GNU Linux-libre 5.10.217-gnu1
[releases.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32oct("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135         loff_t len, vma_len;
136         int ret;
137         struct hstate *h = hstate_file(file);
138         vm_flags_t vm_flags;
139
140         /*
141          * vma address alignment (but not the pgoff alignment) has
142          * already been checked by prepare_hugepage_range.  If you add
143          * any error returns here, do so after setting VM_HUGETLB, so
144          * is_vm_hugetlb_page tests below unmap_region go the right
145          * way when do_mmap unwinds (may be important on powerpc
146          * and ia64).
147          */
148         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
149         vma->vm_ops = &hugetlb_vm_ops;
150
151         ret = seal_check_future_write(info->seals, vma);
152         if (ret)
153                 return ret;
154
155         /*
156          * page based offset in vm_pgoff could be sufficiently large to
157          * overflow a loff_t when converted to byte offset.  This can
158          * only happen on architectures where sizeof(loff_t) ==
159          * sizeof(unsigned long).  So, only check in those instances.
160          */
161         if (sizeof(unsigned long) == sizeof(loff_t)) {
162                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
163                         return -EINVAL;
164         }
165
166         /* must be huge page aligned */
167         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
168                 return -EINVAL;
169
170         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
171         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
172         /* check for overflow */
173         if (len < vma_len)
174                 return -EINVAL;
175
176         inode_lock(inode);
177         file_accessed(file);
178
179         ret = -ENOMEM;
180
181         vm_flags = vma->vm_flags;
182         /*
183          * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
184          * reserving here. Note: only for SHM hugetlbfs file, the inode
185          * flag S_PRIVATE is set.
186          */
187         if (inode->i_flags & S_PRIVATE)
188                 vm_flags |= VM_NORESERVE;
189
190         if (!hugetlb_reserve_pages(inode,
191                                 vma->vm_pgoff >> huge_page_order(h),
192                                 len >> huge_page_shift(h), vma,
193                                 vm_flags))
194                 goto out;
195
196         ret = 0;
197         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
198                 i_size_write(inode, len);
199 out:
200         inode_unlock(inode);
201
202         return ret;
203 }
204
205 /*
206  * Called under mmap_write_lock(mm).
207  */
208
209 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
210 static unsigned long
211 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
212                 unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214         struct hstate *h = hstate_file(file);
215         struct vm_unmapped_area_info info;
216
217         info.flags = 0;
218         info.length = len;
219         info.low_limit = current->mm->mmap_base;
220         info.high_limit = arch_get_mmap_end(addr);
221         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222         info.align_offset = 0;
223         return vm_unmapped_area(&info);
224 }
225
226 static unsigned long
227 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
228                 unsigned long len, unsigned long pgoff, unsigned long flags)
229 {
230         struct hstate *h = hstate_file(file);
231         struct vm_unmapped_area_info info;
232
233         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
234         info.length = len;
235         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
236         info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
237         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
238         info.align_offset = 0;
239         addr = vm_unmapped_area(&info);
240
241         /*
242          * A failed mmap() very likely causes application failure,
243          * so fall back to the bottom-up function here. This scenario
244          * can happen with large stack limits and large mmap()
245          * allocations.
246          */
247         if (unlikely(offset_in_page(addr))) {
248                 VM_BUG_ON(addr != -ENOMEM);
249                 info.flags = 0;
250                 info.low_limit = current->mm->mmap_base;
251                 info.high_limit = arch_get_mmap_end(addr);
252                 addr = vm_unmapped_area(&info);
253         }
254
255         return addr;
256 }
257
258 static unsigned long
259 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
260                 unsigned long len, unsigned long pgoff, unsigned long flags)
261 {
262         struct mm_struct *mm = current->mm;
263         struct vm_area_struct *vma;
264         struct hstate *h = hstate_file(file);
265         const unsigned long mmap_end = arch_get_mmap_end(addr);
266
267         if (len & ~huge_page_mask(h))
268                 return -EINVAL;
269         if (len > TASK_SIZE)
270                 return -ENOMEM;
271
272         if (flags & MAP_FIXED) {
273                 if (prepare_hugepage_range(file, addr, len))
274                         return -EINVAL;
275                 return addr;
276         }
277
278         if (addr) {
279                 addr = ALIGN(addr, huge_page_size(h));
280                 vma = find_vma(mm, addr);
281                 if (mmap_end - len >= addr &&
282                     (!vma || addr + len <= vm_start_gap(vma)))
283                         return addr;
284         }
285
286         /*
287          * Use mm->get_unmapped_area value as a hint to use topdown routine.
288          * If architectures have special needs, they should define their own
289          * version of hugetlb_get_unmapped_area.
290          */
291         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
292                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
293                                 pgoff, flags);
294         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
295                         pgoff, flags);
296 }
297 #endif
298
299 static size_t
300 hugetlbfs_read_actor(struct page *page, unsigned long offset,
301                         struct iov_iter *to, unsigned long size)
302 {
303         size_t copied = 0;
304         int i, chunksize;
305
306         /* Find which 4k chunk and offset with in that chunk */
307         i = offset >> PAGE_SHIFT;
308         offset = offset & ~PAGE_MASK;
309
310         while (size) {
311                 size_t n;
312                 chunksize = PAGE_SIZE;
313                 if (offset)
314                         chunksize -= offset;
315                 if (chunksize > size)
316                         chunksize = size;
317                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
318                 copied += n;
319                 if (n != chunksize)
320                         return copied;
321                 offset = 0;
322                 size -= chunksize;
323                 i++;
324         }
325         return copied;
326 }
327
328 /*
329  * Support for read() - Find the page attached to f_mapping and copy out the
330  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
331  * since it has PAGE_SIZE assumptions.
