GNU Linux-libre 5.10.219-gnu1
[releases.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
142 static void inode_io_list_del_locked(struct inode *inode,
143                                      struct bdi_writeback *wb)
144 {
145         assert_spin_locked(&wb->list_lock);
146         assert_spin_locked(&inode->i_lock);
147
148         inode->i_state &= ~I_SYNC_QUEUED;
149         list_del_init(&inode->i_io_list);
150         wb_io_lists_depopulated(wb);
151 }
152
153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155         spin_lock_bh(&wb->work_lock);
156         if (test_bit(WB_registered, &wb->state))
157                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
158         spin_unlock_bh(&wb->work_lock);
159 }
160
161 static void finish_writeback_work(struct bdi_writeback *wb,
162                                   struct wb_writeback_work *work)
163 {
164         struct wb_completion *done = work->done;
165
166         if (work->auto_free)
167                 kfree(work);
168         if (done) {
169                 wait_queue_head_t *waitq = done->waitq;
170
171                 /* @done can't be accessed after the following dec */
172                 if (atomic_dec_and_test(&done->cnt))
173                         wake_up_all(waitq);
174         }
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178                           struct wb_writeback_work *work)
179 {
180         trace_writeback_queue(wb, work);
181
182         if (work->done)
183                 atomic_inc(&work->done->cnt);
184
185         spin_lock_bh(&wb->work_lock);
186
187         if (test_bit(WB_registered, &wb->state)) {
188                 list_add_tail(&work->list, &wb->work_list);
189                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
190         } else
191                 finish_writeback_work(wb, work);
192
193         spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208         atomic_dec(&done->cnt);         /* put down the initial count */
209         wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211
212 #ifdef CONFIG_CGROUP_WRITEBACK
213
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
237
238 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240                                         /* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
242                                         /* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
244                                         /* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
246
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249
250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252         struct backing_dev_info *bdi = inode_to_bdi(inode);
253         struct bdi_writeback *wb = NULL;
254
255         if (inode_cgwb_enabled(inode)) {
256                 struct cgroup_subsys_state *memcg_css;
257
258                 if (page) {
259                         memcg_css = mem_cgroup_css_from_page(page);
260                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261                 } else {
262                         /* must pin memcg_css, see wb_get_create() */
263                         memcg_css = task_get_css(current, memory_cgrp_id);
264                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265                         css_put(memcg_css);
266                 }
267         }
268
269         if (!wb)
270                 wb = &bdi->wb;
271
272         /*
273          * There may be multiple instances of this function racing to
274          * update the same inode.  Use cmpxchg() to tell the winner.
275          */
276         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277                 wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291         __releases(&inode->i_lock)
292         __acquires(&wb->list_lock)
293 {
294         while (true) {
295                 struct bdi_writeback *wb = inode_to_wb(inode);
296
297                 /*
298                  * inode_to_wb() association is protected by both
299                  * @inode->i_lock and @wb->list_lock but list_lock nests
300                  * outside i_lock.  Drop i_lock and verify that the
301                  * association hasn't changed after acquiring list_lock.
302                  */
303                 wb_get(wb);
304                 spin_unlock(&inode->i_lock);
305                 spin_lock(&wb->list_lock);
306
307                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
308                 if (likely(wb == inode->i_wb)) {
309                         wb_put(wb);     /* @inode already has ref */
310                         return wb;
311                 }
312
313                 spin_unlock(&wb->list_lock);
314                 wb_put(wb);
315                 cpu_relax();
316                 spin_lock(&inode->i_lock);
317         }
318 }
319
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328         __acquires(&wb->list_lock)
329 {
330         spin_lock(&inode->i_lock);
331         return locked_inode_to_wb_and_lock_list(inode);
332 }
333
334 struct inode_switch_wbs_context {
335         struct inode            *inode;
336         struct bdi_writeback    *new_wb;
337
338         struct rcu_head         rcu_head;
339         struct work_struct      work;
340 };
341
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344         down_write(&bdi->wb_switch_rwsem);
345 }
346
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349         up_write(&bdi->wb_switch_rwsem);
350 }
351
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354         struct inode_switch_wbs_context *isw =
355                 container_of(work, struct inode_switch_wbs_context, work);
356         struct inode *inode = isw->inode;
357         struct backing_dev_info *bdi = inode_to_bdi(inode);
358         struct address_space *mapping = inode->i_mapping;
359         struct bdi_writeback *old_wb = inode->i_wb;
360         struct bdi_writeback *new_wb = isw->new_wb;
361         XA_STATE(xas, &mapping->i_pages, 0);
362         struct page *page;
363         bool switched = false;
364
365         /*
366          * If @inode switches cgwb membership while sync_inodes_sb() is
367          * being issued, sync_inodes_sb() might miss it.  Synchronize.
368          */
369         down_read(&bdi->wb_switch_rwsem);
370
371         /*
372          * By the time control reaches here, RCU grace period has passed
373          * since I_WB_SWITCH assertion and all wb stat update transactions
374          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375          * synchronizing against the i_pages lock.
376          *
377          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378          * gives us exclusion against all wb related operations on @inode
379          * including IO list manipulations and stat updates.
380          */
381         if (old_wb < new_wb) {
382                 spin_lock(&old_wb->list_lock);
383                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384         } else {
385                 spin_lock(&new_wb->list_lock);
386                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387         }
388         spin_lock(&inode->i_lock);
389         xa_lock_irq(&mapping->i_pages);
390
391         /*
392          * Once I_FREEING is visible under i_lock, the eviction path owns
393          * the inode and we shouldn't modify ->i_io_list.
394          */
395         if (unlikely(inode->i_state & I_FREEING))
396                 goto skip_switch;
397
398         trace_inode_switch_wbs(inode, old_wb, new_wb);
399
400         /*
401          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403          * pages actually under writeback.
404          */
405         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406                 if (PageDirty(page)) {
407                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
408                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
409                 }
410         }
411
412         xas_set(&xas, 0);
413         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414                 WARN_ON_ONCE(!PageWriteback(page));
415                 dec_wb_stat(old_wb, WB_WRITEBACK);
416                 inc_wb_stat(new_wb, WB_WRITEBACK);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  The specific list
423          * @inode was on is ignored and the inode is put on ->b_dirty which
424          * is always correct including from ->b_dirty_time.  The transfer
425          * preserves @inode->dirtied_when ordering.
426          */
427         if (!list_empty(&inode->i_io_list)) {
428                 struct inode *pos;
429
430                 inode_io_list_del_locked(inode, old_wb);
431                 inode->i_wb = new_wb;
432                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433                         if (time_after_eq(inode->dirtied_when,
434                                           pos->dirtied_when))
435                                 break;
436                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437         } else {
438                 inode->i_wb = new_wb;
439         }
440
441         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442         inode->i_wb_frn_winner = 0;
443         inode->i_wb_frn_avg_time = 0;
444         inode->i_wb_frn_history = 0;
445         switched = true;
446 skip_switch:
447         /*
448          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449          * ensures that the new wb is visible if they see !I_WB_SWITCH.
450          */
451         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452
453         xa_unlock_irq(&mapping->i_pages);
454         spin_unlock(&inode->i_lock);
455         spin_unlock(&new_wb->list_lock);
456         spin_unlock(&old_wb->list_lock);
457
458         up_read(&bdi->wb_switch_rwsem);
459
460         if (switched) {
461                 wb_wakeup(new_wb);
462                 wb_put(old_wb);
463         }
464         wb_put(new_wb);
465
466         iput(inode);
467         kfree(isw);
468
469         atomic_dec(&isw_nr_in_flight);
470 }
471
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474         struct inode_switch_wbs_context *isw = container_of(rcu_head,
475                                 struct inode_switch_wbs_context, rcu_head);
476
477         /* needs to grab bh-unsafe locks, bounce to work item */
478         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479         queue_work(isw_wq, &isw->work);
480 }
481
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492         struct backing_dev_info *bdi = inode_to_bdi(inode);
493         struct cgroup_subsys_state *memcg_css;
494         struct inode_switch_wbs_context *isw;
495
496         /* noop if seems to be already in progress */
497         if (inode->i_state & I_WB_SWITCH)
498                 return;
499
500         /* avoid queueing a new switch if too many are already in flight */
501         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502                 return;
503
504         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505         if (!isw)
506                 return;
507
508         atomic_inc(&isw_nr_in_flight);
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css && !css_tryget(memcg_css))
514                 memcg_css = NULL;
515         rcu_read_unlock();
516         if (!memcg_css)
517                 goto out_free;
518
519         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
520         css_put(memcg_css);
521         if (!isw->new_wb)
522                 goto out_free;
523
524         /* while holding I_WB_SWITCH, no one else can update the association */
525         spin_lock(&inode->i_lock);
526         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
528             inode_to_wb(inode) == isw->new_wb) {
529                 spin_unlock(&inode->i_lock);
530                 goto out_free;
531         }
532         inode->i_state |= I_WB_SWITCH;
533         __iget(inode);
534         spin_unlock(&inode->i_lock);
535
536         isw->inode = inode;
537
538         /*
539          * In addition to synchronizing among switchers, I_WB_SWITCH tells
540          * the RCU protected stat update paths to grab the i_page
541          * lock so that stat transfer can synchronize against them.
542          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
543          */
544         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
545         return;
546
547 out_free:
548         atomic_dec(&isw_nr_in_flight);
549         if (isw->new_wb)
550                 wb_put(isw->new_wb);
551         kfree(isw);
552 }
553
554 /**
555  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
556  * @wbc: writeback_control of interest
557  * @inode: target inode
558  *
559  * @inode is locked and about to be written back under the control of @wbc.
