GNU Linux-libre 6.9-gnu
[releases.git] / fs / fat / misc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/fat/misc.c
4  *
5  *  Written 1992,1993 by Werner Almesberger
6  *  22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
7  *               and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
8  */
9
10 #include "fat.h"
11 #include <linux/iversion.h>
12
13 /*
14  * fat_fs_error reports a file system problem that might indicate fa data
15  * corruption/inconsistency. Depending on 'errors' mount option the
16  * panic() is called, or error message is printed FAT and nothing is done,
17  * or filesystem is remounted read-only (default behavior).
18  * In case the file system is remounted read-only, it can be made writable
19  * again by remounting it.
20  */
21 void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
22 {
23         struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
24         va_list args;
25         struct va_format vaf;
26
27         if (report) {
28                 va_start(args, fmt);
29                 vaf.fmt = fmt;
30                 vaf.va = &args;
31                 fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
32                 va_end(args);
33         }
34
35         if (opts->errors == FAT_ERRORS_PANIC)
36                 panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
37         else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
38                 sb->s_flags |= SB_RDONLY;
39                 fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
40         }
41 }
42 EXPORT_SYMBOL_GPL(__fat_fs_error);
43
44 /**
45  * _fat_msg() - Print a preformatted FAT message based on a superblock.
46  * @sb: A pointer to a &struct super_block
47  * @level: A Kernel printk level constant
48  * @fmt: The printf-style format string to print.
49  *
50  * Everything that is not fat_fs_error() should be fat_msg().
51  *
52  * fat_msg() wraps _fat_msg() for printk indexing.
53  */
54 void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
55 {
56         struct va_format vaf;
57         va_list args;
58
59         va_start(args, fmt);
60         vaf.fmt = fmt;
61         vaf.va = &args;
62         _printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf);
63         va_end(args);
64 }
65
66 /* Flushes the number of free clusters on FAT32 */
67 /* XXX: Need to write one per FSINFO block.  Currently only writes 1 */
68 int fat_clusters_flush(struct super_block *sb)
69 {
70         struct msdos_sb_info *sbi = MSDOS_SB(sb);
71         struct buffer_head *bh;
72         struct fat_boot_fsinfo *fsinfo;
73
74         if (!is_fat32(sbi))
75                 return 0;
76
77         bh = sb_bread(sb, sbi->fsinfo_sector);
78         if (bh == NULL) {
79                 fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
80                 return -EIO;
81         }
82
83         fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
84         /* Sanity check */
85         if (!IS_FSINFO(fsinfo)) {
86                 fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
87                        "0x%08x, 0x%08x (sector = %lu)",
88                        le32_to_cpu(fsinfo->signature1),
89                        le32_to_cpu(fsinfo->signature2),
90                        sbi->fsinfo_sector);
91         } else {
92                 if (sbi->free_clusters != -1)
93                         fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
94                 if (sbi->prev_free != -1)
95                         fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
96                 mark_buffer_dirty(bh);
97         }
98         brelse(bh);
99
100         return 0;
101 }
102
103 /*
104  * fat_chain_add() adds a new cluster to the chain of clusters represented
105  * by inode.
106  */
107 int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
108 {
109         struct super_block *sb = inode->i_sb;
110         struct msdos_sb_info *sbi = MSDOS_SB(sb);
111         int ret, new_fclus, last;
112
113         /*
114          * We must locate the last cluster of the file to add this new
115          * one (new_dclus) to the end of the link list (the FAT).
116          */
117         last = new_fclus = 0;
118         if (MSDOS_I(inode)->i_start) {
119                 int fclus, dclus;
120
121                 ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
122                 if (ret < 0)
123                         return ret;
124                 new_fclus = fclus + 1;
125                 last = dclus;
126         }
127
128         /* add new one to the last of the cluster chain */
129         if (last) {
130                 struct fat_entry fatent;
131
132                 fatent_init(&fatent);
133                 ret = fat_ent_read(inode, &fatent, last);
134                 if (ret >= 0) {
135                         int wait = inode_needs_sync(inode);
136                         ret = fat_ent_write(inode, &fatent, new_dclus, wait);
137                         fatent_brelse(&fatent);
138                 }
139                 if (ret < 0)
140                         return ret;
141                 /*
142                  * FIXME:Although we can add this cache, fat_cache_add() is
143                  * assuming to be called after linear search with fat_cache_id.
