2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
48 struct hugetlbfs_config {
49 struct hstate *hstate;
58 int sysctl_hugetlb_shm_group;
61 Opt_size, Opt_nr_inodes,
62 Opt_mode, Opt_uid, Opt_gid,
63 Opt_pagesize, Opt_min_size,
67 static const match_table_t tokens = {
68 {Opt_size, "size=%s"},
69 {Opt_nr_inodes, "nr_inodes=%s"},
70 {Opt_mode, "mode=%o"},
73 {Opt_pagesize, "pagesize=%s"},
74 {Opt_min_size, "min_size=%s"},
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 struct inode *inode, pgoff_t index)
82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
88 mpol_cond_put(vma->vm_policy);
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 struct inode *inode, pgoff_t index)
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
101 static void huge_pagevec_release(struct pagevec *pvec)
105 for (i = 0; i < pagevec_count(pvec); ++i)
106 put_page(pvec->pages[i]);
108 pagevec_reinit(pvec);
112 * Mask used when checking the page offset value passed in via system
113 * calls. This value will be converted to a loff_t which is signed.
114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115 * value. The extra bit (- 1 in the shift value) is to take the sign
118 #define PGOFF_LOFFT_MAX \
119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
123 struct inode *inode = file_inode(file);
126 struct hstate *h = hstate_file(file);
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
140 * page based offset in vm_pgoff could be sufficiently large to
141 * overflow a loff_t when converted to byte offset. This can
142 * only happen on architectures where sizeof(loff_t) ==
143 * sizeof(unsigned long). So, only check in those instances.
145 if (sizeof(unsigned long) == sizeof(loff_t)) {
146 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 /* must be huge page aligned */
151 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
154 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
155 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
156 /* check for overflow */
164 if (hugetlb_reserve_pages(inode,
165 vma->vm_pgoff >> huge_page_order(h),
166 len >> huge_page_shift(h), vma,
171 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
172 i_size_write(inode, len);
180 * Called under down_write(mmap_sem).
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
186 unsigned long len, unsigned long pgoff, unsigned long flags)
188 struct mm_struct *mm = current->mm;
189 struct vm_area_struct *vma;
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
193 if (len & ~huge_page_mask(h))
198 if (flags & MAP_FIXED) {
199 if (prepare_hugepage_range(file, addr, len))
205 addr = ALIGN(addr, huge_page_size(h));
206 vma = find_vma(mm, addr);
207 if (TASK_SIZE - len >= addr &&
208 (!vma || addr + len <= vm_start_gap(vma)))
214 info.low_limit = TASK_UNMAPPED_BASE;
215 info.high_limit = TASK_SIZE;
216 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
217 info.align_offset = 0;
218 return vm_unmapped_area(&info);
223 hugetlbfs_read_actor(struct page *page, unsigned long offset,
224 struct iov_iter *to, unsigned long size)
229 /* Find which 4k chunk and offset with in that chunk */
230 i = offset >> PAGE_SHIFT;
231 offset = offset & ~PAGE_MASK;
235 chunksize = PAGE_SIZE;
238 if (chunksize > size)
240 n = copy_page_to_iter(&page[i], offset, chunksize, to);
252 * Support for read() - Find the page attached to f_mapping and copy out the
253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254 * since it has PAGE_SIZE assumptions.
256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
258 struct file *file = iocb->ki_filp;
259 struct hstate *h = hstate_file(file);
260 struct address_space *mapping = file->f_mapping;
261 struct inode *inode = mapping->host;
262 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
263 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
264 unsigned long end_index;
268 while (iov_iter_count(to)) {
272 /* nr is the maximum number of bytes to copy from this page */
273 nr = huge_page_size(h);
274 isize = i_size_read(inode);
277 end_index = (isize - 1) >> huge_page_shift(h);
278 if (index > end_index)
280 if (index == end_index) {
281 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
288 page = find_lock_page(mapping, index);
289 if (unlikely(page == NULL)) {
291 * We have a HOLE, zero out the user-buffer for the
292 * length of the hole or request.
294 copied = iov_iter_zero(nr, to);
299 * We have the page, copy it to user space buffer.
