GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
142 static void inode_io_list_del_locked(struct inode *inode,
143                                      struct bdi_writeback *wb)
144 {
145         assert_spin_locked(&wb->list_lock);
146         assert_spin_locked(&inode->i_lock);
147
148         inode->i_state &= ~I_SYNC_QUEUED;
149         list_del_init(&inode->i_io_list);
150         wb_io_lists_depopulated(wb);
151 }
152
153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155         spin_lock_bh(&wb->work_lock);
156         if (test_bit(WB_registered, &wb->state))
157                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
158         spin_unlock_bh(&wb->work_lock);
159 }
160
161 static void finish_writeback_work(struct bdi_writeback *wb,
162                                   struct wb_writeback_work *work)
163 {
164         struct wb_completion *done = work->done;
165
166         if (work->auto_free)
167                 kfree(work);
168         if (done) {
169                 wait_queue_head_t *waitq = done->waitq;
170
171                 /* @done can't be accessed after the following dec */
172                 if (atomic_dec_and_test(&done->cnt))
173                         wake_up_all(waitq);
174         }
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178                           struct wb_writeback_work *work)
179 {
180         trace_writeback_queue(wb, work);
181
182         if (work->done)
183                 atomic_inc(&work->done->cnt);
184
185         spin_lock_bh(&wb->work_lock);
186
187         if (test_bit(WB_registered, &wb->state)) {
188                 list_add_tail(&work->list, &wb->work_list);
189                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
190         } else
191                 finish_writeback_work(wb, work);
192
193         spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208         atomic_dec(&done->cnt);         /* put down the initial count */
209         wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211
212 #ifdef CONFIG_CGROUP_WRITEBACK
213
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
237
238 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240                                         /* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
242                                         /* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
244                                         /* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
246
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249
250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252         struct backing_dev_info *bdi = inode_to_bdi(inode);
253         struct bdi_writeback *wb = NULL;
254
255         if (inode_cgwb_enabled(inode)) {
256                 struct cgroup_subsys_state *memcg_css;
257
258                 if (page) {
259                         memcg_css = mem_cgroup_css_from_page(page);
260                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261                 } else {
262                         /* must pin memcg_css, see wb_get_create() */
263                         memcg_css = task_get_css(current, memory_cgrp_id);
264                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265                         css_put(memcg_css);
266                 }
267         }
268
269         if (!wb)
270                 wb = &bdi->wb;
271
272         /*
273          * There may be multiple instances of this function racing to
274          * update the same inode.  Use cmpxchg() to tell the winner.
275          */
276         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277                 wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291         __releases(&inode->i_lock)
292         __acquires(&wb->list_lock)
293 {
294         while (true) {
295                 struct bdi_writeback *wb = inode_to_wb(inode);
296
297                 /*
298                  * inode_to_wb() association is protected by both
299                  * @inode->i_lock and @wb->list_lock but list_lock nests
300                  * outside i_lock.  Drop i_lock and verify that the
301                  * association hasn't changed after acquiring list_lock.
302                  */
303                 wb_get(wb);
304                 spin_unlock(&inode->i_lock);
305                 spin_lock(&wb->list_lock);
306
307                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
308                 if (likely(wb == inode->i_wb)) {
309                         wb_put(wb);     /* @inode already has ref */
310                         return wb;
311                 }
312
313                 spin_unlock(&wb->list_lock);
314                 wb_put(wb);
315                 cpu_relax();
316                 spin_lock(&inode->i_lock);
317         }
318 }
319
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328         __acquires(&wb->list_lock)
329 {
330         spin_lock(&inode->i_lock);
331         return locked_inode_to_wb_and_lock_list(inode);
332 }
333
334 struct inode_switch_wbs_context {
335         struct inode            *inode;
336         struct bdi_writeback    *new_wb;
337
338         struct rcu_head         rcu_head;
339         struct work_struct      work;
340 };
341
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344         down_write(&bdi->wb_switch_rwsem);
345 }
346
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349         up_write(&bdi->wb_switch_rwsem);
350 }
351
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354         struct inode_switch_wbs_context *isw =
355                 container_of(work, struct inode_switch_wbs_context, work);
356         struct inode *inode = isw->inode;
357         struct backing_dev_info *bdi = inode_to_bdi(inode);
358         struct address_space *mapping = inode->i_mapping;
359         struct bdi_writeback *old_wb = inode->i_wb;
360         struct bdi_writeback *new_wb = isw->new_wb;
361         XA_STATE(xas, &mapping->i_pages, 0);
362         struct page *page;
363         bool switched = false;
364
365         /*
366          * If @inode switches cgwb membership while sync_inodes_sb() is
367          * being issued, sync_inodes_sb() might miss it.  Synchronize.
368          */
369         down_read(&bdi->wb_switch_rwsem);
370
371         /*
372          * By the time control reaches here, RCU grace period has passed
373          * since I_WB_SWITCH assertion and all wb stat update transactions
374          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375          * synchronizing against the i_pages lock.
376          *
377          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378          * gives us exclusion against all wb related operations on @inode
379          * including IO list manipulations and stat updates.
380          */
381         if (old_wb < new_wb) {
382                 spin_lock(&old_wb->list_lock);
383                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384         } else {
385                 spin_lock(&new_wb->list_lock);
386                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387         }
388         spin_lock(&inode->i_lock);
389         xa_lock_irq(&mapping->i_pages);
390
391         /*
392          * Once I_FREEING is visible under i_lock, the eviction path owns
393          * the inode and we shouldn't modify ->i_io_list.
394          */
395         if (unlikely(inode->i_state & I_FREEING))
396                 goto skip_switch;
397
398         trace_inode_switch_wbs(inode, old_wb, new_wb);
399
400         /*
401          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403          * pages actually under writeback.
404          */
405         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406                 if (PageDirty(page)) {
407                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
408                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
409                 }
410         }
411
412         xas_set(&xas, 0);
413         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414                 WARN_ON_ONCE(!PageWriteback(page));
415                 dec_wb_stat(old_wb, WB_WRITEBACK);
416                 inc_wb_stat(new_wb, WB_WRITEBACK);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  The specific list
423          * @inode was on is ignored and the inode is put on ->b_dirty which
424          * is always correct including from ->b_dirty_time.  The transfer
425          * preserves @inode->dirtied_when ordering.
426          */
427         if (!list_empty(&inode->i_io_list)) {
428                 struct inode *pos;
429
430                 inode_io_list_del_locked(inode, old_wb);
431                 inode->i_wb = new_wb;
432                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433                         if (time_after_eq(inode->dirtied_when,
434                                           pos->dirtied_when))
435                                 break;
436                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437         } else {
438                 inode->i_wb = new_wb;
439         }
440
441         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442         inode->i_wb_frn_winner = 0;
443         inode->i_wb_frn_avg_time = 0;
444         inode->i_wb_frn_history = 0;
445         switched = true;
446 skip_switch:
447         /*
448          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449          * ensures that the new wb is visible if they see !I_WB_SWITCH.
450          */
451         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452
453         xa_unlock_irq(&mapping->i_pages);
454         spin_unlock(&inode->i_lock);
455         spin_unlock(&new_wb->list_lock);
456         spin_unlock(&old_wb->list_lock);
457
458         up_read(&bdi->wb_switch_rwsem);
459
460         if (switched) {
461                 wb_wakeup(new_wb);
462                 wb_put(old_wb);
463         }
464         wb_put(new_wb);
465
466         iput(inode);
467         kfree(isw);
468
469         atomic_dec(&isw_nr_in_flight);
470 }
471
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474         struct inode_switch_wbs_context *isw = container_of(rcu_head,
475                                 struct inode_switch_wbs_context, rcu_head);
476
477         /* needs to grab bh-unsafe locks, bounce to work item */
478         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479         queue_work(isw_wq, &isw->work);
480 }
481
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492         struct backing_dev_info *bdi = inode_to_bdi(inode);
493         struct cgroup_subsys_state *memcg_css;
494         struct inode_switch_wbs_context *isw;
495
496         /* noop if seems to be already in progress */
497         if (inode->i_state & I_WB_SWITCH)
498                 return;
499
500         /* avoid queueing a new switch if too many are already in flight */
501         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502                 return;
503
504         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505         if (!isw)
506                 return;
507
508         atomic_inc(&isw_nr_in_flight);
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css && !css_tryget(memcg_css))
514                 memcg_css = NULL;
515         rcu_read_unlock();
516         if (!memcg_css)
517                 goto out_free;
518
519         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
520         css_put(memcg_css);
521         if (!isw->new_wb)
522                 goto out_free;
523
524         /* while holding I_WB_SWITCH, no one else can update the association */
525         spin_lock(&inode->i_lock);
526         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
528             inode_to_wb(inode) == isw->new_wb) {
529                 spin_unlock(&inode->i_lock);
530                 goto out_free;
531         }
532         inode->i_state |= I_WB_SWITCH;
533         __iget(inode);
534         spin_unlock(&inode->i_lock);
535
536         isw->inode = inode;
537
538         /*
539          * In addition to synchronizing among switchers, I_WB_SWITCH tells
540          * the RCU protected stat update paths to grab the i_page
541          * lock so that stat transfer can synchronize against them.
542          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
543          */
544         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
545         return;
546
547 out_free:
548         atomic_dec(&isw_nr_in_flight);
549         if (isw->new_wb)
550                 wb_put(isw->new_wb);
551         kfree(isw);
552 }
553
554 /**
555  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
556  * @wbc: writeback_control of interest
557  * @inode: target inode
558  *
559  * @inode is locked and about to be written back under the control of @wbc.
