  * if a transaction is going to be committed (or is currently already
623  * committing), and fills its tid in at *ptid
624  */
625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
626 {
627         int ret = 0;
628
629         write_lock(&journal->j_state_lock);
630         if (journal->j_running_transaction) {
631                 tid_t tid = journal->j_running_transaction->t_tid;
632
633                 __jbd2_log_start_commit(journal, tid);
634                 /* There's a running transaction and we've just made sure
635                  * it's commit has been scheduled. */
636                 if (ptid)
637                         *ptid = tid;
638                 ret = 1;
639         } else if (journal->j_committing_transaction) {
640                 /*
641                  * If commit has been started, then we have to wait for
642                  * completion of that transaction.
643                  */
644                 if (ptid)
645                         *ptid = journal->j_committing_transaction->t_tid;
646                 ret = 1;
647         }
648         write_unlock(&journal->j_state_lock);
649         return ret;
650 }
651
652 /*
653  * Return 1 if a given transaction has not yet sent barrier request
654  * connected with a transaction commit. If 0 is returned, transaction
655  * may or may not have sent the barrier. Used to avoid sending barrier
656  * twice in common cases.
657  */
658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
659 {
660         int ret = 0;
661         transaction_t *commit_trans;
662
663         if (!(journal->j_flags & JBD2_BARRIER))
664                 return 0;
665         read_lock(&journal->j_state_lock);
666         /* Transaction already committed? */
667         if (tid_geq(journal->j_commit_sequence, tid))
668                 goto out;
669         commit_trans = journal->j_committing_transaction;
670         if (!commit_trans || commit_trans->t_tid != tid) {
671                 ret = 1;
672                 goto out;
673         }
674         /*
675          * Transaction is being committed and we already proceeded to
676          * submitting a flush to fs partition?
677          */
678         if (journal->j_fs_dev != journal->j_dev) {
679                 if (!commit_trans->t_need_data_flush ||
680                     commit_trans->t_state >= T_COMMIT_DFLUSH)
681                         goto out;
682         } else {
683                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
684                         goto out;
685         }
686         ret = 1;
687 out:
688         read_unlock(&journal->j_state_lock);
689         return ret;
690 }
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
692
693 /*
694  * Wait for a specified commit to complete.
695  * The caller may not hold the journal lock.
696  */
697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
698 {
699         int err = 0;
700
701         read_lock(&journal->j_state_lock);
702 #ifdef CONFIG_PROVE_LOCKING
703         /*
704          * Some callers make sure transaction is already committing and in that
705          * case we cannot block on open handles anymore. So don't warn in that
706          * case.
707          */
708         if (tid_gt(tid, journal->j_commit_sequence) &&
709             (!journal->j_committing_transaction ||
710              journal->j_committing_transaction->t_tid != tid)) {
711                 read_unlock(&journal->j_state_lock);
712                 jbd2_might_wait_for_commit(journal);
713                 read_lock(&journal->j_state_lock);
714         }
715 #endif
716 #ifdef CONFIG_JBD2_DEBUG
717         if (!tid_geq(journal->j_commit_request, tid)) {
718                 printk(KERN_ERR
719                        "%s: error: j_commit_request=%d, tid=%d\n",
720                        __func__, journal->j_commit_request, tid);
721         }
722 #endif
723         while (tid_gt(tid, journal->j_commit_sequence)) {
724                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
725                                   tid, journal->j_commit_sequence);
726                 read_unlock(&journal->j_state_lock);
727                 wake_up(&journal->j_wait_commit);
728                 wait_event(journal->j_wait_done_commit,
729                                 !tid_gt(tid, journal->j_commit_sequence));
730                 read_lock(&journal->j_state_lock);
731         }
732         read_unlock(&journal->j_state_lock);
733
734         if (unlikely(is_journal_aborted(journal)))
735                 err = -EIO;
736         return err;
737 }
738
739 /* Return 1 when transaction with given tid has already committed. */
740 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
741 {
742         int ret = 1;
743
744         read_lock(&journal->j_state_lock);
745         if (journal->j_running_transaction &&
746             journal->j_running_transaction->t_tid == tid)
747                 ret = 0;
748         if (journal->j_committing_transaction &&
749             journal->j_committing_transaction->t_tid == tid)
750                 ret = 0;
751         read_unlock(&journal->j_state_lock);
752         return ret;
753 }
754 EXPORT_SYMBOL(jbd2_transaction_committed);
755
756 /*
757  * When this function returns the transaction corresponding to tid
758  * will be completed.  If the transaction has currently running, start
759  * committing that transaction before waiting for it to complete.  If
760  * the transaction id is stale, it is by definition already completed,
761  * so just return SUCCESS.
762  */
763 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
764 {
765         int     need_to_wait = 1;
766
767         read_lock(&journal->j_state_lock);
768         if (journal->j_running_transaction &&
769             journal->j_running_transaction->t_tid == tid) {
770                 if (journal->j_commit_request != tid) {
771                         /* transaction not yet started, so request it */
772                         read_unlock(&journal->j_state_lock);
773                         jbd2_log_start_commit(journal, tid);
774                         goto wait_commit;
775                 }
776         } else if (!(journal->j_committing_transaction &&
777                      journal->j_committing_transaction->t_tid == tid))
778                 need_to_wait = 0;
779         read_unlock(&journal->j_state_lock);
780         if (!need_to_wait)
781                 return 0;
782 wait_commit:
783         return jbd2_log_wait_commit(journal, tid);
784 }
785 EXPORT_SYMBOL(jbd2_complete_transaction);
786
787 /*
788  * Log buffer allocation routines:
789  */
790
791 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
792 {
793         unsigned long blocknr;
794
795         write_lock(&journal->j_state_lock);
796         J_ASSERT(journal->j_free > 1);
797
798         blocknr = journal->j_head;
799         journal->j_head++;
800         journal->j_free--;
801         if (journal->j_head == journal->j_last)
802                 journal->j_head = journal->j_first;
803         write_unlock(&journal->j_state_lock);
804         return jbd2_journal_bmap(journal, blocknr, retp);
805 }
806
807 /*
808  * Conversion of logical to physical block numbers for the journal
809  *
810  * On external journals the journal blocks are identity-mapped, so
811  * this is a no-op.  If needed, we can use j_blk_offset - everything is
812  * ready.
813  */
814 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
815                  unsigned long long *retp)
816 {
817         int err = 0;
818         unsigned long long ret;
819
820         if (journal->j_inode) {
821                 ret = bmap(journal->j_inode, blocknr);
822                 if (ret)
823                         *retp = ret;
824                 else {
825                         printk(KERN_ALERT "%s: journal block not found "
826                                         "at offset %lu on %s\n",
827                                __func__, blocknr, journal->j_devname);
828                         err = -EIO;
829                         __journal_abort_soft(journal, err);
830                 }
831         } else {
832                 *retp = blocknr; /* +journal->j_blk_offset */
833         }
834         return err;
835 }
836
837 /*
838  * We play buffer_head aliasing tricks to write data/metadata blocks to
839  * the journal without copying their contents, but for journal
840  * descriptor blocks we do need to generate bona fide buffers.
841  *
842  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
843  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
844  * But we don't bother doing that, so there will be coherency problems with
845  * mmaps of blockdevs which hold live JBD-controlled filesystems.
846  */
847 struct buffer_head *
848 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
849 {
850         journal_t *journal = transaction->t_journal;
851         struct buffer_head *bh;
852         unsigned long long blocknr;
853         journal_header_t *header;
854         int err;
855
856         err = jbd2_journal_next_log_block(journal, &blocknr);
857
858         if (err)
859                 return NULL;
860
861         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
862         if (!bh)
863                 return NULL;
864         lock_buffer(bh);
865         memset(bh->b_data, 0, journal->j_blocksize);
866         header = (journal_header_t *)bh->b_data;
867         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
868         header->h_blocktype = cpu_to_be32(type);
869         header->h_sequence = cpu_to_be32(transaction->t_tid);
870         set_buffer_uptodate(bh);
871         unlock_buffer(bh);
872         BUFFER_TRACE(bh, "return this buffer");
873         return bh;
874 }
875
876 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
877 {
878         struct jbd2_journal_block_tail *tail;
879         __u32 csum;
880
881         if (!jbd2_journal_has_csum_v2or3(j))
882                 return;
883
884         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
885                         sizeof(struct jbd2_journal_block_tail));
886         tail->t_checksum = 0;
887         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
888         tail->t_checksum = cpu_to_be32(csum);
889 }
890
891 /*
892  * Return tid of the oldest transaction in the journal and block in the journal
893  * where the transaction starts.
