GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32oct("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135         loff_t len, vma_len;
136         int ret;
137         struct hstate *h = hstate_file(file);
138
139         /*
140          * vma address alignment (but not the pgoff alignment) has
141          * already been checked by prepare_hugepage_range.  If you add
142          * any error returns here, do so after setting VM_HUGETLB, so
143          * is_vm_hugetlb_page tests below unmap_region go the right
144          * way when do_mmap unwinds (may be important on powerpc
145          * and ia64).
146          */
147         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148         vma->vm_ops = &hugetlb_vm_ops;
149
150         ret = seal_check_future_write(info->seals, vma);
151         if (ret)
152                 return ret;
153
154         /*
155          * page based offset in vm_pgoff could be sufficiently large to
156          * overflow a loff_t when converted to byte offset.  This can
157          * only happen on architectures where sizeof(loff_t) ==
158          * sizeof(unsigned long).  So, only check in those instances.
159          */
160         if (sizeof(unsigned long) == sizeof(loff_t)) {
161                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162                         return -EINVAL;
163         }
164
165         /* must be huge page aligned */
166         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167                 return -EINVAL;
168
169         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171         /* check for overflow */
172         if (len < vma_len)
173                 return -EINVAL;
174
175         inode_lock(inode);
176         file_accessed(file);
177
178         ret = -ENOMEM;
179         if (!hugetlb_reserve_pages(inode,
180                                 vma->vm_pgoff >> huge_page_order(h),
181                                 len >> huge_page_shift(h), vma,
182                                 vma->vm_flags))
183                 goto out;
184
185         ret = 0;
186         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187                 i_size_write(inode, len);
188 out:
189         inode_unlock(inode);
190
191         return ret;
192 }
193
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197
198 static unsigned long
199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
200                 unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202         struct hstate *h = hstate_file(file);
203         struct vm_unmapped_area_info info;
204
205         info.flags = 0;
206         info.length = len;
207         info.low_limit = current->mm->mmap_base;
208         info.high_limit = arch_get_mmap_end(addr, len, flags);
209         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
210         info.align_offset = 0;
211         return vm_unmapped_area(&info);
212 }
213
214 static unsigned long
215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
216                 unsigned long len, unsigned long pgoff, unsigned long flags)
217 {
218         struct hstate *h = hstate_file(file);
219         struct vm_unmapped_area_info info;
220
221         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222         info.length = len;
223         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
224         info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
225         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226         info.align_offset = 0;
227         addr = vm_unmapped_area(&info);
228
229         /*
230          * A failed mmap() very likely causes application failure,
231          * so fall back to the bottom-up function here. This scenario
232          * can happen with large stack limits and large mmap()
233          * allocations.
234          */
235         if (unlikely(offset_in_page(addr))) {
236                 VM_BUG_ON(addr != -ENOMEM);
237                 info.flags = 0;
238                 info.low_limit = current->mm->mmap_base;
239                 info.high_limit = arch_get_mmap_end(addr, len, flags);
240                 addr = vm_unmapped_area(&info);
241         }
242
243         return addr;
244 }
245
246 unsigned long
247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
248                                   unsigned long len, unsigned long pgoff,
249                                   unsigned long flags)
250 {
251         struct mm_struct *mm = current->mm;
252         struct vm_area_struct *vma;
253         struct hstate *h = hstate_file(file);
254         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
255
256         if (len & ~huge_page_mask(h))
257                 return -EINVAL;
258         if (len > TASK_SIZE)
259                 return -ENOMEM;
260
261         if (flags & MAP_FIXED) {
262                 if (prepare_hugepage_range(file, addr, len))
263                         return -EINVAL;
264                 return addr;
265         }
266
267         if (addr) {
268                 addr = ALIGN(addr, huge_page_size(h));
269                 vma = find_vma(mm, addr);
270                 if (mmap_end - len >= addr &&
271                     (!vma || addr + len <= vm_start_gap(vma)))
272                         return addr;
273         }
274
275         /*
276          * Use mm->get_unmapped_area value as a hint to use topdown routine.
277          * If architectures have special needs, they should define their own
278          * version of hugetlb_get_unmapped_area.
279          */
280         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
282                                 pgoff, flags);
283         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284                         pgoff, flags);
285 }
286
287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
288 static unsigned long
289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
290                           unsigned long len, unsigned long pgoff,
291                           unsigned long flags)
292 {
293         return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
294 }
295 #endif
296
297 static size_t
298 hugetlbfs_read_actor(struct page *page, unsigned long offset,
299                         struct iov_iter *to, unsigned long size)
300 {
301         size_t copied = 0;
302         int i, chunksize;
303
304         /* Find which 4k chunk and offset with in that chunk */
305         i = offset >> PAGE_SHIFT;
306         offset = offset & ~PAGE_MASK;
307
308         while (size) {
309                 size_t n;
310                 chunksize = PAGE_SIZE;
311                 if (offset)
312                         chunksize -= offset;
313                 if (chunksize > size)
314                         chunksize = size;
315                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
316                 copied += n;
317                 if (n != chunksize)
318                         return copied;
319                 offset = 0;
320                 size -= chunksize;
321                 i++;
322         }
323         return copied;
324 }
325
326 /*
327  * Support for read() - Find the page attached to f_mapping and copy out the
328  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
329  * since it has PAGE_SIZE assumptions.
