2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/sched/signal.h>
24 #include "trace_gfs2.h"
27 * gfs2_update_stats - Update time based stats
28 * @mv: Pointer to mean/variance structure to update
29 * @sample: New data to include
31 * @delta is the difference between the current rtt sample and the
32 * running average srtt. We add 1/8 of that to the srtt in order to
33 * update the current srtt estimate. The variance estimate is a bit
34 * more complicated. We subtract the current variance estimate from
35 * the abs value of the @delta and add 1/4 of that to the running
36 * total. That's equivalent to 3/4 of the current variance
37 * estimate plus 1/4 of the abs of @delta.
39 * Note that the index points at the array entry containing the smoothed
40 * mean value, and the variance is always in the following entry
42 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
43 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
44 * they are not scaled fixed point.
47 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
50 s64 delta = sample - s->stats[index];
51 s->stats[index] += (delta >> 3);
53 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
57 * gfs2_update_reply_times - Update locking statistics
58 * @gl: The glock to update
60 * This assumes that gl->gl_dstamp has been set earlier.
62 * The rtt (lock round trip time) is an estimate of the time
63 * taken to perform a dlm lock request. We update it on each
66 * The blocking flag is set on the glock for all dlm requests
67 * which may potentially block due to lock requests from other nodes.
68 * DLM requests where the current lock state is exclusive, the
69 * requested state is null (or unlocked) or where the TRY or
70 * TRY_1CB flags are set are classified as non-blocking. All
71 * other DLM requests are counted as (potentially) blocking.
73 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
75 struct gfs2_pcpu_lkstats *lks;
76 const unsigned gltype = gl->gl_name.ln_type;
77 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
78 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
82 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
83 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
84 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
85 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
88 trace_gfs2_glock_lock_time(gl, rtt);
92 * gfs2_update_request_times - Update locking statistics
93 * @gl: The glock to update
95 * The irt (lock inter-request times) measures the average time
96 * between requests to the dlm. It is updated immediately before
100 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
102 struct gfs2_pcpu_lkstats *lks;
103 const unsigned gltype = gl->gl_name.ln_type;
108 dstamp = gl->gl_dstamp;
109 gl->gl_dstamp = ktime_get_real();
110 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
111 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
112 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
113 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
117 static void gdlm_ast(void *arg)
119 struct gfs2_glock *gl = arg;
120 unsigned ret = gl->gl_state;
122 gfs2_update_reply_times(gl);
123 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
125 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
126 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
128 switch (gl->gl_lksb.sb_status) {
129 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 case -DLM_ECANCEL: /* Cancel while getting lock */
133 ret |= LM_OUT_CANCELED;
135 case -EAGAIN: /* Try lock fails */
136 case -EDEADLK: /* Deadlock detected */
138 case -ETIMEDOUT: /* Canceled due to timeout */
141 case 0: /* Success */
143 default: /* Something unexpected */
148 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
149 if (gl->gl_req == LM_ST_SHARED)
150 ret = LM_ST_DEFERRED;
151 else if (gl->gl_req == LM_ST_DEFERRED)
157 set_bit(GLF_INITIAL, &gl->gl_flags);
158 gfs2_glock_complete(gl, ret);
161 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
162 gl->gl_lksb.sb_lkid = 0;
163 gfs2_glock_complete(gl, ret);
166 static void gdlm_bast(void *arg, int mode)
168 struct gfs2_glock *gl = arg;
172 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
175 gfs2_glock_cb(gl, LM_ST_DEFERRED);
178 gfs2_glock_cb(gl, LM_ST_SHARED);
181 pr_err("unknown bast mode %d\n", mode);
186 /* convert gfs lock-state to dlm lock-mode */
188 static int make_mode(const unsigned int lmstate)
193 case LM_ST_EXCLUSIVE:
200 pr_err("unknown LM state %d\n", lmstate);
205 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 if (gl->gl_lksb.sb_lvbptr)
211 lkf |= DLM_LKF_VALBLK;
213 if (gfs_flags & LM_FLAG_TRY)
214 lkf |= DLM_LKF_NOQUEUE;
216 if (gfs_flags & LM_FLAG_TRY_1CB) {
217 lkf |= DLM_LKF_NOQUEUE;
218 lkf |= DLM_LKF_NOQUEUEBAST;
221 if (gfs_flags & LM_FLAG_PRIORITY) {
222 lkf |= DLM_LKF_NOORDER;
223 lkf |= DLM_LKF_HEADQUE;
226 if (gfs_flags & LM_FLAG_ANY) {
227 if (req == DLM_LOCK_PR)
228 lkf |= DLM_LKF_ALTCW;
229 else if (req == DLM_LOCK_CW)
230 lkf |= DLM_LKF_ALTPR;
235 if (gl->gl_lksb.sb_lkid != 0) {
236 lkf |= DLM_LKF_CONVERT;
237 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
238 lkf |= DLM_LKF_QUECVT;
244 static void gfs2_reverse_hex(char *c, u64 value)
248 *c-- = hex_asc[value & 0x0f];
253 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
256 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
259 char strname[GDLM_STRNAME_BYTES] = "";
261 req = make_mode(req_state);
262 lkf = make_flags(gl, flags, req);
263 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
264 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
265 if (gl->gl_lksb.sb_lkid) {
266 gfs2_update_request_times(gl);
268 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
269 strname[GDLM_STRNAME_BYTES - 1] = '\0';
270 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
271 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
272 gl->gl_dstamp = ktime_get_real();
275 * Submit the actual lock request.