894  *
895  * If the journal is now empty, return which will be the next transaction ID
896  * we will write and where will that transaction start.
897  *
898  * The return value is 0 if journal tail cannot be pushed any further, 1 if
899  * it can.
900  */
901 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
902                               unsigned long *block)
903 {
904         transaction_t *transaction;
905         int ret;
906
907         read_lock(&journal->j_state_lock);
908         spin_lock(&journal->j_list_lock);
909         transaction = journal->j_checkpoint_transactions;
910         if (transaction) {
911                 *tid = transaction->t_tid;
912                 *block = transaction->t_log_start;
913         } else if ((transaction = journal->j_committing_transaction) != NULL) {
914                 *tid = transaction->t_tid;
915                 *block = transaction->t_log_start;
916         } else if ((transaction = journal->j_running_transaction) != NULL) {
917                 *tid = transaction->t_tid;
918                 *block = journal->j_head;
919         } else {
920                 *tid = journal->j_transaction_sequence;
921                 *block = journal->j_head;
922         }
923         ret = tid_gt(*tid, journal->j_tail_sequence);
924         spin_unlock(&journal->j_list_lock);
925         read_unlock(&journal->j_state_lock);
926
927         return ret;
928 }
929
930 /*
931  * Update information in journal structure and in on disk journal superblock
932  * about log tail. This function does not check whether information passed in
933  * really pushes log tail further. It's responsibility of the caller to make
934  * sure provided log tail information is valid (e.g. by holding
935  * j_checkpoint_mutex all the time between computing log tail and calling this
936  * function as is the case with jbd2_cleanup_journal_tail()).
937  *
938  * Requires j_checkpoint_mutex
939  */
940 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
941 {
942         unsigned long freed;
943         int ret;
944
945         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
946
947         /*
948          * We cannot afford for write to remain in drive's caches since as
949          * soon as we update j_tail, next transaction can start reusing journal
950          * space and if we lose sb update during power failure we'd replay
951          * old transaction with possibly newly overwritten data.
952          */
953         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
954                                               REQ_SYNC | REQ_FUA);
955         if (ret)
956                 goto out;
957
958         write_lock(&journal->j_state_lock);
959         freed = block - journal->j_tail;
960         if (block < journal->j_tail)
961                 freed += journal->j_last - journal->j_first;
962
963         trace_jbd2_update_log_tail(journal, tid, block, freed);
964         jbd_debug(1,
965                   "Cleaning journal tail from %d to %d (offset %lu), "
966                   "freeing %lu\n",
967                   journal->j_tail_sequence, tid, block, freed);
968
969         journal->j_free += freed;
970         journal->j_tail_sequence = tid;
971         journal->j_tail = block;
972         write_unlock(&journal->j_state_lock);
973
974 out:
975         return ret;
976 }
977
978 /*
979  * This is a variation of __jbd2_update_log_tail which checks for validity of
980  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
981  * with other threads updating log tail.
982  */
983 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
984 {
985         mutex_lock_io(&journal->j_checkpoint_mutex);
986         if (tid_gt(tid, journal->j_tail_sequence))
987                 __jbd2_update_log_tail(journal, tid, block);
988         mutex_unlock(&journal->j_checkpoint_mutex);
989 }
990
991 struct jbd2_stats_proc_session {
992         journal_t *journal;
993         struct transaction_stats_s *stats;
994         int start;
995         int max;
996 };
997
998 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
999 {
1000         return *pos ? NULL : SEQ_START_TOKEN;
1001 }
1002
1003 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1004 {
1005         (*pos)++;
1006         return NULL;
1007 }
1008
1009 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010 {
1011         struct jbd2_stats_proc_session *s = seq->private;
1012
1013         if (v != SEQ_START_TOKEN)
1014                 return 0;
1015         seq_printf(seq, "%lu transactions (%lu requested), "
1016                    "each up to %u blocks\n",
1017                    s->stats->ts_tid, s->stats->ts_requested,
1018                    s->journal->j_max_transaction_buffers);
1019         if (s->stats->ts_tid == 0)
1020                 return 0;
1021         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1022             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023         seq_printf(seq, "  %ums request delay\n",
1024             (s->stats->ts_requested == 0) ? 0 :
1025             jiffies_to_msecs(s->stats->run.rs_request_delay /
1026                              s->stats->ts_requested));
1027         seq_printf(seq, "  %ums running transaction\n",
1028             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029         seq_printf(seq, "  %ums transaction was being locked\n",
1030             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1032             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033         seq_printf(seq, "  %ums logging transaction\n",
1034             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035         seq_printf(seq, "  %lluus average transaction commit time\n",
1036                    div_u64(s->journal->j_average_commit_time, 1000));
1037         seq_printf(seq, "  %lu handles per transaction\n",
1038             s->stats->run.rs_handle_count / s->stats->ts_tid);
1039         seq_printf(seq, "  %lu blocks per transaction\n",
1040             s->stats->run.rs_blocks / s->stats->ts_tid);
1041         seq_printf(seq, "  %lu logged blocks per transaction\n",
1042             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043         return 0;
1044 }
1045
1046 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 {
1048 }
1049
1050 static const struct seq_operations jbd2_seq_info_ops = {
1051         .start  = jbd2_seq_info_start,
1052         .next   = jbd2_seq_info_next,
1053         .stop   = jbd2_seq_info_stop,
1054         .show   = jbd2_seq_info_show,
1055 };
1056
1057 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058 {
1059         journal_t *journal = PDE_DATA(inode);
1060         struct jbd2_stats_proc_session *s;
1061         int rc, size;
1062
1063         s = kmalloc(sizeof(*s), GFP_KERNEL);
1064         if (s == NULL)
1065                 return -ENOMEM;
1066         size = sizeof(struct transaction_stats_s);
1067         s->stats = kmalloc(size, GFP_KERNEL);
1068         if (s->stats == NULL) {
1069                 kfree(s);
1070                 return -ENOMEM;
1071         }
1072         spin_lock(&journal->j_history_lock);
1073         memcpy(s->stats, &journal->j_stats, size);
1074         s->journal = journal;
1075         spin_unlock(&journal->j_history_lock);
1076
1077         rc = seq_open(file, &jbd2_seq_info_ops);
1078         if (rc == 0) {
1079                 struct seq_file *m = file->private_data;
1080                 m->private = s;
1081         } else {
1082                 kfree(s->stats);
1083                 kfree(s);
1084         }
1085         return rc;
1086
1087 }
1088
1089 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090 {
1091         struct seq_file *seq = file->private_data;
1092         struct jbd2_stats_proc_session *s = seq->private;
1093         kfree(s->stats);
1094         kfree(s);
1095         return seq_release(inode, file);
1096 }
1097
1098 static const struct file_operations jbd2_seq_info_fops = {
1099         .owner          = THIS_MODULE,
1100         .open           = jbd2_seq_info_open,
1101         .read           = seq_read,
1102         .llseek         = seq_lseek,
1103         .release        = jbd2_seq_info_release,
1104 };
1105
1106 static struct proc_dir_entry *proc_jbd2_stats;
1107
1108 static void jbd2_stats_proc_init(journal_t *journal)
1109 {
1110         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111         if (journal->j_proc_entry) {
1112                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113                                  &jbd2_seq_info_fops, journal);
1114         }
1115 }
1116
1117 static void jbd2_stats_proc_exit(journal_t *journal)
1118 {
1119         remove_proc_entry("info", journal->j_proc_entry);
1120         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 }
1122
1123 /*
1124  * Management for journal control blocks: functions to create and
1125  * destroy journal_t structures, and to initialise and read existing
1126  * journal blocks from disk.  */
1127
1128 /* First: create and setup a journal_t object in memory.  We initialise
1129  * very few fields yet: that has to wait until we have created the
1130  * journal structures from from scratch, or loaded them from disk. */
1131
1132 static journal_t *journal_init_common(struct block_device *bdev,
1133                         struct block_device *fs_dev,
1134                         unsigned long long start, int len, int blocksize)
1135 {
1136         static struct lock_class_key jbd2_trans_commit_key;
1137         journal_t *journal;
1138         int err;
1139         struct buffer_head *bh;
1140         int n;
1141
1142         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143         if (!journal)
1144                 return NULL;
1145
1146         init_waitqueue_head(&journal->j_wait_transaction_locked);
1147         init_waitqueue_head(&journal->j_wait_done_commit);
1148         init_waitqueue_head(&journal->j_wait_commit);
1149         init_waitqueue_head(&journal->j_wait_updates);
1150         init_waitqueue_head(&journal->j_wait_reserved);
1151         mutex_init(&journal->j_barrier);
1152         mutex_init(&journal->j_checkpoint_mutex);
1153         spin_lock_init(&journal->j_revoke_lock);
1154         spin_lock_init(&journal->j_list_lock);
1155         rwlock_init(&journal->j_state_lock);
1156
1157         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158         journal->j_min_batch_time = 0;
1159         journal->j_max_batch_time = 15000; /* 15ms */
1160         atomic_set(&journal->j_reserved_credits, 0);
1161
1162         /* The journal is marked for error until we succeed with recovery! */
1163         journal->j_flags = JBD2_ABORT;
1164
1165         /* Set up a default-sized revoke table for the new mount. */
1166         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167         if (err)
1168                 goto err_cleanup;
1169
1170         spin_lock_init(&journal->j_history_lock);
1171
1172         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173                          &jbd2_trans_commit_key, 0);
1174
1175         /* journal descriptor can store up to n blocks -bzzz */
1176         journal->j_blocksize = blocksize;
1177         journal->j_dev = bdev;
1178         journal->j_fs_dev = fs_dev;
1179         journal->j_blk_offset = start;
1180         journal->j_maxlen = len;
1181         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182         journal->j_wbufsize = n;
1183         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184                                         GFP_KERNEL);
1185         if (!journal->j_wbuf)
1186                 goto err_cleanup;
1187
1188         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189         if (!bh) {
1190                 pr_err("%s: Cannot get buffer for journal superblock\n",
1191                         __func__);
1192                 goto err_cleanup;
1193         }
1194         journal->j_sb_buffer = bh;
1195         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196
1197         return journal;
1198
1199 err_cleanup:
1200         kfree(journal->j_wbuf);
1201         jbd2_journal_destroy_revoke(journal);
1202         kfree(journal);
1203         return NULL;
1204 }
1205
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207  *
1208  * Create a journal structure assigned some fixed set of disk blocks to
1209  * the journal.  We don't actually touch those disk blocks yet, but we
1210  * need to set up all of the mapping information to tell the journaling
1211  * system where the journal blocks are.
