GNU Linux-libre 5.15.137-gnu
[releases.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124
125         list_move(&inode->i_io_list, head);
126
127         /* dirty_time doesn't count as dirty_io until expiration */
128         if (head != &wb->b_dirty_time)
129                 return wb_io_lists_populated(wb);
130
131         wb_io_lists_depopulated(wb);
132         return false;
133 }
134
135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137         spin_lock_irq(&wb->work_lock);
138         if (test_bit(WB_registered, &wb->state))
139                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140         spin_unlock_irq(&wb->work_lock);
141 }
142
143 static void finish_writeback_work(struct bdi_writeback *wb,
144                                   struct wb_writeback_work *work)
145 {
146         struct wb_completion *done = work->done;
147
148         if (work->auto_free)
149                 kfree(work);
150         if (done) {
151                 wait_queue_head_t *waitq = done->waitq;
152
153                 /* @done can't be accessed after the following dec */
154                 if (atomic_dec_and_test(&done->cnt))
155                         wake_up_all(waitq);
156         }
157 }
158
159 static void wb_queue_work(struct bdi_writeback *wb,
160                           struct wb_writeback_work *work)
161 {
162         trace_writeback_queue(wb, work);
163
164         if (work->done)
165                 atomic_inc(&work->done->cnt);
166
167         spin_lock_irq(&wb->work_lock);
168
169         if (test_bit(WB_registered, &wb->state)) {
170                 list_add_tail(&work->list, &wb->work_list);
171                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172         } else
173                 finish_writeback_work(wb, work);
174
175         spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179  * wb_wait_for_completion - wait for completion of bdi_writeback_works
180  * @done: target wb_completion
181  *
182  * Wait for one or more work items issued to @bdi with their ->done field
183  * set to @done, which should have been initialized with
184  * DEFINE_WB_COMPLETION().  This function returns after all such work items
185  * are completed.  Work items which are waited upon aren't freed
186  * automatically on completion.
187  */
188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190         atomic_dec(&done->cnt);         /* put down the initial count */
191         wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197  * Parameters for foreign inode detection, see wbc_detach_inode() to see
198  * how they're used.
199  *
200  * These paramters are inherently heuristical as the detection target
201  * itself is fuzzy.  All we want to do is detaching an inode from the
202  * current owner if it's being written to by some other cgroups too much.
203  *
204  * The current cgroup writeback is built on the assumption that multiple
205  * cgroups writing to the same inode concurrently is very rare and a mode
206  * of operation which isn't well supported.  As such, the goal is not
207  * taking too long when a different cgroup takes over an inode while
208  * avoiding too aggressive flip-flops from occasional foreign writes.
209  *
210  * We record, very roughly, 2s worth of IO time history and if more than
211  * half of that is foreign, trigger the switch.  The recording is quantized
212  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
213  * writes smaller than 1/8 of avg size are ignored.
214  */
215 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
219
220 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222                                         /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
224                                         /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226                                         /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
228
229 /*
230  * Maximum inodes per isw.  A specific value has been chosen to make
231  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232  */
233 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234                                 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241         struct backing_dev_info *bdi = inode_to_bdi(inode);
242         struct bdi_writeback *wb = NULL;
243
244         if (inode_cgwb_enabled(inode)) {
245                 struct cgroup_subsys_state *memcg_css;
246
247                 if (page) {
248                         memcg_css = mem_cgroup_css_from_page(page);
249                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250                 } else {
251                         /* must pin memcg_css, see wb_get_create() */
252                         memcg_css = task_get_css(current, memory_cgrp_id);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                         css_put(memcg_css);
255                 }
256         }
257
258         if (!wb)
259                 wb = &bdi->wb;
260
261         /*
262          * There may be multiple instances of this function racing to
263          * update the same inode.  Use cmpxchg() to tell the winner.
264          */
265         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266                 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272  * @inode: inode of interest with i_lock held
273  * @wb: target bdi_writeback
274  *
275  * Remove the inode from wb's io lists and if necessarily put onto b_attached
276  * list.  Only inodes attached to cgwb's are kept on this list.
277  */
278 static void inode_cgwb_move_to_attached(struct inode *inode,
279                                         struct bdi_writeback *wb)
280 {
281         assert_spin_locked(&wb->list_lock);
282         assert_spin_locked(&inode->i_lock);
283
284         inode->i_state &= ~I_SYNC_QUEUED;
285         if (wb != &wb->bdi->wb)
286                 list_move(&inode->i_io_list, &wb->b_attached);
287         else
288                 list_del_init(&inode->i_io_list);
289         wb_io_lists_depopulated(wb);
290 }
291
292 /**
293  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294  * @inode: inode of interest with i_lock held
295  *
296  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
297  * held on entry and is released on return.  The returned wb is guaranteed
298  * to stay @inode's associated wb until its list_lock is released.
299  */
300 static struct bdi_writeback *
301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302         __releases(&inode->i_lock)
303         __acquires(&wb->list_lock)
304 {
305         while (true) {
306                 struct bdi_writeback *wb = inode_to_wb(inode);
307
308                 /*
309                  * inode_to_wb() association is protected by both
310                  * @inode->i_lock and @wb->list_lock but list_lock nests
311                  * outside i_lock.  Drop i_lock and verify that the
312                  * association hasn't changed after acquiring list_lock.
313                  */
314                 wb_get(wb);
315                 spin_unlock(&inode->i_lock);
316                 spin_lock(&wb->list_lock);
317
318                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319                 if (likely(wb == inode->i_wb)) {
320                         wb_put(wb);     /* @inode already has ref */
321                         return wb;
322                 }
323
324                 spin_unlock(&wb->list_lock);
325                 wb_put(wb);
326                 cpu_relax();
327                 spin_lock(&inode->i_lock);
328         }
329 }
330
331 /**
332  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333  * @inode: inode of interest
334  *
335  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336  * on entry.
337  */
338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339         __acquires(&wb->list_lock)
340 {
341         spin_lock(&inode->i_lock);
342         return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346         struct rcu_work         work;
347
348         /*
349          * Multiple inodes can be switched at once.  The switching procedure
350          * consists of two parts, separated by a RCU grace period.  To make
351          * sure that the second part is executed for each inode gone through
352          * the first part, all inode pointers are placed into a NULL-terminated
353          * array embedded into struct inode_switch_wbs_context.  Otherwise
354          * an inode could be left in a non-consistent state.
355          */
356         struct bdi_writeback    *new_wb;
357         struct inode            *inodes[];
358 };
359
360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362         down_write(&bdi->wb_switch_rwsem);
363 }
364
365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367         up_write(&bdi->wb_switch_rwsem);
368 }
369
370 static bool inode_do_switch_wbs(struct inode *inode,
371                                 struct bdi_writeback *old_wb,
372                                 struct bdi_writeback *new_wb)
373 {
374         struct address_space *mapping = inode->i_mapping;
375         XA_STATE(xas, &mapping->i_pages, 0);
376         struct page *page;
377         bool switched = false;
378
379         spin_lock(&inode->i_lock);
380         xa_lock_irq(&mapping->i_pages);
381
382         /*
383          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384          * path owns the inode and we shouldn't modify ->i_io_list.
385          */
386         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387                 goto skip_switch;
388
389         trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391         /*
392          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394          * pages actually under writeback.
395          */
396         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397                 if (PageDirty(page)) {
398                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
399                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
400                 }
401         }
402
403         xas_set(&xas, 0);
404         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405                 WARN_ON_ONCE(!PageWriteback(page));
406                 dec_wb_stat(old_wb, WB_WRITEBACK);
407                 inc_wb_stat(new_wb, WB_WRITEBACK);
408         }
409
410         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
411                 atomic_dec(&old_wb->writeback_inodes);
412                 atomic_inc(&new_wb->writeback_inodes);
413         }
414
415         wb_get(new_wb);
416
417         /*
418          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
419          * the specific list @inode was on is ignored and the @inode is put on
420          * ->b_dirty which is always correct including from ->b_dirty_time.
421          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
422          * was clean, it means it was on the b_attached list, so move it onto
423          * the b_attached list of @new_wb.
424          */
425         if (!list_empty(&inode->i_io_list)) {
426                 inode->i_wb = new_wb;
427
428                 if (inode->i_state & I_DIRTY_ALL) {
429                         struct inode *pos;
430
431                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432                                 if (time_after_eq(inode->dirtied_when,
433                                                   pos->dirtied_when))
434                                         break;
435                         inode_io_list_move_locked(inode, new_wb,
436                                                   pos->i_io_list.prev);
437                 } else {
438                         inode_cgwb_move_to_attached(inode, new_wb);
439                 }
440         } else {
441                 inode->i_wb = new_wb;
442         }
443
444         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
445         inode->i_wb_frn_winner = 0;
446         inode->i_wb_frn_avg_time = 0;
447         inode->i_wb_frn_history = 0;
448         switched = true;
449 skip_switch:
450         /*
451          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
452          * ensures that the new wb is visible if they see !I_WB_SWITCH.
453          */
454         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
455
456         xa_unlock_irq(&mapping->i_pages);
457         spin_unlock(&inode->i_lock);
458
459         return switched;
460 }
461
462 static void inode_switch_wbs_work_fn(struct work_struct *work)
463 {
464         struct inode_switch_wbs_context *isw =
465                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
466         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
467         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
468         struct bdi_writeback *new_wb = isw->new_wb;
469         unsigned long nr_switched = 0;
470         struct inode **inodep;
471
472         /*
473          * If @inode switches cgwb membership while sync_inodes_sb() is
474          * being issued, sync_inodes_sb() might miss it.  Synchronize.
475          */
476         down_read(&bdi->wb_switch_rwsem);
477
478         /*
479          * By the time control reaches here, RCU grace period has passed
480          * since I_WB_SWITCH assertion and all wb stat update transactions
481          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
482          * synchronizing against the i_pages lock.
483          *
484          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
485          * gives us exclusion against all wb related operations on @inode
486          * including IO list manipulations and stat updates.
487          */
488         if (old_wb < new_wb) {
489                 spin_lock(&old_wb->list_lock);
490                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
491         } else {
492                 spin_lock(&new_wb->list_lock);
493                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
494         }
495
496         for (inodep = isw->inodes; *inodep; inodep++) {
497                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
498                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
499                         nr_switched++;
500         }
501
502         spin_unlock(&new_wb->list_lock);
503         spin_unlock(&old_wb->list_lock);
504
505         up_read(&bdi->wb_switch_rwsem);
506
507         if (nr_switched) {
508                 wb_wakeup(new_wb);
509                 wb_put_many(old_wb, nr_switched);
510         }
511
512         for (inodep = isw->inodes; *inodep; inodep++)
513                 iput(*inodep);
514         wb_put(new_wb);
515         kfree(isw);
516         atomic_dec(&isw_nr_in_flight);
517 }
518
519 static bool inode_prepare_wbs_switch(struct inode *inode,
520                                      struct bdi_writeback *new_wb)
521 {
522         /*
523          * Paired with smp_mb() in cgroup_writeback_umount().
