GNU Linux-libre 5.10.217-gnu1
[releases.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         si_meminfo(&val);
53
54         /* only uses low memory */
55         avail_ram = val.totalram - val.totalhigh;
56
57         /*
58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59          */
60         if (type == FREE_NIDS) {
61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64         } else if (type == NAT_ENTRIES) {
65                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68                 if (excess_cached_nats(sbi))
69                         res = false;
70         } else if (type == DIRTY_DENTS) {
71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72                         return false;
73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else if (type == INO_ENTRIES) {
76                 int i;
77
78                 for (i = 0; i < MAX_INO_ENTRY; i++)
79                         mem_size += sbi->im[i].ino_num *
80                                                 sizeof(struct ino_entry);
81                 mem_size >>= PAGE_SHIFT;
82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83         } else if (type == EXTENT_CACHE) {
84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
85                                 sizeof(struct extent_tree) +
86                                 atomic_read(&sbi->total_ext_node) *
87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89         } else if (type == INMEM_PAGES) {
90                 /* it allows 20% / total_ram for inmemory pages */
91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92                 res = mem_size < (val.totalram / 5);
93         } else {
94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95                         return true;
96         }
97         return res;
98 }
99
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138
139         set_to_next_nat(nm_i, nid);
140
141         return dst_page;
142 }
143
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179
180         nm_i->nat_cnt[TOTAL_NAT]++;
181         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt[TOTAL_NAT]--;
212         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213         __free_nat_entry(e);
214 }
215
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217                                                         struct nat_entry *ne)
218 {
219         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220         struct nat_entry_set *head;
221
222         head = radix_tree_lookup(&nm_i->nat_set_root, set);
223         if (!head) {
224                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226                 INIT_LIST_HEAD(&head->entry_list);
227                 INIT_LIST_HEAD(&head->set_list);
228                 head->set = set;
229                 head->entry_cnt = 0;
230                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231         }
232         return head;
233 }
234
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236                                                 struct nat_entry *ne)
237 {
238         struct nat_entry_set *head;
239         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241         if (!new_ne)
242                 head = __grab_nat_entry_set(nm_i, ne);
243
244         /*
245          * update entry_cnt in below condition:
246          * 1. update NEW_ADDR to valid block address;
247          * 2. update old block address to new one;
248          */
249         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250                                 !get_nat_flag(ne, IS_DIRTY)))
251                 head->entry_cnt++;
252
253         set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255         if (get_nat_flag(ne, IS_DIRTY))
256                 goto refresh_list;
257
258         nm_i->nat_cnt[DIRTY_NAT]++;
259         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260         set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262         spin_lock(&nm_i->nat_list_lock);
263         if (new_ne)
264                 list_del_init(&ne->list);
265         else
266                 list_move_tail(&ne->list, &head->entry_list);
267         spin_unlock(&nm_i->nat_list_lock);
268 }
269
270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271                 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273         spin_lock(&nm_i->nat_list_lock);
274         list_move_tail(&ne->list, &nm_i->nat_entries);
275         spin_unlock(&nm_i->nat_list_lock);
276
277         set_nat_flag(ne, IS_DIRTY, false);
278         set->entry_cnt--;
279         nm_i->nat_cnt[DIRTY_NAT]--;
280         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287                                                         start, nr);
288 }
289
290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292         return NODE_MAPPING(sbi) == page->mapping &&
293                         IS_DNODE(page) && is_cold_node(page);
294 }
295
296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298         spin_lock_init(&sbi->fsync_node_lock);
299         INIT_LIST_HEAD(&sbi->fsync_node_list);
300         sbi->fsync_seg_id = 0;
301         sbi->fsync_node_num = 0;
302 }
303
304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305                                                         struct page *page)
306 {
307         struct fsync_node_entry *fn;
308         unsigned long flags;
309         unsigned int seq_id;
310
311         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313         get_page(page);
314         fn->page = page;
315         INIT_LIST_HEAD(&fn->list);
316
317         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318         list_add_tail(&fn->list, &sbi->fsync_node_list);
319         fn->seq_id = sbi->fsync_seg_id++;
320         seq_id = fn->seq_id;
321         sbi->fsync_node_num++;
322         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324         return seq_id;
325 }
326
327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329         struct fsync_node_entry *fn;
330         unsigned long flags;
331
332         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334                 if (fn->page == page) {
335                         list_del(&fn->list);
336                         sbi->fsync_node_num--;
337                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338                         kmem_cache_free(fsync_node_entry_slab, fn);
339                         put_page(page);
340                         return;
341                 }
342         }
343         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344         f2fs_bug_on(sbi, 1);
345 }
346
347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349         unsigned long flags;
350
351         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352         sbi->fsync_seg_id = 0;
353         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358         struct f2fs_nm_info *nm_i = NM_I(sbi);
359         struct nat_entry *e;
360         bool need = false;
361
362         down_read(&nm_i->nat_tree_lock);
363         e = __lookup_nat_cache(nm_i, nid);
364         if (e) {
365                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
367                         need = true;
368         }
369         up_read(&nm_i->nat_tree_lock);
370         return need;
371 }
372
373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375         struct f2fs_nm_info *nm_i = NM_I(sbi);
376         struct nat_entry *e;
377         bool is_cp = true;
378
379         down_read(&nm_i->nat_tree_lock);
380         e = __lookup_nat_cache(nm_i, nid);
381         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382                 is_cp = false;
383         up_read(&nm_i->nat_tree_lock);
384         return is_cp;
385 }
386
387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389         struct f2fs_nm_info *nm_i = NM_I(sbi);
390         struct nat_entry *e;
391         bool need_update = true;
392
393         down_read(&nm_i->nat_tree_lock);
394         e = __lookup_nat_cache(nm_i, ino);
395         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396                         (get_nat_flag(e, IS_CHECKPOINTED) ||
397                          get_nat_flag(e, HAS_FSYNCED_INODE)))
398                 need_update = false;
399         up_read(&nm_i->nat_tree_lock);
400         return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405                                                 struct f2fs_nat_entry *ne)
406 {
407         struct f2fs_nm_info *nm_i = NM_I(sbi);
408         struct nat_entry *new, *e;
409
410         new = __alloc_nat_entry(nid, false);
411         if (!new)
412                 return;
413
414         down_write(&nm_i->nat_tree_lock);
415         e = __lookup_nat_cache(nm_i, nid);
416         if (!e)
417                 e = __init_nat_entry(nm_i, new, ne, false);
418         else
419                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420                                 nat_get_blkaddr(e) !=
421                                         le32_to_cpu(ne->block_addr) ||
422                                 nat_get_version(e) != ne->version);
423         up_write(&nm_i->nat_tree_lock);
424         if (e != new)
425                 __free_nat_entry(new);
426 }
427
428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429                         block_t new_blkaddr, bool fsync_done)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *e;
433         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435         down_write(&nm_i->nat_tree_lock);
436         e = __lookup_nat_cache(nm_i, ni->nid);
437         if (!e) {
438                 e = __init_nat_entry(nm_i, new, NULL, true);
439                 copy_node_info(&e->ni, ni);
440                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441         } else if (new_blkaddr == NEW_ADDR) {
442                 /*
443                  * when nid is reallocated,
444                  * previous nat entry can be remained in nat cache.
445                  * So, reinitialize it with new information.