560  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
561  * writeback completion, wbc_detach_inode() should be called.  This is used
562  * to track the cgroup writeback context.
563  */
564 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
565                                  struct inode *inode)
566 {
567         if (!inode_cgwb_enabled(inode)) {
568                 spin_unlock(&inode->i_lock);
569                 return;
570         }
571
572         wbc->wb = inode_to_wb(inode);
573         wbc->inode = inode;
574
575         wbc->wb_id = wbc->wb->memcg_css->id;
576         wbc->wb_lcand_id = inode->i_wb_frn_winner;
577         wbc->wb_tcand_id = 0;
578         wbc->wb_bytes = 0;
579         wbc->wb_lcand_bytes = 0;
580         wbc->wb_tcand_bytes = 0;
581
582         wb_get(wbc->wb);
583         spin_unlock(&inode->i_lock);
584
585         /*
586          * A dying wb indicates that either the blkcg associated with the
587          * memcg changed or the associated memcg is dying.  In the first
588          * case, a replacement wb should already be available and we should
589          * refresh the wb immediately.  In the second case, trying to
590          * refresh will keep failing.
591          */
592         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
593                 inode_switch_wbs(inode, wbc->wb_id);
594 }
595 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
596
597 /**
598  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599  * @wbc: writeback_control of the just finished writeback
600  *
601  * To be called after a writeback attempt of an inode finishes and undoes
602  * wbc_attach_and_unlock_inode().  Can be called under any context.
603  *
604  * As concurrent write sharing of an inode is expected to be very rare and
605  * memcg only tracks page ownership on first-use basis severely confining
606  * the usefulness of such sharing, cgroup writeback tracks ownership
607  * per-inode.  While the support for concurrent write sharing of an inode
608  * is deemed unnecessary, an inode being written to by different cgroups at
609  * different points in time is a lot more common, and, more importantly,
610  * charging only by first-use can too readily lead to grossly incorrect
611  * behaviors (single foreign page can lead to gigabytes of writeback to be
612  * incorrectly attributed).
613  *
614  * To resolve this issue, cgroup writeback detects the majority dirtier of
615  * an inode and transfers the ownership to it.  To avoid unnnecessary
616  * oscillation, the detection mechanism keeps track of history and gives
617  * out the switch verdict only if the foreign usage pattern is stable over
618  * a certain amount of time and/or writeback attempts.
619  *
620  * On each writeback attempt, @wbc tries to detect the majority writer
621  * using Boyer-Moore majority vote algorithm.  In addition to the byte
622  * count from the majority voting, it also counts the bytes written for the
623  * current wb and the last round's winner wb (max of last round's current
624  * wb, the winner from two rounds ago, and the last round's majority
625  * candidate).  Keeping track of the historical winner helps the algorithm
626  * to semi-reliably detect the most active writer even when it's not the
627  * absolute majority.
628  *
629  * Once the winner of the round is determined, whether the winner is
630  * foreign or not and how much IO time the round consumed is recorded in
631  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
632  * over a certain threshold, the switch verdict is given.
633  */
634 void wbc_detach_inode(struct writeback_control *wbc)
635 {
636         struct bdi_writeback *wb = wbc->wb;
637         struct inode *inode = wbc->inode;
638         unsigned long avg_time, max_bytes, max_time;
639         u16 history;
640         int max_id;
641
642         if (!wb)
643                 return;
644
645         history = inode->i_wb_frn_history;
646         avg_time = inode->i_wb_frn_avg_time;
647
648         /* pick the winner of this round */
649         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
650             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
651                 max_id = wbc->wb_id;
652                 max_bytes = wbc->wb_bytes;
653         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
654                 max_id = wbc->wb_lcand_id;
655                 max_bytes = wbc->wb_lcand_bytes;
656         } else {
657                 max_id = wbc->wb_tcand_id;
658                 max_bytes = wbc->wb_tcand_bytes;
659         }
660
661         /*
662          * Calculate the amount of IO time the winner consumed and fold it
663          * into the running average kept per inode.  If the consumed IO
664          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665          * deciding whether to switch or not.  This is to prevent one-off
666          * small dirtiers from skewing the verdict.
667          */
668         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
669                                 wb->avg_write_bandwidth);
670         if (avg_time)
671                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
672                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
673         else
674                 avg_time = max_time;    /* immediate catch up on first run */
675
676         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
677                 int slots;
678
679                 /*
680                  * The switch verdict is reached if foreign wb's consume
681                  * more than a certain proportion of IO time in a
682                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
683                  * history mask where each bit represents one sixteenth of
684                  * the period.  Determine the number of slots to shift into
685                  * history from @max_time.
686                  */
687                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
688                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
689                 history <<= slots;
690                 if (wbc->wb_id != max_id)
691                         history |= (1U << slots) - 1;
692
693                 if (history)
694                         trace_inode_foreign_history(inode, wbc, history);
695
696                 /*
697                  * Switch if the current wb isn't the consistent winner.
698                  * If there are multiple closely competing dirtiers, the
699                  * inode may switch across them repeatedly over time, which
700                  * is okay.  The main goal is avoiding keeping an inode on
701                  * the wrong wb for an extended period of time.
702                  */
703                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
704                         inode_switch_wbs(inode, max_id);
705         }
706
707         /*
708          * Multiple instances of this function may race to update the
709          * following fields but we don't mind occassional inaccuracies.
710          */
711         inode->i_wb_frn_winner = max_id;
712         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
713         inode->i_wb_frn_history = history;
714
715         wb_put(wbc->wb);
716         wbc->wb = NULL;
717 }
718 EXPORT_SYMBOL_GPL(wbc_detach_inode);
719
720 /**
721  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
722  * @wbc: writeback_control of the writeback in progress
723  * @page: page being written out
724  * @bytes: number of bytes being written out
725  *
726  * @bytes from @page are about to written out during the writeback
727  * controlled by @wbc.  Keep the book for foreign inode detection.  See
728  * wbc_detach_inode().
729  */
730 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
731                               size_t bytes)
732 {
733         struct cgroup_subsys_state *css;
734         int id;
735
736         /*
737          * pageout() path doesn't attach @wbc to the inode being written
738          * out.  This is intentional as we don't want the function to block
739          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
740          * regular writeback instead of writing things out itself.
741          */
742         if (!wbc->wb || wbc->no_cgroup_owner)
743                 return;
744
745         css = mem_cgroup_css_from_page(page);
746         /* dead cgroups shouldn't contribute to inode ownership arbitration */
747         if (!(css->flags & CSS_ONLINE))
748                 return;
749
750         id = css->id;
751
752         if (id == wbc->wb_id) {
753                 wbc->wb_bytes += bytes;
754                 return;
755         }
756
757         if (id == wbc->wb_lcand_id)
758                 wbc->wb_lcand_bytes += bytes;
759
760         /* Boyer-Moore majority vote algorithm */
761         if (!wbc->wb_tcand_bytes)
762                 wbc->wb_tcand_id = id;
763         if (id == wbc->wb_tcand_id)
764                 wbc->wb_tcand_bytes += bytes;
765         else
766                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
767 }
768 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
769
770 /**
771  * inode_congested - test whether an inode is congested
772  * @inode: inode to test for congestion (may be NULL)
773  * @cong_bits: mask of WB_[a]sync_congested bits to test
774  *
775  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
776  * bits to test and the return value is the mask of set bits.
777  *
778  * If cgroup writeback is enabled for @inode, the congestion state is
779  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
780  * associated with @inode is congested; otherwise, the root wb's congestion
781  * state is used.
782  *
783  * @inode is allowed to be NULL as this function is often called on
784  * mapping->host which is NULL for the swapper space.
785  */
786 int inode_congested(struct inode *inode, int cong_bits)
787 {
788         /*
789          * Once set, ->i_wb never becomes NULL while the inode is alive.
790          * Start transaction iff ->i_wb is visible.
791          */
792         if (inode && inode_to_wb_is_valid(inode)) {
793                 struct bdi_writeback *wb;
794                 struct wb_lock_cookie lock_cookie = {};
795                 bool congested;
796
797                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
798                 congested = wb_congested(wb, cong_bits);
799                 unlocked_inode_to_wb_end(inode, &lock_cookie);
800                 return congested;
801         }
802
803         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
804 }
805 EXPORT_SYMBOL_GPL(inode_congested);
806
807 /**
808  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
809  * @wb: target bdi_writeback to split @nr_pages to
810  * @nr_pages: number of pages to write for the whole bdi
811  *
812  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
813  * relation to the total write bandwidth of all wb's w/ dirty inodes on
814  * @wb->bdi.
815  */
816 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
817 {
818         unsigned long this_bw = wb->avg_write_bandwidth;
819         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
820
821         if (nr_pages == LONG_MAX)
822                 return LONG_MAX;
823
824         /*
825          * This may be called on clean wb's and proportional distribution
826          * may not make sense, just use the original @nr_pages in those
827          * cases.  In general, we wanna err on the side of writing more.
828          */
829         if (!tot_bw || this_bw >= tot_bw)
830                 return nr_pages;
831         else
832                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
833 }
834
835 /**
836  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
837  * @bdi: target backing_dev_info
838  * @base_work: wb_writeback_work to issue
839  * @skip_if_busy: skip wb's which already have writeback in progress
840  *
841  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
842  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
843  * distributed to the busy wbs according to each wb's proportion in the
844  * total active write bandwidth of @bdi.