524          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
525          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
526          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
527          */
528         smp_mb();
529
530         if (IS_DAX(inode))
531                 return false;
532
533         /* while holding I_WB_SWITCH, no one else can update the association */
534         spin_lock(&inode->i_lock);
535         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
536             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
537             inode_to_wb(inode) == new_wb) {
538                 spin_unlock(&inode->i_lock);
539                 return false;
540         }
541         inode->i_state |= I_WB_SWITCH;
542         __iget(inode);
543         spin_unlock(&inode->i_lock);
544
545         return true;
546 }
547
548 /**
549  * inode_switch_wbs - change the wb association of an inode
550  * @inode: target inode
551  * @new_wb_id: ID of the new wb
552  *
553  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
554  * switching is performed asynchronously and may fail silently.
555  */
556 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
557 {
558         struct backing_dev_info *bdi = inode_to_bdi(inode);
559         struct cgroup_subsys_state *memcg_css;
560         struct inode_switch_wbs_context *isw;
561
562         /* noop if seems to be already in progress */
563         if (inode->i_state & I_WB_SWITCH)
564                 return;
565
566         /* avoid queueing a new switch if too many are already in flight */
567         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
568                 return;
569
570         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
571         if (!isw)
572                 return;
573
574         atomic_inc(&isw_nr_in_flight);
575
576         /* find and pin the new wb */
577         rcu_read_lock();
578         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
579         if (memcg_css && !css_tryget(memcg_css))
580                 memcg_css = NULL;
581         rcu_read_unlock();
582         if (!memcg_css)
583                 goto out_free;
584
585         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
586         css_put(memcg_css);
587         if (!isw->new_wb)
588                 goto out_free;
589
590         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
591                 goto out_free;
592
593         isw->inodes[0] = inode;
594
595         /*
596          * In addition to synchronizing among switchers, I_WB_SWITCH tells
597          * the RCU protected stat update paths to grab the i_page
598          * lock so that stat transfer can synchronize against them.
599          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
600          */
601         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
602         queue_rcu_work(isw_wq, &isw->work);
603         return;
604
605 out_free:
606         atomic_dec(&isw_nr_in_flight);
607         if (isw->new_wb)
608                 wb_put(isw->new_wb);
609         kfree(isw);
610 }
611
612 /**
613  * cleanup_offline_cgwb - detach associated inodes
614  * @wb: target wb
615  *
616  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
617  * to eventually release the dying @wb.  Returns %true if not all inodes were
618  * switched and the function has to be restarted.
619  */
620 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
621 {
622         struct cgroup_subsys_state *memcg_css;
623         struct inode_switch_wbs_context *isw;
624         struct inode *inode;
625         int nr;
626         bool restart = false;
627
628         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
629                       sizeof(struct inode *), GFP_KERNEL);
630         if (!isw)
631                 return restart;
632
633         atomic_inc(&isw_nr_in_flight);
634
635         for (memcg_css = wb->memcg_css->parent; memcg_css;
636              memcg_css = memcg_css->parent) {
637                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
638                 if (isw->new_wb)
639                         break;
640         }
641         if (unlikely(!isw->new_wb))
642                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
643
644         nr = 0;
645         spin_lock(&wb->list_lock);
646         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
647                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648                         continue;
649
650                 isw->inodes[nr++] = inode;
651
652                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
653                         restart = true;
654                         break;
655                 }
656         }
657         spin_unlock(&wb->list_lock);
658
659         /* no attached inodes? bail out */
660         if (nr == 0) {
661                 atomic_dec(&isw_nr_in_flight);
662                 wb_put(isw->new_wb);
663                 kfree(isw);
664                 return restart;
665         }
666
667         /*
668          * In addition to synchronizing among switchers, I_WB_SWITCH tells
669          * the RCU protected stat update paths to grab the i_page
670          * lock so that stat transfer can synchronize against them.
671          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
672          */
673         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
674         queue_rcu_work(isw_wq, &isw->work);
675
676         return restart;
677 }
678
679 /**
680  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
681  * @wbc: writeback_control of interest
682  * @inode: target inode
683  *
684  * @inode is locked and about to be written back under the control of @wbc.
685  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
686  * writeback completion, wbc_detach_inode() should be called.  This is used
687  * to track the cgroup writeback context.
688  */
689 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
690                                  struct inode *inode)
691 {
692         if (!inode_cgwb_enabled(inode)) {
693                 spin_unlock(&inode->i_lock);
694                 return;
695         }
696
697         wbc->wb = inode_to_wb(inode);
698         wbc->inode = inode;
699
700         wbc->wb_id = wbc->wb->memcg_css->id;
701         wbc->wb_lcand_id = inode->i_wb_frn_winner;
702         wbc->wb_tcand_id = 0;
703         wbc->wb_bytes = 0;
704         wbc->wb_lcand_bytes = 0;
705         wbc->wb_tcand_bytes = 0;
706
707         wb_get(wbc->wb);
708         spin_unlock(&inode->i_lock);
709
710         /*
711          * A dying wb indicates that either the blkcg associated with the
712          * memcg changed or the associated memcg is dying.  In the first
713          * case, a replacement wb should already be available and we should
714          * refresh the wb immediately.  In the second case, trying to
715          * refresh will keep failing.
716          */
717         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
718                 inode_switch_wbs(inode, wbc->wb_id);
719 }
720 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
721
722 /**
723  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
724  * @wbc: writeback_control of the just finished writeback
725  *
726  * To be called after a writeback attempt of an inode finishes and undoes
727  * wbc_attach_and_unlock_inode().  Can be called under any context.
728  *
729  * As concurrent write sharing of an inode is expected to be very rare and
730  * memcg only tracks page ownership on first-use basis severely confining
731  * the usefulness of such sharing, cgroup writeback tracks ownership
732  * per-inode.  While the support for concurrent write sharing of an inode
733  * is deemed unnecessary, an inode being written to by different cgroups at
734  * different points in time is a lot more common, and, more importantly,
735  * charging only by first-use can too readily lead to grossly incorrect
736  * behaviors (single foreign page can lead to gigabytes of writeback to be
737  * incorrectly attributed).
738  *
739  * To resolve this issue, cgroup writeback detects the majority dirtier of
740  * an inode and transfers the ownership to it.  To avoid unnnecessary
741  * oscillation, the detection mechanism keeps track of history and gives
742  * out the switch verdict only if the foreign usage pattern is stable over
743  * a certain amount of time and/or writeback attempts.
744  *
745  * On each writeback attempt, @wbc tries to detect the majority writer
746  * using Boyer-Moore majority vote algorithm.  In addition to the byte
747  * count from the majority voting, it also counts the bytes written for the
748  * current wb and the last round's winner wb (max of last round's current
749  * wb, the winner from two rounds ago, and the last round's majority
750  * candidate).  Keeping track of the historical winner helps the algorithm
751  * to semi-reliably detect the most active writer even when it's not the
752  * absolute majority.
753  *
754  * Once the winner of the round is determined, whether the winner is
755  * foreign or not and how much IO time the round consumed is recorded in
756  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
757  * over a certain threshold, the switch verdict is given.
758  */
759 void wbc_detach_inode(struct writeback_control *wbc)
760 {
761         struct bdi_writeback *wb = wbc->wb;
762         struct inode *inode = wbc->inode;
763         unsigned long avg_time, max_bytes, max_time;
764         u16 history;
765         int max_id;
766
767         if (!wb)
768                 return;
769
770         history = inode->i_wb_frn_history;
771         avg_time = inode->i_wb_frn_avg_time;
772
773         /* pick the winner of this round */
774         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
775             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
776                 max_id = wbc->wb_id;
777                 max_bytes = wbc->wb_bytes;
778         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
779                 max_id = wbc->wb_lcand_id;
780                 max_bytes = wbc->wb_lcand_bytes;
781         } else {
782                 max_id = wbc->wb_tcand_id;
783                 max_bytes = wbc->wb_tcand_bytes;
784         }
785
786         /*
787          * Calculate the amount of IO time the winner consumed and fold it
788          * into the running average kept per inode.  If the consumed IO
789          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
790          * deciding whether to switch or not.  This is to prevent one-off
791          * small dirtiers from skewing the verdict.
792          */
793         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
794                                 wb->avg_write_bandwidth);
795         if (avg_time)
796                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
797                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
798         else
799                 avg_time = max_time;    /* immediate catch up on first run */
800
801         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
802                 int slots;
803
804                 /*
805                  * The switch verdict is reached if foreign wb's consume
806                  * more than a certain proportion of IO time in a
807                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
808                  * history mask where each bit represents one sixteenth of
809                  * the period.  Determine the number of slots to shift into
810                  * history from @max_time.
811                  */
812                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
813                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
814                 history <<= slots;
815                 if (wbc->wb_id != max_id)
816                         history |= (1U << slots) - 1;
817
818                 if (history)
819                         trace_inode_foreign_history(inode, wbc, history);
820
821                 /*
822                  * Switch if the current wb isn't the consistent winner.
823                  * If there are multiple closely competing dirtiers, the
824                  * inode may switch across them repeatedly over time, which
825                  * is okay.  The main goal is avoiding keeping an inode on
826                  * the wrong wb for an extended period of time.
827                  */
828                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
829                         inode_switch_wbs(inode, max_id);
830         }
831
832         /*
833          * Multiple instances of this function may race to update the
834          * following fields but we don't mind occassional inaccuracies.
835          */
836         inode->i_wb_frn_winner = max_id;
837         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
838         inode->i_wb_frn_history = history;
839
840         wb_put(wbc->wb);
841         wbc->wb = NULL;
842 }
843 EXPORT_SYMBOL_GPL(wbc_detach_inode);
844
845 /**
846  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
847  * @wbc: writeback_control of the writeback in progress
848  * @page: page being written out
849  * @bytes: number of bytes being written out
850  *
851  * @bytes from @page are about to written out during the writeback
852  * controlled by @wbc.  Keep the book for foreign inode detection.  See
853  * wbc_detach_inode().