1212  *
1213  */
1214
1215 /**
1216  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217  *  @bdev: Block device on which to create the journal
1218  *  @fs_dev: Device which hold journalled filesystem for this journal.
1219  *  @start: Block nr Start of journal.
1220  *  @len:  Length of the journal in blocks.
1221  *  @blocksize: blocksize of journalling device
1222  *
1223  *  Returns: a newly created journal_t *
1224  *
1225  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226  *  range of blocks on an arbitrary block device.
1227  *
1228  */
1229 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230                         struct block_device *fs_dev,
1231                         unsigned long long start, int len, int blocksize)
1232 {
1233         journal_t *journal;
1234
1235         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236         if (!journal)
1237                 return NULL;
1238
1239         bdevname(journal->j_dev, journal->j_devname);
1240         strreplace(journal->j_devname, '/', '!');
1241         jbd2_stats_proc_init(journal);
1242
1243         return journal;
1244 }
1245
1246 /**
1247  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248  *  @inode: An inode to create the journal in
1249  *
1250  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251  * the journal.  The inode must exist already, must support bmap() and
1252  * must have all data blocks preallocated.
1253  */
1254 journal_t *jbd2_journal_init_inode(struct inode *inode)
1255 {
1256         journal_t *journal;
1257         char *p;
1258         unsigned long long blocknr;
1259
1260         blocknr = bmap(inode, 0);
1261         if (!blocknr) {
1262                 pr_err("%s: Cannot locate journal superblock\n",
1263                         __func__);
1264                 return NULL;
1265         }
1266
1267         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270
1271         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273                         inode->i_sb->s_blocksize);
1274         if (!journal)
1275                 return NULL;
1276
1277         journal->j_inode = inode;
1278         bdevname(journal->j_dev, journal->j_devname);
1279         p = strreplace(journal->j_devname, '/', '!');
1280         sprintf(p, "-%lu", journal->j_inode->i_ino);
1281         jbd2_stats_proc_init(journal);
1282
1283         return journal;
1284 }
1285
1286 /*
1287  * If the journal init or create aborts, we need to mark the journal
1288  * superblock as being NULL to prevent the journal destroy from writing
1289  * back a bogus superblock.
1290  */
1291 static void journal_fail_superblock (journal_t *journal)
1292 {
1293         struct buffer_head *bh = journal->j_sb_buffer;
1294         brelse(bh);
1295         journal->j_sb_buffer = NULL;
1296 }
1297
1298 /*
1299  * Given a journal_t structure, initialise the various fields for
1300  * startup of a new journaling session.  We use this both when creating
1301  * a journal, and after recovering an old journal to reset it for
1302  * subsequent use.
1303  */
1304
1305 static int journal_reset(journal_t *journal)
1306 {
1307         journal_superblock_t *sb = journal->j_superblock;
1308         unsigned long long first, last;
1309
1310         first = be32_to_cpu(sb->s_first);
1311         last = be32_to_cpu(sb->s_maxlen);
1312         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314                        first, last);
1315                 journal_fail_superblock(journal);
1316                 return -EINVAL;
1317         }
1318
1319         journal->j_first = first;
1320         journal->j_last = last;
1321
1322         journal->j_head = first;
1323         journal->j_tail = first;
1324         journal->j_free = last - first;
1325
1326         journal->j_tail_sequence = journal->j_transaction_sequence;
1327         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328         journal->j_commit_request = journal->j_commit_sequence;
1329
1330         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331
1332         /*
1333          * As a special case, if the on-disk copy is already marked as needing
1334          * no recovery (s_start == 0), then we can safely defer the superblock
1335          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1336          * attempting a write to a potential-readonly device.
1337          */
1338         if (sb->s_start == 0) {
1339                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340                         "(start %ld, seq %d, errno %d)\n",
1341                         journal->j_tail, journal->j_tail_sequence,
1342                         journal->j_errno);
1343                 journal->j_flags |= JBD2_FLUSHED;
1344         } else {
1345                 /* Lock here to make assertions happy... */
1346                 mutex_lock_io(&journal->j_checkpoint_mutex);
1347                 /*
1348                  * Update log tail information. We use REQ_FUA since new
1349                  * transaction will start reusing journal space and so we
1350                  * must make sure information about current log tail is on
1351                  * disk before that.
1352                  */
1353                 jbd2_journal_update_sb_log_tail(journal,
1354                                                 journal->j_tail_sequence,
1355                                                 journal->j_tail,
1356                                                 REQ_SYNC | REQ_FUA);
1357                 mutex_unlock(&journal->j_checkpoint_mutex);
1358         }
1359         return jbd2_journal_start_thread(journal);
1360 }
1361
1362 /*
1363  * This function expects that the caller will have locked the journal
1364  * buffer head, and will return with it unlocked
1365  */
1366 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1367 {
1368         struct buffer_head *bh = journal->j_sb_buffer;
1369         journal_superblock_t *sb = journal->j_superblock;
1370         int ret;
1371
1372         /* Buffer got discarded which means block device got invalidated */
1373         if (!buffer_mapped(bh)) {
1374                 unlock_buffer(bh);
1375                 return -EIO;
1376         }
1377
1378         if (!(journal->j_flags & JBD2_BARRIER))
1379                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1380
1381         trace_jbd2_write_superblock(journal, write_flags);
1382
1383         if (buffer_write_io_error(bh)) {
1384                 /*
1385                  * Oh, dear.  A previous attempt to write the journal
1386                  * superblock failed.  This could happen because the
1387                  * USB device was yanked out.  Or it could happen to
1388                  * be a transient write error and maybe the block will
1389                  * be remapped.  Nothing we can do but to retry the
1390                  * write and hope for the best.
1391                  */
1392                 printk(KERN_ERR "JBD2: previous I/O error detected "
1393                        "for journal superblock update for %s.\n",
1394                        journal->j_devname);
1395                 clear_buffer_write_io_error(bh);
1396                 set_buffer_uptodate(bh);
1397         }
1398         jbd2_superblock_csum_set(journal, sb);
1399         get_bh(bh);
1400         bh->b_end_io = end_buffer_write_sync;
1401         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1402         wait_on_buffer(bh);
1403         if (buffer_write_io_error(bh)) {
1404                 clear_buffer_write_io_error(bh);
1405                 set_buffer_uptodate(bh);
1406                 ret = -EIO;
1407         }
1408         if (ret) {
1409                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1410                        "journal superblock for %s.\n", ret,
1411                        journal->j_devname);
1412                 jbd2_journal_abort(journal, ret);
1413         }
1414
1415         return ret;
1416 }
1417
1418 /**
1419  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1420  * @journal: The journal to update.
