arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / fs / f2fs / segment.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13 #define NULL_SECNO                      ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30                                                 unsigned short seg_type)
31 {
32         f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg)                                             \
40         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
41          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
42          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
43          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
44          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
45          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
46          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
47          ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno)                                           \
50         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
51           (sbi)->segs_per_sec) ||       \
52          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
53           (sbi)->segs_per_sec) ||       \
54          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
55           (sbi)->segs_per_sec) ||       \
56          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
57           (sbi)->segs_per_sec) ||       \
58          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
59           (sbi)->segs_per_sec) ||       \
60          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
61           (sbi)->segs_per_sec) ||       \
62          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
63           (sbi)->segs_per_sec) ||       \
64          ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
65           (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi)                                               \
68         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
69                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)                                               \
71         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
72                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi)                                                 \
78         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
79                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
84                                         (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
87          (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
90         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
94         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
96         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr)                                        \
99         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
100         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
101                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)                                       \
103         ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)                                   \
105         ((sbi)->segs_per_sec * (sbi)->blocks_per_seg -          \
106          (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi)                                   \
108         ((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109         (sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno)                            \
111         (((segno) == -1) ? -1 : (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno)                            \
113         ((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
115         (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
117         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118
119 #define GET_SUM_BLOCK(sbi, segno)                               \
120         ((sbi)->sm_info->ssa_blkaddr + (segno))
121
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124
125 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
126         ((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno)                                 \
128         ((segno) / SIT_ENTRY_PER_BLOCK)
129 #define START_SEGNO(segno)              \
130         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi)                        \
132         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr)                    \
134         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
135
136 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
137         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors)                                        \
139         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140
141 /*
142  * indicate a block allocation direction: RIGHT and LEFT.
143  * RIGHT means allocating new sections towards the end of volume.
144  * LEFT means the opposite direction.
145  */
146 enum {
147         ALLOC_RIGHT = 0,
148         ALLOC_LEFT
149 };
150
151 /*
152  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
153  * LFS writes data sequentially with cleaning operations.
154  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156  * fragmented segment which has similar aging degree.
157  */
158 enum {
159         LFS = 0,
160         SSR,
161         AT_SSR,
162 };
163
164 /*
165  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
166  * GC_CB is based on cost-benefit algorithm.
167  * GC_GREEDY is based on greedy algorithm.
168  * GC_AT is based on age-threshold algorithm.
169  */
170 enum {
171         GC_CB = 0,
172         GC_GREEDY,
173         GC_AT,
174         ALLOC_NEXT,
175         FLUSH_DEVICE,
176         MAX_GC_POLICY,
177 };
178
179 /*
180  * BG_GC means the background cleaning job.
181  * FG_GC means the on-demand cleaning job.
182  */
183 enum {
184         BG_GC = 0,
185         FG_GC,
186 };
187
188 /* for a function parameter to select a victim segment */
189 struct victim_sel_policy {
190         int alloc_mode;                 /* LFS or SSR */
191         int gc_mode;                    /* GC_CB or GC_GREEDY */
192         unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
193         unsigned int max_search;        /*
194                                          * maximum # of segments/sections
195                                          * to search
196                                          */
197         unsigned int offset;            /* last scanned bitmap offset */
198         unsigned int ofs_unit;          /* bitmap search unit */
199         unsigned int min_cost;          /* minimum cost */
200         unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
201         unsigned int min_segno;         /* segment # having min. cost */
202         unsigned long long age;         /* mtime of GCed section*/
203         unsigned long long age_threshold;/* age threshold */
204 };
205
206 struct seg_entry {
207         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
208         unsigned int valid_blocks:10;   /* # of valid blocks */
209         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
210         unsigned int padding:6;         /* padding */
211         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
212 #ifdef CONFIG_F2FS_CHECK_FS
213         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
214 #endif
215         /*
216          * # of valid blocks and the validity bitmap stored in the last
217          * checkpoint pack. This information is used by the SSR mode.