332  */
333 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
334 {
335         struct file *file = iocb->ki_filp;
336         struct hstate *h = hstate_file(file);
337         struct address_space *mapping = file->f_mapping;
338         struct inode *inode = mapping->host;
339         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
340         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
341         unsigned long end_index;
342         loff_t isize;
343         ssize_t retval = 0;
344
345         while (iov_iter_count(to)) {
346                 struct page *page;
347                 size_t nr, copied;
348
349                 /* nr is the maximum number of bytes to copy from this page */
350                 nr = huge_page_size(h);
351                 isize = i_size_read(inode);
352                 if (!isize)
353                         break;
354                 end_index = (isize - 1) >> huge_page_shift(h);
355                 if (index > end_index)
356                         break;
357                 if (index == end_index) {
358                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
359                         if (nr <= offset)
360                                 break;
361                 }
362                 nr = nr - offset;
363
364                 /* Find the page */
365                 page = find_lock_page(mapping, index);
366                 if (unlikely(page == NULL)) {
367                         /*
368                          * We have a HOLE, zero out the user-buffer for the
369                          * length of the hole or request.
370                          */
371                         copied = iov_iter_zero(nr, to);
372                 } else {
373                         unlock_page(page);
374
375                         /*
376                          * We have the page, copy it to user space buffer.
377                          */
378                         copied = hugetlbfs_read_actor(page, offset, to, nr);
379                         put_page(page);
380                 }
381                 offset += copied;
382                 retval += copied;
383                 if (copied != nr && iov_iter_count(to)) {
384                         if (!retval)
385                                 retval = -EFAULT;
386                         break;
387                 }
388                 index += offset >> huge_page_shift(h);
389                 offset &= ~huge_page_mask(h);
390         }
391         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
392         return retval;
393 }
394
395 static int hugetlbfs_write_begin(struct file *file,
396                         struct address_space *mapping,
397                         loff_t pos, unsigned len, unsigned flags,
398                         struct page **pagep, void **fsdata)
399 {
400         return -EINVAL;
401 }
402
403 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
404                         loff_t pos, unsigned len, unsigned copied,
405                         struct page *page, void *fsdata)
406 {
407         BUG();
408         return -EINVAL;
409 }
410
411 static void remove_huge_page(struct page *page)
412 {
413         ClearPageDirty(page);
414         ClearPageUptodate(page);
415         delete_from_page_cache(page);
416 }
417
418 static void
419 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
420 {
421         struct vm_area_struct *vma;
422
423         /*
424          * end == 0 indicates that the entire range after
425          * start should be unmapped.
426          */
427         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
428                 unsigned long v_offset;
429                 unsigned long v_end;
430
431                 /*
432                  * Can the expression below overflow on 32-bit arches?
433                  * No, because the interval tree returns us only those vmas
434                  * which overlap the truncated area starting at pgoff,
435                  * and no vma on a 32-bit arch can span beyond the 4GB.
436                  */
437                 if (vma->vm_pgoff < start)
438                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439                 else
440                         v_offset = 0;
441
442                 if (!end)
443                         v_end = vma->vm_end;
444                 else {
445                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446                                                         + vma->vm_start;
447                         if (v_end > vma->vm_end)
448                                 v_end = vma->vm_end;
449                 }
450
451                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452                                                                         NULL);
453         }
454 }
455
456 /*
457  * remove_inode_hugepages handles two distinct cases: truncation and hole
458  * punch.  There are subtle differences in operation for each case.
459  *
460  * truncation is indicated by end of range being LLONG_MAX
461  *      In this case, we first scan the range and release found pages.
462  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
463  *      maps and global counts.  Page faults can not race with truncation
464  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
465  *      page faults in the truncated range by checking i_size.  i_size is
466  *      modified while holding i_mmap_rwsem.
467  * hole punch is indicated if end is not LLONG_MAX
468  *      In the hole punch case we scan the range and release found pages.
469  *      Only when releasing a page is the associated region/reserv map
470  *      deleted.  The region/reserv map for ranges without associated
471  *      pages are not modified.  Page faults can race with hole punch.
472  *      This is indicated if we find a mapped page.
473  * Note: If the passed end of range value is beyond the end of file, but
474  * not LLONG_MAX this routine still performs a hole punch operation.
475  */
476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477                                    loff_t lend)
478 {
479         struct hstate *h = hstate_inode(inode);
480         struct address_space *mapping = &inode->i_data;
481         const pgoff_t start = lstart >> huge_page_shift(h);
482         const pgoff_t end = lend >> huge_page_shift(h);
483         struct vm_area_struct pseudo_vma;
484         struct pagevec pvec;
485         pgoff_t next, index;
486         int i, freed = 0;
487         bool truncate_op = (lend == LLONG_MAX);
488
489         vma_init(&pseudo_vma, current->mm);
490         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
491         pagevec_init(&pvec);
492         next = start;
493         while (next < end) {
494                 /*
495                  * When no more pages are found, we are done.
496                  */
497                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
498                         break;
499
500                 for (i = 0; i < pagevec_count(&pvec); ++i) {
501                         struct page *page = pvec.pages[i];
502                         u32 hash;
503
504                         index = page->index;
505                         hash = hugetlb_fault_mutex_hash(mapping, index);
506                         if (!truncate_op) {
507                                 /*
508                                  * Only need to hold the fault mutex in the
509                                  * hole punch case.  This prevents races with
510                                  * page faults.  Races are not possible in the
511                                  * case of truncation.