560  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
561  * writeback completion, wbc_detach_inode() should be called.  This is used
562  * to track the cgroup writeback context.
563  */
564 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
565                                  struct inode *inode)
566 {
567         if (!inode_cgwb_enabled(inode)) {
568                 spin_unlock(&inode->i_lock);
569                 return;
570         }
571
572         wbc->wb = inode_to_wb(inode);
573         wbc->inode = inode;
574
575         wbc->wb_id = wbc->wb->memcg_css->id;
576         wbc->wb_lcand_id = inode->i_wb_frn_winner;
577         wbc->wb_tcand_id = 0;
578         wbc->wb_bytes = 0;
579         wbc->wb_lcand_bytes = 0;
580         wbc->wb_tcand_bytes = 0;
581
582         wb_get(wbc->wb);
583         spin_unlock(&inode->i_lock);
584
585         /*
586          * A dying wb indicates that either the blkcg associated with the
587          * memcg changed or the associated memcg is dying.  In the first
588          * case, a replacement wb should already be available and we should
589          * refresh the wb immediately.  In the second case, trying to
590          * refresh will keep failing.
591          */
592         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
593                 inode_switch_wbs(inode, wbc->wb_id);
594 }
595 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
596
597 /**
598  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599  * @wbc: writeback_control of the just finished writeback
600  *
601  * To be called after a writeback attempt of an inode finishes and undoes
602  * wbc_attach_and_unlock_inode().  Can be called under any context.
603  *
604  * As concurrent write sharing of an inode is expected to be very rare and
605  * memcg only tracks page ownership on first-use basis severely confining
606  * the usefulness of such sharing, cgroup writeback tracks ownership
607  * per-inode.  While the support for concurrent write sharing of an inode
608  * is deemed unnecessary, an inode being written to by different cgroups at
609  * different points in time is a lot more common, and, more importantly,
610  * charging only by first-use can too readily lead to grossly incorrect
611  * behaviors (single foreign page can lead to gigabytes of writeback to be
612  * incorrectly attributed).
613  *
614  * To resolve this issue, cgroup writeback detects the majority dirtier of
615  * an inode and transfers the ownership to it.  To avoid unnnecessary
616  * oscillation, the detection mechanism keeps track of history and gives
617  * out the switch verdict only if the foreign usage pattern is stable over
618  * a certain amount of time and/or writeback attempts.
619  *
620  * On each writeback attempt, @wbc tries to detect the majority writer
621  * using Boyer-Moore majority vote algorithm.  In addition to the byte
622  * count from the majority voting, it also counts the bytes written for the
623  * current wb and the last round's winner wb (max of last round's current
624  * wb, the winner from two rounds ago, and the last round's majority
625  * candidate).  Keeping track of the historical winner helps the algorithm
626  * to semi-reliably detect the most active writer even when it's not the
627  * absolute majority.
628  *
629  * Once the winner of the round is determined, whether the winner is
630  * foreign or not and how much IO time the round consumed is recorded in
631  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
632  * over a certain threshold, the switch verdict is given.
633  */
634 void wbc_detach_inode(struct writeback_control *wbc)
635 {
636         struct bdi_writeback *wb = wbc->wb;
637         struct inode *inode = wbc->inode;
638         unsigned long avg_time, max_bytes, max_time;
639         u16 history;
640         int max_id;
641
642         if (!wb)
643                 return;
644
645         history = inode->i_wb_frn_history;
646         avg_time = inode->i_wb_frn_avg_time;
647
648         /* pick the winner of this round */
649         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
650             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
651                 max_id = wbc->wb_id;
652                 max_bytes = wbc->wb_bytes;
653         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
654                 max_id = wbc->wb_lcand_id;
655                 max_bytes = wbc->wb_lcand_bytes;
656         } else {
657                 max_id = wbc->wb_tcand_id;
658                 max_bytes = wbc->wb_tcand_bytes;
659         }
660
661         /*
662          * Calculate the amount of IO time the winner consumed and fold it
663          * into the running average kept per inode.  If the consumed IO
664          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665          * deciding whether to switch or not.  This is to prevent one-off
666          * small dirtiers from skewing the verdict.
667          */
668         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
669                                 wb->avg_write_bandwidth);
670         if (avg_time)
671                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
672                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
673         else
674                 avg_time = max_time;    /* immediate catch up on first run */
675
676         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
677                 int slots;
678
679                 /*
680                  * The switch verdict is reached if foreign wb's consume
681                  * more than a certain proportion of IO time in a
682                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
683                  * history mask where each bit represents one sixteenth of
684                  * the period.  Determine the number of slots to shift into
685                  * history from @max_time.
686                  */
687                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
688                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
689                 history <<= slots;
690                 if (wbc->wb_id != max_id)
691                         history |= (1U << slots) - 1;
692
693                 if (history)
694                         trace_inode_foreign_history(inode, wbc, history);
695
696                 /*
697                  * Switch if the current wb isn't the consistent winner.
698                  * If there are multiple closely competing dirtiers, the
699                  * inode may switch across them repeatedly over time, which
700                  * is okay.  The main goal is avoiding keeping an inode on
701                  * the wrong wb for an extended period of time.
702                  */
703                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
704                         inode_switch_wbs(inode, max_id);
705         }
706
707         /*
708          * Multiple instances of this function may race to update the
709          * following fields but we don't mind occassional inaccuracies.
710          */
711         inode->i_wb_frn_winner = max_id;
712         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
713         inode->i_wb_frn_history = history;
714
715         wb_put(wbc->wb);
716         wbc->wb = NULL;
717 }
718 EXPORT_SYMBOL_GPL(wbc_detach_inode);
719
720 /**
721  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
722  * @wbc: writeback_control of the writeback in progress
723  * @page: page being written out
724  * @bytes: number of bytes being written out
725  *
726  * @bytes from @page are about to written out during the writeback
727  * controlled by @wbc.  Keep the book for foreign inode detection.  See
728  * wbc_detach_inode().
729  */
730 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
731                               size_t bytes)
732 {
733         struct cgroup_subsys_state *css;
734         int id;
735
736         /*
737          * pageout() path doesn't attach @wbc to the inode being written
738          * out.  This is intentional as we don't want the function to block
739          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
740          * regular writeback instead of writing things out itself.
741          */
742         if (!wbc->wb || wbc->no_cgroup_owner)
743                 return;
744
745         css = mem_cgroup_css_from_page(page);
746         /* dead cgroups shouldn't contribute to inode ownership arbitration */
747         if (!(css->flags & CSS_ONLINE))
748                 return;
749
750         id = css->id;
751
752         if (id == wbc->wb_id) {
753                 wbc->wb_bytes += bytes;
754                 return;
755         }
756
757         if (id == wbc->wb_lcand_id)
758                 wbc->wb_lcand_bytes += bytes;
759
760         /* Boyer-Moore majority vote algorithm */
761         if (!wbc->wb_tcand_bytes)
762                 wbc->wb_tcand_id = id;
763         if (id == wbc->wb_tcand_id)
764                 wbc->wb_tcand_bytes += bytes;
765         else
766                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
767 }
768 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
769
770 /**
771  * inode_congested - test whether an inode is congested
772  * @inode: inode to test for congestion (may be NULL)
773  * @cong_bits: mask of WB_[a]sync_congested bits to test
774  *
775  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
776  * bits to test and the return value is the mask of set bits.
777  *
778  * If cgroup writeback is enabled for @inode, the congestion state is
779  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
780  * associated with @inode is congested; otherwise, the root wb's congestion
781  * state is used.
782  *
783  * @inode is allowed to be NULL as this function is often called on
784  * mapping->host which is NULL for the swapper space.
785  */
786 int inode_congested(struct inode *inode, int cong_bits)
787 {
788         /*
789          * Once set, ->i_wb never becomes NULL while the inode is alive.
790          * Start transaction iff ->i_wb is visible.
791          */
792         if (inode && inode_to_wb_is_valid(inode)) {
793                 struct bdi_writeback *wb;
794                 struct wb_lock_cookie lock_cookie = {};
795                 bool congested;
796
797                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
798                 congested = wb_congested(wb, cong_bits);
799                 unlocked_inode_to_wb_end(inode, &lock_cookie);
800                 return congested;
801         }
802
803         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
804 }
805 EXPORT_SYMBOL_GPL(inode_congested);
806
807 /**
808  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
809  * @wb: target bdi_writeback to split @nr_pages to
810  * @nr_pages: number of pages to write for the whole bdi
811  *
812  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
813  * relation to the total write bandwidth of all wb's w/ dirty inodes on
814  * @wb->bdi.
815  */
816 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
817 {
818         unsigned long this_bw = wb->avg_write_bandwidth;
819         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
820
821         if (nr_pages == LONG_MAX)
822                 return LONG_MAX;
823
824         /*
825          * This may be called on clean wb's and proportional distribution
826          * may not make sense, just use the original @nr_pages in those
827          * cases.  In general, we wanna err on the side of writing more.
828          */
829         if (!tot_bw || this_bw >= tot_bw)
830                 return nr_pages;
831         else
832                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
833 }
834
835 /**
836  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
837  * @bdi: target backing_dev_info
838  * @base_work: wb_writeback_work to issue
839  * @skip_if_busy: skip wb's which already have writeback in progress
840  *
841  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
842  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
843  * distributed to the busy wbs according to each wb's proportion in the
844  * total active write bandwidth of @bdi.