854  */
855 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
856                               size_t bytes)
857 {
858         struct cgroup_subsys_state *css;
859         int id;
860
861         /*
862          * pageout() path doesn't attach @wbc to the inode being written
863          * out.  This is intentional as we don't want the function to block
864          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
865          * regular writeback instead of writing things out itself.
866          */
867         if (!wbc->wb || wbc->no_cgroup_owner)
868                 return;
869
870         css = mem_cgroup_css_from_page(page);
871         /* dead cgroups shouldn't contribute to inode ownership arbitration */
872         if (!(css->flags & CSS_ONLINE))
873                 return;
874
875         id = css->id;
876
877         if (id == wbc->wb_id) {
878                 wbc->wb_bytes += bytes;
879                 return;
880         }
881
882         if (id == wbc->wb_lcand_id)
883                 wbc->wb_lcand_bytes += bytes;
884
885         /* Boyer-Moore majority vote algorithm */
886         if (!wbc->wb_tcand_bytes)
887                 wbc->wb_tcand_id = id;
888         if (id == wbc->wb_tcand_id)
889                 wbc->wb_tcand_bytes += bytes;
890         else
891                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
892 }
893 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
894
895 /**
896  * inode_congested - test whether an inode is congested
897  * @inode: inode to test for congestion (may be NULL)
898  * @cong_bits: mask of WB_[a]sync_congested bits to test
899  *
900  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
901  * bits to test and the return value is the mask of set bits.
902  *
903  * If cgroup writeback is enabled for @inode, the congestion state is
904  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
905  * associated with @inode is congested; otherwise, the root wb's congestion
906  * state is used.
907  *
908  * @inode is allowed to be NULL as this function is often called on
909  * mapping->host which is NULL for the swapper space.
910  */
911 int inode_congested(struct inode *inode, int cong_bits)
912 {
913         /*
914          * Once set, ->i_wb never becomes NULL while the inode is alive.
915          * Start transaction iff ->i_wb is visible.
916          */
917         if (inode && inode_to_wb_is_valid(inode)) {
918                 struct bdi_writeback *wb;
919                 struct wb_lock_cookie lock_cookie = {};
920                 bool congested;
921
922                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
923                 congested = wb_congested(wb, cong_bits);
924                 unlocked_inode_to_wb_end(inode, &lock_cookie);
925                 return congested;
926         }
927
928         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
929 }
930 EXPORT_SYMBOL_GPL(inode_congested);
931
932 /**
933  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
934  * @wb: target bdi_writeback to split @nr_pages to
935  * @nr_pages: number of pages to write for the whole bdi
936  *
937  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
938  * relation to the total write bandwidth of all wb's w/ dirty inodes on
939  * @wb->bdi.
940  */
941 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
942 {
943         unsigned long this_bw = wb->avg_write_bandwidth;
944         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
945
946         if (nr_pages == LONG_MAX)
947                 return LONG_MAX;
948
949         /*
950          * This may be called on clean wb's and proportional distribution
951          * may not make sense, just use the original @nr_pages in those
952          * cases.  In general, we wanna err on the side of writing more.
953          */
954         if (!tot_bw || this_bw >= tot_bw)
955                 return nr_pages;
956         else
957                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
958 }
959
960 /**
961  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
962  * @bdi: target backing_dev_info
963  * @base_work: wb_writeback_work to issue
964  * @skip_if_busy: skip wb's which already have writeback in progress
965  *
966  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
967  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
968  * distributed to the busy wbs according to each wb's proportion in the
969  * total active write bandwidth of @bdi.
970  */
971 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
972                                   struct wb_writeback_work *base_work,
973                                   bool skip_if_busy)
974 {
975         struct bdi_writeback *last_wb = NULL;
976         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
977                                               struct bdi_writeback, bdi_node);
978
979         might_sleep();
980 restart:
981         rcu_read_lock();
982         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
983                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
984                 struct wb_writeback_work fallback_work;
985                 struct wb_writeback_work *work;
986                 long nr_pages;
987
988                 if (last_wb) {
989                         wb_put(last_wb);
990                         last_wb = NULL;
991                 }
992
993                 /* SYNC_ALL writes out I_DIRTY_TIME too */
994                 if (!wb_has_dirty_io(wb) &&
995                     (base_work->sync_mode == WB_SYNC_NONE ||
996                      list_empty(&wb->b_dirty_time)))
997                         continue;
998                 if (skip_if_busy && writeback_in_progress(wb))
999                         continue;
1000
1001                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1002
1003                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1004                 if (work) {
1005                         *work = *base_work;
1006                         work->nr_pages = nr_pages;
1007                         work->auto_free = 1;
1008                         wb_queue_work(wb, work);
1009                         continue;
1010                 }
1011
1012                 /*
1013                  * If wb_tryget fails, the wb has been shutdown, skip it.
1014                  *
1015                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1016                  * continuing iteration from @wb after dropping and
1017                  * regrabbing rcu read lock.
1018                  */
1019                 if (!wb_tryget(wb))
1020                         continue;
1021
1022                 /* alloc failed, execute synchronously using on-stack fallback */
1023                 work = &fallback_work;
1024                 *work = *base_work;
1025                 work->nr_pages = nr_pages;
1026                 work->auto_free = 0;
1027                 work->done = &fallback_work_done;
1028
1029                 wb_queue_work(wb, work);
1030                 last_wb = wb;
1031
1032                 rcu_read_unlock();
1033                 wb_wait_for_completion(&fallback_work_done);
1034                 goto restart;
1035         }
1036         rcu_read_unlock();
1037
1038         if (last_wb)
1039                 wb_put(last_wb);
1040 }
1041
1042 /**
1043  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1044  * @bdi_id: target bdi id
1045  * @memcg_id: target memcg css id
1046  * @reason: reason why some writeback work initiated
1047  * @done: target wb_completion
1048  *
1049  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1050  * with the specified parameters.
1051  */
1052 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1053                            enum wb_reason reason, struct wb_completion *done)
1054 {
1055         struct backing_dev_info *bdi;
1056         struct cgroup_subsys_state *memcg_css;
1057         struct bdi_writeback *wb;
1058         struct wb_writeback_work *work;
1059         unsigned long dirty;
1060         int ret;
1061
1062         /* lookup bdi and memcg */
1063         bdi = bdi_get_by_id(bdi_id);
1064         if (!bdi)
1065                 return -ENOENT;
1066
1067         rcu_read_lock();
1068         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1069         if (memcg_css && !css_tryget(memcg_css))
1070                 memcg_css = NULL;
1071         rcu_read_unlock();
1072         if (!memcg_css) {
1073                 ret = -ENOENT;
1074                 goto out_bdi_put;
1075         }
1076
1077         /*
1078          * And find the associated wb.  If the wb isn't there already
1079          * there's nothing to flush, don't create one.
1080          */
1081         wb = wb_get_lookup(bdi, memcg_css);
1082         if (!wb) {
1083                 ret = -ENOENT;
1084                 goto out_css_put;
1085         }
1086
1087         /*
1088          * The caller is attempting to write out most of
1089          * the currently dirty pages.  Let's take the current dirty page
1090          * count and inflate it by 25% which should be large enough to
1091          * flush out most dirty pages while avoiding getting livelocked by
1092          * concurrent dirtiers.
1093          *
1094          * BTW the memcg stats are flushed periodically and this is best-effort
1095          * estimation, so some potential error is ok.
1096          */
1097         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1098         dirty = dirty * 10 / 8;
1099
1100         /* issue the writeback work */
1101         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1102         if (work) {
1103                 work->nr_pages = dirty;
1104                 work->sync_mode = WB_SYNC_NONE;
1105                 work->range_cyclic = 1;
1106                 work->reason = reason;
1107                 work->done = done;
1108                 work->auto_free = 1;
1109                 wb_queue_work(wb, work);
1110                 ret = 0;
1111         } else {
1112                 ret = -ENOMEM;
1113         }
1114
1115         wb_put(wb);
1116 out_css_put:
1117         css_put(memcg_css);
1118 out_bdi_put:
1119         bdi_put(bdi);
1120         return ret;
1121 }
1122
1123 /**
1124  * cgroup_writeback_umount - flush inode wb switches for umount
1125  *
1126  * This function is called when a super_block is about to be destroyed and
1127  * flushes in-flight inode wb switches.  An inode wb switch goes through
1128  * RCU and then workqueue, so the two need to be flushed in order to ensure
1129  * that all previously scheduled switches are finished.  As wb switches are
1130  * rare occurrences and synchronize_rcu() can take a while, perform
1131  * flushing iff wb switches are in flight.
1132  */
1133 void cgroup_writeback_umount(void)
1134 {
1135         /*
1136          * SB_ACTIVE should be reliably cleared before checking
1137          * isw_nr_in_flight, see generic_shutdown_super().
1138          */
1139         smp_mb();
1140
1141         if (atomic_read(&isw_nr_in_flight)) {
1142                 /*
1143                  * Use rcu_barrier() to wait for all pending callbacks to
1144                  * ensure that all in-flight wb switches are in the workqueue.
1145                  */
1146                 rcu_barrier();
1147                 flush_workqueue(isw_wq);
1148         }
1149 }
1150
1151 static int __init cgroup_writeback_init(void)
1152 {
1153         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1154         if (!isw_wq)
1155                 return -ENOMEM;
1156         return 0;
1157 }
1158 fs_initcall(cgroup_writeback_init);
1159
1160 #else   /* CONFIG_CGROUP_WRITEBACK */
1161
1162 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1163 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1164
1165 static void inode_cgwb_move_to_attached(struct inode *inode,
1166                                         struct bdi_writeback *wb)
1167 {
1168         assert_spin_locked(&wb->list_lock);
1169         assert_spin_locked(&inode->i_lock);
1170
1171         inode->i_state &= ~I_SYNC_QUEUED;
1172         list_del_init(&inode->i_io_list);
1173         wb_io_lists_depopulated(wb);
1174 }
1175
1176 static struct bdi_writeback *
1177 locked_inode_to_wb_and_lock_list(struct inode *inode)
1178         __releases(&inode->i_lock)
1179         __acquires(&wb->list_lock)
1180 {
1181         struct bdi_writeback *wb = inode_to_wb(inode);
1182
1183         spin_unlock(&inode->i_lock);
1184         spin_lock(&wb->list_lock);
1185         return wb;
1186 }
1187
1188 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1189         __acquires(&wb->list_lock)
1190 {
1191         struct bdi_writeback *wb = inode_to_wb(inode);
1192
1193         spin_lock(&wb->list_lock);
1194         return wb;
1195 }
1196
1197 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1198 {
1199         return nr_pages;
1200 }
1201
1202 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1203                                   struct wb_writeback_work *base_work,
1204                                   bool skip_if_busy)
1205 {
1206         might_sleep();
1207
1208         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1209                 base_work->auto_free = 0;
1210                 wb_queue_work(&bdi->wb, base_work);
1211         }
1212 }
1213
1214 #endif  /* CONFIG_CGROUP_WRITEBACK */
1215
1216 /*
1217  * Add in the number of potentially dirty inodes, because each inode
1218  * write can dirty pagecache in the underlying blockdev.