1421  * @tail_tid: TID of the new transaction at the tail of the log
1422  * @tail_block: The first block of the transaction at the tail of the log
1423  * @write_op: With which operation should we write the journal sb
1424  *
1425  * Update a journal's superblock information about log tail and write it to
1426  * disk, waiting for the IO to complete.
1427  */
1428 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1429                                      unsigned long tail_block, int write_op)
1430 {
1431         journal_superblock_t *sb = journal->j_superblock;
1432         int ret;
1433
1434         if (is_journal_aborted(journal))
1435                 return -EIO;
1436
1437         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1438         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1439                   tail_block, tail_tid);
1440
1441         lock_buffer(journal->j_sb_buffer);
1442         sb->s_sequence = cpu_to_be32(tail_tid);
1443         sb->s_start    = cpu_to_be32(tail_block);
1444
1445         ret = jbd2_write_superblock(journal, write_op);
1446         if (ret)
1447                 goto out;
1448
1449         /* Log is no longer empty */
1450         write_lock(&journal->j_state_lock);
1451         WARN_ON(!sb->s_sequence);
1452         journal->j_flags &= ~JBD2_FLUSHED;
1453         write_unlock(&journal->j_state_lock);
1454
1455 out:
1456         return ret;
1457 }
1458
1459 /**
1460  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1461  * @journal: The journal to update.
1462  * @write_op: With which operation should we write the journal sb
1463  *
1464  * Update a journal's dynamic superblock fields to show that journal is empty.
1465  * Write updated superblock to disk waiting for IO to complete.
1466  */
1467 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1468 {
1469         journal_superblock_t *sb = journal->j_superblock;
1470
1471         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1472         lock_buffer(journal->j_sb_buffer);
1473         if (sb->s_start == 0) {         /* Is it already empty? */
1474                 unlock_buffer(journal->j_sb_buffer);
1475                 return;
1476         }
1477
1478         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1479                   journal->j_tail_sequence);
1480
1481         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1482         sb->s_start    = cpu_to_be32(0);
1483
1484         jbd2_write_superblock(journal, write_op);
1485
1486         /* Log is no longer empty */
1487         write_lock(&journal->j_state_lock);
1488         journal->j_flags |= JBD2_FLUSHED;
1489         write_unlock(&journal->j_state_lock);
1490 }
1491
1492
1493 /**
1494  * jbd2_journal_update_sb_errno() - Update error in the journal.
1495  * @journal: The journal to update.
1496  *
1497  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1498  * to complete.
1499  */
1500 void jbd2_journal_update_sb_errno(journal_t *journal)
1501 {
1502         journal_superblock_t *sb = journal->j_superblock;
1503         int errcode;
1504
1505         lock_buffer(journal->j_sb_buffer);
1506         errcode = journal->j_errno;
1507         if (errcode == -ESHUTDOWN)
1508                 errcode = 0;
1509         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1510         sb->s_errno    = cpu_to_be32(errcode);
1511
1512         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1513 }
1514 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1515
1516 /*
1517  * Read the superblock for a given journal, performing initial
1518  * validation of the format.
1519  */
1520 static int journal_get_superblock(journal_t *journal)
1521 {
1522         struct buffer_head *bh;
1523         journal_superblock_t *sb;
1524         int err = -EIO;
1525
1526         bh = journal->j_sb_buffer;
1527
1528         J_ASSERT(bh != NULL);
1529         if (!buffer_uptodate(bh)) {
1530                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1531                 wait_on_buffer(bh);
1532                 if (!buffer_uptodate(bh)) {
1533                         printk(KERN_ERR
1534                                 "JBD2: IO error reading journal superblock\n");
1535                         goto out;
1536                 }
1537         }
1538
1539         if (buffer_verified(bh))
1540                 return 0;
1541
1542         sb = journal->j_superblock;
1543
1544         err = -EINVAL;
1545
1546         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1547             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1548                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1549                 goto out;
1550         }
1551
1552         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1553         case JBD2_SUPERBLOCK_V1:
1554                 journal->j_format_version = 1;
1555                 break;
1556         case JBD2_SUPERBLOCK_V2:
1557                 journal->j_format_version = 2;
1558                 break;
1559         default:
1560                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1561                 goto out;
1562         }
1563
1564         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1565                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1566         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1567                 printk(KERN_WARNING "JBD2: journal file too short\n");
1568                 goto out;
1569         }
1570
1571         if (be32_to_cpu(sb->s_first) == 0 ||
1572             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1573                 printk(KERN_WARNING
1574                         "JBD2: Invalid start block of journal: %u\n",
1575                         be32_to_cpu(sb->s_first));
1576                 goto out;
1577         }
1578
1579         if (jbd2_has_feature_csum2(journal) &&
1580             jbd2_has_feature_csum3(journal)) {
1581                 /* Can't have checksum v2 and v3 at the same time! */
1582                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1583                        "at the same time!\n");
1584                 goto out;
1585         }
1586
1587         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1588             jbd2_has_feature_checksum(journal)) {
1589                 /* Can't have checksum v1 and v2 on at the same time! */
1590                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1591                        "at the same time!\n");
1592                 goto out;
1593         }
1594
1595         if (!jbd2_verify_csum_type(journal, sb)) {
1596                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1597                 goto out;
1598         }
1599
1600         /* Load the checksum driver */
1601         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1602                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1603                 if (IS_ERR(journal->j_chksum_driver)) {
1604                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1605                         err = PTR_ERR(journal->j_chksum_driver);
1606                         journal->j_chksum_driver = NULL;
1607                         goto out;
1608                 }
1609         }
1610
1611         /* Check superblock checksum */
1612         if (!jbd2_superblock_csum_verify(journal, sb)) {
1613                 printk(KERN_ERR "JBD2: journal checksum error\n");
1614                 err = -EFSBADCRC;
1615                 goto out;
1616         }
1617
1618         /* Precompute checksum seed for all metadata */
1619         if (jbd2_journal_has_csum_v2or3(journal))
1620                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1621                                                    sizeof(sb->s_uuid));
1622
1623         set_buffer_verified(bh);
1624
1625         return 0;
1626
1627 out:
1628         journal_fail_superblock(journal);
1629         return err;
1630 }
1631
1632 /*
1633  * Load the on-disk journal superblock and read the key fields into the
1634  * journal_t.
1635  */
1636
1637 static int load_superblock(journal_t *journal)
1638 {
1639         int err;
1640         journal_superblock_t *sb;
1641
1642         err = journal_get_superblock(journal);
1643         if (err)
1644                 return err;
1645
1646         sb = journal->j_superblock;
1647
1648         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1649         journal->j_tail = be32_to_cpu(sb->s_start);
1650         journal->j_first = be32_to_cpu(sb->s_first);
1651         journal->j_last = be32_to_cpu(sb->s_maxlen);
1652         journal->j_errno = be32_to_cpu(sb->s_errno);
1653
1654         return 0;
1655 }
1656
1657
1658 /**
1659  * int jbd2_journal_load() - Read journal from disk.
1660  * @journal: Journal to act on.
1661  *
1662  * Given a journal_t structure which tells us which disk blocks contain
1663  * a journal, read the journal from disk to initialise the in-memory
1664  * structures.
1665  */
1666 int jbd2_journal_load(journal_t *journal)
1667 {
1668         int err;
1669         journal_superblock_t *sb;
1670
1671         err = load_superblock(journal);
1672         if (err)
1673                 return err;
1674
1675         sb = journal->j_superblock;
1676         /* If this is a V2 superblock, then we have to check the
1677          * features flags on it. */
1678
1679         if (journal->j_format_version >= 2) {
1680                 if ((sb->s_feature_ro_compat &
1681                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1682                     (sb->s_feature_incompat &
1683                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1684                         printk(KERN_WARNING
1685                                 "JBD2: Unrecognised features on journal\n");
1686                         return -EINVAL;
1687                 }
1688         }
1689
1690         /*
1691          * Create a slab for this blocksize
1692          */
1693         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1694         if (err)
1695                 return err;
1696
1697         /* Let the recovery code check whether it needs to recover any
1698          * data from the journal. */
1699         if (jbd2_journal_recover(journal))
1700                 goto recovery_error;
1701
1702         if (journal->j_failed_commit) {
1703                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1704                        "is corrupt.\n", journal->j_failed_commit,
1705                        journal->j_devname);
1706                 return -EFSCORRUPTED;
1707         }
1708         /*
1709          * clear JBD2_ABORT flag initialized in journal_init_common
1710          * here to update log tail information with the newest seq.