512                                  */
513                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
514                         }
515
516                         /*
517                          * If page is mapped, it was faulted in after being
518                          * unmapped in caller.  Unmap (again) now after taking
519                          * the fault mutex.  The mutex will prevent faults
520                          * until we finish removing the page.
521                          *
522                          * This race can only happen in the hole punch case.
523                          * Getting here in a truncate operation is a bug.
524                          */
525                         if (unlikely(page_mapped(page))) {
526                                 BUG_ON(truncate_op);
527
528                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
529                                 i_mmap_lock_write(mapping);
530                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
531                                 hugetlb_vmdelete_list(&mapping->i_mmap,
532                                         index * pages_per_huge_page(h),
533                                         (index + 1) * pages_per_huge_page(h));
534                                 i_mmap_unlock_write(mapping);
535                         }
536
537                         lock_page(page);
538                         /*
539                          * We must free the huge page and remove from page
540                          * cache (remove_huge_page) BEFORE removing the
541                          * region/reserve map (hugetlb_unreserve_pages).  In
542                          * rare out of memory conditions, removal of the
543                          * region/reserve map could fail. Correspondingly,
544                          * the subpool and global reserve usage count can need
545                          * to be adjusted.
546                          */
547                         VM_BUG_ON(PagePrivate(page));
548                         remove_huge_page(page);
549                         freed++;
550                         if (!truncate_op) {
551                                 if (unlikely(hugetlb_unreserve_pages(inode,
552                                                         index, index + 1, 1)))
553                                         hugetlb_fix_reserve_counts(inode);
554                         }
555
556                         unlock_page(page);
557                         if (!truncate_op)
558                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
559                 }
560                 huge_pagevec_release(&pvec);
561                 cond_resched();
562         }
563
564         if (truncate_op)
565                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
566 }
567
568 static void hugetlbfs_evict_inode(struct inode *inode)
569 {
570         struct resv_map *resv_map;
571
572         remove_inode_hugepages(inode, 0, LLONG_MAX);
573
574         /*
575          * Get the resv_map from the address space embedded in the inode.
576          * This is the address space which points to any resv_map allocated
577          * at inode creation time.  If this is a device special inode,
578          * i_mapping may not point to the original address space.
579          */
580         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
581         /* Only regular and link inodes have associated reserve maps */
582         if (resv_map)
583                 resv_map_release(&resv_map->refs);
584         clear_inode(inode);
585 }
586
587 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
588 {
589         pgoff_t pgoff;
590         struct address_space *mapping = inode->i_mapping;
591         struct hstate *h = hstate_inode(inode);
592
593         BUG_ON(offset & ~huge_page_mask(h));
594         pgoff = offset >> PAGE_SHIFT;
595
596         i_mmap_lock_write(mapping);
597         i_size_write(inode, offset);
598         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
599                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
600         i_mmap_unlock_write(mapping);
601         remove_inode_hugepages(inode, offset, LLONG_MAX);
602         return 0;
603 }
604
605 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
606 {
607         struct hstate *h = hstate_inode(inode);
608         loff_t hpage_size = huge_page_size(h);
609         loff_t hole_start, hole_end;
610
611         /*
612          * For hole punch round up the beginning offset of the hole and
613          * round down the end.
614          */
615         hole_start = round_up(offset, hpage_size);
616         hole_end = round_down(offset + len, hpage_size);
617
618         if (hole_end > hole_start) {
619                 struct address_space *mapping = inode->i_mapping;
620                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
621
622                 inode_lock(inode);
623
624                 /* protected by i_mutex */
625                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
626                         inode_unlock(inode);
627                         return -EPERM;
628                 }
629
630                 i_mmap_lock_write(mapping);
631                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
632                         hugetlb_vmdelete_list(&mapping->i_mmap,
633                                                 hole_start >> PAGE_SHIFT,
634                                                 hole_end  >> PAGE_SHIFT);
635                 i_mmap_unlock_write(mapping);
636                 remove_inode_hugepages(inode, hole_start, hole_end);
637                 inode_unlock(inode);
638         }
639
640         return 0;
641 }
642
643 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
644                                 loff_t len)
645 {
646         struct inode *inode = file_inode(file);
647         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
648         struct address_space *mapping = inode->i_mapping;
649         struct hstate *h = hstate_inode(inode);
650         struct vm_area_struct pseudo_vma;
651         struct mm_struct *mm = current->mm;
652         loff_t hpage_size = huge_page_size(h);
653         unsigned long hpage_shift = huge_page_shift(h);
654         pgoff_t start, index, end;
655         int error;
656         u32 hash;
657
658         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
659                 return -EOPNOTSUPP;
660
661         if (mode & FALLOC_FL_PUNCH_HOLE)
662                 return hugetlbfs_punch_hole(inode, offset, len);
663
664         /*
665          * Default preallocate case.
666          * For this range, start is rounded down and end is rounded up
667          * as well as being converted to page offsets.
668          */
669         start = offset >> hpage_shift;
670         end = (offset + len + hpage_size - 1) >> hpage_shift;
671
672         inode_lock(inode);
673
674         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
675         error = inode_newsize_ok(inode, offset + len);
676         if (error)
677                 goto out;
678
679         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
680                 error = -EPERM;
681                 goto out;
682         }
683
684         /*
685          * Initialize a pseudo vma as this is required by the huge page
686          * allocation routines.  If NUMA is configured, use page index
687          * as input to create an allocation policy.