278 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
279 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
282 static void gdlm_put_lock(struct gfs2_glock *gl)
284 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
285 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
288 if (gl->gl_lksb.sb_lkid == 0) {
293 clear_bit(GLF_BLOCKING, &gl->gl_flags);
294 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
296 gfs2_update_request_times(gl);
298 /* don't want to call dlm if we've unmounted the lock protocol */
299 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
303 /* don't want to skip dlm_unlock writing the lvb when lock has one */
305 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
306 !gl->gl_lksb.sb_lvbptr) {
311 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
314 pr_err("gdlm_unlock %x,%llx err=%d\n",
316 (unsigned long long)gl->gl_name.ln_number, error);
321 static void gdlm_cancel(struct gfs2_glock *gl)
323 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
324 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
328 * dlm/gfs2 recovery coordination using dlm_recover callbacks
330 * 1. dlm_controld sees lockspace members change
331 * 2. dlm_controld blocks dlm-kernel locking activity
332 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
333 * 4. dlm_controld starts and finishes its own user level recovery
334 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
335 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
336 * 7. dlm_recoverd does its own lock recovery
337 * 8. dlm_recoverd unblocks dlm-kernel locking activity
338 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
339 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
340 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
341 * 12. gfs2_recover dequeues and recovers journals of failed nodes
342 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
343 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
344 * 15. gfs2_control unblocks normal locking when all journals are recovered
346 * - failures during recovery
348 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
349 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
350 * recovering for a prior failure. gfs2_control needs a way to detect
351 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
352 * the recover_block and recover_start values.
354 * recover_done() provides a new lockspace generation number each time it
355 * is called (step 9). This generation number is saved as recover_start.
356 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
357 * recover_block = recover_start. So, while recover_block is equal to
358 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
359 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
361 * - more specific gfs2 steps in sequence above
363 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
364 * 6. recover_slot records any failed jids (maybe none)
365 * 9. recover_done sets recover_start = new generation number
366 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
367 * 12. gfs2_recover does journal recoveries for failed jids identified above
368 * 14. gfs2_control clears control_lock lvb bits for recovered jids
369 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
370 * again) then do nothing, otherwise if recover_start > recover_block
371 * then clear BLOCK_LOCKS.
373 * - parallel recovery steps across all nodes
375 * All nodes attempt to update the control_lock lvb with the new generation
376 * number and jid bits, but only the first to get the control_lock EX will
377 * do so; others will see that it's already done (lvb already contains new
378 * generation number.)
380 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
381 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
382 * . One node gets control_lock first and writes the lvb, others see it's done
383 * . All nodes attempt to recover jids for which they see control_lock bits set
384 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
385 * . All nodes will eventually see all lvb bits clear and unblock locks
387 * - is there a problem with clearing an lvb bit that should be set
388 * and missing a journal recovery?