1711          */
1712         journal->j_flags &= ~JBD2_ABORT;
1713
1714         /* OK, we've finished with the dynamic journal bits:
1715          * reinitialise the dynamic contents of the superblock in memory
1716          * and reset them on disk. */
1717         if (journal_reset(journal))
1718                 goto recovery_error;
1719
1720         journal->j_flags |= JBD2_LOADED;
1721         return 0;
1722
1723 recovery_error:
1724         printk(KERN_WARNING "JBD2: recovery failed\n");
1725         return -EIO;
1726 }
1727
1728 /**
1729  * void jbd2_journal_destroy() - Release a journal_t structure.
1730  * @journal: Journal to act on.
1731  *
1732  * Release a journal_t structure once it is no longer in use by the
1733  * journaled object.
1734  * Return <0 if we couldn't clean up the journal.
1735  */
1736 int jbd2_journal_destroy(journal_t *journal)
1737 {
1738         int err = 0;
1739
1740         /* Wait for the commit thread to wake up and die. */
1741         journal_kill_thread(journal);
1742
1743         /* Force a final log commit */
1744         if (journal->j_running_transaction)
1745                 jbd2_journal_commit_transaction(journal);
1746
1747         /* Force any old transactions to disk */
1748
1749         /* Totally anal locking here... */
1750         spin_lock(&journal->j_list_lock);
1751         while (journal->j_checkpoint_transactions != NULL) {
1752                 spin_unlock(&journal->j_list_lock);
1753                 mutex_lock_io(&journal->j_checkpoint_mutex);
1754                 err = jbd2_log_do_checkpoint(journal);
1755                 mutex_unlock(&journal->j_checkpoint_mutex);
1756                 /*
1757                  * If checkpointing failed, just free the buffers to avoid
1758                  * looping forever
1759                  */
1760                 if (err) {
1761                         jbd2_journal_destroy_checkpoint(journal);
1762                         spin_lock(&journal->j_list_lock);
1763                         break;
1764                 }
1765                 spin_lock(&journal->j_list_lock);
1766         }
1767
1768         J_ASSERT(journal->j_running_transaction == NULL);
1769         J_ASSERT(journal->j_committing_transaction == NULL);
1770         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1771         spin_unlock(&journal->j_list_lock);
1772
1773         if (journal->j_sb_buffer) {
1774                 if (!is_journal_aborted(journal)) {
1775                         mutex_lock_io(&journal->j_checkpoint_mutex);
1776
1777                         write_lock(&journal->j_state_lock);
1778                         journal->j_tail_sequence =
1779                                 ++journal->j_transaction_sequence;
1780                         write_unlock(&journal->j_state_lock);
1781
1782                         jbd2_mark_journal_empty(journal,
1783                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1784                         mutex_unlock(&journal->j_checkpoint_mutex);
1785                 } else
1786                         err = -EIO;
1787                 brelse(journal->j_sb_buffer);
1788         }
1789
1790         if (journal->j_proc_entry)
1791                 jbd2_stats_proc_exit(journal);
1792         iput(journal->j_inode);
1793         if (journal->j_revoke)
1794                 jbd2_journal_destroy_revoke(journal);
1795         if (journal->j_chksum_driver)
1796                 crypto_free_shash(journal->j_chksum_driver);
1797         kfree(journal->j_wbuf);
1798         kfree(journal);
1799
1800         return err;
1801 }
1802
1803
1804 /**
1805  *int jbd2_journal_check_used_features () - Check if features specified are used.
1806  * @journal: Journal to check.
1807  * @compat: bitmask of compatible features
1808  * @ro: bitmask of features that force read-only mount
1809  * @incompat: bitmask of incompatible features
1810  *
1811  * Check whether the journal uses all of a given set of
1812  * features.  Return true (non-zero) if it does.
1813  **/
1814
1815 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1816                                  unsigned long ro, unsigned long incompat)
1817 {
1818         journal_superblock_t *sb;
1819
1820         if (!compat && !ro && !incompat)
1821                 return 1;
1822         /* Load journal superblock if it is not loaded yet. */
1823         if (journal->j_format_version == 0 &&
1824             journal_get_superblock(journal) != 0)
1825                 return 0;
1826         if (journal->j_format_version == 1)
1827                 return 0;
1828
1829         sb = journal->j_superblock;
1830
1831         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1832             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1833             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1834                 return 1;
1835
1836         return 0;
1837 }
1838
1839 /**
1840  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1841  * @journal: Journal to check.
1842  * @compat: bitmask of compatible features
1843  * @ro: bitmask of features that force read-only mount
1844  * @incompat: bitmask of incompatible features
1845  *
1846  * Check whether the journaling code supports the use of
1847  * all of a given set of features on this journal.  Return true
1848  * (non-zero) if it can. */
1849
1850 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1851                                       unsigned long ro, unsigned long incompat)
1852 {
1853         if (!compat && !ro && !incompat)
1854                 return 1;
1855
1856         /* We can support any known requested features iff the
1857          * superblock is in version 2.  Otherwise we fail to support any
1858          * extended sb features. */
1859
1860         if (journal->j_format_version != 2)
1861                 return 0;
1862
1863         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1864             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1865             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1866                 return 1;
1867
1868         return 0;
1869 }
1870
1871 /**
1872  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1873  * @journal: Journal to act on.
1874  * @compat: bitmask of compatible features
1875  * @ro: bitmask of features that force read-only mount
1876  * @incompat: bitmask of incompatible features
1877  *
1878  * Mark a given journal feature as present on the
1879  * superblock.  Returns true if the requested features could be set.
1880  *
1881  */
1882
1883 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1884                           unsigned long ro, unsigned long incompat)
1885 {
1886 #define INCOMPAT_FEATURE_ON(f) \
1887                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1888 #define COMPAT_FEATURE_ON(f) \
1889                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1890         journal_superblock_t *sb;
1891
1892         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1893                 return 1;
1894
1895         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1896                 return 0;
1897
1898         /* If enabling v2 checksums, turn on v3 instead */
1899         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1900                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1901                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1902         }
1903
1904         /* Asking for checksumming v3 and v1?  Only give them v3. */
1905         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1906             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1907                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1908
1909         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1910                   compat, ro, incompat);
1911
1912         sb = journal->j_superblock;
1913
1914         /* Load the checksum driver if necessary */
1915         if ((journal->j_chksum_driver == NULL) &&
1916             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1917                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1918                 if (IS_ERR(journal->j_chksum_driver)) {
1919                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1920                         journal->j_chksum_driver = NULL;
1921                         return 0;
1922                 }
1923                 /* Precompute checksum seed for all metadata */
1924                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1925                                                    sizeof(sb->s_uuid));
1926         }
1927
1928         lock_buffer(journal->j_sb_buffer);
1929
1930         /* If enabling v3 checksums, update superblock */
1931         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1932                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1933                 sb->s_feature_compat &=
1934                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1935         }
1936
1937         /* If enabling v1 checksums, downgrade superblock */
1938         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1939                 sb->s_feature_incompat &=
1940                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1941                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1942
1943         sb->s_feature_compat    |= cpu_to_be32(compat);
1944         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1945         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1946         unlock_buffer(journal->j_sb_buffer);
1947
1948         return 1;
1949 #undef COMPAT_FEATURE_ON
1950 #undef INCOMPAT_FEATURE_ON
1951 }
1952
1953 /*
1954  * jbd2_journal_clear_features () - Clear a given journal feature in the
1955  *                                  superblock
1956  * @journal: Journal to act on.
1957  * @compat: bitmask of compatible features
1958  * @ro: bitmask of features that force read-only mount
1959  * @incompat: bitmask of incompatible features
1960  *
1961  * Clear a given journal feature as present on the
1962  * superblock.