688          */
689         vma_init(&pseudo_vma, mm);
690         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
691         pseudo_vma.vm_file = file;
692
693         for (index = start; index < end; index++) {
694                 /*
695                  * This is supposed to be the vaddr where the page is being
696                  * faulted in, but we have no vaddr here.
697                  */
698                 struct page *page;
699                 unsigned long addr;
700                 int avoid_reserve = 0;
701
702                 cond_resched();
703
704                 /*
705                  * fallocate(2) manpage permits EINTR; we may have been
706                  * interrupted because we are using up too much memory.
707                  */
708                 if (signal_pending(current)) {
709                         error = -EINTR;
710                         break;
711                 }
712
713                 /* Set numa allocation policy based on index */
714                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
715
716                 /* addr is the offset within the file (zero based) */
717                 addr = index * hpage_size;
718
719                 /*
720                  * fault mutex taken here, protects against fault path
721                  * and hole punch.  inode_lock previously taken protects
722                  * against truncation.
723                  */
724                 hash = hugetlb_fault_mutex_hash(mapping, index);
725                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
726
727                 /* See if already present in mapping to avoid alloc/free */
728                 page = find_get_page(mapping, index);
729                 if (page) {
730                         put_page(page);
731                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
732                         hugetlb_drop_vma_policy(&pseudo_vma);
733                         continue;
734                 }
735
736                 /* Allocate page and add to page cache */
737                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
738                 hugetlb_drop_vma_policy(&pseudo_vma);
739                 if (IS_ERR(page)) {
740                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
741                         error = PTR_ERR(page);
742                         goto out;
743                 }
744                 clear_huge_page(page, addr, pages_per_huge_page(h));
745                 __SetPageUptodate(page);
746                 error = huge_add_to_page_cache(page, mapping, index);
747                 if (unlikely(error)) {
748                         put_page(page);
749                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
750                         goto out;
751                 }
752
753                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
754
755                 set_page_huge_active(page);
756                 /*
757                  * unlock_page because locked by add_to_page_cache()
758                  * put_page() due to reference from alloc_huge_page()
759                  */
760                 unlock_page(page);
761                 put_page(page);
762         }
763
764         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
765                 i_size_write(inode, offset + len);
766         inode->i_ctime = current_time(inode);
767 out:
768         inode_unlock(inode);
769         return error;
770 }
771
772 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
773 {
774         struct inode *inode = d_inode(dentry);
775         struct hstate *h = hstate_inode(inode);
776         int error;
777         unsigned int ia_valid = attr->ia_valid;
778         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
779
780         BUG_ON(!inode);
781
782         error = setattr_prepare(dentry, attr);
783         if (error)
784                 return error;
785
786         if (ia_valid & ATTR_SIZE) {
787                 loff_t oldsize = inode->i_size;
788                 loff_t newsize = attr->ia_size;
789
790                 if (newsize & ~huge_page_mask(h))
791                         return -EINVAL;
792                 /* protected by i_mutex */
793                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
794                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
795                         return -EPERM;
796                 error = hugetlb_vmtruncate(inode, newsize);
797                 if (error)
798                         return error;
799         }
800
801         setattr_copy(inode, attr);
802         mark_inode_dirty(inode);
803         return 0;
804 }
805
806 static struct inode *hugetlbfs_get_root(struct super_block *sb,
807                                         struct hugetlbfs_fs_context *ctx)
808 {
809         struct inode *inode;
810
811         inode = new_inode(sb);
812         if (inode) {
813                 inode->i_ino = get_next_ino();
814                 inode->i_mode = S_IFDIR | ctx->mode;
815                 inode->i_uid = ctx->uid;
816                 inode->i_gid = ctx->gid;
817                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
818                 inode->i_op = &hugetlbfs_dir_inode_operations;
819                 inode->i_fop = &simple_dir_operations;
820                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
821                 inc_nlink(inode);
822                 lockdep_annotate_inode_mutex_key(inode);
823         }
824         return inode;
825 }
826
827 /*
828  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
829  * be taken from reclaim -- unlike regular filesystems. This needs an
830  * annotation because huge_pmd_share() does an allocation under hugetlb's
831  * i_mmap_rwsem.
832  */
833 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
834
835 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
836                                         struct inode *dir,
837                                         umode_t mode, dev_t dev)
838 {
839         struct inode *inode;
840         struct resv_map *resv_map = NULL;
841
842         /*
843          * Reserve maps are only needed for inodes that can have associated
844          * page allocations.
845          */
846         if (S_ISREG(mode) || S_ISLNK(mode)) {
847                 resv_map = resv_map_alloc();
848                 if (!resv_map)
849                         return NULL;
850         }
851
852         inode = new_inode(sb);
853         if (inode) {
854                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
855
856                 inode->i_ino = get_next_ino();
857                 inode_init_owner(inode, dir, mode);
858                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
859                                 &hugetlbfs_i_mmap_rwsem_key);
860                 inode->i_mapping->a_ops = &hugetlbfs_aops;
861                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
862                 inode->i_mapping->private_data = resv_map;
863                 info->seals = F_SEAL_SEAL;
864                 switch (mode & S_IFMT) {
865                 default:
866                         init_special_inode(inode, mode, dev);
867                         break;
868                 case S_IFREG:
869                         inode->i_op = &hugetlbfs_inode_operations;
870                         inode->i_fop = &hugetlbfs_file_operations;
871                         break;
872                 case S_IFDIR:
873                         inode->i_op = &hugetlbfs_dir_inode_operations;
874                         inode->i_fop = &simple_dir_operations;
875
876                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
877                         inc_nlink(inode);
878                         break;
879                 case S_IFLNK:
880                         inode->i_op = &page_symlink_inode_operations;
881                         inode_nohighmem(inode);
882                         break;
883                 }
884                 lockdep_annotate_inode_mutex_key(inode);
885         } else {
886                 if (resv_map)
887                         kref_put(&resv_map->refs, resv_map_release);
888         }
889
890         return inode;
891 }
892
893 /*
894  * File creation. Allocate an inode, and we're done..