845  */
846 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
847                                   struct wb_writeback_work *base_work,
848                                   bool skip_if_busy)
849 {
850         struct bdi_writeback *last_wb = NULL;
851         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
852                                               struct bdi_writeback, bdi_node);
853
854         might_sleep();
855 restart:
856         rcu_read_lock();
857         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
858                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
859                 struct wb_writeback_work fallback_work;
860                 struct wb_writeback_work *work;
861                 long nr_pages;
862
863                 if (last_wb) {
864                         wb_put(last_wb);
865                         last_wb = NULL;
866                 }
867
868                 /* SYNC_ALL writes out I_DIRTY_TIME too */
869                 if (!wb_has_dirty_io(wb) &&
870                     (base_work->sync_mode == WB_SYNC_NONE ||
871                      list_empty(&wb->b_dirty_time)))
872                         continue;
873                 if (skip_if_busy && writeback_in_progress(wb))
874                         continue;
875
876                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
877
878                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
879                 if (work) {
880                         *work = *base_work;
881                         work->nr_pages = nr_pages;
882                         work->auto_free = 1;
883                         wb_queue_work(wb, work);
884                         continue;
885                 }
886
887                 /* alloc failed, execute synchronously using on-stack fallback */
888                 work = &fallback_work;
889                 *work = *base_work;
890                 work->nr_pages = nr_pages;
891                 work->auto_free = 0;
892                 work->done = &fallback_work_done;
893
894                 wb_queue_work(wb, work);
895
896                 /*
897                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
898                  * continuing iteration from @wb after dropping and
899                  * regrabbing rcu read lock.
900                  */
901                 wb_get(wb);
902                 last_wb = wb;
903
904                 rcu_read_unlock();
905                 wb_wait_for_completion(&fallback_work_done);
906                 goto restart;
907         }
908         rcu_read_unlock();
909
910         if (last_wb)
911                 wb_put(last_wb);
912 }
913
914 /**
915  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
916  * @bdi_id: target bdi id
917  * @memcg_id: target memcg css id
918  * @nr: number of pages to write, 0 for best-effort dirty flushing
919  * @reason: reason why some writeback work initiated
920  * @done: target wb_completion
921  *
922  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
923  * with the specified parameters.
924  */
925 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
926                            enum wb_reason reason, struct wb_completion *done)
927 {
928         struct backing_dev_info *bdi;
929         struct cgroup_subsys_state *memcg_css;
930         struct bdi_writeback *wb;
931         struct wb_writeback_work *work;
932         int ret;
933
934         /* lookup bdi and memcg */
935         bdi = bdi_get_by_id(bdi_id);
936         if (!bdi)
937                 return -ENOENT;
938
939         rcu_read_lock();
940         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
941         if (memcg_css && !css_tryget(memcg_css))
942                 memcg_css = NULL;
943         rcu_read_unlock();
944         if (!memcg_css) {
945                 ret = -ENOENT;
946                 goto out_bdi_put;
947         }
948
949         /*
950          * And find the associated wb.  If the wb isn't there already
951          * there's nothing to flush, don't create one.
952          */
953         wb = wb_get_lookup(bdi, memcg_css);
954         if (!wb) {
955                 ret = -ENOENT;
956                 goto out_css_put;
957         }
958
959         /*
960          * If @nr is zero, the caller is attempting to write out most of
961          * the currently dirty pages.  Let's take the current dirty page
962          * count and inflate it by 25% which should be large enough to
963          * flush out most dirty pages while avoiding getting livelocked by
964          * concurrent dirtiers.
965          */
966         if (!nr) {
967                 unsigned long filepages, headroom, dirty, writeback;
968
969                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
970                                       &writeback);
971                 nr = dirty * 10 / 8;
972         }
973
974         /* issue the writeback work */
975         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
976         if (work) {
977                 work->nr_pages = nr;
978                 work->sync_mode = WB_SYNC_NONE;
979                 work->range_cyclic = 1;
980                 work->reason = reason;
981                 work->done = done;
982                 work->auto_free = 1;
983                 wb_queue_work(wb, work);
984                 ret = 0;
985         } else {
986                 ret = -ENOMEM;
987         }
988
989         wb_put(wb);
990 out_css_put:
991         css_put(memcg_css);
992 out_bdi_put:
993         bdi_put(bdi);
994         return ret;
995 }
996
997 /**
998  * cgroup_writeback_umount - flush inode wb switches for umount
999  *
1000  * This function is called when a super_block is about to be destroyed and
1001  * flushes in-flight inode wb switches.  An inode wb switch goes through
1002  * RCU and then workqueue, so the two need to be flushed in order to ensure
1003  * that all previously scheduled switches are finished.  As wb switches are
1004  * rare occurrences and synchronize_rcu() can take a while, perform
1005  * flushing iff wb switches are in flight.
1006  */
1007 void cgroup_writeback_umount(void)
1008 {
1009         if (atomic_read(&isw_nr_in_flight)) {
1010                 /*
1011                  * Use rcu_barrier() to wait for all pending callbacks to
1012                  * ensure that all in-flight wb switches are in the workqueue.
1013                  */
1014                 rcu_barrier();
1015                 flush_workqueue(isw_wq);
1016         }
1017 }
1018
1019 static int __init cgroup_writeback_init(void)
1020 {
1021         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1022         if (!isw_wq)
1023                 return -ENOMEM;
1024         return 0;
1025 }
1026 fs_initcall(cgroup_writeback_init);
1027
1028 #else   /* CONFIG_CGROUP_WRITEBACK */
1029
1030 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1031 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1032
1033 static struct bdi_writeback *
1034 locked_inode_to_wb_and_lock_list(struct inode *inode)
1035         __releases(&inode->i_lock)
1036         __acquires(&wb->list_lock)
1037 {
1038         struct bdi_writeback *wb = inode_to_wb(inode);
1039
1040         spin_unlock(&inode->i_lock);
1041         spin_lock(&wb->list_lock);
1042         return wb;
1043 }
1044
1045 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1046         __acquires(&wb->list_lock)
1047 {
1048         struct bdi_writeback *wb = inode_to_wb(inode);
1049
1050         spin_lock(&wb->list_lock);
1051         return wb;
1052 }
1053
1054 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1055 {
1056         return nr_pages;
1057 }
1058
1059 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1060                                   struct wb_writeback_work *base_work,
1061                                   bool skip_if_busy)
1062 {
1063         might_sleep();
1064
1065         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1066                 base_work->auto_free = 0;
1067                 wb_queue_work(&bdi->wb, base_work);
1068         }
1069 }
1070
1071 #endif  /* CONFIG_CGROUP_WRITEBACK */
1072
1073 /*
1074  * Add in the number of potentially dirty inodes, because each inode
1075  * write can dirty pagecache in the underlying blockdev.
1076  */
1077 static unsigned long get_nr_dirty_pages(void)
1078 {
1079         return global_node_page_state(NR_FILE_DIRTY) +
1080                 global_node_page_state(NR_UNSTABLE_NFS) +
1081                 get_nr_dirty_inodes();
1082 }
1083
1084 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1085 {
1086         if (!wb_has_dirty_io(wb))
1087                 return;
1088
1089         /*
1090          * All callers of this function want to start writeback of all
1091          * dirty pages. Places like vmscan can call this at a very
1092          * high frequency, causing pointless allocations of tons of
1093          * work items and keeping the flusher threads busy retrieving
1094          * that work. Ensure that we only allow one of them pending and
1095          * inflight at the time.
1096          */
1097         if (test_bit(WB_start_all, &wb->state) ||
1098             test_and_set_bit(WB_start_all, &wb->state))
1099                 return;
1100
1101         wb->start_all_reason = reason;
1102         wb_wakeup(wb);
1103 }
1104
1105 /**
1106  * wb_start_background_writeback - start background writeback
1107  * @wb: bdi_writback to write from
1108  *
1109  * Description:
1110  *   This makes sure WB_SYNC_NONE background writeback happens. When
1111  *   this function returns, it is only guaranteed that for given wb
1112  *   some IO is happening if we are over background dirty threshold.
1113  *   Caller need not hold sb s_umount semaphore.
1114  */
1115 void wb_start_background_writeback(struct bdi_writeback *wb)
1116 {
1117         /*
1118          * We just wake up the flusher thread. It will perform background
1119          * writeback as soon as there is no other work to do.
1120          */
1121         trace_writeback_wake_background(wb);
1122         wb_wakeup(wb);
1123 }
1124
1125 /*
1126  * Remove the inode from the writeback list it is on.
1127  */
1128 void inode_io_list_del(struct inode *inode)
1129 {
1130         struct bdi_writeback *wb;
1131
1132         wb = inode_to_wb_and_lock_list(inode);
1133         spin_lock(&inode->i_lock);
1134         inode_io_list_del_locked(inode, wb);
1135         spin_unlock(&inode->i_lock);
1136         spin_unlock(&wb->list_lock);
1137 }
1138
1139 /*
1140  * mark an inode as under writeback on the sb
1141  */
1142 void sb_mark_inode_writeback(struct inode *inode)
1143 {
1144         struct super_block *sb = inode->i_sb;
1145         unsigned long flags;
1146
1147         if (list_empty(&inode->i_wb_list)) {
1148                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1149                 if (list_empty(&inode->i_wb_list)) {
1150                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1151                         trace_sb_mark_inode_writeback(inode);
1152                 }
1153                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1154         }
1155 }
1156
1157 /*
1158  * clear an inode as under writeback on the sb
1159  */
1160 void sb_clear_inode_writeback(struct inode *inode)
1161 {
1162         struct super_block *sb = inode->i_sb;
1163         unsigned long flags;
1164
1165         if (!list_empty(&inode->i_wb_list)) {
1166                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1167                 if (!list_empty(&inode->i_wb_list)) {
1168                         list_del_init(&inode->i_wb_list);
1169                         trace_sb_clear_inode_writeback(inode);
1170                 }
1171                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1172         }
1173 }
1174
1175 /*
1176  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1177  * furthest end of its superblock's dirty-inode list.
