GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_param_specs[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32oct("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 static const struct fs_parameter_description hugetlb_fs_parameters = {
89         .name           = "hugetlbfs",
90         .specs          = hugetlb_param_specs,
91 };
92
93 #ifdef CONFIG_NUMA
94 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
95                                         struct inode *inode, pgoff_t index)
96 {
97         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
98                                                         index);
99 }
100
101 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
102 {
103         mpol_cond_put(vma->vm_policy);
104 }
105 #else
106 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
107                                         struct inode *inode, pgoff_t index)
108 {
109 }
110
111 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
112 {
113 }
114 #endif
115
116 static void huge_pagevec_release(struct pagevec *pvec)
117 {
118         int i;
119
120         for (i = 0; i < pagevec_count(pvec); ++i)
121                 put_page(pvec->pages[i]);
122
123         pagevec_reinit(pvec);
124 }
125
126 /*
127  * Mask used when checking the page offset value passed in via system
128  * calls.  This value will be converted to a loff_t which is signed.
129  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
130  * value.  The extra bit (- 1 in the shift value) is to take the sign
131  * bit into account.
132  */
133 #define PGOFF_LOFFT_MAX \
134         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
135
136 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
137 {
138         struct inode *inode = file_inode(file);
139         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
140         loff_t len, vma_len;
141         int ret;
142         struct hstate *h = hstate_file(file);
143
144         /*
145          * vma address alignment (but not the pgoff alignment) has
146          * already been checked by prepare_hugepage_range.  If you add
147          * any error returns here, do so after setting VM_HUGETLB, so
148          * is_vm_hugetlb_page tests below unmap_region go the right
149          * way when do_mmap_pgoff unwinds (may be important on powerpc
150          * and ia64).
151          */
152         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
153         vma->vm_ops = &hugetlb_vm_ops;
154
155         ret = seal_check_future_write(info->seals, vma);
156         if (ret)
157                 return ret;
158
159         /*
160          * page based offset in vm_pgoff could be sufficiently large to
161          * overflow a loff_t when converted to byte offset.  This can
162          * only happen on architectures where sizeof(loff_t) ==
163          * sizeof(unsigned long).  So, only check in those instances.
164          */
165         if (sizeof(unsigned long) == sizeof(loff_t)) {
166                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
167                         return -EINVAL;
168         }
169
170         /* must be huge page aligned */
171         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
172                 return -EINVAL;
173
174         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
175         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
176         /* check for overflow */
177         if (len < vma_len)
178                 return -EINVAL;
179
180         inode_lock(inode);
181         file_accessed(file);
182
183         ret = -ENOMEM;
184         if (hugetlb_reserve_pages(inode,
185                                 vma->vm_pgoff >> huge_page_order(h),
186                                 len >> huge_page_shift(h), vma,
187                                 vma->vm_flags))
188                 goto out;
189
190         ret = 0;
191         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
192                 i_size_write(inode, len);
193 out:
194         inode_unlock(inode);
195
196         return ret;
197 }
198
199 /*
200  * Called under down_write(mmap_sem).
201  */
202
203 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
204 static unsigned long
205 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
206                 unsigned long len, unsigned long pgoff, unsigned long flags)
207 {
208         struct hstate *h = hstate_file(file);
209         struct vm_unmapped_area_info info;
210
211         info.flags = 0;
212         info.length = len;
213         info.low_limit = current->mm->mmap_base;
214         info.high_limit = arch_get_mmap_end(addr);
215         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
216         info.align_offset = 0;
217         return vm_unmapped_area(&info);
218 }
219
220 static unsigned long
221 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
222                 unsigned long len, unsigned long pgoff, unsigned long flags)
223 {
224         struct hstate *h = hstate_file(file);
225         struct vm_unmapped_area_info info;
226
227         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
228         info.length = len;
229         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
230         info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
231         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
232         info.align_offset = 0;
233         addr = vm_unmapped_area(&info);
234
235         /*
236          * A failed mmap() very likely causes application failure,
237          * so fall back to the bottom-up function here. This scenario
238          * can happen with large stack limits and large mmap()
239          * allocations.
240          */
241         if (unlikely(offset_in_page(addr))) {
242                 VM_BUG_ON(addr != -ENOMEM);
243                 info.flags = 0;
244                 info.low_limit = current->mm->mmap_base;
245                 info.high_limit = arch_get_mmap_end(addr);
246                 addr = vm_unmapped_area(&info);
247         }
248
249         return addr;
250 }
251
252 static unsigned long
253 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
254                 unsigned long len, unsigned long pgoff, unsigned long flags)
255 {
256         struct mm_struct *mm = current->mm;
257         struct vm_area_struct *vma;
258         struct hstate *h = hstate_file(file);
259         const unsigned long mmap_end = arch_get_mmap_end(addr);
260
261         if (len & ~huge_page_mask(h))
262                 return -EINVAL;
263         if (len > TASK_SIZE)
264                 return -ENOMEM;
265
266         if (flags & MAP_FIXED) {
267                 if (prepare_hugepage_range(file, addr, len))
268                         return -EINVAL;
269                 return addr;
270         }
271
272         if (addr) {
273                 addr = ALIGN(addr, huge_page_size(h));
274                 vma = find_vma(mm, addr);
275                 if (mmap_end - len >= addr &&
276                     (!vma || addr + len <= vm_start_gap(vma)))
277                         return addr;
278         }
279
280         /*
281          * Use mm->get_unmapped_area value as a hint to use topdown routine.
282          * If architectures have special needs, they should define their own
283          * version of hugetlb_get_unmapped_area.
