GNU Linux-libre 5.13.14-gnu1
[releases.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
142 static void inode_io_list_del_locked(struct inode *inode,
143                                      struct bdi_writeback *wb)
144 {
145         assert_spin_locked(&wb->list_lock);
146         assert_spin_locked(&inode->i_lock);
147
148         inode->i_state &= ~I_SYNC_QUEUED;
149         list_del_init(&inode->i_io_list);
150         wb_io_lists_depopulated(wb);
151 }
152
153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155         spin_lock_bh(&wb->work_lock);
156         if (test_bit(WB_registered, &wb->state))
157                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
158         spin_unlock_bh(&wb->work_lock);
159 }
160
161 static void finish_writeback_work(struct bdi_writeback *wb,
162                                   struct wb_writeback_work *work)
163 {
164         struct wb_completion *done = work->done;
165
166         if (work->auto_free)
167                 kfree(work);
168         if (done) {
169                 wait_queue_head_t *waitq = done->waitq;
170
171                 /* @done can't be accessed after the following dec */
172                 if (atomic_dec_and_test(&done->cnt))
173                         wake_up_all(waitq);
174         }
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178                           struct wb_writeback_work *work)
179 {
180         trace_writeback_queue(wb, work);
181
182         if (work->done)
183                 atomic_inc(&work->done->cnt);
184
185         spin_lock_bh(&wb->work_lock);
186
187         if (test_bit(WB_registered, &wb->state)) {
188                 list_add_tail(&work->list, &wb->work_list);
189                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
190         } else
191                 finish_writeback_work(wb, work);
192
193         spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208         atomic_dec(&done->cnt);         /* put down the initial count */
209         wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211
212 #ifdef CONFIG_CGROUP_WRITEBACK
213
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
237
238 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240                                         /* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
242                                         /* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
244                                         /* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
246
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249
250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252         struct backing_dev_info *bdi = inode_to_bdi(inode);
253         struct bdi_writeback *wb = NULL;
254
255         if (inode_cgwb_enabled(inode)) {
256                 struct cgroup_subsys_state *memcg_css;
257
258                 if (page) {
259                         memcg_css = mem_cgroup_css_from_page(page);
260                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261                 } else {
262                         /* must pin memcg_css, see wb_get_create() */
263                         memcg_css = task_get_css(current, memory_cgrp_id);
264                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265                         css_put(memcg_css);
266                 }
267         }
268
269         if (!wb)
270                 wb = &bdi->wb;
271
272         /*
273          * There may be multiple instances of this function racing to
274          * update the same inode.  Use cmpxchg() to tell the winner.
275          */
276         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277                 wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291         __releases(&inode->i_lock)
292         __acquires(&wb->list_lock)
293 {
294         while (true) {
295                 struct bdi_writeback *wb = inode_to_wb(inode);
296
297                 /*
298                  * inode_to_wb() association is protected by both
299                  * @inode->i_lock and @wb->list_lock but list_lock nests
300                  * outside i_lock.  Drop i_lock and verify that the
301                  * association hasn't changed after acquiring list_lock.
302                  */
303                 wb_get(wb);
304                 spin_unlock(&inode->i_lock);
305                 spin_lock(&wb->list_lock);
306
307                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
308                 if (likely(wb == inode->i_wb)) {
309                         wb_put(wb);     /* @inode already has ref */
310                         return wb;
311                 }
312
313                 spin_unlock(&wb->list_lock);
314                 wb_put(wb);
315                 cpu_relax();
316                 spin_lock(&inode->i_lock);
317         }
318 }
319
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328         __acquires(&wb->list_lock)
329 {
330         spin_lock(&inode->i_lock);
331         return locked_inode_to_wb_and_lock_list(inode);
332 }
333
334 struct inode_switch_wbs_context {
335         struct inode            *inode;
336         struct bdi_writeback    *new_wb;
337
338         struct rcu_head         rcu_head;
339         struct work_struct      work;
340 };
341
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344         down_write(&bdi->wb_switch_rwsem);
345 }
346
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349         up_write(&bdi->wb_switch_rwsem);
350 }
351
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354         struct inode_switch_wbs_context *isw =
355                 container_of(work, struct inode_switch_wbs_context, work);
356         struct inode *inode = isw->inode;
357         struct backing_dev_info *bdi = inode_to_bdi(inode);
358         struct address_space *mapping = inode->i_mapping;
359         struct bdi_writeback *old_wb = inode->i_wb;
360         struct bdi_writeback *new_wb = isw->new_wb;
361         XA_STATE(xas, &mapping->i_pages, 0);
362         struct page *page;
363         bool switched = false;
364
365         /*
366          * If @inode switches cgwb membership while sync_inodes_sb() is
367          * being issued, sync_inodes_sb() might miss it.  Synchronize.
368          */
369         down_read(&bdi->wb_switch_rwsem);
370
371         /*
372          * By the time control reaches here, RCU grace period has passed
373          * since I_WB_SWITCH assertion and all wb stat update transactions
374          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375          * synchronizing against the i_pages lock.
376          *
377          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378          * gives us exclusion against all wb related operations on @inode
379          * including IO list manipulations and stat updates.
380          */
381         if (old_wb < new_wb) {
382                 spin_lock(&old_wb->list_lock);
383                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384         } else {
385                 spin_lock(&new_wb->list_lock);
386                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387         }
388         spin_lock(&inode->i_lock);
389         xa_lock_irq(&mapping->i_pages);
390
391         /*
392          * Once I_FREEING is visible under i_lock, the eviction path owns
393          * the inode and we shouldn't modify ->i_io_list.
394          */
395         if (unlikely(inode->i_state & I_FREEING))
396                 goto skip_switch;
397
398         trace_inode_switch_wbs(inode, old_wb, new_wb);
399
400         /*
401          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403          * pages actually under writeback.
404          */
405         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406                 if (PageDirty(page)) {
407                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
408                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
409                 }
410         }
411
412         xas_set(&xas, 0);
413         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414                 WARN_ON_ONCE(!PageWriteback(page));
415                 dec_wb_stat(old_wb, WB_WRITEBACK);
416                 inc_wb_stat(new_wb, WB_WRITEBACK);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  The specific list
423          * @inode was on is ignored and the inode is put on ->b_dirty which
424          * is always correct including from ->b_dirty_time.  The transfer
425          * preserves @inode->dirtied_when ordering.
426          */
427         if (!list_empty(&inode->i_io_list)) {
428                 struct inode *pos;
429
430                 inode_io_list_del_locked(inode, old_wb);
431                 inode->i_wb = new_wb;
432                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433                         if (time_after_eq(inode->dirtied_when,
434                                           pos->dirtied_when))
435                                 break;
436                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437         } else {
438                 inode->i_wb = new_wb;
439         }
440
441         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442         inode->i_wb_frn_winner = 0;
443         inode->i_wb_frn_avg_time = 0;
444         inode->i_wb_frn_history = 0;
445         switched = true;
446 skip_switch:
447         /*
448          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449          * ensures that the new wb is visible if they see !I_WB_SWITCH.
450          */
451         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452
453         xa_unlock_irq(&mapping->i_pages);
454         spin_unlock(&inode->i_lock);
455         spin_unlock(&new_wb->list_lock);
456         spin_unlock(&old_wb->list_lock);
457
458         up_read(&bdi->wb_switch_rwsem);
459
460         if (switched) {
461                 wb_wakeup(new_wb);
462                 wb_put(old_wb);
463         }
464         wb_put(new_wb);
465
466         iput(inode);
467         kfree(isw);
468
469         atomic_dec(&isw_nr_in_flight);
470 }
471
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474         struct inode_switch_wbs_context *isw = container_of(rcu_head,
475                                 struct inode_switch_wbs_context, rcu_head);
476
477         /* needs to grab bh-unsafe locks, bounce to work item */
478         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479         queue_work(isw_wq, &isw->work);
480 }
481
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492         struct backing_dev_info *bdi = inode_to_bdi(inode);
493         struct cgroup_subsys_state *memcg_css;
494         struct inode_switch_wbs_context *isw;
495
496         /* noop if seems to be already in progress */
497         if (inode->i_state & I_WB_SWITCH)
498                 return;
499
500         /* avoid queueing a new switch if too many are already in flight */
501         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502                 return;
503
504         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505         if (!isw)
506                 return;
507
508         atomic_inc(&isw_nr_in_flight);
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css && !css_tryget(memcg_css))
514                 memcg_css = NULL;
515         rcu_read_unlock();
516         if (!memcg_css)
517                 goto out_free;
518
519         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
520         css_put(memcg_css);
521         if (!isw->new_wb)
522                 goto out_free;
523
524         /* while holding I_WB_SWITCH, no one else can update the association */
525         spin_lock(&inode->i_lock);
526         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
528             inode_to_wb(inode) == isw->new_wb) {
529                 spin_unlock(&inode->i_lock);
530                 goto out_free;
531         }
532         inode->i_state |= I_WB_SWITCH;
533         __iget(inode);
534         spin_unlock(&inode->i_lock);
535
536         isw->inode = inode;
537
538         /*
539          * In addition to synchronizing among switchers, I_WB_SWITCH tells
540          * the RCU protected stat update paths to grab the i_page
541          * lock so that stat transfer can synchronize against them.
542          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
543          */
544         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
545         return;
546
547 out_free:
548         atomic_dec(&isw_nr_in_flight);
549         if (isw->new_wb)
550                 wb_put(isw->new_wb);
551         kfree(isw);
552 }
553
554 /**
555  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
556  * @wbc: writeback_control of interest
557  * @inode: target inode
558  *
559  * @inode is locked and about to be written back under the control of @wbc.