218          */
219         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
220         unsigned char *discard_map;
221         unsigned long long mtime;       /* modification time of the segment */
222 };
223
224 struct sec_entry {
225         unsigned int valid_blocks;      /* # of valid blocks in a section */
226 };
227
228 #define MAX_SKIP_GC_COUNT                       16
229
230 struct revoke_entry {
231         struct list_head list;
232         block_t old_addr;               /* for revoking when fail to commit */
233         pgoff_t index;
234 };
235
236 struct sit_info {
237         block_t sit_base_addr;          /* start block address of SIT area */
238         block_t sit_blocks;             /* # of blocks used by SIT area */
239         block_t written_valid_blocks;   /* # of valid blocks in main area */
240         char *bitmap;                   /* all bitmaps pointer */
241         char *sit_bitmap;               /* SIT bitmap pointer */
242 #ifdef CONFIG_F2FS_CHECK_FS
243         char *sit_bitmap_mir;           /* SIT bitmap mirror */
244
245         /* bitmap of segments to be ignored by GC in case of errors */
246         unsigned long *invalid_segmap;
247 #endif
248         unsigned int bitmap_size;       /* SIT bitmap size */
249
250         unsigned long *tmp_map;                 /* bitmap for temporal use */
251         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
252         unsigned int dirty_sentries;            /* # of dirty sentries */
253         unsigned int sents_per_block;           /* # of SIT entries per block */
254         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
255         struct seg_entry *sentries;             /* SIT segment-level cache */
256         struct sec_entry *sec_entries;          /* SIT section-level cache */
257
258         /* for cost-benefit algorithm in cleaning procedure */
259         unsigned long long elapsed_time;        /* elapsed time after mount */
260         unsigned long long mounted_time;        /* mount time */
261         unsigned long long min_mtime;           /* min. modification time */
262         unsigned long long max_mtime;           /* max. modification time */
263         unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
264         unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
265
266         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
267 };
268
269 struct free_segmap_info {
270         unsigned int start_segno;       /* start segment number logically */
271         unsigned int free_segments;     /* # of free segments */
272         unsigned int free_sections;     /* # of free sections */
273         spinlock_t segmap_lock;         /* free segmap lock */
274         unsigned long *free_segmap;     /* free segment bitmap */
275         unsigned long *free_secmap;     /* free section bitmap */
276 };
277
278 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
279 enum dirty_type {
280         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
281         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
282         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
283         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
284         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
285         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
286         DIRTY,                  /* to count # of dirty segments */
287         PRE,                    /* to count # of entirely obsolete segments */
288         NR_DIRTY_TYPE
289 };
290
291 struct dirty_seglist_info {
292         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293         unsigned long *dirty_secmap;
294         struct mutex seglist_lock;              /* lock for segment bitmaps */
295         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
296         unsigned long *victim_secmap;           /* background GC victims */
297         unsigned long *pinned_secmap;           /* pinned victims from foreground GC */
298         unsigned int pinned_secmap_cnt;         /* count of victims which has pinned data */
299         bool enable_pin_section;                /* enable pinning section */
300 };
301
302 /* for active log information */
303 struct curseg_info {
304         struct mutex curseg_mutex;              /* lock for consistency */
305         struct f2fs_summary_block *sum_blk;     /* cached summary block */
306         struct rw_semaphore journal_rwsem;      /* protect journal area */
307         struct f2fs_journal *journal;           /* cached journal info */
308         unsigned char alloc_type;               /* current allocation type */
309         unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
310         unsigned int segno;                     /* current segment number */
311         unsigned short next_blkoff;             /* next block offset to write */
312         unsigned int zone;                      /* current zone number */
313         unsigned int next_segno;                /* preallocated segment */
314         int fragment_remained_chunk;            /* remained block size in a chunk for block fragmentation mode */
315         bool inited;                            /* indicate inmem log is inited */
316 };
317
318 struct sit_entry_set {
319         struct list_head set_list;      /* link with all sit sets */
320         unsigned int start_segno;       /* start segno of sits in set */
321         unsigned int entry_cnt;         /* the # of sit entries in set */
322 };
323
324 /*
325  * inline functions
326  */
327 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
328 {
329         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
330 }
331
332 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
333                                                 unsigned int segno)
334 {
335         struct sit_info *sit_i = SIT_I(sbi);
336         return &sit_i->sentries[segno];
337 }
338
339 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
340                                                 unsigned int segno)
341 {
342         struct sit_info *sit_i = SIT_I(sbi);
343         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
344 }
345
346 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
347                                 unsigned int segno, bool use_section)
348 {
349         /*
350          * In order to get # of valid blocks in a section instantly from many
351          * segments, f2fs manages two counting structures separately.