284          */
285         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
286                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
287                                 pgoff, flags);
288         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
289                         pgoff, flags);
290 }
291 #endif
292
293 static size_t
294 hugetlbfs_read_actor(struct page *page, unsigned long offset,
295                         struct iov_iter *to, unsigned long size)
296 {
297         size_t copied = 0;
298         int i, chunksize;
299
300         /* Find which 4k chunk and offset with in that chunk */
301         i = offset >> PAGE_SHIFT;
302         offset = offset & ~PAGE_MASK;
303
304         while (size) {
305                 size_t n;
306                 chunksize = PAGE_SIZE;
307                 if (offset)
308                         chunksize -= offset;
309                 if (chunksize > size)
310                         chunksize = size;
311                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
312                 copied += n;
313                 if (n != chunksize)
314                         return copied;
315                 offset = 0;
316                 size -= chunksize;
317                 i++;
318         }
319         return copied;
320 }
321
322 /*
323  * Support for read() - Find the page attached to f_mapping and copy out the
324  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
325  * since it has PAGE_SIZE assumptions.
326  */
327 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
328 {
329         struct file *file = iocb->ki_filp;
330         struct hstate *h = hstate_file(file);
331         struct address_space *mapping = file->f_mapping;
332         struct inode *inode = mapping->host;
333         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
334         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
335         unsigned long end_index;
336         loff_t isize;
337         ssize_t retval = 0;
338
339         while (iov_iter_count(to)) {
340                 struct page *page;
341                 size_t nr, copied;
342
343                 /* nr is the maximum number of bytes to copy from this page */
344                 nr = huge_page_size(h);
345                 isize = i_size_read(inode);
346                 if (!isize)
347                         break;
348                 end_index = (isize - 1) >> huge_page_shift(h);
349                 if (index > end_index)
350                         break;
351                 if (index == end_index) {
352                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
353                         if (nr <= offset)
354                                 break;
355                 }
356                 nr = nr - offset;
357
358                 /* Find the page */
359                 page = find_lock_page(mapping, index);
360                 if (unlikely(page == NULL)) {
361                         /*
362                          * We have a HOLE, zero out the user-buffer for the
363                          * length of the hole or request.
364                          */
365                         copied = iov_iter_zero(nr, to);
366                 } else {
367                         unlock_page(page);
368
369                         /*
370                          * We have the page, copy it to user space buffer.
371                          */
372                         copied = hugetlbfs_read_actor(page, offset, to, nr);
373                         put_page(page);
374                 }
375                 offset += copied;
376                 retval += copied;
377                 if (copied != nr && iov_iter_count(to)) {
378                         if (!retval)
379                                 retval = -EFAULT;
380                         break;
381                 }
382                 index += offset >> huge_page_shift(h);
383                 offset &= ~huge_page_mask(h);
384         }
385         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
386         return retval;
387 }
388
389 static int hugetlbfs_write_begin(struct file *file,
390                         struct address_space *mapping,
391                         loff_t pos, unsigned len, unsigned flags,
392                         struct page **pagep, void **fsdata)
393 {
394         return -EINVAL;
395 }
396
397 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
398                         loff_t pos, unsigned len, unsigned copied,
399                         struct page *page, void *fsdata)
400 {
401         BUG();
402         return -EINVAL;
403 }
404
405 static void remove_huge_page(struct page *page)
406 {
407         ClearPageDirty(page);
408         ClearPageUptodate(page);
409         delete_from_page_cache(page);
410 }
411
412 static void
413 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
414 {
415         struct vm_area_struct *vma;
416
417         /*
418          * end == 0 indicates that the entire range after
419          * start should be unmapped.
420          */
421         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
422                 unsigned long v_offset;
423                 unsigned long v_end;
424
425                 /*
426                  * Can the expression below overflow on 32-bit arches?
427                  * No, because the interval tree returns us only those vmas
428                  * which overlap the truncated area starting at pgoff,
429                  * and no vma on a 32-bit arch can span beyond the 4GB.
430                  */
431                 if (vma->vm_pgoff < start)
432                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
433                 else
434                         v_offset = 0;
435
436                 if (!end)
437                         v_end = vma->vm_end;
438                 else {
439                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
440                                                         + vma->vm_start;
441                         if (v_end > vma->vm_end)
442                                 v_end = vma->vm_end;
443                 }
444
445                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
446                                                                         NULL);
447         }
448 }
449
450 /*
451  * remove_inode_hugepages handles two distinct cases: truncation and hole
452  * punch.  There are subtle differences in operation for each case.
453  *
454  * truncation is indicated by end of range being LLONG_MAX
455  *      In this case, we first scan the range and release found pages.
456  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
457  *      maps and global counts.  Page faults can not race with truncation
458  *      in this routine.  hugetlb_no_page() prevents page faults in the
459  *      truncated range.  It checks i_size before allocation, and again after
460  *      with the page table lock for the page held.  The same lock must be
461  *      acquired to unmap a page.
462  * hole punch is indicated if end is not LLONG_MAX
463  *      In the hole punch case we scan the range and release found pages.
464  *      Only when releasing a page is the associated region/reserv map
465  *      deleted.  The region/reserv map for ranges without associated
466  *      pages are not modified.  Page faults can race with hole punch.
467  *      This is indicated if we find a mapped page.
468  * Note: If the passed end of range value is beyond the end of file, but
469  * not LLONG_MAX this routine still performs a hole punch operation.