391 * 2. lvb bit set for step 1
392 * 3. jid recovered for step 1
393 * 4. jid taken again (new mount)
394 * 5. jid fails (for step 4)
395 * 6. lvb bit set for step 5 (will already be set)
396 * 7. lvb bit cleared for step 3
398 * This is not a problem because the failure in step 5 does not
399 * require recovery, because the mount in step 4 could not have
400 * progressed far enough to unblock locks and access the fs. The
401 * control_mount() function waits for all recoveries to be complete
402 * for the latest lockspace generation before ever unblocking locks
403 * and returning. The mount in step 4 waits until the recovery in
406 * - special case of first mounter: first node to mount the fs
408 * The first node to mount a gfs2 fs needs to check all the journals
409 * and recover any that need recovery before other nodes are allowed
410 * to mount the fs. (Others may begin mounting, but they must wait
411 * for the first mounter to be done before taking locks on the fs
412 * or accessing the fs.) This has two parts:
414 * 1. The mounted_lock tells a node it's the first to mount the fs.
415 * Each node holds the mounted_lock in PR while it's mounted.
416 * Each node tries to acquire the mounted_lock in EX when it mounts.
417 * If a node is granted the mounted_lock EX it means there are no
418 * other mounted nodes (no PR locks exist), and it is the first mounter.
419 * The mounted_lock is demoted to PR when first recovery is done, so
420 * others will fail to get an EX lock, but will get a PR lock.
422 * 2. The control_lock blocks others in control_mount() while the first
423 * mounter is doing first mount recovery of all journals.
424 * A mounting node needs to acquire control_lock in EX mode before
425 * it can proceed. The first mounter holds control_lock in EX while doing
426 * the first mount recovery, blocking mounts from other nodes, then demotes
427 * control_lock to NL when it's done (others_may_mount/first_done),
428 * allowing other nodes to continue mounting.
431 * control_lock EX/NOQUEUE success
432 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
434 * do first mounter recovery
435 * mounted_lock EX->PR
436 * control_lock EX->NL, write lvb generation
439 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
440 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
441 * mounted_lock PR/NOQUEUE success
442 * read lvb generation
443 * control_lock EX->NL
446 * - mount during recovery
448 * If a node mounts while others are doing recovery (not first mounter),
449 * the mounting node will get its initial recover_done() callback without
450 * having seen any previous failures/callbacks.
452 * It must wait for all recoveries preceding its mount to be finished
453 * before it unblocks locks. It does this by repeating the "other mounter"
454 * steps above until the lvb generation number is >= its mount generation
455 * number (from initial recover_done) and all lvb bits are clear.
457 * - control_lock lvb format
459 * 4 bytes generation number: the latest dlm lockspace generation number
460 * from recover_done callback. Indicates the jid bitmap has been updated
461 * to reflect all slot failures through that generation.
463 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
464 * that jid N needs recovery.
467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
473 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
474 memcpy(&gen, lvb_bits, sizeof(__le32));
475 *lvb_gen = le32_to_cpu(gen);
478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
482 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
483 gen = cpu_to_le32(lvb_gen);
484 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
487 static int all_jid_bits_clear(char *lvb)
489 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
490 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
493 static void sync_wait_cb(void *arg)
495 struct lm_lockstruct *ls = arg;
496 complete(&ls->ls_sync_wait);
499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
501 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
504 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
506 fs_err(sdp, "%s lkid %x error %d\n",
507 name, lksb->sb_lkid, error);
511 wait_for_completion(&ls->ls_sync_wait);
513 if (lksb->sb_status != -DLM_EUNLOCK) {
514 fs_err(sdp, "%s lkid %x status %d\n",
515 name, lksb->sb_lkid, lksb->sb_status);
521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
522 unsigned int num, struct dlm_lksb *lksb, char *name)
524 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
525 char strname[GDLM_STRNAME_BYTES];
528 memset(strname, 0, GDLM_STRNAME_BYTES);
529 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
531 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
532 strname, GDLM_STRNAME_BYTES - 1,
533 0, sync_wait_cb, ls, NULL);
535 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
536 name, lksb->sb_lkid, flags, mode, error);
540 wait_for_completion(&ls->ls_sync_wait);
542 status = lksb->sb_status;
544 if (status && status != -EAGAIN) {
545 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
546 name, lksb->sb_lkid, flags, mode, status);
552 static int mounted_unlock(struct gfs2_sbd *sdp)
554 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
555 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
560 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
562 &ls->ls_mounted_lksb, "mounted_lock");
565 static int control_unlock(struct gfs2_sbd *sdp)
567 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
573 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
574 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
575 &ls->ls_control_lksb, "control_lock");
578 static void gfs2_control_func(struct work_struct *work)
580 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
581 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
582 uint32_t block_gen, start_gen, lvb_gen, flags;
588 spin_lock(&ls->ls_recover_spin);
590 * No MOUNT_DONE means we're still mounting; control_mount()
591 * will set this flag, after which this thread will take over
592 * all further clearing of BLOCK_LOCKS.
