GNU Linux-libre 5.15.137-gnu
[releases.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32oct("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135         loff_t len, vma_len;
136         int ret;
137         struct hstate *h = hstate_file(file);
138
139         /*
140          * vma address alignment (but not the pgoff alignment) has
141          * already been checked by prepare_hugepage_range.  If you add
142          * any error returns here, do so after setting VM_HUGETLB, so
143          * is_vm_hugetlb_page tests below unmap_region go the right
144          * way when do_mmap unwinds (may be important on powerpc
145          * and ia64).
146          */
147         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148         vma->vm_ops = &hugetlb_vm_ops;
149
150         ret = seal_check_future_write(info->seals, vma);
151         if (ret)
152                 return ret;
153
154         /*
155          * page based offset in vm_pgoff could be sufficiently large to
156          * overflow a loff_t when converted to byte offset.  This can
157          * only happen on architectures where sizeof(loff_t) ==
158          * sizeof(unsigned long).  So, only check in those instances.
159          */
160         if (sizeof(unsigned long) == sizeof(loff_t)) {
161                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162                         return -EINVAL;
163         }
164
165         /* must be huge page aligned */
166         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167                 return -EINVAL;
168
169         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171         /* check for overflow */
172         if (len < vma_len)
173                 return -EINVAL;
174
175         inode_lock(inode);
176         file_accessed(file);
177
178         ret = -ENOMEM;
179         if (!hugetlb_reserve_pages(inode,
180                                 vma->vm_pgoff >> huge_page_order(h),
181                                 len >> huge_page_shift(h), vma,
182                                 vma->vm_flags))
183                 goto out;
184
185         ret = 0;
186         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187                 i_size_write(inode, len);
188 out:
189         inode_unlock(inode);
190
191         return ret;
192 }
193
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201                 unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203         struct hstate *h = hstate_file(file);
204         struct vm_unmapped_area_info info;
205
206         info.flags = 0;
207         info.length = len;
208         info.low_limit = current->mm->mmap_base;
209         info.high_limit = arch_get_mmap_end(addr);
210         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211         info.align_offset = 0;
212         return vm_unmapped_area(&info);
213 }
214
215 static unsigned long
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217                 unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219         struct hstate *h = hstate_file(file);
220         struct vm_unmapped_area_info info;
221
222         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223         info.length = len;
224         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225         info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
226         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227         info.align_offset = 0;
228         addr = vm_unmapped_area(&info);
229
230         /*
231          * A failed mmap() very likely causes application failure,
232          * so fall back to the bottom-up function here. This scenario
233          * can happen with large stack limits and large mmap()
234          * allocations.
235          */
236         if (unlikely(offset_in_page(addr))) {
237                 VM_BUG_ON(addr != -ENOMEM);
238                 info.flags = 0;
239                 info.low_limit = current->mm->mmap_base;
240                 info.high_limit = arch_get_mmap_end(addr);
241                 addr = vm_unmapped_area(&info);
242         }
243
244         return addr;
245 }
246
247 static unsigned long
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249                 unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251         struct mm_struct *mm = current->mm;
252         struct vm_area_struct *vma;
253         struct hstate *h = hstate_file(file);
254         const unsigned long mmap_end = arch_get_mmap_end(addr);
255
256         if (len & ~huge_page_mask(h))
257                 return -EINVAL;
258         if (len > TASK_SIZE)
259                 return -ENOMEM;
260
261         if (flags & MAP_FIXED) {
262                 if (prepare_hugepage_range(file, addr, len))
263                         return -EINVAL;
264                 return addr;
265         }
266
267         if (addr) {
268                 addr = ALIGN(addr, huge_page_size(h));
269                 vma = find_vma(mm, addr);
270                 if (mmap_end - len >= addr &&
271                     (!vma || addr + len <= vm_start_gap(vma)))
272                         return addr;
273         }
274
275         /*
276          * Use mm->get_unmapped_area value as a hint to use topdown routine.
277          * If architectures have special needs, they should define their own
278          * version of hugetlb_get_unmapped_area.
279          */
280         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
282                                 pgoff, flags);
283         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284                         pgoff, flags);
285 }
286 #endif
287
288 static size_t
289 hugetlbfs_read_actor(struct page *page, unsigned long offset,
290                         struct iov_iter *to, unsigned long size)
291 {
292         size_t copied = 0;
293         int i, chunksize;
294
295         /* Find which 4k chunk and offset with in that chunk */
296         i = offset >> PAGE_SHIFT;
297         offset = offset & ~PAGE_MASK;
298
299         while (size) {
300                 size_t n;
301                 chunksize = PAGE_SIZE;
302                 if (offset)
303                         chunksize -= offset;
304                 if (chunksize > size)
305                         chunksize = size;
306                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
307                 copied += n;
308                 if (n != chunksize)
309                         return copied;
310                 offset = 0;
311                 size -= chunksize;
312                 i++;
313         }
314         return copied;
315 }
316
317 /*
318  * Support for read() - Find the page attached to f_mapping and copy out the
319  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
320  * since it has PAGE_SIZE assumptions.
