2 * linux/fs/hfsplus/btree.c
5 * Brad Boyer (flar@allandria.com)
6 * (C) 2003 Ardis Technologies <roman@ardistech.com>
8 * Handle opening/closing btree
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/log2.h>
15 #include "hfsplus_fs.h"
16 #include "hfsplus_raw.h"
19 * Initial source code of clump size calculation is gotten
20 * from http://opensource.apple.com/tarballs/diskdev_cmds/
22 #define CLUMP_ENTRIES 15
24 static short clumptbl[CLUMP_ENTRIES * 3] = {
26 * Volume Attributes Catalog Extents
27 * Size Clump (MB) Clump (MB) Clump (MB)
34 * For volumes 16GB and larger, we want to make sure that a full OS
35 * install won't require fragmentation of the Catalog or Attributes
36 * B-trees. We do this by making the clump sizes sufficiently large,
37 * and by leaving a gap after the B-trees for them to grow into.
39 * For SnowLeopard 10A298, a FullNetInstall with all packages selected
41 * Catalog B-tree Header
46 * Attributes B-tree Header
52 * We also want Time Machine backup volumes to have a sufficiently
53 * large clump size to reduce fragmentation.
55 * The series of numbers for Catalog and Attribute form a geometric
56 * series. For Catalog (16GB to 512GB), each term is 8**(1/5) times
57 * the previous term. For Attributes (16GB to 512GB), each term is
58 * 4**(1/5) times the previous term. For 1TB to 16TB, each term is
59 * 2**(1/5) times the previous term.
63 /* 64GB */ 111, 74, 7,
64 /* 128GB */ 147, 111, 8,
65 /* 256GB */ 194, 169, 9,
66 /* 512GB */ 256, 256, 11,
67 /* 1TB */ 294, 294, 14,
68 /* 2TB */ 338, 338, 16,
69 /* 4TB */ 388, 388, 20,
70 /* 8TB */ 446, 446, 25,
71 /* 16TB */ 512, 512, 32
74 u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size,
75 u64 sectors, int file_id)
77 u32 mod = max(node_size, block_size);
82 /* Figure out which column of the above table to use for this file. */
84 case HFSPLUS_ATTR_CNID:
87 case HFSPLUS_CAT_CNID:
96 * The default clump size is 0.8% of the volume size. And
97 * it must also be a multiple of the node and block size.
99 if (sectors < 0x200000) {
100 clump_size = sectors << 2; /* 0.8 % */
101 if (clump_size < (8 * node_size))
102 clump_size = 8 * node_size;
104 /* turn exponent into table index... */
105 for (i = 0, sectors = sectors >> 22;
106 sectors && (i < CLUMP_ENTRIES - 1);
107 ++i, sectors = sectors >> 1) {
111 clump_size = clumptbl[column + (i) * 3] * 1024 * 1024;
115 * Round the clump size to a multiple of node and block size.
116 * NOTE: This rounds down.
122 * Rounding down could have rounded down to 0 if the block size was
123 * greater than the clump size. If so, just use one block or node.
131 /* Get a reference to a B*Tree and do some initial checks */
132 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
134 struct hfs_btree *tree;
135 struct hfs_btree_header_rec *head;
136 struct address_space *mapping;
141 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
145 mutex_init(&tree->tree_lock);
146 spin_lock_init(&tree->hash_lock);
149 inode = hfsplus_iget(sb, id);
154 if (!HFSPLUS_I(tree->inode)->first_blocks) {
155 pr_err("invalid btree extent records (0 size)\n");
159 mapping = tree->inode->i_mapping;
160 page = read_mapping_page(mapping, 0, NULL);
164 /* Load the header */
165 head = (struct hfs_btree_header_rec *)(kmap(page) +
166 sizeof(struct hfs_bnode_desc));
167 tree->root = be32_to_cpu(head->root);
168 tree->leaf_count = be32_to_cpu(head->leaf_count);
169 tree->leaf_head = be32_to_cpu(head->leaf_head);
170 tree->leaf_tail = be32_to_cpu(head->leaf_tail);
171 tree->node_count = be32_to_cpu(head->node_count);
172 tree->free_nodes = be32_to_cpu(head->free_nodes);
173 tree->attributes = be32_to_cpu(head->attributes);
174 tree->node_size = be16_to_cpu(head->node_size);
175 tree->max_key_len = be16_to_cpu(head->max_key_len);
176 tree->depth = be16_to_cpu(head->depth);
178 /* Verify the tree and set the correct compare function */
180 case HFSPLUS_EXT_CNID:
181 if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
182 pr_err("invalid extent max_key_len %d\n",
186 if (tree->attributes & HFS_TREE_VARIDXKEYS) {
187 pr_err("invalid extent btree flag\n");
191 tree->keycmp = hfsplus_ext_cmp_key;
193 case HFSPLUS_CAT_CNID:
194 if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
195 pr_err("invalid catalog max_key_len %d\n",
199 if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
200 pr_err("invalid catalog btree flag\n");
204 if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
205 (head->key_type == HFSPLUS_KEY_BINARY))
206 tree->keycmp = hfsplus_cat_bin_cmp_key;
208 tree->keycmp = hfsplus_cat_case_cmp_key;
209 set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
