4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
62 if ((word & 0xffff0000) == 0)
67 if ((word & 0xff00) == 0)
72 if ((word & 0xf0) == 0)
77 if ((word & 0xc) == 0)
82 if ((word & 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (size <= BITS_PER_LONG)
123 size -= BITS_PER_LONG;
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
149 tmp = __reverse_ulong((unsigned char *)p);
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
158 if (size <= BITS_PER_LONG)
160 size -= BITS_PER_LONG;
166 return result - size + __reverse_ffz(tmp);
169 void register_inmem_page(struct inode *inode, struct page *page)
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
174 f2fs_trace_pid(page);
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
181 /* add atomic page indices to the list */
183 INIT_LIST_HEAD(&new->list);
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
192 trace_f2fs_register_inmem_page(page, INMEM);
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
210 f2fs_wait_on_page_writeback(page, DATA, true);
213 struct dnode_of_data dn;
216 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
218 set_new_dnode(&dn, inode, NULL, NULL, 0);
219 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
223 get_node_info(sbi, dn.nid, &ni);
224 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
225 cur->old_addr, ni.version, true, true);
229 /* we don't need to invalidate this in the sccessful status */
230 if (drop || recover) {
231 ClearPageUptodate(page);
232 clear_cold_data(page);
234 set_page_private(page, 0);
235 ClearPagePrivate(page);
236 f2fs_put_page(page, 1);
238 list_del(&cur->list);
239 kmem_cache_free(inmem_entry_slab, cur);
240 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
245 void drop_inmem_pages(struct inode *inode)
247 struct f2fs_inode_info *fi = F2FS_I(inode);
249 clear_inode_flag(inode, FI_ATOMIC_FILE);
251 mutex_lock(&fi->inmem_lock);
252 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
253 mutex_unlock(&fi->inmem_lock);
256 static int __commit_inmem_pages(struct inode *inode,
257 struct list_head *revoke_list)
259 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
260 struct f2fs_inode_info *fi = F2FS_I(inode);
261 struct inmem_pages *cur, *tmp;
262 struct f2fs_io_info fio = {
266 .op_flags = WRITE_SYNC | REQ_PRIO,
267 .encrypted_page = NULL,
269 bool submit_bio = false;
272 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
273 struct page *page = cur->page;
276 if (page->mapping == inode->i_mapping) {
277 trace_f2fs_commit_inmem_page(page, INMEM);
279 set_page_dirty(page);
280 f2fs_wait_on_page_writeback(page, DATA, true);
281 if (clear_page_dirty_for_io(page))
282 inode_dec_dirty_pages(inode);
285 err = do_write_data_page(&fio);
291 /* record old blkaddr for revoking */
292 cur->old_addr = fio.old_blkaddr;
294 clear_cold_data(page);
298 list_move_tail(&cur->list, revoke_list);
302 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
305 __revoke_inmem_pages(inode, revoke_list, false, false);
310 int commit_inmem_pages(struct inode *inode)
312 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
313 struct f2fs_inode_info *fi = F2FS_I(inode);
314 struct list_head revoke_list;
317 INIT_LIST_HEAD(&revoke_list);
318 f2fs_balance_fs(sbi, true);
321 mutex_lock(&fi->inmem_lock);
322 err = __commit_inmem_pages(inode, &revoke_list);
326 * try to revoke all committed pages, but still we could fail
327 * due to no memory or other reason, if that happened, EAGAIN
328 * will be returned, which means in such case, transaction is
329 * already not integrity, caller should use journal to do the
330 * recovery or rewrite & commit last transaction. For other
331 * error number, revoking was done by filesystem itself.
333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
337 /* drop all uncommitted pages */
338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
340 mutex_unlock(&fi->inmem_lock);
347 * This function balances dirty node and dentry pages.
348 * In addition, it controls garbage collection.
350 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
352 #ifdef CONFIG_F2FS_FAULT_INJECTION
353 if (time_to_inject(sbi, FAULT_CHECKPOINT))
354 f2fs_stop_checkpoint(sbi, false);
360 /* balance_fs_bg is able to be pending */
361 if (excess_cached_nats(sbi))
362 f2fs_balance_fs_bg(sbi);
365 * We should do GC or end up with checkpoint, if there are so many dirty
366 * dir/node pages without enough free segments.
368 if (has_not_enough_free_secs(sbi, 0, 0)) {
369 mutex_lock(&sbi->gc_mutex);
374 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
376 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
379 /* try to shrink extent cache when there is no enough memory */
380 if (!available_free_memory(sbi, EXTENT_CACHE))
381 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
383 /* check the # of cached NAT entries */
384 if (!available_free_memory(sbi, NAT_ENTRIES))
385 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
387 if (!available_free_memory(sbi, FREE_NIDS))
388 try_to_free_nids(sbi, MAX_FREE_NIDS);
390 build_free_nids(sbi);
392 /* checkpoint is the only way to shrink partial cached entries */
393 if (!available_free_memory(sbi, NAT_ENTRIES) ||
394 !available_free_memory(sbi, INO_ENTRIES) ||
395 excess_prefree_segs(sbi) ||
396 excess_dirty_nats(sbi) ||
397 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
398 if (test_opt(sbi, DATA_FLUSH)) {
399 struct blk_plug plug;
401 blk_start_plug(&plug);
402 sync_dirty_inodes(sbi, FILE_INODE);
403 blk_finish_plug(&plug);
405 f2fs_sync_fs(sbi->sb, true);
406 stat_inc_bg_cp_count(sbi->stat_info);
410 static int issue_flush_thread(void *data)
412 struct f2fs_sb_info *sbi = data;
413 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
414 wait_queue_head_t *q = &fcc->flush_wait_queue;
416 if (kthread_should_stop())
419 if (!llist_empty(&fcc->issue_list)) {
421 struct flush_cmd *cmd, *next;
424 bio = f2fs_bio_alloc(0);
426 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
427 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
429 bio->bi_bdev = sbi->sb->s_bdev;
430 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
431 ret = submit_bio_wait(bio);
433 llist_for_each_entry_safe(cmd, next,
434 fcc->dispatch_list, llnode) {
436 complete(&cmd->wait);
439 fcc->dispatch_list = NULL;
442 wait_event_interruptible(*q,
443 kthread_should_stop() || !llist_empty(&fcc->issue_list));
447 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
449 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
450 struct flush_cmd cmd;
452 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
453 test_opt(sbi, FLUSH_MERGE));
455 if (test_opt(sbi, NOBARRIER))
458 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
459 struct bio *bio = f2fs_bio_alloc(0);
462 atomic_inc(&fcc->submit_flush);
463 bio->bi_bdev = sbi->sb->s_bdev;
464 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
465 ret = submit_bio_wait(bio);
466 atomic_dec(&fcc->submit_flush);
471 init_completion(&cmd.wait);
473 atomic_inc(&fcc->submit_flush);
474 llist_add(&cmd.llnode, &fcc->issue_list);
476 if (!fcc->dispatch_list)
477 wake_up(&fcc->flush_wait_queue);
479 wait_for_completion(&cmd.wait);
480 atomic_dec(&fcc->submit_flush);
485 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
487 dev_t dev = sbi->sb->s_bdev->bd_dev;
488 struct flush_cmd_control *fcc;
491 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
494 atomic_set(&fcc->submit_flush, 0);
495 init_waitqueue_head(&fcc->flush_wait_queue);
496 init_llist_head(&fcc->issue_list);
497 SM_I(sbi)->cmd_control_info = fcc;
498 if (!test_opt(sbi, FLUSH_MERGE))
501 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
502 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
503 if (IS_ERR(fcc->f2fs_issue_flush)) {
504 err = PTR_ERR(fcc->f2fs_issue_flush);
506 SM_I(sbi)->cmd_control_info = NULL;
513 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
515 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
517 if (fcc && fcc->f2fs_issue_flush)
518 kthread_stop(fcc->f2fs_issue_flush);
520 SM_I(sbi)->cmd_control_info = NULL;
523 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
524 enum dirty_type dirty_type)
526 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
528 /* need not be added */
529 if (IS_CURSEG(sbi, segno))
532 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
533 dirty_i->nr_dirty[dirty_type]++;
535 if (dirty_type == DIRTY) {
536 struct seg_entry *sentry = get_seg_entry(sbi, segno);
537 enum dirty_type t = sentry->type;
539 if (unlikely(t >= DIRTY)) {
543 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
544 dirty_i->nr_dirty[t]++;
548 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
549 enum dirty_type dirty_type)
551 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
553 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
554 dirty_i->nr_dirty[dirty_type]--;
556 if (dirty_type == DIRTY) {
557 struct seg_entry *sentry = get_seg_entry(sbi, segno);
558 enum dirty_type t = sentry->type;
560 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
561 dirty_i->nr_dirty[t]--;
563 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
564 clear_bit(GET_SECNO(sbi, segno),
565 dirty_i->victim_secmap);
570 * Should not occur error such as -ENOMEM.