321  */
322 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
323 {
324         struct file *file = iocb->ki_filp;
325         struct hstate *h = hstate_file(file);
326         struct address_space *mapping = file->f_mapping;
327         struct inode *inode = mapping->host;
328         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
329         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
330         unsigned long end_index;
331         loff_t isize;
332         ssize_t retval = 0;
333
334         while (iov_iter_count(to)) {
335                 struct page *page;
336                 size_t nr, copied;
337
338                 /* nr is the maximum number of bytes to copy from this page */
339                 nr = huge_page_size(h);
340                 isize = i_size_read(inode);
341                 if (!isize)
342                         break;
343                 end_index = (isize - 1) >> huge_page_shift(h);
344                 if (index > end_index)
345                         break;
346                 if (index == end_index) {
347                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
348                         if (nr <= offset)
349                                 break;
350                 }
351                 nr = nr - offset;
352
353                 /* Find the page */
354                 page = find_lock_page(mapping, index);
355                 if (unlikely(page == NULL)) {
356                         /*
357                          * We have a HOLE, zero out the user-buffer for the
358                          * length of the hole or request.
359                          */
360                         copied = iov_iter_zero(nr, to);
361                 } else {
362                         unlock_page(page);
363
364                         if (PageHWPoison(page)) {
365                                 put_page(page);
366                                 retval = -EIO;
367                                 break;
368                         }
369
370                         /*
371                          * We have the page, copy it to user space buffer.
372                          */
373                         copied = hugetlbfs_read_actor(page, offset, to, nr);
374                         put_page(page);
375                 }
376                 offset += copied;
377                 retval += copied;
378                 if (copied != nr && iov_iter_count(to)) {
379                         if (!retval)
380                                 retval = -EFAULT;
381                         break;
382                 }
383                 index += offset >> huge_page_shift(h);
384                 offset &= ~huge_page_mask(h);
385         }
386         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
387         return retval;
388 }
389
390 static int hugetlbfs_write_begin(struct file *file,
391                         struct address_space *mapping,
392                         loff_t pos, unsigned len, unsigned flags,
393                         struct page **pagep, void **fsdata)
394 {
395         return -EINVAL;
396 }
397
398 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
399                         loff_t pos, unsigned len, unsigned copied,
400                         struct page *page, void *fsdata)
401 {
402         BUG();
403         return -EINVAL;
404 }
405
406 static void remove_huge_page(struct page *page)
407 {
408         ClearPageDirty(page);
409         ClearPageUptodate(page);
410         delete_from_page_cache(page);
411 }
412
413 static void
414 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
415 {
416         struct vm_area_struct *vma;
417
418         /*
419          * end == 0 indicates that the entire range after start should be
420          * unmapped.  Note, end is exclusive, whereas the interval tree takes
421          * an inclusive "last".
422          */
423         vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
424                 unsigned long v_offset;
425                 unsigned long v_end;
426
427                 /*
428                  * Can the expression below overflow on 32-bit arches?
429                  * No, because the interval tree returns us only those vmas
430                  * which overlap the truncated area starting at pgoff,
431                  * and no vma on a 32-bit arch can span beyond the 4GB.
432                  */
433                 if (vma->vm_pgoff < start)
434                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
435                 else
436                         v_offset = 0;
437
438                 if (!end)
439                         v_end = vma->vm_end;
440                 else {
441                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
442                                                         + vma->vm_start;
443                         if (v_end > vma->vm_end)
444                                 v_end = vma->vm_end;
445                 }
446
447                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
448                                                                         NULL);
449         }
450 }
451
452 /*
453  * remove_inode_hugepages handles two distinct cases: truncation and hole
454  * punch.  There are subtle differences in operation for each case.
455  *
456  * truncation is indicated by end of range being LLONG_MAX
457  *      In this case, we first scan the range and release found pages.
458  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
459  *      maps and global counts.  Page faults can not race with truncation
460  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
461  *      page faults in the truncated range by checking i_size.  i_size is
462  *      modified while holding i_mmap_rwsem.
463  * hole punch is indicated if end is not LLONG_MAX
464  *      In the hole punch case we scan the range and release found pages.
465  *      Only when releasing a page is the associated region/reserve map
466  *      deleted.  The region/reserve map for ranges without associated
467  *      pages are not modified.  Page faults can race with hole punch.
468  *      This is indicated if we find a mapped page.
469  * Note: If the passed end of range value is beyond the end of file, but
470  * not LLONG_MAX this routine still performs a hole punch operation.
471  */
472 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
473                                    loff_t lend)
474 {
475         struct hstate *h = hstate_inode(inode);
476         struct address_space *mapping = &inode->i_data;
477         const pgoff_t start = lstart >> huge_page_shift(h);
478         const pgoff_t end = lend >> huge_page_shift(h);
479         struct pagevec pvec;
480         pgoff_t next, index;
481         int i, freed = 0;
482         bool truncate_op = (lend == LLONG_MAX);
483
484         pagevec_init(&pvec);
485         next = start;
486         while (next < end) {
487                 /*
488                  * When no more pages are found, we are done.
489                  */
490                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
491                         break;
492
493                 for (i = 0; i < pagevec_count(&pvec); ++i) {
494                         struct page *page = pvec.pages[i];
495                         u32 hash = 0;
496
497                         index = page->index;
498                         if (!truncate_op) {
499                                 /*
500                                  * Only need to hold the fault mutex in the
501                                  * hole punch case.  This prevents races with
502                                  * page faults.  Races are not possible in the
503                                  * case of truncation.
504                                  */
505                                 hash = hugetlb_fault_mutex_hash(mapping, index);
506                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
507                         }
508
509                         /*
510                          * If page is mapped, it was faulted in after being
511                          * unmapped in caller.  Unmap (again) now after taking
512                          * the fault mutex.  The mutex will prevent faults
513                          * until we finish removing the page.
514                          *
515                          * This race can only happen in the hole punch case.
516                          * Getting here in a truncate operation is a bug.