446                  */
447                 copy_node_info(&e->ni, ni);
448                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449         }
450         /* let's free early to reduce memory consumption */
451         if (e != new)
452                 __free_nat_entry(new);
453
454         /* sanity check */
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457                         new_blkaddr == NULL_ADDR);
458         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459                         new_blkaddr == NEW_ADDR);
460         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461                         new_blkaddr == NEW_ADDR);
462
463         /* increment version no as node is removed */
464         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465                 unsigned char version = nat_get_version(e);
466                 nat_set_version(e, inc_node_version(version));
467         }
468
469         /* change address */
470         nat_set_blkaddr(e, new_blkaddr);
471         if (!__is_valid_data_blkaddr(new_blkaddr))
472                 set_nat_flag(e, IS_CHECKPOINTED, false);
473         __set_nat_cache_dirty(nm_i, e);
474
475         /* update fsync_mark if its inode nat entry is still alive */
476         if (ni->nid != ni->ino)
477                 e = __lookup_nat_cache(nm_i, ni->ino);
478         if (e) {
479                 if (fsync_done && ni->nid == ni->ino)
480                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
481                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482         }
483         up_write(&nm_i->nat_tree_lock);
484 }
485
486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488         struct f2fs_nm_info *nm_i = NM_I(sbi);
489         int nr = nr_shrink;
490
491         if (!down_write_trylock(&nm_i->nat_tree_lock))
492                 return 0;
493
494         spin_lock(&nm_i->nat_list_lock);
495         while (nr_shrink) {
496                 struct nat_entry *ne;
497
498                 if (list_empty(&nm_i->nat_entries))
499                         break;
500
501                 ne = list_first_entry(&nm_i->nat_entries,
502                                         struct nat_entry, list);
503                 list_del(&ne->list);
504                 spin_unlock(&nm_i->nat_list_lock);
505
506                 __del_from_nat_cache(nm_i, ne);
507                 nr_shrink--;
508
509                 spin_lock(&nm_i->nat_list_lock);
510         }
511         spin_unlock(&nm_i->nat_list_lock);
512
513         up_write(&nm_i->nat_tree_lock);
514         return nr - nr_shrink;
515 }
516
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518                                                 struct node_info *ni)
519 {
520         struct f2fs_nm_info *nm_i = NM_I(sbi);
521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522         struct f2fs_journal *journal = curseg->journal;
523         nid_t start_nid = START_NID(nid);
524         struct f2fs_nat_block *nat_blk;
525         struct page *page = NULL;
526         struct f2fs_nat_entry ne;
527         struct nat_entry *e;
528         pgoff_t index;
529         block_t blkaddr;
530         int i;
531
532         ni->nid = nid;
533
534         /* Check nat cache */
535         down_read(&nm_i->nat_tree_lock);
536         e = __lookup_nat_cache(nm_i, nid);
537         if (e) {
538                 ni->ino = nat_get_ino(e);
539                 ni->blk_addr = nat_get_blkaddr(e);
540                 ni->version = nat_get_version(e);
541                 up_read(&nm_i->nat_tree_lock);
542                 return 0;
543         }
544
545         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547         /* Check current segment summary */
548         down_read(&curseg->journal_rwsem);
549         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550         if (i >= 0) {
551                 ne = nat_in_journal(journal, i);
552                 node_info_from_raw_nat(ni, &ne);
553         }
554         up_read(&curseg->journal_rwsem);
555         if (i >= 0) {
556                 up_read(&nm_i->nat_tree_lock);
557                 goto cache;
558         }
559
560         /* Fill node_info from nat page */
561         index = current_nat_addr(sbi, nid);
562         up_read(&nm_i->nat_tree_lock);
563
564         page = f2fs_get_meta_page(sbi, index);
565         if (IS_ERR(page))
566                 return PTR_ERR(page);
567
568         nat_blk = (struct f2fs_nat_block *)page_address(page);
569         ne = nat_blk->entries[nid - start_nid];
570         node_info_from_raw_nat(ni, &ne);
571         f2fs_put_page(page, 1);
572 cache:
573         blkaddr = le32_to_cpu(ne.block_addr);
574         if (__is_valid_data_blkaddr(blkaddr) &&
575                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576                 return -EFAULT;
577
578         /* cache nat entry */
579         cache_nat_entry(sbi, nid, &ne);
580         return 0;
581 }
582
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589         struct blk_plug plug;
590         int i, end;
591         nid_t nid;
592
593         blk_start_plug(&plug);
594
595         /* Then, try readahead for siblings of the desired node */
596         end = start + n;
597         end = min(end, NIDS_PER_BLOCK);
598         for (i = start; i < end; i++) {
599                 nid = get_nid(parent, i, false);
600                 f2fs_ra_node_page(sbi, nid);
601         }
602
603         blk_finish_plug(&plug);
604 }
605
606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608         const long direct_index = ADDRS_PER_INODE(dn->inode);
609         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612         int cur_level = dn->cur_level;
613         int max_level = dn->max_level;
614         pgoff_t base = 0;
615
616         if (!dn->max_level)
617                 return pgofs + 1;
618
619         while (max_level-- > cur_level)
620                 skipped_unit *= NIDS_PER_BLOCK;
621
622         switch (dn->max_level) {
623         case 3:
624                 base += 2 * indirect_blks;
625                 fallthrough;
626         case 2:
627                 base += 2 * direct_blks;
628                 fallthrough;
629         case 1:
630                 base += direct_index;
631                 break;
632         default:
633                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634         }
635
636         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
643 static int get_node_path(struct inode *inode, long block,
644                                 int offset[4], unsigned int noffset[4])
645 {
646         const long direct_index = ADDRS_PER_INODE(inode);
647         const long direct_blks = ADDRS_PER_BLOCK(inode);
648         const long dptrs_per_blk = NIDS_PER_BLOCK;
649         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651         int n = 0;
652         int level = 0;
653
654         noffset[0] = 0;
655
656         if (block < direct_index) {
657                 offset[n] = block;
658                 goto got;
659         }
660         block -= direct_index;
661         if (block < direct_blks) {
662                 offset[n++] = NODE_DIR1_BLOCK;
663                 noffset[n] = 1;
664                 offset[n] = block;
665                 level = 1;
666                 goto got;
667         }
668         block -= direct_blks;
669         if (block < direct_blks) {
670                 offset[n++] = NODE_DIR2_BLOCK;
671                 noffset[n] = 2;
672                 offset[n] = block;
673                 level = 1;
674                 goto got;
675         }
676         block -= direct_blks;
677         if (block < indirect_blks) {
678                 offset[n++] = NODE_IND1_BLOCK;
679                 noffset[n] = 3;
680                 offset[n++] = block / direct_blks;
681                 noffset[n] = 4 + offset[n - 1];
682                 offset[n] = block % direct_blks;
683                 level = 2;
684                 goto got;
685         }
686         block -= indirect_blks;
687         if (block < indirect_blks) {
688                 offset[n++] = NODE_IND2_BLOCK;
689                 noffset[n] = 4 + dptrs_per_blk;
690                 offset[n++] = block / direct_blks;
691                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692                 offset[n] = block % direct_blks;
693                 level = 2;
694                 goto got;
695         }
696         block -= indirect_blks;
697         if (block < dindirect_blks) {
698                 offset[n++] = NODE_DIND_BLOCK;
699                 noffset[n] = 5 + (dptrs_per_blk * 2);
700                 offset[n++] = block / indirect_blks;
701                 noffset[n] = 6 + (dptrs_per_blk * 2) +
702                               offset[n - 1] * (dptrs_per_blk + 1);
703                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704                 noffset[n] = 7 + (dptrs_per_blk * 2) +
705                               offset[n - 2] * (dptrs_per_blk + 1) +
706                               offset[n - 1];
707                 offset[n] = block % direct_blks;
708                 level = 3;
709                 goto got;
710         } else {
711                 return -E2BIG;
712         }
713 got:
714         return level;
715 }
716
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721  */
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725         struct page *npage[4];
726         struct page *parent = NULL;
727         int offset[4];
728         unsigned int noffset[4];
729         nid_t nids[4];
730         int level, i = 0;
731         int err = 0;
732
733         level = get_node_path(dn->inode, index, offset, noffset);
734         if (level < 0)
735                 return level;
736
737         nids[0] = dn->inode->i_ino;
738         npage[0] = dn->inode_page;
739
740         if (!npage[0]) {
741                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742                 if (IS_ERR(npage[0]))
743                         return PTR_ERR(npage[0]);
744         }
745
746         /* if inline_data is set, should not report any block indices */
747         if (f2fs_has_inline_data(dn->inode) && index) {
748                 err = -ENOENT;
749                 f2fs_put_page(npage[0], 1);
750                 goto release_out;