895  */
896 static int do_hugetlbfs_mknod(struct inode *dir,
897                         struct dentry *dentry,
898                         umode_t mode,
899                         dev_t dev,
900                         bool tmpfile)
901 {
902         struct inode *inode;
903         int error = -ENOSPC;
904
905         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
906         if (inode) {
907                 dir->i_ctime = dir->i_mtime = current_time(dir);
908                 if (tmpfile) {
909                         d_tmpfile(dentry, inode);
910                 } else {
911                         d_instantiate(dentry, inode);
912                         dget(dentry);/* Extra count - pin the dentry in core */
913                 }
914                 error = 0;
915         }
916         return error;
917 }
918
919 static int hugetlbfs_mknod(struct inode *dir,
920                         struct dentry *dentry, umode_t mode, dev_t dev)
921 {
922         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
923 }
924
925 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
926 {
927         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
928         if (!retval)
929                 inc_nlink(dir);
930         return retval;
931 }
932
933 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
934 {
935         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
936 }
937
938 static int hugetlbfs_tmpfile(struct inode *dir,
939                         struct dentry *dentry, umode_t mode)
940 {
941         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
942 }
943
944 static int hugetlbfs_symlink(struct inode *dir,
945                         struct dentry *dentry, const char *symname)
946 {
947         struct inode *inode;
948         int error = -ENOSPC;
949
950         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
951         if (inode) {
952                 int l = strlen(symname)+1;
953                 error = page_symlink(inode, symname, l);
954                 if (!error) {
955                         d_instantiate(dentry, inode);
956                         dget(dentry);
957                 } else
958                         iput(inode);
959         }
960         dir->i_ctime = dir->i_mtime = current_time(dir);
961
962         return error;
963 }
964
965 /*
966  * mark the head page dirty
967  */
968 static int hugetlbfs_set_page_dirty(struct page *page)
969 {
970         struct page *head = compound_head(page);
971
972         SetPageDirty(head);
973         return 0;
974 }
975
976 static int hugetlbfs_migrate_page(struct address_space *mapping,
977                                 struct page *newpage, struct page *page,
978                                 enum migrate_mode mode)
979 {
980         int rc;
981
982         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
983         if (rc != MIGRATEPAGE_SUCCESS)
984                 return rc;
985
986         /*
987          * page_private is subpool pointer in hugetlb pages.  Transfer to
988          * new page.  PagePrivate is not associated with page_private for
989          * hugetlb pages and can not be set here as only page_huge_active
990          * pages can be migrated.
991          */
992         if (page_private(page)) {
993                 set_page_private(newpage, page_private(page));
994                 set_page_private(page, 0);
995         }
996
997         if (mode != MIGRATE_SYNC_NO_COPY)
998                 migrate_page_copy(newpage, page);
999         else
1000                 migrate_page_states(newpage, page);
1001
1002         return MIGRATEPAGE_SUCCESS;
1003 }
1004
1005 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1006                                 struct page *page)
1007 {
1008         struct inode *inode = mapping->host;
1009         pgoff_t index = page->index;
1010
1011         remove_huge_page(page);
1012         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1013                 hugetlb_fix_reserve_counts(inode);
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * Display the mount options in /proc/mounts.
1020  */
1021 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1022 {
1023         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1024         struct hugepage_subpool *spool = sbinfo->spool;
1025         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1026         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1027         char mod;
1028
1029         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1030                 seq_printf(m, ",uid=%u",
1031                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1032         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1033                 seq_printf(m, ",gid=%u",
1034                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1035         if (sbinfo->mode != 0755)
1036                 seq_printf(m, ",mode=%o", sbinfo->mode);
1037         if (sbinfo->max_inodes != -1)
1038                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1039
1040         hpage_size /= 1024;
1041         mod = 'K';
1042         if (hpage_size >= 1024) {
1043                 hpage_size /= 1024;
1044                 mod = 'M';
1045         }
1046         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1047         if (spool) {
1048                 if (spool->max_hpages != -1)
1049                         seq_printf(m, ",size=%llu",
1050                                    (unsigned long long)spool->max_hpages << hpage_shift);
1051                 if (spool->min_hpages != -1)
1052                         seq_printf(m, ",min_size=%llu",
1053                                    (unsigned long long)spool->min_hpages << hpage_shift);
1054         }
1055         return 0;
1056 }
1057
1058 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1059 {
1060         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1061         struct hstate *h = hstate_inode(d_inode(dentry));
1062
1063         buf->f_type = HUGETLBFS_MAGIC;
1064         buf->f_bsize = huge_page_size(h);
1065         if (sbinfo) {
1066                 spin_lock(&sbinfo->stat_lock);
1067                 /* If no limits set, just report 0 for max/free/used
1068                  * blocks, like simple_statfs() */
1069                 if (sbinfo->spool) {