560  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
561  * writeback completion, wbc_detach_inode() should be called.  This is used
562  * to track the cgroup writeback context.
563  */
564 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
565                                  struct inode *inode)
566 {
567         if (!inode_cgwb_enabled(inode)) {
568                 spin_unlock(&inode->i_lock);
569                 return;
570         }
571
572         wbc->wb = inode_to_wb(inode);
573         wbc->inode = inode;
574
575         wbc->wb_id = wbc->wb->memcg_css->id;
576         wbc->wb_lcand_id = inode->i_wb_frn_winner;
577         wbc->wb_tcand_id = 0;
578         wbc->wb_bytes = 0;
579         wbc->wb_lcand_bytes = 0;
580         wbc->wb_tcand_bytes = 0;
581
582         wb_get(wbc->wb);
583         spin_unlock(&inode->i_lock);
584
585         /*
586          * A dying wb indicates that either the blkcg associated with the
587          * memcg changed or the associated memcg is dying.  In the first
588          * case, a replacement wb should already be available and we should
589          * refresh the wb immediately.  In the second case, trying to
590          * refresh will keep failing.
591          */
592         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
593                 inode_switch_wbs(inode, wbc->wb_id);
594 }
595 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
596
597 /**
598  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599  * @wbc: writeback_control of the just finished writeback
600  *
601  * To be called after a writeback attempt of an inode finishes and undoes
602  * wbc_attach_and_unlock_inode().  Can be called under any context.
603  *
604  * As concurrent write sharing of an inode is expected to be very rare and
605  * memcg only tracks page ownership on first-use basis severely confining
606  * the usefulness of such sharing, cgroup writeback tracks ownership
607  * per-inode.  While the support for concurrent write sharing of an inode
608  * is deemed unnecessary, an inode being written to by different cgroups at
609  * different points in time is a lot more common, and, more importantly,
610  * charging only by first-use can too readily lead to grossly incorrect
611  * behaviors (single foreign page can lead to gigabytes of writeback to be
612  * incorrectly attributed).
613  *
614  * To resolve this issue, cgroup writeback detects the majority dirtier of
615  * an inode and transfers the ownership to it.  To avoid unnnecessary
616  * oscillation, the detection mechanism keeps track of history and gives
617  * out the switch verdict only if the foreign usage pattern is stable over
618  * a certain amount of time and/or writeback attempts.
619  *
620  * On each writeback attempt, @wbc tries to detect the majority writer
621  * using Boyer-Moore majority vote algorithm.  In addition to the byte
622  * count from the majority voting, it also counts the bytes written for the
623  * current wb and the last round's winner wb (max of last round's current
624  * wb, the winner from two rounds ago, and the last round's majority
625  * candidate).  Keeping track of the historical winner helps the algorithm
626  * to semi-reliably detect the most active writer even when it's not the
627  * absolute majority.
628  *
629  * Once the winner of the round is determined, whether the winner is
630  * foreign or not and how much IO time the round consumed is recorded in
631  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
632  * over a certain threshold, the switch verdict is given.
633  */
634 void wbc_detach_inode(struct writeback_control *wbc)
635 {
636         struct bdi_writeback *wb = wbc->wb;
637         struct inode *inode = wbc->inode;
638         unsigned long avg_time, max_bytes, max_time;
639         u16 history;
640         int max_id;
641
642         if (!wb)
643                 return;
644
645         history = inode->i_wb_frn_history;
646         avg_time = inode->i_wb_frn_avg_time;
647
648         /* pick the winner of this round */
649         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
650             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
651                 max_id = wbc->wb_id;
652                 max_bytes = wbc->wb_bytes;
653         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
654                 max_id = wbc->wb_lcand_id;
655                 max_bytes = wbc->wb_lcand_bytes;
656         } else {
657                 max_id = wbc->wb_tcand_id;
658                 max_bytes = wbc->wb_tcand_bytes;
659         }
660
661         /*
662          * Calculate the amount of IO time the winner consumed and fold it
663          * into the running average kept per inode.  If the consumed IO
664          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665          * deciding whether to switch or not.  This is to prevent one-off
666          * small dirtiers from skewing the verdict.
667          */
668         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
669                                 wb->avg_write_bandwidth);
670         if (avg_time)
671                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
672                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
673         else
674                 avg_time = max_time;    /* immediate catch up on first run */
675
676         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
677                 int slots;
678
679                 /*
680                  * The switch verdict is reached if foreign wb's consume
681                  * more than a certain proportion of IO time in a
682                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
683                  * history mask where each bit represents one sixteenth of
684                  * the period.  Determine the number of slots to shift into
685                  * history from @max_time.
686                  */
687                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
688                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
689                 history <<= slots;
690                 if (wbc->wb_id != max_id)
691                         history |= (1U << slots) - 1;
692
693                 if (history)
694                         trace_inode_foreign_history(inode, wbc, history);
695
696                 /*
697                  * Switch if the current wb isn't the consistent winner.
698                  * If there are multiple closely competing dirtiers, the
699                  * inode may switch across them repeatedly over time, which
700                  * is okay.  The main goal is avoiding keeping an inode on
701                  * the wrong wb for an extended period of time.
702                  */
703                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
704                         inode_switch_wbs(inode, max_id);
705         }
706
707         /*
708          * Multiple instances of this function may race to update the
709          * following fields but we don't mind occassional inaccuracies.
710          */
711         inode->i_wb_frn_winner = max_id;
712         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
713         inode->i_wb_frn_history = history;
714
715         wb_put(wbc->wb);
716         wbc->wb = NULL;
717 }
718 EXPORT_SYMBOL_GPL(wbc_detach_inode);
719
720 /**
721  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
722  * @wbc: writeback_control of the writeback in progress
723  * @page: page being written out
724  * @bytes: number of bytes being written out
725  *
726  * @bytes from @page are about to written out during the writeback
727  * controlled by @wbc.  Keep the book for foreign inode detection.  See
728  * wbc_detach_inode().
729  */
730 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
731                               size_t bytes)
732 {
733         struct cgroup_subsys_state *css;
734         int id;
735
736         /*
737          * pageout() path doesn't attach @wbc to the inode being written
738          * out.  This is intentional as we don't want the function to block
739          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
740          * regular writeback instead of writing things out itself.
741          */
742         if (!wbc->wb || wbc->no_cgroup_owner)
743                 return;
744
745         css = mem_cgroup_css_from_page(page);
746         /* dead cgroups shouldn't contribute to inode ownership arbitration */
747         if (!(css->flags & CSS_ONLINE))
748                 return;
749
750         id = css->id;
751
752         if (id == wbc->wb_id) {
753                 wbc->wb_bytes += bytes;
754                 return;
755         }
756
757         if (id == wbc->wb_lcand_id)
758                 wbc->wb_lcand_bytes += bytes;
759
760         /* Boyer-Moore majority vote algorithm */
761         if (!wbc->wb_tcand_bytes)
762                 wbc->wb_tcand_id = id;
763         if (id == wbc->wb_tcand_id)
764                 wbc->wb_tcand_bytes += bytes;
765         else
766                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
767 }
768 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
769
770 /**
771  * inode_congested - test whether an inode is congested
772  * @inode: inode to test for congestion (may be NULL)
773  * @cong_bits: mask of WB_[a]sync_congested bits to test
774  *
775  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
776  * bits to test and the return value is the mask of set bits.
777  *
778  * If cgroup writeback is enabled for @inode, the congestion state is
779  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
780  * associated with @inode is congested; otherwise, the root wb's congestion
781  * state is used.
782  *
783  * @inode is allowed to be NULL as this function is often called on
784  * mapping->host which is NULL for the swapper space.
785  */
786 int inode_congested(struct inode *inode, int cong_bits)
787 {
788         /*
789          * Once set, ->i_wb never becomes NULL while the inode is alive.
790          * Start transaction iff ->i_wb is visible.
791          */
792         if (inode && inode_to_wb_is_valid(inode)) {
793                 struct bdi_writeback *wb;
794                 struct wb_lock_cookie lock_cookie = {};
795                 bool congested;
796
797                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
798                 congested = wb_congested(wb, cong_bits);
799                 unlocked_inode_to_wb_end(inode, &lock_cookie);
800                 return congested;
801         }
802
803         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
804 }
805 EXPORT_SYMBOL_GPL(inode_congested);
806
807 /**
808  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
809  * @wb: target bdi_writeback to split @nr_pages to
810  * @nr_pages: number of pages to write for the whole bdi
811  *
812  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
813  * relation to the total write bandwidth of all wb's w/ dirty inodes on
814  * @wb->bdi.
815  */
816 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
817 {
818         unsigned long this_bw = wb->avg_write_bandwidth;
819         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
820
821         if (nr_pages == LONG_MAX)
822                 return LONG_MAX;
823
824         /*
825          * This may be called on clean wb's and proportional distribution
826          * may not make sense, just use the original @nr_pages in those
827          * cases.  In general, we wanna err on the side of writing more.
828          */
829         if (!tot_bw || this_bw >= tot_bw)
830                 return nr_pages;
831         else
832                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
833 }
834
835 /**
836  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
837  * @bdi: target backing_dev_info
838  * @base_work: wb_writeback_work to issue
839  * @skip_if_busy: skip wb's which already have writeback in progress
840  *
841  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
842  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
843  * distributed to the busy wbs according to each wb's proportion in the
844  * total active write bandwidth of @bdi.