751         }
752
753         parent = npage[0];
754         if (level != 0)
755                 nids[1] = get_nid(parent, offset[0], true);
756         dn->inode_page = npage[0];
757         dn->inode_page_locked = true;
758
759         /* get indirect or direct nodes */
760         for (i = 1; i <= level; i++) {
761                 bool done = false;
762
763                 if (!nids[i] && mode == ALLOC_NODE) {
764                         /* alloc new node */
765                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766                                 err = -ENOSPC;
767                                 goto release_pages;
768                         }
769
770                         dn->nid = nids[i];
771                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
772                         if (IS_ERR(npage[i])) {
773                                 f2fs_alloc_nid_failed(sbi, nids[i]);
774                                 err = PTR_ERR(npage[i]);
775                                 goto release_pages;
776                         }
777
778                         set_nid(parent, offset[i - 1], nids[i], i == 1);
779                         f2fs_alloc_nid_done(sbi, nids[i]);
780                         done = true;
781                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783                         if (IS_ERR(npage[i])) {
784                                 err = PTR_ERR(npage[i]);
785                                 goto release_pages;
786                         }
787                         done = true;
788                 }
789                 if (i == 1) {
790                         dn->inode_page_locked = false;
791                         unlock_page(parent);
792                 } else {
793                         f2fs_put_page(parent, 1);
794                 }
795
796                 if (!done) {
797                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
798                         if (IS_ERR(npage[i])) {
799                                 err = PTR_ERR(npage[i]);
800                                 f2fs_put_page(npage[0], 0);
801                                 goto release_out;
802                         }
803                 }
804                 if (i < level) {
805                         parent = npage[i];
806                         nids[i + 1] = get_nid(parent, offset[i], false);
807                 }
808         }
809         dn->nid = nids[level];
810         dn->ofs_in_node = offset[level];
811         dn->node_page = npage[level];
812         dn->data_blkaddr = f2fs_data_blkaddr(dn);
813         return 0;
814
815 release_pages:
816         f2fs_put_page(parent, 1);
817         if (i > 1)
818                 f2fs_put_page(npage[0], 0);
819 release_out:
820         dn->inode_page = NULL;
821         dn->node_page = NULL;
822         if (err == -ENOENT) {
823                 dn->cur_level = i;
824                 dn->max_level = level;
825                 dn->ofs_in_node = offset[level];
826         }
827         return err;
828 }
829
830 static int truncate_node(struct dnode_of_data *dn)
831 {
832         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833         struct node_info ni;
834         int err;
835         pgoff_t index;
836
837         err = f2fs_get_node_info(sbi, dn->nid, &ni);
838         if (err)
839                 return err;
840
841         /* Deallocate node address */
842         f2fs_invalidate_blocks(sbi, ni.blk_addr);
843         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844         set_node_addr(sbi, &ni, NULL_ADDR, false);
845
846         if (dn->nid == dn->inode->i_ino) {
847                 f2fs_remove_orphan_inode(sbi, dn->nid);
848                 dec_valid_inode_count(sbi);
849                 f2fs_inode_synced(dn->inode);
850         }
851
852         clear_node_page_dirty(dn->node_page);
853         set_sbi_flag(sbi, SBI_IS_DIRTY);
854
855         index = dn->node_page->index;
856         f2fs_put_page(dn->node_page, 1);
857
858         invalidate_mapping_pages(NODE_MAPPING(sbi),
859                         index, index);
860
861         dn->node_page = NULL;
862         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863
864         return 0;
865 }
866
867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869         struct page *page;
870         int err;
871
872         if (dn->nid == 0)
873                 return 1;
874
875         /* get direct node */
876         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877         if (PTR_ERR(page) == -ENOENT)
878                 return 1;
879         else if (IS_ERR(page))
880                 return PTR_ERR(page);
881
882         /* Make dnode_of_data for parameter */
883         dn->node_page = page;
884         dn->ofs_in_node = 0;
885         f2fs_truncate_data_blocks(dn);
886         err = truncate_node(dn);
887         if (err) {
888                 f2fs_put_page(page, 1);
889                 return err;
890         }
891
892         return 1;
893 }
894
895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896                                                 int ofs, int depth)
897 {
898         struct dnode_of_data rdn = *dn;
899         struct page *page;
900         struct f2fs_node *rn;
901         nid_t child_nid;
902         unsigned int child_nofs;
903         int freed = 0;
904         int i, ret;
905
906         if (dn->nid == 0)
907                 return NIDS_PER_BLOCK + 1;
908
909         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910
911         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912         if (IS_ERR(page)) {
913                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914                 return PTR_ERR(page);
915         }
916
917         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918
919         rn = F2FS_NODE(page);
920         if (depth < 3) {
921                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922                         child_nid = le32_to_cpu(rn->in.nid[i]);
923                         if (child_nid == 0)
924                                 continue;
925                         rdn.nid = child_nid;
926                         ret = truncate_dnode(&rdn);
927                         if (ret < 0)
928                                 goto out_err;
929                         if (set_nid(page, i, 0, false))
930                                 dn->node_changed = true;
931                 }
932         } else {
933                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935                         child_nid = le32_to_cpu(rn->in.nid[i]);
936                         if (child_nid == 0) {
937                                 child_nofs += NIDS_PER_BLOCK + 1;
938                                 continue;
939                         }
940                         rdn.nid = child_nid;
941                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942                         if (ret == (NIDS_PER_BLOCK + 1)) {
943                                 if (set_nid(page, i, 0, false))
944                                         dn->node_changed = true;
945                                 child_nofs += ret;
946                         } else if (ret < 0 && ret != -ENOENT) {
947                                 goto out_err;
948                         }
949                 }
950                 freed = child_nofs;
951         }
952
953         if (!ofs) {
954                 /* remove current indirect node */
955                 dn->node_page = page;
956                 ret = truncate_node(dn);
957                 if (ret)
958                         goto out_err;
959                 freed++;
960         } else {
961                 f2fs_put_page(page, 1);
962         }
963         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964         return freed;
965
966 out_err:
967         f2fs_put_page(page, 1);
968         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969         return ret;
970 }
971
972 static int truncate_partial_nodes(struct dnode_of_data *dn,
973                         struct f2fs_inode *ri, int *offset, int depth)
974 {
975         struct page *pages[2];
976         nid_t nid[3];
977         nid_t child_nid;
978         int err = 0;
979         int i;
980         int idx = depth - 2;
981
982         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983         if (!nid[0])
984                 return 0;
985
986         /* get indirect nodes in the path */
987         for (i = 0; i < idx + 1; i++) {
988                 /* reference count'll be increased */
989                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990                 if (IS_ERR(pages[i])) {
991                         err = PTR_ERR(pages[i]);
992                         idx = i - 1;
993                         goto fail;
994                 }
995                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996         }
997
998         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999
1000         /* free direct nodes linked to a partial indirect node */
1001         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002                 child_nid = get_nid(pages[idx], i, false);
1003                 if (!child_nid)
1004                         continue;
1005                 dn->nid = child_nid;
1006                 err = truncate_dnode(dn);
1007                 if (err < 0)
1008                         goto fail;
1009                 if (set_nid(pages[idx], i, 0, false))
1010                         dn->node_changed = true;
1011         }
1012
1013         if (offset[idx + 1] == 0) {
1014                 dn->node_page = pages[idx];
1015                 dn->nid = nid[idx];
1016                 err = truncate_node(dn);
1017                 if (err)
1018                         goto fail;
1019         } else {
1020                 f2fs_put_page(pages[idx], 1);
1021         }
1022         offset[idx]++;
1023         offset[idx + 1] = 0;
1024         idx--;
1025 fail:
1026         for (i = idx; i >= 0; i--)
1027                 f2fs_put_page(pages[i], 1);
1028
1029         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030
1031         return err;
1032 }
1033
1034 /*
1035  * All the block addresses of data and nodes should be nullified.