330  */
331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
332 {
333         struct file *file = iocb->ki_filp;
334         struct hstate *h = hstate_file(file);
335         struct address_space *mapping = file->f_mapping;
336         struct inode *inode = mapping->host;
337         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
338         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
339         unsigned long end_index;
340         loff_t isize;
341         ssize_t retval = 0;
342
343         while (iov_iter_count(to)) {
344                 struct page *page;
345                 size_t nr, copied;
346
347                 /* nr is the maximum number of bytes to copy from this page */
348                 nr = huge_page_size(h);
349                 isize = i_size_read(inode);
350                 if (!isize)
351                         break;
352                 end_index = (isize - 1) >> huge_page_shift(h);
353                 if (index > end_index)
354                         break;
355                 if (index == end_index) {
356                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
357                         if (nr <= offset)
358                                 break;
359                 }
360                 nr = nr - offset;
361
362                 /* Find the page */
363                 page = find_lock_page(mapping, index);
364                 if (unlikely(page == NULL)) {
365                         /*
366                          * We have a HOLE, zero out the user-buffer for the
367                          * length of the hole or request.
368                          */
369                         copied = iov_iter_zero(nr, to);
370                 } else {
371                         unlock_page(page);
372
373                         /*
374                          * We have the page, copy it to user space buffer.
375                          */
376                         copied = hugetlbfs_read_actor(page, offset, to, nr);
377                         put_page(page);
378                 }
379                 offset += copied;
380                 retval += copied;
381                 if (copied != nr && iov_iter_count(to)) {
382                         if (!retval)
383                                 retval = -EFAULT;
384                         break;
385                 }
386                 index += offset >> huge_page_shift(h);
387                 offset &= ~huge_page_mask(h);
388         }
389         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
390         return retval;
391 }
392
393 static int hugetlbfs_write_begin(struct file *file,
394                         struct address_space *mapping,
395                         loff_t pos, unsigned len,
396                         struct page **pagep, void **fsdata)
397 {
398         return -EINVAL;
399 }
400
401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
402                         loff_t pos, unsigned len, unsigned copied,
403                         struct page *page, void *fsdata)
404 {
405         BUG();
406         return -EINVAL;
407 }
408
409 static void remove_huge_page(struct page *page)
410 {
411         ClearPageDirty(page);
412         ClearPageUptodate(page);
413         delete_from_page_cache(page);
414 }
415
416 static void
417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
418                       zap_flags_t zap_flags)
419 {
420         struct vm_area_struct *vma;
421
422         /*
423          * end == 0 indicates that the entire range after start should be
424          * unmapped.  Note, end is exclusive, whereas the interval tree takes
425          * an inclusive "last".
426          */
427         vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
428                 unsigned long v_offset;
429                 unsigned long v_end;
430
431                 /*
432                  * Can the expression below overflow on 32-bit arches?
433                  * No, because the interval tree returns us only those vmas
434                  * which overlap the truncated area starting at pgoff,
435                  * and no vma on a 32-bit arch can span beyond the 4GB.
436                  */
437                 if (vma->vm_pgoff < start)
438                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439                 else
440                         v_offset = 0;
441
442                 if (!end)
443                         v_end = vma->vm_end;
444                 else {
445                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446                                                         + vma->vm_start;
447                         if (v_end > vma->vm_end)
448                                 v_end = vma->vm_end;
449                 }
450
451                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452                                      NULL, zap_flags);
453         }
454 }
455
456 /*
457  * remove_inode_hugepages handles two distinct cases: truncation and hole
458  * punch.  There are subtle differences in operation for each case.
459  *
460  * truncation is indicated by end of range being LLONG_MAX
461  *      In this case, we first scan the range and release found pages.
462  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
463  *      maps and global counts.  Page faults can not race with truncation
464  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
465  *      page faults in the truncated range by checking i_size.  i_size is
466  *      modified while holding i_mmap_rwsem.
467  * hole punch is indicated if end is not LLONG_MAX
468  *      In the hole punch case we scan the range and release found pages.
469  *      Only when releasing a page is the associated region/reserve map
470  *      deleted.  The region/reserve map for ranges without associated
471  *      pages are not modified.  Page faults can race with hole punch.
472  *      This is indicated if we find a mapped page.
473  * Note: If the passed end of range value is beyond the end of file, but
474  * not LLONG_MAX this routine still performs a hole punch operation.
475  */
476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477                                    loff_t lend)
478 {
479         struct hstate *h = hstate_inode(inode);
480         struct address_space *mapping = &inode->i_data;
481         const pgoff_t start = lstart >> huge_page_shift(h);
482         const pgoff_t end = lend >> huge_page_shift(h);
483         struct pagevec pvec;
484         pgoff_t next, index;
485         int i, freed = 0;
486         bool truncate_op = (lend == LLONG_MAX);
487
488         pagevec_init(&pvec);
489         next = start;
490         while (next < end) {
491                 /*
492                  * When no more pages are found, we are done.
493                  */
494                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
495                         break;
496
497                 for (i = 0; i < pagevec_count(&pvec); ++i) {
498                         struct page *page = pvec.pages[i];
499                         u32 hash = 0;
500
501                         index = page->index;
502                         if (!truncate_op) {
503                                 /*
504                                  * Only need to hold the fault mutex in the
505                                  * hole punch case.  This prevents races with
506                                  * page faults.  Races are not possible in the
507                                  * case of truncation.
508                                  */
509                                 hash = hugetlb_fault_mutex_hash(mapping, index);
510                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
511                         }
512
513                         /*
514                          * If page is mapped, it was faulted in after being
515                          * unmapped in caller.  Unmap (again) now after taking
516                          * the fault mutex.  The mutex will prevent faults
517                          * until we finish removing the page.
518                          *
519                          * This race can only happen in the hole punch case.
520                          * Getting here in a truncate operation is a bug.