470  */
471 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
472                                    loff_t lend)
473 {
474         struct hstate *h = hstate_inode(inode);
475         struct address_space *mapping = &inode->i_data;
476         const pgoff_t start = lstart >> huge_page_shift(h);
477         const pgoff_t end = lend >> huge_page_shift(h);
478         struct vm_area_struct pseudo_vma;
479         struct pagevec pvec;
480         pgoff_t next, index;
481         int i, freed = 0;
482         bool truncate_op = (lend == LLONG_MAX);
483
484         vma_init(&pseudo_vma, current->mm);
485         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
486         pagevec_init(&pvec);
487         next = start;
488         while (next < end) {
489                 /*
490                  * When no more pages are found, we are done.
491                  */
492                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
493                         break;
494
495                 for (i = 0; i < pagevec_count(&pvec); ++i) {
496                         struct page *page = pvec.pages[i];
497                         u32 hash;
498
499                         index = page->index;
500                         hash = hugetlb_fault_mutex_hash(h, mapping, index);
501                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
502
503                         /*
504                          * If page is mapped, it was faulted in after being
505                          * unmapped in caller.  Unmap (again) now after taking
506                          * the fault mutex.  The mutex will prevent faults
507                          * until we finish removing the page.
508                          *
509                          * This race can only happen in the hole punch case.
510                          * Getting here in a truncate operation is a bug.
511                          */
512                         if (unlikely(page_mapped(page))) {
513                                 BUG_ON(truncate_op);
514
515                                 i_mmap_lock_write(mapping);
516                                 hugetlb_vmdelete_list(&mapping->i_mmap,
517                                         index * pages_per_huge_page(h),
518                                         (index + 1) * pages_per_huge_page(h));
519                                 i_mmap_unlock_write(mapping);
520                         }
521
522                         lock_page(page);
523                         /*
524                          * We must free the huge page and remove from page
525                          * cache (remove_huge_page) BEFORE removing the
526                          * region/reserve map (hugetlb_unreserve_pages).  In
527                          * rare out of memory conditions, removal of the
528                          * region/reserve map could fail. Correspondingly,
529                          * the subpool and global reserve usage count can need
530                          * to be adjusted.
531                          */
532                         VM_BUG_ON(PagePrivate(page));
533                         remove_huge_page(page);
534                         freed++;
535                         if (!truncate_op) {
536                                 if (unlikely(hugetlb_unreserve_pages(inode,
537                                                         index, index + 1, 1)))
538                                         hugetlb_fix_reserve_counts(inode);
539                         }
540
541                         unlock_page(page);
542                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
543                 }
544                 huge_pagevec_release(&pvec);
545                 cond_resched();
546         }
547
548         if (truncate_op)
549                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
550 }
551
552 static void hugetlbfs_evict_inode(struct inode *inode)
553 {
554         struct resv_map *resv_map;
555
556         remove_inode_hugepages(inode, 0, LLONG_MAX);
557
558         /*
559          * Get the resv_map from the address space embedded in the inode.
560          * This is the address space which points to any resv_map allocated
561          * at inode creation time.  If this is a device special inode,
562          * i_mapping may not point to the original address space.
563          */
564         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
565         /* Only regular and link inodes have associated reserve maps */
566         if (resv_map)
567                 resv_map_release(&resv_map->refs);
568         clear_inode(inode);
569 }
570
571 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
572 {
573         pgoff_t pgoff;
574         struct address_space *mapping = inode->i_mapping;
575         struct hstate *h = hstate_inode(inode);
576
577         BUG_ON(offset & ~huge_page_mask(h));
578         pgoff = offset >> PAGE_SHIFT;
579
580         i_size_write(inode, offset);
581         i_mmap_lock_write(mapping);
582         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
583                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
584         i_mmap_unlock_write(mapping);
585         remove_inode_hugepages(inode, offset, LLONG_MAX);
586         return 0;
587 }
588
589 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
590 {
591         struct hstate *h = hstate_inode(inode);
592         loff_t hpage_size = huge_page_size(h);
593         loff_t hole_start, hole_end;
594
595         /*
596          * For hole punch round up the beginning offset of the hole and
597          * round down the end.
598          */
599         hole_start = round_up(offset, hpage_size);
600         hole_end = round_down(offset + len, hpage_size);
601
602         if (hole_end > hole_start) {
603                 struct address_space *mapping = inode->i_mapping;
604                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
605
606                 inode_lock(inode);
607
608                 /* protected by i_mutex */
609                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
610                         inode_unlock(inode);
611                         return -EPERM;
612                 }
613
614                 i_mmap_lock_write(mapping);
615                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
616                         hugetlb_vmdelete_list(&mapping->i_mmap,
617                                                 hole_start >> PAGE_SHIFT,
618                                                 hole_end  >> PAGE_SHIFT);
619                 i_mmap_unlock_write(mapping);
620                 remove_inode_hugepages(inode, hole_start, hole_end);
621                 inode_unlock(inode);
622         }
623
624         return 0;
625 }
626
627 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
628                                 loff_t len)
629 {
630         struct inode *inode = file_inode(file);
631         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
632         struct address_space *mapping = inode->i_mapping;
633         struct hstate *h = hstate_inode(inode);
634         struct vm_area_struct pseudo_vma;
635         struct mm_struct *mm = current->mm;
636         loff_t hpage_size = huge_page_size(h);
637         unsigned long hpage_shift = huge_page_shift(h);
638         pgoff_t start, index, end;
639         int error;
640         u32 hash;
641
642         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
643                 return -EOPNOTSUPP;
644
645         if (mode & FALLOC_FL_PUNCH_HOLE)
646                 return hugetlbfs_punch_hole(inode, offset, len);
647
648         /*
649          * Default preallocate case.
650          * For this range, start is rounded down and end is rounded up
651          * as well as being converted to page offsets.
