GNU Linux-libre 4.19.211-gnu1
[releases.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         enum writeback_sync_modes sync_mode;
49         unsigned int tagged_writepages:1;
50         unsigned int for_kupdate:1;
51         unsigned int range_cyclic:1;
52         unsigned int for_background:1;
53         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
54         unsigned int auto_free:1;       /* free on completion */
55         enum wb_reason reason;          /* why was writeback initiated? */
56
57         struct list_head list;          /* pending work list */
58         struct wb_completion *done;     /* set if the caller waits */
59 };
60
61 /*
62  * If one wants to wait for one or more wb_writeback_works, each work's
63  * ->done should be set to a wb_completion defined using the following
64  * macro.  Once all work items are issued with wb_queue_work(), the caller
65  * can wait for the completion of all using wb_wait_for_completion().  Work
66  * items which are waited upon aren't freed automatically on completion.
67  */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
69         struct wb_completion cmpl = {                                   \
70                 .cnt            = ATOMIC_INIT(1),                       \
71         }
72
73
74 /*
75  * If an inode is constantly having its pages dirtied, but then the
76  * updates stop dirtytime_expire_interval seconds in the past, it's
77  * possible for the worst case time between when an inode has its
78  * timestamps updated and when they finally get written out to be two
79  * dirtytime_expire_intervals.  We set the default to 12 hours (in
80  * seconds), which means most of the time inodes will have their
81  * timestamps written to disk after 12 hours, but in the worst case a
82  * few inodes might not their timestamps updated for 24 hours.
83  */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85
86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88         return list_entry(head, struct inode, i_io_list);
89 }
90
91 /*
92  * Include the creation of the trace points after defining the
93  * wb_writeback_work structure and inline functions so that the definition
94  * remains local to this file.
95  */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100
101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103         if (wb_has_dirty_io(wb)) {
104                 return false;
105         } else {
106                 set_bit(WB_has_dirty_io, &wb->state);
107                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
108                 atomic_long_add(wb->avg_write_bandwidth,
109                                 &wb->bdi->tot_write_bandwidth);
110                 return true;
111         }
112 }
113
114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118                 clear_bit(WB_has_dirty_io, &wb->state);
119                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120                                         &wb->bdi->tot_write_bandwidth) < 0);
121         }
122 }
123
124 /**
125  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126  * @inode: inode to be moved
127  * @wb: target bdi_writeback
128  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
129  *
130  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131  * Returns %true if @inode is the first occupant of the !dirty_time IO
132  * lists; otherwise, %false.
133  */
134 static bool inode_io_list_move_locked(struct inode *inode,
135                                       struct bdi_writeback *wb,
136                                       struct list_head *head)
137 {
138         assert_spin_locked(&wb->list_lock);
139
140         list_move(&inode->i_io_list, head);
141
142         /* dirty_time doesn't count as dirty_io until expiration */
143         if (head != &wb->b_dirty_time)
144                 return wb_io_lists_populated(wb);
145
146         wb_io_lists_depopulated(wb);
147         return false;
148 }
149
150 /**
151  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152  * @inode: inode to be removed
153  * @wb: bdi_writeback @inode is being removed from
154  *
155  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156  * clear %WB_has_dirty_io if all are empty afterwards.
157  */
158 static void inode_io_list_del_locked(struct inode *inode,
159                                      struct bdi_writeback *wb)
160 {
161         assert_spin_locked(&wb->list_lock);
162         assert_spin_locked(&inode->i_lock);
163
164         inode->i_state &= ~I_SYNC_QUEUED;
165         list_del_init(&inode->i_io_list);
166         wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171         spin_lock_bh(&wb->work_lock);
172         if (test_bit(WB_registered, &wb->state))
173                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void finish_writeback_work(struct bdi_writeback *wb,
178                                   struct wb_writeback_work *work)
179 {
180         struct wb_completion *done = work->done;
181
182         if (work->auto_free)
183                 kfree(work);
184         if (done && atomic_dec_and_test(&done->cnt))
185                 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
188 static void wb_queue_work(struct bdi_writeback *wb,
189                           struct wb_writeback_work *work)
190 {
191         trace_writeback_queue(wb, work);
192
193         if (work->done)
194                 atomic_inc(&work->done->cnt);
195
196         spin_lock_bh(&wb->work_lock);
197
198         if (test_bit(WB_registered, &wb->state)) {
199                 list_add_tail(&work->list, &wb->work_list);
200                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201         } else
202                 finish_writeback_work(wb, work);
203
204         spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219                                    struct wb_completion *done)
220 {
221         atomic_dec(&done->cnt);         /* put down the initial count */
222         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
232
233 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235                                         /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
237                                         /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239                                         /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246         struct backing_dev_info *bdi = inode_to_bdi(inode);
247         struct bdi_writeback *wb = NULL;
248
249         if (inode_cgwb_enabled(inode)) {
250                 struct cgroup_subsys_state *memcg_css;
251
252                 if (page) {
253                         memcg_css = mem_cgroup_css_from_page(page);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                 } else {
256                         /* must pin memcg_css, see wb_get_create() */
257                         memcg_css = task_get_css(current, memory_cgrp_id);
258                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259                         css_put(memcg_css);
260                 }
261         }
262
263         if (!wb)
264                 wb = &bdi->wb;
265
266         /*
267          * There may be multiple instances of this function racing to
268          * update the same inode.  Use cmpxchg() to tell the winner.
269          */
270         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271                 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285         __releases(&inode->i_lock)
286         __acquires(&wb->list_lock)
287 {
288         while (true) {
289                 struct bdi_writeback *wb = inode_to_wb(inode);
290
291                 /*
292                  * inode_to_wb() association is protected by both
293                  * @inode->i_lock and @wb->list_lock but list_lock nests
294                  * outside i_lock.  Drop i_lock and verify that the
295                  * association hasn't changed after acquiring list_lock.
296                  */
297                 wb_get(wb);
298                 spin_unlock(&inode->i_lock);
299                 spin_lock(&wb->list_lock);
300
301                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302                 if (likely(wb == inode->i_wb)) {
303                         wb_put(wb);     /* @inode already has ref */
304                         return wb;
305                 }
306
307                 spin_unlock(&wb->list_lock);
308                 wb_put(wb);
309                 cpu_relax();
310                 spin_lock(&inode->i_lock);
311         }
312 }
313
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322         __acquires(&wb->list_lock)
323 {
324         spin_lock(&inode->i_lock);
325         return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329         struct inode            *inode;
330         struct bdi_writeback    *new_wb;
331
332         struct rcu_head         rcu_head;
333         struct work_struct      work;
334 };
335
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338         down_write(&bdi->wb_switch_rwsem);
339 }
340
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343         up_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348         struct inode_switch_wbs_context *isw =
349                 container_of(work, struct inode_switch_wbs_context, work);
350         struct inode *inode = isw->inode;
351         struct backing_dev_info *bdi = inode_to_bdi(inode);
352         struct address_space *mapping = inode->i_mapping;
353         struct bdi_writeback *old_wb = inode->i_wb;
354         struct bdi_writeback *new_wb = isw->new_wb;
355         struct radix_tree_iter iter;
356         bool switched = false;
357         void **slot;
358
359         /*
360          * If @inode switches cgwb membership while sync_inodes_sb() is
361          * being issued, sync_inodes_sb() might miss it.  Synchronize.
362          */
363         down_read(&bdi->wb_switch_rwsem);
364
365         /*
366          * By the time control reaches here, RCU grace period has passed
367          * since I_WB_SWITCH assertion and all wb stat update transactions
368          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369          * synchronizing against the i_pages lock.
370          *
371          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372          * gives us exclusion against all wb related operations on @inode
373          * including IO list manipulations and stat updates.
374          */
375         if (old_wb < new_wb) {
376                 spin_lock(&old_wb->list_lock);
377                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378         } else {
379                 spin_lock(&new_wb->list_lock);
380                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381         }
382         spin_lock(&inode->i_lock);
383         xa_lock_irq(&mapping->i_pages);
384
385         /*
386          * Once I_FREEING is visible under i_lock, the eviction path owns
387          * the inode and we shouldn't modify ->i_io_list.
388          */
389         if (unlikely(inode->i_state & I_FREEING))
390                 goto skip_switch;
391
392         /*
393          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395          * pages actually under writeback.
396          */
397         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
398                                    PAGECACHE_TAG_DIRTY) {
399                 struct page *page = radix_tree_deref_slot_protected(slot,
400                                                 &mapping->i_pages.xa_lock);
401                 if (likely(page) && PageDirty(page)) {
402                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
403                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
404                 }
405         }
406
407         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
408                                    PAGECACHE_TAG_WRITEBACK) {
409                 struct page *page = radix_tree_deref_slot_protected(slot,
410                                                 &mapping->i_pages.xa_lock);
411                 if (likely(page)) {
412                         WARN_ON_ONCE(!PageWriteback(page));
413                         dec_wb_stat(old_wb, WB_WRITEBACK);
414                         inc_wb_stat(new_wb, WB_WRITEBACK);
415                 }
416         }
417
418         wb_get(new_wb);
419
420         /*
421          * Transfer to @new_wb's IO list if necessary.  The specific list
422          * @inode was on is ignored and the inode is put on ->b_dirty which
423          * is always correct including from ->b_dirty_time.  The transfer
424          * preserves @inode->dirtied_when ordering.