521                          */
522                         if (unlikely(page_mapped(page))) {
523                                 BUG_ON(truncate_op);
524
525                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
526                                 i_mmap_lock_write(mapping);
527                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
528                                 hugetlb_vmdelete_list(&mapping->i_mmap,
529                                         index * pages_per_huge_page(h),
530                                         (index + 1) * pages_per_huge_page(h),
531                                         ZAP_FLAG_DROP_MARKER);
532                                 i_mmap_unlock_write(mapping);
533                         }
534
535                         lock_page(page);
536                         /*
537                          * We must free the huge page and remove from page
538                          * cache (remove_huge_page) BEFORE removing the
539                          * region/reserve map (hugetlb_unreserve_pages).  In
540                          * rare out of memory conditions, removal of the
541                          * region/reserve map could fail. Correspondingly,
542                          * the subpool and global reserve usage count can need
543                          * to be adjusted.
544                          */
545                         VM_BUG_ON(HPageRestoreReserve(page));
546                         remove_huge_page(page);
547                         freed++;
548                         if (!truncate_op) {
549                                 if (unlikely(hugetlb_unreserve_pages(inode,
550                                                         index, index + 1, 1)))
551                                         hugetlb_fix_reserve_counts(inode);
552                         }
553
554                         unlock_page(page);
555                         if (!truncate_op)
556                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
557                 }
558                 huge_pagevec_release(&pvec);
559                 cond_resched();
560         }
561
562         if (truncate_op)
563                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
564 }
565
566 static void hugetlbfs_evict_inode(struct inode *inode)
567 {
568         struct resv_map *resv_map;
569
570         remove_inode_hugepages(inode, 0, LLONG_MAX);
571
572         /*
573          * Get the resv_map from the address space embedded in the inode.
574          * This is the address space which points to any resv_map allocated
575          * at inode creation time.  If this is a device special inode,
576          * i_mapping may not point to the original address space.
577          */
578         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
579         /* Only regular and link inodes have associated reserve maps */
580         if (resv_map)
581                 resv_map_release(&resv_map->refs);
582         clear_inode(inode);
583 }
584
585 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
586 {
587         pgoff_t pgoff;
588         struct address_space *mapping = inode->i_mapping;
589         struct hstate *h = hstate_inode(inode);
590
591         BUG_ON(offset & ~huge_page_mask(h));
592         pgoff = offset >> PAGE_SHIFT;
593
594         i_mmap_lock_write(mapping);
595         i_size_write(inode, offset);
596         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
597                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
598                                       ZAP_FLAG_DROP_MARKER);
599         i_mmap_unlock_write(mapping);
600         remove_inode_hugepages(inode, offset, LLONG_MAX);
601 }
602
603 static void hugetlbfs_zero_partial_page(struct hstate *h,
604                                         struct address_space *mapping,
605                                         loff_t start,
606                                         loff_t end)
607 {
608         pgoff_t idx = start >> huge_page_shift(h);
609         struct folio *folio;
610
611         folio = filemap_lock_folio(mapping, idx);
612         if (!folio)
613                 return;
614
615         start = start & ~huge_page_mask(h);
616         end = end & ~huge_page_mask(h);
617         if (!end)
618                 end = huge_page_size(h);
619
620         folio_zero_segment(folio, (size_t)start, (size_t)end);
621
622         folio_unlock(folio);
623         folio_put(folio);
624 }
625
626 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
627 {
628         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
629         struct address_space *mapping = inode->i_mapping;
630         struct hstate *h = hstate_inode(inode);
631         loff_t hpage_size = huge_page_size(h);
632         loff_t hole_start, hole_end;
633
634         /*
635          * hole_start and hole_end indicate the full pages within the hole.
636          */
637         hole_start = round_up(offset, hpage_size);
638         hole_end = round_down(offset + len, hpage_size);
639
640         inode_lock(inode);
641
642         /* protected by i_rwsem */
643         if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
644                 inode_unlock(inode);
645                 return -EPERM;
646         }
647
648         i_mmap_lock_write(mapping);
649
650         /* If range starts before first full page, zero partial page. */
651         if (offset < hole_start)
652                 hugetlbfs_zero_partial_page(h, mapping,
653                                 offset, min(offset + len, hole_start));
654
655         /* Unmap users of full pages in the hole. */
656         if (hole_end > hole_start) {
657                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
658                         hugetlb_vmdelete_list(&mapping->i_mmap,
659                                               hole_start >> PAGE_SHIFT,
660                                               hole_end >> PAGE_SHIFT, 0);
661         }
662
663         /* If range extends beyond last full page, zero partial page. */
664         if ((offset + len) > hole_end && (offset + len) > hole_start)
665                 hugetlbfs_zero_partial_page(h, mapping,
666                                 hole_end, offset + len);
667
668         i_mmap_unlock_write(mapping);
669
670         /* Remove full pages from the file. */
671         if (hole_end > hole_start)
672                 remove_inode_hugepages(inode, hole_start, hole_end);
673
674         inode_unlock(inode);
675
676         return 0;
677 }
678
679 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
680                                 loff_t len)
681 {
682         struct inode *inode = file_inode(file);
683         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
684         struct address_space *mapping = inode->i_mapping;
685         struct hstate *h = hstate_inode(inode);
686         struct vm_area_struct pseudo_vma;
687         struct mm_struct *mm = current->mm;
688         loff_t hpage_size = huge_page_size(h);
689         unsigned long hpage_shift = huge_page_shift(h);
690         pgoff_t start, index, end;
691         int error;
692         u32 hash;
693
694         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
695                 return -EOPNOTSUPP;
696
697         if (mode & FALLOC_FL_PUNCH_HOLE)
698                 return hugetlbfs_punch_hole(inode, offset, len);
699
700         /*
701          * Default preallocate case.
702          * For this range, start is rounded down and end is rounded up
703          * as well as being converted to page offsets.