1963  */
1964 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1965                                 unsigned long ro, unsigned long incompat)
1966 {
1967         journal_superblock_t *sb;
1968
1969         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1970                   compat, ro, incompat);
1971
1972         sb = journal->j_superblock;
1973
1974         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1975         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1976         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1977 }
1978 EXPORT_SYMBOL(jbd2_journal_clear_features);
1979
1980 /**
1981  * int jbd2_journal_flush () - Flush journal
1982  * @journal: Journal to act on.
1983  *
1984  * Flush all data for a given journal to disk and empty the journal.
1985  * Filesystems can use this when remounting readonly to ensure that
1986  * recovery does not need to happen on remount.
1987  */
1988
1989 int jbd2_journal_flush(journal_t *journal)
1990 {
1991         int err = 0;
1992         transaction_t *transaction = NULL;
1993
1994         write_lock(&journal->j_state_lock);
1995
1996         /* Force everything buffered to the log... */
1997         if (journal->j_running_transaction) {
1998                 transaction = journal->j_running_transaction;
1999                 __jbd2_log_start_commit(journal, transaction->t_tid);
2000         } else if (journal->j_committing_transaction)
2001                 transaction = journal->j_committing_transaction;
2002
2003         /* Wait for the log commit to complete... */
2004         if (transaction) {
2005                 tid_t tid = transaction->t_tid;
2006
2007                 write_unlock(&journal->j_state_lock);
2008                 jbd2_log_wait_commit(journal, tid);
2009         } else {
2010                 write_unlock(&journal->j_state_lock);
2011         }
2012
2013         /* ...and flush everything in the log out to disk. */
2014         spin_lock(&journal->j_list_lock);
2015         while (!err && journal->j_checkpoint_transactions != NULL) {
2016                 spin_unlock(&journal->j_list_lock);
2017                 mutex_lock_io(&journal->j_checkpoint_mutex);
2018                 err = jbd2_log_do_checkpoint(journal);
2019                 mutex_unlock(&journal->j_checkpoint_mutex);
2020                 spin_lock(&journal->j_list_lock);
2021         }
2022         spin_unlock(&journal->j_list_lock);
2023
2024         if (is_journal_aborted(journal))
2025                 return -EIO;
2026
2027         mutex_lock_io(&journal->j_checkpoint_mutex);
2028         if (!err) {
2029                 err = jbd2_cleanup_journal_tail(journal);
2030                 if (err < 0) {
2031                         mutex_unlock(&journal->j_checkpoint_mutex);
2032                         goto out;
2033                 }
2034                 err = 0;
2035         }
2036
2037         /* Finally, mark the journal as really needing no recovery.
2038          * This sets s_start==0 in the underlying superblock, which is
2039          * the magic code for a fully-recovered superblock.  Any future
2040          * commits of data to the journal will restore the current
2041          * s_start value. */
2042         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2043         mutex_unlock(&journal->j_checkpoint_mutex);
2044         write_lock(&journal->j_state_lock);
2045         J_ASSERT(!journal->j_running_transaction);
2046         J_ASSERT(!journal->j_committing_transaction);
2047         J_ASSERT(!journal->j_checkpoint_transactions);
2048         J_ASSERT(journal->j_head == journal->j_tail);
2049         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2050         write_unlock(&journal->j_state_lock);
2051 out:
2052         return err;
2053 }
2054
2055 /**
2056  * int jbd2_journal_wipe() - Wipe journal contents
2057  * @journal: Journal to act on.
2058  * @write: flag (see below)
2059  *
2060  * Wipe out all of the contents of a journal, safely.  This will produce
2061  * a warning if the journal contains any valid recovery information.
2062  * Must be called between journal_init_*() and jbd2_journal_load().
2063  *
2064  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2065  * we merely suppress recovery.
2066  */
2067
2068 int jbd2_journal_wipe(journal_t *journal, int write)
2069 {
2070         int err = 0;
2071
2072         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2073
2074         err = load_superblock(journal);
2075         if (err)
2076                 return err;
2077
2078         if (!journal->j_tail)
2079                 goto no_recovery;
2080
2081         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2082                 write ? "Clearing" : "Ignoring");
2083
2084         err = jbd2_journal_skip_recovery(journal);
2085         if (write) {
2086                 /* Lock to make assertions happy... */
2087                 mutex_lock(&journal->j_checkpoint_mutex);
2088                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2089                 mutex_unlock(&journal->j_checkpoint_mutex);
2090         }
2091
2092  no_recovery:
2093         return err;
2094 }
2095
2096 /*
2097  * Journal abort has very specific semantics, which we describe
2098  * for journal abort.
2099  *
2100  * Two internal functions, which provide abort to the jbd layer
2101  * itself are here.
2102  */
2103
2104 /*
2105  * Quick version for internal journal use (doesn't lock the journal).
2106  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2107  * and don't attempt to make any other journal updates.
2108  */
2109 void __jbd2_journal_abort_hard(journal_t *journal)
2110 {
2111         transaction_t *transaction;
2112
2113         if (journal->j_flags & JBD2_ABORT)
2114                 return;
2115
2116         printk(KERN_ERR "Aborting journal on device %s.\n",
2117                journal->j_devname);
2118
2119         write_lock(&journal->j_state_lock);
2120         journal->j_flags |= JBD2_ABORT;
2121         transaction = journal->j_running_transaction;
2122         if (transaction)
2123                 __jbd2_log_start_commit(journal, transaction->t_tid);
2124         write_unlock(&journal->j_state_lock);
2125 }
2126
2127 /* Soft abort: record the abort error status in the journal superblock,
2128  * but don't do any other IO. */
2129 static void __journal_abort_soft (journal_t *journal, int errno)
2130 {
2131         int old_errno;
2132
2133         write_lock(&journal->j_state_lock);
2134         old_errno = journal->j_errno;
2135         if (!journal->j_errno || errno == -ESHUTDOWN)
2136                 journal->j_errno = errno;
2137
2138         if (journal->j_flags & JBD2_ABORT) {
2139                 write_unlock(&journal->j_state_lock);
2140                 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN)
2141                         jbd2_journal_update_sb_errno(journal);
2142                 return;
2143         }
2144         write_unlock(&journal->j_state_lock);
2145
2146         __jbd2_journal_abort_hard(journal);
2147
2148         jbd2_journal_update_sb_errno(journal);
2149         write_lock(&journal->j_state_lock);
2150         journal->j_flags |= JBD2_REC_ERR;
2151         write_unlock(&journal->j_state_lock);
2152 }
2153
2154 /**
2155  * void jbd2_journal_abort () - Shutdown the journal immediately.
2156  * @journal: the journal to shutdown.
2157  * @errno:   an error number to record in the journal indicating
2158  *           the reason for the shutdown.
2159  *
2160  * Perform a complete, immediate shutdown of the ENTIRE
2161  * journal (not of a single transaction).  This operation cannot be
2162  * undone without closing and reopening the journal.
2163  *
2164  * The jbd2_journal_abort function is intended to support higher level error
2165  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2166  * mode.
2167  *
2168  * Journal abort has very specific semantics.  Any existing dirty,
2169  * unjournaled buffers in the main filesystem will still be written to
2170  * disk by bdflush, but the journaling mechanism will be suspended
2171  * immediately and no further transaction commits will be honoured.
2172  *
2173  * Any dirty, journaled buffers will be written back to disk without
2174  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2175  * filesystem, but we _do_ attempt to leave as much data as possible
2176  * behind for fsck to use for cleanup.
2177  *
2178  * Any attempt to get a new transaction handle on a journal which is in
2179  * ABORT state will just result in an -EROFS error return.  A
2180  * jbd2_journal_stop on an existing handle will return -EIO if we have
2181  * entered abort state during the update.
2182  *
2183  * Recursive transactions are not disturbed by journal abort until the
2184  * final jbd2_journal_stop, which will receive the -EIO error.
2185  *
2186  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2187  * which will be recorded (if possible) in the journal superblock.  This
2188  * allows a client to record failure conditions in the middle of a
2189  * transaction without having to complete the transaction to record the
2190  * failure to disk.  ext3_error, for example, now uses this
2191  * functionality.
2192  *
2193  */
2194
2195 void jbd2_journal_abort(journal_t *journal, int errno)
2196 {
2197         __journal_abort_soft(journal, errno);
2198 }
2199
2200 /**
2201  * int jbd2_journal_errno () - returns the journal's error state.
2202  * @journal: journal to examine.
2203  *
2204  * This is the errno number set with jbd2_journal_abort(), the last
2205  * time the journal was mounted - if the journal was stopped
2206  * without calling abort this will be 0.