845  */
846 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
847                                   struct wb_writeback_work *base_work,
848                                   bool skip_if_busy)
849 {
850         struct bdi_writeback *last_wb = NULL;
851         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
852                                               struct bdi_writeback, bdi_node);
853
854         might_sleep();
855 restart:
856         rcu_read_lock();
857         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
858                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
859                 struct wb_writeback_work fallback_work;
860                 struct wb_writeback_work *work;
861                 long nr_pages;
862
863                 if (last_wb) {
864                         wb_put(last_wb);
865                         last_wb = NULL;
866                 }
867
868                 /* SYNC_ALL writes out I_DIRTY_TIME too */
869                 if (!wb_has_dirty_io(wb) &&
870                     (base_work->sync_mode == WB_SYNC_NONE ||
871                      list_empty(&wb->b_dirty_time)))
872                         continue;
873                 if (skip_if_busy && writeback_in_progress(wb))
874                         continue;
875
876                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
877
878                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
879                 if (work) {
880                         *work = *base_work;
881                         work->nr_pages = nr_pages;
882                         work->auto_free = 1;
883                         wb_queue_work(wb, work);
884                         continue;
885                 }
886
887                 /* alloc failed, execute synchronously using on-stack fallback */
888                 work = &fallback_work;
889                 *work = *base_work;
890                 work->nr_pages = nr_pages;
891                 work->auto_free = 0;
892                 work->done = &fallback_work_done;
893
894                 wb_queue_work(wb, work);
895
896                 /*
897                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
898                  * continuing iteration from @wb after dropping and
899                  * regrabbing rcu read lock.
900                  */
901                 wb_get(wb);
902                 last_wb = wb;
903
904                 rcu_read_unlock();
905                 wb_wait_for_completion(&fallback_work_done);
906                 goto restart;
907         }
908         rcu_read_unlock();
909
910         if (last_wb)
911                 wb_put(last_wb);
912 }
913
914 /**
915  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
916  * @bdi_id: target bdi id
917  * @memcg_id: target memcg css id
918  * @nr: number of pages to write, 0 for best-effort dirty flushing
919  * @reason: reason why some writeback work initiated
920  * @done: target wb_completion
921  *
922  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
923  * with the specified parameters.
924  */
925 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
926                            enum wb_reason reason, struct wb_completion *done)
927 {
928         struct backing_dev_info *bdi;
929         struct cgroup_subsys_state *memcg_css;
930         struct bdi_writeback *wb;
931         struct wb_writeback_work *work;
932         int ret;
933
934         /* lookup bdi and memcg */
935         bdi = bdi_get_by_id(bdi_id);
936         if (!bdi)
937                 return -ENOENT;
938
939         rcu_read_lock();
940         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
941         if (memcg_css && !css_tryget(memcg_css))
942                 memcg_css = NULL;
943         rcu_read_unlock();
944         if (!memcg_css) {
945                 ret = -ENOENT;
946                 goto out_bdi_put;
947         }
948
949         /*
950          * And find the associated wb.  If the wb isn't there already
951          * there's nothing to flush, don't create one.
952          */
953         wb = wb_get_lookup(bdi, memcg_css);
954         if (!wb) {
955                 ret = -ENOENT;
956                 goto out_css_put;
957         }
958
959         /*
960          * If @nr is zero, the caller is attempting to write out most of
961          * the currently dirty pages.  Let's take the current dirty page
962          * count and inflate it by 25% which should be large enough to
963          * flush out most dirty pages while avoiding getting livelocked by
964          * concurrent dirtiers.
965          */
966         if (!nr) {
967                 unsigned long filepages, headroom, dirty, writeback;
968
969                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
970                                       &writeback);
971                 nr = dirty * 10 / 8;
972         }
973
974         /* issue the writeback work */
975         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
976         if (work) {
977                 work->nr_pages = nr;
978                 work->sync_mode = WB_SYNC_NONE;
979                 work->range_cyclic = 1;
980                 work->reason = reason;
981                 work->done = done;
982                 work->auto_free = 1;
983                 wb_queue_work(wb, work);
984                 ret = 0;
985         } else {
986                 ret = -ENOMEM;
987         }
988
989         wb_put(wb);
990 out_css_put:
991         css_put(memcg_css);
992 out_bdi_put:
993         bdi_put(bdi);
994         return ret;
995 }
996
997 /**
998  * cgroup_writeback_umount - flush inode wb switches for umount
999  *
1000  * This function is called when a super_block is about to be destroyed and
1001  * flushes in-flight inode wb switches.  An inode wb switch goes through
1002  * RCU and then workqueue, so the two need to be flushed in order to ensure
1003  * that all previously scheduled switches are finished.  As wb switches are
1004  * rare occurrences and synchronize_rcu() can take a while, perform
1005  * flushing iff wb switches are in flight.
1006  */
1007 void cgroup_writeback_umount(void)
1008 {
1009         if (atomic_read(&isw_nr_in_flight)) {
1010                 /*
1011                  * Use rcu_barrier() to wait for all pending callbacks to
1012                  * ensure that all in-flight wb switches are in the workqueue.
1013                  */
1014                 rcu_barrier();
1015                 flush_workqueue(isw_wq);
1016         }
1017 }
1018
1019 static int __init cgroup_writeback_init(void)
1020 {
1021         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1022         if (!isw_wq)
1023                 return -ENOMEM;
1024         return 0;
1025 }
1026 fs_initcall(cgroup_writeback_init);
1027
1028 #else   /* CONFIG_CGROUP_WRITEBACK */
1029
1030 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1031 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1032
1033 static struct bdi_writeback *
1034 locked_inode_to_wb_and_lock_list(struct inode *inode)
1035         __releases(&inode->i_lock)
1036         __acquires(&wb->list_lock)
1037 {
1038         struct bdi_writeback *wb = inode_to_wb(inode);
1039
1040         spin_unlock(&inode->i_lock);
1041         spin_lock(&wb->list_lock);
1042         return wb;
1043 }
1044
1045 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1046         __acquires(&wb->list_lock)
1047 {
1048         struct bdi_writeback *wb = inode_to_wb(inode);
1049
1050         spin_lock(&wb->list_lock);
1051         return wb;
1052 }
1053
1054 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1055 {
1056         return nr_pages;
1057 }
1058
1059 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1060                                   struct wb_writeback_work *base_work,
1061                                   bool skip_if_busy)
1062 {
1063         might_sleep();
1064
1065         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1066                 base_work->auto_free = 0;
1067                 wb_queue_work(&bdi->wb, base_work);
1068         }
1069 }
1070
1071 #endif  /* CONFIG_CGROUP_WRITEBACK */
1072
1073 /*
1074  * Add in the number of potentially dirty inodes, because each inode
1075  * write can dirty pagecache in the underlying blockdev.
1076  */
1077 static unsigned long get_nr_dirty_pages(void)
1078 {
1079         return global_node_page_state(NR_FILE_DIRTY) +
1080                 get_nr_dirty_inodes();
1081 }
1082
1083 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1084 {
1085         if (!wb_has_dirty_io(wb))
1086                 return;
1087
1088         /*
1089          * All callers of this function want to start writeback of all
1090          * dirty pages. Places like vmscan can call this at a very
1091          * high frequency, causing pointless allocations of tons of
1092          * work items and keeping the flusher threads busy retrieving
1093          * that work. Ensure that we only allow one of them pending and
1094          * inflight at the time.
1095          */
1096         if (test_bit(WB_start_all, &wb->state) ||
1097             test_and_set_bit(WB_start_all, &wb->state))
1098                 return;
1099
1100         wb->start_all_reason = reason;
1101         wb_wakeup(wb);
1102 }
1103
1104 /**
1105  * wb_start_background_writeback - start background writeback
1106  * @wb: bdi_writback to write from
1107  *
1108  * Description:
1109  *   This makes sure WB_SYNC_NONE background writeback happens. When
1110  *   this function returns, it is only guaranteed that for given wb
1111  *   some IO is happening if we are over background dirty threshold.
1112  *   Caller need not hold sb s_umount semaphore.
1113  */
1114 void wb_start_background_writeback(struct bdi_writeback *wb)
1115 {
1116         /*
1117          * We just wake up the flusher thread. It will perform background
1118          * writeback as soon as there is no other work to do.
1119          */
1120         trace_writeback_wake_background(wb);
1121         wb_wakeup(wb);
1122 }
1123
1124 /*
1125  * Remove the inode from the writeback list it is on.
1126  */
1127 void inode_io_list_del(struct inode *inode)
1128 {
1129         struct bdi_writeback *wb;
1130
1131         wb = inode_to_wb_and_lock_list(inode);
1132         spin_lock(&inode->i_lock);
1133         inode_io_list_del_locked(inode, wb);
1134         spin_unlock(&inode->i_lock);
1135         spin_unlock(&wb->list_lock);
1136 }
1137 EXPORT_SYMBOL(inode_io_list_del);
1138
1139 /*
1140  * mark an inode as under writeback on the sb
1141  */
1142 void sb_mark_inode_writeback(struct inode *inode)
1143 {
1144         struct super_block *sb = inode->i_sb;
1145         unsigned long flags;
1146
1147         if (list_empty(&inode->i_wb_list)) {
1148                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1149                 if (list_empty(&inode->i_wb_list)) {
1150                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1151                         trace_sb_mark_inode_writeback(inode);
1152                 }
1153                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1154         }
1155 }
1156
1157 /*
1158  * clear an inode as under writeback on the sb
1159  */
1160 void sb_clear_inode_writeback(struct inode *inode)
1161 {
1162         struct super_block *sb = inode->i_sb;
1163         unsigned long flags;
1164
1165         if (!list_empty(&inode->i_wb_list)) {
1166                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1167                 if (!list_empty(&inode->i_wb_list)) {
1168                         list_del_init(&inode->i_wb_list);
1169                         trace_sb_clear_inode_writeback(inode);
1170                 }
1171                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1172         }
1173 }
1174
1175 /*
1176  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1177  * furthest end of its superblock's dirty-inode list.