704          */
705         start = offset >> hpage_shift;
706         end = (offset + len + hpage_size - 1) >> hpage_shift;
707
708         inode_lock(inode);
709
710         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
711         error = inode_newsize_ok(inode, offset + len);
712         if (error)
713                 goto out;
714
715         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
716                 error = -EPERM;
717                 goto out;
718         }
719
720         /*
721          * Initialize a pseudo vma as this is required by the huge page
722          * allocation routines.  If NUMA is configured, use page index
723          * as input to create an allocation policy.
724          */
725         vma_init(&pseudo_vma, mm);
726         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
727         pseudo_vma.vm_file = file;
728
729         for (index = start; index < end; index++) {
730                 /*
731                  * This is supposed to be the vaddr where the page is being
732                  * faulted in, but we have no vaddr here.
733                  */
734                 struct page *page;
735                 unsigned long addr;
736
737                 cond_resched();
738
739                 /*
740                  * fallocate(2) manpage permits EINTR; we may have been
741                  * interrupted because we are using up too much memory.
742                  */
743                 if (signal_pending(current)) {
744                         error = -EINTR;
745                         break;
746                 }
747
748                 /* Set numa allocation policy based on index */
749                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
750
751                 /* addr is the offset within the file (zero based) */
752                 addr = index * hpage_size;
753
754                 /*
755                  * fault mutex taken here, protects against fault path
756                  * and hole punch.  inode_lock previously taken protects
757                  * against truncation.
758                  */
759                 hash = hugetlb_fault_mutex_hash(mapping, index);
760                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
761
762                 /* See if already present in mapping to avoid alloc/free */
763                 page = find_get_page(mapping, index);
764                 if (page) {
765                         put_page(page);
766                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
767                         hugetlb_drop_vma_policy(&pseudo_vma);
768                         continue;
769                 }
770
771                 /*
772                  * Allocate page without setting the avoid_reserve argument.
773                  * There certainly are no reserves associated with the
774                  * pseudo_vma.  However, there could be shared mappings with
775                  * reserves for the file at the inode level.  If we fallocate
776                  * pages in these areas, we need to consume the reserves
777                  * to keep reservation accounting consistent.
778                  */
779                 page = alloc_huge_page(&pseudo_vma, addr, 0);
780                 hugetlb_drop_vma_policy(&pseudo_vma);
781                 if (IS_ERR(page)) {
782                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
783                         error = PTR_ERR(page);
784                         goto out;
785                 }
786                 clear_huge_page(page, addr, pages_per_huge_page(h));
787                 __SetPageUptodate(page);
788                 error = huge_add_to_page_cache(page, mapping, index);
789                 if (unlikely(error)) {
790                         restore_reserve_on_error(h, &pseudo_vma, addr, page);
791                         put_page(page);
792                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
793                         goto out;
794                 }
795
796                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
797
798                 SetHPageMigratable(page);
799                 /*
800                  * unlock_page because locked by add_to_page_cache()
801                  * put_page() due to reference from alloc_huge_page()
802                  */
803                 unlock_page(page);
804                 put_page(page);
805         }
806
807         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
808                 i_size_write(inode, offset + len);
809         inode->i_ctime = current_time(inode);
810 out:
811         inode_unlock(inode);
812         return error;
813 }
814
815 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
816                              struct dentry *dentry, struct iattr *attr)
817 {
818         struct inode *inode = d_inode(dentry);
819         struct hstate *h = hstate_inode(inode);
820         int error;
821         unsigned int ia_valid = attr->ia_valid;
822         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
823
824         error = setattr_prepare(&init_user_ns, dentry, attr);
825         if (error)
826                 return error;
827
828         if (ia_valid & ATTR_SIZE) {
829                 loff_t oldsize = inode->i_size;
830                 loff_t newsize = attr->ia_size;
831
832                 if (newsize & ~huge_page_mask(h))
833                         return -EINVAL;
834                 /* protected by i_rwsem */
835                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
836                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
837                         return -EPERM;
838                 hugetlb_vmtruncate(inode, newsize);
839         }
840
841         setattr_copy(&init_user_ns, inode, attr);
842         mark_inode_dirty(inode);
843         return 0;
844 }
845
846 static struct inode *hugetlbfs_get_root(struct super_block *sb,
847                                         struct hugetlbfs_fs_context *ctx)
848 {
849         struct inode *inode;
850
851         inode = new_inode(sb);
852         if (inode) {
853                 inode->i_ino = get_next_ino();
854                 inode->i_mode = S_IFDIR | ctx->mode;
855                 inode->i_uid = ctx->uid;
856                 inode->i_gid = ctx->gid;
857                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
858                 inode->i_op = &hugetlbfs_dir_inode_operations;
859                 inode->i_fop = &simple_dir_operations;
860                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
861                 inc_nlink(inode);
862                 lockdep_annotate_inode_mutex_key(inode);
863         }
864         return inode;
865 }
866
867 /*
868  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
869  * be taken from reclaim -- unlike regular filesystems. This needs an
870  * annotation because huge_pmd_share() does an allocation under hugetlb's
871  * i_mmap_rwsem.
872  */
873 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
874
875 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
876                                         struct inode *dir,
877                                         umode_t mode, dev_t dev)
878 {
879         struct inode *inode;
880         struct resv_map *resv_map = NULL;
881
882         /*
883          * Reserve maps are only needed for inodes that can have associated
884          * page allocations.