571 * Adding dirty entry into seglist is not critical operation.
572 * If a given segment is one of current working segments, it won't be added.
574 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
576 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
577 unsigned short valid_blocks;
579 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
582 mutex_lock(&dirty_i->seglist_lock);
584 valid_blocks = get_valid_blocks(sbi, segno, 0);
586 if (valid_blocks == 0) {
587 __locate_dirty_segment(sbi, segno, PRE);
588 __remove_dirty_segment(sbi, segno, DIRTY);
589 } else if (valid_blocks < sbi->blocks_per_seg) {
590 __locate_dirty_segment(sbi, segno, DIRTY);
592 /* Recovery routine with SSR needs this */
593 __remove_dirty_segment(sbi, segno, DIRTY);
596 mutex_unlock(&dirty_i->seglist_lock);
599 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
602 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
603 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
605 INIT_LIST_HEAD(&be->list);
607 init_completion(&be->event);
608 list_add_tail(&be->list, wait_list);
613 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
615 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
616 struct bio_entry *be, *tmp;
618 list_for_each_entry_safe(be, tmp, wait_list, list) {
619 struct bio *bio = be->bio;
622 wait_for_completion_io(&be->event);
624 if (err == -EOPNOTSUPP)
628 f2fs_msg(sbi->sb, KERN_INFO,
629 "Issue discard failed, ret: %d", err);
633 kmem_cache_free(bio_entry_slab, be);
637 static void f2fs_submit_bio_wait_endio(struct bio *bio)
639 struct bio_entry *be = (struct bio_entry *)bio->bi_private;
641 be->error = bio->bi_error;
642 complete(&be->event);
645 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
646 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector,
647 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags)
649 struct block_device *bdev = sbi->sb->s_bdev;
650 struct bio *bio = NULL;
653 err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags,
656 struct bio_entry *be = __add_bio_entry(sbi, bio);
658 bio->bi_private = be;
659 bio->bi_end_io = f2fs_submit_bio_wait_endio;
660 bio->bi_opf |= REQ_SYNC;
667 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
668 block_t blkstart, block_t blklen)
670 sector_t start = SECTOR_FROM_BLOCK(blkstart);
671 sector_t len = SECTOR_FROM_BLOCK(blklen);
672 struct seg_entry *se;
676 for (i = blkstart; i < blkstart + blklen; i++) {
677 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
678 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
680 if (!f2fs_test_and_set_bit(offset, se->discard_map))
683 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
684 return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0);
687 static void __add_discard_entry(struct f2fs_sb_info *sbi,
688 struct cp_control *cpc, struct seg_entry *se,
689 unsigned int start, unsigned int end)
691 struct list_head *head = &SM_I(sbi)->discard_list;
692 struct discard_entry *new, *last;
694 if (!list_empty(head)) {
695 last = list_last_entry(head, struct discard_entry, list);
696 if (START_BLOCK(sbi, cpc->trim_start) + start ==
697 last->blkaddr + last->len) {
698 last->len += end - start;
703 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
704 INIT_LIST_HEAD(&new->list);
705 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
706 new->len = end - start;
707 list_add_tail(&new->list, head);
709 SM_I(sbi)->nr_discards += end - start;
712 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
714 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
715 int max_blocks = sbi->blocks_per_seg;
716 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
717 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
718 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
719 unsigned long *discard_map = (unsigned long *)se->discard_map;
720 unsigned long *dmap = SIT_I(sbi)->tmp_map;
721 unsigned int start = 0, end = -1;
722 bool force = (cpc->reason == CP_DISCARD);
725 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
729 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
730 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
734 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
735 for (i = 0; i < entries; i++)
736 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
737 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
739 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
740 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
741 if (start >= max_blocks)
744 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
745 if (force && start && end != max_blocks
746 && (end - start) < cpc->trim_minlen)
749 __add_discard_entry(sbi, cpc, se, start, end);
753 void release_discard_addrs(struct f2fs_sb_info *sbi)
755 struct list_head *head = &(SM_I(sbi)->discard_list);
756 struct discard_entry *entry, *this;
759 list_for_each_entry_safe(entry, this, head, list) {
760 list_del(&entry->list);
761 kmem_cache_free(discard_entry_slab, entry);
766 * Should call clear_prefree_segments after checkpoint is done.