352          */
353         if (use_section && __is_large_section(sbi))
354                 return get_sec_entry(sbi, segno)->valid_blocks;
355         else
356                 return get_seg_entry(sbi, segno)->valid_blocks;
357 }
358
359 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
360                                 unsigned int segno, bool use_section)
361 {
362         if (use_section && __is_large_section(sbi)) {
363                 unsigned int start_segno = START_SEGNO(segno);
364                 unsigned int blocks = 0;
365                 int i;
366
367                 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
368                         struct seg_entry *se = get_seg_entry(sbi, start_segno);
369
370                         blocks += se->ckpt_valid_blocks;
371                 }
372                 return blocks;
373         }
374         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
375 }
376
377 static inline void seg_info_from_raw_sit(struct seg_entry *se,
378                                         struct f2fs_sit_entry *rs)
379 {
380         se->valid_blocks = GET_SIT_VBLOCKS(rs);
381         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
382         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
383         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
384 #ifdef CONFIG_F2FS_CHECK_FS
385         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386 #endif
387         se->type = GET_SIT_TYPE(rs);
388         se->mtime = le64_to_cpu(rs->mtime);
389 }
390
391 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
392                                         struct f2fs_sit_entry *rs)
393 {
394         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
395                                         se->valid_blocks;
396         rs->vblocks = cpu_to_le16(raw_vblocks);
397         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
398         rs->mtime = cpu_to_le64(se->mtime);
399 }
400
401 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
402                                 struct page *page, unsigned int start)
403 {
404         struct f2fs_sit_block *raw_sit;
405         struct seg_entry *se;
406         struct f2fs_sit_entry *rs;
407         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
408                                         (unsigned long)MAIN_SEGS(sbi));
409         int i;
410
411         raw_sit = (struct f2fs_sit_block *)page_address(page);
412         memset(raw_sit, 0, PAGE_SIZE);
413         for (i = 0; i < end - start; i++) {
414                 rs = &raw_sit->entries[i];
415                 se = get_seg_entry(sbi, start + i);
416                 __seg_info_to_raw_sit(se, rs);
417         }
418 }
419
420 static inline void seg_info_to_raw_sit(struct seg_entry *se,
421                                         struct f2fs_sit_entry *rs)
422 {
423         __seg_info_to_raw_sit(se, rs);
424
425         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
426         se->ckpt_valid_blocks = se->valid_blocks;
427 }
428
429 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
430                 unsigned int max, unsigned int segno)
431 {
432         unsigned int ret;
433         spin_lock(&free_i->segmap_lock);
434         ret = find_next_bit(free_i->free_segmap, max, segno);
435         spin_unlock(&free_i->segmap_lock);
436         return ret;
437 }
438
439 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
440 {
441         struct free_segmap_info *free_i = FREE_I(sbi);
442         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
443         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
444         unsigned int next;
445         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
446
447         spin_lock(&free_i->segmap_lock);
448         clear_bit(segno, free_i->free_segmap);
449         free_i->free_segments++;
450
451         next = find_next_bit(free_i->free_segmap,
452                         start_segno + sbi->segs_per_sec, start_segno);
453         if (next >= start_segno + usable_segs) {
454                 clear_bit(secno, free_i->free_secmap);
455                 free_i->free_sections++;
456         }
457         spin_unlock(&free_i->segmap_lock);
458 }
459
460 static inline void __set_inuse(struct f2fs_sb_info *sbi,
461                 unsigned int segno)
462 {
463         struct free_segmap_info *free_i = FREE_I(sbi);
464         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
465
466         set_bit(segno, free_i->free_segmap);
467         free_i->free_segments--;
468         if (!test_and_set_bit(secno, free_i->free_secmap))
469                 free_i->free_sections--;
470 }
471
472 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
473                 unsigned int segno, bool inmem)
474 {
475         struct free_segmap_info *free_i = FREE_I(sbi);
476         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
477         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
478         unsigned int next;
479         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
480
481         spin_lock(&free_i->segmap_lock);
482         if (test_and_clear_bit(segno, free_i->free_segmap)) {
483                 free_i->free_segments++;
484
485                 if (!inmem && IS_CURSEC(sbi, secno))
486                         goto skip_free;
487                 next = find_next_bit(free_i->free_segmap,
488                                 start_segno + sbi->segs_per_sec, start_segno);
489                 if (next >= start_segno + usable_segs) {
490                         if (test_and_clear_bit(secno, free_i->free_secmap))
491                                 free_i->free_sections++;
492                 }
493         }
494 skip_free:
495         spin_unlock(&free_i->segmap_lock);
496 }
497
498 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
499                 unsigned int segno)
500 {
501         struct free_segmap_info *free_i = FREE_I(sbi);
502         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
503
504         spin_lock(&free_i->segmap_lock);