594 * FIRST_MOUNT means this node is doing first mounter recovery,
595 * for which recovery control is handled by
596 * control_mount()/control_first_done(), not this thread.
598 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
599 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
600 spin_unlock(&ls->ls_recover_spin);
603 block_gen = ls->ls_recover_block;
604 start_gen = ls->ls_recover_start;
605 spin_unlock(&ls->ls_recover_spin);
608 * Equal block_gen and start_gen implies we are between
609 * recover_prep and recover_done callbacks, which means
610 * dlm recovery is in progress and dlm locking is blocked.
611 * There's no point trying to do any work until recover_done.
614 if (block_gen == start_gen)
618 * Propagate recover_submit[] and recover_result[] to lvb:
619 * dlm_recoverd adds to recover_submit[] jids needing recovery
620 * gfs2_recover adds to recover_result[] journal recovery results
622 * set lvb bit for jids in recover_submit[] if the lvb has not
623 * yet been updated for the generation of the failure
625 * clear lvb bit for jids in recover_result[] if the result of
626 * the journal recovery is SUCCESS
629 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
631 fs_err(sdp, "control lock EX error %d\n", error);
635 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
637 spin_lock(&ls->ls_recover_spin);
638 if (block_gen != ls->ls_recover_block ||
639 start_gen != ls->ls_recover_start) {
640 fs_info(sdp, "recover generation %u block1 %u %u\n",
641 start_gen, block_gen, ls->ls_recover_block);
642 spin_unlock(&ls->ls_recover_spin);
643 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
647 recover_size = ls->ls_recover_size;
649 if (lvb_gen <= start_gen) {
651 * Clear lvb bits for jids we've successfully recovered.
652 * Because all nodes attempt to recover failed journals,
653 * a journal can be recovered multiple times successfully
654 * in succession. Only the first will really do recovery,
655 * the others find it clean, but still report a successful
656 * recovery. So, another node may have already recovered
657 * the jid and cleared the lvb bit for it.
659 for (i = 0; i < recover_size; i++) {
660 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
663 ls->ls_recover_result[i] = 0;
665 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
668 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
673 if (lvb_gen == start_gen) {
675 * Failed slots before start_gen are already set in lvb.
677 for (i = 0; i < recover_size; i++) {
678 if (!ls->ls_recover_submit[i])
680 if (ls->ls_recover_submit[i] < lvb_gen)
681 ls->ls_recover_submit[i] = 0;
683 } else if (lvb_gen < start_gen) {
685 * Failed slots before start_gen are not yet set in lvb.
687 for (i = 0; i < recover_size; i++) {
688 if (!ls->ls_recover_submit[i])
690 if (ls->ls_recover_submit[i] < start_gen) {
691 ls->ls_recover_submit[i] = 0;
692 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
695 /* even if there are no bits to set, we need to write the
696 latest generation to the lvb */
700 * we should be getting a recover_done() for lvb_gen soon
703 spin_unlock(&ls->ls_recover_spin);
706 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
707 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
709 flags = DLM_LKF_CONVERT;
712 error = control_lock(sdp, DLM_LOCK_NL, flags);
714 fs_err(sdp, "control lock NL error %d\n", error);
719 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
720 * and clear a jid bit in the lvb if the recovery is a success.
721 * Eventually all journals will be recovered, all jid bits will
722 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
725 for (i = 0; i < recover_size; i++) {
726 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
727 fs_info(sdp, "recover generation %u jid %d\n",
729 gfs2_recover_set(sdp, i);
737 * No more jid bits set in lvb, all recovery is done, unblock locks
738 * (unless a new recover_prep callback has occured blocking locks
739 * again while working above)
742 spin_lock(&ls->ls_recover_spin);
743 if (ls->ls_recover_block == block_gen &&
744 ls->ls_recover_start == start_gen) {
745 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
746 spin_unlock(&ls->ls_recover_spin);
747 fs_info(sdp, "recover generation %u done\n", start_gen);
748 gfs2_glock_thaw(sdp);
750 fs_info(sdp, "recover generation %u block2 %u %u\n",
751 start_gen, block_gen, ls->ls_recover_block);
752 spin_unlock(&ls->ls_recover_spin);
756 static int control_mount(struct gfs2_sbd *sdp)
758 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
759 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
764 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
765 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
766 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
767 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
768 init_completion(&ls->ls_sync_wait);
770 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
772 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
774 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
778 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
780 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
784 mounted_mode = DLM_LOCK_NL;
787 if (retries++ && signal_pending(current)) {
793 * We always start with both locks in NL. control_lock is
794 * demoted to NL below so we don't need to do it here.