768 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
770 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
773 mutex_lock(&dirty_i->seglist_lock);
774 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
775 __set_test_and_free(sbi, segno);
776 mutex_unlock(&dirty_i->seglist_lock);
779 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
781 struct list_head *head = &(SM_I(sbi)->discard_list);
782 struct discard_entry *entry, *this;
783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784 struct blk_plug plug;
785 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
786 unsigned int start = 0, end = -1;
787 unsigned int secno, start_segno;
788 bool force = (cpc->reason == CP_DISCARD);
790 blk_start_plug(&plug);
792 mutex_lock(&dirty_i->seglist_lock);
796 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
797 if (start >= MAIN_SEGS(sbi))
799 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
802 for (i = start; i < end; i++)
803 clear_bit(i, prefree_map);
805 dirty_i->nr_dirty[PRE] -= end - start;
807 if (force || !test_opt(sbi, DISCARD))
810 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
811 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
812 (end - start) << sbi->log_blocks_per_seg);
816 secno = GET_SECNO(sbi, start);
817 start_segno = secno * sbi->segs_per_sec;
818 if (!IS_CURSEC(sbi, secno) &&
819 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
820 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
821 sbi->segs_per_sec << sbi->log_blocks_per_seg);
823 start = start_segno + sbi->segs_per_sec;
829 mutex_unlock(&dirty_i->seglist_lock);
831 /* send small discards */
832 list_for_each_entry_safe(entry, this, head, list) {
833 if (force && entry->len < cpc->trim_minlen)
835 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
836 cpc->trimmed += entry->len;
838 list_del(&entry->list);
839 SM_I(sbi)->nr_discards -= entry->len;
840 kmem_cache_free(discard_entry_slab, entry);
843 blk_finish_plug(&plug);
846 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
848 struct sit_info *sit_i = SIT_I(sbi);
850 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
851 sit_i->dirty_sentries++;
858 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
859 unsigned int segno, int modified)
861 struct seg_entry *se = get_seg_entry(sbi, segno);
864 __mark_sit_entry_dirty(sbi, segno);
867 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
869 struct seg_entry *se;
870 unsigned int segno, offset;
871 long int new_vblocks;
873 segno = GET_SEGNO(sbi, blkaddr);
875 se = get_seg_entry(sbi, segno);
876 new_vblocks = se->valid_blocks + del;
877 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
879 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
880 (new_vblocks > sbi->blocks_per_seg)));
882 se->valid_blocks = new_vblocks;
883 se->mtime = get_mtime(sbi);
884 SIT_I(sbi)->max_mtime = se->mtime;
886 /* Update valid block bitmap */
888 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
890 if (f2fs_discard_en(sbi) &&
891 !f2fs_test_and_set_bit(offset, se->discard_map))
894 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
896 if (f2fs_discard_en(sbi) &&
897 f2fs_test_and_clear_bit(offset, se->discard_map))
900 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
901 se->ckpt_valid_blocks += del;
903 __mark_sit_entry_dirty(sbi, segno);
905 /* update total number of valid blocks to be written in ckpt area */
906 SIT_I(sbi)->written_valid_blocks += del;
908 if (sbi->segs_per_sec > 1)
909 get_sec_entry(sbi, segno)->valid_blocks += del;
912 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
914 update_sit_entry(sbi, new, 1);
915 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
916 update_sit_entry(sbi, old, -1);
918 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
919 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
922 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
924 unsigned int segno = GET_SEGNO(sbi, addr);
925 struct sit_info *sit_i = SIT_I(sbi);
927 f2fs_bug_on(sbi, addr == NULL_ADDR);
928 if (addr == NEW_ADDR)
931 /* add it into sit main buffer */
932 mutex_lock(&sit_i->sentry_lock);
934 update_sit_entry(sbi, addr, -1);
936 /* add it into dirty seglist */
937 locate_dirty_segment(sbi, segno);
939 mutex_unlock(&sit_i->sentry_lock);
942 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
944 struct sit_info *sit_i = SIT_I(sbi);
945 unsigned int segno, offset;
946 struct seg_entry *se;
949 if (!is_valid_data_blkaddr(sbi, blkaddr))
952 mutex_lock(&sit_i->sentry_lock);
954 segno = GET_SEGNO(sbi, blkaddr);
955 se = get_seg_entry(sbi, segno);
956 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
958 if (f2fs_test_bit(offset, se->ckpt_valid_map))
961 mutex_unlock(&sit_i->sentry_lock);
967 * This function should be resided under the curseg_mutex lock
969 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
970 struct f2fs_summary *sum)
972 struct curseg_info *curseg = CURSEG_I(sbi, type);
973 void *addr = curseg->sum_blk;
974 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
975 memcpy(addr, sum, sizeof(struct f2fs_summary));
979 * Calculate the number of current summary pages for writing
981 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
983 int valid_sum_count = 0;
986 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
987 if (sbi->ckpt->alloc_type[i] == SSR)
988 valid_sum_count += sbi->blocks_per_seg;
991 valid_sum_count += le16_to_cpu(
992 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
994 valid_sum_count += curseg_blkoff(sbi, i);
998 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
999 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1000 if (valid_sum_count <= sum_in_page)
1002 else if ((valid_sum_count - sum_in_page) <=
1003 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1009 * Caller should put this summary page
1011 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1013 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1016 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1018 struct page *page = grab_meta_page(sbi, blk_addr);
1019 void *dst = page_address(page);
1022 memcpy(dst, src, PAGE_SIZE);
1024 memset(dst, 0, PAGE_SIZE);
1025 set_page_dirty(page);
1026 f2fs_put_page(page, 1);
1029 static void write_sum_page(struct f2fs_sb_info *sbi,
1030 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1032 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1035 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1036 int type, block_t blk_addr)
1038 struct curseg_info *curseg = CURSEG_I(sbi, type);
1039 struct page *page = grab_meta_page(sbi, blk_addr);
1040 struct f2fs_summary_block *src = curseg->sum_blk;
1041 struct f2fs_summary_block *dst;
1043 dst = (struct f2fs_summary_block *)page_address(page);
1045 mutex_lock(&curseg->curseg_mutex);
1047 down_read(&curseg->journal_rwsem);
1048 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1049 up_read(&curseg->journal_rwsem);
1051 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1052 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1054 mutex_unlock(&curseg->curseg_mutex);
1056 set_page_dirty(page);
1057 f2fs_put_page(page, 1);
1060 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1062 struct curseg_info *curseg = CURSEG_I(sbi, type);
1063 unsigned int segno = curseg->segno + 1;
1064 struct free_segmap_info *free_i = FREE_I(sbi);
1066 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1067 return !test_bit(segno, free_i->free_segmap);
1072 * Find a new segment from the free segments bitmap to right order
1073 * This function should be returned with success, otherwise BUG
1075 static void get_new_segment(struct f2fs_sb_info *sbi,
1076 unsigned int *newseg, bool new_sec, int dir)
1078 struct free_segmap_info *free_i = FREE_I(sbi);
1079 unsigned int segno, secno, zoneno;
1080 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1081 unsigned int hint = *newseg / sbi->segs_per_sec;
1082 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1083 unsigned int left_start = hint;
1088 spin_lock(&free_i->segmap_lock);
1090 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1091 segno = find_next_zero_bit(free_i->free_segmap,
1092 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1093 if (segno < (hint + 1) * sbi->segs_per_sec)
1097 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1098 if (secno >= MAIN_SECS(sbi)) {
1099 if (dir == ALLOC_RIGHT) {
1100 secno = find_next_zero_bit(free_i->free_secmap,
1102 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1105 left_start = hint - 1;
1111 while (test_bit(left_start, free_i->free_secmap)) {
1112 if (left_start > 0) {
1116 left_start = find_next_zero_bit(free_i->free_secmap,
1118 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1124 segno = secno * sbi->segs_per_sec;
1125 zoneno = secno / sbi->secs_per_zone;
1127 /* give up on finding another zone */
1130 if (sbi->secs_per_zone == 1)
1132 if (zoneno == old_zoneno)
1134 if (dir == ALLOC_LEFT) {
1135 if (!go_left && zoneno + 1 >= total_zones)
1137 if (go_left && zoneno == 0)
1140 for (i = 0; i < NR_CURSEG_TYPE; i++)
1141 if (CURSEG_I(sbi, i)->zone == zoneno)
1144 if (i < NR_CURSEG_TYPE) {
1145 /* zone is in user, try another */
1147 hint = zoneno * sbi->secs_per_zone - 1;
1148 else if (zoneno + 1 >= total_zones)
1151 hint = (zoneno + 1) * sbi->secs_per_zone;
1153 goto find_other_zone;
1156 /* set it as dirty segment in free segmap */
1157 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1158 __set_inuse(sbi, segno);
1160 spin_unlock(&free_i->segmap_lock);
1163 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1165 struct curseg_info *curseg = CURSEG_I(sbi, type);
1166 struct summary_footer *sum_footer;
1168 curseg->segno = curseg->next_segno;
1169 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1170 curseg->next_blkoff = 0;
1171 curseg->next_segno = NULL_SEGNO;
1173 sum_footer = &(curseg->sum_blk->footer);
1174 memset(sum_footer, 0, sizeof(struct summary_footer));
1175 if (IS_DATASEG(type))
1176 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1177 if (IS_NODESEG(type))
1178 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1179 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1183 * Allocate a current working segment.