517                          */
518                         if (unlikely(page_mapped(page))) {
519                                 BUG_ON(truncate_op);
520
521                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
522                                 i_mmap_lock_write(mapping);
523                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
524                                 hugetlb_vmdelete_list(&mapping->i_mmap,
525                                         index * pages_per_huge_page(h),
526                                         (index + 1) * pages_per_huge_page(h));
527                                 i_mmap_unlock_write(mapping);
528                         }
529
530                         lock_page(page);
531                         /*
532                          * We must free the huge page and remove from page
533                          * cache (remove_huge_page) BEFORE removing the
534                          * region/reserve map (hugetlb_unreserve_pages).  In
535                          * rare out of memory conditions, removal of the
536                          * region/reserve map could fail. Correspondingly,
537                          * the subpool and global reserve usage count can need
538                          * to be adjusted.
539                          */
540                         VM_BUG_ON(HPageRestoreReserve(page));
541                         remove_huge_page(page);
542                         freed++;
543                         if (!truncate_op) {
544                                 if (unlikely(hugetlb_unreserve_pages(inode,
545                                                         index, index + 1, 1)))
546                                         hugetlb_fix_reserve_counts(inode);
547                         }
548
549                         unlock_page(page);
550                         if (!truncate_op)
551                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
552                 }
553                 huge_pagevec_release(&pvec);
554                 cond_resched();
555         }
556
557         if (truncate_op)
558                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
559 }
560
561 static void hugetlbfs_evict_inode(struct inode *inode)
562 {
563         struct resv_map *resv_map;
564
565         remove_inode_hugepages(inode, 0, LLONG_MAX);
566
567         /*
568          * Get the resv_map from the address space embedded in the inode.
569          * This is the address space which points to any resv_map allocated
570          * at inode creation time.  If this is a device special inode,
571          * i_mapping may not point to the original address space.
572          */
573         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
574         /* Only regular and link inodes have associated reserve maps */
575         if (resv_map)
576                 resv_map_release(&resv_map->refs);
577         clear_inode(inode);
578 }
579
580 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
581 {
582         pgoff_t pgoff;
583         struct address_space *mapping = inode->i_mapping;
584         struct hstate *h = hstate_inode(inode);
585
586         BUG_ON(offset & ~huge_page_mask(h));
587         pgoff = offset >> PAGE_SHIFT;
588
589         i_mmap_lock_write(mapping);
590         i_size_write(inode, offset);
591         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
592                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
593         i_mmap_unlock_write(mapping);
594         remove_inode_hugepages(inode, offset, LLONG_MAX);
595 }
596
597 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
598 {
599         struct hstate *h = hstate_inode(inode);
600         loff_t hpage_size = huge_page_size(h);
601         loff_t hole_start, hole_end;
602
603         /*
604          * For hole punch round up the beginning offset of the hole and
605          * round down the end.
606          */
607         hole_start = round_up(offset, hpage_size);
608         hole_end = round_down(offset + len, hpage_size);
609
610         if (hole_end > hole_start) {
611                 struct address_space *mapping = inode->i_mapping;
612                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
613
614                 inode_lock(inode);
615
616                 /* protected by i_rwsem */
617                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
618                         inode_unlock(inode);
619                         return -EPERM;
620                 }
621
622                 i_mmap_lock_write(mapping);
623                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
624                         hugetlb_vmdelete_list(&mapping->i_mmap,
625                                                 hole_start >> PAGE_SHIFT,
626                                                 hole_end  >> PAGE_SHIFT);
627                 i_mmap_unlock_write(mapping);
628                 remove_inode_hugepages(inode, hole_start, hole_end);
629                 inode_unlock(inode);
630         }
631
632         return 0;
633 }
634
635 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
636                                 loff_t len)
637 {
638         struct inode *inode = file_inode(file);
639         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
640         struct address_space *mapping = inode->i_mapping;
641         struct hstate *h = hstate_inode(inode);
642         struct vm_area_struct pseudo_vma;
643         struct mm_struct *mm = current->mm;
644         loff_t hpage_size = huge_page_size(h);
645         unsigned long hpage_shift = huge_page_shift(h);
646         pgoff_t start, index, end;
647         int error;
648         u32 hash;
649
650         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
651                 return -EOPNOTSUPP;
652
653         if (mode & FALLOC_FL_PUNCH_HOLE)
654                 return hugetlbfs_punch_hole(inode, offset, len);
655
656         /*
657          * Default preallocate case.
658          * For this range, start is rounded down and end is rounded up
659          * as well as being converted to page offsets.
660          */
661         start = offset >> hpage_shift;
662         end = (offset + len + hpage_size - 1) >> hpage_shift;
663
664         inode_lock(inode);
665
666         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
667         error = inode_newsize_ok(inode, offset + len);
668         if (error)
669                 goto out;
670
671         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
672                 error = -EPERM;
673                 goto out;
674         }
675
676         /*
677          * Initialize a pseudo vma as this is required by the huge page
678          * allocation routines.  If NUMA is configured, use page index
679          * as input to create an allocation policy.
680          */
681         vma_init(&pseudo_vma, mm);
682         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
683         pseudo_vma.vm_file = file;
684
685         for (index = start; index < end; index++) {
686                 /*
687                  * This is supposed to be the vaddr where the page is being
688                  * faulted in, but we have no vaddr here.
689                  */
690                 struct page *page;
691                 unsigned long addr;
692
693                 cond_resched();
694
695                 /*
696                  * fallocate(2) manpage permits EINTR; we may have been
697                  * interrupted because we are using up too much memory.