845  */
846 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
847                                   struct wb_writeback_work *base_work,
848                                   bool skip_if_busy)
849 {
850         struct bdi_writeback *last_wb = NULL;
851         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
852                                               struct bdi_writeback, bdi_node);
853
854         might_sleep();
855 restart:
856         rcu_read_lock();
857         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
858                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
859                 struct wb_writeback_work fallback_work;
860                 struct wb_writeback_work *work;
861                 long nr_pages;
862
863                 if (last_wb) {
864                         wb_put(last_wb);
865                         last_wb = NULL;
866                 }
867
868                 /* SYNC_ALL writes out I_DIRTY_TIME too */
869                 if (!wb_has_dirty_io(wb) &&
870                     (base_work->sync_mode == WB_SYNC_NONE ||
871                      list_empty(&wb->b_dirty_time)))
872                         continue;
873                 if (skip_if_busy && writeback_in_progress(wb))
874                         continue;
875
876                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
877
878                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
879                 if (work) {
880                         *work = *base_work;
881                         work->nr_pages = nr_pages;
882                         work->auto_free = 1;
883                         wb_queue_work(wb, work);
884                         continue;
885                 }
886
887                 /*
888                  * If wb_tryget fails, the wb has been shutdown, skip it.
889                  *
890                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
891                  * continuing iteration from @wb after dropping and
892                  * regrabbing rcu read lock.
893                  */
894                 if (!wb_tryget(wb))
895                         continue;
896
897                 /* alloc failed, execute synchronously using on-stack fallback */
898                 work = &fallback_work;
899                 *work = *base_work;
900                 work->nr_pages = nr_pages;
901                 work->auto_free = 0;
902                 work->done = &fallback_work_done;
903
904                 wb_queue_work(wb, work);
905                 last_wb = wb;
906
907                 rcu_read_unlock();
908                 wb_wait_for_completion(&fallback_work_done);
909                 goto restart;
910         }
911         rcu_read_unlock();
912
913         if (last_wb)
914                 wb_put(last_wb);
915 }
916
917 /**
918  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
919  * @bdi_id: target bdi id
920  * @memcg_id: target memcg css id
921  * @nr: number of pages to write, 0 for best-effort dirty flushing
922  * @reason: reason why some writeback work initiated
923  * @done: target wb_completion
924  *
925  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
926  * with the specified parameters.
927  */
928 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
929                            enum wb_reason reason, struct wb_completion *done)
930 {
931         struct backing_dev_info *bdi;
932         struct cgroup_subsys_state *memcg_css;
933         struct bdi_writeback *wb;
934         struct wb_writeback_work *work;
935         int ret;
936
937         /* lookup bdi and memcg */
938         bdi = bdi_get_by_id(bdi_id);
939         if (!bdi)
940                 return -ENOENT;
941
942         rcu_read_lock();
943         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
944         if (memcg_css && !css_tryget(memcg_css))
945                 memcg_css = NULL;
946         rcu_read_unlock();
947         if (!memcg_css) {
948                 ret = -ENOENT;
949                 goto out_bdi_put;
950         }
951
952         /*
953          * And find the associated wb.  If the wb isn't there already
954          * there's nothing to flush, don't create one.
955          */
956         wb = wb_get_lookup(bdi, memcg_css);
957         if (!wb) {
958                 ret = -ENOENT;
959                 goto out_css_put;
960         }
961
962         /*
963          * If @nr is zero, the caller is attempting to write out most of
964          * the currently dirty pages.  Let's take the current dirty page
965          * count and inflate it by 25% which should be large enough to
966          * flush out most dirty pages while avoiding getting livelocked by
967          * concurrent dirtiers.
968          */
969         if (!nr) {
970                 unsigned long filepages, headroom, dirty, writeback;
971
972                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
973                                       &writeback);
974                 nr = dirty * 10 / 8;
975         }
976
977         /* issue the writeback work */
978         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
979         if (work) {
980                 work->nr_pages = nr;
981                 work->sync_mode = WB_SYNC_NONE;
982                 work->range_cyclic = 1;
983                 work->reason = reason;
984                 work->done = done;
985                 work->auto_free = 1;
986                 wb_queue_work(wb, work);
987                 ret = 0;
988         } else {
989                 ret = -ENOMEM;
990         }
991
992         wb_put(wb);
993 out_css_put:
994         css_put(memcg_css);
995 out_bdi_put:
996         bdi_put(bdi);
997         return ret;
998 }
999
1000 /**
1001  * cgroup_writeback_umount - flush inode wb switches for umount
1002  *
1003  * This function is called when a super_block is about to be destroyed and
1004  * flushes in-flight inode wb switches.  An inode wb switch goes through
1005  * RCU and then workqueue, so the two need to be flushed in order to ensure
1006  * that all previously scheduled switches are finished.  As wb switches are
1007  * rare occurrences and synchronize_rcu() can take a while, perform
1008  * flushing iff wb switches are in flight.
1009  */
1010 void cgroup_writeback_umount(void)
1011 {
1012         if (atomic_read(&isw_nr_in_flight)) {
1013                 /*
1014                  * Use rcu_barrier() to wait for all pending callbacks to
1015                  * ensure that all in-flight wb switches are in the workqueue.
1016                  */
1017                 rcu_barrier();
1018                 flush_workqueue(isw_wq);
1019         }
1020 }
1021
1022 static int __init cgroup_writeback_init(void)
1023 {
1024         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1025         if (!isw_wq)
1026                 return -ENOMEM;
1027         return 0;
1028 }
1029 fs_initcall(cgroup_writeback_init);
1030
1031 #else   /* CONFIG_CGROUP_WRITEBACK */
1032
1033 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1034 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1035
1036 static struct bdi_writeback *
1037 locked_inode_to_wb_and_lock_list(struct inode *inode)
1038         __releases(&inode->i_lock)
1039         __acquires(&wb->list_lock)
1040 {
1041         struct bdi_writeback *wb = inode_to_wb(inode);
1042
1043         spin_unlock(&inode->i_lock);
1044         spin_lock(&wb->list_lock);
1045         return wb;
1046 }
1047
1048 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1049         __acquires(&wb->list_lock)
1050 {
1051         struct bdi_writeback *wb = inode_to_wb(inode);
1052
1053         spin_lock(&wb->list_lock);
1054         return wb;
1055 }
1056
1057 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1058 {
1059         return nr_pages;
1060 }
1061
1062 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1063                                   struct wb_writeback_work *base_work,
1064                                   bool skip_if_busy)
1065 {
1066         might_sleep();
1067
1068         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1069                 base_work->auto_free = 0;
1070                 wb_queue_work(&bdi->wb, base_work);
1071         }
1072 }
1073
1074 #endif  /* CONFIG_CGROUP_WRITEBACK */
1075
1076 /*
1077  * Add in the number of potentially dirty inodes, because each inode
1078  * write can dirty pagecache in the underlying blockdev.
1079  */
1080 static unsigned long get_nr_dirty_pages(void)
1081 {
1082         return global_node_page_state(NR_FILE_DIRTY) +
1083                 get_nr_dirty_inodes();
1084 }
1085
1086 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1087 {
1088         if (!wb_has_dirty_io(wb))
1089                 return;
1090
1091         /*
1092          * All callers of this function want to start writeback of all
1093          * dirty pages. Places like vmscan can call this at a very
1094          * high frequency, causing pointless allocations of tons of
1095          * work items and keeping the flusher threads busy retrieving
1096          * that work. Ensure that we only allow one of them pending and
1097          * inflight at the time.
1098          */
1099         if (test_bit(WB_start_all, &wb->state) ||
1100             test_and_set_bit(WB_start_all, &wb->state))
1101                 return;
1102
1103         wb->start_all_reason = reason;
1104         wb_wakeup(wb);
1105 }
1106
1107 /**
1108  * wb_start_background_writeback - start background writeback
1109  * @wb: bdi_writback to write from
1110  *
1111  * Description:
1112  *   This makes sure WB_SYNC_NONE background writeback happens. When
1113  *   this function returns, it is only guaranteed that for given wb
1114  *   some IO is happening if we are over background dirty threshold.
1115  *   Caller need not hold sb s_umount semaphore.
1116  */
1117 void wb_start_background_writeback(struct bdi_writeback *wb)
1118 {
1119         /*
1120          * We just wake up the flusher thread. It will perform background
1121          * writeback as soon as there is no other work to do.
1122          */
1123         trace_writeback_wake_background(wb);
1124         wb_wakeup(wb);
1125 }
1126
1127 /*
1128  * Remove the inode from the writeback list it is on.
1129  */
1130 void inode_io_list_del(struct inode *inode)
1131 {
1132         struct bdi_writeback *wb;
1133
1134         wb = inode_to_wb_and_lock_list(inode);
1135         spin_lock(&inode->i_lock);
1136         inode_io_list_del_locked(inode, wb);
1137         spin_unlock(&inode->i_lock);
1138         spin_unlock(&wb->list_lock);
1139 }
1140 EXPORT_SYMBOL(inode_io_list_del);
1141
1142 /*
1143  * mark an inode as under writeback on the sb
1144  */
1145 void sb_mark_inode_writeback(struct inode *inode)
1146 {
1147         struct super_block *sb = inode->i_sb;
1148         unsigned long flags;
1149
1150         if (list_empty(&inode->i_wb_list)) {
1151                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1152                 if (list_empty(&inode->i_wb_list)) {
1153                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1154                         trace_sb_mark_inode_writeback(inode);
1155                 }
1156                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1157         }
1158 }
1159
1160 /*
1161  * clear an inode as under writeback on the sb
1162  */
1163 void sb_clear_inode_writeback(struct inode *inode)
1164 {
1165         struct super_block *sb = inode->i_sb;
1166         unsigned long flags;
1167
1168         if (!list_empty(&inode->i_wb_list)) {
1169                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1170                 if (!list_empty(&inode->i_wb_list)) {
1171                         list_del_init(&inode->i_wb_list);
1172                         trace_sb_clear_inode_writeback(inode);
1173                 }
1174                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1175         }
1176 }
1177
1178 /*
1179  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1180  * furthest end of its superblock's dirty-inode list.