1184 * This function always allocates a free segment in LFS manner.
1186 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1188 struct curseg_info *curseg = CURSEG_I(sbi, type);
1189 unsigned int segno = curseg->segno;
1190 int dir = ALLOC_LEFT;
1192 write_sum_page(sbi, curseg->sum_blk,
1193 GET_SUM_BLOCK(sbi, segno));
1194 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1197 if (test_opt(sbi, NOHEAP))
1200 get_new_segment(sbi, &segno, new_sec, dir);
1201 curseg->next_segno = segno;
1202 reset_curseg(sbi, type, 1);
1203 curseg->alloc_type = LFS;
1206 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1207 struct curseg_info *seg, block_t start)
1209 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1210 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1211 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1212 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1213 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1216 for (i = 0; i < entries; i++)
1217 target_map[i] = ckpt_map[i] | cur_map[i];
1219 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1221 seg->next_blkoff = pos;
1225 * If a segment is written by LFS manner, next block offset is just obtained
1226 * by increasing the current block offset. However, if a segment is written by
1227 * SSR manner, next block offset obtained by calling __next_free_blkoff
1229 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1230 struct curseg_info *seg)
1232 if (seg->alloc_type == SSR)
1233 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1239 * This function always allocates a used segment(from dirty seglist) by SSR
1240 * manner, so it should recover the existing segment information of valid blocks
1242 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1244 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1245 struct curseg_info *curseg = CURSEG_I(sbi, type);
1246 unsigned int new_segno = curseg->next_segno;
1247 struct f2fs_summary_block *sum_node;
1248 struct page *sum_page;
1250 write_sum_page(sbi, curseg->sum_blk,
1251 GET_SUM_BLOCK(sbi, curseg->segno));
1252 __set_test_and_inuse(sbi, new_segno);
1254 mutex_lock(&dirty_i->seglist_lock);
1255 __remove_dirty_segment(sbi, new_segno, PRE);
1256 __remove_dirty_segment(sbi, new_segno, DIRTY);
1257 mutex_unlock(&dirty_i->seglist_lock);
1259 reset_curseg(sbi, type, 1);
1260 curseg->alloc_type = SSR;
1261 __next_free_blkoff(sbi, curseg, 0);
1264 sum_page = get_sum_page(sbi, new_segno);
1265 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1266 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1267 f2fs_put_page(sum_page, 1);
1271 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1273 struct curseg_info *curseg = CURSEG_I(sbi, type);
1274 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1276 if (IS_NODESEG(type))
1277 return v_ops->get_victim(sbi,
1278 &(curseg)->next_segno, BG_GC, type, SSR);
1280 /* For data segments, let's do SSR more intensively */
1281 for (; type >= CURSEG_HOT_DATA; type--)
1282 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1289 * flush out current segment and replace it with new segment
1290 * This function should be returned with success, otherwise BUG
1292 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1293 int type, bool force)
1295 struct curseg_info *curseg = CURSEG_I(sbi, type);
1298 new_curseg(sbi, type, true);
1299 else if (type == CURSEG_WARM_NODE)
1300 new_curseg(sbi, type, false);
1301 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1302 new_curseg(sbi, type, false);
1303 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1304 change_curseg(sbi, type, true);
1306 new_curseg(sbi, type, false);
1308 stat_inc_seg_type(sbi, curseg);
1311 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1313 struct curseg_info *curseg = CURSEG_I(sbi, type);
1314 unsigned int old_segno;
1316 old_segno = curseg->segno;
1317 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1318 locate_dirty_segment(sbi, old_segno);
1321 void allocate_new_segments(struct f2fs_sb_info *sbi)
1325 if (test_opt(sbi, LFS))
1328 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1329 __allocate_new_segments(sbi, i);
1332 static const struct segment_allocation default_salloc_ops = {
1333 .allocate_segment = allocate_segment_by_default,
1336 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1338 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1339 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1340 unsigned int start_segno, end_segno;
1341 struct cp_control cpc;
1344 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1348 if (end <= MAIN_BLKADDR(sbi))
1351 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1352 f2fs_msg(sbi->sb, KERN_WARNING,
1353 "Found FS corruption, run fsck to fix.");
1357 /* start/end segment number in main_area */
1358 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1359 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1360 GET_SEGNO(sbi, end);
1361 cpc.reason = CP_DISCARD;
1362 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1364 /* do checkpoint to issue discard commands safely */
1365 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1366 cpc.trim_start = start_segno;
1368 if (sbi->discard_blks == 0)
1370 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1371 cpc.trim_end = end_segno;
1373 cpc.trim_end = min_t(unsigned int,
1374 rounddown(start_segno +
1375 BATCHED_TRIM_SEGMENTS(sbi),
1376 sbi->segs_per_sec) - 1, end_segno);
1378 mutex_lock(&sbi->gc_mutex);
1379 err = write_checkpoint(sbi, &cpc);
1380 mutex_unlock(&sbi->gc_mutex);
1387 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1391 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1393 struct curseg_info *curseg = CURSEG_I(sbi, type);
1394 if (curseg->next_blkoff < sbi->blocks_per_seg)
1399 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1402 return CURSEG_HOT_DATA;
1404 return CURSEG_HOT_NODE;
1407 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1409 if (p_type == DATA) {
1410 struct inode *inode = page->mapping->host;
1412 if (S_ISDIR(inode->i_mode))
1413 return CURSEG_HOT_DATA;
1415 return CURSEG_COLD_DATA;
1417 if (IS_DNODE(page) && is_cold_node(page))
1418 return CURSEG_WARM_NODE;
1420 return CURSEG_COLD_NODE;
1424 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1426 if (p_type == DATA) {
1427 struct inode *inode = page->mapping->host;
1429 if (S_ISDIR(inode->i_mode))
1430 return CURSEG_HOT_DATA;
1431 else if (is_cold_data(page) || file_is_cold(inode))
1432 return CURSEG_COLD_DATA;
1434 return CURSEG_WARM_DATA;
1437 return is_cold_node(page) ? CURSEG_WARM_NODE :
1440 return CURSEG_COLD_NODE;
1444 static int __get_segment_type(struct page *page, enum page_type p_type)
1446 switch (F2FS_P_SB(page)->active_logs) {
1448 return __get_segment_type_2(page, p_type);
1450 return __get_segment_type_4(page, p_type);
1452 /* NR_CURSEG_TYPE(6) logs by default */
1453 f2fs_bug_on(F2FS_P_SB(page),
1454 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1455 return __get_segment_type_6(page, p_type);
1458 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1459 block_t old_blkaddr, block_t *new_blkaddr,
1460 struct f2fs_summary *sum, int type)
1462 struct sit_info *sit_i = SIT_I(sbi);
1463 struct curseg_info *curseg;
1464 bool direct_io = (type == CURSEG_DIRECT_IO);
1466 type = direct_io ? CURSEG_WARM_DATA : type;
1468 curseg = CURSEG_I(sbi, type);
1470 mutex_lock(&curseg->curseg_mutex);
1471 mutex_lock(&sit_i->sentry_lock);
1473 /* direct_io'ed data is aligned to the segment for better performance */
1474 if (direct_io && curseg->next_blkoff &&
1475 !has_not_enough_free_secs(sbi, 0, 0))
1476 __allocate_new_segments(sbi, type);
1478 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1481 * __add_sum_entry should be resided under the curseg_mutex
1482 * because, this function updates a summary entry in the
1483 * current summary block.