1178  *
1179  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1180  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1181  * the case then the inode must have been redirtied while it was being written
1182  * out and we don't reset its dirtied_when.
1183  */
1184 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1185 {
1186         assert_spin_locked(&inode->i_lock);
1187
1188         if (!list_empty(&wb->b_dirty)) {
1189                 struct inode *tail;
1190
1191                 tail = wb_inode(wb->b_dirty.next);
1192                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1193                         inode->dirtied_when = jiffies;
1194         }
1195         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1196         inode->i_state &= ~I_SYNC_QUEUED;
1197 }
1198
1199 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1200 {
1201         spin_lock(&inode->i_lock);
1202         redirty_tail_locked(inode, wb);
1203         spin_unlock(&inode->i_lock);
1204 }
1205
1206 /*
1207  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1208  */
1209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1210 {
1211         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1212 }
1213
1214 static void inode_sync_complete(struct inode *inode)
1215 {
1216         inode->i_state &= ~I_SYNC;
1217         /* If inode is clean an unused, put it into LRU now... */
1218         inode_add_lru(inode);
1219         /* Waiters must see I_SYNC cleared before being woken up */
1220         smp_mb();
1221         wake_up_bit(&inode->i_state, __I_SYNC);
1222 }
1223
1224 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1225 {
1226         bool ret = time_after(inode->dirtied_when, t);
1227 #ifndef CONFIG_64BIT
1228         /*
1229          * For inodes being constantly redirtied, dirtied_when can get stuck.
1230          * It _appears_ to be in the future, but is actually in distant past.
1231          * This test is necessary to prevent such wrapped-around relative times
1232          * from permanently stopping the whole bdi writeback.
1233          */
1234         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1235 #endif
1236         return ret;
1237 }
1238
1239 #define EXPIRE_DIRTY_ATIME 0x0001
1240
1241 /*
1242  * Move expired (dirtied before dirtied_before) dirty inodes from
1243  * @delaying_queue to @dispatch_queue.
1244  */
1245 static int move_expired_inodes(struct list_head *delaying_queue,
1246                                struct list_head *dispatch_queue,
1247                                unsigned long dirtied_before)
1248 {
1249         LIST_HEAD(tmp);
1250         struct list_head *pos, *node;
1251         struct super_block *sb = NULL;
1252         struct inode *inode;
1253         int do_sb_sort = 0;
1254         int moved = 0;
1255
1256         while (!list_empty(delaying_queue)) {
1257                 inode = wb_inode(delaying_queue->prev);
1258                 if (inode_dirtied_after(inode, dirtied_before))
1259                         break;
1260                 list_move(&inode->i_io_list, &tmp);
1261                 moved++;
1262                 spin_lock(&inode->i_lock);
1263                 inode->i_state |= I_SYNC_QUEUED;
1264                 spin_unlock(&inode->i_lock);
1265                 if (sb_is_blkdev_sb(inode->i_sb))
1266                         continue;
1267                 if (sb && sb != inode->i_sb)
1268                         do_sb_sort = 1;
1269                 sb = inode->i_sb;
1270         }
1271
1272         /* just one sb in list, splice to dispatch_queue and we're done */
1273         if (!do_sb_sort) {
1274                 list_splice(&tmp, dispatch_queue);
1275                 goto out;
1276         }
1277
1278         /* Move inodes from one superblock together */
1279         while (!list_empty(&tmp)) {
1280                 sb = wb_inode(tmp.prev)->i_sb;
1281                 list_for_each_prev_safe(pos, node, &tmp) {
1282                         inode = wb_inode(pos);
1283                         if (inode->i_sb == sb)
1284                                 list_move(&inode->i_io_list, dispatch_queue);
1285                 }
1286         }
1287 out:
1288         return moved;
1289 }
1290
1291 /*
1292  * Queue all expired dirty inodes for io, eldest first.
1293  * Before
1294  *         newly dirtied     b_dirty    b_io    b_more_io
1295  *         =============>    gf         edc     BA
1296  * After
1297  *         newly dirtied     b_dirty    b_io    b_more_io
1298  *         =============>    g          fBAedc
1299  *                                           |
1300  *                                           +--> dequeue for IO
1301  */
1302 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1303                      unsigned long dirtied_before)
1304 {
1305         int moved;
1306         unsigned long time_expire_jif = dirtied_before;
1307
1308         assert_spin_locked(&wb->list_lock);
1309         list_splice_init(&wb->b_more_io, &wb->b_io);
1310         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1311         if (!work->for_sync)
1312                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1313         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1314                                      time_expire_jif);
1315         if (moved)
1316                 wb_io_lists_populated(wb);
1317         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1318 }
1319
1320 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1321 {
1322         int ret;
1323
1324         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1325                 trace_writeback_write_inode_start(inode, wbc);
1326                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1327                 trace_writeback_write_inode(inode, wbc);
1328                 return ret;
1329         }
1330         return 0;
1331 }
1332
1333 /*
1334  * Wait for writeback on an inode to complete. Called with i_lock held.
1335  * Caller must make sure inode cannot go away when we drop i_lock.
1336  */
1337 static void __inode_wait_for_writeback(struct inode *inode)
1338         __releases(inode->i_lock)
1339         __acquires(inode->i_lock)
1340 {
1341         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1342         wait_queue_head_t *wqh;
1343
1344         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1345         while (inode->i_state & I_SYNC) {
1346                 spin_unlock(&inode->i_lock);
1347                 __wait_on_bit(wqh, &wq, bit_wait,
1348                               TASK_UNINTERRUPTIBLE);
1349                 spin_lock(&inode->i_lock);
1350         }
1351 }
1352
1353 /*
1354  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1355  */
1356 void inode_wait_for_writeback(struct inode *inode)
1357 {
1358         spin_lock(&inode->i_lock);
1359         __inode_wait_for_writeback(inode);
1360         spin_unlock(&inode->i_lock);
1361 }
1362
1363 /*
1364  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1365  * held and drops it. It is aimed for callers not holding any inode reference
1366  * so once i_lock is dropped, inode can go away.
1367  */
1368 static void inode_sleep_on_writeback(struct inode *inode)
1369         __releases(inode->i_lock)
1370 {
1371         DEFINE_WAIT(wait);
1372         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1373         int sleep;
1374
1375         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1376         sleep = inode->i_state & I_SYNC;
1377         spin_unlock(&inode->i_lock);
1378         if (sleep)
1379                 schedule();
1380         finish_wait(wqh, &wait);
1381 }
1382
1383 /*
1384  * Find proper writeback list for the inode depending on its current state and
1385  * possibly also change of its state while we were doing writeback.  Here we
1386  * handle things such as livelock prevention or fairness of writeback among
1387  * inodes. This function can be called only by flusher thread - noone else
1388  * processes all inodes in writeback lists and requeueing inodes behind flusher
1389  * thread's back can have unexpected consequences.
1390  */
1391 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1392                           struct writeback_control *wbc)
1393 {
1394         if (inode->i_state & I_FREEING)
1395                 return;
1396
1397         /*
1398          * Sync livelock prevention. Each inode is tagged and synced in one
1399          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1400          * the dirty time to prevent enqueue and sync it again.
1401          */
1402         if ((inode->i_state & I_DIRTY) &&
1403             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1404                 inode->dirtied_when = jiffies;
1405
1406         if (wbc->pages_skipped) {
1407                 /*
1408                  * writeback is not making progress due to locked
1409                  * buffers. Skip this inode for now.
1410                  */
1411                 redirty_tail_locked(inode, wb);
1412                 return;
1413         }
1414
1415         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1416                 /*
1417                  * We didn't write back all the pages.  nfs_writepages()
1418                  * sometimes bales out without doing anything.
1419                  */
1420                 if (wbc->nr_to_write <= 0) {
1421                         /* Slice used up. Queue for next turn. */
1422                         requeue_io(inode, wb);
1423                 } else {
1424                         /*
1425                          * Writeback blocked by something other than
1426                          * congestion. Delay the inode for some time to
1427                          * avoid spinning on the CPU (100% iowait)
1428                          * retrying writeback of the dirty page/inode
1429                          * that cannot be performed immediately.
1430                          */
1431                         redirty_tail_locked(inode, wb);
1432                 }
1433         } else if (inode->i_state & I_DIRTY) {
1434                 /*
1435                  * Filesystems can dirty the inode during writeback operations,
1436                  * such as delayed allocation during submission or metadata
1437                  * updates after data IO completion.
1438                  */
1439                 redirty_tail_locked(inode, wb);
1440         } else if (inode->i_state & I_DIRTY_TIME) {
1441                 inode->dirtied_when = jiffies;
1442                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1443                 inode->i_state &= ~I_SYNC_QUEUED;
1444         } else {
1445                 /* The inode is clean. Remove from writeback lists. */
1446                 inode_io_list_del_locked(inode, wb);
1447         }
1448 }
1449
1450 /*
1451  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1452  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1453  *
1454  * This doesn't remove the inode from the writeback list it is on, except
1455  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1456  * expiration.  The caller is otherwise responsible for writeback list handling.
1457  *
1458  * The caller is also responsible for setting the I_SYNC flag beforehand and
1459  * calling inode_sync_complete() to clear it afterwards.