885          */
886         if (S_ISREG(mode) || S_ISLNK(mode)) {
887                 resv_map = resv_map_alloc();
888                 if (!resv_map)
889                         return NULL;
890         }
891
892         inode = new_inode(sb);
893         if (inode) {
894                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
895
896                 inode->i_ino = get_next_ino();
897                 inode_init_owner(&init_user_ns, inode, dir, mode);
898                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
899                                 &hugetlbfs_i_mmap_rwsem_key);
900                 inode->i_mapping->a_ops = &hugetlbfs_aops;
901                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
902                 inode->i_mapping->private_data = resv_map;
903                 info->seals = F_SEAL_SEAL;
904                 switch (mode & S_IFMT) {
905                 default:
906                         init_special_inode(inode, mode, dev);
907                         break;
908                 case S_IFREG:
909                         inode->i_op = &hugetlbfs_inode_operations;
910                         inode->i_fop = &hugetlbfs_file_operations;
911                         break;
912                 case S_IFDIR:
913                         inode->i_op = &hugetlbfs_dir_inode_operations;
914                         inode->i_fop = &simple_dir_operations;
915
916                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
917                         inc_nlink(inode);
918                         break;
919                 case S_IFLNK:
920                         inode->i_op = &page_symlink_inode_operations;
921                         inode_nohighmem(inode);
922                         break;
923                 }
924                 lockdep_annotate_inode_mutex_key(inode);
925         } else {
926                 if (resv_map)
927                         kref_put(&resv_map->refs, resv_map_release);
928         }
929
930         return inode;
931 }
932
933 /*
934  * File creation. Allocate an inode, and we're done..
935  */
936 static int do_hugetlbfs_mknod(struct inode *dir,
937                         struct dentry *dentry,
938                         umode_t mode,
939                         dev_t dev,
940                         bool tmpfile)
941 {
942         struct inode *inode;
943         int error = -ENOSPC;
944
945         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
946         if (inode) {
947                 dir->i_ctime = dir->i_mtime = current_time(dir);
948                 if (tmpfile) {
949                         d_tmpfile(dentry, inode);
950                 } else {
951                         d_instantiate(dentry, inode);
952                         dget(dentry);/* Extra count - pin the dentry in core */
953                 }
954                 error = 0;
955         }
956         return error;
957 }
958
959 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
960                            struct dentry *dentry, umode_t mode, dev_t dev)
961 {
962         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
963 }
964
965 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
966                            struct dentry *dentry, umode_t mode)
967 {
968         int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
969                                      mode | S_IFDIR, 0);
970         if (!retval)
971                 inc_nlink(dir);
972         return retval;
973 }
974
975 static int hugetlbfs_create(struct user_namespace *mnt_userns,
976                             struct inode *dir, struct dentry *dentry,
977                             umode_t mode, bool excl)
978 {
979         return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
980 }
981
982 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
983                              struct inode *dir, struct dentry *dentry,
984                              umode_t mode)
985 {
986         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
987 }
988
989 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
990                              struct inode *dir, struct dentry *dentry,
991                              const char *symname)
992 {
993         struct inode *inode;
994         int error = -ENOSPC;
995
996         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
997         if (inode) {
998                 int l = strlen(symname)+1;
999                 error = page_symlink(inode, symname, l);
1000                 if (!error) {
1001                         d_instantiate(dentry, inode);
1002                         dget(dentry);
1003                 } else
1004                         iput(inode);
1005         }
1006         dir->i_ctime = dir->i_mtime = current_time(dir);
1007
1008         return error;
1009 }
1010
1011 static int hugetlbfs_migrate_page(struct address_space *mapping,
1012                                 struct page *newpage, struct page *page,
1013                                 enum migrate_mode mode)
1014 {
1015         int rc;
1016
1017         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
1018         if (rc != MIGRATEPAGE_SUCCESS)
1019                 return rc;
1020
1021         if (hugetlb_page_subpool(page)) {
1022                 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
1023                 hugetlb_set_page_subpool(page, NULL);
1024         }
1025
1026         if (mode != MIGRATE_SYNC_NO_COPY)
1027                 migrate_page_copy(newpage, page);
1028         else
1029                 migrate_page_states(newpage, page);
1030
1031         return MIGRATEPAGE_SUCCESS;
1032 }
1033
1034 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1035                                 struct page *page)
1036 {
1037         struct inode *inode = mapping->host;
1038         pgoff_t index = page->index;
1039
1040         remove_huge_page(page);
1041         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1042                 hugetlb_fix_reserve_counts(inode);
1043
1044         return 0;
1045 }
1046
1047 /*
1048  * Display the mount options in /proc/mounts.