1485 __add_sum_entry(sbi, type, sum);
1487 __refresh_next_blkoff(sbi, curseg);
1489 stat_inc_block_count(sbi, curseg);
1491 if (!__has_curseg_space(sbi, type))
1492 sit_i->s_ops->allocate_segment(sbi, type, false);
1494 * SIT information should be updated before segment allocation,
1495 * since SSR needs latest valid block information.
1497 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1499 mutex_unlock(&sit_i->sentry_lock);
1501 if (page && IS_NODESEG(type))
1502 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1504 mutex_unlock(&curseg->curseg_mutex);
1507 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1509 int type = __get_segment_type(fio->page, fio->type);
1511 if (fio->type == NODE || fio->type == DATA)
1512 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1514 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1515 &fio->new_blkaddr, sum, type);
1517 /* writeout dirty page into bdev */
1518 f2fs_submit_page_mbio(fio);
1520 if (fio->type == NODE || fio->type == DATA)
1521 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1524 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1526 struct f2fs_io_info fio = {
1530 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1531 .old_blkaddr = page->index,
1532 .new_blkaddr = page->index,
1534 .encrypted_page = NULL,
1537 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1538 fio.op_flags &= ~REQ_META;
1540 set_page_writeback(page);
1541 f2fs_submit_page_mbio(&fio);
1544 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1546 struct f2fs_summary sum;
1548 set_summary(&sum, nid, 0, 0);
1549 do_write_page(&sum, fio);
1552 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1554 struct f2fs_sb_info *sbi = fio->sbi;
1555 struct f2fs_summary sum;
1556 struct node_info ni;
1558 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1559 get_node_info(sbi, dn->nid, &ni);
1560 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1561 do_write_page(&sum, fio);
1562 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1565 void rewrite_data_page(struct f2fs_io_info *fio)
1567 fio->new_blkaddr = fio->old_blkaddr;
1568 stat_inc_inplace_blocks(fio->sbi);
1569 f2fs_submit_page_mbio(fio);
1572 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1573 block_t old_blkaddr, block_t new_blkaddr,
1574 bool recover_curseg, bool recover_newaddr)
1576 struct sit_info *sit_i = SIT_I(sbi);
1577 struct curseg_info *curseg;
1578 unsigned int segno, old_cursegno;
1579 struct seg_entry *se;
1581 unsigned short old_blkoff;
1583 segno = GET_SEGNO(sbi, new_blkaddr);
1584 se = get_seg_entry(sbi, segno);
1587 if (!recover_curseg) {
1588 /* for recovery flow */
1589 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1590 if (old_blkaddr == NULL_ADDR)
1591 type = CURSEG_COLD_DATA;
1593 type = CURSEG_WARM_DATA;
1596 if (!IS_CURSEG(sbi, segno))
1597 type = CURSEG_WARM_DATA;
1600 curseg = CURSEG_I(sbi, type);
1602 mutex_lock(&curseg->curseg_mutex);
1603 mutex_lock(&sit_i->sentry_lock);
1605 old_cursegno = curseg->segno;
1606 old_blkoff = curseg->next_blkoff;
1608 /* change the current segment */
1609 if (segno != curseg->segno) {
1610 curseg->next_segno = segno;
1611 change_curseg(sbi, type, true);
1614 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1615 __add_sum_entry(sbi, type, sum);
1617 if (!recover_curseg || recover_newaddr)
1618 update_sit_entry(sbi, new_blkaddr, 1);
1619 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1620 update_sit_entry(sbi, old_blkaddr, -1);
1622 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1623 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1625 locate_dirty_segment(sbi, old_cursegno);
1627 if (recover_curseg) {
1628 if (old_cursegno != curseg->segno) {
1629 curseg->next_segno = old_cursegno;
1630 change_curseg(sbi, type, true);
1632 curseg->next_blkoff = old_blkoff;
1635 mutex_unlock(&sit_i->sentry_lock);
1636 mutex_unlock(&curseg->curseg_mutex);
1639 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1640 block_t old_addr, block_t new_addr,
1641 unsigned char version, bool recover_curseg,
1642 bool recover_newaddr)
1644 struct f2fs_summary sum;
1646 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1648 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1649 recover_curseg, recover_newaddr);
1651 f2fs_update_data_blkaddr(dn, new_addr);
1654 void f2fs_wait_on_page_writeback(struct page *page,
1655 enum page_type type, bool ordered)
1657 if (PageWriteback(page)) {
1658 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1660 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1662 wait_on_page_writeback(page);
1664 wait_for_stable_page(page);
1668 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1673 if (!is_valid_data_blkaddr(sbi, blkaddr))
1676 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1678 f2fs_wait_on_page_writeback(cpage, DATA, true);
1679 f2fs_put_page(cpage, 1);
1683 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1685 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1686 struct curseg_info *seg_i;
1687 unsigned char *kaddr;
1692 start = start_sum_block(sbi);
1694 page = get_meta_page(sbi, start++);
1695 kaddr = (unsigned char *)page_address(page);
1697 /* Step 1: restore nat cache */
1698 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1699 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1701 /* Step 2: restore sit cache */
1702 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1703 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1704 offset = 2 * SUM_JOURNAL_SIZE;
1706 /* Step 3: restore summary entries */
1707 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1708 unsigned short blk_off;
1711 seg_i = CURSEG_I(sbi, i);
1712 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1713 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1714 seg_i->next_segno = segno;
1715 reset_curseg(sbi, i, 0);
1716 seg_i->alloc_type = ckpt->alloc_type[i];
1717 seg_i->next_blkoff = blk_off;
1719 if (seg_i->alloc_type == SSR)
1720 blk_off = sbi->blocks_per_seg;
1722 for (j = 0; j < blk_off; j++) {
1723 struct f2fs_summary *s;
1724 s = (struct f2fs_summary *)(kaddr + offset);
1725 seg_i->sum_blk->entries[j] = *s;
1726 offset += SUMMARY_SIZE;
1727 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1731 f2fs_put_page(page, 1);
1734 page = get_meta_page(sbi, start++);
1735 kaddr = (unsigned char *)page_address(page);
1739 f2fs_put_page(page, 1);
1743 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1745 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1746 struct f2fs_summary_block *sum;
1747 struct curseg_info *curseg;
1749 unsigned short blk_off;
1750 unsigned int segno = 0;
1751 block_t blk_addr = 0;
1753 /* get segment number and block addr */
1754 if (IS_DATASEG(type)) {
1755 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1756 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1758 if (__exist_node_summaries(sbi))
1759 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1761 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1763 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1765 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1767 if (__exist_node_summaries(sbi))
1768 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1769 type - CURSEG_HOT_NODE);
1771 blk_addr = GET_SUM_BLOCK(sbi, segno);
1774 new = get_meta_page(sbi, blk_addr);
1775 sum = (struct f2fs_summary_block *)page_address(new);
1777 if (IS_NODESEG(type)) {
1778 if (__exist_node_summaries(sbi)) {
1779 struct f2fs_summary *ns = &sum->entries[0];
1781 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1783 ns->ofs_in_node = 0;
1788 err = restore_node_summary(sbi, segno, sum);
1790 f2fs_put_page(new, 1);
1796 /* set uncompleted segment to curseg */
1797 curseg = CURSEG_I(sbi, type);
1798 mutex_lock(&curseg->curseg_mutex);