425          */
426         if (!list_empty(&inode->i_io_list)) {
427                 struct inode *pos;
428
429                 inode_io_list_del_locked(inode, old_wb);
430                 inode->i_wb = new_wb;
431                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432                         if (time_after_eq(inode->dirtied_when,
433                                           pos->dirtied_when))
434                                 break;
435                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436         } else {
437                 inode->i_wb = new_wb;
438         }
439
440         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441         inode->i_wb_frn_winner = 0;
442         inode->i_wb_frn_avg_time = 0;
443         inode->i_wb_frn_history = 0;
444         switched = true;
445 skip_switch:
446         /*
447          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448          * ensures that the new wb is visible if they see !I_WB_SWITCH.
449          */
450         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
452         xa_unlock_irq(&mapping->i_pages);
453         spin_unlock(&inode->i_lock);
454         spin_unlock(&new_wb->list_lock);
455         spin_unlock(&old_wb->list_lock);
456
457         up_read(&bdi->wb_switch_rwsem);
458
459         if (switched) {
460                 wb_wakeup(new_wb);
461                 wb_put(old_wb);
462         }
463         wb_put(new_wb);
464
465         iput(inode);
466         kfree(isw);
467
468         atomic_dec(&isw_nr_in_flight);
469 }
470
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473         struct inode_switch_wbs_context *isw = container_of(rcu_head,
474                                 struct inode_switch_wbs_context, rcu_head);
475
476         /* needs to grab bh-unsafe locks, bounce to work item */
477         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478         queue_work(isw_wq, &isw->work);
479 }
480
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491         struct backing_dev_info *bdi = inode_to_bdi(inode);
492         struct cgroup_subsys_state *memcg_css;
493         struct inode_switch_wbs_context *isw;
494
495         /* noop if seems to be already in progress */
496         if (inode->i_state & I_WB_SWITCH)
497                 return;
498
499         /*
500          * Avoid starting new switches while sync_inodes_sb() is in
501          * progress.  Otherwise, if the down_write protected issue path
502          * blocks heavily, we might end up starting a large number of
503          * switches which will block on the rwsem.
504          */
505         if (!down_read_trylock(&bdi->wb_switch_rwsem))
506                 return;
507
508         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509         if (!isw)
510                 goto out_unlock;
511
512         /* find and pin the new wb */
513         rcu_read_lock();
514         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515         if (memcg_css && !css_tryget(memcg_css))
516                 memcg_css = NULL;
517         rcu_read_unlock();
518         if (!memcg_css)
519                 goto out_free;
520
521         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
522         css_put(memcg_css);
523         if (!isw->new_wb)
524                 goto out_free;
525
526         /* while holding I_WB_SWITCH, no one else can update the association */
527         spin_lock(&inode->i_lock);
528         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
529             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
530             inode_to_wb(inode) == isw->new_wb) {
531                 spin_unlock(&inode->i_lock);
532                 goto out_free;
533         }
534         inode->i_state |= I_WB_SWITCH;
535         __iget(inode);
536         spin_unlock(&inode->i_lock);
537
538         isw->inode = inode;
539
540         /*
541          * In addition to synchronizing among switchers, I_WB_SWITCH tells
542          * the RCU protected stat update paths to grab the i_page
543          * lock so that stat transfer can synchronize against them.
544          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
545          */
546         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
547
548         atomic_inc(&isw_nr_in_flight);
549
550         goto out_unlock;
551
552 out_free:
553         if (isw->new_wb)
554                 wb_put(isw->new_wb);
555         kfree(isw);
556 out_unlock:
557         up_read(&bdi->wb_switch_rwsem);
558 }
559
560 /**
561  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
562  * @wbc: writeback_control of interest
563  * @inode: target inode
564  *
565  * @inode is locked and about to be written back under the control of @wbc.
566  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
567  * writeback completion, wbc_detach_inode() should be called.  This is used
568  * to track the cgroup writeback context.
569  */
570 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
571                                  struct inode *inode)
572 {
573         if (!inode_cgwb_enabled(inode)) {
574                 spin_unlock(&inode->i_lock);
575                 return;
576         }
577
578         wbc->wb = inode_to_wb(inode);
579         wbc->inode = inode;
580
581         wbc->wb_id = wbc->wb->memcg_css->id;
582         wbc->wb_lcand_id = inode->i_wb_frn_winner;
583         wbc->wb_tcand_id = 0;
584         wbc->wb_bytes = 0;
585         wbc->wb_lcand_bytes = 0;
586         wbc->wb_tcand_bytes = 0;
587
588         wb_get(wbc->wb);
589         spin_unlock(&inode->i_lock);
590
591         /*
592          * A dying wb indicates that either the blkcg associated with the
593          * memcg changed or the associated memcg is dying.  In the first
594          * case, a replacement wb should already be available and we should
595          * refresh the wb immediately.  In the second case, trying to
596          * refresh will keep failing.
597          */
598         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
599                 inode_switch_wbs(inode, wbc->wb_id);
600 }
601
602 /**
603  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
604  * @wbc: writeback_control of the just finished writeback
605  *
606  * To be called after a writeback attempt of an inode finishes and undoes
607  * wbc_attach_and_unlock_inode().  Can be called under any context.
608  *
609  * As concurrent write sharing of an inode is expected to be very rare and
610  * memcg only tracks page ownership on first-use basis severely confining
611  * the usefulness of such sharing, cgroup writeback tracks ownership
612  * per-inode.  While the support for concurrent write sharing of an inode
613  * is deemed unnecessary, an inode being written to by different cgroups at
614  * different points in time is a lot more common, and, more importantly,
615  * charging only by first-use can too readily lead to grossly incorrect
616  * behaviors (single foreign page can lead to gigabytes of writeback to be
617  * incorrectly attributed).
618  *
619  * To resolve this issue, cgroup writeback detects the majority dirtier of
620  * an inode and transfers the ownership to it.  To avoid unnnecessary
621  * oscillation, the detection mechanism keeps track of history and gives
622  * out the switch verdict only if the foreign usage pattern is stable over
623  * a certain amount of time and/or writeback attempts.
624  *
625  * On each writeback attempt, @wbc tries to detect the majority writer
626  * using Boyer-Moore majority vote algorithm.  In addition to the byte
627  * count from the majority voting, it also counts the bytes written for the
628  * current wb and the last round's winner wb (max of last round's current
629  * wb, the winner from two rounds ago, and the last round's majority
630  * candidate).  Keeping track of the historical winner helps the algorithm
631  * to semi-reliably detect the most active writer even when it's not the
632  * absolute majority.
633  *
634  * Once the winner of the round is determined, whether the winner is
635  * foreign or not and how much IO time the round consumed is recorded in
636  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
637  * over a certain threshold, the switch verdict is given.
638  */
639 void wbc_detach_inode(struct writeback_control *wbc)
640 {
641         struct bdi_writeback *wb = wbc->wb;
642         struct inode *inode = wbc->inode;
643         unsigned long avg_time, max_bytes, max_time;
644         u16 history;
645         int max_id;
646
647         if (!wb)
648                 return;
649
650         history = inode->i_wb_frn_history;
651         avg_time = inode->i_wb_frn_avg_time;
652
653         /* pick the winner of this round */
654         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
655             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
656                 max_id = wbc->wb_id;
657                 max_bytes = wbc->wb_bytes;
658         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
659                 max_id = wbc->wb_lcand_id;
660                 max_bytes = wbc->wb_lcand_bytes;
661         } else {
662                 max_id = wbc->wb_tcand_id;
663                 max_bytes = wbc->wb_tcand_bytes;
664         }
665
666         /*
667          * Calculate the amount of IO time the winner consumed and fold it
668          * into the running average kept per inode.  If the consumed IO
669          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
670          * deciding whether to switch or not.  This is to prevent one-off
671          * small dirtiers from skewing the verdict.
672          */
673         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
674                                 wb->avg_write_bandwidth);
675         if (avg_time)
676                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
677                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
678         else
679                 avg_time = max_time;    /* immediate catch up on first run */
680
681         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
682                 int slots;
683
684                 /*
685                  * The switch verdict is reached if foreign wb's consume
686                  * more than a certain proportion of IO time in a
687                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
688                  * history mask where each bit represents one sixteenth of
689                  * the period.  Determine the number of slots to shift into
690                  * history from @max_time.
691                  */
692                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
693                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
694                 history <<= slots;
695                 if (wbc->wb_id != max_id)
696                         history |= (1U << slots) - 1;
697
698                 /*
699                  * Switch if the current wb isn't the consistent winner.
700                  * If there are multiple closely competing dirtiers, the
701                  * inode may switch across them repeatedly over time, which
702                  * is okay.  The main goal is avoiding keeping an inode on
703                  * the wrong wb for an extended period of time.
704                  */
705                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
706                         inode_switch_wbs(inode, max_id);
707         }
708
709         /*
710          * Multiple instances of this function may race to update the
711          * following fields but we don't mind occassional inaccuracies.
712          */
713         inode->i_wb_frn_winner = max_id;
714         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
715         inode->i_wb_frn_history = history;
716
717         wb_put(wbc->wb);
718         wbc->wb = NULL;
719 }
720
721 /**
722  * wbc_account_io - account IO issued during writeback
723  * @wbc: writeback_control of the writeback in progress
724  * @page: page being written out
725  * @bytes: number of bytes being written out
726  *
727  * @bytes from @page are about to written out during the writeback
728  * controlled by @wbc.  Keep the book for foreign inode detection.  See
729  * wbc_detach_inode().
730  */
731 void wbc_account_io(struct writeback_control *wbc, struct page *page,
732                     size_t bytes)
733 {
734         struct cgroup_subsys_state *css;
735         int id;
736
737         /*
738          * pageout() path doesn't attach @wbc to the inode being written
739          * out.  This is intentional as we don't want the function to block
740          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
741          * regular writeback instead of writing things out itself.