144                  */
145 //              fat_cache_add(inode, new_fclus, new_dclus);
146         } else {
147                 MSDOS_I(inode)->i_start = new_dclus;
148                 MSDOS_I(inode)->i_logstart = new_dclus;
149                 /*
150                  * Since generic_write_sync() synchronizes regular files later,
151                  * we sync here only directories.
152                  */
153                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
154                         ret = fat_sync_inode(inode);
155                         if (ret)
156                                 return ret;
157                 } else
158                         mark_inode_dirty(inode);
159         }
160         if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
161                 fat_fs_error(sb, "clusters badly computed (%d != %llu)",
162                              new_fclus,
163                              (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
164                 fat_cache_inval_inode(inode);
165         }
166         inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
167
168         return 0;
169 }
170
171 /*
172  * The epoch of FAT timestamp is 1980.
173  *     :  bits :     value
174  * date:  0 -  4: day   (1 -  31)
175  * date:  5 -  8: month (1 -  12)
176  * date:  9 - 15: year  (0 - 127) from 1980
177  * time:  0 -  4: sec   (0 -  29) 2sec counts
178  * time:  5 - 10: min   (0 -  59)
179  * time: 11 - 15: hour  (0 -  23)
180  */
181 #define SECS_PER_MIN    60
182 #define SECS_PER_HOUR   (60 * 60)
183 #define SECS_PER_DAY    (SECS_PER_HOUR * 24)
184 /* days between 1.1.70 and 1.1.80 (2 leap days) */
185 #define DAYS_DELTA      (365 * 10 + 2)
186 /* 120 (2100 - 1980) isn't leap year */
187 #define YEAR_2100       120
188 #define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
189
190 /* Linear day numbers of the respective 1sts in non-leap years. */
191 static long days_in_year[] = {
192         /* Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec */
193         0,   0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
194 };
195
196 static inline int fat_tz_offset(const struct msdos_sb_info *sbi)
197 {
198         return (sbi->options.tz_set ?
199                -sbi->options.time_offset :
200                sys_tz.tz_minuteswest) * SECS_PER_MIN;
201 }
202
203 /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
204 void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
205                        __le16 __time, __le16 __date, u8 time_cs)
206 {
207         u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
208         time64_t second;
209         long day, leap_day, month, year;
210
211         year  = date >> 9;
212         month = max(1, (date >> 5) & 0xf);
213         day   = max(1, date & 0x1f) - 1;
214
215         leap_day = (year + 3) / 4;
216         if (year > YEAR_2100)           /* 2100 isn't leap year */
217                 leap_day--;
218         if (IS_LEAP_YEAR(year) && month > 2)
219                 leap_day++;
220
221         second =  (time & 0x1f) << 1;
222         second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
223         second += (time >> 11) * SECS_PER_HOUR;
224         second += (time64_t)(year * 365 + leap_day
225                    + days_in_year[month] + day
226                    + DAYS_DELTA) * SECS_PER_DAY;
227
228         second += fat_tz_offset(sbi);
229
230         if (time_cs) {
231                 ts->tv_sec = second + (time_cs / 100);
232                 ts->tv_nsec = (time_cs % 100) * 10000000;
233         } else {
234                 ts->tv_sec = second;
235                 ts->tv_nsec = 0;
236         }
237 }
238
239 /* Export fat_time_fat2unix() for the fat_test KUnit tests. */
240 EXPORT_SYMBOL_GPL(fat_time_fat2unix);
241
242 /* Convert linear UNIX date to a FAT time/date pair. */
243 void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
244                        __le16 *time, __le16 *date, u8 *time_cs)
245 {
246         struct tm tm;
247         time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
248
249         /*  FAT can only support year between 1980 to 2107 */
250         if (tm.tm_year < 1980 - 1900) {
251                 *time = 0;