1800 /* update journal info */
1801 down_write(&curseg->journal_rwsem);
1802 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1803 up_write(&curseg->journal_rwsem);
1805 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1806 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1807 curseg->next_segno = segno;
1808 reset_curseg(sbi, type, 0);
1809 curseg->alloc_type = ckpt->alloc_type[type];
1810 curseg->next_blkoff = blk_off;
1811 mutex_unlock(&curseg->curseg_mutex);
1812 f2fs_put_page(new, 1);
1816 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1818 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
1819 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
1820 int type = CURSEG_HOT_DATA;
1823 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1824 int npages = npages_for_summary_flush(sbi, true);
1827 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1830 /* restore for compacted data summary */
1831 if (read_compacted_summaries(sbi))
1833 type = CURSEG_HOT_NODE;
1836 if (__exist_node_summaries(sbi))
1837 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1838 NR_CURSEG_TYPE - type, META_CP, true);
1840 for (; type <= CURSEG_COLD_NODE; type++) {
1841 err = read_normal_summaries(sbi, type);
1846 /* sanity check for summary blocks */
1847 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
1848 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
1854 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1857 unsigned char *kaddr;
1858 struct f2fs_summary *summary;
1859 struct curseg_info *seg_i;
1860 int written_size = 0;
1863 page = grab_meta_page(sbi, blkaddr++);
1864 kaddr = (unsigned char *)page_address(page);
1866 /* Step 1: write nat cache */
1867 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1868 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1869 written_size += SUM_JOURNAL_SIZE;
1871 /* Step 2: write sit cache */
1872 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1873 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1874 written_size += SUM_JOURNAL_SIZE;
1876 /* Step 3: write summary entries */
1877 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1878 unsigned short blkoff;
1879 seg_i = CURSEG_I(sbi, i);
1880 if (sbi->ckpt->alloc_type[i] == SSR)
1881 blkoff = sbi->blocks_per_seg;
1883 blkoff = curseg_blkoff(sbi, i);
1885 for (j = 0; j < blkoff; j++) {
1887 page = grab_meta_page(sbi, blkaddr++);
1888 kaddr = (unsigned char *)page_address(page);
1891 summary = (struct f2fs_summary *)(kaddr + written_size);
1892 *summary = seg_i->sum_blk->entries[j];
1893 written_size += SUMMARY_SIZE;
1895 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1899 set_page_dirty(page);
1900 f2fs_put_page(page, 1);
1905 set_page_dirty(page);
1906 f2fs_put_page(page, 1);
1910 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1911 block_t blkaddr, int type)
1914 if (IS_DATASEG(type))
1915 end = type + NR_CURSEG_DATA_TYPE;
1917 end = type + NR_CURSEG_NODE_TYPE;
1919 for (i = type; i < end; i++)
1920 write_current_sum_page(sbi, i, blkaddr + (i - type));
1923 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1925 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1926 write_compacted_summaries(sbi, start_blk);
1928 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1931 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1933 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1936 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1937 unsigned int val, int alloc)
1941 if (type == NAT_JOURNAL) {
1942 for (i = 0; i < nats_in_cursum(journal); i++) {
1943 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1946 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1947 return update_nats_in_cursum(journal, 1);
1948 } else if (type == SIT_JOURNAL) {
1949 for (i = 0; i < sits_in_cursum(journal); i++)
1950 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1952 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1953 return update_sits_in_cursum(journal, 1);
1958 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1961 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1964 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1967 struct sit_info *sit_i = SIT_I(sbi);
1968 struct page *src_page, *dst_page;
1969 pgoff_t src_off, dst_off;
1970 void *src_addr, *dst_addr;
1972 src_off = current_sit_addr(sbi, start);
1973 dst_off = next_sit_addr(sbi, src_off);
1975 /* get current sit block page without lock */
1976 src_page = get_meta_page(sbi, src_off);
1977 dst_page = grab_meta_page(sbi, dst_off);
1978 f2fs_bug_on(sbi, PageDirty(src_page));
1980 src_addr = page_address(src_page);
1981 dst_addr = page_address(dst_page);
1982 memcpy(dst_addr, src_addr, PAGE_SIZE);
1984 set_page_dirty(dst_page);
1985 f2fs_put_page(src_page, 1);
1987 set_to_next_sit(sit_i, start);
1992 static struct sit_entry_set *grab_sit_entry_set(void)
1994 struct sit_entry_set *ses =
1995 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1998 INIT_LIST_HEAD(&ses->set_list);
2002 static void release_sit_entry_set(struct sit_entry_set *ses)
2004 list_del(&ses->set_list);
2005 kmem_cache_free(sit_entry_set_slab, ses);
2008 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2009 struct list_head *head)
2011 struct sit_entry_set *next = ses;
2013 if (list_is_last(&ses->set_list, head))
2016 list_for_each_entry_continue(next, head, set_list)
2017 if (ses->entry_cnt <= next->entry_cnt)
2020 list_move_tail(&ses->set_list, &next->set_list);
2023 static void add_sit_entry(unsigned int segno, struct list_head *head)
2025 struct sit_entry_set *ses;
2026 unsigned int start_segno = START_SEGNO(segno);
2028 list_for_each_entry(ses, head, set_list) {
2029 if (ses->start_segno == start_segno) {
2031 adjust_sit_entry_set(ses, head);
2036 ses = grab_sit_entry_set();
2038 ses->start_segno = start_segno;
2040 list_add(&ses->set_list, head);
2043 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2045 struct f2fs_sm_info *sm_info = SM_I(sbi);
2046 struct list_head *set_list = &sm_info->sit_entry_set;
2047 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2050 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2051 add_sit_entry(segno, set_list);
2054 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2056 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2057 struct f2fs_journal *journal = curseg->journal;
2060 down_write(&curseg->journal_rwsem);
2061 for (i = 0; i < sits_in_cursum(journal); i++) {
2065 segno = le32_to_cpu(segno_in_journal(journal, i));
2066 dirtied = __mark_sit_entry_dirty(sbi, segno);
2069 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2071 update_sits_in_cursum(journal, -i);
2072 up_write(&curseg->journal_rwsem);
2076 * CP calls this function, which flushes SIT entries including sit_journal,
2077 * and moves prefree segs to free segs.
2079 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2081 struct sit_info *sit_i = SIT_I(sbi);
2082 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2083 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2084 struct f2fs_journal *journal = curseg->journal;
2085 struct sit_entry_set *ses, *tmp;
2086 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2087 bool to_journal = true;
2088 struct seg_entry *se;
2090 mutex_lock(&sit_i->sentry_lock);
2092 if (!sit_i->dirty_sentries)
2096 * add and account sit entries of dirty bitmap in sit entry
2099 add_sits_in_set(sbi);
2102 * if there are no enough space in journal to store dirty sit
2103 * entries, remove all entries from journal and add and account
2104 * them in sit entry set.
2106 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2107 remove_sits_in_journal(sbi);
2110 * there are two steps to flush sit entries:
2111 * #1, flush sit entries to journal in current cold data summary block.
2112 * #2, flush sit entries to sit page.