1049  */
1050 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1051 {
1052         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1053         struct hugepage_subpool *spool = sbinfo->spool;
1054         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1055         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1056         char mod;
1057
1058         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1059                 seq_printf(m, ",uid=%u",
1060                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1061         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1062                 seq_printf(m, ",gid=%u",
1063                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1064         if (sbinfo->mode != 0755)
1065                 seq_printf(m, ",mode=%o", sbinfo->mode);
1066         if (sbinfo->max_inodes != -1)
1067                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1068
1069         hpage_size /= 1024;
1070         mod = 'K';
1071         if (hpage_size >= 1024) {
1072                 hpage_size /= 1024;
1073                 mod = 'M';
1074         }
1075         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1076         if (spool) {
1077                 if (spool->max_hpages != -1)
1078                         seq_printf(m, ",size=%llu",
1079                                    (unsigned long long)spool->max_hpages << hpage_shift);
1080                 if (spool->min_hpages != -1)
1081                         seq_printf(m, ",min_size=%llu",
1082                                    (unsigned long long)spool->min_hpages << hpage_shift);
1083         }
1084         return 0;
1085 }
1086
1087 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1088 {
1089         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1090         struct hstate *h = hstate_inode(d_inode(dentry));
1091
1092         buf->f_type = HUGETLBFS_MAGIC;
1093         buf->f_bsize = huge_page_size(h);
1094         if (sbinfo) {
1095                 spin_lock(&sbinfo->stat_lock);
1096                 /* If no limits set, just report 0 for max/free/used
1097                  * blocks, like simple_statfs() */
1098                 if (sbinfo->spool) {
1099                         long free_pages;
1100
1101                         spin_lock_irq(&sbinfo->spool->lock);
1102                         buf->f_blocks = sbinfo->spool->max_hpages;
1103                         free_pages = sbinfo->spool->max_hpages
1104                                 - sbinfo->spool->used_hpages;
1105                         buf->f_bavail = buf->f_bfree = free_pages;
1106                         spin_unlock_irq(&sbinfo->spool->lock);
1107                         buf->f_files = sbinfo->max_inodes;
1108                         buf->f_ffree = sbinfo->free_inodes;
1109                 }
1110                 spin_unlock(&sbinfo->stat_lock);
1111         }
1112         buf->f_namelen = NAME_MAX;
1113         return 0;
1114 }
1115
1116 static void hugetlbfs_put_super(struct super_block *sb)
1117 {
1118         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1119
1120         if (sbi) {
1121                 sb->s_fs_info = NULL;
1122
1123                 if (sbi->spool)
1124                         hugepage_put_subpool(sbi->spool);
1125
1126                 kfree(sbi);
1127         }
1128 }
1129
1130 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1131 {
1132         if (sbinfo->free_inodes >= 0) {
1133                 spin_lock(&sbinfo->stat_lock);
1134                 if (unlikely(!sbinfo->free_inodes)) {
1135                         spin_unlock(&sbinfo->stat_lock);
1136                         return 0;
1137                 }
1138                 sbinfo->free_inodes--;
1139                 spin_unlock(&sbinfo->stat_lock);
1140         }
1141
1142         return 1;
1143 }
1144
1145 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1146 {
1147         if (sbinfo->free_inodes >= 0) {
1148                 spin_lock(&sbinfo->stat_lock);
1149                 sbinfo->free_inodes++;
1150                 spin_unlock(&sbinfo->stat_lock);
1151         }
1152 }
1153
1154
1155 static struct kmem_cache *hugetlbfs_inode_cachep;
1156
1157 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1158 {
1159         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1160         struct hugetlbfs_inode_info *p;
1161
1162         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1163                 return NULL;
1164         p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1165         if (unlikely(!p)) {
1166                 hugetlbfs_inc_free_inodes(sbinfo);
1167                 return NULL;
1168         }
1169
1170         /*
1171          * Any time after allocation, hugetlbfs_destroy_inode can be called
1172          * for the inode.  mpol_free_shared_policy is unconditionally called
1173          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1174          * in case of a quick call to destroy.
1175          *
1176          * Note that the policy is initialized even if we are creating a
1177          * private inode.  This simplifies hugetlbfs_destroy_inode.
1178          */
1179         mpol_shared_policy_init(&p->policy, NULL);
1180
1181         return &p->vfs_inode;
1182 }
1183
1184 static void hugetlbfs_free_inode(struct inode *inode)
1185 {
1186         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1187 }
1188
1189 static void hugetlbfs_destroy_inode(struct inode *inode)
1190 {
1191         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1192         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1193 }
1194
1195 static const struct address_space_operations hugetlbfs_aops = {
1196         .write_begin    = hugetlbfs_write_begin,
1197         .write_end      = hugetlbfs_write_end,
1198         .dirty_folio    = noop_dirty_folio,
1199         .migratepage    = hugetlbfs_migrate_page,
1200         .error_remove_page      = hugetlbfs_error_remove_page,
1201 };
1202
1203
1204 static void init_once(void *foo)
1205 {
1206         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1207
1208         inode_init_once(&ei->vfs_inode);
1209 }
1210
1211 const struct file_operations hugetlbfs_file_operations = {
1212         .read_iter              = hugetlbfs_read_iter,
1213         .mmap                   = hugetlbfs_file_mmap,
1214         .fsync                  = noop_fsync,
1215         .get_unmapped_area      = hugetlb_get_unmapped_area,
1216         .llseek                 = default_llseek,
1217         .fallocate              = hugetlbfs_fallocate,
1218 };
1219
1220 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1221         .create         = hugetlbfs_create,
1222         .lookup         = simple_lookup,
1223         .link           = simple_link,
1224         .unlink         = simple_unlink,
1225         .symlink        = hugetlbfs_symlink,
1226         .mkdir          = hugetlbfs_mkdir,
1227         .rmdir          = simple_rmdir,
1228         .mknod          = hugetlbfs_mknod,
1229         .rename         = simple_rename,
1230         .setattr        = hugetlbfs_setattr,
1231         .tmpfile        = hugetlbfs_tmpfile,
1232 };
1233
1234 static const struct inode_operations hugetlbfs_inode_operations = {
1235         .setattr        = hugetlbfs_setattr,
1236 };
1237
1238 static const struct super_operations hugetlbfs_ops = {
1239         .alloc_inode    = hugetlbfs_alloc_inode,
1240         .free_inode     = hugetlbfs_free_inode,
1241         .destroy_inode  = hugetlbfs_destroy_inode,
1242         .evict_inode    = hugetlbfs_evict_inode,
1243         .statfs         = hugetlbfs_statfs,
1244         .put_super      = hugetlbfs_put_super,
1245         .show_options   = hugetlbfs_show_options,
1246 };
1247
1248 /*
1249  * Convert size option passed from command line to number of huge pages
1250  * in the pool specified by hstate.  Size option could be in bytes
1251  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1252  */
1253 static long
1254 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1255                          enum hugetlbfs_size_type val_type)
1256 {
1257         if (val_type == NO_SIZE)
1258                 return -1;
1259
1260         if (val_type == SIZE_PERCENT) {
1261                 size_opt <<= huge_page_shift(h);
1262                 size_opt *= h->max_huge_pages;
1263                 do_div(size_opt, 100);
1264         }
1265
1266         size_opt >>= huge_page_shift(h);
1267         return size_opt;
1268 }
1269
1270 /*
1271  * Parse one mount parameter.