505         if (!test_and_set_bit(segno, free_i->free_segmap)) {
506                 free_i->free_segments--;
507                 if (!test_and_set_bit(secno, free_i->free_secmap))
508                         free_i->free_sections--;
509         }
510         spin_unlock(&free_i->segmap_lock);
511 }
512
513 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
514                 void *dst_addr)
515 {
516         struct sit_info *sit_i = SIT_I(sbi);
517
518 #ifdef CONFIG_F2FS_CHECK_FS
519         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
520                                                 sit_i->bitmap_size))
521                 f2fs_bug_on(sbi, 1);
522 #endif
523         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
524 }
525
526 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
527 {
528         return SIT_I(sbi)->written_valid_blocks;
529 }
530
531 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
532 {
533         return FREE_I(sbi)->free_segments;
534 }
535
536 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
537 {
538         return SM_I(sbi)->reserved_segments +
539                         SM_I(sbi)->additional_reserved_segments;
540 }
541
542 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
543 {
544         return FREE_I(sbi)->free_sections;
545 }
546
547 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
548 {
549         return DIRTY_I(sbi)->nr_dirty[PRE];
550 }
551
552 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
553 {
554         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
555                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
556                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
557                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
558                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
559                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
560 }
561
562 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
563 {
564         return SM_I(sbi)->ovp_segments;
565 }
566
567 static inline int reserved_sections(struct f2fs_sb_info *sbi)
568 {
569         return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
570 }
571
572 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
573                         unsigned int node_blocks, unsigned int dent_blocks)
574 {
575
576         unsigned int segno, left_blocks;
577         int i;
578
579         /* check current node segment */
580         for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
581                 segno = CURSEG_I(sbi, i)->segno;
582                 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
583                                 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
584
585                 if (node_blocks > left_blocks)
586                         return false;
587         }
588
589         /* check current data segment */
590         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
591         left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
592                         get_seg_entry(sbi, segno)->ckpt_valid_blocks;
593         if (dent_blocks > left_blocks)
594                 return false;
595         return true;
596 }
597
598 /*
599  * calculate needed sections for dirty node/dentry
600  * and call has_curseg_enough_space
601  */
602 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
603                 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
604 {
605         unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606                                         get_pages(sbi, F2FS_DIRTY_DENTS) +
607                                         get_pages(sbi, F2FS_DIRTY_IMETA);
608         unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609         unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610         unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611         unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612         unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613
614         if (lower_p)
615                 *lower_p = node_secs + dent_secs;
616         if (upper_p)
617                 *upper_p = node_secs + dent_secs +
618                         (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
619         if (curseg_p)
620                 *curseg_p = has_curseg_enough_space(sbi,
621                                 node_blocks, dent_blocks);
622 }
623
624 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
625                                         int freed, int needed)
626 {
627         unsigned int free_secs, lower_secs, upper_secs;
628         bool curseg_space;
629
630         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
631                 return false;
632
633         __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
634
635         free_secs = free_sections(sbi) + freed;
636         lower_secs += needed + reserved_sections(sbi);
637         upper_secs += needed + reserved_sections(sbi);
638
639         if (free_secs > upper_secs)
640                 return false;
641         else if (free_secs <= lower_secs)
642                 return true;
643         return !curseg_space;
644 }
645
646 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
647                                         int freed, int needed)
648 {
649         return !has_not_enough_free_secs(sbi, freed, needed);
650 }
651
652 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
653 {
654         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
655                 return true;
656         if (likely(has_enough_free_secs(sbi, 0, 0)))
657                 return true;
658         return false;
659 }
660
661 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
662 {
663         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
664 }
665
666 static inline int utilization(struct f2fs_sb_info *sbi)
667 {
668         return div_u64((u64)valid_user_blocks(sbi) * 100,
669                                         sbi->user_block_count);
670 }
671
672 /*
673  * Sometimes f2fs may be better to drop out-of-place update policy.