1460  */
1461 static int
1462 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1463 {
1464         struct address_space *mapping = inode->i_mapping;
1465         long nr_to_write = wbc->nr_to_write;
1466         unsigned dirty;
1467         int ret;
1468
1469         WARN_ON(!(inode->i_state & I_SYNC));
1470
1471         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1472
1473         ret = do_writepages(mapping, wbc);
1474
1475         /*
1476          * Make sure to wait on the data before writing out the metadata.
1477          * This is important for filesystems that modify metadata on data
1478          * I/O completion. We don't do it for sync(2) writeback because it has a
1479          * separate, external IO completion path and ->sync_fs for guaranteeing
1480          * inode metadata is written back correctly.
1481          */
1482         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1483                 int err = filemap_fdatawait(mapping);
1484                 if (ret == 0)
1485                         ret = err;
1486         }
1487
1488         /*
1489          * If the inode has dirty timestamps and we need to write them, call
1490          * mark_inode_dirty_sync() to notify the filesystem about it and to
1491          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1492          */
1493         if ((inode->i_state & I_DIRTY_TIME) &&
1494             (wbc->sync_mode == WB_SYNC_ALL ||
1495              time_after(jiffies, inode->dirtied_time_when +
1496                         dirtytime_expire_interval * HZ))) {
1497                 trace_writeback_lazytime(inode);
1498                 mark_inode_dirty_sync(inode);
1499         }
1500
1501         /*
1502          * Get and clear the dirty flags from i_state.  This needs to be done
1503          * after calling writepages because some filesystems may redirty the
1504          * inode during writepages due to delalloc.  It also needs to be done
1505          * after handling timestamp expiration, as that may dirty the inode too.
1506          */
1507         spin_lock(&inode->i_lock);
1508         dirty = inode->i_state & I_DIRTY;
1509         inode->i_state &= ~dirty;
1510
1511         /*
1512          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1513          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1514          * either they see the I_DIRTY bits cleared or we see the dirtied
1515          * inode.
1516          *
1517          * I_DIRTY_PAGES is always cleared together above even if @mapping
1518          * still has dirty pages.  The flag is reinstated after smp_mb() if
1519          * necessary.  This guarantees that either __mark_inode_dirty()
1520          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1521          */
1522         smp_mb();
1523
1524         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1525                 inode->i_state |= I_DIRTY_PAGES;
1526
1527         spin_unlock(&inode->i_lock);
1528
1529         /* Don't write the inode if only I_DIRTY_PAGES was set */
1530         if (dirty & ~I_DIRTY_PAGES) {
1531                 int err = write_inode(inode, wbc);
1532                 if (ret == 0)
1533                         ret = err;
1534         }
1535         trace_writeback_single_inode(inode, wbc, nr_to_write);
1536         return ret;
1537 }
1538
1539 /*
1540  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1541  * the regular batched writeback done by the flusher threads in
1542  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1543  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1544  *
1545  * To prevent the inode from going away, either the caller must have a reference
1546  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1547  */
1548 static int writeback_single_inode(struct inode *inode,
1549                                   struct writeback_control *wbc)
1550 {
1551         struct bdi_writeback *wb;
1552         int ret = 0;
1553
1554         spin_lock(&inode->i_lock);
1555         if (!atomic_read(&inode->i_count))
1556                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1557         else
1558                 WARN_ON(inode->i_state & I_WILL_FREE);
1559
1560         if (inode->i_state & I_SYNC) {
1561                 /*
1562                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1563                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1564                  * must wait for the existing writeback to complete, then do
1565                  * writeback again if there's anything left.
1566                  */
1567                 if (wbc->sync_mode != WB_SYNC_ALL)
1568                         goto out;
1569                 __inode_wait_for_writeback(inode);
1570         }
1571         WARN_ON(inode->i_state & I_SYNC);
1572         /*
1573          * If the inode is already fully clean, then there's nothing to do.
1574          *
1575          * For data-integrity syncs we also need to check whether any pages are
1576          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1577          * there are any such pages, we'll need to wait for them.
1578          */
1579         if (!(inode->i_state & I_DIRTY_ALL) &&
1580             (wbc->sync_mode != WB_SYNC_ALL ||
1581              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1582                 goto out;
1583         inode->i_state |= I_SYNC;
1584         wbc_attach_and_unlock_inode(wbc, inode);
1585
1586         ret = __writeback_single_inode(inode, wbc);
1587
1588         wbc_detach_inode(wbc);
1589
1590         wb = inode_to_wb_and_lock_list(inode);
1591         spin_lock(&inode->i_lock);
1592         /*
1593          * If the inode is now fully clean, then it can be safely removed from
1594          * its writeback list (if any).  Otherwise the flusher threads are
1595          * responsible for the writeback lists.
1596          */
1597         if (!(inode->i_state & I_DIRTY_ALL))
1598                 inode_io_list_del_locked(inode, wb);
1599         spin_unlock(&wb->list_lock);
1600         inode_sync_complete(inode);
1601 out:
1602         spin_unlock(&inode->i_lock);
1603         return ret;
1604 }
1605
1606 static long writeback_chunk_size(struct bdi_writeback *wb,
1607                                  struct wb_writeback_work *work)
1608 {
1609         long pages;
1610
1611         /*
1612          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1613          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1614          * here avoids calling into writeback_inodes_wb() more than once.
1615          *
1616          * The intended call sequence for WB_SYNC_ALL writeback is:
1617          *
1618          *      wb_writeback()
1619          *          writeback_sb_inodes()       <== called only once
1620          *              write_cache_pages()     <== called once for each inode
1621          *                   (quickly) tag currently dirty pages
1622          *                   (maybe slowly) sync all tagged pages
1623          */
1624         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1625                 pages = LONG_MAX;
1626         else {
1627                 pages = min(wb->avg_write_bandwidth / 2,
1628                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1629                 pages = min(pages, work->nr_pages);
1630                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1631                                    MIN_WRITEBACK_PAGES);
1632         }
1633
1634         return pages;
1635 }
1636
1637 /*
1638  * Write a portion of b_io inodes which belong to @sb.
1639  *
1640  * Return the number of pages and/or inodes written.
1641  *
1642  * NOTE! This is called with wb->list_lock held, and will
1643  * unlock and relock that for each inode it ends up doing
1644  * IO for.
1645  */
1646 static long writeback_sb_inodes(struct super_block *sb,
1647                                 struct bdi_writeback *wb,
1648                                 struct wb_writeback_work *work)
1649 {
1650         struct writeback_control wbc = {
1651                 .sync_mode              = work->sync_mode,
1652                 .tagged_writepages      = work->tagged_writepages,
1653                 .for_kupdate            = work->for_kupdate,
1654                 .for_background         = work->for_background,
1655                 .for_sync               = work->for_sync,
1656                 .range_cyclic           = work->range_cyclic,
1657                 .range_start            = 0,
1658                 .range_end              = LLONG_MAX,
1659         };
1660         unsigned long start_time = jiffies;
1661         long write_chunk;
1662         long wrote = 0;  /* count both pages and inodes */
1663
1664         while (!list_empty(&wb->b_io)) {
1665                 struct inode *inode = wb_inode(wb->b_io.prev);
1666                 struct bdi_writeback *tmp_wb;
1667
1668                 if (inode->i_sb != sb) {
1669                         if (work->sb) {
1670                                 /*
1671                                  * We only want to write back data for this
1672                                  * superblock, move all inodes not belonging
1673                                  * to it back onto the dirty list.
1674                                  */
1675                                 redirty_tail(inode, wb);
1676                                 continue;
1677                         }
1678
1679                         /*
1680                          * The inode belongs to a different superblock.
1681                          * Bounce back to the caller to unpin this and
1682                          * pin the next superblock.
1683                          */
1684                         break;
1685                 }
1686
1687                 /*
1688                  * Don't bother with new inodes or inodes being freed, first
1689                  * kind does not need periodic writeout yet, and for the latter
1690                  * kind writeout is handled by the freer.
1691                  */
1692                 spin_lock(&inode->i_lock);
1693                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1694                         redirty_tail_locked(inode, wb);
1695                         spin_unlock(&inode->i_lock);
1696                         continue;
1697                 }
1698                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1699                         /*
1700                          * If this inode is locked for writeback and we are not
1701                          * doing writeback-for-data-integrity, move it to
1702                          * b_more_io so that writeback can proceed with the
1703                          * other inodes on s_io.
1704                          *
1705                          * We'll have another go at writing back this inode
1706                          * when we completed a full scan of b_io.
1707                          */
1708                         spin_unlock(&inode->i_lock);
1709                         requeue_io(inode, wb);
1710                         trace_writeback_sb_inodes_requeue(inode);
1711                         continue;
1712                 }
1713                 spin_unlock(&wb->list_lock);
1714
1715                 /*
1716                  * We already requeued the inode if it had I_SYNC set and we
1717                  * are doing WB_SYNC_NONE writeback. So this catches only the
1718                  * WB_SYNC_ALL case.
1719                  */
1720                 if (inode->i_state & I_SYNC) {
1721                         /* Wait for I_SYNC. This function drops i_lock... */
1722                         inode_sleep_on_writeback(inode);
1723                         /* Inode may be gone, start again */
1724                         spin_lock(&wb->list_lock);
1725                         continue;
1726                 }
1727                 inode->i_state |= I_SYNC;
1728                 wbc_attach_and_unlock_inode(&wbc, inode);
1729
1730                 write_chunk = writeback_chunk_size(wb, work);
1731                 wbc.nr_to_write = write_chunk;
1732                 wbc.pages_skipped = 0;
1733
1734                 /*
1735                  * We use I_SYNC to pin the inode in memory. While it is set
1736                  * evict_inode() will wait so the inode cannot be freed.