1181  *
1182  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1183  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1184  * the case then the inode must have been redirtied while it was being written
1185  * out and we don't reset its dirtied_when.
1186  */
1187 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1188 {
1189         assert_spin_locked(&inode->i_lock);
1190
1191         if (!list_empty(&wb->b_dirty)) {
1192                 struct inode *tail;
1193
1194                 tail = wb_inode(wb->b_dirty.next);
1195                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1196                         inode->dirtied_when = jiffies;
1197         }
1198         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1199         inode->i_state &= ~I_SYNC_QUEUED;
1200 }
1201
1202 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1203 {
1204         spin_lock(&inode->i_lock);
1205         redirty_tail_locked(inode, wb);
1206         spin_unlock(&inode->i_lock);
1207 }
1208
1209 /*
1210  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1211  */
1212 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1213 {
1214         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1215 }
1216
1217 static void inode_sync_complete(struct inode *inode)
1218 {
1219         inode->i_state &= ~I_SYNC;
1220         /* If inode is clean an unused, put it into LRU now... */
1221         inode_add_lru(inode);
1222         /* Waiters must see I_SYNC cleared before being woken up */
1223         smp_mb();
1224         wake_up_bit(&inode->i_state, __I_SYNC);
1225 }
1226
1227 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1228 {
1229         bool ret = time_after(inode->dirtied_when, t);
1230 #ifndef CONFIG_64BIT
1231         /*
1232          * For inodes being constantly redirtied, dirtied_when can get stuck.
1233          * It _appears_ to be in the future, but is actually in distant past.
1234          * This test is necessary to prevent such wrapped-around relative times
1235          * from permanently stopping the whole bdi writeback.
1236          */
1237         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1238 #endif
1239         return ret;
1240 }
1241
1242 #define EXPIRE_DIRTY_ATIME 0x0001
1243
1244 /*
1245  * Move expired (dirtied before dirtied_before) dirty inodes from
1246  * @delaying_queue to @dispatch_queue.
1247  */
1248 static int move_expired_inodes(struct list_head *delaying_queue,
1249                                struct list_head *dispatch_queue,
1250                                unsigned long dirtied_before)
1251 {
1252         LIST_HEAD(tmp);
1253         struct list_head *pos, *node;
1254         struct super_block *sb = NULL;
1255         struct inode *inode;
1256         int do_sb_sort = 0;
1257         int moved = 0;
1258
1259         while (!list_empty(delaying_queue)) {
1260                 inode = wb_inode(delaying_queue->prev);
1261                 if (inode_dirtied_after(inode, dirtied_before))
1262                         break;
1263                 list_move(&inode->i_io_list, &tmp);
1264                 moved++;
1265                 spin_lock(&inode->i_lock);
1266                 inode->i_state |= I_SYNC_QUEUED;
1267                 spin_unlock(&inode->i_lock);
1268                 if (sb_is_blkdev_sb(inode->i_sb))
1269                         continue;
1270                 if (sb && sb != inode->i_sb)
1271                         do_sb_sort = 1;
1272                 sb = inode->i_sb;
1273         }
1274
1275         /* just one sb in list, splice to dispatch_queue and we're done */
1276         if (!do_sb_sort) {
1277                 list_splice(&tmp, dispatch_queue);
1278                 goto out;
1279         }
1280
1281         /* Move inodes from one superblock together */
1282         while (!list_empty(&tmp)) {
1283                 sb = wb_inode(tmp.prev)->i_sb;
1284                 list_for_each_prev_safe(pos, node, &tmp) {
1285                         inode = wb_inode(pos);
1286                         if (inode->i_sb == sb)
1287                                 list_move(&inode->i_io_list, dispatch_queue);
1288                 }
1289         }
1290 out:
1291         return moved;
1292 }
1293
1294 /*
1295  * Queue all expired dirty inodes for io, eldest first.
1296  * Before
1297  *         newly dirtied     b_dirty    b_io    b_more_io
1298  *         =============>    gf         edc     BA
1299  * After
1300  *         newly dirtied     b_dirty    b_io    b_more_io
1301  *         =============>    g          fBAedc
1302  *                                           |
1303  *                                           +--> dequeue for IO
1304  */
1305 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1306                      unsigned long dirtied_before)
1307 {
1308         int moved;
1309         unsigned long time_expire_jif = dirtied_before;
1310
1311         assert_spin_locked(&wb->list_lock);
1312         list_splice_init(&wb->b_more_io, &wb->b_io);
1313         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1314         if (!work->for_sync)
1315                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1316         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1317                                      time_expire_jif);
1318         if (moved)
1319                 wb_io_lists_populated(wb);
1320         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1321 }
1322
1323 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1324 {
1325         int ret;
1326
1327         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1328                 trace_writeback_write_inode_start(inode, wbc);
1329                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1330                 trace_writeback_write_inode(inode, wbc);
1331                 return ret;
1332         }
1333         return 0;
1334 }
1335
1336 /*
1337  * Wait for writeback on an inode to complete. Called with i_lock held.
1338  * Caller must make sure inode cannot go away when we drop i_lock.
1339  */
1340 static void __inode_wait_for_writeback(struct inode *inode)
1341         __releases(inode->i_lock)
1342         __acquires(inode->i_lock)
1343 {
1344         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1345         wait_queue_head_t *wqh;
1346
1347         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1348         while (inode->i_state & I_SYNC) {
1349                 spin_unlock(&inode->i_lock);
1350                 __wait_on_bit(wqh, &wq, bit_wait,
1351                               TASK_UNINTERRUPTIBLE);
1352                 spin_lock(&inode->i_lock);
1353         }
1354 }
1355
1356 /*
1357  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1358  */
1359 void inode_wait_for_writeback(struct inode *inode)
1360 {
1361         spin_lock(&inode->i_lock);
1362         __inode_wait_for_writeback(inode);
1363         spin_unlock(&inode->i_lock);
1364 }
1365
1366 /*
1367  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1368  * held and drops it. It is aimed for callers not holding any inode reference
1369  * so once i_lock is dropped, inode can go away.
1370  */
1371 static void inode_sleep_on_writeback(struct inode *inode)
1372         __releases(inode->i_lock)
1373 {
1374         DEFINE_WAIT(wait);
1375         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1376         int sleep;
1377
1378         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1379         sleep = inode->i_state & I_SYNC;
1380         spin_unlock(&inode->i_lock);
1381         if (sleep)
1382                 schedule();
1383         finish_wait(wqh, &wait);
1384 }
1385
1386 /*
1387  * Find proper writeback list for the inode depending on its current state and
1388  * possibly also change of its state while we were doing writeback.  Here we
1389  * handle things such as livelock prevention or fairness of writeback among
1390  * inodes. This function can be called only by flusher thread - noone else
1391  * processes all inodes in writeback lists and requeueing inodes behind flusher
1392  * thread's back can have unexpected consequences.
1393  */
1394 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1395                           struct writeback_control *wbc)
1396 {
1397         if (inode->i_state & I_FREEING)
1398                 return;
1399
1400         /*
1401          * Sync livelock prevention. Each inode is tagged and synced in one
1402          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1403          * the dirty time to prevent enqueue and sync it again.
1404          */
1405         if ((inode->i_state & I_DIRTY) &&
1406             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1407                 inode->dirtied_when = jiffies;
1408
1409         if (wbc->pages_skipped) {
1410                 /*
1411                  * writeback is not making progress due to locked
1412                  * buffers. Skip this inode for now.
1413                  */
1414                 redirty_tail_locked(inode, wb);
1415                 return;
1416         }
1417
1418         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1419                 /*
1420                  * We didn't write back all the pages.  nfs_writepages()
1421                  * sometimes bales out without doing anything.
1422                  */
1423                 if (wbc->nr_to_write <= 0) {
1424                         /* Slice used up. Queue for next turn. */
1425                         requeue_io(inode, wb);
1426                 } else {
1427                         /*
1428                          * Writeback blocked by something other than
1429                          * congestion. Delay the inode for some time to
1430                          * avoid spinning on the CPU (100% iowait)
1431                          * retrying writeback of the dirty page/inode
1432                          * that cannot be performed immediately.
1433                          */
1434                         redirty_tail_locked(inode, wb);
1435                 }
1436         } else if (inode->i_state & I_DIRTY) {
1437                 /*
1438                  * Filesystems can dirty the inode during writeback operations,
1439                  * such as delayed allocation during submission or metadata
1440                  * updates after data IO completion.
1441                  */
1442                 redirty_tail_locked(inode, wb);
1443         } else if (inode->i_state & I_DIRTY_TIME) {
1444                 inode->dirtied_when = jiffies;
1445                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1446                 inode->i_state &= ~I_SYNC_QUEUED;
1447         } else {
1448                 /* The inode is clean. Remove from writeback lists. */
1449                 inode_io_list_del_locked(inode, wb);
1450         }
1451 }
1452
1453 /*
1454  * Write out an inode and its dirty pages. Do not update the writeback list
1455  * linkage. That is left to the caller. The caller is also responsible for
1456  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1457  */
1458 static int
1459 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1460 {
1461         struct address_space *mapping = inode->i_mapping;
1462         long nr_to_write = wbc->nr_to_write;
1463         unsigned dirty;
1464         int ret;
1465
1466         WARN_ON(!(inode->i_state & I_SYNC));
1467
1468         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1469
1470         ret = do_writepages(mapping, wbc);
1471
1472         /*
1473          * Make sure to wait on the data before writing out the metadata.