1178  *
1179  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1180  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1181  * the case then the inode must have been redirtied while it was being written
1182  * out and we don't reset its dirtied_when.
1183  */
1184 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1185 {
1186         assert_spin_locked(&inode->i_lock);
1187
1188         if (!list_empty(&wb->b_dirty)) {
1189                 struct inode *tail;
1190
1191                 tail = wb_inode(wb->b_dirty.next);
1192                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1193                         inode->dirtied_when = jiffies;
1194         }
1195         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1196         inode->i_state &= ~I_SYNC_QUEUED;
1197 }
1198
1199 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1200 {
1201         spin_lock(&inode->i_lock);
1202         redirty_tail_locked(inode, wb);
1203         spin_unlock(&inode->i_lock);
1204 }
1205
1206 /*
1207  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1208  */
1209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1210 {
1211         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1212 }
1213
1214 static void inode_sync_complete(struct inode *inode)
1215 {
1216         inode->i_state &= ~I_SYNC;
1217         /* If inode is clean an unused, put it into LRU now... */
1218         inode_add_lru(inode);
1219         /* Waiters must see I_SYNC cleared before being woken up */
1220         smp_mb();
1221         wake_up_bit(&inode->i_state, __I_SYNC);
1222 }
1223
1224 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1225 {
1226         bool ret = time_after(inode->dirtied_when, t);
1227 #ifndef CONFIG_64BIT
1228         /*
1229          * For inodes being constantly redirtied, dirtied_when can get stuck.
1230          * It _appears_ to be in the future, but is actually in distant past.
1231          * This test is necessary to prevent such wrapped-around relative times
1232          * from permanently stopping the whole bdi writeback.
1233          */
1234         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1235 #endif
1236         return ret;
1237 }
1238
1239 #define EXPIRE_DIRTY_ATIME 0x0001
1240
1241 /*
1242  * Move expired (dirtied before dirtied_before) dirty inodes from
1243  * @delaying_queue to @dispatch_queue.
1244  */
1245 static int move_expired_inodes(struct list_head *delaying_queue,
1246                                struct list_head *dispatch_queue,
1247                                unsigned long dirtied_before)
1248 {
1249         LIST_HEAD(tmp);
1250         struct list_head *pos, *node;
1251         struct super_block *sb = NULL;
1252         struct inode *inode;
1253         int do_sb_sort = 0;
1254         int moved = 0;
1255
1256         while (!list_empty(delaying_queue)) {
1257                 inode = wb_inode(delaying_queue->prev);
1258                 if (inode_dirtied_after(inode, dirtied_before))
1259                         break;
1260                 list_move(&inode->i_io_list, &tmp);
1261                 moved++;
1262                 spin_lock(&inode->i_lock);
1263                 inode->i_state |= I_SYNC_QUEUED;
1264                 spin_unlock(&inode->i_lock);
1265                 if (sb_is_blkdev_sb(inode->i_sb))
1266                         continue;
1267                 if (sb && sb != inode->i_sb)
1268                         do_sb_sort = 1;
1269                 sb = inode->i_sb;
1270         }
1271
1272         /* just one sb in list, splice to dispatch_queue and we're done */
1273         if (!do_sb_sort) {
1274                 list_splice(&tmp, dispatch_queue);
1275                 goto out;
1276         }
1277
1278         /* Move inodes from one superblock together */
1279         while (!list_empty(&tmp)) {
1280                 sb = wb_inode(tmp.prev)->i_sb;
1281                 list_for_each_prev_safe(pos, node, &tmp) {
1282                         inode = wb_inode(pos);
1283                         if (inode->i_sb == sb)
1284                                 list_move(&inode->i_io_list, dispatch_queue);
1285                 }
1286         }
1287 out:
1288         return moved;
1289 }
1290
1291 /*
1292  * Queue all expired dirty inodes for io, eldest first.
1293  * Before
1294  *         newly dirtied     b_dirty    b_io    b_more_io
1295  *         =============>    gf         edc     BA
1296  * After
1297  *         newly dirtied     b_dirty    b_io    b_more_io
1298  *         =============>    g          fBAedc
1299  *                                           |
1300  *                                           +--> dequeue for IO
1301  */
1302 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1303                      unsigned long dirtied_before)
1304 {
1305         int moved;
1306         unsigned long time_expire_jif = dirtied_before;
1307
1308         assert_spin_locked(&wb->list_lock);
1309         list_splice_init(&wb->b_more_io, &wb->b_io);
1310         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1311         if (!work->for_sync)
1312                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1313         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1314                                      time_expire_jif);
1315         if (moved)
1316                 wb_io_lists_populated(wb);
1317         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1318 }
1319
1320 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1321 {
1322         int ret;
1323
1324         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1325                 trace_writeback_write_inode_start(inode, wbc);
1326                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1327                 trace_writeback_write_inode(inode, wbc);
1328                 return ret;
1329         }
1330         return 0;
1331 }
1332
1333 /*
1334  * Wait for writeback on an inode to complete. Called with i_lock held.
1335  * Caller must make sure inode cannot go away when we drop i_lock.
1336  */
1337 static void __inode_wait_for_writeback(struct inode *inode)
1338         __releases(inode->i_lock)
1339         __acquires(inode->i_lock)
1340 {
1341         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1342         wait_queue_head_t *wqh;
1343
1344         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1345         while (inode->i_state & I_SYNC) {
1346                 spin_unlock(&inode->i_lock);
1347                 __wait_on_bit(wqh, &wq, bit_wait,
1348                               TASK_UNINTERRUPTIBLE);
1349                 spin_lock(&inode->i_lock);
1350         }
1351 }
1352
1353 /*
1354  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1355  */
1356 void inode_wait_for_writeback(struct inode *inode)
1357 {
1358         spin_lock(&inode->i_lock);
1359         __inode_wait_for_writeback(inode);
1360         spin_unlock(&inode->i_lock);
1361 }
1362
1363 /*
1364  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1365  * held and drops it. It is aimed for callers not holding any inode reference
1366  * so once i_lock is dropped, inode can go away.
1367  */
1368 static void inode_sleep_on_writeback(struct inode *inode)
1369         __releases(inode->i_lock)
1370 {
1371         DEFINE_WAIT(wait);
1372         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1373         int sleep;
1374
1375         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1376         sleep = inode->i_state & I_SYNC;
1377         spin_unlock(&inode->i_lock);
1378         if (sleep)
1379                 schedule();
1380         finish_wait(wqh, &wait);
1381 }
1382
1383 /*
1384  * Find proper writeback list for the inode depending on its current state and
1385  * possibly also change of its state while we were doing writeback.  Here we
1386  * handle things such as livelock prevention or fairness of writeback among
1387  * inodes. This function can be called only by flusher thread - noone else
1388  * processes all inodes in writeback lists and requeueing inodes behind flusher
1389  * thread's back can have unexpected consequences.
1390  */
1391 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1392                           struct writeback_control *wbc)
1393 {
1394         if (inode->i_state & I_FREEING)
1395                 return;
1396
1397         /*
1398          * Sync livelock prevention. Each inode is tagged and synced in one
1399          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1400          * the dirty time to prevent enqueue and sync it again.
1401          */
1402         if ((inode->i_state & I_DIRTY) &&
1403             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1404                 inode->dirtied_when = jiffies;
1405
1406         if (wbc->pages_skipped) {
1407                 /*
1408                  * writeback is not making progress due to locked
1409                  * buffers. Skip this inode for now.
1410                  */
1411                 redirty_tail_locked(inode, wb);
1412                 return;
1413         }
1414
1415         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1416                 /*
1417                  * We didn't write back all the pages.  nfs_writepages()
1418                  * sometimes bales out without doing anything.
1419                  */
1420                 if (wbc->nr_to_write <= 0) {
1421                         /* Slice used up. Queue for next turn. */
1422                         requeue_io(inode, wb);
1423                 } else {
1424                         /*
1425                          * Writeback blocked by something other than
1426                          * congestion. Delay the inode for some time to
1427                          * avoid spinning on the CPU (100% iowait)
1428                          * retrying writeback of the dirty page/inode
1429                          * that cannot be performed immediately.
1430                          */
1431                         redirty_tail_locked(inode, wb);
1432                 }
1433         } else if (inode->i_state & I_DIRTY) {
1434                 /*
1435                  * Filesystems can dirty the inode during writeback operations,
1436                  * such as delayed allocation during submission or metadata
1437                  * updates after data IO completion.
1438                  */
1439                 redirty_tail_locked(inode, wb);
1440         } else if (inode->i_state & I_DIRTY_TIME) {
1441                 inode->dirtied_when = jiffies;
1442                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1443                 inode->i_state &= ~I_SYNC_QUEUED;
1444         } else {
1445                 /* The inode is clean. Remove from writeback lists. */
1446                 inode_io_list_del_locked(inode, wb);
1447         }
1448 }
1449
1450 /*
1451  * Write out an inode and its dirty pages. Do not update the writeback list
1452  * linkage. That is left to the caller. The caller is also responsible for
1453  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1454  */
1455 static int
1456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1457 {
1458         struct address_space *mapping = inode->i_mapping;
1459         long nr_to_write = wbc->nr_to_write;
1460         unsigned dirty;
1461         int ret;
1462
1463         WARN_ON(!(inode->i_state & I_SYNC));
1464
1465         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1466
1467         ret = do_writepages(mapping, wbc);
1468
1469         /*
1470          * Make sure to wait on the data before writing out the metadata.