1070                         long free_pages;
1071
1072                         spin_lock(&sbinfo->spool->lock);
1073                         buf->f_blocks = sbinfo->spool->max_hpages;
1074                         free_pages = sbinfo->spool->max_hpages
1075                                 - sbinfo->spool->used_hpages;
1076                         buf->f_bavail = buf->f_bfree = free_pages;
1077                         spin_unlock(&sbinfo->spool->lock);
1078                         buf->f_files = sbinfo->max_inodes;
1079                         buf->f_ffree = sbinfo->free_inodes;
1080                 }
1081                 spin_unlock(&sbinfo->stat_lock);
1082         }
1083         buf->f_namelen = NAME_MAX;
1084         return 0;
1085 }
1086
1087 static void hugetlbfs_put_super(struct super_block *sb)
1088 {
1089         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1090
1091         if (sbi) {
1092                 sb->s_fs_info = NULL;
1093
1094                 if (sbi->spool)
1095                         hugepage_put_subpool(sbi->spool);
1096
1097                 kfree(sbi);
1098         }
1099 }
1100
1101 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1102 {
1103         if (sbinfo->free_inodes >= 0) {
1104                 spin_lock(&sbinfo->stat_lock);
1105                 if (unlikely(!sbinfo->free_inodes)) {
1106                         spin_unlock(&sbinfo->stat_lock);
1107                         return 0;
1108                 }
1109                 sbinfo->free_inodes--;
1110                 spin_unlock(&sbinfo->stat_lock);
1111         }
1112
1113         return 1;
1114 }
1115
1116 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1117 {
1118         if (sbinfo->free_inodes >= 0) {
1119                 spin_lock(&sbinfo->stat_lock);
1120                 sbinfo->free_inodes++;
1121                 spin_unlock(&sbinfo->stat_lock);
1122         }
1123 }
1124
1125
1126 static struct kmem_cache *hugetlbfs_inode_cachep;
1127
1128 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1129 {
1130         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1131         struct hugetlbfs_inode_info *p;
1132
1133         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1134                 return NULL;
1135         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1136         if (unlikely(!p)) {
1137                 hugetlbfs_inc_free_inodes(sbinfo);
1138                 return NULL;
1139         }
1140
1141         /*
1142          * Any time after allocation, hugetlbfs_destroy_inode can be called
1143          * for the inode.  mpol_free_shared_policy is unconditionally called
1144          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1145          * in case of a quick call to destroy.
1146          *
1147          * Note that the policy is initialized even if we are creating a
1148          * private inode.  This simplifies hugetlbfs_destroy_inode.
1149          */
1150         mpol_shared_policy_init(&p->policy, NULL);
1151
1152         return &p->vfs_inode;
1153 }
1154
1155 static void hugetlbfs_free_inode(struct inode *inode)
1156 {
1157         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1158 }
1159
1160 static void hugetlbfs_destroy_inode(struct inode *inode)
1161 {
1162         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1163         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1164 }
1165
1166 static const struct address_space_operations hugetlbfs_aops = {
1167         .write_begin    = hugetlbfs_write_begin,
1168         .write_end      = hugetlbfs_write_end,
1169         .set_page_dirty = hugetlbfs_set_page_dirty,
1170         .migratepage    = hugetlbfs_migrate_page,
1171         .error_remove_page      = hugetlbfs_error_remove_page,
1172 };
1173
1174
1175 static void init_once(void *foo)
1176 {
1177         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1178
1179         inode_init_once(&ei->vfs_inode);
1180 }
1181
1182 const struct file_operations hugetlbfs_file_operations = {
1183         .read_iter              = hugetlbfs_read_iter,
1184         .mmap                   = hugetlbfs_file_mmap,
1185         .fsync                  = noop_fsync,
1186         .get_unmapped_area      = hugetlb_get_unmapped_area,
1187         .llseek                 = default_llseek,
1188         .fallocate              = hugetlbfs_fallocate,
1189 };
1190
1191 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1192         .create         = hugetlbfs_create,
1193         .lookup         = simple_lookup,
1194         .link           = simple_link,
1195         .unlink         = simple_unlink,
1196         .symlink        = hugetlbfs_symlink,
1197         .mkdir          = hugetlbfs_mkdir,
1198         .rmdir          = simple_rmdir,
1199         .mknod          = hugetlbfs_mknod,
1200         .rename         = simple_rename,
1201         .setattr        = hugetlbfs_setattr,
1202         .tmpfile        = hugetlbfs_tmpfile,
1203 };
1204
1205 static const struct inode_operations hugetlbfs_inode_operations = {
1206         .setattr        = hugetlbfs_setattr,
1207 };
1208
1209 static const struct super_operations hugetlbfs_ops = {
1210         .alloc_inode    = hugetlbfs_alloc_inode,
1211         .free_inode     = hugetlbfs_free_inode,
1212         .destroy_inode  = hugetlbfs_destroy_inode,
1213         .evict_inode    = hugetlbfs_evict_inode,
1214         .statfs         = hugetlbfs_statfs,
1215         .put_super      = hugetlbfs_put_super,
1216         .show_options   = hugetlbfs_show_options,
1217 };
1218
1219 /*
1220  * Convert size option passed from command line to number of huge pages
1221  * in the pool specified by hstate.  Size option could be in bytes
1222  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1223  */
1224 static long
1225 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1226                          enum hugetlbfs_size_type val_type)
1227 {
1228         if (val_type == NO_SIZE)
1229                 return -1;
1230
1231         if (val_type == SIZE_PERCENT) {
1232                 size_opt <<= huge_page_shift(h);
1233                 size_opt *= h->max_huge_pages;
1234                 do_div(size_opt, 100);
1235         }
1236
1237         size_opt >>= huge_page_shift(h);
1238         return size_opt;
1239 }
1240
1241 /*
1242  * Parse one mount parameter.