674  * And, users can control the policy through sysfs entries.
675  * There are five policies with triggering conditions as follows.
676  * F2FS_IPU_FORCE - all the time,
677  * F2FS_IPU_SSR - if SSR mode is activated,
678  * F2FS_IPU_UTIL - if FS utilization is over threashold,
679  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
680  *                     threashold,
681  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
682  *                     storages. IPU will be triggered only if the # of dirty
683  *                     pages over min_fsync_blocks. (=default option)
684  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
685  * F2FS_IPU_NOCACHE - disable IPU bio cache.
686  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
687  *                            FI_OPU_WRITE flag.
688  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
689  */
690 #define DEF_MIN_IPU_UTIL        70
691 #define DEF_MIN_FSYNC_BLOCKS    8
692 #define DEF_MIN_HOT_BLOCKS      16
693
694 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
695
696 #define F2FS_IPU_DISABLE        0
697
698 /* Modification on enum should be synchronized with ipu_mode_names array */
699 enum {
700         F2FS_IPU_FORCE,
701         F2FS_IPU_SSR,
702         F2FS_IPU_UTIL,
703         F2FS_IPU_SSR_UTIL,
704         F2FS_IPU_FSYNC,
705         F2FS_IPU_ASYNC,
706         F2FS_IPU_NOCACHE,
707         F2FS_IPU_HONOR_OPU_WRITE,
708         F2FS_IPU_MAX,
709 };
710
711 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
712 {
713         return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
714 }
715
716 #define F2FS_IPU_POLICY(name)                                   \
717 static inline bool IS_##name(struct f2fs_sb_info *sbi)          \
718 {                                                               \
719         return SM_I(sbi)->ipu_policy & BIT(name);               \
720 }
721
722 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
723 F2FS_IPU_POLICY(F2FS_IPU_SSR);
724 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
725 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
726 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
727 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
728 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
729 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
730
731 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
732                 int type)
733 {
734         struct curseg_info *curseg = CURSEG_I(sbi, type);
735         return curseg->segno;
736 }
737
738 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
739                 int type)
740 {
741         struct curseg_info *curseg = CURSEG_I(sbi, type);
742         return curseg->alloc_type;
743 }
744
745 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
746                 unsigned int segno)
747 {
748         return segno <= (MAIN_SEGS(sbi) - 1);
749 }
750
751 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
752 {
753         struct f2fs_sb_info *sbi = fio->sbi;
754
755         if (__is_valid_data_blkaddr(fio->old_blkaddr))
756                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
757                                         META_GENERIC : DATA_GENERIC);
758         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
759                                         META_GENERIC : DATA_GENERIC_ENHANCE);
760 }
761
762 /*
763  * Summary block is always treated as an invalid block
764  */
765 static inline int check_block_count(struct f2fs_sb_info *sbi,
766                 int segno, struct f2fs_sit_entry *raw_sit)
767 {
768         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
769         int valid_blocks = 0;
770         int cur_pos = 0, next_pos;
771         unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
772
773         /* check bitmap with valid block count */
774         do {
775                 if (is_valid) {
776                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
777                                         usable_blks_per_seg,
778                                         cur_pos);
779                         valid_blocks += next_pos - cur_pos;
780                 } else
781                         next_pos = find_next_bit_le(&raw_sit->valid_map,
782                                         usable_blks_per_seg,
783                                         cur_pos);
784                 cur_pos = next_pos;
785                 is_valid = !is_valid;
786         } while (cur_pos < usable_blks_per_seg);
787
788         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
789                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
790                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
791                 set_sbi_flag(sbi, SBI_NEED_FSCK);
792                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
793                 return -EFSCORRUPTED;
794         }
795
796         if (usable_blks_per_seg < sbi->blocks_per_seg)
797                 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
798                                 sbi->blocks_per_seg,
799                                 usable_blks_per_seg) != sbi->blocks_per_seg);
800
801         /* check segment usage, and check boundary of a given segment number */
802         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
803                                         || !valid_main_segno(sbi, segno))) {
804                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
805                          GET_SIT_VBLOCKS(raw_sit), segno);
806                 set_sbi_flag(sbi, SBI_NEED_FSCK);