2207  *
2208  * If the journal has been aborted on this mount time -EROFS will
2209  * be returned.
2210  */
2211 int jbd2_journal_errno(journal_t *journal)
2212 {
2213         int err;
2214
2215         read_lock(&journal->j_state_lock);
2216         if (journal->j_flags & JBD2_ABORT)
2217                 err = -EROFS;
2218         else
2219                 err = journal->j_errno;
2220         read_unlock(&journal->j_state_lock);
2221         return err;
2222 }
2223
2224 /**
2225  * int jbd2_journal_clear_err () - clears the journal's error state
2226  * @journal: journal to act on.
2227  *
2228  * An error must be cleared or acked to take a FS out of readonly
2229  * mode.
2230  */
2231 int jbd2_journal_clear_err(journal_t *journal)
2232 {
2233         int err = 0;
2234
2235         write_lock(&journal->j_state_lock);
2236         if (journal->j_flags & JBD2_ABORT)
2237                 err = -EROFS;
2238         else
2239                 journal->j_errno = 0;
2240         write_unlock(&journal->j_state_lock);
2241         return err;
2242 }
2243
2244 /**
2245  * void jbd2_journal_ack_err() - Ack journal err.
2246  * @journal: journal to act on.
2247  *
2248  * An error must be cleared or acked to take a FS out of readonly
2249  * mode.
2250  */
2251 void jbd2_journal_ack_err(journal_t *journal)
2252 {
2253         write_lock(&journal->j_state_lock);
2254         if (journal->j_errno)
2255                 journal->j_flags |= JBD2_ACK_ERR;
2256         write_unlock(&journal->j_state_lock);
2257 }
2258
2259 int jbd2_journal_blocks_per_page(struct inode *inode)
2260 {
2261         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2262 }
2263
2264 /*
2265  * helper functions to deal with 32 or 64bit block numbers.
2266  */
2267 size_t journal_tag_bytes(journal_t *journal)
2268 {
2269         size_t sz;
2270
2271         if (jbd2_has_feature_csum3(journal))
2272                 return sizeof(journal_block_tag3_t);
2273
2274         sz = sizeof(journal_block_tag_t);
2275
2276         if (jbd2_has_feature_csum2(journal))
2277                 sz += sizeof(__u16);
2278
2279         if (jbd2_has_feature_64bit(journal))
2280                 return sz;
2281         else
2282                 return sz - sizeof(__u32);
2283 }
2284
2285 /*
2286  * JBD memory management
2287  *
2288  * These functions are used to allocate block-sized chunks of memory
2289  * used for making copies of buffer_head data.  Very often it will be
2290  * page-sized chunks of data, but sometimes it will be in
2291  * sub-page-size chunks.  (For example, 16k pages on Power systems
2292  * with a 4k block file system.)  For blocks smaller than a page, we
2293  * use a SLAB allocator.  There are slab caches for each block size,
2294  * which are allocated at mount time, if necessary, and we only free
2295  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2296  * this reason we don't need to a mutex to protect access to
2297  * jbd2_slab[] allocating or releasing memory; only in
2298  * jbd2_journal_create_slab().
2299  */
2300 #define JBD2_MAX_SLABS 8
2301 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2302
2303 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2304         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2305         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2306 };
2307
2308
2309 static void jbd2_journal_destroy_slabs(void)
2310 {
2311         int i;
2312
2313         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2314                 kmem_cache_destroy(jbd2_slab[i]);
2315                 jbd2_slab[i] = NULL;
2316         }
2317 }
2318
2319 static int jbd2_journal_create_slab(size_t size)
2320 {
2321         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2322         int i = order_base_2(size) - 10;
2323         size_t slab_size;
2324
2325         if (size == PAGE_SIZE)
2326                 return 0;
2327
2328         if (i >= JBD2_MAX_SLABS)
2329                 return -EINVAL;
2330
2331         if (unlikely(i < 0))
2332                 i = 0;
2333         mutex_lock(&jbd2_slab_create_mutex);
2334         if (jbd2_slab[i]) {
2335                 mutex_unlock(&jbd2_slab_create_mutex);
2336                 return 0;       /* Already created */
2337         }
2338
2339         slab_size = 1 << (i+10);
2340         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2341                                          slab_size, 0, NULL);
2342         mutex_unlock(&jbd2_slab_create_mutex);
2343         if (!jbd2_slab[i]) {
2344                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2345                 return -ENOMEM;
2346         }
2347         return 0;
2348 }
2349
2350 static struct kmem_cache *get_slab(size_t size)
2351 {
2352         int i = order_base_2(size) - 10;
2353
2354         BUG_ON(i >= JBD2_MAX_SLABS);
2355         if (unlikely(i < 0))
2356                 i = 0;
2357         BUG_ON(jbd2_slab[i] == NULL);
2358         return jbd2_slab[i];
2359 }
2360
2361 void *jbd2_alloc(size_t size, gfp_t flags)
2362 {
2363         void *ptr;
2364
2365         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2366
2367         if (size < PAGE_SIZE)
2368                 ptr = kmem_cache_alloc(get_slab(size), flags);
2369         else
2370                 ptr = (void *)__get_free_pages(flags, get_order(size));
2371
2372         /* Check alignment; SLUB has gotten this wrong in the past,
2373          * and this can lead to user data corruption! */
2374         BUG_ON(((unsigned long) ptr) & (size-1));
2375
2376         return ptr;
2377 }
2378
2379 void jbd2_free(void *ptr, size_t size)
2380 {
2381         if (size < PAGE_SIZE)
2382                 kmem_cache_free(get_slab(size), ptr);
2383         else
2384                 free_pages((unsigned long)ptr, get_order(size));
2385 };
2386
2387 /*
2388  * Journal_head storage management
2389  */
2390 static struct kmem_cache *jbd2_journal_head_cache;
2391 #ifdef CONFIG_JBD2_DEBUG
2392 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2393 #endif
2394
2395 static int __init jbd2_journal_init_journal_head_cache(void)
2396 {
2397         J_ASSERT(!jbd2_journal_head_cache);
2398         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2399                                 sizeof(struct journal_head),
2400                                 0,              /* offset */
2401                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2402                                 NULL);          /* ctor */
2403         if (!jbd2_journal_head_cache) {
2404                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2405                 return -ENOMEM;
2406         }
2407         return 0;
2408 }
2409
2410 static void jbd2_journal_destroy_journal_head_cache(void)
2411 {
2412         kmem_cache_destroy(jbd2_journal_head_cache);
2413         jbd2_journal_head_cache = NULL;
2414 }
2415
2416 /*
2417  * journal_head splicing and dicing
2418  */
2419 static struct journal_head *journal_alloc_journal_head(void)
2420 {
2421         struct journal_head *ret;
2422
2423 #ifdef CONFIG_JBD2_DEBUG
2424         atomic_inc(&nr_journal_heads);
2425 #endif
2426         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2427         if (!ret) {
2428                 jbd_debug(1, "out of memory for journal_head\n");
2429                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2430                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2431                                 GFP_NOFS | __GFP_NOFAIL);
2432         }
2433         return ret;
2434 }
2435
2436 static void journal_free_journal_head(struct journal_head *jh)
2437 {
2438 #ifdef CONFIG_JBD2_DEBUG
2439         atomic_dec(&nr_journal_heads);
2440         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2441 #endif
2442         kmem_cache_free(jbd2_journal_head_cache, jh);
2443 }
2444
2445 /*
2446  * A journal_head is attached to a buffer_head whenever JBD has an
2447  * interest in the buffer.
2448  *
2449  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2450  * is set.  This bit is tested in core kernel code where we need to take
2451  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2452  * there.
2453  *
2454  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2455  *
2456  * When a buffer has its BH_JBD bit set it is immune from being released by
2457  * core kernel code, mainly via ->b_count.
2458  *
2459  * A journal_head is detached from its buffer_head when the journal_head's
2460  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2461  * transaction (b_cp_transaction) hold their references to b_jcount.
2462  *
2463  * Various places in the kernel want to attach a journal_head to a buffer_head
2464  * _before_ attaching the journal_head to a transaction.  To protect the
2465  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2466  * journal_head's b_jcount refcount by one.  The caller must call
2467  * jbd2_journal_put_journal_head() to undo this.
2468  *
2469  * So the typical usage would be:
2470  *
2471  *      (Attach a journal_head if needed.  Increments b_jcount)
2472  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2473  *      ...