698                  */
699                 if (signal_pending(current)) {
700                         error = -EINTR;
701                         break;
702                 }
703
704                 /* Set numa allocation policy based on index */
705                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
706
707                 /* addr is the offset within the file (zero based) */
708                 addr = index * hpage_size;
709
710                 /*
711                  * fault mutex taken here, protects against fault path
712                  * and hole punch.  inode_lock previously taken protects
713                  * against truncation.
714                  */
715                 hash = hugetlb_fault_mutex_hash(mapping, index);
716                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
717
718                 /* See if already present in mapping to avoid alloc/free */
719                 page = find_get_page(mapping, index);
720                 if (page) {
721                         put_page(page);
722                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
723                         hugetlb_drop_vma_policy(&pseudo_vma);
724                         continue;
725                 }
726
727                 /*
728                  * Allocate page without setting the avoid_reserve argument.
729                  * There certainly are no reserves associated with the
730                  * pseudo_vma.  However, there could be shared mappings with
731                  * reserves for the file at the inode level.  If we fallocate
732                  * pages in these areas, we need to consume the reserves
733                  * to keep reservation accounting consistent.
734                  */
735                 page = alloc_huge_page(&pseudo_vma, addr, 0);
736                 hugetlb_drop_vma_policy(&pseudo_vma);
737                 if (IS_ERR(page)) {
738                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
739                         error = PTR_ERR(page);
740                         goto out;
741                 }
742                 clear_huge_page(page, addr, pages_per_huge_page(h));
743                 __SetPageUptodate(page);
744                 error = huge_add_to_page_cache(page, mapping, index);
745                 if (unlikely(error)) {
746                         restore_reserve_on_error(h, &pseudo_vma, addr, page);
747                         put_page(page);
748                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
749                         goto out;
750                 }
751
752                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
753
754                 SetHPageMigratable(page);
755                 /*
756                  * unlock_page because locked by add_to_page_cache()
757                  * put_page() due to reference from alloc_huge_page()
758                  */
759                 unlock_page(page);
760                 put_page(page);
761         }
762
763         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
764                 i_size_write(inode, offset + len);
765         inode->i_ctime = current_time(inode);
766 out:
767         inode_unlock(inode);
768         return error;
769 }
770
771 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
772                              struct dentry *dentry, struct iattr *attr)
773 {
774         struct inode *inode = d_inode(dentry);
775         struct hstate *h = hstate_inode(inode);
776         int error;
777         unsigned int ia_valid = attr->ia_valid;
778         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
779
780         error = setattr_prepare(&init_user_ns, dentry, attr);
781         if (error)
782                 return error;
783
784         if (ia_valid & ATTR_SIZE) {
785                 loff_t oldsize = inode->i_size;
786                 loff_t newsize = attr->ia_size;
787
788                 if (newsize & ~huge_page_mask(h))
789                         return -EINVAL;
790                 /* protected by i_rwsem */
791                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
792                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
793                         return -EPERM;
794                 hugetlb_vmtruncate(inode, newsize);
795         }
796
797         setattr_copy(&init_user_ns, inode, attr);
798         mark_inode_dirty(inode);
799         return 0;
800 }
801
802 static struct inode *hugetlbfs_get_root(struct super_block *sb,
803                                         struct hugetlbfs_fs_context *ctx)
804 {
805         struct inode *inode;
806
807         inode = new_inode(sb);
808         if (inode) {
809                 inode->i_ino = get_next_ino();
810                 inode->i_mode = S_IFDIR | ctx->mode;
811                 inode->i_uid = ctx->uid;
812                 inode->i_gid = ctx->gid;
813                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
814                 inode->i_op = &hugetlbfs_dir_inode_operations;
815                 inode->i_fop = &simple_dir_operations;
816                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
817                 inc_nlink(inode);
818                 lockdep_annotate_inode_mutex_key(inode);
819         }
820         return inode;
821 }
822
823 /*
824  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
825  * be taken from reclaim -- unlike regular filesystems. This needs an
826  * annotation because huge_pmd_share() does an allocation under hugetlb's
827  * i_mmap_rwsem.
828  */
829 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
830
831 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
832                                         struct inode *dir,
833                                         umode_t mode, dev_t dev)
834 {
835         struct inode *inode;
836         struct resv_map *resv_map = NULL;
837
838         /*
839          * Reserve maps are only needed for inodes that can have associated
840          * page allocations.
841          */
842         if (S_ISREG(mode) || S_ISLNK(mode)) {
843                 resv_map = resv_map_alloc();
844                 if (!resv_map)
845                         return NULL;
846         }
847
848         inode = new_inode(sb);
849         if (inode) {
850                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
851
852                 inode->i_ino = get_next_ino();
853                 inode_init_owner(&init_user_ns, inode, dir, mode);
854                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
855                                 &hugetlbfs_i_mmap_rwsem_key);
856                 inode->i_mapping->a_ops = &hugetlbfs_aops;
857                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
858                 inode->i_mapping->private_data = resv_map;
859                 info->seals = F_SEAL_SEAL;
860                 switch (mode & S_IFMT) {
861                 default:
862                         init_special_inode(inode, mode, dev);
863                         break;
864                 case S_IFREG:
865                         inode->i_op = &hugetlbfs_inode_operations;
866                         inode->i_fop = &hugetlbfs_file_operations;
867                         break;
868                 case S_IFDIR:
869                         inode->i_op = &hugetlbfs_dir_inode_operations;
870                         inode->i_fop = &simple_dir_operations;
871
872                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
873                         inc_nlink(inode);
874                         break;
875                 case S_IFLNK:
876                         inode->i_op = &page_symlink_inode_operations;
877                         inode_nohighmem(inode);
878                         break;
879                 }
880                 lockdep_annotate_inode_mutex_key(inode);
881         } else {
882                 if (resv_map)
883                         kref_put(&resv_map->refs, resv_map_release);
884         }
885
886         return inode;
887 }
888
889 /*
890  * File creation. Allocate an inode, and we're done..