301 copied = hugetlbfs_read_actor(page, offset, to, nr);
306 if (copied != nr && iov_iter_count(to)) {
311 index += offset >> huge_page_shift(h);
312 offset &= ~huge_page_mask(h);
314 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
318 static int hugetlbfs_write_begin(struct file *file,
319 struct address_space *mapping,
320 loff_t pos, unsigned len, unsigned flags,
321 struct page **pagep, void **fsdata)
326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct page *page, void *fsdata)
334 static void remove_huge_page(struct page *page)
336 ClearPageDirty(page);
337 ClearPageUptodate(page);
338 delete_from_page_cache(page);
342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
344 struct vm_area_struct *vma;
347 * end == 0 indicates that the entire range after
348 * start should be unmapped.
350 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
351 unsigned long v_offset;
355 * Can the expression below overflow on 32-bit arches?
356 * No, because the interval tree returns us only those vmas
357 * which overlap the truncated area starting at pgoff,
358 * and no vma on a 32-bit arch can span beyond the 4GB.
360 if (vma->vm_pgoff < start)
361 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
368 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
370 if (v_end > vma->vm_end)
374 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
380 * remove_inode_hugepages handles two distinct cases: truncation and hole
381 * punch. There are subtle differences in operation for each case.
383 * truncation is indicated by end of range being LLONG_MAX
384 * In this case, we first scan the range and release found pages.
385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386 * maps and global counts. Page faults can not race with truncation
387 * in this routine. hugetlb_no_page() prevents page faults in the
388 * truncated range. It checks i_size before allocation, and again after
389 * with the page table lock for the page held. The same lock must be
390 * acquired to unmap a page.
391 * hole punch is indicated if end is not LLONG_MAX
392 * In the hole punch case we scan the range and release found pages.
393 * Only when releasing a page is the associated region/reserv map
394 * deleted. The region/reserv map for ranges without associated
395 * pages are not modified. Page faults can race with hole punch.
396 * This is indicated if we find a mapped page.
397 * Note: If the passed end of range value is beyond the end of file, but
398 * not LLONG_MAX this routine still performs a hole punch operation.
400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
403 struct hstate *h = hstate_inode(inode);
404 struct address_space *mapping = &inode->i_data;
405 const pgoff_t start = lstart >> huge_page_shift(h);
406 const pgoff_t end = lend >> huge_page_shift(h);
407 struct vm_area_struct pseudo_vma;
411 bool truncate_op = (lend == LLONG_MAX);
413 vma_init(&pseudo_vma, current->mm);
414 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
419 * When no more pages are found, we are done.
421 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
424 for (i = 0; i < pagevec_count(&pvec); ++i) {
425 struct page *page = pvec.pages[i];
429 hash = hugetlb_fault_mutex_hash(h, mapping, index);
430 mutex_lock(&hugetlb_fault_mutex_table[hash]);
433 * If page is mapped, it was faulted in after being
434 * unmapped in caller. Unmap (again) now after taking
435 * the fault mutex. The mutex will prevent faults
436 * until we finish removing the page.
438 * This race can only happen in the hole punch case.
439 * Getting here in a truncate operation is a bug.
441 if (unlikely(page_mapped(page))) {
444 i_mmap_lock_write(mapping);
445 hugetlb_vmdelete_list(&mapping->i_mmap,
446 index * pages_per_huge_page(h),
447 (index + 1) * pages_per_huge_page(h));
448 i_mmap_unlock_write(mapping);
453 * We must free the huge page and remove from page
454 * cache (remove_huge_page) BEFORE removing the
455 * region/reserve map (hugetlb_unreserve_pages). In
456 * rare out of memory conditions, removal of the
457 * region/reserve map could fail. Correspondingly,
458 * the subpool and global reserve usage count can need
461 VM_BUG_ON(PagePrivate(page));
462 remove_huge_page(page);
465 if (unlikely(hugetlb_unreserve_pages(inode,
466 index, index + 1, 1)))
467 hugetlb_fix_reserve_counts(inode);
471 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
473 huge_pagevec_release(&pvec);
478 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
481 static void hugetlbfs_evict_inode(struct inode *inode)
483 struct resv_map *resv_map;
485 remove_inode_hugepages(inode, 0, LLONG_MAX);
486 resv_map = (struct resv_map *)inode->i_mapping->private_data;
487 /* root inode doesn't have the resv_map, so we should check it */
489 resv_map_release(&resv_map->refs);
493 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
496 struct address_space *mapping = inode->i_mapping;
497 struct hstate *h = hstate_inode(inode);
499 BUG_ON(offset & ~huge_page_mask(h));
500 pgoff = offset >> PAGE_SHIFT;
502 i_size_write(inode, offset);
503 i_mmap_lock_write(mapping);
504 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
505 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
506 i_mmap_unlock_write(mapping);
507 remove_inode_hugepages(inode, offset, LLONG_MAX);
511 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
513 struct hstate *h = hstate_inode(inode);
514 loff_t hpage_size = huge_page_size(h);
515 loff_t hole_start, hole_end;
518 * For hole punch round up the beginning offset of the hole and
519 * round down the end.