742          */
743         if (!wbc->wb)
744                 return;
745
746         css = mem_cgroup_css_from_page(page);
747         /* dead cgroups shouldn't contribute to inode ownership arbitration */
748         if (!(css->flags & CSS_ONLINE))
749                 return;
750
751         id = css->id;
752
753         if (id == wbc->wb_id) {
754                 wbc->wb_bytes += bytes;
755                 return;
756         }
757
758         if (id == wbc->wb_lcand_id)
759                 wbc->wb_lcand_bytes += bytes;
760
761         /* Boyer-Moore majority vote algorithm */
762         if (!wbc->wb_tcand_bytes)
763                 wbc->wb_tcand_id = id;
764         if (id == wbc->wb_tcand_id)
765                 wbc->wb_tcand_bytes += bytes;
766         else
767                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
768 }
769 EXPORT_SYMBOL_GPL(wbc_account_io);
770
771 /**
772  * inode_congested - test whether an inode is congested
773  * @inode: inode to test for congestion (may be NULL)
774  * @cong_bits: mask of WB_[a]sync_congested bits to test
775  *
776  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
777  * bits to test and the return value is the mask of set bits.
778  *
779  * If cgroup writeback is enabled for @inode, the congestion state is
780  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
781  * associated with @inode is congested; otherwise, the root wb's congestion
782  * state is used.
783  *
784  * @inode is allowed to be NULL as this function is often called on
785  * mapping->host which is NULL for the swapper space.
786  */
787 int inode_congested(struct inode *inode, int cong_bits)
788 {
789         /*
790          * Once set, ->i_wb never becomes NULL while the inode is alive.
791          * Start transaction iff ->i_wb is visible.
792          */
793         if (inode && inode_to_wb_is_valid(inode)) {
794                 struct bdi_writeback *wb;
795                 struct wb_lock_cookie lock_cookie = {};
796                 bool congested;
797
798                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
799                 congested = wb_congested(wb, cong_bits);
800                 unlocked_inode_to_wb_end(inode, &lock_cookie);
801                 return congested;
802         }
803
804         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
805 }
806 EXPORT_SYMBOL_GPL(inode_congested);
807
808 /**
809  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
810  * @wb: target bdi_writeback to split @nr_pages to
811  * @nr_pages: number of pages to write for the whole bdi
812  *
813  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
814  * relation to the total write bandwidth of all wb's w/ dirty inodes on
815  * @wb->bdi.
816  */
817 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
818 {
819         unsigned long this_bw = wb->avg_write_bandwidth;
820         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
821
822         if (nr_pages == LONG_MAX)
823                 return LONG_MAX;
824
825         /*
826          * This may be called on clean wb's and proportional distribution
827          * may not make sense, just use the original @nr_pages in those
828          * cases.  In general, we wanna err on the side of writing more.
829          */
830         if (!tot_bw || this_bw >= tot_bw)
831                 return nr_pages;
832         else
833                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
834 }
835
836 /**
837  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
838  * @bdi: target backing_dev_info
839  * @base_work: wb_writeback_work to issue
840  * @skip_if_busy: skip wb's which already have writeback in progress
841  *
842  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
843  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
844  * distributed to the busy wbs according to each wb's proportion in the
845  * total active write bandwidth of @bdi.
846  */
847 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
848                                   struct wb_writeback_work *base_work,
849                                   bool skip_if_busy)
850 {
851         struct bdi_writeback *last_wb = NULL;
852         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
853                                               struct bdi_writeback, bdi_node);
854
855         might_sleep();
856 restart:
857         rcu_read_lock();
858         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
859                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
860                 struct wb_writeback_work fallback_work;
861                 struct wb_writeback_work *work;
862                 long nr_pages;
863
864                 if (last_wb) {
865                         wb_put(last_wb);
866                         last_wb = NULL;
867                 }
868
869                 /* SYNC_ALL writes out I_DIRTY_TIME too */
870                 if (!wb_has_dirty_io(wb) &&
871                     (base_work->sync_mode == WB_SYNC_NONE ||
872                      list_empty(&wb->b_dirty_time)))
873                         continue;
874                 if (skip_if_busy && writeback_in_progress(wb))
875                         continue;
876
877                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
878
879                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
880                 if (work) {
881                         *work = *base_work;
882                         work->nr_pages = nr_pages;
883                         work->auto_free = 1;
884                         wb_queue_work(wb, work);
885                         continue;
886                 }
887
888                 /* alloc failed, execute synchronously using on-stack fallback */
889                 work = &fallback_work;
890                 *work = *base_work;
891                 work->nr_pages = nr_pages;
892                 work->auto_free = 0;
893                 work->done = &fallback_work_done;
894
895                 wb_queue_work(wb, work);
896
897                 /*
898                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
899                  * continuing iteration from @wb after dropping and
900                  * regrabbing rcu read lock.
901                  */
902                 wb_get(wb);
903                 last_wb = wb;
904
905                 rcu_read_unlock();
906                 wb_wait_for_completion(bdi, &fallback_work_done);
907                 goto restart;
908         }
909         rcu_read_unlock();
910
911         if (last_wb)
912                 wb_put(last_wb);
913 }
914
915 /**
916  * cgroup_writeback_umount - flush inode wb switches for umount
917  *
918  * This function is called when a super_block is about to be destroyed and
919  * flushes in-flight inode wb switches.  An inode wb switch goes through
920  * RCU and then workqueue, so the two need to be flushed in order to ensure
921  * that all previously scheduled switches are finished.  As wb switches are
922  * rare occurrences and synchronize_rcu() can take a while, perform
923  * flushing iff wb switches are in flight.
924  */
925 void cgroup_writeback_umount(void)
926 {
927         if (atomic_read(&isw_nr_in_flight)) {
928                 /*
929                  * Use rcu_barrier() to wait for all pending callbacks to
930                  * ensure that all in-flight wb switches are in the workqueue.
931                  */
932                 rcu_barrier();
933                 flush_workqueue(isw_wq);
934         }
935 }
936
937 static int __init cgroup_writeback_init(void)
938 {
939         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
940         if (!isw_wq)
941                 return -ENOMEM;
942         return 0;
943 }
944 fs_initcall(cgroup_writeback_init);
945
946 #else   /* CONFIG_CGROUP_WRITEBACK */
947
948 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
949 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
950
951 static struct bdi_writeback *
952 locked_inode_to_wb_and_lock_list(struct inode *inode)
953         __releases(&inode->i_lock)
954         __acquires(&wb->list_lock)
955 {
956         struct bdi_writeback *wb = inode_to_wb(inode);
957
958         spin_unlock(&inode->i_lock);
959         spin_lock(&wb->list_lock);
960         return wb;
961 }
962
963 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
964         __acquires(&wb->list_lock)
965 {
966         struct bdi_writeback *wb = inode_to_wb(inode);
967
968         spin_lock(&wb->list_lock);
969         return wb;
970 }
971
972 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
973 {
974         return nr_pages;
975 }
976
977 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
978                                   struct wb_writeback_work *base_work,
979                                   bool skip_if_busy)
980 {
981         might_sleep();
982
983         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
984                 base_work->auto_free = 0;
985                 wb_queue_work(&bdi->wb, base_work);
986         }
987 }
988
989 #endif  /* CONFIG_CGROUP_WRITEBACK */
990
991 /*
992  * Add in the number of potentially dirty inodes, because each inode
993  * write can dirty pagecache in the underlying blockdev.
994  */
995 static unsigned long get_nr_dirty_pages(void)
996 {
997         return global_node_page_state(NR_FILE_DIRTY) +
998                 global_node_page_state(NR_UNSTABLE_NFS) +
999                 get_nr_dirty_inodes();
1000 }
1001
1002 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1003 {
1004         if (!wb_has_dirty_io(wb))
1005                 return;
1006
1007         /*
1008          * All callers of this function want to start writeback of all
1009          * dirty pages. Places like vmscan can call this at a very
1010          * high frequency, causing pointless allocations of tons of
1011          * work items and keeping the flusher threads busy retrieving
1012          * that work. Ensure that we only allow one of them pending and
1013          * inflight at the time.
1014          */
1015         if (test_bit(WB_start_all, &wb->state) ||
1016             test_and_set_bit(WB_start_all, &wb->state))
1017                 return;
1018
1019         wb->start_all_reason = reason;
1020         wb_wakeup(wb);
1021 }
1022
1023 /**
1024  * wb_start_background_writeback - start background writeback
1025  * @wb: bdi_writback to write from
1026  *
1027  * Description:
1028  *   This makes sure WB_SYNC_NONE background writeback happens. When
1029  *   this function returns, it is only guaranteed that for given wb
1030  *   some IO is happening if we are over background dirty threshold.
1031  *   Caller need not hold sb s_umount semaphore.
1032  */
1033 void wb_start_background_writeback(struct bdi_writeback *wb)
1034 {
1035         /*
1036          * We just wake up the flusher thread. It will perform background
1037          * writeback as soon as there is no other work to do.
1038          */
1039         trace_writeback_wake_background(wb);
1040         wb_wakeup(wb);
1041 }
1042
1043 /*
1044  * Remove the inode from the writeback list it is on.