1219  */
1220 static unsigned long get_nr_dirty_pages(void)
1221 {
1222         return global_node_page_state(NR_FILE_DIRTY) +
1223                 get_nr_dirty_inodes();
1224 }
1225
1226 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1227 {
1228         if (!wb_has_dirty_io(wb))
1229                 return;
1230
1231         /*
1232          * All callers of this function want to start writeback of all
1233          * dirty pages. Places like vmscan can call this at a very
1234          * high frequency, causing pointless allocations of tons of
1235          * work items and keeping the flusher threads busy retrieving
1236          * that work. Ensure that we only allow one of them pending and
1237          * inflight at the time.
1238          */
1239         if (test_bit(WB_start_all, &wb->state) ||
1240             test_and_set_bit(WB_start_all, &wb->state))
1241                 return;
1242
1243         wb->start_all_reason = reason;
1244         wb_wakeup(wb);
1245 }
1246
1247 /**
1248  * wb_start_background_writeback - start background writeback
1249  * @wb: bdi_writback to write from
1250  *
1251  * Description:
1252  *   This makes sure WB_SYNC_NONE background writeback happens. When
1253  *   this function returns, it is only guaranteed that for given wb
1254  *   some IO is happening if we are over background dirty threshold.
1255  *   Caller need not hold sb s_umount semaphore.
1256  */
1257 void wb_start_background_writeback(struct bdi_writeback *wb)
1258 {
1259         /*
1260          * We just wake up the flusher thread. It will perform background
1261          * writeback as soon as there is no other work to do.
1262          */
1263         trace_writeback_wake_background(wb);
1264         wb_wakeup(wb);
1265 }
1266
1267 /*
1268  * Remove the inode from the writeback list it is on.
1269  */
1270 void inode_io_list_del(struct inode *inode)
1271 {
1272         struct bdi_writeback *wb;
1273
1274         wb = inode_to_wb_and_lock_list(inode);
1275         spin_lock(&inode->i_lock);
1276
1277         inode->i_state &= ~I_SYNC_QUEUED;
1278         list_del_init(&inode->i_io_list);
1279         wb_io_lists_depopulated(wb);
1280
1281         spin_unlock(&inode->i_lock);
1282         spin_unlock(&wb->list_lock);
1283 }
1284 EXPORT_SYMBOL(inode_io_list_del);
1285
1286 /*
1287  * mark an inode as under writeback on the sb
1288  */
1289 void sb_mark_inode_writeback(struct inode *inode)
1290 {
1291         struct super_block *sb = inode->i_sb;
1292         unsigned long flags;
1293
1294         if (list_empty(&inode->i_wb_list)) {
1295                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1296                 if (list_empty(&inode->i_wb_list)) {
1297                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1298                         trace_sb_mark_inode_writeback(inode);
1299                 }
1300                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1301         }
1302 }
1303
1304 /*
1305  * clear an inode as under writeback on the sb
1306  */
1307 void sb_clear_inode_writeback(struct inode *inode)
1308 {
1309         struct super_block *sb = inode->i_sb;
1310         unsigned long flags;
1311
1312         if (!list_empty(&inode->i_wb_list)) {
1313                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1314                 if (!list_empty(&inode->i_wb_list)) {
1315                         list_del_init(&inode->i_wb_list);
1316                         trace_sb_clear_inode_writeback(inode);
1317                 }
1318                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1319         }
1320 }
1321
1322 /*
1323  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1324  * furthest end of its superblock's dirty-inode list.
1325  *
1326  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1327  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1328  * the case then the inode must have been redirtied while it was being written
1329  * out and we don't reset its dirtied_when.
1330  */
1331 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1332 {
1333         assert_spin_locked(&inode->i_lock);
1334
1335         if (!list_empty(&wb->b_dirty)) {
1336                 struct inode *tail;
1337
1338                 tail = wb_inode(wb->b_dirty.next);
1339                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1340                         inode->dirtied_when = jiffies;
1341         }
1342         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1343         inode->i_state &= ~I_SYNC_QUEUED;
1344 }
1345
1346 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1347 {
1348         spin_lock(&inode->i_lock);
1349         redirty_tail_locked(inode, wb);
1350         spin_unlock(&inode->i_lock);
1351 }
1352
1353 /*
1354  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1355  */
1356 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1357 {
1358         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1359 }
1360
1361 static void inode_sync_complete(struct inode *inode)
1362 {
1363         inode->i_state &= ~I_SYNC;
1364         /* If inode is clean an unused, put it into LRU now... */
1365         inode_add_lru(inode);
1366         /* Waiters must see I_SYNC cleared before being woken up */
1367         smp_mb();
1368         wake_up_bit(&inode->i_state, __I_SYNC);
1369 }
1370
1371 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1372 {
1373         bool ret = time_after(inode->dirtied_when, t);
1374 #ifndef CONFIG_64BIT
1375         /*
1376          * For inodes being constantly redirtied, dirtied_when can get stuck.
1377          * It _appears_ to be in the future, but is actually in distant past.
1378          * This test is necessary to prevent such wrapped-around relative times
1379          * from permanently stopping the whole bdi writeback.
1380          */
1381         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1382 #endif
1383         return ret;
1384 }
1385
1386 #define EXPIRE_DIRTY_ATIME 0x0001
1387
1388 /*
1389  * Move expired (dirtied before dirtied_before) dirty inodes from
1390  * @delaying_queue to @dispatch_queue.
1391  */
1392 static int move_expired_inodes(struct list_head *delaying_queue,
1393                                struct list_head *dispatch_queue,
1394                                unsigned long dirtied_before)
1395 {
1396         LIST_HEAD(tmp);
1397         struct list_head *pos, *node;
1398         struct super_block *sb = NULL;
1399         struct inode *inode;
1400         int do_sb_sort = 0;
1401         int moved = 0;
1402
1403         while (!list_empty(delaying_queue)) {
1404                 inode = wb_inode(delaying_queue->prev);
1405                 if (inode_dirtied_after(inode, dirtied_before))
1406                         break;
1407                 spin_lock(&inode->i_lock);
1408                 list_move(&inode->i_io_list, &tmp);
1409                 moved++;
1410                 inode->i_state |= I_SYNC_QUEUED;
1411                 spin_unlock(&inode->i_lock);
1412                 if (sb_is_blkdev_sb(inode->i_sb))
1413                         continue;
1414                 if (sb && sb != inode->i_sb)
1415                         do_sb_sort = 1;
1416                 sb = inode->i_sb;
1417         }
1418
1419         /* just one sb in list, splice to dispatch_queue and we're done */
1420         if (!do_sb_sort) {
1421                 list_splice(&tmp, dispatch_queue);
1422                 goto out;
1423         }
1424
1425         /*
1426          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1427          * we don't take inode->i_lock here because it is just a pointless overhead.
1428          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1429          * fully under our control.
1430          */
1431         while (!list_empty(&tmp)) {
1432                 sb = wb_inode(tmp.prev)->i_sb;
1433                 list_for_each_prev_safe(pos, node, &tmp) {
1434                         inode = wb_inode(pos);
1435                         if (inode->i_sb == sb)
1436                                 list_move(&inode->i_io_list, dispatch_queue);
1437                 }
1438         }
1439 out:
1440         return moved;
1441 }
1442
1443 /*
1444  * Queue all expired dirty inodes for io, eldest first.
1445  * Before
1446  *         newly dirtied     b_dirty    b_io    b_more_io
1447  *         =============>    gf         edc     BA
1448  * After
1449  *         newly dirtied     b_dirty    b_io    b_more_io
1450  *         =============>    g          fBAedc
1451  *                                           |
1452  *                                           +--> dequeue for IO
1453  */
1454 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1455                      unsigned long dirtied_before)
1456 {
1457         int moved;
1458         unsigned long time_expire_jif = dirtied_before;
1459
1460         assert_spin_locked(&wb->list_lock);
1461         list_splice_init(&wb->b_more_io, &wb->b_io);
1462         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1463         if (!work->for_sync)
1464                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1465         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1466                                      time_expire_jif);
1467         if (moved)
1468                 wb_io_lists_populated(wb);
1469         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1470 }
1471
1472 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1473 {
1474         int ret;
1475
1476         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1477                 trace_writeback_write_inode_start(inode, wbc);
1478                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1479                 trace_writeback_write_inode(inode, wbc);
1480                 return ret;
1481         }
1482         return 0;
1483 }
1484
1485 /*
1486  * Wait for writeback on an inode to complete. Called with i_lock held.
1487  * Caller must make sure inode cannot go away when we drop i_lock.
1488  */
1489 static void __inode_wait_for_writeback(struct inode *inode)
1490         __releases(inode->i_lock)
1491         __acquires(inode->i_lock)
1492 {
1493         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1494         wait_queue_head_t *wqh;
1495
1496         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1497         while (inode->i_state & I_SYNC) {
1498                 spin_unlock(&inode->i_lock);
1499                 __wait_on_bit(wqh, &wq, bit_wait,
1500                               TASK_UNINTERRUPTIBLE);
1501                 spin_lock(&inode->i_lock);
1502         }
1503 }
1504
1505 /*
1506  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1507  */
1508 void inode_wait_for_writeback(struct inode *inode)
1509 {
1510         spin_lock(&inode->i_lock);
1511         __inode_wait_for_writeback(inode);
1512         spin_unlock(&inode->i_lock);
1513 }
1514
1515 /*
1516  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1517  * held and drops it. It is aimed for callers not holding any inode reference
1518  * so once i_lock is dropped, inode can go away.
1519  */
1520 static void inode_sleep_on_writeback(struct inode *inode)
1521         __releases(inode->i_lock)
1522 {
1523         DEFINE_WAIT(wait);
1524         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1525         int sleep;
1526
1527         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1528         sleep = inode->i_state & I_SYNC;
1529         spin_unlock(&inode->i_lock);
1530         if (sleep)
1531                 schedule();
1532         finish_wait(wqh, &wait);
1533 }
1534
1535 /*
1536  * Find proper writeback list for the inode depending on its current state and
1537  * possibly also change of its state while we were doing writeback.  Here we
1538  * handle things such as livelock prevention or fairness of writeback among
1539  * inodes. This function can be called only by flusher thread - noone else
1540  * processes all inodes in writeback lists and requeueing inodes behind flusher
1541  * thread's back can have unexpected consequences.