652          */
653         start = offset >> hpage_shift;
654         end = (offset + len + hpage_size - 1) >> hpage_shift;
655
656         inode_lock(inode);
657
658         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
659         error = inode_newsize_ok(inode, offset + len);
660         if (error)
661                 goto out;
662
663         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
664                 error = -EPERM;
665                 goto out;
666         }
667
668         /*
669          * Initialize a pseudo vma as this is required by the huge page
670          * allocation routines.  If NUMA is configured, use page index
671          * as input to create an allocation policy.
672          */
673         vma_init(&pseudo_vma, mm);
674         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
675         pseudo_vma.vm_file = file;
676
677         for (index = start; index < end; index++) {
678                 /*
679                  * This is supposed to be the vaddr where the page is being
680                  * faulted in, but we have no vaddr here.
681                  */
682                 struct page *page;
683                 unsigned long addr;
684                 int avoid_reserve = 0;
685
686                 cond_resched();
687
688                 /*
689                  * fallocate(2) manpage permits EINTR; we may have been
690                  * interrupted because we are using up too much memory.
691                  */
692                 if (signal_pending(current)) {
693                         error = -EINTR;
694                         break;
695                 }
696
697                 /* Set numa allocation policy based on index */
698                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
699
700                 /* addr is the offset within the file (zero based) */
701                 addr = index * hpage_size;
702
703                 /* mutex taken here, fault path and hole punch */
704                 hash = hugetlb_fault_mutex_hash(h, mapping, index);
705                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
706
707                 /* See if already present in mapping to avoid alloc/free */
708                 page = find_get_page(mapping, index);
709                 if (page) {
710                         put_page(page);
711                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
712                         hugetlb_drop_vma_policy(&pseudo_vma);
713                         continue;
714                 }
715
716                 /* Allocate page and add to page cache */
717                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
718                 hugetlb_drop_vma_policy(&pseudo_vma);
719                 if (IS_ERR(page)) {
720                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
721                         error = PTR_ERR(page);
722                         goto out;
723                 }
724                 clear_huge_page(page, addr, pages_per_huge_page(h));
725                 __SetPageUptodate(page);
726                 error = huge_add_to_page_cache(page, mapping, index);
727                 if (unlikely(error)) {
728                         put_page(page);
729                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
730                         goto out;
731                 }
732
733                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
734
735                 set_page_huge_active(page);
736                 /*
737                  * unlock_page because locked by add_to_page_cache()
738                  * put_page() due to reference from alloc_huge_page()
739                  */
740                 unlock_page(page);
741                 put_page(page);
742         }
743
744         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
745                 i_size_write(inode, offset + len);
746         inode->i_ctime = current_time(inode);
747 out:
748         inode_unlock(inode);
749         return error;
750 }
751
752 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
753 {
754         struct inode *inode = d_inode(dentry);
755         struct hstate *h = hstate_inode(inode);
756         int error;
757         unsigned int ia_valid = attr->ia_valid;
758         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
759
760         BUG_ON(!inode);
761
762         error = setattr_prepare(dentry, attr);
763         if (error)
764                 return error;
765
766         if (ia_valid & ATTR_SIZE) {
767                 loff_t oldsize = inode->i_size;
768                 loff_t newsize = attr->ia_size;
769
770                 if (newsize & ~huge_page_mask(h))
771                         return -EINVAL;
772                 /* protected by i_mutex */
773                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
774                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
775                         return -EPERM;
776                 error = hugetlb_vmtruncate(inode, newsize);
777                 if (error)
778                         return error;
779         }
780
781         setattr_copy(inode, attr);
782         mark_inode_dirty(inode);
783         return 0;
784 }
785
786 static struct inode *hugetlbfs_get_root(struct super_block *sb,
787                                         struct hugetlbfs_fs_context *ctx)
788 {
789         struct inode *inode;
790
791         inode = new_inode(sb);
792         if (inode) {
793                 inode->i_ino = get_next_ino();
794                 inode->i_mode = S_IFDIR | ctx->mode;
795                 inode->i_uid = ctx->uid;
796                 inode->i_gid = ctx->gid;
797                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
798                 inode->i_op = &hugetlbfs_dir_inode_operations;
799                 inode->i_fop = &simple_dir_operations;
800                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
801                 inc_nlink(inode);
802                 lockdep_annotate_inode_mutex_key(inode);
803         }
804         return inode;
805 }
806
807 /*
808  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
809  * be taken from reclaim -- unlike regular filesystems. This needs an
810  * annotation because huge_pmd_share() does an allocation under hugetlb's
811  * i_mmap_rwsem.
812  */
813 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
814
815 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
816                                         struct inode *dir,
817                                         umode_t mode, dev_t dev)
818 {
819         struct inode *inode;
820         struct resv_map *resv_map = NULL;
821
822         /*
823          * Reserve maps are only needed for inodes that can have associated
824          * page allocations.