1045  */
1046 void inode_io_list_del(struct inode *inode)
1047 {
1048         struct bdi_writeback *wb;
1049
1050         wb = inode_to_wb_and_lock_list(inode);
1051         spin_lock(&inode->i_lock);
1052         inode_io_list_del_locked(inode, wb);
1053         spin_unlock(&inode->i_lock);
1054         spin_unlock(&wb->list_lock);
1055 }
1056
1057 /*
1058  * mark an inode as under writeback on the sb
1059  */
1060 void sb_mark_inode_writeback(struct inode *inode)
1061 {
1062         struct super_block *sb = inode->i_sb;
1063         unsigned long flags;
1064
1065         if (list_empty(&inode->i_wb_list)) {
1066                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1067                 if (list_empty(&inode->i_wb_list)) {
1068                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1069                         trace_sb_mark_inode_writeback(inode);
1070                 }
1071                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072         }
1073 }
1074
1075 /*
1076  * clear an inode as under writeback on the sb
1077  */
1078 void sb_clear_inode_writeback(struct inode *inode)
1079 {
1080         struct super_block *sb = inode->i_sb;
1081         unsigned long flags;
1082
1083         if (!list_empty(&inode->i_wb_list)) {
1084                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1085                 if (!list_empty(&inode->i_wb_list)) {
1086                         list_del_init(&inode->i_wb_list);
1087                         trace_sb_clear_inode_writeback(inode);
1088                 }
1089                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1090         }
1091 }
1092
1093 /*
1094  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1095  * furthest end of its superblock's dirty-inode list.
1096  *
1097  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1098  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1099  * the case then the inode must have been redirtied while it was being written
1100  * out and we don't reset its dirtied_when.
1101  */
1102 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104         assert_spin_locked(&inode->i_lock);
1105
1106         if (!list_empty(&wb->b_dirty)) {
1107                 struct inode *tail;
1108
1109                 tail = wb_inode(wb->b_dirty.next);
1110                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1111                         inode->dirtied_when = jiffies;
1112         }
1113         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1114         inode->i_state &= ~I_SYNC_QUEUED;
1115 }
1116
1117 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1118 {
1119         spin_lock(&inode->i_lock);
1120         redirty_tail_locked(inode, wb);
1121         spin_unlock(&inode->i_lock);
1122 }
1123
1124 /*
1125  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1126  */
1127 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1128 {
1129         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1130 }
1131
1132 static void inode_sync_complete(struct inode *inode)
1133 {
1134         inode->i_state &= ~I_SYNC;
1135         /* If inode is clean an unused, put it into LRU now... */
1136         inode_add_lru(inode);
1137         /* Waiters must see I_SYNC cleared before being woken up */
1138         smp_mb();
1139         wake_up_bit(&inode->i_state, __I_SYNC);
1140 }
1141
1142 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1143 {
1144         bool ret = time_after(inode->dirtied_when, t);
1145 #ifndef CONFIG_64BIT
1146         /*
1147          * For inodes being constantly redirtied, dirtied_when can get stuck.
1148          * It _appears_ to be in the future, but is actually in distant past.
1149          * This test is necessary to prevent such wrapped-around relative times
1150          * from permanently stopping the whole bdi writeback.
1151          */
1152         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1153 #endif
1154         return ret;
1155 }
1156
1157 #define EXPIRE_DIRTY_ATIME 0x0001
1158
1159 /*
1160  * Move expired (dirtied before dirtied_before) dirty inodes from
1161  * @delaying_queue to @dispatch_queue.
1162  */
1163 static int move_expired_inodes(struct list_head *delaying_queue,
1164                                struct list_head *dispatch_queue,
1165                                unsigned long dirtied_before)
1166 {
1167         LIST_HEAD(tmp);
1168         struct list_head *pos, *node;
1169         struct super_block *sb = NULL;
1170         struct inode *inode;
1171         int do_sb_sort = 0;
1172         int moved = 0;
1173
1174         while (!list_empty(delaying_queue)) {
1175                 inode = wb_inode(delaying_queue->prev);
1176                 if (inode_dirtied_after(inode, dirtied_before))
1177                         break;
1178                 list_move(&inode->i_io_list, &tmp);
1179                 moved++;
1180                 spin_lock(&inode->i_lock);
1181                 inode->i_state |= I_SYNC_QUEUED;
1182                 spin_unlock(&inode->i_lock);
1183                 if (sb_is_blkdev_sb(inode->i_sb))
1184                         continue;
1185                 if (sb && sb != inode->i_sb)
1186                         do_sb_sort = 1;
1187                 sb = inode->i_sb;
1188         }
1189
1190         /* just one sb in list, splice to dispatch_queue and we're done */
1191         if (!do_sb_sort) {
1192                 list_splice(&tmp, dispatch_queue);
1193                 goto out;
1194         }
1195
1196         /* Move inodes from one superblock together */
1197         while (!list_empty(&tmp)) {
1198                 sb = wb_inode(tmp.prev)->i_sb;
1199                 list_for_each_prev_safe(pos, node, &tmp) {
1200                         inode = wb_inode(pos);
1201                         if (inode->i_sb == sb)
1202                                 list_move(&inode->i_io_list, dispatch_queue);
1203                 }
1204         }
1205 out:
1206         return moved;
1207 }
1208
1209 /*
1210  * Queue all expired dirty inodes for io, eldest first.
1211  * Before
1212  *         newly dirtied     b_dirty    b_io    b_more_io
1213  *         =============>    gf         edc     BA
1214  * After
1215  *         newly dirtied     b_dirty    b_io    b_more_io
1216  *         =============>    g          fBAedc
1217  *                                           |
1218  *                                           +--> dequeue for IO
1219  */
1220 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1221                      unsigned long dirtied_before)
1222 {
1223         int moved;
1224         unsigned long time_expire_jif = dirtied_before;
1225
1226         assert_spin_locked(&wb->list_lock);
1227         list_splice_init(&wb->b_more_io, &wb->b_io);
1228         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1229         if (!work->for_sync)
1230                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1231         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1232                                      time_expire_jif);
1233         if (moved)
1234                 wb_io_lists_populated(wb);
1235         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1236 }
1237
1238 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1239 {
1240         int ret;
1241
1242         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1243                 trace_writeback_write_inode_start(inode, wbc);
1244                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1245                 trace_writeback_write_inode(inode, wbc);
1246                 return ret;
1247         }
1248         return 0;
1249 }
1250
1251 /*
1252  * Wait for writeback on an inode to complete. Called with i_lock held.
1253  * Caller must make sure inode cannot go away when we drop i_lock.
1254  */
1255 static void __inode_wait_for_writeback(struct inode *inode)
1256         __releases(inode->i_lock)
1257         __acquires(inode->i_lock)
1258 {
1259         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1260         wait_queue_head_t *wqh;
1261
1262         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1263         while (inode->i_state & I_SYNC) {
1264                 spin_unlock(&inode->i_lock);
1265                 __wait_on_bit(wqh, &wq, bit_wait,
1266                               TASK_UNINTERRUPTIBLE);
1267                 spin_lock(&inode->i_lock);
1268         }
1269 }
1270
1271 /*
1272  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1273  */
1274 void inode_wait_for_writeback(struct inode *inode)
1275 {
1276         spin_lock(&inode->i_lock);
1277         __inode_wait_for_writeback(inode);
1278         spin_unlock(&inode->i_lock);
1279 }
1280
1281 /*
1282  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1283  * held and drops it. It is aimed for callers not holding any inode reference
1284  * so once i_lock is dropped, inode can go away.
1285  */
1286 static void inode_sleep_on_writeback(struct inode *inode)
1287         __releases(inode->i_lock)
1288 {
1289         DEFINE_WAIT(wait);
1290         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1291         int sleep;
1292
1293         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1294         sleep = inode->i_state & I_SYNC;
1295         spin_unlock(&inode->i_lock);
1296         if (sleep)
1297                 schedule();
1298         finish_wait(wqh, &wait);
1299 }
1300
1301 /*
1302  * Find proper writeback list for the inode depending on its current state and
1303  * possibly also change of its state while we were doing writeback.  Here we
1304  * handle things such as livelock prevention or fairness of writeback among
1305  * inodes. This function can be called only by flusher thread - noone else
1306  * processes all inodes in writeback lists and requeueing inodes behind flusher
1307  * thread's back can have unexpected consequences.
1308  */
1309 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1310                           struct writeback_control *wbc)
1311 {
1312         if (inode->i_state & I_FREEING)
1313                 return;
1314
1315         /*
1316          * Sync livelock prevention. Each inode is tagged and synced in one
1317          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1318          * the dirty time to prevent enqueue and sync it again.
1319          */
1320         if ((inode->i_state & I_DIRTY) &&
1321             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1322                 inode->dirtied_when = jiffies;
1323
1324         if (wbc->pages_skipped) {
1325                 /*
1326                  * writeback is not making progress due to locked
1327                  * buffers. Skip this inode for now.
1328                  */
1329                 redirty_tail_locked(inode, wb);
1330                 return;
1331         }
1332
1333         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1334                 /*
1335                  * We didn't write back all the pages.  nfs_writepages()
1336                  * sometimes bales out without doing anything.
1337                  */
1338                 if (wbc->nr_to_write <= 0) {
1339                         /* Slice used up. Queue for next turn. */
1340                         requeue_io(inode, wb);
1341                 } else {
1342                         /*
1343                          * Writeback blocked by something other than
1344                          * congestion. Delay the inode for some time to
1345                          * avoid spinning on the CPU (100% iowait)
1346                          * retrying writeback of the dirty page/inode
1347                          * that cannot be performed immediately.
1348                          */
1349                         redirty_tail_locked(inode, wb);
1350                 }
1351         } else if (inode->i_state & I_DIRTY) {
1352                 /*
1353                  * Filesystems can dirty the inode during writeback operations,
1354                  * such as delayed allocation during submission or metadata
1355                  * updates after data IO completion.