1272  */
1273 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1274 {
1275         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1276         struct fs_parse_result result;
1277         char *rest;
1278         unsigned long ps;
1279         int opt;
1280
1281         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1282         if (opt < 0)
1283                 return opt;
1284
1285         switch (opt) {
1286         case Opt_uid:
1287                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1288                 if (!uid_valid(ctx->uid))
1289                         goto bad_val;
1290                 return 0;
1291
1292         case Opt_gid:
1293                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1294                 if (!gid_valid(ctx->gid))
1295                         goto bad_val;
1296                 return 0;
1297
1298         case Opt_mode:
1299                 ctx->mode = result.uint_32 & 01777U;
1300                 return 0;
1301
1302         case Opt_size:
1303                 /* memparse() will accept a K/M/G without a digit */
1304                 if (!isdigit(param->string[0]))
1305                         goto bad_val;
1306                 ctx->max_size_opt = memparse(param->string, &rest);
1307                 ctx->max_val_type = SIZE_STD;
1308                 if (*rest == '%')
1309                         ctx->max_val_type = SIZE_PERCENT;
1310                 return 0;
1311
1312         case Opt_nr_inodes:
1313                 /* memparse() will accept a K/M/G without a digit */
1314                 if (!isdigit(param->string[0]))
1315                         goto bad_val;
1316                 ctx->nr_inodes = memparse(param->string, &rest);
1317                 return 0;
1318
1319         case Opt_pagesize:
1320                 ps = memparse(param->string, &rest);
1321                 ctx->hstate = size_to_hstate(ps);
1322                 if (!ctx->hstate) {
1323                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1324                         return -EINVAL;
1325                 }
1326                 return 0;
1327
1328         case Opt_min_size:
1329                 /* memparse() will accept a K/M/G without a digit */
1330                 if (!isdigit(param->string[0]))
1331                         goto bad_val;
1332                 ctx->min_size_opt = memparse(param->string, &rest);
1333                 ctx->min_val_type = SIZE_STD;
1334                 if (*rest == '%')
1335                         ctx->min_val_type = SIZE_PERCENT;
1336                 return 0;
1337
1338         default:
1339                 return -EINVAL;
1340         }
1341
1342 bad_val:
1343         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1344                       param->string, param->key);
1345 }
1346
1347 /*
1348  * Validate the parsed options.
1349  */
1350 static int hugetlbfs_validate(struct fs_context *fc)
1351 {
1352         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1353
1354         /*
1355          * Use huge page pool size (in hstate) to convert the size
1356          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1357          */
1358         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1359                                                    ctx->max_size_opt,
1360                                                    ctx->max_val_type);
1361         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1362                                                    ctx->min_size_opt,
1363                                                    ctx->min_val_type);
1364
1365         /*
1366          * If max_size was specified, then min_size must be smaller
1367          */
1368         if (ctx->max_val_type > NO_SIZE &&
1369             ctx->min_hpages > ctx->max_hpages) {
1370                 pr_err("Minimum size can not be greater than maximum size\n");
1371                 return -EINVAL;
1372         }
1373
1374         return 0;
1375 }
1376
1377 static int
1378 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1379 {
1380         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1381         struct hugetlbfs_sb_info *sbinfo;
1382
1383         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1384         if (!sbinfo)
1385                 return -ENOMEM;
1386         sb->s_fs_info = sbinfo;
1387         spin_lock_init(&sbinfo->stat_lock);
1388         sbinfo->hstate          = ctx->hstate;
1389         sbinfo->max_inodes      = ctx->nr_inodes;
1390         sbinfo->free_inodes     = ctx->nr_inodes;
1391         sbinfo->spool           = NULL;
1392         sbinfo->uid             = ctx->uid;
1393         sbinfo->gid             = ctx->gid;
1394         sbinfo->mode            = ctx->mode;
1395
1396         /*
1397          * Allocate and initialize subpool if maximum or minimum size is
1398          * specified.  Any needed reservations (for minimum size) are taken
1399          * taken when the subpool is created.
1400          */
1401         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1402                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1403                                                      ctx->max_hpages,
1404                                                      ctx->min_hpages);
1405                 if (!sbinfo->spool)
1406                         goto out_free;
1407         }
1408         sb->s_maxbytes = MAX_LFS_FILESIZE;
1409         sb->s_blocksize = huge_page_size(ctx->hstate);
1410         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1411         sb->s_magic = HUGETLBFS_MAGIC;
1412         sb->s_op = &hugetlbfs_ops;
1413         sb->s_time_gran = 1;
1414
1415         /*
1416          * Due to the special and limited functionality of hugetlbfs, it does
1417          * not work well as a stacking filesystem.