1036  */
1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 {
1039         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040         int err = 0, cont = 1;
1041         int level, offset[4], noffset[4];
1042         unsigned int nofs = 0;
1043         struct f2fs_inode *ri;
1044         struct dnode_of_data dn;
1045         struct page *page;
1046
1047         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048
1049         level = get_node_path(inode, from, offset, noffset);
1050         if (level < 0) {
1051                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1052                 return level;
1053         }
1054
1055         page = f2fs_get_node_page(sbi, inode->i_ino);
1056         if (IS_ERR(page)) {
1057                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1058                 return PTR_ERR(page);
1059         }
1060
1061         set_new_dnode(&dn, inode, page, NULL, 0);
1062         unlock_page(page);
1063
1064         ri = F2FS_INODE(page);
1065         switch (level) {
1066         case 0:
1067         case 1:
1068                 nofs = noffset[1];
1069                 break;
1070         case 2:
1071                 nofs = noffset[1];
1072                 if (!offset[level - 1])
1073                         goto skip_partial;
1074                 err = truncate_partial_nodes(&dn, ri, offset, level);
1075                 if (err < 0 && err != -ENOENT)
1076                         goto fail;
1077                 nofs += 1 + NIDS_PER_BLOCK;
1078                 break;
1079         case 3:
1080                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1081                 if (!offset[level - 1])
1082                         goto skip_partial;
1083                 err = truncate_partial_nodes(&dn, ri, offset, level);
1084                 if (err < 0 && err != -ENOENT)
1085                         goto fail;
1086                 break;
1087         default:
1088                 BUG();
1089         }
1090
1091 skip_partial:
1092         while (cont) {
1093                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1094                 switch (offset[0]) {
1095                 case NODE_DIR1_BLOCK:
1096                 case NODE_DIR2_BLOCK:
1097                         err = truncate_dnode(&dn);
1098                         break;
1099
1100                 case NODE_IND1_BLOCK:
1101                 case NODE_IND2_BLOCK:
1102                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1103                         break;
1104
1105                 case NODE_DIND_BLOCK:
1106                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1107                         cont = 0;
1108                         break;
1109
1110                 default:
1111                         BUG();
1112                 }
1113                 if (err < 0 && err != -ENOENT)
1114                         goto fail;
1115                 if (offset[1] == 0 &&
1116                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1117                         lock_page(page);
1118                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1119                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1120                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1121                         set_page_dirty(page);
1122                         unlock_page(page);
1123                 }
1124                 offset[1] = 0;
1125                 offset[0]++;
1126                 nofs += err;
1127         }
1128 fail:
1129         f2fs_put_page(page, 0);
1130         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1131         return err > 0 ? 0 : err;
1132 }
1133
1134 /* caller must lock inode page */
1135 int f2fs_truncate_xattr_node(struct inode *inode)
1136 {
1137         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1138         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1139         struct dnode_of_data dn;
1140         struct page *npage;
1141         int err;
1142
1143         if (!nid)
1144                 return 0;
1145
1146         npage = f2fs_get_node_page(sbi, nid);
1147         if (IS_ERR(npage))
1148                 return PTR_ERR(npage);
1149
1150         set_new_dnode(&dn, inode, NULL, npage, nid);
1151         err = truncate_node(&dn);
1152         if (err) {
1153                 f2fs_put_page(npage, 1);
1154                 return err;
1155         }
1156
1157         f2fs_i_xnid_write(inode, 0);
1158
1159         return 0;
1160 }
1161
1162 /*
1163  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1164  * f2fs_unlock_op().
1165  */
1166 int f2fs_remove_inode_page(struct inode *inode)
1167 {
1168         struct dnode_of_data dn;
1169         int err;
1170
1171         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1172         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1173         if (err)
1174                 return err;
1175
1176         err = f2fs_truncate_xattr_node(inode);
1177         if (err) {
1178                 f2fs_put_dnode(&dn);
1179                 return err;
1180         }
1181
1182         /* remove potential inline_data blocks */
1183         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1184                                 S_ISLNK(inode->i_mode))
1185                 f2fs_truncate_data_blocks_range(&dn, 1);
1186
1187         /* 0 is possible, after f2fs_new_inode() has failed */
1188         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1189                 f2fs_put_dnode(&dn);
1190                 return -EIO;
1191         }
1192
1193         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1194                 f2fs_warn(F2FS_I_SB(inode),
1195                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1196                         inode->i_ino, (unsigned long long)inode->i_blocks);
1197                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1198         }
1199
1200         /* will put inode & node pages */
1201         err = truncate_node(&dn);
1202         if (err) {
1203                 f2fs_put_dnode(&dn);
1204                 return err;
1205         }
1206         return 0;
1207 }
1208
1209 struct page *f2fs_new_inode_page(struct inode *inode)
1210 {
1211         struct dnode_of_data dn;
1212
1213         /* allocate inode page for new inode */
1214         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1215
1216         /* caller should f2fs_put_page(page, 1); */
1217         return f2fs_new_node_page(&dn, 0);
1218 }
1219
1220 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1221 {
1222         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1223         struct node_info new_ni;
1224         struct page *page;
1225         int err;
1226
1227         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1228                 return ERR_PTR(-EPERM);
1229
1230         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1231         if (!page)
1232                 return ERR_PTR(-ENOMEM);
1233
1234         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1235                 goto fail;
1236
1237 #ifdef CONFIG_F2FS_CHECK_FS
1238         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1239         if (err) {
1240                 dec_valid_node_count(sbi, dn->inode, !ofs);
1241                 goto fail;
1242         }
1243         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1244                 err = -EFSCORRUPTED;
1245                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1246                 goto fail;
1247         }
1248 #endif
1249         new_ni.nid = dn->nid;
1250         new_ni.ino = dn->inode->i_ino;
1251         new_ni.blk_addr = NULL_ADDR;
1252         new_ni.flag = 0;
1253         new_ni.version = 0;
1254         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1255
1256         f2fs_wait_on_page_writeback(page, NODE, true, true);
1257         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1258         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1259         if (!PageUptodate(page))
1260                 SetPageUptodate(page);
1261         if (set_page_dirty(page))
1262                 dn->node_changed = true;
1263
1264         if (f2fs_has_xattr_block(ofs))
1265                 f2fs_i_xnid_write(dn->inode, dn->nid);
1266
1267         if (ofs == 0)
1268                 inc_valid_inode_count(sbi);
1269         return page;
1270
1271 fail:
1272         clear_node_page_dirty(page);
1273         f2fs_put_page(page, 1);
1274         return ERR_PTR(err);
1275 }
1276
1277 /*
1278  * Caller should do after getting the following values.