521 hole_start = round_up(offset, hpage_size);
522 hole_end = round_down(offset + len, hpage_size);
524 if (hole_end > hole_start) {
525 struct address_space *mapping = inode->i_mapping;
526 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
530 /* protected by i_mutex */
531 if (info->seals & F_SEAL_WRITE) {
536 i_mmap_lock_write(mapping);
537 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
538 hugetlb_vmdelete_list(&mapping->i_mmap,
539 hole_start >> PAGE_SHIFT,
540 hole_end >> PAGE_SHIFT);
541 i_mmap_unlock_write(mapping);
542 remove_inode_hugepages(inode, hole_start, hole_end);
549 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
552 struct inode *inode = file_inode(file);
553 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
554 struct address_space *mapping = inode->i_mapping;
555 struct hstate *h = hstate_inode(inode);
556 struct vm_area_struct pseudo_vma;
557 struct mm_struct *mm = current->mm;
558 loff_t hpage_size = huge_page_size(h);
559 unsigned long hpage_shift = huge_page_shift(h);
560 pgoff_t start, index, end;
564 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
567 if (mode & FALLOC_FL_PUNCH_HOLE)
568 return hugetlbfs_punch_hole(inode, offset, len);
571 * Default preallocate case.
572 * For this range, start is rounded down and end is rounded up
573 * as well as being converted to page offsets.
575 start = offset >> hpage_shift;
576 end = (offset + len + hpage_size - 1) >> hpage_shift;
580 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
581 error = inode_newsize_ok(inode, offset + len);
585 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
591 * Initialize a pseudo vma as this is required by the huge page
592 * allocation routines. If NUMA is configured, use page index
593 * as input to create an allocation policy.
595 vma_init(&pseudo_vma, mm);
596 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
597 pseudo_vma.vm_file = file;
599 for (index = start; index < end; index++) {
601 * This is supposed to be the vaddr where the page is being
602 * faulted in, but we have no vaddr here.
606 int avoid_reserve = 0;
611 * fallocate(2) manpage permits EINTR; we may have been
612 * interrupted because we are using up too much memory.
614 if (signal_pending(current)) {
619 /* Set numa allocation policy based on index */
620 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
622 /* addr is the offset within the file (zero based) */
623 addr = index * hpage_size;
625 /* mutex taken here, fault path and hole punch */
626 hash = hugetlb_fault_mutex_hash(h, mapping, index);
627 mutex_lock(&hugetlb_fault_mutex_table[hash]);
629 /* See if already present in mapping to avoid alloc/free */
630 page = find_get_page(mapping, index);
633 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634 hugetlb_drop_vma_policy(&pseudo_vma);
638 /* Allocate page and add to page cache */
639 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
640 hugetlb_drop_vma_policy(&pseudo_vma);
642 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643 error = PTR_ERR(page);
646 clear_huge_page(page, addr, pages_per_huge_page(h));
647 __SetPageUptodate(page);
648 error = huge_add_to_page_cache(page, mapping, index);
649 if (unlikely(error)) {
651 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
655 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
657 set_page_huge_active(page);
659 * unlock_page because locked by add_to_page_cache()
660 * put_page() due to reference from alloc_huge_page()
666 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
667 i_size_write(inode, offset + len);
668 inode->i_ctime = current_time(inode);
674 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
676 struct inode *inode = d_inode(dentry);
677 struct hstate *h = hstate_inode(inode);
679 unsigned int ia_valid = attr->ia_valid;
680 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
684 error = setattr_prepare(dentry, attr);
688 if (ia_valid & ATTR_SIZE) {
689 loff_t oldsize = inode->i_size;
690 loff_t newsize = attr->ia_size;
692 if (newsize & ~huge_page_mask(h))
694 /* protected by i_mutex */
695 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
696 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