825          */
826         if (S_ISREG(mode) || S_ISLNK(mode)) {
827                 resv_map = resv_map_alloc();
828                 if (!resv_map)
829                         return NULL;
830         }
831
832         inode = new_inode(sb);
833         if (inode) {
834                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
835
836                 inode->i_ino = get_next_ino();
837                 inode_init_owner(inode, dir, mode);
838                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
839                                 &hugetlbfs_i_mmap_rwsem_key);
840                 inode->i_mapping->a_ops = &hugetlbfs_aops;
841                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
842                 inode->i_mapping->private_data = resv_map;
843                 info->seals = F_SEAL_SEAL;
844                 switch (mode & S_IFMT) {
845                 default:
846                         init_special_inode(inode, mode, dev);
847                         break;
848                 case S_IFREG:
849                         inode->i_op = &hugetlbfs_inode_operations;
850                         inode->i_fop = &hugetlbfs_file_operations;
851                         break;
852                 case S_IFDIR:
853                         inode->i_op = &hugetlbfs_dir_inode_operations;
854                         inode->i_fop = &simple_dir_operations;
855
856                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
857                         inc_nlink(inode);
858                         break;
859                 case S_IFLNK:
860                         inode->i_op = &page_symlink_inode_operations;
861                         inode_nohighmem(inode);
862                         break;
863                 }
864                 lockdep_annotate_inode_mutex_key(inode);
865         } else {
866                 if (resv_map)
867                         kref_put(&resv_map->refs, resv_map_release);
868         }
869
870         return inode;
871 }
872
873 /*
874  * File creation. Allocate an inode, and we're done..
875  */
876 static int hugetlbfs_mknod(struct inode *dir,
877                         struct dentry *dentry, umode_t mode, dev_t dev)
878 {
879         struct inode *inode;
880         int error = -ENOSPC;
881
882         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
883         if (inode) {
884                 dir->i_ctime = dir->i_mtime = current_time(dir);
885                 d_instantiate(dentry, inode);
886                 dget(dentry);   /* Extra count - pin the dentry in core */
887                 error = 0;
888         }
889         return error;
890 }
891
892 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
893 {
894         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
895         if (!retval)
896                 inc_nlink(dir);
897         return retval;
898 }
899
900 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
901 {
902         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
903 }
904
905 static int hugetlbfs_symlink(struct inode *dir,
906                         struct dentry *dentry, const char *symname)
907 {
908         struct inode *inode;
909         int error = -ENOSPC;
910
911         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
912         if (inode) {
913                 int l = strlen(symname)+1;
914                 error = page_symlink(inode, symname, l);
915                 if (!error) {
916                         d_instantiate(dentry, inode);
917                         dget(dentry);
918                 } else
919                         iput(inode);
920         }
921         dir->i_ctime = dir->i_mtime = current_time(dir);
922
923         return error;
924 }
925
926 /*
927  * mark the head page dirty
928  */
929 static int hugetlbfs_set_page_dirty(struct page *page)
930 {
931         struct page *head = compound_head(page);
932
933         SetPageDirty(head);
934         return 0;
935 }
936
937 static int hugetlbfs_migrate_page(struct address_space *mapping,
938                                 struct page *newpage, struct page *page,
939                                 enum migrate_mode mode)
940 {
941         int rc;
942
943         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
944         if (rc != MIGRATEPAGE_SUCCESS)
945                 return rc;
946
947         /*
948          * page_private is subpool pointer in hugetlb pages.  Transfer to
949          * new page.  PagePrivate is not associated with page_private for
950          * hugetlb pages and can not be set here as only page_huge_active
951          * pages can be migrated.
952          */
953         if (page_private(page)) {
954                 set_page_private(newpage, page_private(page));
955                 set_page_private(page, 0);
956         }
957
958         if (mode != MIGRATE_SYNC_NO_COPY)
959                 migrate_page_copy(newpage, page);
960         else
961                 migrate_page_states(newpage, page);
962
963         return MIGRATEPAGE_SUCCESS;
964 }
965
966 static int hugetlbfs_error_remove_page(struct address_space *mapping,
967                                 struct page *page)
968 {
969         struct inode *inode = mapping->host;
970         pgoff_t index = page->index;
971
972         remove_huge_page(page);
973         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
974                 hugetlb_fix_reserve_counts(inode);
975
976         return 0;
977 }
978
979 /*
980  * Display the mount options in /proc/mounts.
981  */
982 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
983 {
984         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
985         struct hugepage_subpool *spool = sbinfo->spool;
986         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
987         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
988         char mod;
989
990         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
991                 seq_printf(m, ",uid=%u",
992                            from_kuid_munged(&init_user_ns, sbinfo->uid));
993         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
994                 seq_printf(m, ",gid=%u",
995                            from_kgid_munged(&init_user_ns, sbinfo->gid));
996         if (sbinfo->mode != 0755)
997                 seq_printf(m, ",mode=%o", sbinfo->mode);
998         if (sbinfo->max_inodes != -1)
999                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1000
1001         hpage_size /= 1024;
1002         mod = 'K';
1003         if (hpage_size >= 1024) {
1004                 hpage_size /= 1024;
1005                 mod = 'M';
1006         }
1007         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1008         if (spool) {
1009                 if (spool->max_hpages != -1)
1010                         seq_printf(m, ",size=%llu",
1011                                    (unsigned long long)spool->max_hpages << hpage_shift);
1012                 if (spool->min_hpages != -1)