797 if (mounted_mode != DLM_LOCK_NL) {
798 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
801 mounted_mode = DLM_LOCK_NL;
805 * Other nodes need to do some work in dlm recovery and gfs2_control
806 * before the recover_done and control_lock will be ready for us below.
807 * A delay here is not required but often avoids having to retry.
810 msleep_interruptible(500);
813 * Acquire control_lock in EX and mounted_lock in either EX or PR.
814 * control_lock lvb keeps track of any pending journal recoveries.
815 * mounted_lock indicates if any other nodes have the fs mounted.
818 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
819 if (error == -EAGAIN) {
822 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
827 * If we're a spectator, we don't want to take the lock in EX because
828 * we cannot do the first-mount responsibility it implies: recovery.
830 if (sdp->sd_args.ar_spectator)
833 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
835 mounted_mode = DLM_LOCK_EX;
837 } else if (error != -EAGAIN) {
838 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
842 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
844 mounted_mode = DLM_LOCK_PR;
847 /* not even -EAGAIN should happen here */
848 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
854 * If we got both locks above in EX, then we're the first mounter.
855 * If not, then we need to wait for the control_lock lvb to be
856 * updated by other mounted nodes to reflect our mount generation.
858 * In simple first mounter cases, first mounter will see zero lvb_gen,
859 * but in cases where all existing nodes leave/fail before mounting
860 * nodes finish control_mount, then all nodes will be mounting and
861 * lvb_gen will be non-zero.
864 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
866 if (lvb_gen == 0xFFFFFFFF) {
867 /* special value to force mount attempts to fail */
868 fs_err(sdp, "control_mount control_lock disabled\n");
873 if (mounted_mode == DLM_LOCK_EX) {
874 /* first mounter, keep both EX while doing first recovery */
875 spin_lock(&ls->ls_recover_spin);
876 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
877 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
878 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
879 spin_unlock(&ls->ls_recover_spin);
880 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
884 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
889 * We are not first mounter, now we need to wait for the control_lock
890 * lvb generation to be >= the generation from our first recover_done
891 * and all lvb bits to be clear (no pending journal recoveries.)
894 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
895 /* journals need recovery, wait until all are clear */
896 fs_info(sdp, "control_mount wait for journal recovery\n");
900 spin_lock(&ls->ls_recover_spin);
901 block_gen = ls->ls_recover_block;
902 start_gen = ls->ls_recover_start;
903 mount_gen = ls->ls_recover_mount;
905 if (lvb_gen < mount_gen) {
906 /* wait for mounted nodes to update control_lock lvb to our
907 generation, which might include new recovery bits set */
908 if (sdp->sd_args.ar_spectator) {
909 fs_info(sdp, "Recovery is required. Waiting for a "
910 "non-spectator to mount.\n");
911 msleep_interruptible(1000);
913 fs_info(sdp, "control_mount wait1 block %u start %u "
914 "mount %u lvb %u flags %lx\n", block_gen,
915 start_gen, mount_gen, lvb_gen,
916 ls->ls_recover_flags);
918 spin_unlock(&ls->ls_recover_spin);
922 if (lvb_gen != start_gen) {
923 /* wait for mounted nodes to update control_lock lvb to the
924 latest recovery generation */
925 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
926 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
927 lvb_gen, ls->ls_recover_flags);
928 spin_unlock(&ls->ls_recover_spin);
932 if (block_gen == start_gen) {
933 /* dlm recovery in progress, wait for it to finish */
934 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
935 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
936 lvb_gen, ls->ls_recover_flags);
937 spin_unlock(&ls->ls_recover_spin);
941 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
942 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
943 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
944 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
945 spin_unlock(&ls->ls_recover_spin);
954 static int control_first_done(struct gfs2_sbd *sdp)
956 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
957 uint32_t start_gen, block_gen;
961 spin_lock(&ls->ls_recover_spin);
962 start_gen = ls->ls_recover_start;
963 block_gen = ls->ls_recover_block;
965 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
966 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
967 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
968 /* sanity check, should not happen */
969 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
970 start_gen, block_gen, ls->ls_recover_flags);
971 spin_unlock(&ls->ls_recover_spin);
976 if (start_gen == block_gen) {
978 * Wait for the end of a dlm recovery cycle to switch from
979 * first mounter recovery. We can ignore any recover_slot
980 * callbacks between the recover_prep and next recover_done
981 * because we are still the first mounter and any failed nodes
982 * have not fully mounted, so they don't need recovery.