891  */
892 static int do_hugetlbfs_mknod(struct inode *dir,
893                         struct dentry *dentry,
894                         umode_t mode,
895                         dev_t dev,
896                         bool tmpfile)
897 {
898         struct inode *inode;
899         int error = -ENOSPC;
900
901         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
902         if (inode) {
903                 dir->i_ctime = dir->i_mtime = current_time(dir);
904                 if (tmpfile) {
905                         d_tmpfile(dentry, inode);
906                 } else {
907                         d_instantiate(dentry, inode);
908                         dget(dentry);/* Extra count - pin the dentry in core */
909                 }
910                 error = 0;
911         }
912         return error;
913 }
914
915 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
916                            struct dentry *dentry, umode_t mode, dev_t dev)
917 {
918         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
919 }
920
921 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
922                            struct dentry *dentry, umode_t mode)
923 {
924         int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
925                                      mode | S_IFDIR, 0);
926         if (!retval)
927                 inc_nlink(dir);
928         return retval;
929 }
930
931 static int hugetlbfs_create(struct user_namespace *mnt_userns,
932                             struct inode *dir, struct dentry *dentry,
933                             umode_t mode, bool excl)
934 {
935         return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
936 }
937
938 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
939                              struct inode *dir, struct dentry *dentry,
940                              umode_t mode)
941 {
942         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
943 }
944
945 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
946                              struct inode *dir, struct dentry *dentry,
947                              const char *symname)
948 {
949         struct inode *inode;
950         int error = -ENOSPC;
951
952         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
953         if (inode) {
954                 int l = strlen(symname)+1;
955                 error = page_symlink(inode, symname, l);
956                 if (!error) {
957                         d_instantiate(dentry, inode);
958                         dget(dentry);
959                 } else
960                         iput(inode);
961         }
962         dir->i_ctime = dir->i_mtime = current_time(dir);
963
964         return error;
965 }
966
967 static int hugetlbfs_migrate_page(struct address_space *mapping,
968                                 struct page *newpage, struct page *page,
969                                 enum migrate_mode mode)
970 {
971         int rc;
972
973         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
974         if (rc != MIGRATEPAGE_SUCCESS)
975                 return rc;
976
977         if (hugetlb_page_subpool(page)) {
978                 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
979                 hugetlb_set_page_subpool(page, NULL);
980         }
981
982         if (mode != MIGRATE_SYNC_NO_COPY)
983                 migrate_page_copy(newpage, page);
984         else
985                 migrate_page_states(newpage, page);
986
987         return MIGRATEPAGE_SUCCESS;
988 }
989
990 static int hugetlbfs_error_remove_page(struct address_space *mapping,
991                                 struct page *page)
992 {
993         return 0;
994 }
995
996 /*
997  * Display the mount options in /proc/mounts.
998  */
999 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1000 {
1001         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1002         struct hugepage_subpool *spool = sbinfo->spool;
1003         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1004         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1005         char mod;
1006
1007         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1008                 seq_printf(m, ",uid=%u",
1009                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1010         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1011                 seq_printf(m, ",gid=%u",
1012                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1013         if (sbinfo->mode != 0755)
1014                 seq_printf(m, ",mode=%o", sbinfo->mode);
1015         if (sbinfo->max_inodes != -1)
1016                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1017
1018         hpage_size /= 1024;
1019         mod = 'K';
1020         if (hpage_size >= 1024) {
1021                 hpage_size /= 1024;
1022                 mod = 'M';
1023         }
1024         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1025         if (spool) {
1026                 if (spool->max_hpages != -1)
1027                         seq_printf(m, ",size=%llu",
1028                                    (unsigned long long)spool->max_hpages << hpage_shift);
1029                 if (spool->min_hpages != -1)
1030                         seq_printf(m, ",min_size=%llu",
1031                                    (unsigned long long)spool->min_hpages << hpage_shift);
1032         }
1033         return 0;
1034 }
1035
1036 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1037 {
1038         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1039         struct hstate *h = hstate_inode(d_inode(dentry));
1040
1041         buf->f_type = HUGETLBFS_MAGIC;
1042         buf->f_bsize = huge_page_size(h);
1043         if (sbinfo) {
1044                 spin_lock(&sbinfo->stat_lock);
1045                 /* If no limits set, just report 0 for max/free/used
1046                  * blocks, like simple_statfs() */
1047                 if (sbinfo->spool) {
1048                         long free_pages;
1049
1050                         spin_lock_irq(&sbinfo->spool->lock);
1051                         buf->f_blocks = sbinfo->spool->max_hpages;