1474          * This is important for filesystems that modify metadata on data
1475          * I/O completion. We don't do it for sync(2) writeback because it has a
1476          * separate, external IO completion path and ->sync_fs for guaranteeing
1477          * inode metadata is written back correctly.
1478          */
1479         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1480                 int err = filemap_fdatawait(mapping);
1481                 if (ret == 0)
1482                         ret = err;
1483         }
1484
1485         /*
1486          * If the inode has dirty timestamps and we need to write them, call
1487          * mark_inode_dirty_sync() to notify the filesystem about it and to
1488          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1489          */
1490         if ((inode->i_state & I_DIRTY_TIME) &&
1491             (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1492              time_after(jiffies, inode->dirtied_time_when +
1493                         dirtytime_expire_interval * HZ))) {
1494                 trace_writeback_lazytime(inode);
1495                 mark_inode_dirty_sync(inode);
1496         }
1497
1498         /*
1499          * Some filesystems may redirty the inode during the writeback
1500          * due to delalloc, clear dirty metadata flags right before
1501          * write_inode()
1502          */
1503         spin_lock(&inode->i_lock);
1504         dirty = inode->i_state & I_DIRTY;
1505         inode->i_state &= ~dirty;
1506
1507         /*
1508          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1509          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1510          * either they see the I_DIRTY bits cleared or we see the dirtied
1511          * inode.
1512          *
1513          * I_DIRTY_PAGES is always cleared together above even if @mapping
1514          * still has dirty pages.  The flag is reinstated after smp_mb() if
1515          * necessary.  This guarantees that either __mark_inode_dirty()
1516          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1517          */
1518         smp_mb();
1519
1520         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1521                 inode->i_state |= I_DIRTY_PAGES;
1522
1523         spin_unlock(&inode->i_lock);
1524
1525         /* Don't write the inode if only I_DIRTY_PAGES was set */
1526         if (dirty & ~I_DIRTY_PAGES) {
1527                 int err = write_inode(inode, wbc);
1528                 if (ret == 0)
1529                         ret = err;
1530         }
1531         trace_writeback_single_inode(inode, wbc, nr_to_write);
1532         return ret;
1533 }
1534
1535 /*
1536  * Write out an inode's dirty pages. Either the caller has an active reference
1537  * on the inode or the inode has I_WILL_FREE set.
1538  *
1539  * This function is designed to be called for writing back one inode which
1540  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1541  * and does more profound writeback list handling in writeback_sb_inodes().
1542  */
1543 static int writeback_single_inode(struct inode *inode,
1544                                   struct writeback_control *wbc)
1545 {
1546         struct bdi_writeback *wb;
1547         int ret = 0;
1548
1549         spin_lock(&inode->i_lock);
1550         if (!atomic_read(&inode->i_count))
1551                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1552         else
1553                 WARN_ON(inode->i_state & I_WILL_FREE);
1554
1555         if (inode->i_state & I_SYNC) {
1556                 if (wbc->sync_mode != WB_SYNC_ALL)
1557                         goto out;
1558                 /*
1559                  * It's a data-integrity sync. We must wait. Since callers hold
1560                  * inode reference or inode has I_WILL_FREE set, it cannot go
1561                  * away under us.
1562                  */
1563                 __inode_wait_for_writeback(inode);
1564         }
1565         WARN_ON(inode->i_state & I_SYNC);
1566         /*
1567          * Skip inode if it is clean and we have no outstanding writeback in
1568          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1569          * function since flusher thread may be doing for example sync in
1570          * parallel and if we move the inode, it could get skipped. So here we
1571          * make sure inode is on some writeback list and leave it there unless
1572          * we have completely cleaned the inode.
1573          */
1574         if (!(inode->i_state & I_DIRTY_ALL) &&
1575             (wbc->sync_mode != WB_SYNC_ALL ||
1576              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1577                 goto out;
1578         inode->i_state |= I_SYNC;
1579         wbc_attach_and_unlock_inode(wbc, inode);
1580
1581         ret = __writeback_single_inode(inode, wbc);
1582
1583         wbc_detach_inode(wbc);
1584
1585         wb = inode_to_wb_and_lock_list(inode);
1586         spin_lock(&inode->i_lock);
1587         /*
1588          * If inode is clean, remove it from writeback lists. Otherwise don't
1589          * touch it. See comment above for explanation.
1590          */
1591         if (!(inode->i_state & I_DIRTY_ALL))
1592                 inode_io_list_del_locked(inode, wb);
1593         spin_unlock(&wb->list_lock);
1594         inode_sync_complete(inode);
1595 out:
1596         spin_unlock(&inode->i_lock);
1597         return ret;
1598 }
1599
1600 static long writeback_chunk_size(struct bdi_writeback *wb,
1601                                  struct wb_writeback_work *work)
1602 {
1603         long pages;
1604
1605         /*
1606          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1607          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1608          * here avoids calling into writeback_inodes_wb() more than once.
1609          *
1610          * The intended call sequence for WB_SYNC_ALL writeback is:
1611          *
1612          *      wb_writeback()
1613          *          writeback_sb_inodes()       <== called only once
1614          *              write_cache_pages()     <== called once for each inode
1615          *                   (quickly) tag currently dirty pages
1616          *                   (maybe slowly) sync all tagged pages
1617          */
1618         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1619                 pages = LONG_MAX;
1620         else {
1621                 pages = min(wb->avg_write_bandwidth / 2,
1622                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1623                 pages = min(pages, work->nr_pages);
1624                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1625                                    MIN_WRITEBACK_PAGES);
1626         }
1627
1628         return pages;
1629 }
1630
1631 /*
1632  * Write a portion of b_io inodes which belong to @sb.
1633  *
1634  * Return the number of pages and/or inodes written.
1635  *
1636  * NOTE! This is called with wb->list_lock held, and will
1637  * unlock and relock that for each inode it ends up doing
1638  * IO for.
1639  */
1640 static long writeback_sb_inodes(struct super_block *sb,
1641                                 struct bdi_writeback *wb,
1642                                 struct wb_writeback_work *work)
1643 {
1644         struct writeback_control wbc = {
1645                 .sync_mode              = work->sync_mode,
1646                 .tagged_writepages      = work->tagged_writepages,
1647                 .for_kupdate            = work->for_kupdate,
1648                 .for_background         = work->for_background,
1649                 .for_sync               = work->for_sync,
1650                 .range_cyclic           = work->range_cyclic,
1651                 .range_start            = 0,
1652                 .range_end              = LLONG_MAX,
1653         };
1654         unsigned long start_time = jiffies;
1655         long write_chunk;
1656         long total_wrote = 0;  /* count both pages and inodes */
1657
1658         while (!list_empty(&wb->b_io)) {
1659                 struct inode *inode = wb_inode(wb->b_io.prev);
1660                 struct bdi_writeback *tmp_wb;
1661                 long wrote;
1662
1663                 if (inode->i_sb != sb) {
1664                         if (work->sb) {
1665                                 /*
1666                                  * We only want to write back data for this
1667                                  * superblock, move all inodes not belonging
1668                                  * to it back onto the dirty list.
1669                                  */
1670                                 redirty_tail(inode, wb);
1671                                 continue;
1672                         }
1673
1674                         /*
1675                          * The inode belongs to a different superblock.
1676                          * Bounce back to the caller to unpin this and
1677                          * pin the next superblock.
1678                          */
1679                         break;
1680                 }
1681
1682                 /*
1683                  * Don't bother with new inodes or inodes being freed, first
1684                  * kind does not need periodic writeout yet, and for the latter
1685                  * kind writeout is handled by the freer.
1686                  */
1687                 spin_lock(&inode->i_lock);
1688                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1689                         redirty_tail_locked(inode, wb);
1690                         spin_unlock(&inode->i_lock);
1691                         continue;
1692                 }
1693                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1694                         /*
1695                          * If this inode is locked for writeback and we are not
1696                          * doing writeback-for-data-integrity, move it to
1697                          * b_more_io so that writeback can proceed with the
1698                          * other inodes on s_io.
1699                          *
1700                          * We'll have another go at writing back this inode
1701                          * when we completed a full scan of b_io.
1702                          */
1703                         spin_unlock(&inode->i_lock);
1704                         requeue_io(inode, wb);
1705                         trace_writeback_sb_inodes_requeue(inode);
1706                         continue;
1707                 }
1708                 spin_unlock(&wb->list_lock);
1709
1710                 /*
1711                  * We already requeued the inode if it had I_SYNC set and we
1712                  * are doing WB_SYNC_NONE writeback. So this catches only the
1713                  * WB_SYNC_ALL case.
1714                  */
1715                 if (inode->i_state & I_SYNC) {
1716                         /* Wait for I_SYNC. This function drops i_lock... */
1717                         inode_sleep_on_writeback(inode);
1718                         /* Inode may be gone, start again */
1719                         spin_lock(&wb->list_lock);
1720                         continue;
1721                 }
1722                 inode->i_state |= I_SYNC;
1723                 wbc_attach_and_unlock_inode(&wbc, inode);
1724
1725                 write_chunk = writeback_chunk_size(wb, work);
1726                 wbc.nr_to_write = write_chunk;
1727                 wbc.pages_skipped = 0;
1728
1729                 /*
1730                  * We use I_SYNC to pin the inode in memory. While it is set
1731                  * evict_inode() will wait so the inode cannot be freed.