1471          * This is important for filesystems that modify metadata on data
1472          * I/O completion. We don't do it for sync(2) writeback because it has a
1473          * separate, external IO completion path and ->sync_fs for guaranteeing
1474          * inode metadata is written back correctly.
1475          */
1476         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1477                 int err = filemap_fdatawait(mapping);
1478                 if (ret == 0)
1479                         ret = err;
1480         }
1481
1482         /*
1483          * If the inode has dirty timestamps and we need to write them, call
1484          * mark_inode_dirty_sync() to notify the filesystem about it and to
1485          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1486          */
1487         if ((inode->i_state & I_DIRTY_TIME) &&
1488             (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1489              time_after(jiffies, inode->dirtied_time_when +
1490                         dirtytime_expire_interval * HZ))) {
1491                 trace_writeback_lazytime(inode);
1492                 mark_inode_dirty_sync(inode);
1493         }
1494
1495         /*
1496          * Some filesystems may redirty the inode during the writeback
1497          * due to delalloc, clear dirty metadata flags right before
1498          * write_inode()
1499          */
1500         spin_lock(&inode->i_lock);
1501         dirty = inode->i_state & I_DIRTY;
1502         inode->i_state &= ~dirty;
1503
1504         /*
1505          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1506          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1507          * either they see the I_DIRTY bits cleared or we see the dirtied
1508          * inode.
1509          *
1510          * I_DIRTY_PAGES is always cleared together above even if @mapping
1511          * still has dirty pages.  The flag is reinstated after smp_mb() if
1512          * necessary.  This guarantees that either __mark_inode_dirty()
1513          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1514          */
1515         smp_mb();
1516
1517         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1518                 inode->i_state |= I_DIRTY_PAGES;
1519
1520         spin_unlock(&inode->i_lock);
1521
1522         /* Don't write the inode if only I_DIRTY_PAGES was set */
1523         if (dirty & ~I_DIRTY_PAGES) {
1524                 int err = write_inode(inode, wbc);
1525                 if (ret == 0)
1526                         ret = err;
1527         }
1528         trace_writeback_single_inode(inode, wbc, nr_to_write);
1529         return ret;
1530 }
1531
1532 /*
1533  * Write out an inode's dirty pages. Either the caller has an active reference
1534  * on the inode or the inode has I_WILL_FREE set.
1535  *
1536  * This function is designed to be called for writing back one inode which
1537  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1538  * and does more profound writeback list handling in writeback_sb_inodes().
1539  */
1540 static int writeback_single_inode(struct inode *inode,
1541                                   struct writeback_control *wbc)
1542 {
1543         struct bdi_writeback *wb;
1544         int ret = 0;
1545
1546         spin_lock(&inode->i_lock);
1547         if (!atomic_read(&inode->i_count))
1548                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1549         else
1550                 WARN_ON(inode->i_state & I_WILL_FREE);
1551
1552         if (inode->i_state & I_SYNC) {
1553                 if (wbc->sync_mode != WB_SYNC_ALL)
1554                         goto out;
1555                 /*
1556                  * It's a data-integrity sync. We must wait. Since callers hold
1557                  * inode reference or inode has I_WILL_FREE set, it cannot go
1558                  * away under us.
1559                  */
1560                 __inode_wait_for_writeback(inode);
1561         }
1562         WARN_ON(inode->i_state & I_SYNC);
1563         /*
1564          * Skip inode if it is clean and we have no outstanding writeback in
1565          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1566          * function since flusher thread may be doing for example sync in
1567          * parallel and if we move the inode, it could get skipped. So here we
1568          * make sure inode is on some writeback list and leave it there unless
1569          * we have completely cleaned the inode.
1570          */
1571         if (!(inode->i_state & I_DIRTY_ALL) &&
1572             (wbc->sync_mode != WB_SYNC_ALL ||
1573              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1574                 goto out;
1575         inode->i_state |= I_SYNC;
1576         wbc_attach_and_unlock_inode(wbc, inode);
1577
1578         ret = __writeback_single_inode(inode, wbc);
1579
1580         wbc_detach_inode(wbc);
1581
1582         wb = inode_to_wb_and_lock_list(inode);
1583         spin_lock(&inode->i_lock);
1584         /*
1585          * If inode is clean, remove it from writeback lists. Otherwise don't
1586          * touch it. See comment above for explanation.
1587          */
1588         if (!(inode->i_state & I_DIRTY_ALL))
1589                 inode_io_list_del_locked(inode, wb);
1590         spin_unlock(&wb->list_lock);
1591         inode_sync_complete(inode);
1592 out:
1593         spin_unlock(&inode->i_lock);
1594         return ret;
1595 }
1596
1597 static long writeback_chunk_size(struct bdi_writeback *wb,
1598                                  struct wb_writeback_work *work)
1599 {
1600         long pages;
1601
1602         /*
1603          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1604          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1605          * here avoids calling into writeback_inodes_wb() more than once.
1606          *
1607          * The intended call sequence for WB_SYNC_ALL writeback is:
1608          *
1609          *      wb_writeback()
1610          *          writeback_sb_inodes()       <== called only once
1611          *              write_cache_pages()     <== called once for each inode
1612          *                   (quickly) tag currently dirty pages
1613          *                   (maybe slowly) sync all tagged pages
1614          */
1615         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1616                 pages = LONG_MAX;
1617         else {
1618                 pages = min(wb->avg_write_bandwidth / 2,
1619                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1620                 pages = min(pages, work->nr_pages);
1621                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1622                                    MIN_WRITEBACK_PAGES);
1623         }
1624
1625         return pages;
1626 }
1627
1628 /*
1629  * Write a portion of b_io inodes which belong to @sb.
1630  *
1631  * Return the number of pages and/or inodes written.
1632  *
1633  * NOTE! This is called with wb->list_lock held, and will
1634  * unlock and relock that for each inode it ends up doing
1635  * IO for.
1636  */
1637 static long writeback_sb_inodes(struct super_block *sb,
1638                                 struct bdi_writeback *wb,
1639                                 struct wb_writeback_work *work)
1640 {
1641         struct writeback_control wbc = {
1642                 .sync_mode              = work->sync_mode,
1643                 .tagged_writepages      = work->tagged_writepages,
1644                 .for_kupdate            = work->for_kupdate,
1645                 .for_background         = work->for_background,
1646                 .for_sync               = work->for_sync,
1647                 .range_cyclic           = work->range_cyclic,
1648                 .range_start            = 0,
1649                 .range_end              = LLONG_MAX,
1650         };
1651         unsigned long start_time = jiffies;
1652         long write_chunk;
1653         long total_wrote = 0;  /* count both pages and inodes */
1654
1655         while (!list_empty(&wb->b_io)) {
1656                 struct inode *inode = wb_inode(wb->b_io.prev);
1657                 struct bdi_writeback *tmp_wb;
1658                 long wrote;
1659
1660                 if (inode->i_sb != sb) {
1661                         if (work->sb) {
1662                                 /*
1663                                  * We only want to write back data for this
1664                                  * superblock, move all inodes not belonging
1665                                  * to it back onto the dirty list.
1666                                  */
1667                                 redirty_tail(inode, wb);
1668                                 continue;
1669                         }
1670
1671                         /*
1672                          * The inode belongs to a different superblock.
1673                          * Bounce back to the caller to unpin this and
1674                          * pin the next superblock.
1675                          */
1676                         break;
1677                 }
1678
1679                 /*
1680                  * Don't bother with new inodes or inodes being freed, first
1681                  * kind does not need periodic writeout yet, and for the latter
1682                  * kind writeout is handled by the freer.
1683                  */
1684                 spin_lock(&inode->i_lock);
1685                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1686                         redirty_tail_locked(inode, wb);
1687                         spin_unlock(&inode->i_lock);
1688                         continue;
1689                 }
1690                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1691                         /*
1692                          * If this inode is locked for writeback and we are not
1693                          * doing writeback-for-data-integrity, move it to
1694                          * b_more_io so that writeback can proceed with the
1695                          * other inodes on s_io.
1696                          *
1697                          * We'll have another go at writing back this inode
1698                          * when we completed a full scan of b_io.
1699                          */
1700                         spin_unlock(&inode->i_lock);
1701                         requeue_io(inode, wb);
1702                         trace_writeback_sb_inodes_requeue(inode);
1703                         continue;
1704                 }
1705                 spin_unlock(&wb->list_lock);
1706
1707                 /*
1708                  * We already requeued the inode if it had I_SYNC set and we
1709                  * are doing WB_SYNC_NONE writeback. So this catches only the
1710                  * WB_SYNC_ALL case.
1711                  */
1712                 if (inode->i_state & I_SYNC) {
1713                         /* Wait for I_SYNC. This function drops i_lock... */
1714                         inode_sleep_on_writeback(inode);
1715                         /* Inode may be gone, start again */
1716                         spin_lock(&wb->list_lock);
1717                         continue;
1718                 }
1719                 inode->i_state |= I_SYNC;
1720                 wbc_attach_and_unlock_inode(&wbc, inode);
1721
1722                 write_chunk = writeback_chunk_size(wb, work);
1723                 wbc.nr_to_write = write_chunk;
1724                 wbc.pages_skipped = 0;
1725
1726                 /*
1727                  * We use I_SYNC to pin the inode in memory. While it is set
1728                  * evict_inode() will wait so the inode cannot be freed.