984 spin_unlock(&ls->ls_recover_spin);
985 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
987 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
988 TASK_UNINTERRUPTIBLE);
992 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
993 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
994 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
995 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
996 spin_unlock(&ls->ls_recover_spin);
998 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
999 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1001 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1003 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1005 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1007 fs_err(sdp, "control_first_done control NL error %d\n", error);
1013 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1014 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1015 * gfs2 jids start at 0, so jid = slot - 1)
1018 #define RECOVER_SIZE_INC 16
1020 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1023 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1024 uint32_t *submit = NULL;
1025 uint32_t *result = NULL;
1026 uint32_t old_size, new_size;
1029 if (!ls->ls_lvb_bits) {
1030 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1031 if (!ls->ls_lvb_bits)
1036 for (i = 0; i < num_slots; i++) {
1037 if (max_jid < slots[i].slot - 1)
1038 max_jid = slots[i].slot - 1;
1041 old_size = ls->ls_recover_size;
1043 if (old_size >= max_jid + 1)
1046 new_size = old_size + RECOVER_SIZE_INC;
1048 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1049 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1050 if (!submit || !result) {
1056 spin_lock(&ls->ls_recover_spin);
1057 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1058 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1059 kfree(ls->ls_recover_submit);
1060 kfree(ls->ls_recover_result);
1061 ls->ls_recover_submit = submit;
1062 ls->ls_recover_result = result;
1063 ls->ls_recover_size = new_size;
1064 spin_unlock(&ls->ls_recover_spin);
1068 static void free_recover_size(struct lm_lockstruct *ls)
1070 kfree(ls->ls_lvb_bits);
1071 kfree(ls->ls_recover_submit);
1072 kfree(ls->ls_recover_result);
1073 ls->ls_recover_submit = NULL;
1074 ls->ls_recover_result = NULL;
1075 ls->ls_recover_size = 0;
1076 ls->ls_lvb_bits = NULL;
1079 /* dlm calls before it does lock recovery */
1081 static void gdlm_recover_prep(void *arg)
1083 struct gfs2_sbd *sdp = arg;
1084 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1086 spin_lock(&ls->ls_recover_spin);
1087 ls->ls_recover_block = ls->ls_recover_start;
1088 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1090 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1091 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1092 spin_unlock(&ls->ls_recover_spin);
1095 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1096 spin_unlock(&ls->ls_recover_spin);
1099 /* dlm calls after recover_prep has been completed on all lockspace members;
1100 identifies slot/jid of failed member */
1102 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1104 struct gfs2_sbd *sdp = arg;
1105 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1106 int jid = slot->slot - 1;
1108 spin_lock(&ls->ls_recover_spin);
1109 if (ls->ls_recover_size < jid + 1) {
1110 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1111 jid, ls->ls_recover_block, ls->ls_recover_size);
1112 spin_unlock(&ls->ls_recover_spin);
1116 if (ls->ls_recover_submit[jid]) {
1117 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1118 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1120 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1121 spin_unlock(&ls->ls_recover_spin);
1124 /* dlm calls after recover_slot and after it completes lock recovery */
1126 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1127 int our_slot, uint32_t generation)
1129 struct gfs2_sbd *sdp = arg;
1130 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1132 /* ensure the ls jid arrays are large enough */
1133 set_recover_size(sdp, slots, num_slots);
1135 spin_lock(&ls->ls_recover_spin);
1136 ls->ls_recover_start = generation;
1138 if (!ls->ls_recover_mount) {
1139 ls->ls_recover_mount = generation;
1140 ls->ls_jid = our_slot - 1;
1143 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1144 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1146 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1147 smp_mb__after_atomic();
1148 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1149 spin_unlock(&ls->ls_recover_spin);