1052                         free_pages = sbinfo->spool->max_hpages
1053                                 - sbinfo->spool->used_hpages;
1054                         buf->f_bavail = buf->f_bfree = free_pages;
1055                         spin_unlock_irq(&sbinfo->spool->lock);
1056                         buf->f_files = sbinfo->max_inodes;
1057                         buf->f_ffree = sbinfo->free_inodes;
1058                 }
1059                 spin_unlock(&sbinfo->stat_lock);
1060         }
1061         buf->f_namelen = NAME_MAX;
1062         return 0;
1063 }
1064
1065 static void hugetlbfs_put_super(struct super_block *sb)
1066 {
1067         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1068
1069         if (sbi) {
1070                 sb->s_fs_info = NULL;
1071
1072                 if (sbi->spool)
1073                         hugepage_put_subpool(sbi->spool);
1074
1075                 kfree(sbi);
1076         }
1077 }
1078
1079 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1080 {
1081         if (sbinfo->free_inodes >= 0) {
1082                 spin_lock(&sbinfo->stat_lock);
1083                 if (unlikely(!sbinfo->free_inodes)) {
1084                         spin_unlock(&sbinfo->stat_lock);
1085                         return 0;
1086                 }
1087                 sbinfo->free_inodes--;
1088                 spin_unlock(&sbinfo->stat_lock);
1089         }
1090
1091         return 1;
1092 }
1093
1094 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1095 {
1096         if (sbinfo->free_inodes >= 0) {
1097                 spin_lock(&sbinfo->stat_lock);
1098                 sbinfo->free_inodes++;
1099                 spin_unlock(&sbinfo->stat_lock);
1100         }
1101 }
1102
1103
1104 static struct kmem_cache *hugetlbfs_inode_cachep;
1105
1106 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1107 {
1108         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1109         struct hugetlbfs_inode_info *p;
1110
1111         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1112                 return NULL;
1113         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1114         if (unlikely(!p)) {
1115                 hugetlbfs_inc_free_inodes(sbinfo);
1116                 return NULL;
1117         }
1118
1119         /*
1120          * Any time after allocation, hugetlbfs_destroy_inode can be called
1121          * for the inode.  mpol_free_shared_policy is unconditionally called
1122          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1123          * in case of a quick call to destroy.
1124          *
1125          * Note that the policy is initialized even if we are creating a
1126          * private inode.  This simplifies hugetlbfs_destroy_inode.
1127          */
1128         mpol_shared_policy_init(&p->policy, NULL);
1129
1130         return &p->vfs_inode;
1131 }
1132
1133 static void hugetlbfs_free_inode(struct inode *inode)
1134 {
1135         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1136 }
1137
1138 static void hugetlbfs_destroy_inode(struct inode *inode)
1139 {
1140         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1141         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1142 }
1143
1144 static const struct address_space_operations hugetlbfs_aops = {
1145         .write_begin    = hugetlbfs_write_begin,
1146         .write_end      = hugetlbfs_write_end,
1147         .set_page_dirty =  __set_page_dirty_no_writeback,
1148         .migratepage    = hugetlbfs_migrate_page,
1149         .error_remove_page      = hugetlbfs_error_remove_page,
1150 };
1151
1152
1153 static void init_once(void *foo)
1154 {
1155         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1156
1157         inode_init_once(&ei->vfs_inode);
1158 }
1159
1160 const struct file_operations hugetlbfs_file_operations = {
1161         .read_iter              = hugetlbfs_read_iter,
1162         .mmap                   = hugetlbfs_file_mmap,
1163         .fsync                  = noop_fsync,
1164         .get_unmapped_area      = hugetlb_get_unmapped_area,
1165         .llseek                 = default_llseek,
1166         .fallocate              = hugetlbfs_fallocate,
1167 };
1168
1169 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1170         .create         = hugetlbfs_create,
1171         .lookup         = simple_lookup,
1172         .link           = simple_link,
1173         .unlink         = simple_unlink,
1174         .symlink        = hugetlbfs_symlink,
1175         .mkdir          = hugetlbfs_mkdir,
1176         .rmdir          = simple_rmdir,
1177         .mknod          = hugetlbfs_mknod,
1178         .rename         = simple_rename,
1179         .setattr        = hugetlbfs_setattr,
1180         .tmpfile        = hugetlbfs_tmpfile,
1181 };
1182
1183 static const struct inode_operations hugetlbfs_inode_operations = {
1184         .setattr        = hugetlbfs_setattr,
1185 };
1186
1187 static const struct super_operations hugetlbfs_ops = {
1188         .alloc_inode    = hugetlbfs_alloc_inode,
1189         .free_inode     = hugetlbfs_free_inode,
1190         .destroy_inode  = hugetlbfs_destroy_inode,
1191         .evict_inode    = hugetlbfs_evict_inode,
1192         .statfs         = hugetlbfs_statfs,
1193         .put_super      = hugetlbfs_put_super,
1194         .show_options   = hugetlbfs_show_options,
1195 };
1196
1197 /*
1198  * Convert size option passed from command line to number of huge pages
1199  * in the pool specified by hstate.  Size option could be in bytes
1200  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1201  */
1202 static long
1203 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1204                          enum hugetlbfs_size_type val_type)
1205 {
1206         if (val_type == NO_SIZE)
1207                 return -1;
1208
1209         if (val_type == SIZE_PERCENT) {
1210                 size_opt <<= huge_page_shift(h);
1211                 size_opt *= h->max_huge_pages;
1212                 do_div(size_opt, 100);
1213         }
1214
1215         size_opt >>= huge_page_shift(h);
1216         return size_opt;
1217 }
1218
1219 /*
1220  * Parse one mount parameter.