1729                  */
1730                 __writeback_single_inode(inode, &wbc);
1731
1732                 wbc_detach_inode(&wbc);
1733                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1734                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1735                 wrote = wrote < 0 ? 0 : wrote;
1736                 total_wrote += wrote;
1737
1738                 if (need_resched()) {
1739                         /*
1740                          * We're trying to balance between building up a nice
1741                          * long list of IOs to improve our merge rate, and
1742                          * getting those IOs out quickly for anyone throttling
1743                          * in balance_dirty_pages().  cond_resched() doesn't
1744                          * unplug, so get our IOs out the door before we
1745                          * give up the CPU.
1746                          */
1747                         blk_flush_plug(current);
1748                         cond_resched();
1749                 }
1750
1751                 /*
1752                  * Requeue @inode if still dirty.  Be careful as @inode may
1753                  * have been switched to another wb in the meantime.
1754                  */
1755                 tmp_wb = inode_to_wb_and_lock_list(inode);
1756                 spin_lock(&inode->i_lock);
1757                 if (!(inode->i_state & I_DIRTY_ALL))
1758                         total_wrote++;
1759                 requeue_inode(inode, tmp_wb, &wbc);
1760                 inode_sync_complete(inode);
1761                 spin_unlock(&inode->i_lock);
1762
1763                 if (unlikely(tmp_wb != wb)) {
1764                         spin_unlock(&tmp_wb->list_lock);
1765                         spin_lock(&wb->list_lock);
1766                 }
1767
1768                 /*
1769                  * bail out to wb_writeback() often enough to check
1770                  * background threshold and other termination conditions.
1771                  */
1772                 if (total_wrote) {
1773                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1774                                 break;
1775                         if (work->nr_pages <= 0)
1776                                 break;
1777                 }
1778         }
1779         return total_wrote;
1780 }
1781
1782 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1783                                   struct wb_writeback_work *work)
1784 {
1785         unsigned long start_time = jiffies;
1786         long wrote = 0;
1787
1788         while (!list_empty(&wb->b_io)) {
1789                 struct inode *inode = wb_inode(wb->b_io.prev);
1790                 struct super_block *sb = inode->i_sb;
1791
1792                 if (!trylock_super(sb)) {
1793                         /*
1794                          * trylock_super() may fail consistently due to
1795                          * s_umount being grabbed by someone else. Don't use
1796                          * requeue_io() to avoid busy retrying the inode/sb.
1797                          */
1798                         redirty_tail(inode, wb);
1799                         continue;
1800                 }
1801                 wrote += writeback_sb_inodes(sb, wb, work);
1802                 up_read(&sb->s_umount);
1803
1804                 /* refer to the same tests at the end of writeback_sb_inodes */
1805                 if (wrote) {
1806                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1807                                 break;
1808                         if (work->nr_pages <= 0)
1809                                 break;
1810                 }
1811         }
1812         /* Leave any unwritten inodes on b_io */
1813         return wrote;
1814 }
1815
1816 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1817                                 enum wb_reason reason)
1818 {
1819         struct wb_writeback_work work = {
1820                 .nr_pages       = nr_pages,
1821                 .sync_mode      = WB_SYNC_NONE,
1822                 .range_cyclic   = 1,
1823                 .reason         = reason,
1824         };
1825         struct blk_plug plug;
1826
1827         blk_start_plug(&plug);
1828         spin_lock(&wb->list_lock);
1829         if (list_empty(&wb->b_io))
1830                 queue_io(wb, &work, jiffies);
1831         __writeback_inodes_wb(wb, &work);
1832         spin_unlock(&wb->list_lock);
1833         blk_finish_plug(&plug);
1834
1835         return nr_pages - work.nr_pages;
1836 }
1837
1838 /*
1839  * Explicit flushing or periodic writeback of "old" data.
1840  *
1841  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1842  * dirtying-time in the inode's address_space.  So this periodic writeback code
1843  * just walks the superblock inode list, writing back any inodes which are
1844  * older than a specific point in time.
1845  *
1846  * Try to run once per dirty_writeback_interval.  But if a writeback event
1847  * takes longer than a dirty_writeback_interval interval, then leave a
1848  * one-second gap.
1849  *
1850  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1851  * all dirty pages if they are all attached to "old" mappings.
1852  */
1853 static long wb_writeback(struct bdi_writeback *wb,
1854                          struct wb_writeback_work *work)
1855 {
1856         unsigned long wb_start = jiffies;
1857         long nr_pages = work->nr_pages;
1858         unsigned long dirtied_before = jiffies;
1859         struct inode *inode;
1860         long progress;
1861         struct blk_plug plug;
1862
1863         blk_start_plug(&plug);
1864         spin_lock(&wb->list_lock);
1865         for (;;) {
1866                 /*
1867                  * Stop writeback when nr_pages has been consumed
1868                  */
1869                 if (work->nr_pages <= 0)
1870                         break;
1871
1872                 /*
1873                  * Background writeout and kupdate-style writeback may
1874                  * run forever. Stop them if there is other work to do
1875                  * so that e.g. sync can proceed. They'll be restarted
1876                  * after the other works are all done.
1877                  */
1878                 if ((work->for_background || work->for_kupdate) &&
1879                     !list_empty(&wb->work_list))
1880                         break;
1881
1882                 /*
1883                  * For background writeout, stop when we are below the
1884                  * background dirty threshold
1885                  */
1886                 if (work->for_background && !wb_over_bg_thresh(wb))
1887                         break;
1888
1889                 /*
1890                  * Kupdate and background works are special and we want to
1891                  * include all inodes that need writing. Livelock avoidance is
1892                  * handled by these works yielding to any other work so we are
1893                  * safe.
1894                  */
1895                 if (work->for_kupdate) {
1896                         dirtied_before = jiffies -
1897                                 msecs_to_jiffies(dirty_expire_interval * 10);
1898                 } else if (work->for_background)
1899                         dirtied_before = jiffies;
1900
1901                 trace_writeback_start(wb, work);
1902                 if (list_empty(&wb->b_io))
1903                         queue_io(wb, work, dirtied_before);
1904                 if (work->sb)
1905                         progress = writeback_sb_inodes(work->sb, wb, work);
1906                 else
1907                         progress = __writeback_inodes_wb(wb, work);
1908                 trace_writeback_written(wb, work);
1909
1910                 wb_update_bandwidth(wb, wb_start);
1911
1912                 /*
1913                  * Did we write something? Try for more
1914                  *
1915                  * Dirty inodes are moved to b_io for writeback in batches.
1916                  * The completion of the current batch does not necessarily
1917                  * mean the overall work is done. So we keep looping as long
1918                  * as made some progress on cleaning pages or inodes.
1919                  */
1920                 if (progress)
1921                         continue;
1922                 /*
1923                  * No more inodes for IO, bail
1924                  */
1925                 if (list_empty(&wb->b_more_io))
1926                         break;
1927                 /*
1928                  * Nothing written. Wait for some inode to
1929                  * become available for writeback. Otherwise
1930                  * we'll just busyloop.
1931                  */
1932                 trace_writeback_wait(wb, work);
1933                 inode = wb_inode(wb->b_more_io.prev);
1934                 spin_lock(&inode->i_lock);
1935                 spin_unlock(&wb->list_lock);
1936                 /* This function drops i_lock... */
1937                 inode_sleep_on_writeback(inode);
1938                 spin_lock(&wb->list_lock);
1939         }
1940         spin_unlock(&wb->list_lock);
1941         blk_finish_plug(&plug);
1942
1943         return nr_pages - work->nr_pages;
1944 }
1945
1946 /*
1947  * Return the next wb_writeback_work struct that hasn't been processed yet.
1948  */
1949 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1950 {
1951         struct wb_writeback_work *work = NULL;
1952
1953         spin_lock_bh(&wb->work_lock);
1954         if (!list_empty(&wb->work_list)) {
1955                 work = list_entry(wb->work_list.next,
1956                                   struct wb_writeback_work, list);
1957                 list_del_init(&work->list);
1958         }
1959         spin_unlock_bh(&wb->work_lock);
1960         return work;
1961 }
1962
1963 static long wb_check_background_flush(struct bdi_writeback *wb)
1964 {
1965         if (wb_over_bg_thresh(wb)) {
1966
1967                 struct wb_writeback_work work = {
1968                         .nr_pages       = LONG_MAX,
1969                         .sync_mode      = WB_SYNC_NONE,
1970                         .for_background = 1,
1971                         .range_cyclic   = 1,
1972                         .reason         = WB_REASON_BACKGROUND,
1973                 };
1974
1975                 return wb_writeback(wb, &work);
1976         }
1977
1978         return 0;
1979 }
1980
1981 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1982 {
1983         unsigned long expired;
1984         long nr_pages;
1985
1986         /*
1987          * When set to zero, disable periodic writeback
1988          */
1989         if (!dirty_writeback_interval)
1990                 return 0;
1991
1992         expired = wb->last_old_flush +
1993                         msecs_to_jiffies(dirty_writeback_interval * 10);
1994         if (time_before(jiffies, expired))
1995                 return 0;
1996
1997         wb->last_old_flush = jiffies;
1998         nr_pages = get_nr_dirty_pages();
1999
2000         if (nr_pages) {
2001                 struct wb_writeback_work work = {
2002                         .nr_pages       = nr_pages,
2003                         .sync_mode      = WB_SYNC_NONE,
2004                         .for_kupdate    = 1,
2005                         .range_cyclic   = 1,
2006                         .reason         = WB_REASON_PERIODIC,
2007                 };
2008
2009                 return wb_writeback(wb, &work);
2010         }
2011
2012         return 0;
2013 }
2014
2015 static long wb_check_start_all(struct bdi_writeback *wb)
2016 {
2017         long nr_pages;
2018
2019         if (!test_bit(WB_start_all, &wb->state))
2020                 return 0;
2021
2022         nr_pages = get_nr_dirty_pages();
2023         if (nr_pages) {
2024                 struct wb_writeback_work work = {
2025                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2026                         .sync_mode      = WB_SYNC_NONE,
2027                         .range_cyclic   = 1,
2028                         .reason         = wb->start_all_reason,
2029                 };
2030
2031                 nr_pages = wb_writeback(wb, &work);
2032         }
2033
2034         clear_bit(WB_start_all, &wb->state);
2035         return nr_pages;
2036 }
2037
2038
2039 /*
2040  * Retrieve work items and do the writeback they describe
2041  */
2042 static long wb_do_writeback(struct bdi_writeback *wb)
2043 {
2044         struct wb_writeback_work *work;
2045         long wrote = 0;
2046
2047         set_bit(WB_writeback_running, &wb->state);
2048         while ((work = get_next_work_item(wb)) != NULL) {
2049                 trace_writeback_exec(wb, work);
2050                 wrote += wb_writeback(wb, work);
2051                 finish_writeback_work(wb, work);
2052         }
2053
2054         /*
2055          * Check for a flush-everything request
2056          */
2057         wrote += wb_check_start_all(wb);
2058
2059         /*
2060          * Check for periodic writeback, kupdated() style
2061          */
2062         wrote += wb_check_old_data_flush(wb);
2063         wrote += wb_check_background_flush(wb);
2064         clear_bit(WB_writeback_running, &wb->state);
2065
2066         return wrote;
2067 }
2068
2069 /*
2070  * Handle writeback of dirty data for the device backed by this bdi. Also
2071  * reschedules periodically and does kupdated style flushing.