1152 /* gfs2_recover thread has a journal recovery result */
1154 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1155 unsigned int result)
1157 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1159 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1162 /* don't care about the recovery of own journal during mount */
1163 if (jid == ls->ls_jid)
1166 spin_lock(&ls->ls_recover_spin);
1167 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1168 spin_unlock(&ls->ls_recover_spin);
1171 if (ls->ls_recover_size < jid + 1) {
1172 fs_err(sdp, "recovery_result jid %d short size %d\n",
1173 jid, ls->ls_recover_size);
1174 spin_unlock(&ls->ls_recover_spin);
1178 fs_info(sdp, "recover jid %d result %s\n", jid,
1179 result == LM_RD_GAVEUP ? "busy" : "success");
1181 ls->ls_recover_result[jid] = result;
1183 /* GAVEUP means another node is recovering the journal; delay our
1184 next attempt to recover it, to give the other node a chance to
1185 finish before trying again */
1187 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1188 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1189 result == LM_RD_GAVEUP ? HZ : 0);
1190 spin_unlock(&ls->ls_recover_spin);
1193 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1194 .recover_prep = gdlm_recover_prep,
1195 .recover_slot = gdlm_recover_slot,
1196 .recover_done = gdlm_recover_done,
1199 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1201 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1202 char cluster[GFS2_LOCKNAME_LEN];
1205 int error, ops_result;
1208 * initialize everything
1211 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1212 spin_lock_init(&ls->ls_recover_spin);
1213 ls->ls_recover_flags = 0;
1214 ls->ls_recover_mount = 0;
1215 ls->ls_recover_start = 0;
1216 ls->ls_recover_block = 0;
1217 ls->ls_recover_size = 0;
1218 ls->ls_recover_submit = NULL;
1219 ls->ls_recover_result = NULL;
1220 ls->ls_lvb_bits = NULL;
1222 error = set_recover_size(sdp, NULL, 0);
1227 * prepare dlm_new_lockspace args
1230 fsname = strchr(table, ':');
1232 fs_info(sdp, "no fsname found\n");
1236 memset(cluster, 0, sizeof(cluster));
1237 memcpy(cluster, table, strlen(table) - strlen(fsname));
1240 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1243 * create/join lockspace
1246 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1247 &gdlm_lockspace_ops, sdp, &ops_result,
1250 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1254 if (ops_result < 0) {
1256 * dlm does not support ops callbacks,
1257 * old dlm_controld/gfs_controld are used, try without ops.
1259 fs_info(sdp, "dlm lockspace ops not used\n");
1260 free_recover_size(ls);
1261 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1265 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1266 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1272 * control_mount() uses control_lock to determine first mounter,
1273 * and for later mounts, waits for any recoveries to be cleared.
1276 error = control_mount(sdp);
1278 fs_err(sdp, "mount control error %d\n", error);
1282 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1283 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1284 smp_mb__after_atomic();
1285 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1289 dlm_release_lockspace(ls->ls_dlm, 2);
1291 free_recover_size(ls);
1296 static void gdlm_first_done(struct gfs2_sbd *sdp)
1298 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1301 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1304 error = control_first_done(sdp);
1306 fs_err(sdp, "mount first_done error %d\n", error);
1309 static void gdlm_unmount(struct gfs2_sbd *sdp)
1311 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1313 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1316 /* wait for gfs2_control_wq to be done with this mount */
1318 spin_lock(&ls->ls_recover_spin);
1319 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1320 spin_unlock(&ls->ls_recover_spin);
1321 flush_delayed_work(&sdp->sd_control_work);
1323 /* mounted_lock and control_lock will be purged in dlm recovery */
1326 dlm_release_lockspace(ls->ls_dlm, 2);
1330 free_recover_size(ls);
1333 static const match_table_t dlm_tokens = {
1334 { Opt_jid, "jid=%d"},
1336 { Opt_first, "first=%d"},
1337 { Opt_nodir, "nodir=%d"},
1341 const struct lm_lockops gfs2_dlm_ops = {
1342 .lm_proto_name = "lock_dlm",
1343 .lm_mount = gdlm_mount,
1344 .lm_first_done = gdlm_first_done,
1345 .lm_recovery_result = gdlm_recovery_result,
1346 .lm_unmount = gdlm_unmount,
1347 .lm_put_lock = gdlm_put_lock,
1348 .lm_lock = gdlm_lock,
1349 .lm_cancel = gdlm_cancel,
1350 .lm_tokens = &dlm_tokens,