698 error = hugetlb_vmtruncate(inode, newsize);
703 setattr_copy(inode, attr);
704 mark_inode_dirty(inode);
708 static struct inode *hugetlbfs_get_root(struct super_block *sb,
709 struct hugetlbfs_config *config)
713 inode = new_inode(sb);
715 inode->i_ino = get_next_ino();
716 inode->i_mode = S_IFDIR | config->mode;
717 inode->i_uid = config->uid;
718 inode->i_gid = config->gid;
719 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
720 inode->i_op = &hugetlbfs_dir_inode_operations;
721 inode->i_fop = &simple_dir_operations;
722 /* directory inodes start off with i_nlink == 2 (for "." entry) */
724 lockdep_annotate_inode_mutex_key(inode);
730 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
731 * be taken from reclaim -- unlike regular filesystems. This needs an
732 * annotation because huge_pmd_share() does an allocation under hugetlb's
735 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
737 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
739 umode_t mode, dev_t dev)
742 struct resv_map *resv_map = NULL;
745 * Reserve maps are only needed for inodes that can have associated
748 if (S_ISREG(mode) || S_ISLNK(mode)) {
749 resv_map = resv_map_alloc();
754 inode = new_inode(sb);
756 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
758 inode->i_ino = get_next_ino();
759 inode_init_owner(inode, dir, mode);
760 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
761 &hugetlbfs_i_mmap_rwsem_key);
762 inode->i_mapping->a_ops = &hugetlbfs_aops;
763 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
764 inode->i_mapping->private_data = resv_map;
765 info->seals = F_SEAL_SEAL;
766 switch (mode & S_IFMT) {
768 init_special_inode(inode, mode, dev);
771 inode->i_op = &hugetlbfs_inode_operations;
772 inode->i_fop = &hugetlbfs_file_operations;
775 inode->i_op = &hugetlbfs_dir_inode_operations;
776 inode->i_fop = &simple_dir_operations;
778 /* directory inodes start off with i_nlink == 2 (for "." entry) */
782 inode->i_op = &page_symlink_inode_operations;
783 inode_nohighmem(inode);
786 lockdep_annotate_inode_mutex_key(inode);
789 kref_put(&resv_map->refs, resv_map_release);
796 * File creation. Allocate an inode, and we're done..
798 static int hugetlbfs_mknod(struct inode *dir,
799 struct dentry *dentry, umode_t mode, dev_t dev)
804 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
806 dir->i_ctime = dir->i_mtime = current_time(dir);
807 d_instantiate(dentry, inode);
808 dget(dentry); /* Extra count - pin the dentry in core */
814 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
816 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
822 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
824 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
827 static int hugetlbfs_symlink(struct inode *dir,
828 struct dentry *dentry, const char *symname)
833 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
835 int l = strlen(symname)+1;
836 error = page_symlink(inode, symname, l);
838 d_instantiate(dentry, inode);
843 dir->i_ctime = dir->i_mtime = current_time(dir);
849 * mark the head page dirty
851 static int hugetlbfs_set_page_dirty(struct page *page)
853 struct page *head = compound_head(page);
859 static int hugetlbfs_migrate_page(struct address_space *mapping,
860 struct page *newpage, struct page *page,
861 enum migrate_mode mode)
865 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
866 if (rc != MIGRATEPAGE_SUCCESS)
870 * page_private is subpool pointer in hugetlb pages. Transfer to
871 * new page. PagePrivate is not associated with page_private for
872 * hugetlb pages and can not be set here as only page_huge_active
873 * pages can be migrated.
875 if (page_private(page)) {
876 set_page_private(newpage, page_private(page));
877 set_page_private(page, 0);
880 if (mode != MIGRATE_SYNC_NO_COPY)
881 migrate_page_copy(newpage, page);
883 migrate_page_states(newpage, page);
885 return MIGRATEPAGE_SUCCESS;
888 static int hugetlbfs_error_remove_page(struct address_space *mapping,
891 struct inode *inode = mapping->host;
892 pgoff_t index = page->index;
894 remove_huge_page(page);
895 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
896 hugetlb_fix_reserve_counts(inode);
902 * Display the mount options in /proc/mounts.