1243  */
1244 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1245 {
1246         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1247         struct fs_parse_result result;
1248         struct hstate *h;
1249         char *rest;
1250         unsigned long ps;
1251         int opt;
1252
1253         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1254         if (opt < 0)
1255                 return opt;
1256
1257         switch (opt) {
1258         case Opt_uid:
1259                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1260                 if (!uid_valid(ctx->uid))
1261                         goto bad_val;
1262                 return 0;
1263
1264         case Opt_gid:
1265                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1266                 if (!gid_valid(ctx->gid))
1267                         goto bad_val;
1268                 return 0;
1269
1270         case Opt_mode:
1271                 ctx->mode = result.uint_32 & 01777U;
1272                 return 0;
1273
1274         case Opt_size:
1275                 /* memparse() will accept a K/M/G without a digit */
1276                 if (!param->string || !isdigit(param->string[0]))
1277                         goto bad_val;
1278                 ctx->max_size_opt = memparse(param->string, &rest);
1279                 ctx->max_val_type = SIZE_STD;
1280                 if (*rest == '%')
1281                         ctx->max_val_type = SIZE_PERCENT;
1282                 return 0;
1283
1284         case Opt_nr_inodes:
1285                 /* memparse() will accept a K/M/G without a digit */
1286                 if (!param->string || !isdigit(param->string[0]))
1287                         goto bad_val;
1288                 ctx->nr_inodes = memparse(param->string, &rest);
1289                 return 0;
1290
1291         case Opt_pagesize:
1292                 ps = memparse(param->string, &rest);
1293                 h = size_to_hstate(ps);
1294                 if (!h) {
1295                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1296                         return -EINVAL;
1297                 }
1298                 ctx->hstate = h;
1299                 return 0;
1300
1301         case Opt_min_size:
1302                 /* memparse() will accept a K/M/G without a digit */
1303                 if (!param->string || !isdigit(param->string[0]))
1304                         goto bad_val;
1305                 ctx->min_size_opt = memparse(param->string, &rest);
1306                 ctx->min_val_type = SIZE_STD;
1307                 if (*rest == '%')
1308                         ctx->min_val_type = SIZE_PERCENT;
1309                 return 0;
1310
1311         default:
1312                 return -EINVAL;
1313         }
1314
1315 bad_val:
1316         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1317                       param->string, param->key);
1318 }
1319
1320 /*
1321  * Validate the parsed options.
1322  */
1323 static int hugetlbfs_validate(struct fs_context *fc)
1324 {
1325         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1326
1327         /*
1328          * Use huge page pool size (in hstate) to convert the size
1329          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1330          */
1331         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1332                                                    ctx->max_size_opt,
1333                                                    ctx->max_val_type);
1334         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1335                                                    ctx->min_size_opt,
1336                                                    ctx->min_val_type);
1337
1338         /*
1339          * If max_size was specified, then min_size must be smaller
1340          */
1341         if (ctx->max_val_type > NO_SIZE &&
1342             ctx->min_hpages > ctx->max_hpages) {
1343                 pr_err("Minimum size can not be greater than maximum size\n");
1344                 return -EINVAL;
1345         }
1346
1347         return 0;
1348 }
1349
1350 static int
1351 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1352 {
1353         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1354         struct hugetlbfs_sb_info *sbinfo;
1355
1356         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1357         if (!sbinfo)
1358                 return -ENOMEM;
1359         sb->s_fs_info = sbinfo;
1360         spin_lock_init(&sbinfo->stat_lock);
1361         sbinfo->hstate          = ctx->hstate;
1362         sbinfo->max_inodes      = ctx->nr_inodes;
1363         sbinfo->free_inodes     = ctx->nr_inodes;
1364         sbinfo->spool           = NULL;
1365         sbinfo->uid             = ctx->uid;
1366         sbinfo->gid             = ctx->gid;
1367         sbinfo->mode            = ctx->mode;
1368
1369         /*
1370          * Allocate and initialize subpool if maximum or minimum size is
1371          * specified.  Any needed reservations (for minimim size) are taken
1372          * taken when the subpool is created.
1373          */
1374         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1375                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1376                                                      ctx->max_hpages,
1377                                                      ctx->min_hpages);
1378                 if (!sbinfo->spool)
1379                         goto out_free;
1380         }
1381         sb->s_maxbytes = MAX_LFS_FILESIZE;
1382         sb->s_blocksize = huge_page_size(ctx->hstate);
1383         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1384         sb->s_magic = HUGETLBFS_MAGIC;
1385         sb->s_op = &hugetlbfs_ops;
1386         sb->s_time_gran = 1;
1387
1388         /*
1389          * Due to the special and limited functionality of hugetlbfs, it does
1390          * not work well as a stacking filesystem.