807                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
808                 return -EFSCORRUPTED;
809         }
810         return 0;
811 }
812
813 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
814                                                 unsigned int start)
815 {
816         struct sit_info *sit_i = SIT_I(sbi);
817         unsigned int offset = SIT_BLOCK_OFFSET(start);
818         block_t blk_addr = sit_i->sit_base_addr + offset;
819
820         f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
821
822 #ifdef CONFIG_F2FS_CHECK_FS
823         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
824                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
825                 f2fs_bug_on(sbi, 1);
826 #endif
827
828         /* calculate sit block address */
829         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
830                 blk_addr += sit_i->sit_blocks;
831
832         return blk_addr;
833 }
834
835 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
836                                                 pgoff_t block_addr)
837 {
838         struct sit_info *sit_i = SIT_I(sbi);
839         block_addr -= sit_i->sit_base_addr;
840         if (block_addr < sit_i->sit_blocks)
841                 block_addr += sit_i->sit_blocks;
842         else
843                 block_addr -= sit_i->sit_blocks;
844
845         return block_addr + sit_i->sit_base_addr;
846 }
847
848 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
849 {
850         unsigned int block_off = SIT_BLOCK_OFFSET(start);
851
852         f2fs_change_bit(block_off, sit_i->sit_bitmap);
853 #ifdef CONFIG_F2FS_CHECK_FS
854         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
855 #endif
856 }
857
858 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
859                                                 bool base_time)
860 {
861         struct sit_info *sit_i = SIT_I(sbi);
862         time64_t diff, now = ktime_get_boottime_seconds();
863
864         if (now >= sit_i->mounted_time)
865                 return sit_i->elapsed_time + now - sit_i->mounted_time;
866
867         /* system time is set to the past */
868         if (!base_time) {
869                 diff = sit_i->mounted_time - now;
870                 if (sit_i->elapsed_time >= diff)
871                         return sit_i->elapsed_time - diff;
872                 return 0;
873         }
874         return sit_i->elapsed_time;
875 }
876
877 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
878                         unsigned int ofs_in_node, unsigned char version)
879 {
880         sum->nid = cpu_to_le32(nid);
881         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
882         sum->version = version;
883 }
884
885 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
886 {
887         return __start_cp_addr(sbi) +
888                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
889 }
890
891 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
892 {
893         return __start_cp_addr(sbi) +
894                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
895                                 - (base + 1) + type;
896 }
897
898 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
899 {
900         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
901                 return true;
902         return false;
903 }
904
905 /*
906  * It is very important to gather dirty pages and write at once, so that we can
907  * submit a big bio without interfering other data writes.
908  * By default, 512 pages for directory data,
909  * 512 pages (2MB) * 8 for nodes, and
910  * 256 pages * 8 for meta are set.
911  */
912 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
913 {
914         if (sbi->sb->s_bdi->wb.dirty_exceeded)
915                 return 0;
916
917         if (type == DATA)
918                 return sbi->blocks_per_seg;
919         else if (type == NODE)
920                 return 8 * sbi->blocks_per_seg;
921         else if (type == META)
922                 return 8 * BIO_MAX_VECS;
923         else
924                 return 0;
925 }
926
927 /*
928  * When writing pages, it'd better align nr_to_write for segment size.
929  */
930 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
931                                         struct writeback_control *wbc)
932 {
933         long nr_to_write, desired;
934
935         if (wbc->sync_mode != WB_SYNC_NONE)
936                 return 0;
937
938         nr_to_write = wbc->nr_to_write;
939         desired = BIO_MAX_VECS;
940         if (type == NODE)
941                 desired <<= 1;
942
943         wbc->nr_to_write = desired;
944         return desired - nr_to_write;
945 }
946
947 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
948 {
949         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
950         bool wakeup = false;
951         int i;
952
953         if (force)
954                 goto wake_up;
955
956         mutex_lock(&dcc->cmd_lock);
957         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
958                 if (i + 1 < dcc->discard_granularity)
959                         break;
960                 if (!list_empty(&dcc->pend_list[i])) {
961                         wakeup = true;
962                         break;
963                 }
964         }
965         mutex_unlock(&dcc->cmd_lock);
966         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
967                 return;
968 wake_up:
969         dcc->discard_wake = true;
970         wake_up_interruptible_all(&dcc->discard_wait_queue);
971 }