1732                  */
1733                 __writeback_single_inode(inode, &wbc);
1734
1735                 wbc_detach_inode(&wbc);
1736                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1737                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1738                 wrote = wrote < 0 ? 0 : wrote;
1739                 total_wrote += wrote;
1740
1741                 if (need_resched()) {
1742                         /*
1743                          * We're trying to balance between building up a nice
1744                          * long list of IOs to improve our merge rate, and
1745                          * getting those IOs out quickly for anyone throttling
1746                          * in balance_dirty_pages().  cond_resched() doesn't
1747                          * unplug, so get our IOs out the door before we
1748                          * give up the CPU.
1749                          */
1750                         blk_flush_plug(current);
1751                         cond_resched();
1752                 }
1753
1754                 /*
1755                  * Requeue @inode if still dirty.  Be careful as @inode may
1756                  * have been switched to another wb in the meantime.
1757                  */
1758                 tmp_wb = inode_to_wb_and_lock_list(inode);
1759                 spin_lock(&inode->i_lock);
1760                 if (!(inode->i_state & I_DIRTY_ALL))
1761                         total_wrote++;
1762                 requeue_inode(inode, tmp_wb, &wbc);
1763                 inode_sync_complete(inode);
1764                 spin_unlock(&inode->i_lock);
1765
1766                 if (unlikely(tmp_wb != wb)) {
1767                         spin_unlock(&tmp_wb->list_lock);
1768                         spin_lock(&wb->list_lock);
1769                 }
1770
1771                 /*
1772                  * bail out to wb_writeback() often enough to check
1773                  * background threshold and other termination conditions.
1774                  */
1775                 if (total_wrote) {
1776                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1777                                 break;
1778                         if (work->nr_pages <= 0)
1779                                 break;
1780                 }
1781         }
1782         return total_wrote;
1783 }
1784
1785 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1786                                   struct wb_writeback_work *work)
1787 {
1788         unsigned long start_time = jiffies;
1789         long wrote = 0;
1790
1791         while (!list_empty(&wb->b_io)) {
1792                 struct inode *inode = wb_inode(wb->b_io.prev);
1793                 struct super_block *sb = inode->i_sb;
1794
1795                 if (!trylock_super(sb)) {
1796                         /*
1797                          * trylock_super() may fail consistently due to
1798                          * s_umount being grabbed by someone else. Don't use
1799                          * requeue_io() to avoid busy retrying the inode/sb.
1800                          */
1801                         redirty_tail(inode, wb);
1802                         continue;
1803                 }
1804                 wrote += writeback_sb_inodes(sb, wb, work);
1805                 up_read(&sb->s_umount);
1806
1807                 /* refer to the same tests at the end of writeback_sb_inodes */
1808                 if (wrote) {
1809                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1810                                 break;
1811                         if (work->nr_pages <= 0)
1812                                 break;
1813                 }
1814         }
1815         /* Leave any unwritten inodes on b_io */
1816         return wrote;
1817 }
1818
1819 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1820                                 enum wb_reason reason)
1821 {
1822         struct wb_writeback_work work = {
1823                 .nr_pages       = nr_pages,
1824                 .sync_mode      = WB_SYNC_NONE,
1825                 .range_cyclic   = 1,
1826                 .reason         = reason,
1827         };
1828         struct blk_plug plug;
1829
1830         blk_start_plug(&plug);
1831         spin_lock(&wb->list_lock);
1832         if (list_empty(&wb->b_io))
1833                 queue_io(wb, &work, jiffies);
1834         __writeback_inodes_wb(wb, &work);
1835         spin_unlock(&wb->list_lock);
1836         blk_finish_plug(&plug);
1837
1838         return nr_pages - work.nr_pages;
1839 }
1840
1841 /*
1842  * Explicit flushing or periodic writeback of "old" data.
1843  *
1844  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1845  * dirtying-time in the inode's address_space.  So this periodic writeback code
1846  * just walks the superblock inode list, writing back any inodes which are
1847  * older than a specific point in time.
1848  *
1849  * Try to run once per dirty_writeback_interval.  But if a writeback event
1850  * takes longer than a dirty_writeback_interval interval, then leave a
1851  * one-second gap.
1852  *
1853  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1854  * all dirty pages if they are all attached to "old" mappings.
1855  */
1856 static long wb_writeback(struct bdi_writeback *wb,
1857                          struct wb_writeback_work *work)
1858 {
1859         unsigned long wb_start = jiffies;
1860         long nr_pages = work->nr_pages;
1861         unsigned long dirtied_before = jiffies;
1862         struct inode *inode;
1863         long progress;
1864         struct blk_plug plug;
1865
1866         blk_start_plug(&plug);
1867         spin_lock(&wb->list_lock);
1868         for (;;) {
1869                 /*
1870                  * Stop writeback when nr_pages has been consumed
1871                  */
1872                 if (work->nr_pages <= 0)
1873                         break;
1874
1875                 /*
1876                  * Background writeout and kupdate-style writeback may
1877                  * run forever. Stop them if there is other work to do
1878                  * so that e.g. sync can proceed. They'll be restarted
1879                  * after the other works are all done.
1880                  */
1881                 if ((work->for_background || work->for_kupdate) &&
1882                     !list_empty(&wb->work_list))
1883                         break;
1884
1885                 /*
1886                  * For background writeout, stop when we are below the
1887                  * background dirty threshold
1888                  */
1889                 if (work->for_background && !wb_over_bg_thresh(wb))
1890                         break;
1891
1892                 /*
1893                  * Kupdate and background works are special and we want to
1894                  * include all inodes that need writing. Livelock avoidance is
1895                  * handled by these works yielding to any other work so we are
1896                  * safe.
1897                  */
1898                 if (work->for_kupdate) {
1899                         dirtied_before = jiffies -
1900                                 msecs_to_jiffies(dirty_expire_interval * 10);
1901                 } else if (work->for_background)
1902                         dirtied_before = jiffies;
1903
1904                 trace_writeback_start(wb, work);
1905                 if (list_empty(&wb->b_io))
1906                         queue_io(wb, work, dirtied_before);
1907                 if (work->sb)
1908                         progress = writeback_sb_inodes(work->sb, wb, work);
1909                 else
1910                         progress = __writeback_inodes_wb(wb, work);
1911                 trace_writeback_written(wb, work);
1912
1913                 wb_update_bandwidth(wb, wb_start);
1914
1915                 /*
1916                  * Did we write something? Try for more
1917                  *
1918                  * Dirty inodes are moved to b_io for writeback in batches.
1919                  * The completion of the current batch does not necessarily
1920                  * mean the overall work is done. So we keep looping as long
1921                  * as made some progress on cleaning pages or inodes.
1922                  */
1923                 if (progress)
1924                         continue;
1925                 /*
1926                  * No more inodes for IO, bail
1927                  */
1928                 if (list_empty(&wb->b_more_io))
1929                         break;
1930                 /*
1931                  * Nothing written. Wait for some inode to
1932                  * become available for writeback. Otherwise
1933                  * we'll just busyloop.
1934                  */
1935                 trace_writeback_wait(wb, work);
1936                 inode = wb_inode(wb->b_more_io.prev);
1937                 spin_lock(&inode->i_lock);
1938                 spin_unlock(&wb->list_lock);
1939                 /* This function drops i_lock... */
1940                 inode_sleep_on_writeback(inode);
1941                 spin_lock(&wb->list_lock);
1942         }
1943         spin_unlock(&wb->list_lock);
1944         blk_finish_plug(&plug);
1945
1946         return nr_pages - work->nr_pages;
1947 }
1948
1949 /*
1950  * Return the next wb_writeback_work struct that hasn't been processed yet.
1951  */
1952 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1953 {
1954         struct wb_writeback_work *work = NULL;
1955
1956         spin_lock_bh(&wb->work_lock);
1957         if (!list_empty(&wb->work_list)) {
1958                 work = list_entry(wb->work_list.next,
1959                                   struct wb_writeback_work, list);
1960                 list_del_init(&work->list);
1961         }
1962         spin_unlock_bh(&wb->work_lock);
1963         return work;
1964 }
1965
1966 static long wb_check_background_flush(struct bdi_writeback *wb)
1967 {
1968         if (wb_over_bg_thresh(wb)) {
1969
1970                 struct wb_writeback_work work = {
1971                         .nr_pages       = LONG_MAX,
1972                         .sync_mode      = WB_SYNC_NONE,
1973                         .for_background = 1,
1974                         .range_cyclic   = 1,
1975                         .reason         = WB_REASON_BACKGROUND,
1976                 };
1977
1978                 return wb_writeback(wb, &work);
1979         }
1980
1981         return 0;
1982 }
1983
1984 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1985 {
1986         unsigned long expired;
1987         long nr_pages;
1988
1989         /*
1990          * When set to zero, disable periodic writeback
1991          */
1992         if (!dirty_writeback_interval)
1993                 return 0;
1994
1995         expired = wb->last_old_flush +
1996                         msecs_to_jiffies(dirty_writeback_interval * 10);
1997         if (time_before(jiffies, expired))
1998                 return 0;
1999
2000         wb->last_old_flush = jiffies;
2001         nr_pages = get_nr_dirty_pages();
2002
2003         if (nr_pages) {
2004                 struct wb_writeback_work work = {
2005                         .nr_pages       = nr_pages,
2006                         .sync_mode      = WB_SYNC_NONE,
2007                         .for_kupdate    = 1,
2008                         .range_cyclic   = 1,
2009                         .reason         = WB_REASON_PERIODIC,
2010                 };
2011
2012                 return wb_writeback(wb, &work);
2013         }
2014
2015         return 0;
2016 }
2017
2018 static long wb_check_start_all(struct bdi_writeback *wb)
2019 {
2020         long nr_pages;
2021
2022         if (!test_bit(WB_start_all, &wb->state))
2023                 return 0;
2024
2025         nr_pages = get_nr_dirty_pages();
2026         if (nr_pages) {
2027                 struct wb_writeback_work work = {
2028                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2029                         .sync_mode      = WB_SYNC_NONE,
2030                         .range_cyclic   = 1,
2031                         .reason         = wb->start_all_reason,
2032                 };
2033
2034                 nr_pages = wb_writeback(wb, &work);
2035         }
2036
2037         clear_bit(WB_start_all, &wb->state);
2038         return nr_pages;
2039 }
2040
2041
2042 /*
2043  * Retrieve work items and do the writeback they describe
2044  */
2045 static long wb_do_writeback(struct bdi_writeback *wb)
2046 {
2047         struct wb_writeback_work *work;
2048         long wrote = 0;
2049
2050         set_bit(WB_writeback_running, &wb->state);
2051         while ((work = get_next_work_item(wb)) != NULL) {
2052                 trace_writeback_exec(wb, work);
2053                 wrote += wb_writeback(wb, work);
2054                 finish_writeback_work(wb, work);
2055         }
2056
2057         /*
2058          * Check for a flush-everything request
2059          */
2060         wrote += wb_check_start_all(wb);
2061
2062         /*
2063          * Check for periodic writeback, kupdated() style
2064          */
2065         wrote += wb_check_old_data_flush(wb);
2066         wrote += wb_check_background_flush(wb);
2067         clear_bit(WB_writeback_running, &wb->state);
2068
2069         return wrote;
2070 }
2071
2072 /*
2073  * Handle writeback of dirty data for the device backed by this bdi. Also
2074  * reschedules periodically and does kupdated style flushing.