1013                         seq_printf(m, ",min_size=%llu",
1014                                    (unsigned long long)spool->min_hpages << hpage_shift);
1015         }
1016         return 0;
1017 }
1018
1019 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1020 {
1021         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1022         struct hstate *h = hstate_inode(d_inode(dentry));
1023
1024         buf->f_type = HUGETLBFS_MAGIC;
1025         buf->f_bsize = huge_page_size(h);
1026         if (sbinfo) {
1027                 spin_lock(&sbinfo->stat_lock);
1028                 /* If no limits set, just report 0 for max/free/used
1029                  * blocks, like simple_statfs() */
1030                 if (sbinfo->spool) {
1031                         long free_pages;
1032
1033                         spin_lock(&sbinfo->spool->lock);
1034                         buf->f_blocks = sbinfo->spool->max_hpages;
1035                         free_pages = sbinfo->spool->max_hpages
1036                                 - sbinfo->spool->used_hpages;
1037                         buf->f_bavail = buf->f_bfree = free_pages;
1038                         spin_unlock(&sbinfo->spool->lock);
1039                         buf->f_files = sbinfo->max_inodes;
1040                         buf->f_ffree = sbinfo->free_inodes;
1041                 }
1042                 spin_unlock(&sbinfo->stat_lock);
1043         }
1044         buf->f_namelen = NAME_MAX;
1045         return 0;
1046 }
1047
1048 static void hugetlbfs_put_super(struct super_block *sb)
1049 {
1050         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1051
1052         if (sbi) {
1053                 sb->s_fs_info = NULL;
1054
1055                 if (sbi->spool)
1056                         hugepage_put_subpool(sbi->spool);
1057
1058                 kfree(sbi);
1059         }
1060 }
1061
1062 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1063 {
1064         if (sbinfo->free_inodes >= 0) {
1065                 spin_lock(&sbinfo->stat_lock);
1066                 if (unlikely(!sbinfo->free_inodes)) {
1067                         spin_unlock(&sbinfo->stat_lock);
1068                         return 0;
1069                 }
1070                 sbinfo->free_inodes--;
1071                 spin_unlock(&sbinfo->stat_lock);
1072         }
1073
1074         return 1;
1075 }
1076
1077 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1078 {
1079         if (sbinfo->free_inodes >= 0) {
1080                 spin_lock(&sbinfo->stat_lock);
1081                 sbinfo->free_inodes++;
1082                 spin_unlock(&sbinfo->stat_lock);
1083         }
1084 }
1085
1086
1087 static struct kmem_cache *hugetlbfs_inode_cachep;
1088
1089 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1090 {
1091         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1092         struct hugetlbfs_inode_info *p;
1093
1094         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1095                 return NULL;
1096         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1097         if (unlikely(!p)) {
1098                 hugetlbfs_inc_free_inodes(sbinfo);
1099                 return NULL;
1100         }
1101
1102         /*
1103          * Any time after allocation, hugetlbfs_destroy_inode can be called
1104          * for the inode.  mpol_free_shared_policy is unconditionally called
1105          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1106          * in case of a quick call to destroy.
1107          *
1108          * Note that the policy is initialized even if we are creating a
1109          * private inode.  This simplifies hugetlbfs_destroy_inode.
1110          */
1111         mpol_shared_policy_init(&p->policy, NULL);
1112
1113         return &p->vfs_inode;
1114 }
1115
1116 static void hugetlbfs_free_inode(struct inode *inode)
1117 {
1118         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1119 }
1120
1121 static void hugetlbfs_destroy_inode(struct inode *inode)
1122 {
1123         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1124         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1125 }
1126
1127 static const struct address_space_operations hugetlbfs_aops = {
1128         .write_begin    = hugetlbfs_write_begin,
1129         .write_end      = hugetlbfs_write_end,
1130         .set_page_dirty = hugetlbfs_set_page_dirty,
1131         .migratepage    = hugetlbfs_migrate_page,
1132         .error_remove_page      = hugetlbfs_error_remove_page,
1133 };
1134
1135
1136 static void init_once(void *foo)
1137 {
1138         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1139
1140         inode_init_once(&ei->vfs_inode);
1141 }
1142
1143 const struct file_operations hugetlbfs_file_operations = {
1144         .read_iter              = hugetlbfs_read_iter,
1145         .mmap                   = hugetlbfs_file_mmap,
1146         .fsync                  = noop_fsync,
1147         .get_unmapped_area      = hugetlb_get_unmapped_area,
1148         .llseek                 = default_llseek,
1149         .fallocate              = hugetlbfs_fallocate,
1150 };
1151
1152 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1153         .create         = hugetlbfs_create,
1154         .lookup         = simple_lookup,
1155         .link           = simple_link,
1156         .unlink         = simple_unlink,
1157         .symlink        = hugetlbfs_symlink,
1158         .mkdir          = hugetlbfs_mkdir,
1159         .rmdir          = simple_rmdir,
1160         .mknod          = hugetlbfs_mknod,
1161         .rename         = simple_rename,
1162         .setattr        = hugetlbfs_setattr,
1163 };
1164
1165 static const struct inode_operations hugetlbfs_inode_operations = {
1166         .setattr        = hugetlbfs_setattr,
1167 };
1168
1169 static const struct super_operations hugetlbfs_ops = {
1170         .alloc_inode    = hugetlbfs_alloc_inode,
1171         .free_inode     = hugetlbfs_free_inode,
1172         .destroy_inode  = hugetlbfs_destroy_inode,
1173         .evict_inode    = hugetlbfs_evict_inode,
1174         .statfs         = hugetlbfs_statfs,
1175         .put_super      = hugetlbfs_put_super,
1176         .show_options   = hugetlbfs_show_options,
1177 };
1178
1179 /*
1180  * Convert size option passed from command line to number of huge pages
1181  * in the pool specified by hstate.  Size option could be in bytes
1182  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1183  */
1184 static long
1185 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1186                          enum hugetlbfs_size_type val_type)
1187 {
1188         if (val_type == NO_SIZE)
1189                 return -1;
1190
1191         if (val_type == SIZE_PERCENT) {
1192                 size_opt <<= huge_page_shift(h);
1193                 size_opt *= h->max_huge_pages;
1194                 do_div(size_opt, 100);
1195         }
1196
1197         size_opt >>= huge_page_shift(h);
1198         return size_opt;
1199 }
1200
1201 /*
1202  * Parse one mount parameter.