1279  * 0: f2fs_put_page(page, 0)
1280  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1281  */
1282 static int read_node_page(struct page *page, int op_flags)
1283 {
1284         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1285         struct node_info ni;
1286         struct f2fs_io_info fio = {
1287                 .sbi = sbi,
1288                 .type = NODE,
1289                 .op = REQ_OP_READ,
1290                 .op_flags = op_flags,
1291                 .page = page,
1292                 .encrypted_page = NULL,
1293         };
1294         int err;
1295
1296         if (PageUptodate(page)) {
1297                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1298                         ClearPageUptodate(page);
1299                         return -EFSBADCRC;
1300                 }
1301                 return LOCKED_PAGE;
1302         }
1303
1304         err = f2fs_get_node_info(sbi, page->index, &ni);
1305         if (err)
1306                 return err;
1307
1308         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1309                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1310                 ClearPageUptodate(page);
1311                 return -ENOENT;
1312         }
1313
1314         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1315
1316         err = f2fs_submit_page_bio(&fio);
1317
1318         if (!err)
1319                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1320
1321         return err;
1322 }
1323
1324 /*
1325  * Readahead a node page
1326  */
1327 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1328 {
1329         struct page *apage;
1330         int err;
1331
1332         if (!nid)
1333                 return;
1334         if (f2fs_check_nid_range(sbi, nid))
1335                 return;
1336
1337         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1338         if (apage)
1339                 return;
1340
1341         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1342         if (!apage)
1343                 return;
1344
1345         err = read_node_page(apage, REQ_RAHEAD);
1346         f2fs_put_page(apage, err ? 1 : 0);
1347 }
1348
1349 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1350                                         struct page *parent, int start)
1351 {
1352         struct page *page;
1353         int err;
1354
1355         if (!nid)
1356                 return ERR_PTR(-ENOENT);
1357         if (f2fs_check_nid_range(sbi, nid))
1358                 return ERR_PTR(-EINVAL);
1359 repeat:
1360         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1361         if (!page)
1362                 return ERR_PTR(-ENOMEM);
1363
1364         err = read_node_page(page, 0);
1365         if (err < 0) {
1366                 f2fs_put_page(page, 1);
1367                 return ERR_PTR(err);
1368         } else if (err == LOCKED_PAGE) {
1369                 err = 0;
1370                 goto page_hit;
1371         }
1372
1373         if (parent)
1374                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1375
1376         lock_page(page);
1377
1378         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1379                 f2fs_put_page(page, 1);
1380                 goto repeat;
1381         }
1382
1383         if (unlikely(!PageUptodate(page))) {
1384                 err = -EIO;
1385                 goto out_err;
1386         }
1387
1388         if (!f2fs_inode_chksum_verify(sbi, page)) {
1389                 err = -EFSBADCRC;
1390                 goto out_err;
1391         }
1392 page_hit:
1393         if(unlikely(nid != nid_of_node(page))) {
1394                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1395                           nid, nid_of_node(page), ino_of_node(page),
1396                           ofs_of_node(page), cpver_of_node(page),
1397                           next_blkaddr_of_node(page));
1398                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1399                 err = -EINVAL;
1400 out_err:
1401                 ClearPageUptodate(page);
1402                 f2fs_put_page(page, 1);
1403                 return ERR_PTR(err);
1404         }
1405         return page;
1406 }
1407
1408 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1409 {
1410         return __get_node_page(sbi, nid, NULL, 0);
1411 }
1412
1413 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1414 {
1415         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1416         nid_t nid = get_nid(parent, start, false);
1417
1418         return __get_node_page(sbi, nid, parent, start);
1419 }
1420
1421 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1422 {
1423         struct inode *inode;
1424         struct page *page;
1425         int ret;
1426
1427         /* should flush inline_data before evict_inode */
1428         inode = ilookup(sbi->sb, ino);
1429         if (!inode)
1430                 return;
1431
1432         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1433                                         FGP_LOCK|FGP_NOWAIT, 0);
1434         if (!page)
1435                 goto iput_out;
1436
1437         if (!PageUptodate(page))
1438                 goto page_out;
1439
1440         if (!PageDirty(page))
1441                 goto page_out;
1442
1443         if (!clear_page_dirty_for_io(page))
1444                 goto page_out;
1445
1446         ret = f2fs_write_inline_data(inode, page);
1447         inode_dec_dirty_pages(inode);
1448         f2fs_remove_dirty_inode(inode);
1449         if (ret)
1450                 set_page_dirty(page);
1451 page_out:
1452         f2fs_put_page(page, 1);
1453 iput_out:
1454         iput(inode);
1455 }
1456
1457 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1458 {
1459         pgoff_t index;
1460         struct pagevec pvec;
1461         struct page *last_page = NULL;
1462         int nr_pages;
1463
1464         pagevec_init(&pvec);
1465         index = 0;
1466
1467         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1468                                 PAGECACHE_TAG_DIRTY))) {
1469                 int i;
1470
1471                 for (i = 0; i < nr_pages; i++) {
1472                         struct page *page = pvec.pages[i];
1473
1474                         if (unlikely(f2fs_cp_error(sbi))) {
1475                                 f2fs_put_page(last_page, 0);
1476                                 pagevec_release(&pvec);
1477                                 return ERR_PTR(-EIO);
1478                         }
1479
1480                         if (!IS_DNODE(page) || !is_cold_node(page))
1481                                 continue;
1482                         if (ino_of_node(page) != ino)
1483                                 continue;
1484
1485                         lock_page(page);
1486
1487                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1488 continue_unlock:
1489                                 unlock_page(page);
1490                                 continue;
1491                         }
1492                         if (ino_of_node(page) != ino)
1493                                 goto continue_unlock;
1494
1495                         if (!PageDirty(page)) {
1496                                 /* someone wrote it for us */
1497                                 goto continue_unlock;
1498                         }
1499
1500                         if (last_page)
1501                                 f2fs_put_page(last_page, 0);
1502
1503                         get_page(page);
1504                         last_page = page;
1505                         unlock_page(page);
1506                 }
1507                 pagevec_release(&pvec);
1508                 cond_resched();
1509         }
1510         return last_page;
1511 }
1512
1513 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1514                                 struct writeback_control *wbc, bool do_balance,
1515                                 enum iostat_type io_type, unsigned int *seq_id)
1516 {
1517         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1518         nid_t nid;
1519         struct node_info ni;
1520         struct f2fs_io_info fio = {
1521                 .sbi = sbi,
1522                 .ino = ino_of_node(page),
1523                 .type = NODE,
1524                 .op = REQ_OP_WRITE,
1525                 .op_flags = wbc_to_write_flags(wbc),
1526                 .page = page,
1527                 .encrypted_page = NULL,
1528                 .submitted = false,
1529                 .io_type = io_type,
1530                 .io_wbc = wbc,
1531         };
1532         unsigned int seq;
1533
1534         trace_f2fs_writepage(page, NODE);
1535
1536         if (unlikely(f2fs_cp_error(sbi))) {
1537                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1538                         ClearPageUptodate(page);
1539                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1540                         unlock_page(page);
1541                         return 0;
1542                 }
1543                 goto redirty_out;
1544         }
1545
1546         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1547                 goto redirty_out;
1548
1549         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1550                         wbc->sync_mode == WB_SYNC_NONE &&
1551                         IS_DNODE(page) && is_cold_node(page))
1552                 goto redirty_out;
1553
1554         /* get old block addr of this node page */
1555         nid = nid_of_node(page);
1556         f2fs_bug_on(sbi, page->index != nid);
1557
1558         if (f2fs_get_node_info(sbi, nid, &ni))
1559                 goto redirty_out;
1560
1561         if (wbc->for_reclaim) {
1562                 if (!down_read_trylock(&sbi->node_write))
1563                         goto redirty_out;
1564         } else {
1565                 down_read(&sbi->node_write);
1566         }
1567
1568         /* This page is already truncated */
1569         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1570                 ClearPageUptodate(page);
1571                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1572                 up_read(&sbi->node_write);
1573                 unlock_page(page);
1574                 return 0;
1575         }
1576
1577         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1578                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1579                                         DATA_GENERIC_ENHANCE)) {
1580                 up_read(&sbi->node_write);
1581                 goto redirty_out;
1582         }
1583
1584         if (atomic && !test_opt(sbi, NOBARRIER))
1585                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1586
1587         /* should add to global list before clearing PAGECACHE status */