2114 list_for_each_entry_safe(ses, tmp, head, set_list) {
2115 struct page *page = NULL;
2116 struct f2fs_sit_block *raw_sit = NULL;
2117 unsigned int start_segno = ses->start_segno;
2118 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2119 (unsigned long)MAIN_SEGS(sbi));
2120 unsigned int segno = start_segno;
2123 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2127 down_write(&curseg->journal_rwsem);
2129 page = get_next_sit_page(sbi, start_segno);
2130 raw_sit = page_address(page);
2133 /* flush dirty sit entries in region of current sit set */
2134 for_each_set_bit_from(segno, bitmap, end) {
2135 int offset, sit_offset;
2137 se = get_seg_entry(sbi, segno);
2139 /* add discard candidates */
2140 if (cpc->reason != CP_DISCARD) {
2141 cpc->trim_start = segno;
2142 add_discard_addrs(sbi, cpc);
2146 offset = lookup_journal_in_cursum(journal,
2147 SIT_JOURNAL, segno, 1);
2148 f2fs_bug_on(sbi, offset < 0);
2149 segno_in_journal(journal, offset) =
2151 seg_info_to_raw_sit(se,
2152 &sit_in_journal(journal, offset));
2154 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2155 seg_info_to_raw_sit(se,
2156 &raw_sit->entries[sit_offset]);
2159 __clear_bit(segno, bitmap);
2160 sit_i->dirty_sentries--;
2165 up_write(&curseg->journal_rwsem);
2167 f2fs_put_page(page, 1);
2169 f2fs_bug_on(sbi, ses->entry_cnt);
2170 release_sit_entry_set(ses);
2173 f2fs_bug_on(sbi, !list_empty(head));
2174 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2176 if (cpc->reason == CP_DISCARD) {
2177 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2178 add_discard_addrs(sbi, cpc);
2180 mutex_unlock(&sit_i->sentry_lock);
2182 set_prefree_as_free_segments(sbi);
2185 static int build_sit_info(struct f2fs_sb_info *sbi)
2187 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2188 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2189 struct sit_info *sit_i;
2190 unsigned int sit_segs, start;
2191 char *src_bitmap, *dst_bitmap;
2192 unsigned int bitmap_size;
2194 /* allocate memory for SIT information */
2195 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2199 SM_I(sbi)->sit_info = sit_i;
2201 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2202 sizeof(struct seg_entry), GFP_KERNEL);
2203 if (!sit_i->sentries)
2206 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2207 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2208 if (!sit_i->dirty_sentries_bitmap)
2211 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2212 sit_i->sentries[start].cur_valid_map
2213 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2214 sit_i->sentries[start].ckpt_valid_map
2215 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2216 if (!sit_i->sentries[start].cur_valid_map ||
2217 !sit_i->sentries[start].ckpt_valid_map)
2220 if (f2fs_discard_en(sbi)) {
2221 sit_i->sentries[start].discard_map
2222 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2223 if (!sit_i->sentries[start].discard_map)
2228 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2229 if (!sit_i->tmp_map)
2232 if (sbi->segs_per_sec > 1) {
2233 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2234 sizeof(struct sec_entry), GFP_KERNEL);
2235 if (!sit_i->sec_entries)
2239 /* get information related with SIT */
2240 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2242 /* setup SIT bitmap from ckeckpoint pack */
2243 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2244 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2246 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2250 /* init SIT information */
2251 sit_i->s_ops = &default_salloc_ops;
2253 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2254 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2255 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2256 sit_i->sit_bitmap = dst_bitmap;
2257 sit_i->bitmap_size = bitmap_size;
2258 sit_i->dirty_sentries = 0;
2259 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2260 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2261 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2262 mutex_init(&sit_i->sentry_lock);
2266 static int build_free_segmap(struct f2fs_sb_info *sbi)
2268 struct free_segmap_info *free_i;
2269 unsigned int bitmap_size, sec_bitmap_size;
2271 /* allocate memory for free segmap information */
2272 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2276 SM_I(sbi)->free_info = free_i;
2278 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2279 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2280 if (!free_i->free_segmap)
2283 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2284 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2285 if (!free_i->free_secmap)
2288 /* set all segments as dirty temporarily */
2289 memset(free_i->free_segmap, 0xff, bitmap_size);
2290 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2292 /* init free segmap information */
2293 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2294 free_i->free_segments = 0;
2295 free_i->free_sections = 0;
2296 spin_lock_init(&free_i->segmap_lock);
2300 static int build_curseg(struct f2fs_sb_info *sbi)
2302 struct curseg_info *array;
2305 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2309 SM_I(sbi)->curseg_array = array;
2311 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2312 mutex_init(&array[i].curseg_mutex);
2313 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2314 if (!array[i].sum_blk)
2316 init_rwsem(&array[i].journal_rwsem);
2317 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2319 if (!array[i].journal)
2321 array[i].segno = NULL_SEGNO;
2322 array[i].next_blkoff = 0;
2324 return restore_curseg_summaries(sbi);
2327 static int build_sit_entries(struct f2fs_sb_info *sbi)
2329 struct sit_info *sit_i = SIT_I(sbi);
2330 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2331 struct f2fs_journal *journal = curseg->journal;
2332 struct seg_entry *se;
2333 struct f2fs_sit_entry sit;
2334 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2335 unsigned int i, start, end;
2336 unsigned int readed, start_blk = 0;
2337 int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2341 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2343 start = start_blk * sit_i->sents_per_block;
2344 end = (start_blk + readed) * sit_i->sents_per_block;
2346 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2347 struct f2fs_sit_block *sit_blk;
2350 se = &sit_i->sentries[start];
2351 page = get_current_sit_page(sbi, start);
2352 sit_blk = (struct f2fs_sit_block *)page_address(page);
2353 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2354 f2fs_put_page(page, 1);
2356 err = check_block_count(sbi, start, &sit);
2359 seg_info_from_raw_sit(se, &sit);
2361 /* build discard map only one time */
2362 if (f2fs_discard_en(sbi)) {
2363 memcpy(se->discard_map, se->cur_valid_map,
2364 SIT_VBLOCK_MAP_SIZE);
2365 sbi->discard_blks += sbi->blocks_per_seg -
2369 if (sbi->segs_per_sec > 1)
2370 get_sec_entry(sbi, start)->valid_blocks +=
2373 start_blk += readed;
2374 } while (start_blk < sit_blk_cnt);
2376 down_read(&curseg->journal_rwsem);
2377 for (i = 0; i < sits_in_cursum(journal); i++) {
2378 unsigned int old_valid_blocks;
2380 start = le32_to_cpu(segno_in_journal(journal, i));
2381 if (start >= MAIN_SEGS(sbi)) {
2382 f2fs_msg(sbi->sb, KERN_ERR,
2383 "Wrong journal entry on segno %u",
2385 set_sbi_flag(sbi, SBI_NEED_FSCK);
2390 se = &sit_i->sentries[start];
2391 sit = sit_in_journal(journal, i);
2393 old_valid_blocks = se->valid_blocks;
2395 err = check_block_count(sbi, start, &sit);
2398 seg_info_from_raw_sit(se, &sit);
2400 if (f2fs_discard_en(sbi)) {
2401 memcpy(se->discard_map, se->cur_valid_map,
2402 SIT_VBLOCK_MAP_SIZE);
2403 sbi->discard_blks += old_valid_blocks -
2407 if (sbi->segs_per_sec > 1)
2408 get_sec_entry(sbi, start)->valid_blocks +=
2409 se->valid_blocks - old_valid_blocks;
2411 up_read(&curseg->journal_rwsem);
2415 static void init_free_segmap(struct f2fs_sb_info *sbi)
2420 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2421 struct seg_entry *sentry = get_seg_entry(sbi, start);
2422 if (!sentry->valid_blocks)
2423 __set_free(sbi, start);
2426 /* set use the current segments */