1737                  */
1738                 __writeback_single_inode(inode, &wbc);
1739
1740                 wbc_detach_inode(&wbc);
1741                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1742                 wrote += write_chunk - wbc.nr_to_write;
1743
1744                 if (need_resched()) {
1745                         /*
1746                          * We're trying to balance between building up a nice
1747                          * long list of IOs to improve our merge rate, and
1748                          * getting those IOs out quickly for anyone throttling
1749                          * in balance_dirty_pages().  cond_resched() doesn't
1750                          * unplug, so get our IOs out the door before we
1751                          * give up the CPU.
1752                          */
1753                         blk_flush_plug(current);
1754                         cond_resched();
1755                 }
1756
1757                 /*
1758                  * Requeue @inode if still dirty.  Be careful as @inode may
1759                  * have been switched to another wb in the meantime.
1760                  */
1761                 tmp_wb = inode_to_wb_and_lock_list(inode);
1762                 spin_lock(&inode->i_lock);
1763                 if (!(inode->i_state & I_DIRTY_ALL))
1764                         wrote++;
1765                 requeue_inode(inode, tmp_wb, &wbc);
1766                 inode_sync_complete(inode);
1767                 spin_unlock(&inode->i_lock);
1768
1769                 if (unlikely(tmp_wb != wb)) {
1770                         spin_unlock(&tmp_wb->list_lock);
1771                         spin_lock(&wb->list_lock);
1772                 }
1773
1774                 /*
1775                  * bail out to wb_writeback() often enough to check
1776                  * background threshold and other termination conditions.
1777                  */
1778                 if (wrote) {
1779                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1780                                 break;
1781                         if (work->nr_pages <= 0)
1782                                 break;
1783                 }
1784         }
1785         return wrote;
1786 }
1787
1788 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1789                                   struct wb_writeback_work *work)
1790 {
1791         unsigned long start_time = jiffies;
1792         long wrote = 0;
1793
1794         while (!list_empty(&wb->b_io)) {
1795                 struct inode *inode = wb_inode(wb->b_io.prev);
1796                 struct super_block *sb = inode->i_sb;
1797
1798                 if (!trylock_super(sb)) {
1799                         /*
1800                          * trylock_super() may fail consistently due to
1801                          * s_umount being grabbed by someone else. Don't use
1802                          * requeue_io() to avoid busy retrying the inode/sb.
1803                          */
1804                         redirty_tail(inode, wb);
1805                         continue;
1806                 }
1807                 wrote += writeback_sb_inodes(sb, wb, work);
1808                 up_read(&sb->s_umount);
1809
1810                 /* refer to the same tests at the end of writeback_sb_inodes */
1811                 if (wrote) {
1812                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1813                                 break;
1814                         if (work->nr_pages <= 0)
1815                                 break;
1816                 }
1817         }
1818         /* Leave any unwritten inodes on b_io */
1819         return wrote;
1820 }
1821
1822 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1823                                 enum wb_reason reason)
1824 {
1825         struct wb_writeback_work work = {
1826                 .nr_pages       = nr_pages,
1827                 .sync_mode      = WB_SYNC_NONE,
1828                 .range_cyclic   = 1,
1829                 .reason         = reason,
1830         };
1831         struct blk_plug plug;
1832
1833         blk_start_plug(&plug);
1834         spin_lock(&wb->list_lock);
1835         if (list_empty(&wb->b_io))
1836                 queue_io(wb, &work, jiffies);
1837         __writeback_inodes_wb(wb, &work);
1838         spin_unlock(&wb->list_lock);
1839         blk_finish_plug(&plug);
1840
1841         return nr_pages - work.nr_pages;
1842 }
1843
1844 /*
1845  * Explicit flushing or periodic writeback of "old" data.
1846  *
1847  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1848  * dirtying-time in the inode's address_space.  So this periodic writeback code
1849  * just walks the superblock inode list, writing back any inodes which are
1850  * older than a specific point in time.
1851  *
1852  * Try to run once per dirty_writeback_interval.  But if a writeback event
1853  * takes longer than a dirty_writeback_interval interval, then leave a
1854  * one-second gap.
1855  *
1856  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1857  * all dirty pages if they are all attached to "old" mappings.
1858  */
1859 static long wb_writeback(struct bdi_writeback *wb,
1860                          struct wb_writeback_work *work)
1861 {
1862         unsigned long wb_start = jiffies;
1863         long nr_pages = work->nr_pages;
1864         unsigned long dirtied_before = jiffies;
1865         struct inode *inode;
1866         long progress;
1867         struct blk_plug plug;
1868
1869         blk_start_plug(&plug);
1870         spin_lock(&wb->list_lock);
1871         for (;;) {
1872                 /*
1873                  * Stop writeback when nr_pages has been consumed
1874                  */
1875                 if (work->nr_pages <= 0)
1876                         break;
1877
1878                 /*
1879                  * Background writeout and kupdate-style writeback may
1880                  * run forever. Stop them if there is other work to do
1881                  * so that e.g. sync can proceed. They'll be restarted
1882                  * after the other works are all done.
1883                  */
1884                 if ((work->for_background || work->for_kupdate) &&
1885                     !list_empty(&wb->work_list))
1886                         break;
1887
1888                 /*
1889                  * For background writeout, stop when we are below the
1890                  * background dirty threshold
1891                  */
1892                 if (work->for_background && !wb_over_bg_thresh(wb))
1893                         break;
1894
1895                 /*
1896                  * Kupdate and background works are special and we want to
1897                  * include all inodes that need writing. Livelock avoidance is
1898                  * handled by these works yielding to any other work so we are
1899                  * safe.
1900                  */
1901                 if (work->for_kupdate) {
1902                         dirtied_before = jiffies -
1903                                 msecs_to_jiffies(dirty_expire_interval * 10);
1904                 } else if (work->for_background)
1905                         dirtied_before = jiffies;
1906
1907                 trace_writeback_start(wb, work);
1908                 if (list_empty(&wb->b_io))
1909                         queue_io(wb, work, dirtied_before);
1910                 if (work->sb)
1911                         progress = writeback_sb_inodes(work->sb, wb, work);
1912                 else
1913                         progress = __writeback_inodes_wb(wb, work);
1914                 trace_writeback_written(wb, work);
1915
1916                 wb_update_bandwidth(wb, wb_start);
1917
1918                 /*
1919                  * Did we write something? Try for more
1920                  *
1921                  * Dirty inodes are moved to b_io for writeback in batches.
1922                  * The completion of the current batch does not necessarily
1923                  * mean the overall work is done. So we keep looping as long
1924                  * as made some progress on cleaning pages or inodes.
1925                  */
1926                 if (progress)
1927                         continue;
1928                 /*
1929                  * No more inodes for IO, bail
1930                  */
1931                 if (list_empty(&wb->b_more_io))
1932                         break;
1933                 /*
1934                  * Nothing written. Wait for some inode to
1935                  * become available for writeback. Otherwise
1936                  * we'll just busyloop.
1937                  */
1938                 trace_writeback_wait(wb, work);
1939                 inode = wb_inode(wb->b_more_io.prev);
1940                 spin_lock(&inode->i_lock);
1941                 spin_unlock(&wb->list_lock);
1942                 /* This function drops i_lock... */
1943                 inode_sleep_on_writeback(inode);
1944                 spin_lock(&wb->list_lock);
1945         }
1946         spin_unlock(&wb->list_lock);
1947         blk_finish_plug(&plug);
1948
1949         return nr_pages - work->nr_pages;
1950 }
1951
1952 /*
1953  * Return the next wb_writeback_work struct that hasn't been processed yet.
1954  */
1955 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1956 {
1957         struct wb_writeback_work *work = NULL;
1958
1959         spin_lock_bh(&wb->work_lock);
1960         if (!list_empty(&wb->work_list)) {
1961                 work = list_entry(wb->work_list.next,
1962                                   struct wb_writeback_work, list);
1963                 list_del_init(&work->list);
1964         }
1965         spin_unlock_bh(&wb->work_lock);
1966         return work;
1967 }
1968
1969 static long wb_check_background_flush(struct bdi_writeback *wb)
1970 {
1971         if (wb_over_bg_thresh(wb)) {
1972
1973                 struct wb_writeback_work work = {
1974                         .nr_pages       = LONG_MAX,
1975                         .sync_mode      = WB_SYNC_NONE,
1976                         .for_background = 1,
1977                         .range_cyclic   = 1,
1978                         .reason         = WB_REASON_BACKGROUND,
1979                 };
1980
1981                 return wb_writeback(wb, &work);
1982         }
1983
1984         return 0;
1985 }
1986
1987 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1988 {
1989         unsigned long expired;
1990         long nr_pages;
1991
1992         /*
1993          * When set to zero, disable periodic writeback
1994          */
1995         if (!dirty_writeback_interval)
1996                 return 0;
1997
1998         expired = wb->last_old_flush +
1999                         msecs_to_jiffies(dirty_writeback_interval * 10);
2000         if (time_before(jiffies, expired))
2001                 return 0;
2002
2003         wb->last_old_flush = jiffies;
2004         nr_pages = get_nr_dirty_pages();
2005
2006         if (nr_pages) {
2007                 struct wb_writeback_work work = {
2008                         .nr_pages       = nr_pages,
2009                         .sync_mode      = WB_SYNC_NONE,
2010                         .for_kupdate    = 1,
2011                         .range_cyclic   = 1,
2012                         .reason         = WB_REASON_PERIODIC,
2013                 };
2014
2015                 return wb_writeback(wb, &work);
2016         }
2017
2018         return 0;
2019 }
2020
2021 static long wb_check_start_all(struct bdi_writeback *wb)
2022 {
2023         long nr_pages;
2024
2025         if (!test_bit(WB_start_all, &wb->state))
2026                 return 0;
2027
2028         nr_pages = get_nr_dirty_pages();
2029         if (nr_pages) {
2030                 struct wb_writeback_work work = {
2031                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2032                         .sync_mode      = WB_SYNC_NONE,
2033                         .range_cyclic   = 1,
2034                         .reason         = wb->start_all_reason,
2035                 };
2036
2037                 nr_pages = wb_writeback(wb, &work);
2038         }
2039
2040         clear_bit(WB_start_all, &wb->state);
2041         return nr_pages;
2042 }
2043
2044
2045 /*
2046  * Retrieve work items and do the writeback they describe
2047  */
2048 static long wb_do_writeback(struct bdi_writeback *wb)
2049 {
2050         struct wb_writeback_work *work;
2051         long wrote = 0;
2052
2053         set_bit(WB_writeback_running, &wb->state);
2054         while ((work = get_next_work_item(wb)) != NULL) {
2055                 trace_writeback_exec(wb, work);
2056                 wrote += wb_writeback(wb, work);
2057                 finish_writeback_work(wb, work);
2058         }
2059
2060         /*
2061          * Check for a flush-everything request
2062          */
2063         wrote += wb_check_start_all(wb);
2064
2065         /*
2066          * Check for periodic writeback, kupdated() style
2067          */
2068         wrote += wb_check_old_data_flush(wb);
2069         wrote += wb_check_background_flush(wb);
2070         clear_bit(WB_writeback_running, &wb->state);
2071
2072         return wrote;
2073 }
2074
2075 /*
2076  * Handle writeback of dirty data for the device backed by this bdi. Also
2077  * reschedules periodically and does kupdated style flushing.