1418          */
1419         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1420         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1421         if (!sb->s_root)
1422                 goto out_free;
1423         return 0;
1424 out_free:
1425         kfree(sbinfo->spool);
1426         kfree(sbinfo);
1427         return -ENOMEM;
1428 }
1429
1430 static int hugetlbfs_get_tree(struct fs_context *fc)
1431 {
1432         int err = hugetlbfs_validate(fc);
1433         if (err)
1434                 return err;
1435         return get_tree_nodev(fc, hugetlbfs_fill_super);
1436 }
1437
1438 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1439 {
1440         kfree(fc->fs_private);
1441 }
1442
1443 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1444         .free           = hugetlbfs_fs_context_free,
1445         .parse_param    = hugetlbfs_parse_param,
1446         .get_tree       = hugetlbfs_get_tree,
1447 };
1448
1449 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1450 {
1451         struct hugetlbfs_fs_context *ctx;
1452
1453         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1454         if (!ctx)
1455                 return -ENOMEM;
1456
1457         ctx->max_hpages = -1; /* No limit on size by default */
1458         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1459         ctx->uid        = current_fsuid();
1460         ctx->gid        = current_fsgid();
1461         ctx->mode       = 0755;
1462         ctx->hstate     = &default_hstate;
1463         ctx->min_hpages = -1; /* No default minimum size */
1464         ctx->max_val_type = NO_SIZE;
1465         ctx->min_val_type = NO_SIZE;
1466         fc->fs_private = ctx;
1467         fc->ops = &hugetlbfs_fs_context_ops;
1468         return 0;
1469 }
1470
1471 static struct file_system_type hugetlbfs_fs_type = {
1472         .name                   = "hugetlbfs",
1473         .init_fs_context        = hugetlbfs_init_fs_context,
1474         .parameters             = hugetlb_fs_parameters,
1475         .kill_sb                = kill_litter_super,
1476 };
1477
1478 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1479
1480 static int can_do_hugetlb_shm(void)
1481 {
1482         kgid_t shm_group;
1483         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1484         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1485 }
1486
1487 static int get_hstate_idx(int page_size_log)
1488 {
1489         struct hstate *h = hstate_sizelog(page_size_log);
1490
1491         if (!h)
1492                 return -1;
1493         return hstate_index(h);
1494 }
1495
1496 /*
1497  * Note that size should be aligned to proper hugepage size in caller side,
1498  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1499  */
1500 struct file *hugetlb_file_setup(const char *name, size_t size,
1501                                 vm_flags_t acctflag, int creat_flags,
1502                                 int page_size_log)
1503 {
1504         struct inode *inode;
1505         struct vfsmount *mnt;
1506         int hstate_idx;
1507         struct file *file;
1508
1509         hstate_idx = get_hstate_idx(page_size_log);
1510         if (hstate_idx < 0)
1511                 return ERR_PTR(-ENODEV);
1512
1513         mnt = hugetlbfs_vfsmount[hstate_idx];
1514         if (!mnt)
1515                 return ERR_PTR(-ENOENT);
1516
1517         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1518                 struct ucounts *ucounts = current_ucounts();
1519
1520                 if (user_shm_lock(size, ucounts)) {
1521                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1522                                 current->comm, current->pid);
1523                         user_shm_unlock(size, ucounts);
1524                 }
1525                 return ERR_PTR(-EPERM);
1526         }
1527
1528         file = ERR_PTR(-ENOSPC);
1529         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1530         if (!inode)
1531                 goto out;
1532         if (creat_flags == HUGETLB_SHMFS_INODE)
1533                 inode->i_flags |= S_PRIVATE;
1534
1535         inode->i_size = size;
1536         clear_nlink(inode);
1537
1538         if (!hugetlb_reserve_pages(inode, 0,
1539                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1540                         acctflag))
1541                 file = ERR_PTR(-ENOMEM);
1542         else
1543                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1544                                         &hugetlbfs_file_operations);
1545         if (!IS_ERR(file))
1546                 return file;
1547
1548         iput(inode);
1549 out:
1550         return file;
1551 }
1552
1553 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1554 {
1555         struct fs_context *fc;
1556         struct vfsmount *mnt;
1557
1558         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1559         if (IS_ERR(fc)) {
1560                 mnt = ERR_CAST(fc);
1561         } else {
1562                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1563                 ctx->hstate = h;
1564                 mnt = fc_mount(fc);
1565                 put_fs_context(fc);
1566         }
1567         if (IS_ERR(mnt))
1568                 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1569                        huge_page_size(h) >> 10);
1570         return mnt;
1571 }
1572
1573 static int __init init_hugetlbfs_fs(void)
1574 {
1575         struct vfsmount *mnt;
1576         struct hstate *h;
1577         int error;
1578         int i;
1579
1580         if (!hugepages_supported()) {
1581                 pr_info("disabling because there are no supported hugepage sizes\n");
1582                 return -ENOTSUPP;
1583         }
1584
1585         error = -ENOMEM;
1586         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1587                                         sizeof(struct hugetlbfs_inode_info),
1588                                         0, SLAB_ACCOUNT, init_once);
1589         if (hugetlbfs_inode_cachep == NULL)
1590                 goto out;
1591
1592         error = register_filesystem(&hugetlbfs_fs_type);
1593         if (error)
1594                 goto out_free;
1595
1596         /* default hstate mount is required */
1597         mnt = mount_one_hugetlbfs(&default_hstate);
1598         if (IS_ERR(mnt)) {
1599                 error = PTR_ERR(mnt);
1600                 goto out_unreg;
1601         }
1602         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1603
1604         /* other hstates are optional */
1605         i = 0;
1606         for_each_hstate(h) {
1607                 if (i == default_hstate_idx) {
1608                         i++;
1609                         continue;
1610                 }
1611
1612                 mnt = mount_one_hugetlbfs(h);
1613                 if (IS_ERR(mnt))
1614                         hugetlbfs_vfsmount[i] = NULL;
1615                 else
1616                         hugetlbfs_vfsmount[i] = mnt;
1617                 i++;
1618         }
1619
1620         return 0;
1621
1622  out_unreg:
1623         (void)unregister_filesystem(&hugetlbfs_fs_type);
1624  out_free:
1625         kmem_cache_destroy(hugetlbfs_inode_cachep);
1626  out:
1627         return error;
1628 }
1629 fs_initcall(init_hugetlbfs_fs)