1356                  */
1357                 redirty_tail_locked(inode, wb);
1358         } else if (inode->i_state & I_DIRTY_TIME) {
1359                 inode->dirtied_when = jiffies;
1360                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1361                 inode->i_state &= ~I_SYNC_QUEUED;
1362         } else {
1363                 /* The inode is clean. Remove from writeback lists. */
1364                 inode_io_list_del_locked(inode, wb);
1365         }
1366 }
1367
1368 /*
1369  * Write out an inode and its dirty pages. Do not update the writeback list
1370  * linkage. That is left to the caller. The caller is also responsible for
1371  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1372  */
1373 static int
1374 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1375 {
1376         struct address_space *mapping = inode->i_mapping;
1377         long nr_to_write = wbc->nr_to_write;
1378         unsigned dirty;
1379         int ret;
1380
1381         WARN_ON(!(inode->i_state & I_SYNC));
1382
1383         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1384
1385         ret = do_writepages(mapping, wbc);
1386
1387         /*
1388          * Make sure to wait on the data before writing out the metadata.
1389          * This is important for filesystems that modify metadata on data
1390          * I/O completion. We don't do it for sync(2) writeback because it has a
1391          * separate, external IO completion path and ->sync_fs for guaranteeing
1392          * inode metadata is written back correctly.
1393          */
1394         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1395                 int err = filemap_fdatawait(mapping);
1396                 if (ret == 0)
1397                         ret = err;
1398         }
1399
1400         /*
1401          * If the inode has dirty timestamps and we need to write them, call
1402          * mark_inode_dirty_sync() to notify the filesystem about it and to
1403          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1404          */
1405         if ((inode->i_state & I_DIRTY_TIME) &&
1406             (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1407              time_after(jiffies, inode->dirtied_time_when +
1408                         dirtytime_expire_interval * HZ))) {
1409                 trace_writeback_lazytime(inode);
1410                 mark_inode_dirty_sync(inode);
1411         }
1412
1413         /*
1414          * Some filesystems may redirty the inode during the writeback
1415          * due to delalloc, clear dirty metadata flags right before
1416          * write_inode()
1417          */
1418         spin_lock(&inode->i_lock);
1419         dirty = inode->i_state & I_DIRTY;
1420         inode->i_state &= ~dirty;
1421
1422         /*
1423          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1424          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1425          * either they see the I_DIRTY bits cleared or we see the dirtied
1426          * inode.
1427          *
1428          * I_DIRTY_PAGES is always cleared together above even if @mapping
1429          * still has dirty pages.  The flag is reinstated after smp_mb() if
1430          * necessary.  This guarantees that either __mark_inode_dirty()
1431          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1432          */
1433         smp_mb();
1434
1435         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1436                 inode->i_state |= I_DIRTY_PAGES;
1437
1438         spin_unlock(&inode->i_lock);
1439
1440         /* Don't write the inode if only I_DIRTY_PAGES was set */
1441         if (dirty & ~I_DIRTY_PAGES) {
1442                 int err = write_inode(inode, wbc);
1443                 if (ret == 0)
1444                         ret = err;
1445         }
1446         trace_writeback_single_inode(inode, wbc, nr_to_write);
1447         return ret;
1448 }
1449
1450 /*
1451  * Write out an inode's dirty pages. Either the caller has an active reference
1452  * on the inode or the inode has I_WILL_FREE set.
1453  *
1454  * This function is designed to be called for writing back one inode which
1455  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1456  * and does more profound writeback list handling in writeback_sb_inodes().
1457  */
1458 static int writeback_single_inode(struct inode *inode,
1459                                   struct writeback_control *wbc)
1460 {
1461         struct bdi_writeback *wb;
1462         int ret = 0;
1463
1464         spin_lock(&inode->i_lock);
1465         if (!atomic_read(&inode->i_count))
1466                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1467         else
1468                 WARN_ON(inode->i_state & I_WILL_FREE);
1469
1470         if (inode->i_state & I_SYNC) {
1471                 if (wbc->sync_mode != WB_SYNC_ALL)
1472                         goto out;
1473                 /*
1474                  * It's a data-integrity sync. We must wait. Since callers hold
1475                  * inode reference or inode has I_WILL_FREE set, it cannot go
1476                  * away under us.
1477                  */
1478                 __inode_wait_for_writeback(inode);
1479         }
1480         WARN_ON(inode->i_state & I_SYNC);
1481         /*
1482          * Skip inode if it is clean and we have no outstanding writeback in
1483          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1484          * function since flusher thread may be doing for example sync in
1485          * parallel and if we move the inode, it could get skipped. So here we
1486          * make sure inode is on some writeback list and leave it there unless
1487          * we have completely cleaned the inode.
1488          */
1489         if (!(inode->i_state & I_DIRTY_ALL) &&
1490             (wbc->sync_mode != WB_SYNC_ALL ||
1491              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1492                 goto out;
1493         inode->i_state |= I_SYNC;
1494         wbc_attach_and_unlock_inode(wbc, inode);
1495
1496         ret = __writeback_single_inode(inode, wbc);
1497
1498         wbc_detach_inode(wbc);
1499
1500         wb = inode_to_wb_and_lock_list(inode);
1501         spin_lock(&inode->i_lock);
1502         /*
1503          * If inode is clean, remove it from writeback lists. Otherwise don't
1504          * touch it. See comment above for explanation.
1505          */
1506         if (!(inode->i_state & I_DIRTY_ALL))
1507                 inode_io_list_del_locked(inode, wb);
1508         spin_unlock(&wb->list_lock);
1509         inode_sync_complete(inode);
1510 out:
1511         spin_unlock(&inode->i_lock);
1512         return ret;
1513 }
1514
1515 static long writeback_chunk_size(struct bdi_writeback *wb,
1516                                  struct wb_writeback_work *work)
1517 {
1518         long pages;
1519
1520         /*
1521          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1522          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1523          * here avoids calling into writeback_inodes_wb() more than once.
1524          *
1525          * The intended call sequence for WB_SYNC_ALL writeback is:
1526          *
1527          *      wb_writeback()
1528          *          writeback_sb_inodes()       <== called only once
1529          *              write_cache_pages()     <== called once for each inode
1530          *                   (quickly) tag currently dirty pages
1531          *                   (maybe slowly) sync all tagged pages
1532          */
1533         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1534                 pages = LONG_MAX;
1535         else {
1536                 pages = min(wb->avg_write_bandwidth / 2,
1537                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1538                 pages = min(pages, work->nr_pages);
1539                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1540                                    MIN_WRITEBACK_PAGES);
1541         }
1542
1543         return pages;
1544 }
1545
1546 /*
1547  * Write a portion of b_io inodes which belong to @sb.
1548  *
1549  * Return the number of pages and/or inodes written.
1550  *
1551  * NOTE! This is called with wb->list_lock held, and will
1552  * unlock and relock that for each inode it ends up doing
1553  * IO for.
1554  */
1555 static long writeback_sb_inodes(struct super_block *sb,
1556                                 struct bdi_writeback *wb,
1557                                 struct wb_writeback_work *work)
1558 {
1559         struct writeback_control wbc = {
1560                 .sync_mode              = work->sync_mode,
1561                 .tagged_writepages      = work->tagged_writepages,
1562                 .for_kupdate            = work->for_kupdate,
1563                 .for_background         = work->for_background,
1564                 .for_sync               = work->for_sync,
1565                 .range_cyclic           = work->range_cyclic,
1566                 .range_start            = 0,
1567                 .range_end              = LLONG_MAX,
1568         };
1569         unsigned long start_time = jiffies;
1570         long write_chunk;
1571         long wrote = 0;  /* count both pages and inodes */
1572
1573         while (!list_empty(&wb->b_io)) {
1574                 struct inode *inode = wb_inode(wb->b_io.prev);
1575                 struct bdi_writeback *tmp_wb;
1576
1577                 if (inode->i_sb != sb) {
1578                         if (work->sb) {
1579                                 /*
1580                                  * We only want to write back data for this
1581                                  * superblock, move all inodes not belonging
1582                                  * to it back onto the dirty list.
1583                                  */
1584                                 redirty_tail(inode, wb);
1585                                 continue;
1586                         }
1587
1588                         /*
1589                          * The inode belongs to a different superblock.
1590                          * Bounce back to the caller to unpin this and
1591                          * pin the next superblock.
1592                          */
1593                         break;
1594                 }
1595
1596                 /*
1597                  * Don't bother with new inodes or inodes being freed, first
1598                  * kind does not need periodic writeout yet, and for the latter
1599                  * kind writeout is handled by the freer.
1600                  */
1601                 spin_lock(&inode->i_lock);
1602                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1603                         redirty_tail_locked(inode, wb);
1604                         spin_unlock(&inode->i_lock);
1605                         continue;
1606                 }
1607                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1608                         /*
1609                          * If this inode is locked for writeback and we are not
1610                          * doing writeback-for-data-integrity, move it to
1611                          * b_more_io so that writeback can proceed with the
1612                          * other inodes on s_io.
1613                          *
1614                          * We'll have another go at writing back this inode
1615                          * when we completed a full scan of b_io.
1616                          */
1617                         spin_unlock(&inode->i_lock);
1618                         requeue_io(inode, wb);
1619                         trace_writeback_sb_inodes_requeue(inode);
1620                         continue;
1621                 }
1622                 spin_unlock(&wb->list_lock);
1623
1624                 /*
1625                  * We already requeued the inode if it had I_SYNC set and we
1626                  * are doing WB_SYNC_NONE writeback. So this catches only the
1627                  * WB_SYNC_ALL case.
1628                  */
1629                 if (inode->i_state & I_SYNC) {
1630                         /* Wait for I_SYNC. This function drops i_lock... */
1631                         inode_sleep_on_writeback(inode);
1632                         /* Inode may be gone, start again */
1633                         spin_lock(&wb->list_lock);
1634                         continue;
1635                 }
1636                 inode->i_state |= I_SYNC;
1637                 wbc_attach_and_unlock_inode(&wbc, inode);
1638
1639                 write_chunk = writeback_chunk_size(wb, work);
1640                 wbc.nr_to_write = write_chunk;
1641                 wbc.pages_skipped = 0;
1642
1643                 /*
1644                  * We use I_SYNC to pin the inode in memory. While it is set
1645                  * evict_inode() will wait so the inode cannot be freed.