2078  */
2079 void wb_workfn(struct work_struct *work)
2080 {
2081         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2082                                                 struct bdi_writeback, dwork);
2083         long pages_written;
2084
2085         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2086         current->flags |= PF_SWAPWRITE;
2087
2088         if (likely(!current_is_workqueue_rescuer() ||
2089                    !test_bit(WB_registered, &wb->state))) {
2090                 /*
2091                  * The normal path.  Keep writing back @wb until its
2092                  * work_list is empty.  Note that this path is also taken
2093                  * if @wb is shutting down even when we're running off the
2094                  * rescuer as work_list needs to be drained.
2095                  */
2096                 do {
2097                         pages_written = wb_do_writeback(wb);
2098                         trace_writeback_pages_written(pages_written);
2099                 } while (!list_empty(&wb->work_list));
2100         } else {
2101                 /*
2102                  * bdi_wq can't get enough workers and we're running off
2103                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2104                  * enough for efficient IO.
2105                  */
2106                 pages_written = writeback_inodes_wb(wb, 1024,
2107                                                     WB_REASON_FORKER_THREAD);
2108                 trace_writeback_pages_written(pages_written);
2109         }
2110
2111         if (!list_empty(&wb->work_list))
2112                 wb_wakeup(wb);
2113         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2114                 wb_wakeup_delayed(wb);
2115
2116         current->flags &= ~PF_SWAPWRITE;
2117 }
2118
2119 /*
2120  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2121  * write back the whole world.
2122  */
2123 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2124                                          enum wb_reason reason)
2125 {
2126         struct bdi_writeback *wb;
2127
2128         if (!bdi_has_dirty_io(bdi))
2129                 return;
2130
2131         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2132                 wb_start_writeback(wb, reason);
2133 }
2134
2135 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2136                                 enum wb_reason reason)
2137 {
2138         rcu_read_lock();
2139         __wakeup_flusher_threads_bdi(bdi, reason);
2140         rcu_read_unlock();
2141 }
2142
2143 /*
2144  * Wakeup the flusher threads to start writeback of all currently dirty pages
2145  */
2146 void wakeup_flusher_threads(enum wb_reason reason)
2147 {
2148         struct backing_dev_info *bdi;
2149
2150         /*
2151          * If we are expecting writeback progress we must submit plugged IO.
2152          */
2153         if (blk_needs_flush_plug(current))
2154                 blk_schedule_flush_plug(current);
2155
2156         rcu_read_lock();
2157         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2158                 __wakeup_flusher_threads_bdi(bdi, reason);
2159         rcu_read_unlock();
2160 }
2161
2162 /*
2163  * Wake up bdi's periodically to make sure dirtytime inodes gets
2164  * written back periodically.  We deliberately do *not* check the
2165  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2166  * kernel to be constantly waking up once there are any dirtytime
2167  * inodes on the system.  So instead we define a separate delayed work
2168  * function which gets called much more rarely.  (By default, only
2169  * once every 12 hours.)
2170  *
2171  * If there is any other write activity going on in the file system,
2172  * this function won't be necessary.  But if the only thing that has
2173  * happened on the file system is a dirtytime inode caused by an atime
2174  * update, we need this infrastructure below to make sure that inode
2175  * eventually gets pushed out to disk.
2176  */
2177 static void wakeup_dirtytime_writeback(struct work_struct *w);
2178 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2179
2180 static void wakeup_dirtytime_writeback(struct work_struct *w)
2181 {
2182         struct backing_dev_info *bdi;
2183
2184         rcu_read_lock();
2185         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2186                 struct bdi_writeback *wb;
2187
2188                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2189                         if (!list_empty(&wb->b_dirty_time))
2190                                 wb_wakeup(wb);
2191         }
2192         rcu_read_unlock();
2193         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2194 }
2195
2196 static int __init start_dirtytime_writeback(void)
2197 {
2198         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2199         return 0;
2200 }
2201 __initcall(start_dirtytime_writeback);
2202
2203 int dirtytime_interval_handler(struct ctl_table *table, int write,
2204                                void *buffer, size_t *lenp, loff_t *ppos)
2205 {
2206         int ret;
2207
2208         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2209         if (ret == 0 && write)
2210                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2211         return ret;
2212 }
2213
2214 /**
2215  * __mark_inode_dirty - internal function to mark an inode dirty
2216  *
2217  * @inode: inode to mark
2218  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2219  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2220  *         with I_DIRTY_PAGES.
2221  *
2222  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2223  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2224  *
2225  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2226  * instead of calling this directly.
2227  *
2228  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2229  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2230  * even if they are later hashed, as they will have been marked dirty already.
2231  *
2232  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2233  *
2234  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2235  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2236  * the kernel-internal blockdev inode represents the dirtying time of the
2237  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2238  * page->mapping->host, so the page-dirtying time is recorded in the internal
2239  * blockdev inode.
2240  */
2241 void __mark_inode_dirty(struct inode *inode, int flags)
2242 {
2243         struct super_block *sb = inode->i_sb;
2244         int dirtytime = 0;
2245
2246         trace_writeback_mark_inode_dirty(inode, flags);
2247
2248         if (flags & I_DIRTY_INODE) {
2249                 /*
2250                  * Notify the filesystem about the inode being dirtied, so that
2251                  * (if needed) it can update on-disk fields and journal the
2252                  * inode.  This is only needed when the inode itself is being
2253                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2254                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2255                  */
2256                 trace_writeback_dirty_inode_start(inode, flags);
2257                 if (sb->s_op->dirty_inode)
2258                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2259                 trace_writeback_dirty_inode(inode, flags);
2260
2261                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2262                 flags &= ~I_DIRTY_TIME;
2263         } else {
2264                 /*
2265                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2266                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2267                  * in one call to __mark_inode_dirty().)
2268                  */
2269                 dirtytime = flags & I_DIRTY_TIME;
2270                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2271         }
2272
2273         /*
2274          * Paired with smp_mb() in __writeback_single_inode() for the
2275          * following lockless i_state test.  See there for details.
2276          */
2277         smp_mb();
2278
2279         if (((inode->i_state & flags) == flags) ||
2280             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2281                 return;
2282
2283         spin_lock(&inode->i_lock);
2284         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2285                 goto out_unlock_inode;
2286         if ((inode->i_state & flags) != flags) {
2287                 const int was_dirty = inode->i_state & I_DIRTY;
2288
2289                 inode_attach_wb(inode, NULL);
2290
2291                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2292                 if (flags & I_DIRTY_INODE)
2293                         inode->i_state &= ~I_DIRTY_TIME;
2294                 inode->i_state |= flags;
2295
2296                 /*
2297                  * If the inode is queued for writeback by flush worker, just
2298                  * update its dirty state. Once the flush worker is done with
2299                  * the inode it will place it on the appropriate superblock
2300                  * list, based upon its state.
2301                  */
2302                 if (inode->i_state & I_SYNC_QUEUED)
2303                         goto out_unlock_inode;
2304
2305                 /*
2306                  * Only add valid (hashed) inodes to the superblock's
2307                  * dirty list.  Add blockdev inodes as well.
2308                  */
2309                 if (!S_ISBLK(inode->i_mode)) {
2310                         if (inode_unhashed(inode))
2311                                 goto out_unlock_inode;
2312                 }
2313                 if (inode->i_state & I_FREEING)
2314                         goto out_unlock_inode;
2315
2316                 /*
2317                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2318                  * reposition it (that would break b_dirty time-ordering).