1588         if (f2fs_in_warm_node_list(sbi, page)) {
1589                 seq = f2fs_add_fsync_node_entry(sbi, page);
1590                 if (seq_id)
1591                         *seq_id = seq;
1592         }
1593
1594         set_page_writeback(page);
1595         ClearPageError(page);
1596
1597         fio.old_blkaddr = ni.blk_addr;
1598         f2fs_do_write_node_page(nid, &fio);
1599         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1600         dec_page_count(sbi, F2FS_DIRTY_NODES);
1601         up_read(&sbi->node_write);
1602
1603         if (wbc->for_reclaim) {
1604                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1605                 submitted = NULL;
1606         }
1607
1608         unlock_page(page);
1609
1610         if (unlikely(f2fs_cp_error(sbi))) {
1611                 f2fs_submit_merged_write(sbi, NODE);
1612                 submitted = NULL;
1613         }
1614         if (submitted)
1615                 *submitted = fio.submitted;
1616
1617         if (do_balance)
1618                 f2fs_balance_fs(sbi, false);
1619         return 0;
1620
1621 redirty_out:
1622         redirty_page_for_writepage(wbc, page);
1623         return AOP_WRITEPAGE_ACTIVATE;
1624 }
1625
1626 int f2fs_move_node_page(struct page *node_page, int gc_type)
1627 {
1628         int err = 0;
1629
1630         if (gc_type == FG_GC) {
1631                 struct writeback_control wbc = {
1632                         .sync_mode = WB_SYNC_ALL,
1633                         .nr_to_write = 1,
1634                         .for_reclaim = 0,
1635                 };
1636
1637                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1638
1639                 set_page_dirty(node_page);
1640
1641                 if (!clear_page_dirty_for_io(node_page)) {
1642                         err = -EAGAIN;
1643                         goto out_page;
1644                 }
1645
1646                 if (__write_node_page(node_page, false, NULL,
1647                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1648                         err = -EAGAIN;
1649                         unlock_page(node_page);
1650                 }
1651                 goto release_page;
1652         } else {
1653                 /* set page dirty and write it */
1654                 if (!PageWriteback(node_page))
1655                         set_page_dirty(node_page);
1656         }
1657 out_page:
1658         unlock_page(node_page);
1659 release_page:
1660         f2fs_put_page(node_page, 0);
1661         return err;
1662 }
1663
1664 static int f2fs_write_node_page(struct page *page,
1665                                 struct writeback_control *wbc)
1666 {
1667         return __write_node_page(page, false, NULL, wbc, false,
1668                                                 FS_NODE_IO, NULL);
1669 }
1670
1671 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1672                         struct writeback_control *wbc, bool atomic,
1673                         unsigned int *seq_id)
1674 {
1675         pgoff_t index;
1676         struct pagevec pvec;
1677         int ret = 0;
1678         struct page *last_page = NULL;
1679         bool marked = false;
1680         nid_t ino = inode->i_ino;
1681         int nr_pages;
1682         int nwritten = 0;
1683
1684         if (atomic) {
1685                 last_page = last_fsync_dnode(sbi, ino);
1686                 if (IS_ERR_OR_NULL(last_page))
1687                         return PTR_ERR_OR_ZERO(last_page);
1688         }
1689 retry:
1690         pagevec_init(&pvec);
1691         index = 0;
1692
1693         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694                                 PAGECACHE_TAG_DIRTY))) {
1695                 int i;
1696
1697                 for (i = 0; i < nr_pages; i++) {
1698                         struct page *page = pvec.pages[i];
1699                         bool submitted = false;
1700
1701                         if (unlikely(f2fs_cp_error(sbi))) {
1702                                 f2fs_put_page(last_page, 0);
1703                                 pagevec_release(&pvec);
1704                                 ret = -EIO;
1705                                 goto out;
1706                         }
1707
1708                         if (!IS_DNODE(page) || !is_cold_node(page))
1709                                 continue;
1710                         if (ino_of_node(page) != ino)
1711                                 continue;
1712
1713                         lock_page(page);
1714
1715                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1716 continue_unlock:
1717                                 unlock_page(page);
1718                                 continue;
1719                         }
1720                         if (ino_of_node(page) != ino)
1721                                 goto continue_unlock;
1722
1723                         if (!PageDirty(page) && page != last_page) {
1724                                 /* someone wrote it for us */
1725                                 goto continue_unlock;
1726                         }
1727
1728                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1729
1730                         set_fsync_mark(page, 0);
1731                         set_dentry_mark(page, 0);
1732
1733                         if (!atomic || page == last_page) {
1734                                 set_fsync_mark(page, 1);
1735                                 if (IS_INODE(page)) {
1736                                         if (is_inode_flag_set(inode,
1737                                                                 FI_DIRTY_INODE))
1738                                                 f2fs_update_inode(inode, page);
1739                                         set_dentry_mark(page,
1740                                                 f2fs_need_dentry_mark(sbi, ino));
1741                                 }
1742                                 /* may be written by other thread */
1743                                 if (!PageDirty(page))
1744                                         set_page_dirty(page);
1745                         }
1746
1747                         if (!clear_page_dirty_for_io(page))
1748                                 goto continue_unlock;
1749
1750                         ret = __write_node_page(page, atomic &&
1751                                                 page == last_page,
1752                                                 &submitted, wbc, true,
1753                                                 FS_NODE_IO, seq_id);
1754                         if (ret) {
1755                                 unlock_page(page);
1756                                 f2fs_put_page(last_page, 0);
1757                                 break;
1758                         } else if (submitted) {
1759                                 nwritten++;
1760                         }
1761
1762                         if (page == last_page) {
1763                                 f2fs_put_page(page, 0);
1764                                 marked = true;
1765                                 break;
1766                         }
1767                 }
1768                 pagevec_release(&pvec);
1769                 cond_resched();
1770
1771                 if (ret || marked)
1772                         break;
1773         }
1774         if (!ret && atomic && !marked) {
1775                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1776                            ino, last_page->index);
1777                 lock_page(last_page);
1778                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1779                 set_page_dirty(last_page);
1780                 unlock_page(last_page);
1781                 goto retry;
1782         }
1783 out:
1784         if (nwritten)
1785                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1786         return ret ? -EIO: 0;
1787 }
1788
1789 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1790 {
1791         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1792         bool clean;
1793
1794         if (inode->i_ino != ino)
1795                 return 0;
1796
1797         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1798                 return 0;
1799
1800         spin_lock(&sbi->inode_lock[DIRTY_META]);
1801         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1802         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1803
1804         if (clean)
1805                 return 0;
1806
1807         inode = igrab(inode);
1808         if (!inode)
1809                 return 0;
1810         return 1;
1811 }
1812
1813 static bool flush_dirty_inode(struct page *page)
1814 {
1815         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1816         struct inode *inode;
1817         nid_t ino = ino_of_node(page);
1818
1819         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1820         if (!inode)
1821                 return false;
1822
1823         f2fs_update_inode(inode, page);
1824         unlock_page(page);
1825
1826         iput(inode);
1827         return true;
1828 }
1829
1830 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1831 {
1832         pgoff_t index = 0;
1833         struct pagevec pvec;
1834         int nr_pages;
1835
1836         pagevec_init(&pvec);
1837
1838         while ((nr_pages = pagevec_lookup_tag(&pvec,
1839                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1840                 int i;
1841
1842                 for (i = 0; i < nr_pages; i++) {
1843                         struct page *page = pvec.pages[i];
1844
1845                         if (!IS_DNODE(page))
1846                                 continue;
1847
1848                         lock_page(page);
1849
1850                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1851 continue_unlock:
1852                                 unlock_page(page);
1853                                 continue;
1854                         }
1855
1856                         if (!PageDirty(page)) {
1857                                 /* someone wrote it for us */
1858                                 goto continue_unlock;
1859                         }
1860
1861                         /* flush inline_data, if it's async context. */
1862                         if (is_inline_node(page)) {
1863                                 clear_inline_node(page);
1864                                 unlock_page(page);
1865                                 flush_inline_data(sbi, ino_of_node(page));
1866                                 continue;
1867                         }
1868                         unlock_page(page);
1869                 }
1870                 pagevec_release(&pvec);
1871                 cond_resched();
1872         }
1873 }
1874
1875 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1876                                 struct writeback_control *wbc,