1221  */
1222 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1223 {
1224         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1225         struct fs_parse_result result;
1226         char *rest;
1227         unsigned long ps;
1228         int opt;
1229
1230         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1231         if (opt < 0)
1232                 return opt;
1233
1234         switch (opt) {
1235         case Opt_uid:
1236                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1237                 if (!uid_valid(ctx->uid))
1238                         goto bad_val;
1239                 return 0;
1240
1241         case Opt_gid:
1242                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1243                 if (!gid_valid(ctx->gid))
1244                         goto bad_val;
1245                 return 0;
1246
1247         case Opt_mode:
1248                 ctx->mode = result.uint_32 & 01777U;
1249                 return 0;
1250
1251         case Opt_size:
1252                 /* memparse() will accept a K/M/G without a digit */
1253                 if (!param->string || !isdigit(param->string[0]))
1254                         goto bad_val;
1255                 ctx->max_size_opt = memparse(param->string, &rest);
1256                 ctx->max_val_type = SIZE_STD;
1257                 if (*rest == '%')
1258                         ctx->max_val_type = SIZE_PERCENT;
1259                 return 0;
1260
1261         case Opt_nr_inodes:
1262                 /* memparse() will accept a K/M/G without a digit */
1263                 if (!param->string || !isdigit(param->string[0]))
1264                         goto bad_val;
1265                 ctx->nr_inodes = memparse(param->string, &rest);
1266                 return 0;
1267
1268         case Opt_pagesize:
1269                 ps = memparse(param->string, &rest);
1270                 ctx->hstate = size_to_hstate(ps);
1271                 if (!ctx->hstate) {
1272                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1273                         return -EINVAL;
1274                 }
1275                 return 0;
1276
1277         case Opt_min_size:
1278                 /* memparse() will accept a K/M/G without a digit */
1279                 if (!param->string || !isdigit(param->string[0]))
1280                         goto bad_val;
1281                 ctx->min_size_opt = memparse(param->string, &rest);
1282                 ctx->min_val_type = SIZE_STD;
1283                 if (*rest == '%')
1284                         ctx->min_val_type = SIZE_PERCENT;
1285                 return 0;
1286
1287         default:
1288                 return -EINVAL;
1289         }
1290
1291 bad_val:
1292         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1293                       param->string, param->key);
1294 }
1295
1296 /*
1297  * Validate the parsed options.
1298  */
1299 static int hugetlbfs_validate(struct fs_context *fc)
1300 {
1301         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1302
1303         /*
1304          * Use huge page pool size (in hstate) to convert the size
1305          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1306          */
1307         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1308                                                    ctx->max_size_opt,
1309                                                    ctx->max_val_type);
1310         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1311                                                    ctx->min_size_opt,
1312                                                    ctx->min_val_type);
1313
1314         /*
1315          * If max_size was specified, then min_size must be smaller
1316          */
1317         if (ctx->max_val_type > NO_SIZE &&
1318             ctx->min_hpages > ctx->max_hpages) {
1319                 pr_err("Minimum size can not be greater than maximum size\n");
1320                 return -EINVAL;
1321         }
1322
1323         return 0;
1324 }
1325
1326 static int
1327 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1328 {
1329         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1330         struct hugetlbfs_sb_info *sbinfo;
1331
1332         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1333         if (!sbinfo)
1334                 return -ENOMEM;
1335         sb->s_fs_info = sbinfo;
1336         spin_lock_init(&sbinfo->stat_lock);
1337         sbinfo->hstate          = ctx->hstate;
1338         sbinfo->max_inodes      = ctx->nr_inodes;
1339         sbinfo->free_inodes     = ctx->nr_inodes;
1340         sbinfo->spool           = NULL;
1341         sbinfo->uid             = ctx->uid;
1342         sbinfo->gid             = ctx->gid;
1343         sbinfo->mode            = ctx->mode;
1344
1345         /*
1346          * Allocate and initialize subpool if maximum or minimum size is
1347          * specified.  Any needed reservations (for minimum size) are taken
1348          * taken when the subpool is created.
1349          */
1350         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1351                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1352                                                      ctx->max_hpages,
1353                                                      ctx->min_hpages);
1354                 if (!sbinfo->spool)
1355                         goto out_free;
1356         }
1357         sb->s_maxbytes = MAX_LFS_FILESIZE;
1358         sb->s_blocksize = huge_page_size(ctx->hstate);
1359         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1360         sb->s_magic = HUGETLBFS_MAGIC;
1361         sb->s_op = &hugetlbfs_ops;
1362         sb->s_time_gran = 1;
1363
1364         /*
1365          * Due to the special and limited functionality of hugetlbfs, it does
1366          * not work well as a stacking filesystem.