2075  */
2076 void wb_workfn(struct work_struct *work)
2077 {
2078         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2079                                                 struct bdi_writeback, dwork);
2080         long pages_written;
2081
2082         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2083         current->flags |= PF_SWAPWRITE;
2084
2085         if (likely(!current_is_workqueue_rescuer() ||
2086                    !test_bit(WB_registered, &wb->state))) {
2087                 /*
2088                  * The normal path.  Keep writing back @wb until its
2089                  * work_list is empty.  Note that this path is also taken
2090                  * if @wb is shutting down even when we're running off the
2091                  * rescuer as work_list needs to be drained.
2092                  */
2093                 do {
2094                         pages_written = wb_do_writeback(wb);
2095                         trace_writeback_pages_written(pages_written);
2096                 } while (!list_empty(&wb->work_list));
2097         } else {
2098                 /*
2099                  * bdi_wq can't get enough workers and we're running off
2100                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2101                  * enough for efficient IO.
2102                  */
2103                 pages_written = writeback_inodes_wb(wb, 1024,
2104                                                     WB_REASON_FORKER_THREAD);
2105                 trace_writeback_pages_written(pages_written);
2106         }
2107
2108         if (!list_empty(&wb->work_list))
2109                 wb_wakeup(wb);
2110         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2111                 wb_wakeup_delayed(wb);
2112
2113         current->flags &= ~PF_SWAPWRITE;
2114 }
2115
2116 /*
2117  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2118  * write back the whole world.
2119  */
2120 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2121                                          enum wb_reason reason)
2122 {
2123         struct bdi_writeback *wb;
2124
2125         if (!bdi_has_dirty_io(bdi))
2126                 return;
2127
2128         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2129                 wb_start_writeback(wb, reason);
2130 }
2131
2132 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2133                                 enum wb_reason reason)
2134 {
2135         rcu_read_lock();
2136         __wakeup_flusher_threads_bdi(bdi, reason);
2137         rcu_read_unlock();
2138 }
2139
2140 /*
2141  * Wakeup the flusher threads to start writeback of all currently dirty pages
2142  */
2143 void wakeup_flusher_threads(enum wb_reason reason)
2144 {
2145         struct backing_dev_info *bdi;
2146
2147         /*
2148          * If we are expecting writeback progress we must submit plugged IO.
2149          */
2150         if (blk_needs_flush_plug(current))
2151                 blk_schedule_flush_plug(current);
2152
2153         rcu_read_lock();
2154         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2155                 __wakeup_flusher_threads_bdi(bdi, reason);
2156         rcu_read_unlock();
2157 }
2158
2159 /*
2160  * Wake up bdi's periodically to make sure dirtytime inodes gets
2161  * written back periodically.  We deliberately do *not* check the
2162  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2163  * kernel to be constantly waking up once there are any dirtytime
2164  * inodes on the system.  So instead we define a separate delayed work
2165  * function which gets called much more rarely.  (By default, only
2166  * once every 12 hours.)
2167  *
2168  * If there is any other write activity going on in the file system,
2169  * this function won't be necessary.  But if the only thing that has
2170  * happened on the file system is a dirtytime inode caused by an atime
2171  * update, we need this infrastructure below to make sure that inode
2172  * eventually gets pushed out to disk.
2173  */
2174 static void wakeup_dirtytime_writeback(struct work_struct *w);
2175 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2176
2177 static void wakeup_dirtytime_writeback(struct work_struct *w)
2178 {
2179         struct backing_dev_info *bdi;
2180
2181         rcu_read_lock();
2182         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2183                 struct bdi_writeback *wb;
2184
2185                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2186                         if (!list_empty(&wb->b_dirty_time))
2187                                 wb_wakeup(wb);
2188         }
2189         rcu_read_unlock();
2190         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2191 }
2192
2193 static int __init start_dirtytime_writeback(void)
2194 {
2195         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2196         return 0;
2197 }
2198 __initcall(start_dirtytime_writeback);
2199
2200 int dirtytime_interval_handler(struct ctl_table *table, int write,
2201                                void *buffer, size_t *lenp, loff_t *ppos)
2202 {
2203         int ret;
2204
2205         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2206         if (ret == 0 && write)
2207                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2208         return ret;
2209 }
2210
2211 /**
2212  * __mark_inode_dirty - internal function
2213  *
2214  * @inode: inode to mark
2215  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2216  *
2217  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2218  * mark_inode_dirty_sync.
2219  *
2220  * Put the inode on the super block's dirty list.
2221  *
2222  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2223  * dirty list only if it is hashed or if it refers to a blockdev.
2224  * If it was not hashed, it will never be added to the dirty list
2225  * even if it is later hashed, as it will have been marked dirty already.
2226  *
2227  * In short, make sure you hash any inodes _before_ you start marking
2228  * them dirty.
2229  *
2230  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2231  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2232  * the kernel-internal blockdev inode represents the dirtying time of the
2233  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2234  * page->mapping->host, so the page-dirtying time is recorded in the internal
2235  * blockdev inode.
2236  */
2237 void __mark_inode_dirty(struct inode *inode, int flags)
2238 {
2239         struct super_block *sb = inode->i_sb;
2240         int dirtytime;
2241
2242         trace_writeback_mark_inode_dirty(inode, flags);
2243
2244         /*
2245          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2246          * dirty the inode itself
2247          */
2248         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2249                 trace_writeback_dirty_inode_start(inode, flags);
2250
2251                 if (sb->s_op->dirty_inode)
2252                         sb->s_op->dirty_inode(inode, flags);
2253
2254                 trace_writeback_dirty_inode(inode, flags);
2255         }
2256         if (flags & I_DIRTY_INODE)
2257                 flags &= ~I_DIRTY_TIME;
2258         dirtytime = flags & I_DIRTY_TIME;
2259
2260         /*
2261          * Paired with smp_mb() in __writeback_single_inode() for the
2262          * following lockless i_state test.  See there for details.
2263          */
2264         smp_mb();
2265
2266         if (((inode->i_state & flags) == flags) ||
2267             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2268                 return;
2269
2270         spin_lock(&inode->i_lock);
2271         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2272                 goto out_unlock_inode;
2273         if ((inode->i_state & flags) != flags) {
2274                 const int was_dirty = inode->i_state & I_DIRTY;
2275
2276                 inode_attach_wb(inode, NULL);
2277
2278                 if (flags & I_DIRTY_INODE)
2279                         inode->i_state &= ~I_DIRTY_TIME;
2280                 inode->i_state |= flags;
2281
2282                 /*
2283                  * If the inode is queued for writeback by flush worker, just
2284                  * update its dirty state. Once the flush worker is done with
2285                  * the inode it will place it on the appropriate superblock
2286                  * list, based upon its state.
2287                  */
2288                 if (inode->i_state & I_SYNC_QUEUED)
2289                         goto out_unlock_inode;
2290
2291                 /*
2292                  * Only add valid (hashed) inodes to the superblock's
2293                  * dirty list.  Add blockdev inodes as well.
2294                  */
2295                 if (!S_ISBLK(inode->i_mode)) {
2296                         if (inode_unhashed(inode))
2297                                 goto out_unlock_inode;
2298                 }
2299                 if (inode->i_state & I_FREEING)
2300                         goto out_unlock_inode;
2301
2302                 /*
2303                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2304                  * reposition it (that would break b_dirty time-ordering).