1203  */
1204 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1205 {
1206         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1207         struct fs_parse_result result;
1208         char *rest;
1209         unsigned long ps;
1210         int opt;
1211
1212         opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1213         if (opt < 0)
1214                 return opt;
1215
1216         switch (opt) {
1217         case Opt_uid:
1218                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1219                 if (!uid_valid(ctx->uid))
1220                         goto bad_val;
1221                 return 0;
1222
1223         case Opt_gid:
1224                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1225                 if (!gid_valid(ctx->gid))
1226                         goto bad_val;
1227                 return 0;
1228
1229         case Opt_mode:
1230                 ctx->mode = result.uint_32 & 01777U;
1231                 return 0;
1232
1233         case Opt_size:
1234                 /* memparse() will accept a K/M/G without a digit */
1235                 if (!param->string || !isdigit(param->string[0]))
1236                         goto bad_val;
1237                 ctx->max_size_opt = memparse(param->string, &rest);
1238                 ctx->max_val_type = SIZE_STD;
1239                 if (*rest == '%')
1240                         ctx->max_val_type = SIZE_PERCENT;
1241                 return 0;
1242
1243         case Opt_nr_inodes:
1244                 /* memparse() will accept a K/M/G without a digit */
1245                 if (!param->string || !isdigit(param->string[0]))
1246                         goto bad_val;
1247                 ctx->nr_inodes = memparse(param->string, &rest);
1248                 return 0;
1249
1250         case Opt_pagesize:
1251                 ps = memparse(param->string, &rest);
1252                 ctx->hstate = size_to_hstate(ps);
1253                 if (!ctx->hstate) {
1254                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1255                         return -EINVAL;
1256                 }
1257                 return 0;
1258
1259         case Opt_min_size:
1260                 /* memparse() will accept a K/M/G without a digit */
1261                 if (!param->string || !isdigit(param->string[0]))
1262                         goto bad_val;
1263                 ctx->min_size_opt = memparse(param->string, &rest);
1264                 ctx->min_val_type = SIZE_STD;
1265                 if (*rest == '%')
1266                         ctx->min_val_type = SIZE_PERCENT;
1267                 return 0;
1268
1269         default:
1270                 return -EINVAL;
1271         }
1272
1273 bad_val:
1274         return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1275                       param->string, param->key);
1276 }
1277
1278 /*
1279  * Validate the parsed options.
1280  */
1281 static int hugetlbfs_validate(struct fs_context *fc)
1282 {
1283         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1284
1285         /*
1286          * Use huge page pool size (in hstate) to convert the size
1287          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1288          */
1289         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1290                                                    ctx->max_size_opt,
1291                                                    ctx->max_val_type);
1292         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1293                                                    ctx->min_size_opt,
1294                                                    ctx->min_val_type);
1295
1296         /*
1297          * If max_size was specified, then min_size must be smaller
1298          */
1299         if (ctx->max_val_type > NO_SIZE &&
1300             ctx->min_hpages > ctx->max_hpages) {
1301                 pr_err("Minimum size can not be greater than maximum size\n");
1302                 return -EINVAL;
1303         }
1304
1305         return 0;
1306 }
1307
1308 static int
1309 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1310 {
1311         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1312         struct hugetlbfs_sb_info *sbinfo;
1313
1314         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1315         if (!sbinfo)
1316                 return -ENOMEM;
1317         sb->s_fs_info = sbinfo;
1318         spin_lock_init(&sbinfo->stat_lock);
1319         sbinfo->hstate          = ctx->hstate;
1320         sbinfo->max_inodes      = ctx->nr_inodes;
1321         sbinfo->free_inodes     = ctx->nr_inodes;
1322         sbinfo->spool           = NULL;
1323         sbinfo->uid             = ctx->uid;
1324         sbinfo->gid             = ctx->gid;
1325         sbinfo->mode            = ctx->mode;
1326
1327         /*
1328          * Allocate and initialize subpool if maximum or minimum size is
1329          * specified.  Any needed reservations (for minimim size) are taken
1330          * taken when the subpool is created.
1331          */
1332         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1333                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1334                                                      ctx->max_hpages,
1335                                                      ctx->min_hpages);
1336                 if (!sbinfo->spool)
1337                         goto out_free;
1338         }
1339         sb->s_maxbytes = MAX_LFS_FILESIZE;
1340         sb->s_blocksize = huge_page_size(ctx->hstate);
1341         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1342         sb->s_magic = HUGETLBFS_MAGIC;
1343         sb->s_op = &hugetlbfs_ops;
1344         sb->s_time_gran = 1;
1345
1346         /*
1347          * Due to the special and limited functionality of hugetlbfs, it does
1348          * not work well as a stacking filesystem.