1646                  */
1647                 __writeback_single_inode(inode, &wbc);
1648
1649                 wbc_detach_inode(&wbc);
1650                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1651                 wrote += write_chunk - wbc.nr_to_write;
1652
1653                 if (need_resched()) {
1654                         /*
1655                          * We're trying to balance between building up a nice
1656                          * long list of IOs to improve our merge rate, and
1657                          * getting those IOs out quickly for anyone throttling
1658                          * in balance_dirty_pages().  cond_resched() doesn't
1659                          * unplug, so get our IOs out the door before we
1660                          * give up the CPU.
1661                          */
1662                         blk_flush_plug(current);
1663                         cond_resched();
1664                 }
1665
1666                 /*
1667                  * Requeue @inode if still dirty.  Be careful as @inode may
1668                  * have been switched to another wb in the meantime.
1669                  */
1670                 tmp_wb = inode_to_wb_and_lock_list(inode);
1671                 spin_lock(&inode->i_lock);
1672                 if (!(inode->i_state & I_DIRTY_ALL))
1673                         wrote++;
1674                 requeue_inode(inode, tmp_wb, &wbc);
1675                 inode_sync_complete(inode);
1676                 spin_unlock(&inode->i_lock);
1677
1678                 if (unlikely(tmp_wb != wb)) {
1679                         spin_unlock(&tmp_wb->list_lock);
1680                         spin_lock(&wb->list_lock);
1681                 }
1682
1683                 /*
1684                  * bail out to wb_writeback() often enough to check
1685                  * background threshold and other termination conditions.
1686                  */
1687                 if (wrote) {
1688                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1689                                 break;
1690                         if (work->nr_pages <= 0)
1691                                 break;
1692                 }
1693         }
1694         return wrote;
1695 }
1696
1697 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1698                                   struct wb_writeback_work *work)
1699 {
1700         unsigned long start_time = jiffies;
1701         long wrote = 0;
1702
1703         while (!list_empty(&wb->b_io)) {
1704                 struct inode *inode = wb_inode(wb->b_io.prev);
1705                 struct super_block *sb = inode->i_sb;
1706
1707                 if (!trylock_super(sb)) {
1708                         /*
1709                          * trylock_super() may fail consistently due to
1710                          * s_umount being grabbed by someone else. Don't use
1711                          * requeue_io() to avoid busy retrying the inode/sb.
1712                          */
1713                         redirty_tail(inode, wb);
1714                         continue;
1715                 }
1716                 wrote += writeback_sb_inodes(sb, wb, work);
1717                 up_read(&sb->s_umount);
1718
1719                 /* refer to the same tests at the end of writeback_sb_inodes */
1720                 if (wrote) {
1721                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1722                                 break;
1723                         if (work->nr_pages <= 0)
1724                                 break;
1725                 }
1726         }
1727         /* Leave any unwritten inodes on b_io */
1728         return wrote;
1729 }
1730
1731 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1732                                 enum wb_reason reason)
1733 {
1734         struct wb_writeback_work work = {
1735                 .nr_pages       = nr_pages,
1736                 .sync_mode      = WB_SYNC_NONE,
1737                 .range_cyclic   = 1,
1738                 .reason         = reason,
1739         };
1740         struct blk_plug plug;
1741
1742         blk_start_plug(&plug);
1743         spin_lock(&wb->list_lock);
1744         if (list_empty(&wb->b_io))
1745                 queue_io(wb, &work, jiffies);
1746         __writeback_inodes_wb(wb, &work);
1747         spin_unlock(&wb->list_lock);
1748         blk_finish_plug(&plug);
1749
1750         return nr_pages - work.nr_pages;
1751 }
1752
1753 /*
1754  * Explicit flushing or periodic writeback of "old" data.
1755  *
1756  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1757  * dirtying-time in the inode's address_space.  So this periodic writeback code
1758  * just walks the superblock inode list, writing back any inodes which are
1759  * older than a specific point in time.
1760  *
1761  * Try to run once per dirty_writeback_interval.  But if a writeback event
1762  * takes longer than a dirty_writeback_interval interval, then leave a
1763  * one-second gap.
1764  *
1765  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1766  * all dirty pages if they are all attached to "old" mappings.
1767  */
1768 static long wb_writeback(struct bdi_writeback *wb,
1769                          struct wb_writeback_work *work)
1770 {
1771         unsigned long wb_start = jiffies;
1772         long nr_pages = work->nr_pages;
1773         unsigned long dirtied_before = jiffies;
1774         struct inode *inode;
1775         long progress;
1776         struct blk_plug plug;
1777
1778         blk_start_plug(&plug);
1779         spin_lock(&wb->list_lock);
1780         for (;;) {
1781                 /*
1782                  * Stop writeback when nr_pages has been consumed
1783                  */
1784                 if (work->nr_pages <= 0)
1785                         break;
1786
1787                 /*
1788                  * Background writeout and kupdate-style writeback may
1789                  * run forever. Stop them if there is other work to do
1790                  * so that e.g. sync can proceed. They'll be restarted
1791                  * after the other works are all done.
1792                  */
1793                 if ((work->for_background || work->for_kupdate) &&
1794                     !list_empty(&wb->work_list))
1795                         break;
1796
1797                 /*
1798                  * For background writeout, stop when we are below the
1799                  * background dirty threshold
1800                  */
1801                 if (work->for_background && !wb_over_bg_thresh(wb))
1802                         break;
1803
1804                 /*
1805                  * Kupdate and background works are special and we want to
1806                  * include all inodes that need writing. Livelock avoidance is
1807                  * handled by these works yielding to any other work so we are
1808                  * safe.
1809                  */
1810                 if (work->for_kupdate) {
1811                         dirtied_before = jiffies -
1812                                 msecs_to_jiffies(dirty_expire_interval * 10);
1813                 } else if (work->for_background)
1814                         dirtied_before = jiffies;
1815
1816                 trace_writeback_start(wb, work);
1817                 if (list_empty(&wb->b_io))
1818                         queue_io(wb, work, dirtied_before);
1819                 if (work->sb)
1820                         progress = writeback_sb_inodes(work->sb, wb, work);
1821                 else
1822                         progress = __writeback_inodes_wb(wb, work);
1823                 trace_writeback_written(wb, work);
1824
1825                 wb_update_bandwidth(wb, wb_start);
1826
1827                 /*
1828                  * Did we write something? Try for more
1829                  *
1830                  * Dirty inodes are moved to b_io for writeback in batches.
1831                  * The completion of the current batch does not necessarily
1832                  * mean the overall work is done. So we keep looping as long
1833                  * as made some progress on cleaning pages or inodes.
1834                  */
1835                 if (progress)
1836                         continue;
1837                 /*
1838                  * No more inodes for IO, bail
1839                  */
1840                 if (list_empty(&wb->b_more_io))
1841                         break;
1842                 /*
1843                  * Nothing written. Wait for some inode to
1844                  * become available for writeback. Otherwise
1845                  * we'll just busyloop.
1846                  */
1847                 trace_writeback_wait(wb, work);
1848                 inode = wb_inode(wb->b_more_io.prev);
1849                 spin_lock(&inode->i_lock);
1850                 spin_unlock(&wb->list_lock);
1851                 /* This function drops i_lock... */
1852                 inode_sleep_on_writeback(inode);
1853                 spin_lock(&wb->list_lock);
1854         }
1855         spin_unlock(&wb->list_lock);
1856         blk_finish_plug(&plug);
1857
1858         return nr_pages - work->nr_pages;
1859 }
1860
1861 /*
1862  * Return the next wb_writeback_work struct that hasn't been processed yet.