2072  */
2073 void wb_workfn(struct work_struct *work)
2074 {
2075         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2076                                                 struct bdi_writeback, dwork);
2077         long pages_written;
2078
2079         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2080         current->flags |= PF_SWAPWRITE;
2081
2082         if (likely(!current_is_workqueue_rescuer() ||
2083                    !test_bit(WB_registered, &wb->state))) {
2084                 /*
2085                  * The normal path.  Keep writing back @wb until its
2086                  * work_list is empty.  Note that this path is also taken
2087                  * if @wb is shutting down even when we're running off the
2088                  * rescuer as work_list needs to be drained.
2089                  */
2090                 do {
2091                         pages_written = wb_do_writeback(wb);
2092                         trace_writeback_pages_written(pages_written);
2093                 } while (!list_empty(&wb->work_list));
2094         } else {
2095                 /*
2096                  * bdi_wq can't get enough workers and we're running off
2097                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2098                  * enough for efficient IO.
2099                  */
2100                 pages_written = writeback_inodes_wb(wb, 1024,
2101                                                     WB_REASON_FORKER_THREAD);
2102                 trace_writeback_pages_written(pages_written);
2103         }
2104
2105         if (!list_empty(&wb->work_list))
2106                 wb_wakeup(wb);
2107         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2108                 wb_wakeup_delayed(wb);
2109
2110         current->flags &= ~PF_SWAPWRITE;
2111 }
2112
2113 /*
2114  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2115  * write back the whole world.
2116  */
2117 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2118                                          enum wb_reason reason)
2119 {
2120         struct bdi_writeback *wb;
2121
2122         if (!bdi_has_dirty_io(bdi))
2123                 return;
2124
2125         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2126                 wb_start_writeback(wb, reason);
2127 }
2128
2129 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2130                                 enum wb_reason reason)
2131 {
2132         rcu_read_lock();
2133         __wakeup_flusher_threads_bdi(bdi, reason);
2134         rcu_read_unlock();
2135 }
2136
2137 /*
2138  * Wakeup the flusher threads to start writeback of all currently dirty pages
2139  */
2140 void wakeup_flusher_threads(enum wb_reason reason)
2141 {
2142         struct backing_dev_info *bdi;
2143
2144         /*
2145          * If we are expecting writeback progress we must submit plugged IO.
2146          */
2147         if (blk_needs_flush_plug(current))
2148                 blk_schedule_flush_plug(current);
2149
2150         rcu_read_lock();
2151         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2152                 __wakeup_flusher_threads_bdi(bdi, reason);
2153         rcu_read_unlock();
2154 }
2155
2156 /*
2157  * Wake up bdi's periodically to make sure dirtytime inodes gets
2158  * written back periodically.  We deliberately do *not* check the
2159  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2160  * kernel to be constantly waking up once there are any dirtytime
2161  * inodes on the system.  So instead we define a separate delayed work
2162  * function which gets called much more rarely.  (By default, only
2163  * once every 12 hours.)
2164  *
2165  * If there is any other write activity going on in the file system,
2166  * this function won't be necessary.  But if the only thing that has
2167  * happened on the file system is a dirtytime inode caused by an atime
2168  * update, we need this infrastructure below to make sure that inode
2169  * eventually gets pushed out to disk.
2170  */
2171 static void wakeup_dirtytime_writeback(struct work_struct *w);
2172 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2173
2174 static void wakeup_dirtytime_writeback(struct work_struct *w)
2175 {
2176         struct backing_dev_info *bdi;
2177
2178         rcu_read_lock();
2179         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2180                 struct bdi_writeback *wb;
2181
2182                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2183                         if (!list_empty(&wb->b_dirty_time))
2184                                 wb_wakeup(wb);
2185         }
2186         rcu_read_unlock();
2187         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2188 }
2189
2190 static int __init start_dirtytime_writeback(void)
2191 {
2192         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2193         return 0;
2194 }
2195 __initcall(start_dirtytime_writeback);
2196
2197 int dirtytime_interval_handler(struct ctl_table *table, int write,
2198                                void __user *buffer, size_t *lenp, loff_t *ppos)
2199 {
2200         int ret;
2201
2202         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2203         if (ret == 0 && write)
2204                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2205         return ret;
2206 }
2207
2208 /**
2209  * __mark_inode_dirty - internal function
2210  *
2211  * @inode: inode to mark
2212  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2213  *
2214  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2215  * mark_inode_dirty_sync.
2216  *
2217  * Put the inode on the super block's dirty list.
2218  *
2219  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2220  * dirty list only if it is hashed or if it refers to a blockdev.
2221  * If it was not hashed, it will never be added to the dirty list
2222  * even if it is later hashed, as it will have been marked dirty already.
2223  *
2224  * In short, make sure you hash any inodes _before_ you start marking
2225  * them dirty.
2226  *
2227  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2228  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2229  * the kernel-internal blockdev inode represents the dirtying time of the
2230  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2231  * page->mapping->host, so the page-dirtying time is recorded in the internal
2232  * blockdev inode.
2233  */
2234 void __mark_inode_dirty(struct inode *inode, int flags)
2235 {
2236         struct super_block *sb = inode->i_sb;
2237         int dirtytime;
2238
2239         trace_writeback_mark_inode_dirty(inode, flags);
2240
2241         /*
2242          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2243          * dirty the inode itself
2244          */
2245         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2246                 trace_writeback_dirty_inode_start(inode, flags);
2247
2248                 if (sb->s_op->dirty_inode)
2249                         sb->s_op->dirty_inode(inode, flags);
2250
2251                 trace_writeback_dirty_inode(inode, flags);
2252         }
2253         if (flags & I_DIRTY_INODE)
2254                 flags &= ~I_DIRTY_TIME;
2255         dirtytime = flags & I_DIRTY_TIME;
2256
2257         /*
2258          * Paired with smp_mb() in __writeback_single_inode() for the
2259          * following lockless i_state test.  See there for details.
2260          */
2261         smp_mb();
2262
2263         if (((inode->i_state & flags) == flags) ||
2264             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2265                 return;
2266
2267         spin_lock(&inode->i_lock);
2268         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2269                 goto out_unlock_inode;
2270         if ((inode->i_state & flags) != flags) {
2271                 const int was_dirty = inode->i_state & I_DIRTY;
2272
2273                 inode_attach_wb(inode, NULL);
2274
2275                 if (flags & I_DIRTY_INODE)
2276                         inode->i_state &= ~I_DIRTY_TIME;
2277                 inode->i_state |= flags;
2278
2279                 /*
2280                  * If the inode is queued for writeback by flush worker, just
2281                  * update its dirty state. Once the flush worker is done with
2282                  * the inode it will place it on the appropriate superblock
2283                  * list, based upon its state.
2284                  */
2285                 if (inode->i_state & I_SYNC_QUEUED)
2286                         goto out_unlock_inode;
2287
2288                 /*
2289                  * Only add valid (hashed) inodes to the superblock's
2290                  * dirty list.  Add blockdev inodes as well.
2291                  */
2292                 if (!S_ISBLK(inode->i_mode)) {
2293                         if (inode_unhashed(inode))
2294                                 goto out_unlock_inode;
2295                 }
2296                 if (inode->i_state & I_FREEING)
2297                         goto out_unlock_inode;
2298
2299                 /*
2300                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2301                  * reposition it (that would break b_dirty time-ordering).