1877                                 bool do_balance, enum iostat_type io_type)
1878 {
1879         pgoff_t index;
1880         struct pagevec pvec;
1881         int step = 0;
1882         int nwritten = 0;
1883         int ret = 0;
1884         int nr_pages, done = 0;
1885
1886         pagevec_init(&pvec);
1887
1888 next_step:
1889         index = 0;
1890
1891         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1892                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1893                 int i;
1894
1895                 for (i = 0; i < nr_pages; i++) {
1896                         struct page *page = pvec.pages[i];
1897                         bool submitted = false;
1898                         bool may_dirty = true;
1899
1900                         /* give a priority to WB_SYNC threads */
1901                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1902                                         wbc->sync_mode == WB_SYNC_NONE) {
1903                                 done = 1;
1904                                 break;
1905                         }
1906
1907                         /*
1908                          * flushing sequence with step:
1909                          * 0. indirect nodes
1910                          * 1. dentry dnodes
1911                          * 2. file dnodes
1912                          */
1913                         if (step == 0 && IS_DNODE(page))
1914                                 continue;
1915                         if (step == 1 && (!IS_DNODE(page) ||
1916                                                 is_cold_node(page)))
1917                                 continue;
1918                         if (step == 2 && (!IS_DNODE(page) ||
1919                                                 !is_cold_node(page)))
1920                                 continue;
1921 lock_node:
1922                         if (wbc->sync_mode == WB_SYNC_ALL)
1923                                 lock_page(page);
1924                         else if (!trylock_page(page))
1925                                 continue;
1926
1927                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1928 continue_unlock:
1929                                 unlock_page(page);
1930                                 continue;
1931                         }
1932
1933                         if (!PageDirty(page)) {
1934                                 /* someone wrote it for us */
1935                                 goto continue_unlock;
1936                         }
1937
1938                         /* flush inline_data/inode, if it's async context. */
1939                         if (!do_balance)
1940                                 goto write_node;
1941
1942                         /* flush inline_data */
1943                         if (is_inline_node(page)) {
1944                                 clear_inline_node(page);
1945                                 unlock_page(page);
1946                                 flush_inline_data(sbi, ino_of_node(page));
1947                                 goto lock_node;
1948                         }
1949
1950                         /* flush dirty inode */
1951                         if (IS_INODE(page) && may_dirty) {
1952                                 may_dirty = false;
1953                                 if (flush_dirty_inode(page))
1954                                         goto lock_node;
1955                         }
1956 write_node:
1957                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1958
1959                         if (!clear_page_dirty_for_io(page))
1960                                 goto continue_unlock;
1961
1962                         set_fsync_mark(page, 0);
1963                         set_dentry_mark(page, 0);
1964
1965                         ret = __write_node_page(page, false, &submitted,
1966                                                 wbc, do_balance, io_type, NULL);
1967                         if (ret)
1968                                 unlock_page(page);
1969                         else if (submitted)
1970                                 nwritten++;
1971
1972                         if (--wbc->nr_to_write == 0)
1973                                 break;
1974                 }
1975                 pagevec_release(&pvec);
1976                 cond_resched();
1977
1978                 if (wbc->nr_to_write == 0) {
1979                         step = 2;
1980                         break;
1981                 }
1982         }
1983
1984         if (step < 2) {
1985                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1986                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1987                         goto out;
1988                 step++;
1989                 goto next_step;
1990         }
1991 out:
1992         if (nwritten)
1993                 f2fs_submit_merged_write(sbi, NODE);
1994
1995         if (unlikely(f2fs_cp_error(sbi)))
1996                 return -EIO;
1997         return ret;
1998 }
1999
2000 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2001                                                 unsigned int seq_id)
2002 {
2003         struct fsync_node_entry *fn;
2004         struct page *page;
2005         struct list_head *head = &sbi->fsync_node_list;
2006         unsigned long flags;
2007         unsigned int cur_seq_id = 0;
2008         int ret2, ret = 0;
2009
2010         while (seq_id && cur_seq_id < seq_id) {
2011                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2012                 if (list_empty(head)) {
2013                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014                         break;
2015                 }
2016                 fn = list_first_entry(head, struct fsync_node_entry, list);
2017                 if (fn->seq_id > seq_id) {
2018                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2019                         break;
2020                 }
2021                 cur_seq_id = fn->seq_id;
2022                 page = fn->page;
2023                 get_page(page);
2024                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2025
2026                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2027                 if (TestClearPageError(page))
2028                         ret = -EIO;
2029
2030                 put_page(page);
2031
2032                 if (ret)
2033                         break;
2034         }
2035
2036         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2037         if (!ret)
2038                 ret = ret2;
2039
2040         return ret;
2041 }
2042
2043 static int f2fs_write_node_pages(struct address_space *mapping,
2044                             struct writeback_control *wbc)
2045 {
2046         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2047         struct blk_plug plug;
2048         long diff;
2049
2050         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2051                 goto skip_write;
2052
2053         /* balancing f2fs's metadata in background */
2054         f2fs_balance_fs_bg(sbi, true);
2055
2056         /* collect a number of dirty node pages and write together */
2057         if (wbc->sync_mode != WB_SYNC_ALL &&
2058                         get_pages(sbi, F2FS_DIRTY_NODES) <
2059                                         nr_pages_to_skip(sbi, NODE))
2060                 goto skip_write;
2061
2062         if (wbc->sync_mode == WB_SYNC_ALL)
2063                 atomic_inc(&sbi->wb_sync_req[NODE]);
2064         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2065                 /* to avoid potential deadlock */
2066                 if (current->plug)
2067                         blk_finish_plug(current->plug);
2068                 goto skip_write;
2069         }
2070
2071         trace_f2fs_writepages(mapping->host, wbc, NODE);
2072
2073         diff = nr_pages_to_write(sbi, NODE, wbc);
2074         blk_start_plug(&plug);
2075         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2076         blk_finish_plug(&plug);
2077         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2078
2079         if (wbc->sync_mode == WB_SYNC_ALL)
2080                 atomic_dec(&sbi->wb_sync_req[NODE]);
2081         return 0;
2082
2083 skip_write:
2084         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2085         trace_f2fs_writepages(mapping->host, wbc, NODE);
2086         return 0;
2087 }
2088
2089 static int f2fs_set_node_page_dirty(struct page *page)
2090 {
2091         trace_f2fs_set_page_dirty(page, NODE);
2092
2093         if (!PageUptodate(page))
2094                 SetPageUptodate(page);
2095 #ifdef CONFIG_F2FS_CHECK_FS
2096         if (IS_INODE(page))
2097                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2098 #endif
2099         if (!PageDirty(page)) {
2100                 __set_page_dirty_nobuffers(page);
2101                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2102                 f2fs_set_page_private(page, 0);
2103                 f2fs_trace_pid(page);
2104                 return 1;
2105         }
2106         return 0;
2107 }
2108
2109 /*
2110  * Structure of the f2fs node operations
2111  */
2112 const struct address_space_operations f2fs_node_aops = {
2113         .writepage      = f2fs_write_node_page,
2114         .writepages     = f2fs_write_node_pages,
2115         .set_page_dirty = f2fs_set_node_page_dirty,
2116         .invalidatepage = f2fs_invalidate_page,
2117         .releasepage    = f2fs_release_page,
2118 #ifdef CONFIG_MIGRATION
2119         .migratepage    = f2fs_migrate_page,
2120 #endif
2121 };
2122
2123 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2124                                                 nid_t n)
2125 {
2126         return radix_tree_lookup(&nm_i->free_nid_root, n);
2127 }
2128
2129 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2130                                 struct free_nid *i)
2131 {
2132         struct f2fs_nm_info *nm_i = NM_I(sbi);
2133
2134         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2135         if (err)
2136                 return err;
2137
2138         nm_i->nid_cnt[FREE_NID]++;
2139         list_add_tail(&i->list, &nm_i->free_nid_list);
2140         return 0;
2141 }
2142
2143 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2144                         struct free_nid *i, enum nid_state state)
2145 {
2146         struct f2fs_nm_info *nm_i = NM_I(sbi);
2147
2148         f2fs_bug_on(sbi, state != i->state);
2149         nm_i->nid_cnt[state]--;
2150         if (state == FREE_NID)
2151                 list_del(&i->list);
2152         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2153 }
2154
2155 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2156                         enum nid_state org_state, enum nid_state dst_state)