1863  */
1864 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1865 {
1866         struct wb_writeback_work *work = NULL;
1867
1868         spin_lock_bh(&wb->work_lock);
1869         if (!list_empty(&wb->work_list)) {
1870                 work = list_entry(wb->work_list.next,
1871                                   struct wb_writeback_work, list);
1872                 list_del_init(&work->list);
1873         }
1874         spin_unlock_bh(&wb->work_lock);
1875         return work;
1876 }
1877
1878 static long wb_check_background_flush(struct bdi_writeback *wb)
1879 {
1880         if (wb_over_bg_thresh(wb)) {
1881
1882                 struct wb_writeback_work work = {
1883                         .nr_pages       = LONG_MAX,
1884                         .sync_mode      = WB_SYNC_NONE,
1885                         .for_background = 1,
1886                         .range_cyclic   = 1,
1887                         .reason         = WB_REASON_BACKGROUND,
1888                 };
1889
1890                 return wb_writeback(wb, &work);
1891         }
1892
1893         return 0;
1894 }
1895
1896 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1897 {
1898         unsigned long expired;
1899         long nr_pages;
1900
1901         /*
1902          * When set to zero, disable periodic writeback
1903          */
1904         if (!dirty_writeback_interval)
1905                 return 0;
1906
1907         expired = wb->last_old_flush +
1908                         msecs_to_jiffies(dirty_writeback_interval * 10);
1909         if (time_before(jiffies, expired))
1910                 return 0;
1911
1912         wb->last_old_flush = jiffies;
1913         nr_pages = get_nr_dirty_pages();
1914
1915         if (nr_pages) {
1916                 struct wb_writeback_work work = {
1917                         .nr_pages       = nr_pages,
1918                         .sync_mode      = WB_SYNC_NONE,
1919                         .for_kupdate    = 1,
1920                         .range_cyclic   = 1,
1921                         .reason         = WB_REASON_PERIODIC,
1922                 };
1923
1924                 return wb_writeback(wb, &work);
1925         }
1926
1927         return 0;
1928 }
1929
1930 static long wb_check_start_all(struct bdi_writeback *wb)
1931 {
1932         long nr_pages;
1933
1934         if (!test_bit(WB_start_all, &wb->state))
1935                 return 0;
1936
1937         nr_pages = get_nr_dirty_pages();
1938         if (nr_pages) {
1939                 struct wb_writeback_work work = {
1940                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1941                         .sync_mode      = WB_SYNC_NONE,
1942                         .range_cyclic   = 1,
1943                         .reason         = wb->start_all_reason,
1944                 };
1945
1946                 nr_pages = wb_writeback(wb, &work);
1947         }
1948
1949         clear_bit(WB_start_all, &wb->state);
1950         return nr_pages;
1951 }
1952
1953
1954 /*
1955  * Retrieve work items and do the writeback they describe
1956  */
1957 static long wb_do_writeback(struct bdi_writeback *wb)
1958 {
1959         struct wb_writeback_work *work;
1960         long wrote = 0;
1961
1962         set_bit(WB_writeback_running, &wb->state);
1963         while ((work = get_next_work_item(wb)) != NULL) {
1964                 trace_writeback_exec(wb, work);
1965                 wrote += wb_writeback(wb, work);
1966                 finish_writeback_work(wb, work);
1967         }
1968
1969         /*
1970          * Check for a flush-everything request
1971          */
1972         wrote += wb_check_start_all(wb);
1973
1974         /*
1975          * Check for periodic writeback, kupdated() style
1976          */
1977         wrote += wb_check_old_data_flush(wb);
1978         wrote += wb_check_background_flush(wb);
1979         clear_bit(WB_writeback_running, &wb->state);
1980
1981         return wrote;
1982 }
1983
1984 /*
1985  * Handle writeback of dirty data for the device backed by this bdi. Also
1986  * reschedules periodically and does kupdated style flushing.
1987  */
1988 void wb_workfn(struct work_struct *work)
1989 {
1990         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1991                                                 struct bdi_writeback, dwork);
1992         long pages_written;
1993
1994         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
1995         current->flags |= PF_SWAPWRITE;
1996
1997         if (likely(!current_is_workqueue_rescuer() ||
1998                    !test_bit(WB_registered, &wb->state))) {
1999                 /*
2000                  * The normal path.  Keep writing back @wb until its
2001                  * work_list is empty.  Note that this path is also taken
2002                  * if @wb is shutting down even when we're running off the
2003                  * rescuer as work_list needs to be drained.
2004                  */
2005                 do {
2006                         pages_written = wb_do_writeback(wb);
2007                         trace_writeback_pages_written(pages_written);
2008                 } while (!list_empty(&wb->work_list));
2009         } else {
2010                 /*
2011                  * bdi_wq can't get enough workers and we're running off
2012                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2013                  * enough for efficient IO.
2014                  */
2015                 pages_written = writeback_inodes_wb(wb, 1024,
2016                                                     WB_REASON_FORKER_THREAD);
2017                 trace_writeback_pages_written(pages_written);
2018         }
2019
2020         if (!list_empty(&wb->work_list))
2021                 wb_wakeup(wb);
2022         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2023                 wb_wakeup_delayed(wb);
2024
2025         current->flags &= ~PF_SWAPWRITE;
2026 }
2027
2028 /*
2029  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2030  * write back the whole world.
2031  */
2032 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2033                                          enum wb_reason reason)
2034 {
2035         struct bdi_writeback *wb;
2036
2037         if (!bdi_has_dirty_io(bdi))
2038                 return;
2039
2040         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2041                 wb_start_writeback(wb, reason);
2042 }
2043
2044 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2045                                 enum wb_reason reason)
2046 {
2047         rcu_read_lock();
2048         __wakeup_flusher_threads_bdi(bdi, reason);
2049         rcu_read_unlock();
2050 }
2051
2052 /*
2053  * Wakeup the flusher threads to start writeback of all currently dirty pages
2054  */
2055 void wakeup_flusher_threads(enum wb_reason reason)
2056 {
2057         struct backing_dev_info *bdi;
2058
2059         /*
2060          * If we are expecting writeback progress we must submit plugged IO.
2061          */
2062         if (blk_needs_flush_plug(current))
2063                 blk_schedule_flush_plug(current);
2064
2065         rcu_read_lock();
2066         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2067                 __wakeup_flusher_threads_bdi(bdi, reason);
2068         rcu_read_unlock();
2069 }
2070
2071 /*
2072  * Wake up bdi's periodically to make sure dirtytime inodes gets
2073  * written back periodically.  We deliberately do *not* check the
2074  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2075  * kernel to be constantly waking up once there are any dirtytime
2076  * inodes on the system.  So instead we define a separate delayed work
2077  * function which gets called much more rarely.  (By default, only
2078  * once every 12 hours.)
2079  *
2080  * If there is any other write activity going on in the file system,
2081  * this function won't be necessary.  But if the only thing that has
2082  * happened on the file system is a dirtytime inode caused by an atime
2083  * update, we need this infrastructure below to make sure that inode
2084  * eventually gets pushed out to disk.
2085  */
2086 static void wakeup_dirtytime_writeback(struct work_struct *w);
2087 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2088
2089 static void wakeup_dirtytime_writeback(struct work_struct *w)
2090 {
2091         struct backing_dev_info *bdi;
2092
2093         rcu_read_lock();
2094         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2095                 struct bdi_writeback *wb;
2096
2097                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2098                         if (!list_empty(&wb->b_dirty_time))
2099                                 wb_wakeup(wb);
2100         }
2101         rcu_read_unlock();
2102         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2103 }
2104
2105 static int __init start_dirtytime_writeback(void)
2106 {
2107         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2108         return 0;
2109 }
2110 __initcall(start_dirtytime_writeback);
2111
2112 int dirtytime_interval_handler(struct ctl_table *table, int write,
2113                                void __user *buffer, size_t *lenp, loff_t *ppos)
2114 {
2115         int ret;
2116
2117         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2118         if (ret == 0 && write)
2119                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2120         return ret;
2121 }
2122
2123 /**
2124  * __mark_inode_dirty - internal function
2125  *
2126  * @inode: inode to mark
2127  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2128  *
2129  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2130  * mark_inode_dirty_sync.
2131  *
2132  * Put the inode on the super block's dirty list.
2133  *
2134  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2135  * dirty list only if it is hashed or if it refers to a blockdev.
2136  * If it was not hashed, it will never be added to the dirty list
2137  * even if it is later hashed, as it will have been marked dirty already.
2138  *
2139  * In short, make sure you hash any inodes _before_ you start marking
2140  * them dirty.
2141  *
2142  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2143  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2144  * the kernel-internal blockdev inode represents the dirtying time of the
2145  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2146  * page->mapping->host, so the page-dirtying time is recorded in the internal
2147  * blockdev inode.
2148  */
2149 void __mark_inode_dirty(struct inode *inode, int flags)
2150 {
2151         struct super_block *sb = inode->i_sb;
2152         int dirtytime;
2153
2154         trace_writeback_mark_inode_dirty(inode, flags);
2155
2156         /*
2157          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2158          * dirty the inode itself
2159          */
2160         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2161                 trace_writeback_dirty_inode_start(inode, flags);
2162
2163                 if (sb->s_op->dirty_inode)
2164                         sb->s_op->dirty_inode(inode, flags);
2165
2166                 trace_writeback_dirty_inode(inode, flags);
2167         }
2168         if (flags & I_DIRTY_INODE)
2169                 flags &= ~I_DIRTY_TIME;
2170         dirtytime = flags & I_DIRTY_TIME;
2171
2172         /*
2173          * Paired with smp_mb() in __writeback_single_inode() for the
2174          * following lockless i_state test.  See there for details.
2175          */
2176         smp_mb();
2177
2178         if (((inode->i_state & flags) == flags) ||
2179             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2180                 return;
2181
2182         spin_lock(&inode->i_lock);
2183         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2184                 goto out_unlock_inode;
2185         if ((inode->i_state & flags) != flags) {
2186                 const int was_dirty = inode->i_state & I_DIRTY;
2187
2188                 inode_attach_wb(inode, NULL);
2189
2190                 if (flags & I_DIRTY_INODE)
2191                         inode->i_state &= ~I_DIRTY_TIME;
2192                 inode->i_state |= flags;
2193
2194                 /*
2195                  * If the inode is queued for writeback by flush worker, just
2196                  * update its dirty state. Once the flush worker is done with
2197                  * the inode it will place it on the appropriate superblock
2198                  * list, based upon its state.
2199                  */
2200                 if (inode->i_state & I_SYNC_QUEUED)
2201                         goto out_unlock_inode;
2202
2203                 /*
2204                  * Only add valid (hashed) inodes to the superblock's
2205                  * dirty list.  Add blockdev inodes as well.
2206                  */
2207                 if (!S_ISBLK(inode->i_mode)) {
2208                         if (inode_unhashed(inode))
2209                                 goto out_unlock_inode;
2210                 }
2211                 if (inode->i_state & I_FREEING)
2212                         goto out_unlock_inode;
2213
2214                 /*
2215                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2216                  * reposition it (that would break b_dirty time-ordering).