1542  */
1543 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1544                           struct writeback_control *wbc)
1545 {
1546         if (inode->i_state & I_FREEING)
1547                 return;
1548
1549         /*
1550          * Sync livelock prevention. Each inode is tagged and synced in one
1551          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1552          * the dirty time to prevent enqueue and sync it again.
1553          */
1554         if ((inode->i_state & I_DIRTY) &&
1555             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1556                 inode->dirtied_when = jiffies;
1557
1558         if (wbc->pages_skipped) {
1559                 /*
1560                  * Writeback is not making progress due to locked buffers.
1561                  * Skip this inode for now. Although having skipped pages
1562                  * is odd for clean inodes, it can happen for some
1563                  * filesystems so handle that gracefully.
1564                  */
1565                 if (inode->i_state & I_DIRTY_ALL)
1566                         redirty_tail_locked(inode, wb);
1567                 else
1568                         inode_cgwb_move_to_attached(inode, wb);
1569                 return;
1570         }
1571
1572         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1573                 /*
1574                  * We didn't write back all the pages.  nfs_writepages()
1575                  * sometimes bales out without doing anything.
1576                  */
1577                 if (wbc->nr_to_write <= 0) {
1578                         /* Slice used up. Queue for next turn. */
1579                         requeue_io(inode, wb);
1580                 } else {
1581                         /*
1582                          * Writeback blocked by something other than
1583                          * congestion. Delay the inode for some time to
1584                          * avoid spinning on the CPU (100% iowait)
1585                          * retrying writeback of the dirty page/inode
1586                          * that cannot be performed immediately.
1587                          */
1588                         redirty_tail_locked(inode, wb);
1589                 }
1590         } else if (inode->i_state & I_DIRTY) {
1591                 /*
1592                  * Filesystems can dirty the inode during writeback operations,
1593                  * such as delayed allocation during submission or metadata
1594                  * updates after data IO completion.
1595                  */
1596                 redirty_tail_locked(inode, wb);
1597         } else if (inode->i_state & I_DIRTY_TIME) {
1598                 inode->dirtied_when = jiffies;
1599                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1600                 inode->i_state &= ~I_SYNC_QUEUED;
1601         } else {
1602                 /* The inode is clean. Remove from writeback lists. */
1603                 inode_cgwb_move_to_attached(inode, wb);
1604         }
1605 }
1606
1607 /*
1608  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1609  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1610  *
1611  * This doesn't remove the inode from the writeback list it is on, except
1612  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1613  * expiration.  The caller is otherwise responsible for writeback list handling.
1614  *
1615  * The caller is also responsible for setting the I_SYNC flag beforehand and
1616  * calling inode_sync_complete() to clear it afterwards.
1617  */
1618 static int
1619 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1620 {
1621         struct address_space *mapping = inode->i_mapping;
1622         long nr_to_write = wbc->nr_to_write;
1623         unsigned dirty;
1624         int ret;
1625
1626         WARN_ON(!(inode->i_state & I_SYNC));
1627
1628         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1629
1630         ret = do_writepages(mapping, wbc);
1631
1632         /*
1633          * Make sure to wait on the data before writing out the metadata.
1634          * This is important for filesystems that modify metadata on data
1635          * I/O completion. We don't do it for sync(2) writeback because it has a
1636          * separate, external IO completion path and ->sync_fs for guaranteeing
1637          * inode metadata is written back correctly.
1638          */
1639         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1640                 int err = filemap_fdatawait(mapping);
1641                 if (ret == 0)
1642                         ret = err;
1643         }
1644
1645         /*
1646          * If the inode has dirty timestamps and we need to write them, call
1647          * mark_inode_dirty_sync() to notify the filesystem about it and to
1648          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1649          */
1650         if ((inode->i_state & I_DIRTY_TIME) &&
1651             (wbc->sync_mode == WB_SYNC_ALL ||
1652              time_after(jiffies, inode->dirtied_time_when +
1653                         dirtytime_expire_interval * HZ))) {
1654                 trace_writeback_lazytime(inode);
1655                 mark_inode_dirty_sync(inode);
1656         }
1657
1658         /*
1659          * Get and clear the dirty flags from i_state.  This needs to be done
1660          * after calling writepages because some filesystems may redirty the
1661          * inode during writepages due to delalloc.  It also needs to be done
1662          * after handling timestamp expiration, as that may dirty the inode too.
1663          */
1664         spin_lock(&inode->i_lock);
1665         dirty = inode->i_state & I_DIRTY;
1666         inode->i_state &= ~dirty;
1667
1668         /*
1669          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1670          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1671          * either they see the I_DIRTY bits cleared or we see the dirtied
1672          * inode.
1673          *
1674          * I_DIRTY_PAGES is always cleared together above even if @mapping
1675          * still has dirty pages.  The flag is reinstated after smp_mb() if
1676          * necessary.  This guarantees that either __mark_inode_dirty()
1677          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1678          */
1679         smp_mb();
1680
1681         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1682                 inode->i_state |= I_DIRTY_PAGES;
1683
1684         spin_unlock(&inode->i_lock);
1685
1686         /* Don't write the inode if only I_DIRTY_PAGES was set */
1687         if (dirty & ~I_DIRTY_PAGES) {
1688                 int err = write_inode(inode, wbc);
1689                 if (ret == 0)
1690                         ret = err;
1691         }
1692         trace_writeback_single_inode(inode, wbc, nr_to_write);
1693         return ret;
1694 }
1695
1696 /*
1697  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1698  * the regular batched writeback done by the flusher threads in
1699  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1700  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1701  *
1702  * To prevent the inode from going away, either the caller must have a reference
1703  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1704  */
1705 static int writeback_single_inode(struct inode *inode,
1706                                   struct writeback_control *wbc)
1707 {
1708         struct bdi_writeback *wb;
1709         int ret = 0;
1710
1711         spin_lock(&inode->i_lock);
1712         if (!atomic_read(&inode->i_count))
1713                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1714         else
1715                 WARN_ON(inode->i_state & I_WILL_FREE);
1716
1717         if (inode->i_state & I_SYNC) {
1718                 /*
1719                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1720                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1721                  * must wait for the existing writeback to complete, then do
1722                  * writeback again if there's anything left.
1723                  */
1724                 if (wbc->sync_mode != WB_SYNC_ALL)
1725                         goto out;
1726                 __inode_wait_for_writeback(inode);
1727         }
1728         WARN_ON(inode->i_state & I_SYNC);
1729         /*
1730          * If the inode is already fully clean, then there's nothing to do.
1731          *
1732          * For data-integrity syncs we also need to check whether any pages are
1733          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1734          * there are any such pages, we'll need to wait for them.
1735          */
1736         if (!(inode->i_state & I_DIRTY_ALL) &&
1737             (wbc->sync_mode != WB_SYNC_ALL ||
1738              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1739                 goto out;
1740         inode->i_state |= I_SYNC;
1741         wbc_attach_and_unlock_inode(wbc, inode);
1742
1743         ret = __writeback_single_inode(inode, wbc);
1744
1745         wbc_detach_inode(wbc);
1746
1747         wb = inode_to_wb_and_lock_list(inode);
1748         spin_lock(&inode->i_lock);
1749         /*
1750          * If the inode is freeing, its i_io_list shoudn't be updated
1751          * as it can be finally deleted at this moment.
1752          */
1753         if (!(inode->i_state & I_FREEING)) {
1754                 /*
1755                  * If the inode is now fully clean, then it can be safely
1756                  * removed from its writeback list (if any). Otherwise the
1757                  * flusher threads are responsible for the writeback lists.
1758                  */
1759                 if (!(inode->i_state & I_DIRTY_ALL))
1760                         inode_cgwb_move_to_attached(inode, wb);
1761                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1762                         if ((inode->i_state & I_DIRTY))
1763                                 redirty_tail_locked(inode, wb);
1764                         else if (inode->i_state & I_DIRTY_TIME) {
1765                                 inode->dirtied_when = jiffies;
1766                                 inode_io_list_move_locked(inode,
1767                                                           wb,
1768                                                           &wb->b_dirty_time);
1769                         }
1770                 }
1771         }
1772
1773         spin_unlock(&wb->list_lock);
1774         inode_sync_complete(inode);
1775 out:
1776         spin_unlock(&inode->i_lock);
1777         return ret;
1778 }
1779
1780 static long writeback_chunk_size(struct bdi_writeback *wb,
1781                                  struct wb_writeback_work *work)
1782 {
1783         long pages;
1784
1785         /*
1786          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1787          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1788          * here avoids calling into writeback_inodes_wb() more than once.
1789          *
1790          * The intended call sequence for WB_SYNC_ALL writeback is:
1791          *
1792          *      wb_writeback()
1793          *          writeback_sb_inodes()       <== called only once
1794          *              write_cache_pages()     <== called once for each inode
1795          *                   (quickly) tag currently dirty pages
1796          *                   (maybe slowly) sync all tagged pages
1797          */
1798         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1799                 pages = LONG_MAX;
1800         else {
1801                 pages = min(wb->avg_write_bandwidth / 2,
1802                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1803                 pages = min(pages, work->nr_pages);
1804                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1805                                    MIN_WRITEBACK_PAGES);
1806         }
1807
1808         return pages;
1809 }
1810
1811 /*
1812  * Write a portion of b_io inodes which belong to @sb.
1813  *
1814  * Return the number of pages and/or inodes written.
1815  *
1816  * NOTE! This is called with wb->list_lock held, and will
1817  * unlock and relock that for each inode it ends up doing
1818  * IO for.
1819  */
1820 static long writeback_sb_inodes(struct super_block *sb,
1821                                 struct bdi_writeback *wb,
1822                                 struct wb_writeback_work *work)
1823 {
1824         struct writeback_control wbc = {
1825                 .sync_mode              = work->sync_mode,
1826                 .tagged_writepages      = work->tagged_writepages,
1827                 .for_kupdate            = work->for_kupdate,
1828                 .for_background         = work->for_background,
1829                 .for_sync               = work->for_sync,
1830                 .range_cyclic           = work->range_cyclic,
1831                 .range_start            = 0,
1832                 .range_end              = LLONG_MAX,
1833         };
1834         unsigned long start_time = jiffies;
1835         long write_chunk;
1836         long total_wrote = 0;  /* count both pages and inodes */
1837
1838         while (!list_empty(&wb->b_io)) {
1839                 struct inode *inode = wb_inode(wb->b_io.prev);
1840                 struct bdi_writeback *tmp_wb;
1841                 long wrote;
1842
1843                 if (inode->i_sb != sb) {
1844                         if (work->sb) {
1845                                 /*
1846                                  * We only want to write back data for this
1847                                  * superblock, move all inodes not belonging
1848                                  * to it back onto the dirty list.