2474  *      (Get another reference for transaction)
2475  *      jbd2_journal_grab_journal_head(bh);
2476  *      jh->b_transaction = xxx;
2477  *      (Put original reference)
2478  *      jbd2_journal_put_journal_head(jh);
2479  */
2480
2481 /*
2482  * Give a buffer_head a journal_head.
2483  *
2484  * May sleep.
2485  */
2486 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2487 {
2488         struct journal_head *jh;
2489         struct journal_head *new_jh = NULL;
2490
2491 repeat:
2492         if (!buffer_jbd(bh))
2493                 new_jh = journal_alloc_journal_head();
2494
2495         jbd_lock_bh_journal_head(bh);
2496         if (buffer_jbd(bh)) {
2497                 jh = bh2jh(bh);
2498         } else {
2499                 J_ASSERT_BH(bh,
2500                         (atomic_read(&bh->b_count) > 0) ||
2501                         (bh->b_page && bh->b_page->mapping));
2502
2503                 if (!new_jh) {
2504                         jbd_unlock_bh_journal_head(bh);
2505                         goto repeat;
2506                 }
2507
2508                 jh = new_jh;
2509                 new_jh = NULL;          /* We consumed it */
2510                 set_buffer_jbd(bh);
2511                 bh->b_private = jh;
2512                 jh->b_bh = bh;
2513                 get_bh(bh);
2514                 BUFFER_TRACE(bh, "added journal_head");
2515         }
2516         jh->b_jcount++;
2517         jbd_unlock_bh_journal_head(bh);
2518         if (new_jh)
2519                 journal_free_journal_head(new_jh);
2520         return bh->b_private;
2521 }
2522
2523 /*
2524  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2525  * having a journal_head, return NULL
2526  */
2527 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2528 {
2529         struct journal_head *jh = NULL;
2530
2531         jbd_lock_bh_journal_head(bh);
2532         if (buffer_jbd(bh)) {
2533                 jh = bh2jh(bh);
2534                 jh->b_jcount++;
2535         }
2536         jbd_unlock_bh_journal_head(bh);
2537         return jh;
2538 }
2539
2540 static void __journal_remove_journal_head(struct buffer_head *bh)
2541 {
2542         struct journal_head *jh = bh2jh(bh);
2543
2544         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2545         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2546         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2547         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2548         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2549         J_ASSERT_BH(bh, buffer_jbd(bh));
2550         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2551         BUFFER_TRACE(bh, "remove journal_head");
2552         if (jh->b_frozen_data) {
2553                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2554                 jbd2_free(jh->b_frozen_data, bh->b_size);
2555         }
2556         if (jh->b_committed_data) {
2557                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2558                 jbd2_free(jh->b_committed_data, bh->b_size);
2559         }
2560         bh->b_private = NULL;
2561         jh->b_bh = NULL;        /* debug, really */
2562         clear_buffer_jbd(bh);
2563         journal_free_journal_head(jh);
2564 }
2565
2566 /*
2567  * Drop a reference on the passed journal_head.  If it fell to zero then
2568  * release the journal_head from the buffer_head.
2569  */
2570 void jbd2_journal_put_journal_head(struct journal_head *jh)
2571 {
2572         struct buffer_head *bh = jh2bh(jh);
2573
2574         jbd_lock_bh_journal_head(bh);
2575         J_ASSERT_JH(jh, jh->b_jcount > 0);
2576         --jh->b_jcount;
2577         if (!jh->b_jcount) {
2578                 __journal_remove_journal_head(bh);
2579                 jbd_unlock_bh_journal_head(bh);
2580                 __brelse(bh);
2581         } else
2582                 jbd_unlock_bh_journal_head(bh);
2583 }
2584
2585 /*
2586  * Initialize jbd inode head
2587  */
2588 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2589 {
2590         jinode->i_transaction = NULL;
2591         jinode->i_next_transaction = NULL;
2592         jinode->i_vfs_inode = inode;
2593         jinode->i_flags = 0;
2594         jinode->i_dirty_start = 0;
2595         jinode->i_dirty_end = 0;
2596         INIT_LIST_HEAD(&jinode->i_list);
2597 }
2598
2599 /*
2600  * Function to be called before we start removing inode from memory (i.e.,
2601  * clear_inode() is a fine place to be called from). It removes inode from
2602  * transaction's lists.
2603  */
2604 void jbd2_journal_release_jbd_inode(journal_t *journal,
2605                                     struct jbd2_inode *jinode)
2606 {
2607         if (!journal)
2608                 return;
2609 restart:
2610         spin_lock(&journal->j_list_lock);
2611         /* Is commit writing out inode - we have to wait */
2612         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2613                 wait_queue_head_t *wq;
2614                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2615                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2616                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2617                 spin_unlock(&journal->j_list_lock);
2618                 schedule();
2619                 finish_wait(wq, &wait.wq_entry);
2620                 goto restart;
2621         }
2622
2623         if (jinode->i_transaction) {
2624                 list_del(&jinode->i_list);
2625                 jinode->i_transaction = NULL;
2626         }
2627         spin_unlock(&journal->j_list_lock);
2628 }
2629
2630
2631 #ifdef CONFIG_PROC_FS
2632
2633 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2634
2635 static void __init jbd2_create_jbd_stats_proc_entry(void)
2636 {
2637         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2638 }
2639
2640 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2641 {
2642         if (proc_jbd2_stats)
2643                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2644 }
2645
2646 #else
2647
2648 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2649 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2650
2651 #endif
2652
2653 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2654
2655 static int __init jbd2_journal_init_inode_cache(void)
2656 {
2657         J_ASSERT(!jbd2_inode_cache);
2658         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2659         if (!jbd2_inode_cache) {
2660                 pr_emerg("JBD2: failed to create inode cache\n");
2661                 return -ENOMEM;
2662         }
2663         return 0;
2664 }
2665
2666 static int __init jbd2_journal_init_handle_cache(void)
2667 {
2668         J_ASSERT(!jbd2_handle_cache);
2669         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2670         if (!jbd2_handle_cache) {
2671                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2672                 return -ENOMEM;
2673         }
2674         return 0;
2675 }
2676
2677 static void jbd2_journal_destroy_inode_cache(void)
2678 {
2679         kmem_cache_destroy(jbd2_inode_cache);
2680         jbd2_inode_cache = NULL;
2681 }
2682
2683 static void jbd2_journal_destroy_handle_cache(void)
2684 {
2685         kmem_cache_destroy(jbd2_handle_cache);
2686         jbd2_handle_cache = NULL;
2687 }
2688
2689 /*
2690  * Module startup and shutdown
2691  */
2692
2693 static int __init journal_init_caches(void)
2694 {
2695         int ret;
2696
2697         ret = jbd2_journal_init_revoke_record_cache();
2698         if (ret == 0)
2699                 ret = jbd2_journal_init_revoke_table_cache();
2700         if (ret == 0)
2701                 ret = jbd2_journal_init_journal_head_cache();
2702         if (ret == 0)
2703                 ret = jbd2_journal_init_handle_cache();
2704         if (ret == 0)
2705                 ret = jbd2_journal_init_inode_cache();
2706         if (ret == 0)
2707                 ret = jbd2_journal_init_transaction_cache();
2708         return ret;
2709 }
2710
2711 static void jbd2_journal_destroy_caches(void)
2712 {
2713         jbd2_journal_destroy_revoke_record_cache();
2714         jbd2_journal_destroy_revoke_table_cache();
2715         jbd2_journal_destroy_journal_head_cache();
2716         jbd2_journal_destroy_handle_cache();
2717         jbd2_journal_destroy_inode_cache();
2718         jbd2_journal_destroy_transaction_cache();
2719         jbd2_journal_destroy_slabs();
2720 }
2721
2722 static int __init journal_init(void)
2723 {
2724         int ret;
2725
2726         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2727
2728         ret = journal_init_caches();
2729         if (ret == 0) {
2730                 jbd2_create_jbd_stats_proc_entry();
2731         } else {
2732                 jbd2_journal_destroy_caches();
2733         }
2734         return ret;
2735 }
2736
2737 static void __exit journal_exit(void)
2738 {
2739 #ifdef CONFIG_JBD2_DEBUG
2740         int n = atomic_read(&nr_journal_heads);
2741         if (n)
2742                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2743 #endif
2744         jbd2_remove_jbd_stats_proc_entry();
2745         jbd2_journal_destroy_caches();
2746 }
2747
2748 MODULE_LICENSE("GPL");
2749 module_init(journal_init);
2750 module_exit(journal_exit);
2751