1349          */
1350         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1351         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1352         if (!sb->s_root)
1353                 goto out_free;
1354         return 0;
1355 out_free:
1356         kfree(sbinfo->spool);
1357         kfree(sbinfo);
1358         return -ENOMEM;
1359 }
1360
1361 static int hugetlbfs_get_tree(struct fs_context *fc)
1362 {
1363         int err = hugetlbfs_validate(fc);
1364         if (err)
1365                 return err;
1366         return get_tree_nodev(fc, hugetlbfs_fill_super);
1367 }
1368
1369 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1370 {
1371         kfree(fc->fs_private);
1372 }
1373
1374 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1375         .free           = hugetlbfs_fs_context_free,
1376         .parse_param    = hugetlbfs_parse_param,
1377         .get_tree       = hugetlbfs_get_tree,
1378 };
1379
1380 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1381 {
1382         struct hugetlbfs_fs_context *ctx;
1383
1384         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1385         if (!ctx)
1386                 return -ENOMEM;
1387
1388         ctx->max_hpages = -1; /* No limit on size by default */
1389         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1390         ctx->uid        = current_fsuid();
1391         ctx->gid        = current_fsgid();
1392         ctx->mode       = 0755;
1393         ctx->hstate     = &default_hstate;
1394         ctx->min_hpages = -1; /* No default minimum size */
1395         ctx->max_val_type = NO_SIZE;
1396         ctx->min_val_type = NO_SIZE;
1397         fc->fs_private = ctx;
1398         fc->ops = &hugetlbfs_fs_context_ops;
1399         return 0;
1400 }
1401
1402 static struct file_system_type hugetlbfs_fs_type = {
1403         .name                   = "hugetlbfs",
1404         .init_fs_context        = hugetlbfs_init_fs_context,
1405         .parameters             = &hugetlb_fs_parameters,
1406         .kill_sb                = kill_litter_super,
1407 };
1408
1409 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1410
1411 static int can_do_hugetlb_shm(void)
1412 {
1413         kgid_t shm_group;
1414         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1415         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1416 }
1417
1418 static int get_hstate_idx(int page_size_log)
1419 {
1420         struct hstate *h = hstate_sizelog(page_size_log);
1421
1422         if (!h)
1423                 return -1;
1424         return h - hstates;
1425 }
1426
1427 /*
1428  * Note that size should be aligned to proper hugepage size in caller side,
1429  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1430  */
1431 struct file *hugetlb_file_setup(const char *name, size_t size,
1432                                 vm_flags_t acctflag, struct user_struct **user,
1433                                 int creat_flags, int page_size_log)
1434 {
1435         struct inode *inode;
1436         struct vfsmount *mnt;
1437         int hstate_idx;
1438         struct file *file;
1439
1440         hstate_idx = get_hstate_idx(page_size_log);
1441         if (hstate_idx < 0)
1442                 return ERR_PTR(-ENODEV);
1443
1444         *user = NULL;
1445         mnt = hugetlbfs_vfsmount[hstate_idx];
1446         if (!mnt)
1447                 return ERR_PTR(-ENOENT);
1448
1449         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1450                 *user = current_user();
1451                 if (user_shm_lock(size, *user)) {
1452                         task_lock(current);
1453                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1454                                 current->comm, current->pid);
1455                         task_unlock(current);
1456                 } else {
1457                         *user = NULL;
1458                         return ERR_PTR(-EPERM);
1459                 }
1460         }
1461
1462         file = ERR_PTR(-ENOSPC);
1463         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1464         if (!inode)
1465                 goto out;
1466         if (creat_flags == HUGETLB_SHMFS_INODE)
1467                 inode->i_flags |= S_PRIVATE;
1468
1469         inode->i_size = size;
1470         clear_nlink(inode);
1471
1472         if (hugetlb_reserve_pages(inode, 0,
1473                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1474                         acctflag))
1475                 file = ERR_PTR(-ENOMEM);
1476         else
1477                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1478                                         &hugetlbfs_file_operations);
1479         if (!IS_ERR(file))
1480                 return file;
1481
1482         iput(inode);
1483 out:
1484         if (*user) {
1485                 user_shm_unlock(size, *user);
1486                 *user = NULL;
1487         }
1488         return file;
1489 }
1490
1491 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1492 {
1493         struct fs_context *fc;
1494         struct vfsmount *mnt;
1495
1496         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1497         if (IS_ERR(fc)) {
1498                 mnt = ERR_CAST(fc);
1499         } else {
1500                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1501                 ctx->hstate = h;
1502                 mnt = fc_mount(fc);
1503                 put_fs_context(fc);
1504         }
1505         if (IS_ERR(mnt))
1506                 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1507                        1U << (h->order + PAGE_SHIFT - 10));
1508         return mnt;
1509 }
1510
1511 static int __init init_hugetlbfs_fs(void)
1512 {
1513         struct vfsmount *mnt;
1514         struct hstate *h;
1515         int error;
1516         int i;
1517
1518         if (!hugepages_supported()) {
1519                 pr_info("disabling because there are no supported hugepage sizes\n");
1520                 return -ENOTSUPP;
1521         }
1522
1523         error = -ENOMEM;
1524         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1525                                         sizeof(struct hugetlbfs_inode_info),
1526                                         0, SLAB_ACCOUNT, init_once);
1527         if (hugetlbfs_inode_cachep == NULL)
1528                 goto out;
1529
1530         error = register_filesystem(&hugetlbfs_fs_type);
1531         if (error)
1532                 goto out_free;
1533
1534         /* default hstate mount is required */
1535         mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1536         if (IS_ERR(mnt)) {
1537                 error = PTR_ERR(mnt);
1538                 goto out_unreg;
1539         }
1540         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1541
1542         /* other hstates are optional */
1543         i = 0;
1544         for_each_hstate(h) {
1545                 if (i == default_hstate_idx) {
1546                         i++;
1547                         continue;
1548                 }
1549
1550                 mnt = mount_one_hugetlbfs(h);
1551                 if (IS_ERR(mnt))
1552                         hugetlbfs_vfsmount[i] = NULL;
1553                 else
1554                         hugetlbfs_vfsmount[i] = mnt;
1555                 i++;
1556         }
1557
1558         return 0;
1559
1560  out_unreg:
1561         (void)unregister_filesystem(&hugetlbfs_fs_type);
1562  out_free:
1563         kmem_cache_destroy(hugetlbfs_inode_cachep);
1564  out:
1565         return error;
1566 }
1567 fs_initcall(init_hugetlbfs_fs)