2319                  */
2320                 if (!was_dirty) {
2321                         struct bdi_writeback *wb;
2322                         struct list_head *dirty_list;
2323                         bool wakeup_bdi = false;
2324
2325                         wb = locked_inode_to_wb_and_lock_list(inode);
2326
2327                         inode->dirtied_when = jiffies;
2328                         if (dirtytime)
2329                                 inode->dirtied_time_when = jiffies;
2330
2331                         if (inode->i_state & I_DIRTY)
2332                                 dirty_list = &wb->b_dirty;
2333                         else
2334                                 dirty_list = &wb->b_dirty_time;
2335
2336                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2337                                                                dirty_list);
2338
2339                         spin_unlock(&wb->list_lock);
2340                         trace_writeback_dirty_inode_enqueue(inode);
2341
2342                         /*
2343                          * If this is the first dirty inode for this bdi,
2344                          * we have to wake-up the corresponding bdi thread
2345                          * to make sure background write-back happens
2346                          * later.
2347                          */
2348                         if (wakeup_bdi &&
2349                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2350                                 wb_wakeup_delayed(wb);
2351                         return;
2352                 }
2353         }
2354 out_unlock_inode:
2355         spin_unlock(&inode->i_lock);
2356 }
2357 EXPORT_SYMBOL(__mark_inode_dirty);
2358
2359 /*
2360  * The @s_sync_lock is used to serialise concurrent sync operations
2361  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2362  * Concurrent callers will block on the s_sync_lock rather than doing contending
2363  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2364  * has been issued up to the time this function is enter is guaranteed to be
2365  * completed by the time we have gained the lock and waited for all IO that is
2366  * in progress regardless of the order callers are granted the lock.
2367  */
2368 static void wait_sb_inodes(struct super_block *sb)
2369 {
2370         LIST_HEAD(sync_list);
2371
2372         /*
2373          * We need to be protected against the filesystem going from
2374          * r/o to r/w or vice versa.
2375          */
2376         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2377
2378         mutex_lock(&sb->s_sync_lock);
2379
2380         /*
2381          * Splice the writeback list onto a temporary list to avoid waiting on
2382          * inodes that have started writeback after this point.
2383          *
2384          * Use rcu_read_lock() to keep the inodes around until we have a
2385          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2386          * the local list because inodes can be dropped from either by writeback
2387          * completion.
2388          */
2389         rcu_read_lock();
2390         spin_lock_irq(&sb->s_inode_wblist_lock);
2391         list_splice_init(&sb->s_inodes_wb, &sync_list);
2392
2393         /*
2394          * Data integrity sync. Must wait for all pages under writeback, because
2395          * there may have been pages dirtied before our sync call, but which had
2396          * writeout started before we write it out.  In which case, the inode
2397          * may not be on the dirty list, but we still have to wait for that
2398          * writeout.
2399          */
2400         while (!list_empty(&sync_list)) {
2401                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2402                                                        i_wb_list);
2403                 struct address_space *mapping = inode->i_mapping;
2404
2405                 /*
2406                  * Move each inode back to the wb list before we drop the lock
2407                  * to preserve consistency between i_wb_list and the mapping
2408                  * writeback tag. Writeback completion is responsible to remove
2409                  * the inode from either list once the writeback tag is cleared.
2410                  */
2411                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2412
2413                 /*
2414                  * The mapping can appear untagged while still on-list since we
2415                  * do not have the mapping lock. Skip it here, wb completion
2416                  * will remove it.
2417                  */
2418                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2419                         continue;
2420
2421                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2422
2423                 spin_lock(&inode->i_lock);
2424                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2425                         spin_unlock(&inode->i_lock);
2426
2427                         spin_lock_irq(&sb->s_inode_wblist_lock);
2428                         continue;
2429                 }
2430                 __iget(inode);
2431                 spin_unlock(&inode->i_lock);
2432                 rcu_read_unlock();
2433
2434                 /*
2435                  * We keep the error status of individual mapping so that
2436                  * applications can catch the writeback error using fsync(2).
2437                  * See filemap_fdatawait_keep_errors() for details.
2438                  */
2439                 filemap_fdatawait_keep_errors(mapping);
2440
2441                 cond_resched();
2442
2443                 iput(inode);
2444
2445                 rcu_read_lock();
2446                 spin_lock_irq(&sb->s_inode_wblist_lock);
2447         }
2448         spin_unlock_irq(&sb->s_inode_wblist_lock);
2449         rcu_read_unlock();
2450         mutex_unlock(&sb->s_sync_lock);
2451 }
2452
2453 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2454                                      enum wb_reason reason, bool skip_if_busy)
2455 {
2456         struct backing_dev_info *bdi = sb->s_bdi;
2457         DEFINE_WB_COMPLETION(done, bdi);
2458         struct wb_writeback_work work = {
2459                 .sb                     = sb,
2460                 .sync_mode              = WB_SYNC_NONE,
2461                 .tagged_writepages      = 1,
2462                 .done                   = &done,
2463                 .nr_pages               = nr,
2464                 .reason                 = reason,
2465         };
2466
2467         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2468                 return;
2469         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2470
2471         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2472         wb_wait_for_completion(&done);
2473 }
2474
2475 /**
2476  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2477  * @sb: the superblock
2478  * @nr: the number of pages to write
2479  * @reason: reason why some writeback work initiated
2480  *
2481  * Start writeback on some inodes on this super_block. No guarantees are made
2482  * on how many (if any) will be written, and this function does not wait
2483  * for IO completion of submitted IO.
2484  */
2485 void writeback_inodes_sb_nr(struct super_block *sb,
2486                             unsigned long nr,
2487                             enum wb_reason reason)
2488 {
2489         __writeback_inodes_sb_nr(sb, nr, reason, false);
2490 }
2491 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2492
2493 /**
2494  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2495  * @sb: the superblock
2496  * @reason: reason why some writeback work was initiated
2497  *
2498  * Start writeback on some inodes on this super_block. No guarantees are made
2499  * on how many (if any) will be written, and this function does not wait
2500  * for IO completion of submitted IO.
2501  */
2502 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2503 {
2504         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2505 }
2506 EXPORT_SYMBOL(writeback_inodes_sb);
2507
2508 /**
2509  * try_to_writeback_inodes_sb - try to start writeback if none underway
2510  * @sb: the superblock
2511  * @reason: reason why some writeback work was initiated
2512  *
2513  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2514  */
2515 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2516 {
2517         if (!down_read_trylock(&sb->s_umount))
2518                 return;
2519
2520         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2521         up_read(&sb->s_umount);
2522 }
2523 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2524
2525 /**
2526  * sync_inodes_sb       -       sync sb inode pages
2527  * @sb: the superblock
2528  *
2529  * This function writes and waits on any dirty inode belonging to this
2530  * super_block.
2531  */
2532 void sync_inodes_sb(struct super_block *sb)
2533 {
2534         struct backing_dev_info *bdi = sb->s_bdi;
2535         DEFINE_WB_COMPLETION(done, bdi);
2536         struct wb_writeback_work work = {
2537                 .sb             = sb,
2538                 .sync_mode      = WB_SYNC_ALL,
2539                 .nr_pages       = LONG_MAX,
2540                 .range_cyclic   = 0,
2541                 .done           = &done,
2542                 .reason         = WB_REASON_SYNC,
2543                 .for_sync       = 1,
2544         };
2545
2546         /*
2547          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2548          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2549          * bdi_has_dirty() need to be written out too.
2550          */
2551         if (bdi == &noop_backing_dev_info)
2552                 return;
2553         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2554
2555         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2556         bdi_down_write_wb_switch_rwsem(bdi);
2557         bdi_split_work_to_wbs(bdi, &work, false);
2558         wb_wait_for_completion(&done);
2559         bdi_up_write_wb_switch_rwsem(bdi);
2560
2561         wait_sb_inodes(sb);
2562 }
2563 EXPORT_SYMBOL(sync_inodes_sb);
2564
2565 /**
2566  * write_inode_now      -       write an inode to disk
2567  * @inode: inode to write to disk
2568  * @sync: whether the write should be synchronous or not
2569  *
2570  * This function commits an inode to disk immediately if it is dirty. This is
2571  * primarily needed by knfsd.
2572  *
2573  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2574  */
2575 int write_inode_now(struct inode *inode, int sync)
2576 {
2577         struct writeback_control wbc = {
2578                 .nr_to_write = LONG_MAX,
2579                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2580                 .range_start = 0,
2581                 .range_end = LLONG_MAX,
2582         };
2583
2584         if (!mapping_can_writeback(inode->i_mapping))
2585                 wbc.nr_to_write = 0;
2586
2587         might_sleep();
2588         return writeback_single_inode(inode, &wbc);
2589 }
2590 EXPORT_SYMBOL(write_inode_now);
2591
2592 /**
2593  * sync_inode - write an inode and its pages to disk.
2594  * @inode: the inode to sync
2595  * @wbc: controls the writeback mode
2596  *
2597  * sync_inode() will write an inode and its pages to disk.  It will also
2598  * correctly update the inode on its superblock's dirty inode lists and will
2599  * update inode->i_state.
2600  *
2601  * The caller must have a ref on the inode.
2602  */
2603 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2604 {
2605         return writeback_single_inode(inode, wbc);
2606 }
2607 EXPORT_SYMBOL(sync_inode);
2608
2609 /**
2610  * sync_inode_metadata - write an inode to disk
2611  * @inode: the inode to sync
2612  * @wait: wait for I/O to complete.
2613  *
2614  * Write an inode to disk and adjust its dirty state after completion.
2615  *
2616  * Note: only writes the actual inode, no associated data or other metadata.
2617  */
2618 int sync_inode_metadata(struct inode *inode, int wait)
2619 {
2620         struct writeback_control wbc = {
2621                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2622                 .nr_to_write = 0, /* metadata-only */
2623         };
2624
2625         return sync_inode(inode, &wbc);
2626 }
2627 EXPORT_SYMBOL(sync_inode_metadata);