252                 *date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
253                 if (time_cs)
254                         *time_cs = 0;
255                 return;
256         }
257         if (tm.tm_year > 2107 - 1900) {
258                 *time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
259                 *date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
260                 if (time_cs)
261                         *time_cs = 199;
262                 return;
263         }
264
265         /* from 1900 -> from 1980 */
266         tm.tm_year -= 80;
267         /* 0~11 -> 1~12 */
268         tm.tm_mon++;
269         /* 0~59 -> 0~29(2sec counts) */
270         tm.tm_sec >>= 1;
271
272         *time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
273         *date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
274         if (time_cs)
275                 *time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
276 }
277 EXPORT_SYMBOL_GPL(fat_time_unix2fat);
278
279 static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
280 {
281         return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
282 }
283
284 /*
285  * truncate atime to 24 hour granularity (00:00:00 in local timezone)
286  */
287 struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi,
288                                      const struct timespec64 *ts)
289 {
290         /* to localtime */
291         time64_t seconds = ts->tv_sec - fat_tz_offset(sbi);
292         s32 remainder;
293
294         div_s64_rem(seconds, SECS_PER_DAY, &remainder);
295         /* to day boundary, and back to unix time */
296         seconds = seconds + fat_tz_offset(sbi) - remainder;
297
298         return (struct timespec64){ seconds, 0 };
299 }
300
301 /*
302  * truncate mtime to 2 second granularity
303  */
304 struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi,
305                                      const struct timespec64 *ts)
306 {
307         return fat_timespec64_trunc_2secs(*ts);
308 }
309
310 /*
311  * truncate the various times with appropriate granularity:
312  *   all times in root node are always 0
313  */
314 int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
315 {
316         struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
317         struct timespec64 ts;
318
319         if (inode->i_ino == MSDOS_ROOT_INO)
320                 return 0;
321
322         if (now == NULL) {
323                 now = &ts;
324                 ts = current_time(inode);
325         }
326
327         if (flags & S_ATIME)
328                 inode_set_atime_to_ts(inode, fat_truncate_atime(sbi, now));
329         /*
330          * ctime and mtime share the same on-disk field, and should be
331          * identical in memory. all mtime updates will be applied to ctime,
332          * but ctime updates are ignored.
333          */
334         if (flags & S_MTIME)
335                 inode_set_mtime_to_ts(inode,
336                                       inode_set_ctime_to_ts(inode, fat_truncate_mtime(sbi, now)));
337
338         return 0;
339 }
340 EXPORT_SYMBOL_GPL(fat_truncate_time);
341
342 int fat_update_time(struct inode *inode, int flags)
343 {
344         int dirty_flags = 0;
345
346         if (inode->i_ino == MSDOS_ROOT_INO)
347                 return 0;
348
349         if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
350                 fat_truncate_time(inode, NULL, flags);
351                 if (inode->i_sb->s_flags & SB_LAZYTIME)
352                         dirty_flags |= I_DIRTY_TIME;
353                 else
354                         dirty_flags |= I_DIRTY_SYNC;
355         }
356
357         __mark_inode_dirty(inode, dirty_flags);
358         return 0;
359 }
360 EXPORT_SYMBOL_GPL(fat_update_time);
361
362 int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
363 {
364         int i, err = 0;
365
366         for (i = 0; i < nr_bhs; i++)
367                 write_dirty_buffer(bhs[i], 0);
368
369         for (i = 0; i < nr_bhs; i++) {
370                 wait_on_buffer(bhs[i]);
371                 if (!err && !buffer_uptodate(bhs[i]))
372                         err = -EIO;
373         }
374         return err;
375 }