1849                                  */
1850                                 redirty_tail(inode, wb);
1851                                 continue;
1852                         }
1853
1854                         /*
1855                          * The inode belongs to a different superblock.
1856                          * Bounce back to the caller to unpin this and
1857                          * pin the next superblock.
1858                          */
1859                         break;
1860                 }
1861
1862                 /*
1863                  * Don't bother with new inodes or inodes being freed, first
1864                  * kind does not need periodic writeout yet, and for the latter
1865                  * kind writeout is handled by the freer.
1866                  */
1867                 spin_lock(&inode->i_lock);
1868                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1869                         redirty_tail_locked(inode, wb);
1870                         spin_unlock(&inode->i_lock);
1871                         continue;
1872                 }
1873                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1874                         /*
1875                          * If this inode is locked for writeback and we are not
1876                          * doing writeback-for-data-integrity, move it to
1877                          * b_more_io so that writeback can proceed with the
1878                          * other inodes on s_io.
1879                          *
1880                          * We'll have another go at writing back this inode
1881                          * when we completed a full scan of b_io.
1882                          */
1883                         requeue_io(inode, wb);
1884                         spin_unlock(&inode->i_lock);
1885                         trace_writeback_sb_inodes_requeue(inode);
1886                         continue;
1887                 }
1888                 spin_unlock(&wb->list_lock);
1889
1890                 /*
1891                  * We already requeued the inode if it had I_SYNC set and we
1892                  * are doing WB_SYNC_NONE writeback. So this catches only the
1893                  * WB_SYNC_ALL case.
1894                  */
1895                 if (inode->i_state & I_SYNC) {
1896                         /* Wait for I_SYNC. This function drops i_lock... */
1897                         inode_sleep_on_writeback(inode);
1898                         /* Inode may be gone, start again */
1899                         spin_lock(&wb->list_lock);
1900                         continue;
1901                 }
1902                 inode->i_state |= I_SYNC;
1903                 wbc_attach_and_unlock_inode(&wbc, inode);
1904
1905                 write_chunk = writeback_chunk_size(wb, work);
1906                 wbc.nr_to_write = write_chunk;
1907                 wbc.pages_skipped = 0;
1908
1909                 /*
1910                  * We use I_SYNC to pin the inode in memory. While it is set
1911                  * evict_inode() will wait so the inode cannot be freed.
1912                  */
1913                 __writeback_single_inode(inode, &wbc);
1914
1915                 wbc_detach_inode(&wbc);
1916                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1917                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1918                 wrote = wrote < 0 ? 0 : wrote;
1919                 total_wrote += wrote;
1920
1921                 if (need_resched()) {
1922                         /*
1923                          * We're trying to balance between building up a nice
1924                          * long list of IOs to improve our merge rate, and
1925                          * getting those IOs out quickly for anyone throttling
1926                          * in balance_dirty_pages().  cond_resched() doesn't
1927                          * unplug, so get our IOs out the door before we
1928                          * give up the CPU.
1929                          */
1930                         blk_flush_plug(current);
1931                         cond_resched();
1932                 }
1933
1934                 /*
1935                  * Requeue @inode if still dirty.  Be careful as @inode may
1936                  * have been switched to another wb in the meantime.
1937                  */
1938                 tmp_wb = inode_to_wb_and_lock_list(inode);
1939                 spin_lock(&inode->i_lock);
1940                 if (!(inode->i_state & I_DIRTY_ALL))
1941                         total_wrote++;
1942                 requeue_inode(inode, tmp_wb, &wbc);
1943                 inode_sync_complete(inode);
1944                 spin_unlock(&inode->i_lock);
1945
1946                 if (unlikely(tmp_wb != wb)) {
1947                         spin_unlock(&tmp_wb->list_lock);
1948                         spin_lock(&wb->list_lock);
1949                 }
1950
1951                 /*
1952                  * bail out to wb_writeback() often enough to check
1953                  * background threshold and other termination conditions.
1954                  */
1955                 if (total_wrote) {
1956                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1957                                 break;
1958                         if (work->nr_pages <= 0)
1959                                 break;
1960                 }
1961         }
1962         return total_wrote;
1963 }
1964
1965 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1966                                   struct wb_writeback_work *work)
1967 {
1968         unsigned long start_time = jiffies;
1969         long wrote = 0;
1970
1971         while (!list_empty(&wb->b_io)) {
1972                 struct inode *inode = wb_inode(wb->b_io.prev);
1973                 struct super_block *sb = inode->i_sb;
1974
1975                 if (!trylock_super(sb)) {
1976                         /*
1977                          * trylock_super() may fail consistently due to
1978                          * s_umount being grabbed by someone else. Don't use
1979                          * requeue_io() to avoid busy retrying the inode/sb.
1980                          */
1981                         redirty_tail(inode, wb);
1982                         continue;
1983                 }
1984                 wrote += writeback_sb_inodes(sb, wb, work);
1985                 up_read(&sb->s_umount);
1986
1987                 /* refer to the same tests at the end of writeback_sb_inodes */
1988                 if (wrote) {
1989                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1990                                 break;
1991                         if (work->nr_pages <= 0)
1992                                 break;
1993                 }
1994         }
1995         /* Leave any unwritten inodes on b_io */
1996         return wrote;
1997 }
1998
1999 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2000                                 enum wb_reason reason)
2001 {
2002         struct wb_writeback_work work = {
2003                 .nr_pages       = nr_pages,
2004                 .sync_mode      = WB_SYNC_NONE,
2005                 .range_cyclic   = 1,
2006                 .reason         = reason,
2007         };
2008         struct blk_plug plug;
2009
2010         blk_start_plug(&plug);
2011         spin_lock(&wb->list_lock);
2012         if (list_empty(&wb->b_io))
2013                 queue_io(wb, &work, jiffies);
2014         __writeback_inodes_wb(wb, &work);
2015         spin_unlock(&wb->list_lock);
2016         blk_finish_plug(&plug);
2017
2018         return nr_pages - work.nr_pages;
2019 }
2020
2021 /*
2022  * Explicit flushing or periodic writeback of "old" data.
2023  *
2024  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2025  * dirtying-time in the inode's address_space.  So this periodic writeback code
2026  * just walks the superblock inode list, writing back any inodes which are
2027  * older than a specific point in time.
2028  *
2029  * Try to run once per dirty_writeback_interval.  But if a writeback event
2030  * takes longer than a dirty_writeback_interval interval, then leave a
2031  * one-second gap.
2032  *
2033  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2034  * all dirty pages if they are all attached to "old" mappings.
2035  */
2036 static long wb_writeback(struct bdi_writeback *wb,
2037                          struct wb_writeback_work *work)
2038 {
2039         long nr_pages = work->nr_pages;
2040         unsigned long dirtied_before = jiffies;
2041         struct inode *inode;
2042         long progress;
2043         struct blk_plug plug;
2044
2045         blk_start_plug(&plug);
2046         spin_lock(&wb->list_lock);
2047         for (;;) {
2048                 /*
2049                  * Stop writeback when nr_pages has been consumed
2050                  */
2051                 if (work->nr_pages <= 0)
2052                         break;
2053
2054                 /*
2055                  * Background writeout and kupdate-style writeback may
2056                  * run forever. Stop them if there is other work to do
2057                  * so that e.g. sync can proceed. They'll be restarted
2058                  * after the other works are all done.
2059                  */
2060                 if ((work->for_background || work->for_kupdate) &&
2061                     !list_empty(&wb->work_list))
2062                         break;
2063
2064                 /*
2065                  * For background writeout, stop when we are below the
2066                  * background dirty threshold
2067                  */
2068                 if (work->for_background && !wb_over_bg_thresh(wb))
2069                         break;
2070
2071                 /*
2072                  * Kupdate and background works are special and we want to
2073                  * include all inodes that need writing. Livelock avoidance is
2074                  * handled by these works yielding to any other work so we are
2075                  * safe.
2076                  */
2077                 if (work->for_kupdate) {
2078                         dirtied_before = jiffies -
2079                                 msecs_to_jiffies(dirty_expire_interval * 10);
2080                 } else if (work->for_background)
2081                         dirtied_before = jiffies;
2082
2083                 trace_writeback_start(wb, work);
2084                 if (list_empty(&wb->b_io))
2085                         queue_io(wb, work, dirtied_before);
2086                 if (work->sb)
2087                         progress = writeback_sb_inodes(work->sb, wb, work);
2088                 else
2089                         progress = __writeback_inodes_wb(wb, work);
2090                 trace_writeback_written(wb, work);
2091
2092                 /*
2093                  * Did we write something? Try for more
2094                  *
2095                  * Dirty inodes are moved to b_io for writeback in batches.
2096                  * The completion of the current batch does not necessarily
2097                  * mean the overall work is done. So we keep looping as long
2098                  * as made some progress on cleaning pages or inodes.
2099                  */
2100                 if (progress)
2101                         continue;
2102                 /*
2103                  * No more inodes for IO, bail
2104                  */
2105                 if (list_empty(&wb->b_more_io))
2106                         break;
2107                 /*
2108                  * Nothing written. Wait for some inode to
2109                  * become available for writeback. Otherwise
2110                  * we'll just busyloop.
2111                  */
2112                 trace_writeback_wait(wb, work);
2113                 inode = wb_inode(wb->b_more_io.prev);
2114                 spin_lock(&inode->i_lock);
2115                 spin_unlock(&wb->list_lock);
2116                 /* This function drops i_lock... */
2117                 inode_sleep_on_writeback(inode);
2118                 spin_lock(&wb->list_lock);
2119         }
2120         spin_unlock(&wb->list_lock);
2121         blk_finish_plug(&plug);
2122
2123         return nr_pages - work->nr_pages;
2124 }
2125
2126 /*
2127  * Return the next wb_writeback_work struct that hasn't been processed yet.