1367          */
1368         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1369         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1370         if (!sb->s_root)
1371                 goto out_free;
1372         return 0;
1373 out_free:
1374         kfree(sbinfo->spool);
1375         kfree(sbinfo);
1376         return -ENOMEM;
1377 }
1378
1379 static int hugetlbfs_get_tree(struct fs_context *fc)
1380 {
1381         int err = hugetlbfs_validate(fc);
1382         if (err)
1383                 return err;
1384         return get_tree_nodev(fc, hugetlbfs_fill_super);
1385 }
1386
1387 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1388 {
1389         kfree(fc->fs_private);
1390 }
1391
1392 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1393         .free           = hugetlbfs_fs_context_free,
1394         .parse_param    = hugetlbfs_parse_param,
1395         .get_tree       = hugetlbfs_get_tree,
1396 };
1397
1398 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1399 {
1400         struct hugetlbfs_fs_context *ctx;
1401
1402         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1403         if (!ctx)
1404                 return -ENOMEM;
1405
1406         ctx->max_hpages = -1; /* No limit on size by default */
1407         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1408         ctx->uid        = current_fsuid();
1409         ctx->gid        = current_fsgid();
1410         ctx->mode       = 0755;
1411         ctx->hstate     = &default_hstate;
1412         ctx->min_hpages = -1; /* No default minimum size */
1413         ctx->max_val_type = NO_SIZE;
1414         ctx->min_val_type = NO_SIZE;
1415         fc->fs_private = ctx;
1416         fc->ops = &hugetlbfs_fs_context_ops;
1417         return 0;
1418 }
1419
1420 static struct file_system_type hugetlbfs_fs_type = {
1421         .name                   = "hugetlbfs",
1422         .init_fs_context        = hugetlbfs_init_fs_context,
1423         .parameters             = hugetlb_fs_parameters,
1424         .kill_sb                = kill_litter_super,
1425 };
1426
1427 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1428
1429 static int can_do_hugetlb_shm(void)
1430 {
1431         kgid_t shm_group;
1432         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1433         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1434 }
1435
1436 static int get_hstate_idx(int page_size_log)
1437 {
1438         struct hstate *h = hstate_sizelog(page_size_log);
1439
1440         if (!h)
1441                 return -1;
1442         return hstate_index(h);
1443 }
1444
1445 /*
1446  * Note that size should be aligned to proper hugepage size in caller side,
1447  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1448  */
1449 struct file *hugetlb_file_setup(const char *name, size_t size,
1450                                 vm_flags_t acctflag, struct ucounts **ucounts,
1451                                 int creat_flags, int page_size_log)
1452 {
1453         struct inode *inode;
1454         struct vfsmount *mnt;
1455         int hstate_idx;
1456         struct file *file;
1457
1458         hstate_idx = get_hstate_idx(page_size_log);
1459         if (hstate_idx < 0)
1460                 return ERR_PTR(-ENODEV);
1461
1462         *ucounts = NULL;
1463         mnt = hugetlbfs_vfsmount[hstate_idx];
1464         if (!mnt)
1465                 return ERR_PTR(-ENOENT);
1466
1467         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1468                 *ucounts = current_ucounts();
1469                 if (user_shm_lock(size, *ucounts)) {
1470                         task_lock(current);
1471                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1472                                 current->comm, current->pid);
1473                         task_unlock(current);
1474                 } else {
1475                         *ucounts = NULL;
1476                         return ERR_PTR(-EPERM);
1477                 }
1478         }
1479
1480         file = ERR_PTR(-ENOSPC);
1481         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1482         if (!inode)
1483                 goto out;
1484         if (creat_flags == HUGETLB_SHMFS_INODE)
1485                 inode->i_flags |= S_PRIVATE;
1486
1487         inode->i_size = size;
1488         clear_nlink(inode);
1489
1490         if (!hugetlb_reserve_pages(inode, 0,
1491                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1492                         acctflag))
1493                 file = ERR_PTR(-ENOMEM);
1494         else
1495                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1496                                         &hugetlbfs_file_operations);
1497         if (!IS_ERR(file))
1498                 return file;
1499
1500         iput(inode);
1501 out:
1502         if (*ucounts) {
1503                 user_shm_unlock(size, *ucounts);
1504                 *ucounts = NULL;
1505         }
1506         return file;
1507 }
1508
1509 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1510 {
1511         struct fs_context *fc;
1512         struct vfsmount *mnt;
1513
1514         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1515         if (IS_ERR(fc)) {
1516                 mnt = ERR_CAST(fc);
1517         } else {
1518                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1519                 ctx->hstate = h;
1520                 mnt = fc_mount(fc);
1521                 put_fs_context(fc);
1522         }
1523         if (IS_ERR(mnt))
1524                 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1525                        huge_page_size(h) >> 10);
1526         return mnt;
1527 }
1528
1529 static int __init init_hugetlbfs_fs(void)
1530 {
1531         struct vfsmount *mnt;
1532         struct hstate *h;
1533         int error;
1534         int i;
1535
1536         if (!hugepages_supported()) {
1537                 pr_info("disabling because there are no supported hugepage sizes\n");
1538                 return -ENOTSUPP;
1539         }
1540
1541         error = -ENOMEM;
1542         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1543                                         sizeof(struct hugetlbfs_inode_info),
1544                                         0, SLAB_ACCOUNT, init_once);
1545         if (hugetlbfs_inode_cachep == NULL)
1546                 goto out;
1547
1548         error = register_filesystem(&hugetlbfs_fs_type);
1549         if (error)
1550                 goto out_free;
1551
1552         /* default hstate mount is required */
1553         mnt = mount_one_hugetlbfs(&default_hstate);
1554         if (IS_ERR(mnt)) {
1555                 error = PTR_ERR(mnt);
1556                 goto out_unreg;
1557         }
1558         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1559
1560         /* other hstates are optional */
1561         i = 0;
1562         for_each_hstate(h) {
1563                 if (i == default_hstate_idx) {
1564                         i++;
1565                         continue;
1566                 }
1567
1568                 mnt = mount_one_hugetlbfs(h);
1569                 if (IS_ERR(mnt))
1570                         hugetlbfs_vfsmount[i] = NULL;
1571                 else
1572                         hugetlbfs_vfsmount[i] = mnt;
1573                 i++;
1574         }
1575
1576         return 0;
1577
1578  out_unreg:
1579         (void)unregister_filesystem(&hugetlbfs_fs_type);
1580  out_free:
1581         kmem_cache_destroy(hugetlbfs_inode_cachep);
1582  out:
1583         return error;
1584 }
1585 fs_initcall(init_hugetlbfs_fs)