904 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
906 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
907 struct hugepage_subpool *spool = sbinfo->spool;
908 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
909 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
912 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
913 seq_printf(m, ",uid=%u",
914 from_kuid_munged(&init_user_ns, sbinfo->uid));
915 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
916 seq_printf(m, ",gid=%u",
917 from_kgid_munged(&init_user_ns, sbinfo->gid));
918 if (sbinfo->mode != 0755)
919 seq_printf(m, ",mode=%o", sbinfo->mode);
920 if (sbinfo->max_inodes != -1)
921 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
925 if (hpage_size >= 1024) {
929 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
931 if (spool->max_hpages != -1)
932 seq_printf(m, ",size=%llu",
933 (unsigned long long)spool->max_hpages << hpage_shift);
934 if (spool->min_hpages != -1)
935 seq_printf(m, ",min_size=%llu",
936 (unsigned long long)spool->min_hpages << hpage_shift);
941 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
943 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
944 struct hstate *h = hstate_inode(d_inode(dentry));
946 buf->f_type = HUGETLBFS_MAGIC;
947 buf->f_bsize = huge_page_size(h);
949 spin_lock(&sbinfo->stat_lock);
950 /* If no limits set, just report 0 for max/free/used
951 * blocks, like simple_statfs() */
955 spin_lock(&sbinfo->spool->lock);
956 buf->f_blocks = sbinfo->spool->max_hpages;
957 free_pages = sbinfo->spool->max_hpages
958 - sbinfo->spool->used_hpages;
959 buf->f_bavail = buf->f_bfree = free_pages;
960 spin_unlock(&sbinfo->spool->lock);
961 buf->f_files = sbinfo->max_inodes;
962 buf->f_ffree = sbinfo->free_inodes;
964 spin_unlock(&sbinfo->stat_lock);
966 buf->f_namelen = NAME_MAX;
970 static void hugetlbfs_put_super(struct super_block *sb)
972 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
975 sb->s_fs_info = NULL;
978 hugepage_put_subpool(sbi->spool);
984 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
986 if (sbinfo->free_inodes >= 0) {
987 spin_lock(&sbinfo->stat_lock);
988 if (unlikely(!sbinfo->free_inodes)) {
989 spin_unlock(&sbinfo->stat_lock);
992 sbinfo->free_inodes--;
993 spin_unlock(&sbinfo->stat_lock);
999 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1001 if (sbinfo->free_inodes >= 0) {
1002 spin_lock(&sbinfo->stat_lock);
1003 sbinfo->free_inodes++;
1004 spin_unlock(&sbinfo->stat_lock);
1009 static struct kmem_cache *hugetlbfs_inode_cachep;
1011 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1013 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1014 struct hugetlbfs_inode_info *p;
1016 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1018 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1020 hugetlbfs_inc_free_inodes(sbinfo);
1025 * Any time after allocation, hugetlbfs_destroy_inode can be called
1026 * for the inode. mpol_free_shared_policy is unconditionally called
1027 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1028 * in case of a quick call to destroy.
1030 * Note that the policy is initialized even if we are creating a
1031 * private inode. This simplifies hugetlbfs_destroy_inode.