2128  */
2129 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2130 {
2131         struct wb_writeback_work *work = NULL;
2132
2133         spin_lock_irq(&wb->work_lock);
2134         if (!list_empty(&wb->work_list)) {
2135                 work = list_entry(wb->work_list.next,
2136                                   struct wb_writeback_work, list);
2137                 list_del_init(&work->list);
2138         }
2139         spin_unlock_irq(&wb->work_lock);
2140         return work;
2141 }
2142
2143 static long wb_check_background_flush(struct bdi_writeback *wb)
2144 {
2145         if (wb_over_bg_thresh(wb)) {
2146
2147                 struct wb_writeback_work work = {
2148                         .nr_pages       = LONG_MAX,
2149                         .sync_mode      = WB_SYNC_NONE,
2150                         .for_background = 1,
2151                         .range_cyclic   = 1,
2152                         .reason         = WB_REASON_BACKGROUND,
2153                 };
2154
2155                 return wb_writeback(wb, &work);
2156         }
2157
2158         return 0;
2159 }
2160
2161 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2162 {
2163         unsigned long expired;
2164         long nr_pages;
2165
2166         /*
2167          * When set to zero, disable periodic writeback
2168          */
2169         if (!dirty_writeback_interval)
2170                 return 0;
2171
2172         expired = wb->last_old_flush +
2173                         msecs_to_jiffies(dirty_writeback_interval * 10);
2174         if (time_before(jiffies, expired))
2175                 return 0;
2176
2177         wb->last_old_flush = jiffies;
2178         nr_pages = get_nr_dirty_pages();
2179
2180         if (nr_pages) {
2181                 struct wb_writeback_work work = {
2182                         .nr_pages       = nr_pages,
2183                         .sync_mode      = WB_SYNC_NONE,
2184                         .for_kupdate    = 1,
2185                         .range_cyclic   = 1,
2186                         .reason         = WB_REASON_PERIODIC,
2187                 };
2188
2189                 return wb_writeback(wb, &work);
2190         }
2191
2192         return 0;
2193 }
2194
2195 static long wb_check_start_all(struct bdi_writeback *wb)
2196 {
2197         long nr_pages;
2198
2199         if (!test_bit(WB_start_all, &wb->state))
2200                 return 0;
2201
2202         nr_pages = get_nr_dirty_pages();
2203         if (nr_pages) {
2204                 struct wb_writeback_work work = {
2205                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2206                         .sync_mode      = WB_SYNC_NONE,
2207                         .range_cyclic   = 1,
2208                         .reason         = wb->start_all_reason,
2209                 };
2210
2211                 nr_pages = wb_writeback(wb, &work);
2212         }
2213
2214         clear_bit(WB_start_all, &wb->state);
2215         return nr_pages;
2216 }
2217
2218
2219 /*
2220  * Retrieve work items and do the writeback they describe
2221  */
2222 static long wb_do_writeback(struct bdi_writeback *wb)
2223 {
2224         struct wb_writeback_work *work;
2225         long wrote = 0;
2226
2227         set_bit(WB_writeback_running, &wb->state);
2228         while ((work = get_next_work_item(wb)) != NULL) {
2229                 trace_writeback_exec(wb, work);
2230                 wrote += wb_writeback(wb, work);
2231                 finish_writeback_work(wb, work);
2232         }
2233
2234         /*
2235          * Check for a flush-everything request
2236          */
2237         wrote += wb_check_start_all(wb);
2238
2239         /*
2240          * Check for periodic writeback, kupdated() style
2241          */
2242         wrote += wb_check_old_data_flush(wb);
2243         wrote += wb_check_background_flush(wb);
2244         clear_bit(WB_writeback_running, &wb->state);
2245
2246         return wrote;
2247 }
2248
2249 /*
2250  * Handle writeback of dirty data for the device backed by this bdi. Also
2251  * reschedules periodically and does kupdated style flushing.
2252  */
2253 void wb_workfn(struct work_struct *work)
2254 {
2255         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2256                                                 struct bdi_writeback, dwork);
2257         long pages_written;
2258
2259         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2260         current->flags |= PF_SWAPWRITE;
2261
2262         if (likely(!current_is_workqueue_rescuer() ||
2263                    !test_bit(WB_registered, &wb->state))) {
2264                 /*
2265                  * The normal path.  Keep writing back @wb until its
2266                  * work_list is empty.  Note that this path is also taken
2267                  * if @wb is shutting down even when we're running off the
2268                  * rescuer as work_list needs to be drained.
2269                  */
2270                 do {
2271                         pages_written = wb_do_writeback(wb);
2272                         trace_writeback_pages_written(pages_written);
2273                 } while (!list_empty(&wb->work_list));
2274         } else {
2275                 /*
2276                  * bdi_wq can't get enough workers and we're running off
2277                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2278                  * enough for efficient IO.
2279                  */
2280                 pages_written = writeback_inodes_wb(wb, 1024,
2281                                                     WB_REASON_FORKER_THREAD);
2282                 trace_writeback_pages_written(pages_written);
2283         }
2284
2285         if (!list_empty(&wb->work_list))
2286                 wb_wakeup(wb);
2287         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2288                 wb_wakeup_delayed(wb);
2289
2290         current->flags &= ~PF_SWAPWRITE;
2291 }
2292
2293 /*
2294  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2295  * write back the whole world.
2296  */
2297 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2298                                          enum wb_reason reason)
2299 {
2300         struct bdi_writeback *wb;
2301
2302         if (!bdi_has_dirty_io(bdi))
2303                 return;
2304
2305         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2306                 wb_start_writeback(wb, reason);
2307 }
2308
2309 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2310                                 enum wb_reason reason)
2311 {
2312         rcu_read_lock();
2313         __wakeup_flusher_threads_bdi(bdi, reason);
2314         rcu_read_unlock();
2315 }
2316
2317 /*
2318  * Wakeup the flusher threads to start writeback of all currently dirty pages
2319  */
2320 void wakeup_flusher_threads(enum wb_reason reason)
2321 {
2322         struct backing_dev_info *bdi;
2323
2324         /*
2325          * If we are expecting writeback progress we must submit plugged IO.
2326          */
2327         if (blk_needs_flush_plug(current))
2328                 blk_schedule_flush_plug(current);
2329
2330         rcu_read_lock();
2331         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2332                 __wakeup_flusher_threads_bdi(bdi, reason);
2333         rcu_read_unlock();
2334 }
2335
2336 /*
2337  * Wake up bdi's periodically to make sure dirtytime inodes gets
2338  * written back periodically.  We deliberately do *not* check the
2339  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2340  * kernel to be constantly waking up once there are any dirtytime
2341  * inodes on the system.  So instead we define a separate delayed work
2342  * function which gets called much more rarely.  (By default, only
2343  * once every 12 hours.)
2344  *
2345  * If there is any other write activity going on in the file system,
2346  * this function won't be necessary.  But if the only thing that has
2347  * happened on the file system is a dirtytime inode caused by an atime
2348  * update, we need this infrastructure below to make sure that inode
2349  * eventually gets pushed out to disk.
2350  */
2351 static void wakeup_dirtytime_writeback(struct work_struct *w);
2352 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2353
2354 static void wakeup_dirtytime_writeback(struct work_struct *w)
2355 {
2356         struct backing_dev_info *bdi;
2357
2358         rcu_read_lock();
2359         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2360                 struct bdi_writeback *wb;
2361
2362                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2363                         if (!list_empty(&wb->b_dirty_time))
2364                                 wb_wakeup(wb);
2365         }
2366         rcu_read_unlock();
2367         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2368 }
2369
2370 static int __init start_dirtytime_writeback(void)
2371 {
2372         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2373         return 0;
2374 }
2375 __initcall(start_dirtytime_writeback);
2376
2377 int dirtytime_interval_handler(struct ctl_table *table, int write,
2378                                void *buffer, size_t *lenp, loff_t *ppos)
2379 {
2380         int ret;
2381
2382         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2383         if (ret == 0 && write)
2384                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2385         return ret;
2386 }
2387
2388 /**
2389  * __mark_inode_dirty - internal function to mark an inode dirty
2390  *
2391  * @inode: inode to mark
2392  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2393  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2394  *         with I_DIRTY_PAGES.
2395  *
2396  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2397  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2398  *
2399  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2400  * instead of calling this directly.
2401  *
2402  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2403  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2404  * even if they are later hashed, as they will have been marked dirty already.
2405  *
2406  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2407  *
2408  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2409  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2410  * the kernel-internal blockdev inode represents the dirtying time of the
2411  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2412  * page->mapping->host, so the page-dirtying time is recorded in the internal
2413  * blockdev inode.
2414  */
2415 void __mark_inode_dirty(struct inode *inode, int flags)
2416 {
2417         struct super_block *sb = inode->i_sb;
2418         int dirtytime = 0;
2419         struct bdi_writeback *wb = NULL;
2420
2421         trace_writeback_mark_inode_dirty(inode, flags);
2422
2423         if (flags & I_DIRTY_INODE) {
2424                 /*
2425                  * Inode timestamp update will piggback on this dirtying.
2426                  * We tell ->dirty_inode callback that timestamps need to
2427                  * be updated by setting I_DIRTY_TIME in flags.
2428                  */
2429                 if (inode->i_state & I_DIRTY_TIME) {
2430                         spin_lock(&inode->i_lock);
2431                         if (inode->i_state & I_DIRTY_TIME) {
2432                                 inode->i_state &= ~I_DIRTY_TIME;
2433                                 flags |= I_DIRTY_TIME;
2434                         }
2435                         spin_unlock(&inode->i_lock);
2436                 }
2437
2438                 /*
2439                  * Notify the filesystem about the inode being dirtied, so that
2440                  * (if needed) it can update on-disk fields and journal the
2441                  * inode.  This is only needed when the inode itself is being
2442                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2443                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2444                  */
2445                 trace_writeback_dirty_inode_start(inode, flags);
2446                 if (sb->s_op->dirty_inode)
2447                         sb->s_op->dirty_inode(inode,
2448                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2449                 trace_writeback_dirty_inode(inode, flags);
2450
2451                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2452                 flags &= ~I_DIRTY_TIME;
2453         } else {
2454                 /*
2455                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2456                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2457                  * in one call to __mark_inode_dirty().)
2458                  */
2459                 dirtytime = flags & I_DIRTY_TIME;
2460                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2461         }
2462
2463         /*
2464          * Paired with smp_mb() in __writeback_single_inode() for the
2465          * following lockless i_state test.  See there for details.
2466          */
2467         smp_mb();
2468
2469         if ((inode->i_state & flags) == flags)
2470                 return;
2471
2472         spin_lock(&inode->i_lock);
2473         if ((inode->i_state & flags) != flags) {
2474                 const int was_dirty = inode->i_state & I_DIRTY;
2475
2476                 inode_attach_wb(inode, NULL);
2477
2478                 inode->i_state |= flags;
2479
2480                 /*
2481                  * Grab inode's wb early because it requires dropping i_lock and we
2482                  * need to make sure following checks happen atomically with dirty
2483                  * list handling so that we don't move inodes under flush worker's
2484                  * hands.