212 case HFSPLUS_ATTR_CNID:
213 if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) {
214 pr_err("invalid attributes max_key_len %d\n",
218 tree->keycmp = hfsplus_attr_bin_cmp_key;
221 pr_err("unknown B*Tree requested\n");
225 if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
226 pr_err("invalid btree flag\n");
230 size = tree->node_size;
231 if (!is_power_of_2(size))
233 if (!tree->node_count)
236 tree->node_size_shift = ffs(size) - 1;
238 tree->pages_per_bnode =
239 (tree->node_size + PAGE_SIZE - 1) >>
249 tree->inode->i_mapping->a_ops = &hfsplus_aops;
256 /* Release resources used by a btree */
257 void hfs_btree_close(struct hfs_btree *tree)
259 struct hfs_bnode *node;
265 for (i = 0; i < NODE_HASH_SIZE; i++) {
266 while ((node = tree->node_hash[i])) {
267 tree->node_hash[i] = node->next_hash;
268 if (atomic_read(&node->refcnt))
269 pr_crit("node %d:%d "
270 "still has %d user(s)!\n",
271 node->tree->cnid, node->this,
272 atomic_read(&node->refcnt));
273 hfs_bnode_free(node);
274 tree->node_hash_cnt--;
281 int hfs_btree_write(struct hfs_btree *tree)
283 struct hfs_btree_header_rec *head;
284 struct hfs_bnode *node;
287 node = hfs_bnode_find(tree, 0);
291 /* Load the header */
292 page = node->page[0];
293 head = (struct hfs_btree_header_rec *)(kmap(page) +
294 sizeof(struct hfs_bnode_desc));
296 head->root = cpu_to_be32(tree->root);
297 head->leaf_count = cpu_to_be32(tree->leaf_count);
298 head->leaf_head = cpu_to_be32(tree->leaf_head);
299 head->leaf_tail = cpu_to_be32(tree->leaf_tail);
300 head->node_count = cpu_to_be32(tree->node_count);
301 head->free_nodes = cpu_to_be32(tree->free_nodes);
302 head->attributes = cpu_to_be32(tree->attributes);
303 head->depth = cpu_to_be16(tree->depth);
306 set_page_dirty(page);
311 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
313 struct hfs_btree *tree = prev->tree;
314 struct hfs_bnode *node;
315 struct hfs_bnode_desc desc;
318 node = hfs_bnode_create(tree, idx);
324 cnid = cpu_to_be32(idx);
325 hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
327 node->type = HFS_NODE_MAP;
329 hfs_bnode_clear(node, 0, tree->node_size);
332 desc.type = HFS_NODE_MAP;
334 desc.num_recs = cpu_to_be16(1);
336 hfs_bnode_write(node, &desc, 0, sizeof(desc));
337 hfs_bnode_write_u16(node, 14, 0x8000);
338 hfs_bnode_write_u16(node, tree->node_size - 2, 14);
339 hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
344 /* Make sure @tree has enough space for the @rsvd_nodes */
345 int hfs_bmap_reserve(struct hfs_btree *tree, int rsvd_nodes)
347 struct inode *inode = tree->inode;
348 struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
355 while (tree->free_nodes < rsvd_nodes) {
356 res = hfsplus_file_extend(inode, hfs_bnode_need_zeroout(tree));
359 hip->phys_size = inode->i_size =
360 (loff_t)hip->alloc_blocks <<
361 HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
363 hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
364 inode_set_bytes(inode, inode->i_size);
365 count = inode->i_size >> tree->node_size_shift;
366 tree->free_nodes += count - tree->node_count;
367 tree->node_count = count;
372 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
374 struct hfs_bnode *node, *next_node;
383 res = hfs_bmap_reserve(tree, 1);
388 node = hfs_bnode_find(tree, nidx);
391 len = hfs_brec_lenoff(node, 2, &off16);
394 off += node->page_offset;
395 pagep = node->page + (off >> PAGE_SHIFT);
404 for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
408 set_page_dirty(*pagep);
411 mark_inode_dirty(tree->inode);
413 return hfs_bnode_create(tree,
418 if (++off >= PAGE_SIZE) {
420 data = kmap(*++pagep);
429 hfs_dbg(BNODE_MOD, "create new bmap node\n");
430 next_node = hfs_bmap_new_bmap(node, idx);
432 next_node = hfs_bnode_find(tree, nidx);
434 if (IS_ERR(next_node))
438 len = hfs_brec_lenoff(node, 0, &off16);
440 off += node->page_offset;
441 pagep = node->page + (off >> PAGE_SHIFT);
447 void hfs_bmap_free(struct hfs_bnode *node)
449 struct hfs_btree *tree;
455 hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this);
459 node = hfs_bnode_find(tree, 0);
462 len = hfs_brec_lenoff(node, 2, &off);
463 while (nidx >= len * 8) {
470 pr_crit("unable to free bnode %u. "
477 node = hfs_bnode_find(tree, i);
480 if (node->type != HFS_NODE_MAP) {
482 pr_crit("invalid bmap found! "
484 node->this, node->type);
488 len = hfs_brec_lenoff(node, 0, &off);
490 off += node->page_offset + nidx / 8;
491 page = node->page[off >> PAGE_SHIFT];
494 m = 1 << (~nidx & 7);
497 pr_crit("trying to free free bnode "
499 node->this, node->type);
504 data[off] = byte & ~m;
505 set_page_dirty(page);
509 mark_inode_dirty(tree->inode);