2427 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2428 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2429 __set_test_and_inuse(sbi, curseg_t->segno);
2433 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2435 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2436 struct free_segmap_info *free_i = FREE_I(sbi);
2437 unsigned int segno = 0, offset = 0;
2438 unsigned short valid_blocks;
2441 /* find dirty segment based on free segmap */
2442 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2443 if (segno >= MAIN_SEGS(sbi))
2446 valid_blocks = get_valid_blocks(sbi, segno, 0);
2447 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2449 if (valid_blocks > sbi->blocks_per_seg) {
2450 f2fs_bug_on(sbi, 1);
2453 mutex_lock(&dirty_i->seglist_lock);
2454 __locate_dirty_segment(sbi, segno, DIRTY);
2455 mutex_unlock(&dirty_i->seglist_lock);
2459 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2461 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2462 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2464 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2465 if (!dirty_i->victim_secmap)
2470 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2472 struct dirty_seglist_info *dirty_i;
2473 unsigned int bitmap_size, i;
2475 /* allocate memory for dirty segments list information */
2476 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2480 SM_I(sbi)->dirty_info = dirty_i;
2481 mutex_init(&dirty_i->seglist_lock);
2483 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2485 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2486 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2487 if (!dirty_i->dirty_segmap[i])
2491 init_dirty_segmap(sbi);
2492 return init_victim_secmap(sbi);
2495 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
2500 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
2501 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
2503 for (i = 0; i < NO_CHECK_TYPE; i++) {
2504 struct curseg_info *curseg = CURSEG_I(sbi, i);
2505 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
2506 unsigned int blkofs = curseg->next_blkoff;
2508 if (f2fs_test_bit(blkofs, se->cur_valid_map))
2511 if (curseg->alloc_type == SSR)
2514 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
2515 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
2518 f2fs_msg(sbi->sb, KERN_ERR,
2519 "Current segment's next free block offset is "
2520 "inconsistent with bitmap, logtype:%u, "
2521 "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
2522 i, curseg->segno, curseg->alloc_type,
2523 curseg->next_blkoff, blkofs);
2531 * Update min, max modified time for cost-benefit GC algorithm
2533 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2535 struct sit_info *sit_i = SIT_I(sbi);
2538 mutex_lock(&sit_i->sentry_lock);
2540 sit_i->min_mtime = LLONG_MAX;
2542 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2544 unsigned long long mtime = 0;
2546 for (i = 0; i < sbi->segs_per_sec; i++)
2547 mtime += get_seg_entry(sbi, segno + i)->mtime;
2549 mtime = div_u64(mtime, sbi->segs_per_sec);
2551 if (sit_i->min_mtime > mtime)
2552 sit_i->min_mtime = mtime;
2554 sit_i->max_mtime = get_mtime(sbi);
2555 mutex_unlock(&sit_i->sentry_lock);
2558 int build_segment_manager(struct f2fs_sb_info *sbi)
2560 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2561 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2562 struct f2fs_sm_info *sm_info;
2565 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2570 sbi->sm_info = sm_info;
2571 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2572 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2573 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2574 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2575 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2576 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2577 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2578 sm_info->rec_prefree_segments = sm_info->main_segments *
2579 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2580 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2581 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2583 if (!test_opt(sbi, LFS))
2584 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2585 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2586 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2588 INIT_LIST_HEAD(&sm_info->discard_list);
2589 INIT_LIST_HEAD(&sm_info->wait_list);
2590 sm_info->nr_discards = 0;
2591 sm_info->max_discards = 0;
2593 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2595 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2597 if (!f2fs_readonly(sbi->sb)) {
2598 err = create_flush_cmd_control(sbi);
2603 err = build_sit_info(sbi);
2606 err = build_free_segmap(sbi);
2609 err = build_curseg(sbi);
2613 /* reinit free segmap based on SIT */
2614 err = build_sit_entries(sbi);
2618 init_free_segmap(sbi);
2619 err = build_dirty_segmap(sbi);
2623 err = sanity_check_curseg(sbi);
2627 init_min_max_mtime(sbi);
2631 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2632 enum dirty_type dirty_type)
2634 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2636 mutex_lock(&dirty_i->seglist_lock);
2637 kvfree(dirty_i->dirty_segmap[dirty_type]);
2638 dirty_i->nr_dirty[dirty_type] = 0;
2639 mutex_unlock(&dirty_i->seglist_lock);
2642 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2644 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2645 kvfree(dirty_i->victim_secmap);
2648 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2650 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2656 /* discard pre-free/dirty segments list */
2657 for (i = 0; i < NR_DIRTY_TYPE; i++)
2658 discard_dirty_segmap(sbi, i);
2660 destroy_victim_secmap(sbi);
2661 SM_I(sbi)->dirty_info = NULL;
2665 static void destroy_curseg(struct f2fs_sb_info *sbi)
2667 struct curseg_info *array = SM_I(sbi)->curseg_array;
2672 SM_I(sbi)->curseg_array = NULL;
2673 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2674 kfree(array[i].sum_blk);
2675 kfree(array[i].journal);
2680 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2682 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2685 SM_I(sbi)->free_info = NULL;
2686 kvfree(free_i->free_segmap);
2687 kvfree(free_i->free_secmap);
2691 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2693 struct sit_info *sit_i = SIT_I(sbi);
2699 if (sit_i->sentries) {
2700 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2701 kfree(sit_i->sentries[start].cur_valid_map);
2702 kfree(sit_i->sentries[start].ckpt_valid_map);
2703 kfree(sit_i->sentries[start].discard_map);
2706 kfree(sit_i->tmp_map);
2708 kvfree(sit_i->sentries);
2709 kvfree(sit_i->sec_entries);
2710 kvfree(sit_i->dirty_sentries_bitmap);
2712 SM_I(sbi)->sit_info = NULL;
2713 kfree(sit_i->sit_bitmap);
2717 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2719 struct f2fs_sm_info *sm_info = SM_I(sbi);
2723 destroy_flush_cmd_control(sbi);
2724 destroy_dirty_segmap(sbi);
2725 destroy_curseg(sbi);
2726 destroy_free_segmap(sbi);
2727 destroy_sit_info(sbi);
2728 sbi->sm_info = NULL;
2732 int __init create_segment_manager_caches(void)
2734 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2735 sizeof(struct discard_entry));
2736 if (!discard_entry_slab)
2739 bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2740 sizeof(struct bio_entry));
2741 if (!bio_entry_slab)
2742 goto destroy_discard_entry;
2744 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2745 sizeof(struct sit_entry_set));
2746 if (!sit_entry_set_slab)
2747 goto destroy_bio_entry;
2749 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2750 sizeof(struct inmem_pages));
2751 if (!inmem_entry_slab)
2752 goto destroy_sit_entry_set;
2755 destroy_sit_entry_set:
2756 kmem_cache_destroy(sit_entry_set_slab);
2758 kmem_cache_destroy(bio_entry_slab);
2759 destroy_discard_entry:
2760 kmem_cache_destroy(discard_entry_slab);
2765 void destroy_segment_manager_caches(void)
2767 kmem_cache_destroy(sit_entry_set_slab);
2768 kmem_cache_destroy(bio_entry_slab);
2769 kmem_cache_destroy(discard_entry_slab);
2770 kmem_cache_destroy(inmem_entry_slab);