1391          */
1392         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1393         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1394         if (!sb->s_root)
1395                 goto out_free;
1396         return 0;
1397 out_free:
1398         kfree(sbinfo->spool);
1399         kfree(sbinfo);
1400         return -ENOMEM;
1401 }
1402
1403 static int hugetlbfs_get_tree(struct fs_context *fc)
1404 {
1405         int err = hugetlbfs_validate(fc);
1406         if (err)
1407                 return err;
1408         return get_tree_nodev(fc, hugetlbfs_fill_super);
1409 }
1410
1411 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1412 {
1413         kfree(fc->fs_private);
1414 }
1415
1416 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1417         .free           = hugetlbfs_fs_context_free,
1418         .parse_param    = hugetlbfs_parse_param,
1419         .get_tree       = hugetlbfs_get_tree,
1420 };
1421
1422 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1423 {
1424         struct hugetlbfs_fs_context *ctx;
1425
1426         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1427         if (!ctx)
1428                 return -ENOMEM;
1429
1430         ctx->max_hpages = -1; /* No limit on size by default */
1431         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1432         ctx->uid        = current_fsuid();
1433         ctx->gid        = current_fsgid();
1434         ctx->mode       = 0755;
1435         ctx->hstate     = &default_hstate;
1436         ctx->min_hpages = -1; /* No default minimum size */
1437         ctx->max_val_type = NO_SIZE;
1438         ctx->min_val_type = NO_SIZE;
1439         fc->fs_private = ctx;
1440         fc->ops = &hugetlbfs_fs_context_ops;
1441         return 0;
1442 }
1443
1444 static struct file_system_type hugetlbfs_fs_type = {
1445         .name                   = "hugetlbfs",
1446         .init_fs_context        = hugetlbfs_init_fs_context,
1447         .parameters             = hugetlb_fs_parameters,
1448         .kill_sb                = kill_litter_super,
1449 };
1450
1451 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1452
1453 static int can_do_hugetlb_shm(void)
1454 {
1455         kgid_t shm_group;
1456         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1457         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1458 }
1459
1460 static int get_hstate_idx(int page_size_log)
1461 {
1462         struct hstate *h = hstate_sizelog(page_size_log);
1463
1464         if (!h)
1465                 return -1;
1466         return h - hstates;
1467 }
1468
1469 /*
1470  * Note that size should be aligned to proper hugepage size in caller side,
1471  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1472  */
1473 struct file *hugetlb_file_setup(const char *name, size_t size,
1474                                 vm_flags_t acctflag, struct user_struct **user,
1475                                 int creat_flags, int page_size_log)
1476 {
1477         struct inode *inode;
1478         struct vfsmount *mnt;
1479         int hstate_idx;
1480         struct file *file;
1481
1482         hstate_idx = get_hstate_idx(page_size_log);
1483         if (hstate_idx < 0)
1484                 return ERR_PTR(-ENODEV);
1485
1486         *user = NULL;
1487         mnt = hugetlbfs_vfsmount[hstate_idx];
1488         if (!mnt)
1489                 return ERR_PTR(-ENOENT);
1490
1491         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1492                 *user = current_user();
1493                 if (user_shm_lock(size, *user)) {
1494                         task_lock(current);
1495                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1496                                 current->comm, current->pid);
1497                         task_unlock(current);
1498                 } else {
1499                         *user = NULL;
1500                         return ERR_PTR(-EPERM);
1501                 }
1502         }
1503
1504         file = ERR_PTR(-ENOSPC);
1505         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1506         if (!inode)
1507                 goto out;
1508         if (creat_flags == HUGETLB_SHMFS_INODE)
1509                 inode->i_flags |= S_PRIVATE;
1510
1511         inode->i_size = size;
1512         clear_nlink(inode);
1513
1514         if (!hugetlb_reserve_pages(inode, 0,
1515                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1516                         acctflag))
1517                 file = ERR_PTR(-ENOMEM);
1518         else
1519                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1520                                         &hugetlbfs_file_operations);
1521         if (!IS_ERR(file))
1522                 return file;
1523
1524         iput(inode);
1525 out:
1526         if (*user) {
1527                 user_shm_unlock(size, *user);
1528                 *user = NULL;
1529         }
1530         return file;
1531 }
1532
1533 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1534 {
1535         struct fs_context *fc;
1536         struct vfsmount *mnt;
1537
1538         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1539         if (IS_ERR(fc)) {
1540                 mnt = ERR_CAST(fc);
1541         } else {
1542                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1543                 ctx->hstate = h;
1544                 mnt = fc_mount(fc);
1545                 put_fs_context(fc);
1546         }
1547         if (IS_ERR(mnt))
1548                 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1549                        1U << (h->order + PAGE_SHIFT - 10));
1550         return mnt;
1551 }
1552
1553 static int __init init_hugetlbfs_fs(void)
1554 {
1555         struct vfsmount *mnt;
1556         struct hstate *h;
1557         int error;
1558         int i;
1559
1560         if (!hugepages_supported()) {
1561                 pr_info("disabling because there are no supported hugepage sizes\n");
1562                 return -ENOTSUPP;
1563         }
1564
1565         error = -ENOMEM;
1566         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1567                                         sizeof(struct hugetlbfs_inode_info),
1568                                         0, SLAB_ACCOUNT, init_once);
1569         if (hugetlbfs_inode_cachep == NULL)
1570                 goto out;
1571
1572         error = register_filesystem(&hugetlbfs_fs_type);
1573         if (error)
1574                 goto out_free;
1575
1576         /* default hstate mount is required */
1577         mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1578         if (IS_ERR(mnt)) {
1579                 error = PTR_ERR(mnt);
1580                 goto out_unreg;
1581         }
1582         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1583
1584         /* other hstates are optional */
1585         i = 0;
1586         for_each_hstate(h) {
1587                 if (i == default_hstate_idx) {
1588                         i++;
1589                         continue;
1590                 }
1591
1592                 mnt = mount_one_hugetlbfs(h);
1593                 if (IS_ERR(mnt))
1594                         hugetlbfs_vfsmount[i] = NULL;
1595                 else
1596                         hugetlbfs_vfsmount[i] = mnt;
1597                 i++;
1598         }
1599
1600         return 0;
1601
1602  out_unreg:
1603         (void)unregister_filesystem(&hugetlbfs_fs_type);
1604  out_free:
1605         kmem_cache_destroy(hugetlbfs_inode_cachep);
1606  out:
1607         return error;
1608 }
1609 fs_initcall(init_hugetlbfs_fs)