2217                  */
2218                 if (!was_dirty) {
2219                         struct bdi_writeback *wb;
2220                         struct list_head *dirty_list;
2221                         bool wakeup_bdi = false;
2222
2223                         wb = locked_inode_to_wb_and_lock_list(inode);
2224
2225                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2226                              !test_bit(WB_registered, &wb->state),
2227                              "bdi-%s not registered\n", wb->bdi->name);
2228
2229                         inode->dirtied_when = jiffies;
2230                         if (dirtytime)
2231                                 inode->dirtied_time_when = jiffies;
2232
2233                         if (inode->i_state & I_DIRTY)
2234                                 dirty_list = &wb->b_dirty;
2235                         else
2236                                 dirty_list = &wb->b_dirty_time;
2237
2238                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2239                                                                dirty_list);
2240
2241                         spin_unlock(&wb->list_lock);
2242                         trace_writeback_dirty_inode_enqueue(inode);
2243
2244                         /*
2245                          * If this is the first dirty inode for this bdi,
2246                          * we have to wake-up the corresponding bdi thread
2247                          * to make sure background write-back happens
2248                          * later.
2249                          */
2250                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2251                                 wb_wakeup_delayed(wb);
2252                         return;
2253                 }
2254         }
2255 out_unlock_inode:
2256         spin_unlock(&inode->i_lock);
2257 }
2258 EXPORT_SYMBOL(__mark_inode_dirty);
2259
2260 /*
2261  * The @s_sync_lock is used to serialise concurrent sync operations
2262  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2263  * Concurrent callers will block on the s_sync_lock rather than doing contending
2264  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2265  * has been issued up to the time this function is enter is guaranteed to be
2266  * completed by the time we have gained the lock and waited for all IO that is
2267  * in progress regardless of the order callers are granted the lock.
2268  */
2269 static void wait_sb_inodes(struct super_block *sb)
2270 {
2271         LIST_HEAD(sync_list);
2272
2273         /*
2274          * We need to be protected against the filesystem going from
2275          * r/o to r/w or vice versa.
2276          */
2277         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2278
2279         mutex_lock(&sb->s_sync_lock);
2280
2281         /*
2282          * Splice the writeback list onto a temporary list to avoid waiting on
2283          * inodes that have started writeback after this point.
2284          *
2285          * Use rcu_read_lock() to keep the inodes around until we have a
2286          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2287          * the local list because inodes can be dropped from either by writeback
2288          * completion.
2289          */
2290         rcu_read_lock();
2291         spin_lock_irq(&sb->s_inode_wblist_lock);
2292         list_splice_init(&sb->s_inodes_wb, &sync_list);
2293
2294         /*
2295          * Data integrity sync. Must wait for all pages under writeback, because
2296          * there may have been pages dirtied before our sync call, but which had
2297          * writeout started before we write it out.  In which case, the inode
2298          * may not be on the dirty list, but we still have to wait for that
2299          * writeout.
2300          */
2301         while (!list_empty(&sync_list)) {
2302                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2303                                                        i_wb_list);
2304                 struct address_space *mapping = inode->i_mapping;
2305
2306                 /*
2307                  * Move each inode back to the wb list before we drop the lock
2308                  * to preserve consistency between i_wb_list and the mapping
2309                  * writeback tag. Writeback completion is responsible to remove
2310                  * the inode from either list once the writeback tag is cleared.
2311                  */
2312                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2313
2314                 /*
2315                  * The mapping can appear untagged while still on-list since we
2316                  * do not have the mapping lock. Skip it here, wb completion
2317                  * will remove it.
2318                  */
2319                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2320                         continue;
2321
2322                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2323
2324                 spin_lock(&inode->i_lock);
2325                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2326                         spin_unlock(&inode->i_lock);
2327
2328                         spin_lock_irq(&sb->s_inode_wblist_lock);
2329                         continue;
2330                 }
2331                 __iget(inode);
2332                 spin_unlock(&inode->i_lock);
2333                 rcu_read_unlock();
2334
2335                 /*
2336                  * We keep the error status of individual mapping so that
2337                  * applications can catch the writeback error using fsync(2).
2338                  * See filemap_fdatawait_keep_errors() for details.
2339                  */
2340                 filemap_fdatawait_keep_errors(mapping);
2341
2342                 cond_resched();
2343
2344                 iput(inode);
2345
2346                 rcu_read_lock();
2347                 spin_lock_irq(&sb->s_inode_wblist_lock);
2348         }
2349         spin_unlock_irq(&sb->s_inode_wblist_lock);
2350         rcu_read_unlock();
2351         mutex_unlock(&sb->s_sync_lock);
2352 }
2353
2354 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2355                                      enum wb_reason reason, bool skip_if_busy)
2356 {
2357         DEFINE_WB_COMPLETION_ONSTACK(done);
2358         struct wb_writeback_work work = {
2359                 .sb                     = sb,
2360                 .sync_mode              = WB_SYNC_NONE,
2361                 .tagged_writepages      = 1,
2362                 .done                   = &done,
2363                 .nr_pages               = nr,
2364                 .reason                 = reason,
2365         };
2366         struct backing_dev_info *bdi = sb->s_bdi;
2367
2368         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2369                 return;
2370         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2371
2372         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2373         wb_wait_for_completion(bdi, &done);
2374 }
2375
2376 /**
2377  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2378  * @sb: the superblock
2379  * @nr: the number of pages to write
2380  * @reason: reason why some writeback work initiated
2381  *
2382  * Start writeback on some inodes on this super_block. No guarantees are made
2383  * on how many (if any) will be written, and this function does not wait
2384  * for IO completion of submitted IO.
2385  */
2386 void writeback_inodes_sb_nr(struct super_block *sb,
2387                             unsigned long nr,
2388                             enum wb_reason reason)
2389 {
2390         __writeback_inodes_sb_nr(sb, nr, reason, false);
2391 }
2392 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2393
2394 /**
2395  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2396  * @sb: the superblock
2397  * @reason: reason why some writeback work was initiated
2398  *
2399  * Start writeback on some inodes on this super_block. No guarantees are made
2400  * on how many (if any) will be written, and this function does not wait
2401  * for IO completion of submitted IO.
2402  */
2403 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2404 {
2405         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2406 }
2407 EXPORT_SYMBOL(writeback_inodes_sb);
2408
2409 /**
2410  * try_to_writeback_inodes_sb - try to start writeback if none underway
2411  * @sb: the superblock
2412  * @reason: reason why some writeback work was initiated
2413  *
2414  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2415  */
2416 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2417 {
2418         if (!down_read_trylock(&sb->s_umount))
2419                 return;
2420
2421         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2422         up_read(&sb->s_umount);
2423 }
2424 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2425
2426 /**
2427  * sync_inodes_sb       -       sync sb inode pages
2428  * @sb: the superblock
2429  *
2430  * This function writes and waits on any dirty inode belonging to this
2431  * super_block.
2432  */
2433 void sync_inodes_sb(struct super_block *sb)
2434 {
2435         DEFINE_WB_COMPLETION_ONSTACK(done);
2436         struct wb_writeback_work work = {
2437                 .sb             = sb,
2438                 .sync_mode      = WB_SYNC_ALL,
2439                 .nr_pages       = LONG_MAX,
2440                 .range_cyclic   = 0,
2441                 .done           = &done,
2442                 .reason         = WB_REASON_SYNC,
2443                 .for_sync       = 1,
2444         };
2445         struct backing_dev_info *bdi = sb->s_bdi;
2446
2447         /*
2448          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2449          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2450          * bdi_has_dirty() need to be written out too.
2451          */
2452         if (bdi == &noop_backing_dev_info)
2453                 return;
2454         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2455
2456         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2457         bdi_down_write_wb_switch_rwsem(bdi);
2458         bdi_split_work_to_wbs(bdi, &work, false);
2459         wb_wait_for_completion(bdi, &done);
2460         bdi_up_write_wb_switch_rwsem(bdi);
2461
2462         wait_sb_inodes(sb);
2463 }
2464 EXPORT_SYMBOL(sync_inodes_sb);
2465
2466 /**
2467  * write_inode_now      -       write an inode to disk
2468  * @inode: inode to write to disk
2469  * @sync: whether the write should be synchronous or not
2470  *
2471  * This function commits an inode to disk immediately if it is dirty. This is
2472  * primarily needed by knfsd.
2473  *
2474  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2475  */
2476 int write_inode_now(struct inode *inode, int sync)
2477 {
2478         struct writeback_control wbc = {
2479                 .nr_to_write = LONG_MAX,
2480                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2481                 .range_start = 0,
2482                 .range_end = LLONG_MAX,
2483         };
2484
2485         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2486                 wbc.nr_to_write = 0;
2487
2488         might_sleep();
2489         return writeback_single_inode(inode, &wbc);
2490 }
2491 EXPORT_SYMBOL(write_inode_now);
2492
2493 /**
2494  * sync_inode - write an inode and its pages to disk.
2495  * @inode: the inode to sync
2496  * @wbc: controls the writeback mode
2497  *
2498  * sync_inode() will write an inode and its pages to disk.  It will also
2499  * correctly update the inode on its superblock's dirty inode lists and will
2500  * update inode->i_state.
2501  *
2502  * The caller must have a ref on the inode.
2503  */
2504 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2505 {
2506         return writeback_single_inode(inode, wbc);
2507 }
2508 EXPORT_SYMBOL(sync_inode);
2509
2510 /**
2511  * sync_inode_metadata - write an inode to disk
2512  * @inode: the inode to sync
2513  * @wait: wait for I/O to complete.
2514  *
2515  * Write an inode to disk and adjust its dirty state after completion.
2516  *
2517  * Note: only writes the actual inode, no associated data or other metadata.
2518  */
2519 int sync_inode_metadata(struct inode *inode, int wait)
2520 {
2521         struct writeback_control wbc = {
2522                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2523                 .nr_to_write = 0, /* metadata-only */
2524         };
2525
2526         return sync_inode(inode, &wbc);
2527 }
2528 EXPORT_SYMBOL(sync_inode_metadata);