1033 mpol_shared_policy_init(&p->policy, NULL);
1035 return &p->vfs_inode;
1038 static void hugetlbfs_i_callback(struct rcu_head *head)
1040 struct inode *inode = container_of(head, struct inode, i_rcu);
1041 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1044 static void hugetlbfs_destroy_inode(struct inode *inode)
1046 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1047 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1048 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1051 static const struct address_space_operations hugetlbfs_aops = {
1052 .write_begin = hugetlbfs_write_begin,
1053 .write_end = hugetlbfs_write_end,
1054 .set_page_dirty = hugetlbfs_set_page_dirty,
1055 .migratepage = hugetlbfs_migrate_page,
1056 .error_remove_page = hugetlbfs_error_remove_page,
1060 static void init_once(void *foo)
1062 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1064 inode_init_once(&ei->vfs_inode);
1067 const struct file_operations hugetlbfs_file_operations = {
1068 .read_iter = hugetlbfs_read_iter,
1069 .mmap = hugetlbfs_file_mmap,
1070 .fsync = noop_fsync,
1071 .get_unmapped_area = hugetlb_get_unmapped_area,
1072 .llseek = default_llseek,
1073 .fallocate = hugetlbfs_fallocate,
1076 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1077 .create = hugetlbfs_create,
1078 .lookup = simple_lookup,
1079 .link = simple_link,
1080 .unlink = simple_unlink,
1081 .symlink = hugetlbfs_symlink,
1082 .mkdir = hugetlbfs_mkdir,
1083 .rmdir = simple_rmdir,
1084 .mknod = hugetlbfs_mknod,
1085 .rename = simple_rename,
1086 .setattr = hugetlbfs_setattr,
1089 static const struct inode_operations hugetlbfs_inode_operations = {
1090 .setattr = hugetlbfs_setattr,
1093 static const struct super_operations hugetlbfs_ops = {
1094 .alloc_inode = hugetlbfs_alloc_inode,
1095 .destroy_inode = hugetlbfs_destroy_inode,
1096 .evict_inode = hugetlbfs_evict_inode,
1097 .statfs = hugetlbfs_statfs,
1098 .put_super = hugetlbfs_put_super,
1099 .show_options = hugetlbfs_show_options,
1102 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1105 * Convert size option passed from command line to number of huge pages
1106 * in the pool specified by hstate. Size option could be in bytes
1107 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1110 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1111 enum hugetlbfs_size_type val_type)
1113 if (val_type == NO_SIZE)
1116 if (val_type == SIZE_PERCENT) {
1117 size_opt <<= huge_page_shift(h);
1118 size_opt *= h->max_huge_pages;
1119 do_div(size_opt, 100);
1122 size_opt >>= huge_page_shift(h);
1127 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1130 substring_t args[MAX_OPT_ARGS];
1132 unsigned long long max_size_opt = 0, min_size_opt = 0;
1133 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1138 while ((p = strsep(&options, ",")) != NULL) {
1143 token = match_token(p, tokens, args);
1146 if (match_int(&args[0], &option))
1148 pconfig->uid = make_kuid(current_user_ns(), option);
1149 if (!uid_valid(pconfig->uid))
1154 if (match_int(&args[0], &option))
1156 pconfig->gid = make_kgid(current_user_ns(), option);
1157 if (!gid_valid(pconfig->gid))
1162 if (match_octal(&args[0], &option))
1164 pconfig->mode = option & 01777U;
1168 /* memparse() will accept a K/M/G without a digit */
1169 if (!isdigit(*args[0].from))
1171 max_size_opt = memparse(args[0].from, &rest);
1172 max_val_type = SIZE_STD;
1174 max_val_type = SIZE_PERCENT;
1179 /* memparse() will accept a K/M/G without a digit */
1180 if (!isdigit(*args[0].from))
1182 pconfig->nr_inodes = memparse(args[0].from, &rest);
1185 case Opt_pagesize: {
1187 ps = memparse(args[0].from, &rest);
1188 pconfig->hstate = size_to_hstate(ps);
1189 if (!pconfig->hstate) {
1190 pr_err("Unsupported page size %lu MB\n",
1197 case Opt_min_size: {
1198 /* memparse() will accept a K/M/G without a digit */
1199 if (!isdigit(*args[0].from))
1201 min_size_opt = memparse(args[0].from, &rest);
1202 min_val_type = SIZE_STD;
1204 min_val_type = SIZE_PERCENT;
1209 pr_err("Bad mount option: \"%s\"\n", p);
1216 * Use huge page pool size (in hstate) to convert the size
1217 * options to number of huge pages. If NO_SIZE, -1 is returned.