2485                  */
2486                 if (!was_dirty) {
2487                         wb = locked_inode_to_wb_and_lock_list(inode);
2488                         spin_lock(&inode->i_lock);
2489                 }
2490
2491                 /*
2492                  * If the inode is queued for writeback by flush worker, just
2493                  * update its dirty state. Once the flush worker is done with
2494                  * the inode it will place it on the appropriate superblock
2495                  * list, based upon its state.
2496                  */
2497                 if (inode->i_state & I_SYNC_QUEUED)
2498                         goto out_unlock;
2499
2500                 /*
2501                  * Only add valid (hashed) inodes to the superblock's
2502                  * dirty list.  Add blockdev inodes as well.
2503                  */
2504                 if (!S_ISBLK(inode->i_mode)) {
2505                         if (inode_unhashed(inode))
2506                                 goto out_unlock;
2507                 }
2508                 if (inode->i_state & I_FREEING)
2509                         goto out_unlock;
2510
2511                 /*
2512                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2513                  * reposition it (that would break b_dirty time-ordering).
2514                  */
2515                 if (!was_dirty) {
2516                         struct list_head *dirty_list;
2517                         bool wakeup_bdi = false;
2518
2519                         inode->dirtied_when = jiffies;
2520                         if (dirtytime)
2521                                 inode->dirtied_time_when = jiffies;
2522
2523                         if (inode->i_state & I_DIRTY)
2524                                 dirty_list = &wb->b_dirty;
2525                         else
2526                                 dirty_list = &wb->b_dirty_time;
2527
2528                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2529                                                                dirty_list);
2530
2531                         spin_unlock(&wb->list_lock);
2532                         spin_unlock(&inode->i_lock);
2533                         trace_writeback_dirty_inode_enqueue(inode);
2534
2535                         /*
2536                          * If this is the first dirty inode for this bdi,
2537                          * we have to wake-up the corresponding bdi thread
2538                          * to make sure background write-back happens
2539                          * later.
2540                          */
2541                         if (wakeup_bdi &&
2542                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2543                                 wb_wakeup_delayed(wb);
2544                         return;
2545                 }
2546         }
2547 out_unlock:
2548         if (wb)
2549                 spin_unlock(&wb->list_lock);
2550         spin_unlock(&inode->i_lock);
2551 }
2552 EXPORT_SYMBOL(__mark_inode_dirty);
2553
2554 /*
2555  * The @s_sync_lock is used to serialise concurrent sync operations
2556  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2557  * Concurrent callers will block on the s_sync_lock rather than doing contending
2558  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2559  * has been issued up to the time this function is enter is guaranteed to be
2560  * completed by the time we have gained the lock and waited for all IO that is
2561  * in progress regardless of the order callers are granted the lock.
2562  */
2563 static void wait_sb_inodes(struct super_block *sb)
2564 {
2565         LIST_HEAD(sync_list);
2566
2567         /*
2568          * We need to be protected against the filesystem going from
2569          * r/o to r/w or vice versa.
2570          */
2571         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2572
2573         mutex_lock(&sb->s_sync_lock);
2574
2575         /*
2576          * Splice the writeback list onto a temporary list to avoid waiting on
2577          * inodes that have started writeback after this point.
2578          *
2579          * Use rcu_read_lock() to keep the inodes around until we have a
2580          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2581          * the local list because inodes can be dropped from either by writeback
2582          * completion.
2583          */
2584         rcu_read_lock();
2585         spin_lock_irq(&sb->s_inode_wblist_lock);
2586         list_splice_init(&sb->s_inodes_wb, &sync_list);
2587
2588         /*
2589          * Data integrity sync. Must wait for all pages under writeback, because
2590          * there may have been pages dirtied before our sync call, but which had
2591          * writeout started before we write it out.  In which case, the inode
2592          * may not be on the dirty list, but we still have to wait for that
2593          * writeout.
2594          */
2595         while (!list_empty(&sync_list)) {
2596                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2597                                                        i_wb_list);
2598                 struct address_space *mapping = inode->i_mapping;
2599
2600                 /*
2601                  * Move each inode back to the wb list before we drop the lock
2602                  * to preserve consistency between i_wb_list and the mapping
2603                  * writeback tag. Writeback completion is responsible to remove
2604                  * the inode from either list once the writeback tag is cleared.
2605                  */
2606                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2607
2608                 /*
2609                  * The mapping can appear untagged while still on-list since we
2610                  * do not have the mapping lock. Skip it here, wb completion
2611                  * will remove it.
2612                  */
2613                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2614                         continue;
2615
2616                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2617
2618                 spin_lock(&inode->i_lock);
2619                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2620                         spin_unlock(&inode->i_lock);
2621
2622                         spin_lock_irq(&sb->s_inode_wblist_lock);
2623                         continue;
2624                 }
2625                 __iget(inode);
2626                 spin_unlock(&inode->i_lock);
2627                 rcu_read_unlock();
2628
2629                 /*
2630                  * We keep the error status of individual mapping so that
2631                  * applications can catch the writeback error using fsync(2).
2632                  * See filemap_fdatawait_keep_errors() for details.
2633                  */
2634                 filemap_fdatawait_keep_errors(mapping);
2635
2636                 cond_resched();
2637
2638                 iput(inode);
2639
2640                 rcu_read_lock();
2641                 spin_lock_irq(&sb->s_inode_wblist_lock);
2642         }
2643         spin_unlock_irq(&sb->s_inode_wblist_lock);
2644         rcu_read_unlock();
2645         mutex_unlock(&sb->s_sync_lock);
2646 }
2647
2648 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2649                                      enum wb_reason reason, bool skip_if_busy)
2650 {
2651         struct backing_dev_info *bdi = sb->s_bdi;
2652         DEFINE_WB_COMPLETION(done, bdi);
2653         struct wb_writeback_work work = {
2654                 .sb                     = sb,
2655                 .sync_mode              = WB_SYNC_NONE,
2656                 .tagged_writepages      = 1,
2657                 .done                   = &done,
2658                 .nr_pages               = nr,
2659                 .reason                 = reason,
2660         };
2661
2662         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2663                 return;
2664         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2665
2666         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2667         wb_wait_for_completion(&done);
2668 }
2669
2670 /**
2671  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2672  * @sb: the superblock
2673  * @nr: the number of pages to write
2674  * @reason: reason why some writeback work initiated
2675  *
2676  * Start writeback on some inodes on this super_block. No guarantees are made
2677  * on how many (if any) will be written, and this function does not wait
2678  * for IO completion of submitted IO.
2679  */
2680 void writeback_inodes_sb_nr(struct super_block *sb,
2681                             unsigned long nr,
2682                             enum wb_reason reason)
2683 {
2684         __writeback_inodes_sb_nr(sb, nr, reason, false);
2685 }
2686 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2687
2688 /**
2689  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2690  * @sb: the superblock
2691  * @reason: reason why some writeback work was initiated
2692  *
2693  * Start writeback on some inodes on this super_block. No guarantees are made
2694  * on how many (if any) will be written, and this function does not wait
2695  * for IO completion of submitted IO.
2696  */
2697 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2698 {
2699         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2700 }
2701 EXPORT_SYMBOL(writeback_inodes_sb);
2702
2703 /**
2704  * try_to_writeback_inodes_sb - try to start writeback if none underway
2705  * @sb: the superblock
2706  * @reason: reason why some writeback work was initiated
2707  *
2708  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2709  */
2710 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2711 {
2712         if (!down_read_trylock(&sb->s_umount))
2713                 return;
2714
2715         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2716         up_read(&sb->s_umount);
2717 }
2718 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2719
2720 /**
2721  * sync_inodes_sb       -       sync sb inode pages
2722  * @sb: the superblock
2723  *
2724  * This function writes and waits on any dirty inode belonging to this
2725  * super_block.
2726  */
2727 void sync_inodes_sb(struct super_block *sb)
2728 {
2729         struct backing_dev_info *bdi = sb->s_bdi;
2730         DEFINE_WB_COMPLETION(done, bdi);
2731         struct wb_writeback_work work = {
2732                 .sb             = sb,
2733                 .sync_mode      = WB_SYNC_ALL,
2734                 .nr_pages       = LONG_MAX,
2735                 .range_cyclic   = 0,
2736                 .done           = &done,
2737                 .reason         = WB_REASON_SYNC,
2738                 .for_sync       = 1,
2739         };
2740
2741         /*
2742          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2743          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2744          * bdi_has_dirty() need to be written out too.
2745          */
2746         if (bdi == &noop_backing_dev_info)
2747                 return;
2748         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2749
2750         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2751         bdi_down_write_wb_switch_rwsem(bdi);
2752         bdi_split_work_to_wbs(bdi, &work, false);
2753         wb_wait_for_completion(&done);
2754         bdi_up_write_wb_switch_rwsem(bdi);
2755
2756         wait_sb_inodes(sb);
2757 }
2758 EXPORT_SYMBOL(sync_inodes_sb);
2759
2760 /**
2761  * write_inode_now      -       write an inode to disk
2762  * @inode: inode to write to disk
2763  * @sync: whether the write should be synchronous or not
2764  *
2765  * This function commits an inode to disk immediately if it is dirty. This is
2766  * primarily needed by knfsd.
2767  *
2768  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2769  */
2770 int write_inode_now(struct inode *inode, int sync)
2771 {
2772         struct writeback_control wbc = {
2773                 .nr_to_write = LONG_MAX,
2774                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2775                 .range_start = 0,
2776                 .range_end = LLONG_MAX,
2777         };
2778
2779         if (!mapping_can_writeback(inode->i_mapping))
2780                 wbc.nr_to_write = 0;
2781
2782         might_sleep();
2783         return writeback_single_inode(inode, &wbc);
2784 }
2785 EXPORT_SYMBOL(write_inode_now);
2786
2787 /**
2788  * sync_inode_metadata - write an inode to disk
2789  * @inode: the inode to sync
2790  * @wait: wait for I/O to complete.
2791  *
2792  * Write an inode to disk and adjust its dirty state after completion.
2793  *
2794  * Note: only writes the actual inode, no associated data or other metadata.
2795  */
2796 int sync_inode_metadata(struct inode *inode, int wait)
2797 {
2798         struct writeback_control wbc = {
2799                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2800                 .nr_to_write = 0, /* metadata-only */
2801         };
2802
2803         return writeback_single_inode(inode, &wbc);
2804 }
2805 EXPORT_SYMBOL(sync_inode_metadata);