2302                  */
2303                 if (!was_dirty) {
2304                         struct bdi_writeback *wb;
2305                         struct list_head *dirty_list;
2306                         bool wakeup_bdi = false;
2307
2308                         wb = locked_inode_to_wb_and_lock_list(inode);
2309
2310                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2311                              !test_bit(WB_registered, &wb->state),
2312                              "bdi-%s not registered\n", wb->bdi->name);
2313
2314                         inode->dirtied_when = jiffies;
2315                         if (dirtytime)
2316                                 inode->dirtied_time_when = jiffies;
2317
2318                         if (inode->i_state & I_DIRTY)
2319                                 dirty_list = &wb->b_dirty;
2320                         else
2321                                 dirty_list = &wb->b_dirty_time;
2322
2323                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2324                                                                dirty_list);
2325
2326                         spin_unlock(&wb->list_lock);
2327                         trace_writeback_dirty_inode_enqueue(inode);
2328
2329                         /*
2330                          * If this is the first dirty inode for this bdi,
2331                          * we have to wake-up the corresponding bdi thread
2332                          * to make sure background write-back happens
2333                          * later.
2334                          */
2335                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2336                                 wb_wakeup_delayed(wb);
2337                         return;
2338                 }
2339         }
2340 out_unlock_inode:
2341         spin_unlock(&inode->i_lock);
2342 }
2343 EXPORT_SYMBOL(__mark_inode_dirty);
2344
2345 /*
2346  * The @s_sync_lock is used to serialise concurrent sync operations
2347  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2348  * Concurrent callers will block on the s_sync_lock rather than doing contending
2349  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2350  * has been issued up to the time this function is enter is guaranteed to be
2351  * completed by the time we have gained the lock and waited for all IO that is
2352  * in progress regardless of the order callers are granted the lock.
2353  */
2354 static void wait_sb_inodes(struct super_block *sb)
2355 {
2356         LIST_HEAD(sync_list);
2357
2358         /*
2359          * We need to be protected against the filesystem going from
2360          * r/o to r/w or vice versa.
2361          */
2362         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2363
2364         mutex_lock(&sb->s_sync_lock);
2365
2366         /*
2367          * Splice the writeback list onto a temporary list to avoid waiting on
2368          * inodes that have started writeback after this point.
2369          *
2370          * Use rcu_read_lock() to keep the inodes around until we have a
2371          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2372          * the local list because inodes can be dropped from either by writeback
2373          * completion.
2374          */
2375         rcu_read_lock();
2376         spin_lock_irq(&sb->s_inode_wblist_lock);
2377         list_splice_init(&sb->s_inodes_wb, &sync_list);
2378
2379         /*
2380          * Data integrity sync. Must wait for all pages under writeback, because
2381          * there may have been pages dirtied before our sync call, but which had
2382          * writeout started before we write it out.  In which case, the inode
2383          * may not be on the dirty list, but we still have to wait for that
2384          * writeout.
2385          */
2386         while (!list_empty(&sync_list)) {
2387                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2388                                                        i_wb_list);
2389                 struct address_space *mapping = inode->i_mapping;
2390
2391                 /*
2392                  * Move each inode back to the wb list before we drop the lock
2393                  * to preserve consistency between i_wb_list and the mapping
2394                  * writeback tag. Writeback completion is responsible to remove
2395                  * the inode from either list once the writeback tag is cleared.
2396                  */
2397                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2398
2399                 /*
2400                  * The mapping can appear untagged while still on-list since we
2401                  * do not have the mapping lock. Skip it here, wb completion
2402                  * will remove it.
2403                  */
2404                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2405                         continue;
2406
2407                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2408
2409                 spin_lock(&inode->i_lock);
2410                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2411                         spin_unlock(&inode->i_lock);
2412
2413                         spin_lock_irq(&sb->s_inode_wblist_lock);
2414                         continue;
2415                 }
2416                 __iget(inode);
2417                 spin_unlock(&inode->i_lock);
2418                 rcu_read_unlock();
2419
2420                 /*
2421                  * We keep the error status of individual mapping so that
2422                  * applications can catch the writeback error using fsync(2).
2423                  * See filemap_fdatawait_keep_errors() for details.
2424                  */
2425                 filemap_fdatawait_keep_errors(mapping);
2426
2427                 cond_resched();
2428
2429                 iput(inode);
2430
2431                 rcu_read_lock();
2432                 spin_lock_irq(&sb->s_inode_wblist_lock);
2433         }
2434         spin_unlock_irq(&sb->s_inode_wblist_lock);
2435         rcu_read_unlock();
2436         mutex_unlock(&sb->s_sync_lock);
2437 }
2438
2439 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2440                                      enum wb_reason reason, bool skip_if_busy)
2441 {
2442         struct backing_dev_info *bdi = sb->s_bdi;
2443         DEFINE_WB_COMPLETION(done, bdi);
2444         struct wb_writeback_work work = {
2445                 .sb                     = sb,
2446                 .sync_mode              = WB_SYNC_NONE,
2447                 .tagged_writepages      = 1,
2448                 .done                   = &done,
2449                 .nr_pages               = nr,
2450                 .reason                 = reason,
2451         };
2452
2453         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2454                 return;
2455         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2456
2457         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2458         wb_wait_for_completion(&done);
2459 }
2460
2461 /**
2462  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2463  * @sb: the superblock
2464  * @nr: the number of pages to write
2465  * @reason: reason why some writeback work initiated
2466  *
2467  * Start writeback on some inodes on this super_block. No guarantees are made
2468  * on how many (if any) will be written, and this function does not wait
2469  * for IO completion of submitted IO.
2470  */
2471 void writeback_inodes_sb_nr(struct super_block *sb,
2472                             unsigned long nr,
2473                             enum wb_reason reason)
2474 {
2475         __writeback_inodes_sb_nr(sb, nr, reason, false);
2476 }
2477 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2478
2479 /**
2480  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2481  * @sb: the superblock
2482  * @reason: reason why some writeback work was initiated
2483  *
2484  * Start writeback on some inodes on this super_block. No guarantees are made
2485  * on how many (if any) will be written, and this function does not wait
2486  * for IO completion of submitted IO.
2487  */
2488 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2489 {
2490         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2491 }
2492 EXPORT_SYMBOL(writeback_inodes_sb);
2493
2494 /**
2495  * try_to_writeback_inodes_sb - try to start writeback if none underway
2496  * @sb: the superblock
2497  * @reason: reason why some writeback work was initiated
2498  *
2499  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2500  */
2501 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2502 {
2503         if (!down_read_trylock(&sb->s_umount))
2504                 return;
2505
2506         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2507         up_read(&sb->s_umount);
2508 }
2509 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2510
2511 /**
2512  * sync_inodes_sb       -       sync sb inode pages
2513  * @sb: the superblock
2514  *
2515  * This function writes and waits on any dirty inode belonging to this
2516  * super_block.
2517  */
2518 void sync_inodes_sb(struct super_block *sb)
2519 {
2520         struct backing_dev_info *bdi = sb->s_bdi;
2521         DEFINE_WB_COMPLETION(done, bdi);
2522         struct wb_writeback_work work = {
2523                 .sb             = sb,
2524                 .sync_mode      = WB_SYNC_ALL,
2525                 .nr_pages       = LONG_MAX,
2526                 .range_cyclic   = 0,
2527                 .done           = &done,
2528                 .reason         = WB_REASON_SYNC,
2529                 .for_sync       = 1,
2530         };
2531
2532         /*
2533          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2534          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2535          * bdi_has_dirty() need to be written out too.
2536          */
2537         if (bdi == &noop_backing_dev_info)
2538                 return;
2539         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2540
2541         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2542         bdi_down_write_wb_switch_rwsem(bdi);
2543         bdi_split_work_to_wbs(bdi, &work, false);
2544         wb_wait_for_completion(&done);
2545         bdi_up_write_wb_switch_rwsem(bdi);
2546
2547         wait_sb_inodes(sb);
2548 }
2549 EXPORT_SYMBOL(sync_inodes_sb);
2550
2551 /**
2552  * write_inode_now      -       write an inode to disk
2553  * @inode: inode to write to disk
2554  * @sync: whether the write should be synchronous or not
2555  *
2556  * This function commits an inode to disk immediately if it is dirty. This is
2557  * primarily needed by knfsd.
2558  *
2559  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2560  */
2561 int write_inode_now(struct inode *inode, int sync)
2562 {
2563         struct writeback_control wbc = {
2564                 .nr_to_write = LONG_MAX,
2565                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2566                 .range_start = 0,
2567                 .range_end = LLONG_MAX,
2568         };
2569
2570         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2571                 wbc.nr_to_write = 0;
2572
2573         might_sleep();
2574         return writeback_single_inode(inode, &wbc);
2575 }
2576 EXPORT_SYMBOL(write_inode_now);
2577
2578 /**
2579  * sync_inode - write an inode and its pages to disk.
2580  * @inode: the inode to sync
2581  * @wbc: controls the writeback mode
2582  *
2583  * sync_inode() will write an inode and its pages to disk.  It will also
2584  * correctly update the inode on its superblock's dirty inode lists and will
2585  * update inode->i_state.
2586  *
2587  * The caller must have a ref on the inode.
2588  */
2589 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2590 {
2591         return writeback_single_inode(inode, wbc);
2592 }
2593 EXPORT_SYMBOL(sync_inode);
2594
2595 /**
2596  * sync_inode_metadata - write an inode to disk
2597  * @inode: the inode to sync
2598  * @wait: wait for I/O to complete.
2599  *
2600  * Write an inode to disk and adjust its dirty state after completion.
2601  *
2602  * Note: only writes the actual inode, no associated data or other metadata.
2603  */
2604 int sync_inode_metadata(struct inode *inode, int wait)
2605 {
2606         struct writeback_control wbc = {
2607                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2608                 .nr_to_write = 0, /* metadata-only */
2609         };
2610
2611         return sync_inode(inode, &wbc);
2612 }
2613 EXPORT_SYMBOL(sync_inode_metadata);