1219 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1220 max_size_opt, max_val_type);
1221 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1222 min_size_opt, min_val_type);
1225 * If max_size was specified, then min_size must be smaller
1227 if (max_val_type > NO_SIZE &&
1228 pconfig->min_hpages > pconfig->max_hpages) {
1229 pr_err("minimum size can not be greater than maximum size\n");
1236 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1241 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1244 struct hugetlbfs_config config;
1245 struct hugetlbfs_sb_info *sbinfo;
1247 config.max_hpages = -1; /* No limit on size by default */
1248 config.nr_inodes = -1; /* No limit on number of inodes by default */
1249 config.uid = current_fsuid();
1250 config.gid = current_fsgid();
1252 config.hstate = &default_hstate;
1253 config.min_hpages = -1; /* No default minimum size */
1254 ret = hugetlbfs_parse_options(data, &config);
1258 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1261 sb->s_fs_info = sbinfo;
1262 sbinfo->hstate = config.hstate;
1263 spin_lock_init(&sbinfo->stat_lock);
1264 sbinfo->max_inodes = config.nr_inodes;
1265 sbinfo->free_inodes = config.nr_inodes;
1266 sbinfo->spool = NULL;
1267 sbinfo->uid = config.uid;
1268 sbinfo->gid = config.gid;
1269 sbinfo->mode = config.mode;
1272 * Allocate and initialize subpool if maximum or minimum size is
1273 * specified. Any needed reservations (for minimim size) are taken
1274 * taken when the subpool is created.
1276 if (config.max_hpages != -1 || config.min_hpages != -1) {
1277 sbinfo->spool = hugepage_new_subpool(config.hstate,
1283 sb->s_maxbytes = MAX_LFS_FILESIZE;
1284 sb->s_blocksize = huge_page_size(config.hstate);
1285 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1286 sb->s_magic = HUGETLBFS_MAGIC;
1287 sb->s_op = &hugetlbfs_ops;
1288 sb->s_time_gran = 1;
1289 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1294 kfree(sbinfo->spool);
1299 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1300 int flags, const char *dev_name, void *data)
1302 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1305 static struct file_system_type hugetlbfs_fs_type = {
1306 .name = "hugetlbfs",
1307 .mount = hugetlbfs_mount,
1308 .kill_sb = kill_litter_super,
1311 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1313 static int can_do_hugetlb_shm(void)
1316 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1317 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1320 static int get_hstate_idx(int page_size_log)
1322 struct hstate *h = hstate_sizelog(page_size_log);
1330 * Note that size should be aligned to proper hugepage size in caller side,
1331 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1333 struct file *hugetlb_file_setup(const char *name, size_t size,
1334 vm_flags_t acctflag, struct user_struct **user,
1335 int creat_flags, int page_size_log)
1337 struct inode *inode;
1338 struct vfsmount *mnt;
1342 hstate_idx = get_hstate_idx(page_size_log);
1344 return ERR_PTR(-ENODEV);
1347 mnt = hugetlbfs_vfsmount[hstate_idx];
1349 return ERR_PTR(-ENOENT);
1351 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1352 *user = current_user();
1353 if (user_shm_lock(size, *user)) {
1355 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1356 current->comm, current->pid);
1357 task_unlock(current);
1360 return ERR_PTR(-EPERM);
1364 file = ERR_PTR(-ENOSPC);
1365 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1368 if (creat_flags == HUGETLB_SHMFS_INODE)
1369 inode->i_flags |= S_PRIVATE;
1371 inode->i_size = size;
1374 if (hugetlb_reserve_pages(inode, 0,
1375 size >> huge_page_shift(hstate_inode(inode)), NULL,
1377 file = ERR_PTR(-ENOMEM);
1379 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1380 &hugetlbfs_file_operations);
1387 user_shm_unlock(size, *user);
1393 static int __init init_hugetlbfs_fs(void)
1399 if (!hugepages_supported()) {
1400 pr_info("disabling because there are no supported hugepage sizes\n");
1405 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1406 sizeof(struct hugetlbfs_inode_info),
1407 0, SLAB_ACCOUNT, init_once);
1408 if (hugetlbfs_inode_cachep == NULL)
1411 error = register_filesystem(&hugetlbfs_fs_type);
1416 for_each_hstate(h) {
1418 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1420 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1421 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1424 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1425 pr_err("Cannot mount internal hugetlbfs for "
1426 "page size %uK", ps_kb);
1427 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1428 hugetlbfs_vfsmount[i] = NULL;
1432 /* Non default hstates are optional */
1433 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1437 kmem_cache_destroy(hugetlbfs_inode_cachep);
1441 fs_initcall(init_hugetlbfs_fs)