2305                  */
2306                 if (!was_dirty) {
2307                         struct bdi_writeback *wb;
2308                         struct list_head *dirty_list;
2309                         bool wakeup_bdi = false;
2310
2311                         wb = locked_inode_to_wb_and_lock_list(inode);
2312
2313                         WARN((wb->bdi->capabilities & BDI_CAP_WRITEBACK) &&
2314                              !test_bit(WB_registered, &wb->state),
2315                              "bdi-%s not registered\n", bdi_dev_name(wb->bdi));
2316
2317                         inode->dirtied_when = jiffies;
2318                         if (dirtytime)
2319                                 inode->dirtied_time_when = jiffies;
2320
2321                         if (inode->i_state & I_DIRTY)
2322                                 dirty_list = &wb->b_dirty;
2323                         else
2324                                 dirty_list = &wb->b_dirty_time;
2325
2326                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2327                                                                dirty_list);
2328
2329                         spin_unlock(&wb->list_lock);
2330                         trace_writeback_dirty_inode_enqueue(inode);
2331
2332                         /*
2333                          * If this is the first dirty inode for this bdi,
2334                          * we have to wake-up the corresponding bdi thread
2335                          * to make sure background write-back happens
2336                          * later.
2337                          */
2338                         if (wakeup_bdi &&
2339                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2340                                 wb_wakeup_delayed(wb);
2341                         return;
2342                 }
2343         }
2344 out_unlock_inode:
2345         spin_unlock(&inode->i_lock);
2346 }
2347 EXPORT_SYMBOL(__mark_inode_dirty);
2348
2349 /*
2350  * The @s_sync_lock is used to serialise concurrent sync operations
2351  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2352  * Concurrent callers will block on the s_sync_lock rather than doing contending
2353  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2354  * has been issued up to the time this function is enter is guaranteed to be
2355  * completed by the time we have gained the lock and waited for all IO that is
2356  * in progress regardless of the order callers are granted the lock.
2357  */
2358 static void wait_sb_inodes(struct super_block *sb)
2359 {
2360         LIST_HEAD(sync_list);
2361
2362         /*
2363          * We need to be protected against the filesystem going from
2364          * r/o to r/w or vice versa.
2365          */
2366         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2367
2368         mutex_lock(&sb->s_sync_lock);
2369
2370         /*
2371          * Splice the writeback list onto a temporary list to avoid waiting on
2372          * inodes that have started writeback after this point.
2373          *
2374          * Use rcu_read_lock() to keep the inodes around until we have a
2375          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2376          * the local list because inodes can be dropped from either by writeback
2377          * completion.
2378          */
2379         rcu_read_lock();
2380         spin_lock_irq(&sb->s_inode_wblist_lock);
2381         list_splice_init(&sb->s_inodes_wb, &sync_list);
2382
2383         /*
2384          * Data integrity sync. Must wait for all pages under writeback, because
2385          * there may have been pages dirtied before our sync call, but which had
2386          * writeout started before we write it out.  In which case, the inode
2387          * may not be on the dirty list, but we still have to wait for that
2388          * writeout.
2389          */
2390         while (!list_empty(&sync_list)) {
2391                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2392                                                        i_wb_list);
2393                 struct address_space *mapping = inode->i_mapping;
2394
2395                 /*
2396                  * Move each inode back to the wb list before we drop the lock
2397                  * to preserve consistency between i_wb_list and the mapping
2398                  * writeback tag. Writeback completion is responsible to remove
2399                  * the inode from either list once the writeback tag is cleared.
2400                  */
2401                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2402
2403                 /*
2404                  * The mapping can appear untagged while still on-list since we
2405                  * do not have the mapping lock. Skip it here, wb completion
2406                  * will remove it.
2407                  */
2408                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2409                         continue;
2410
2411                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2412
2413                 spin_lock(&inode->i_lock);
2414                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2415                         spin_unlock(&inode->i_lock);
2416
2417                         spin_lock_irq(&sb->s_inode_wblist_lock);
2418                         continue;
2419                 }
2420                 __iget(inode);
2421                 spin_unlock(&inode->i_lock);
2422                 rcu_read_unlock();
2423
2424                 /*
2425                  * We keep the error status of individual mapping so that
2426                  * applications can catch the writeback error using fsync(2).
2427                  * See filemap_fdatawait_keep_errors() for details.
2428                  */
2429                 filemap_fdatawait_keep_errors(mapping);
2430
2431                 cond_resched();
2432
2433                 iput(inode);
2434
2435                 rcu_read_lock();
2436                 spin_lock_irq(&sb->s_inode_wblist_lock);
2437         }
2438         spin_unlock_irq(&sb->s_inode_wblist_lock);
2439         rcu_read_unlock();
2440         mutex_unlock(&sb->s_sync_lock);
2441 }
2442
2443 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2444                                      enum wb_reason reason, bool skip_if_busy)
2445 {
2446         struct backing_dev_info *bdi = sb->s_bdi;
2447         DEFINE_WB_COMPLETION(done, bdi);
2448         struct wb_writeback_work work = {
2449                 .sb                     = sb,
2450                 .sync_mode              = WB_SYNC_NONE,
2451                 .tagged_writepages      = 1,
2452                 .done                   = &done,
2453                 .nr_pages               = nr,
2454                 .reason                 = reason,
2455         };
2456
2457         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2458                 return;
2459         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2460
2461         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2462         wb_wait_for_completion(&done);
2463 }
2464
2465 /**
2466  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2467  * @sb: the superblock
2468  * @nr: the number of pages to write
2469  * @reason: reason why some writeback work initiated
2470  *
2471  * Start writeback on some inodes on this super_block. No guarantees are made
2472  * on how many (if any) will be written, and this function does not wait
2473  * for IO completion of submitted IO.
2474  */
2475 void writeback_inodes_sb_nr(struct super_block *sb,
2476                             unsigned long nr,
2477                             enum wb_reason reason)
2478 {
2479         __writeback_inodes_sb_nr(sb, nr, reason, false);
2480 }
2481 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2482
2483 /**
2484  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2485  * @sb: the superblock
2486  * @reason: reason why some writeback work was initiated
2487  *
2488  * Start writeback on some inodes on this super_block. No guarantees are made
2489  * on how many (if any) will be written, and this function does not wait
2490  * for IO completion of submitted IO.
2491  */
2492 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2493 {
2494         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2495 }
2496 EXPORT_SYMBOL(writeback_inodes_sb);
2497
2498 /**
2499  * try_to_writeback_inodes_sb - try to start writeback if none underway
2500  * @sb: the superblock
2501  * @reason: reason why some writeback work was initiated
2502  *
2503  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2504  */
2505 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2506 {
2507         if (!down_read_trylock(&sb->s_umount))
2508                 return;
2509
2510         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2511         up_read(&sb->s_umount);
2512 }
2513 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2514
2515 /**
2516  * sync_inodes_sb       -       sync sb inode pages
2517  * @sb: the superblock
2518  *
2519  * This function writes and waits on any dirty inode belonging to this
2520  * super_block.
2521  */
2522 void sync_inodes_sb(struct super_block *sb)
2523 {
2524         struct backing_dev_info *bdi = sb->s_bdi;
2525         DEFINE_WB_COMPLETION(done, bdi);
2526         struct wb_writeback_work work = {
2527                 .sb             = sb,
2528                 .sync_mode      = WB_SYNC_ALL,
2529                 .nr_pages       = LONG_MAX,
2530                 .range_cyclic   = 0,
2531                 .done           = &done,
2532                 .reason         = WB_REASON_SYNC,
2533                 .for_sync       = 1,
2534         };
2535
2536         /*
2537          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2538          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2539          * bdi_has_dirty() need to be written out too.
2540          */
2541         if (bdi == &noop_backing_dev_info)
2542                 return;
2543         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2544
2545         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2546         bdi_down_write_wb_switch_rwsem(bdi);
2547         bdi_split_work_to_wbs(bdi, &work, false);
2548         wb_wait_for_completion(&done);
2549         bdi_up_write_wb_switch_rwsem(bdi);
2550
2551         wait_sb_inodes(sb);
2552 }
2553 EXPORT_SYMBOL(sync_inodes_sb);
2554
2555 /**
2556  * write_inode_now      -       write an inode to disk
2557  * @inode: inode to write to disk
2558  * @sync: whether the write should be synchronous or not
2559  *
2560  * This function commits an inode to disk immediately if it is dirty. This is
2561  * primarily needed by knfsd.
2562  *
2563  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2564  */
2565 int write_inode_now(struct inode *inode, int sync)
2566 {
2567         struct writeback_control wbc = {
2568                 .nr_to_write = LONG_MAX,
2569                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2570                 .range_start = 0,
2571                 .range_end = LLONG_MAX,
2572         };
2573
2574         if (!mapping_can_writeback(inode->i_mapping))
2575                 wbc.nr_to_write = 0;
2576
2577         might_sleep();
2578         return writeback_single_inode(inode, &wbc);
2579 }
2580 EXPORT_SYMBOL(write_inode_now);
2581
2582 /**
2583  * sync_inode - write an inode and its pages to disk.
2584  * @inode: the inode to sync
2585  * @wbc: controls the writeback mode
2586  *
2587  * sync_inode() will write an inode and its pages to disk.  It will also
2588  * correctly update the inode on its superblock's dirty inode lists and will
2589  * update inode->i_state.
2590  *
2591  * The caller must have a ref on the inode.
2592  */
2593 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2594 {
2595         return writeback_single_inode(inode, wbc);
2596 }
2597 EXPORT_SYMBOL(sync_inode);
2598
2599 /**
2600  * sync_inode_metadata - write an inode to disk
2601  * @inode: the inode to sync
2602  * @wait: wait for I/O to complete.
2603  *
2604  * Write an inode to disk and adjust its dirty state after completion.
2605  *
2606  * Note: only writes the actual inode, no associated data or other metadata.
2607  */
2608 int sync_inode_metadata(struct inode *inode, int wait)
2609 {
2610         struct writeback_control wbc = {
2611                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2612                 .nr_to_write = 0, /* metadata-only */
2613         };
2614
2615         return sync_inode(inode, &wbc);
2616 }
2617 EXPORT_SYMBOL(sync_inode_metadata);