2157 {
2158         struct f2fs_nm_info *nm_i = NM_I(sbi);
2159
2160         f2fs_bug_on(sbi, org_state != i->state);
2161         i->state = dst_state;
2162         nm_i->nid_cnt[org_state]--;
2163         nm_i->nid_cnt[dst_state]++;
2164
2165         switch (dst_state) {
2166         case PREALLOC_NID:
2167                 list_del(&i->list);
2168                 break;
2169         case FREE_NID:
2170                 list_add_tail(&i->list, &nm_i->free_nid_list);
2171                 break;
2172         default:
2173                 BUG_ON(1);
2174         }
2175 }
2176
2177 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2178                                                         bool set, bool build)
2179 {
2180         struct f2fs_nm_info *nm_i = NM_I(sbi);
2181         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2182         unsigned int nid_ofs = nid - START_NID(nid);
2183
2184         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2185                 return;
2186
2187         if (set) {
2188                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2189                         return;
2190                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2191                 nm_i->free_nid_count[nat_ofs]++;
2192         } else {
2193                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2194                         return;
2195                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2196                 if (!build)
2197                         nm_i->free_nid_count[nat_ofs]--;
2198         }
2199 }
2200
2201 /* return if the nid is recognized as free */
2202 static bool add_free_nid(struct f2fs_sb_info *sbi,
2203                                 nid_t nid, bool build, bool update)
2204 {
2205         struct f2fs_nm_info *nm_i = NM_I(sbi);
2206         struct free_nid *i, *e;
2207         struct nat_entry *ne;
2208         int err = -EINVAL;
2209         bool ret = false;
2210
2211         /* 0 nid should not be used */
2212         if (unlikely(nid == 0))
2213                 return false;
2214
2215         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2216                 return false;
2217
2218         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2219         i->nid = nid;
2220         i->state = FREE_NID;
2221
2222         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2223
2224         spin_lock(&nm_i->nid_list_lock);
2225
2226         if (build) {
2227                 /*
2228                  *   Thread A             Thread B
2229                  *  - f2fs_create
2230                  *   - f2fs_new_inode
2231                  *    - f2fs_alloc_nid
2232                  *     - __insert_nid_to_list(PREALLOC_NID)
2233                  *                     - f2fs_balance_fs_bg
2234                  *                      - f2fs_build_free_nids
2235                  *                       - __f2fs_build_free_nids
2236                  *                        - scan_nat_page
2237                  *                         - add_free_nid
2238                  *                          - __lookup_nat_cache
2239                  *  - f2fs_add_link
2240                  *   - f2fs_init_inode_metadata
2241                  *    - f2fs_new_inode_page
2242                  *     - f2fs_new_node_page
2243                  *      - set_node_addr
2244                  *  - f2fs_alloc_nid_done
2245                  *   - __remove_nid_from_list(PREALLOC_NID)
2246                  *                         - __insert_nid_to_list(FREE_NID)
2247                  */
2248                 ne = __lookup_nat_cache(nm_i, nid);
2249                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2250                                 nat_get_blkaddr(ne) != NULL_ADDR))
2251                         goto err_out;
2252
2253                 e = __lookup_free_nid_list(nm_i, nid);
2254                 if (e) {
2255                         if (e->state == FREE_NID)
2256                                 ret = true;
2257                         goto err_out;
2258                 }
2259         }
2260         ret = true;
2261         err = __insert_free_nid(sbi, i);
2262 err_out:
2263         if (update) {
2264                 update_free_nid_bitmap(sbi, nid, ret, build);
2265                 if (!build)
2266                         nm_i->available_nids++;
2267         }
2268         spin_unlock(&nm_i->nid_list_lock);
2269         radix_tree_preload_end();
2270
2271         if (err)
2272                 kmem_cache_free(free_nid_slab, i);
2273         return ret;
2274 }
2275
2276 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2277 {
2278         struct f2fs_nm_info *nm_i = NM_I(sbi);
2279         struct free_nid *i;
2280         bool need_free = false;
2281
2282         spin_lock(&nm_i->nid_list_lock);
2283         i = __lookup_free_nid_list(nm_i, nid);
2284         if (i && i->state == FREE_NID) {
2285                 __remove_free_nid(sbi, i, FREE_NID);
2286                 need_free = true;
2287         }
2288         spin_unlock(&nm_i->nid_list_lock);
2289
2290         if (need_free)
2291                 kmem_cache_free(free_nid_slab, i);
2292 }
2293
2294 static int scan_nat_page(struct f2fs_sb_info *sbi,
2295                         struct page *nat_page, nid_t start_nid)
2296 {
2297         struct f2fs_nm_info *nm_i = NM_I(sbi);
2298         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2299         block_t blk_addr;
2300         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2301         int i;
2302
2303         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2304
2305         i = start_nid % NAT_ENTRY_PER_BLOCK;
2306
2307         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2308                 if (unlikely(start_nid >= nm_i->max_nid))
2309                         break;
2310
2311                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2312
2313                 if (blk_addr == NEW_ADDR)
2314                         return -EINVAL;
2315
2316                 if (blk_addr == NULL_ADDR) {
2317                         add_free_nid(sbi, start_nid, true, true);
2318                 } else {
2319                         spin_lock(&NM_I(sbi)->nid_list_lock);
2320                         update_free_nid_bitmap(sbi, start_nid, false, true);
2321                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2322                 }
2323         }
2324
2325         return 0;
2326 }
2327
2328 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2329 {
2330         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2331         struct f2fs_journal *journal = curseg->journal;
2332         int i;
2333
2334         down_read(&curseg->journal_rwsem);
2335         for (i = 0; i < nats_in_cursum(journal); i++) {
2336                 block_t addr;
2337                 nid_t nid;
2338
2339                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2340                 nid = le32_to_cpu(nid_in_journal(journal, i));
2341                 if (addr == NULL_ADDR)
2342                         add_free_nid(sbi, nid, true, false);
2343                 else
2344                         remove_free_nid(sbi, nid);
2345         }
2346         up_read(&curseg->journal_rwsem);
2347 }
2348
2349 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2350 {
2351         struct f2fs_nm_info *nm_i = NM_I(sbi);
2352         unsigned int i, idx;
2353         nid_t nid;
2354
2355         down_read(&nm_i->nat_tree_lock);
2356
2357         for (i = 0; i < nm_i->nat_blocks; i++) {
2358                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2359                         continue;
2360                 if (!nm_i->free_nid_count[i])
2361                         continue;
2362                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2363                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2364                                                 NAT_ENTRY_PER_BLOCK, idx);
2365                         if (idx >= NAT_ENTRY_PER_BLOCK)
2366                                 break;
2367
2368                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2369                         add_free_nid(sbi, nid, true, false);
2370
2371                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2372                                 goto out;
2373                 }
2374         }
2375 out:
2376         scan_curseg_cache(sbi);
2377
2378         up_read(&nm_i->nat_tree_lock);
2379 }
2380
2381 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2382                                                 bool sync, bool mount)
2383 {
2384         struct f2fs_nm_info *nm_i = NM_I(sbi);
2385         int i = 0, ret;
2386         nid_t nid = nm_i->next_scan_nid;
2387
2388         if (unlikely(nid >= nm_i->max_nid))
2389                 nid = 0;
2390
2391         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2392                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2393
2394         /* Enough entries */
2395         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2396                 return 0;
2397
2398         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2399                 return 0;
2400
2401         if (!mount) {
2402                 /* try to find free nids in free_nid_bitmap */
2403                 scan_free_nid_bits(sbi);
2404
2405                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2406                         return 0;
2407         }
2408
2409         /* readahead nat pages to be scanned */
2410         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2411                                                         META_NAT, true);
2412
2413         down_read(&nm_i->nat_tree_lock);
2414
2415         while (1) {
2416                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2417                                                 nm_i->nat_block_bitmap)) {
2418                         struct page *page = get_current_nat_page(sbi, nid);
2419
2420                         if (IS_ERR(page)) {
2421                                 ret = PTR_ERR(page);
2422                         } else {
2423                                 ret = scan_nat_page(sbi, page, nid);
2424                                 f2fs_put_page(page, 1);
2425                         }
2426
2427                         if (ret) {
2428                                 up_read(&nm_i->nat_tree_lock);
2429                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2430                                 return ret;
2431                         }
2432                 }
2433
2434                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2435                 if (unlikely(nid >= nm_i->max_nid))
2436                         nid = 0;
2437
2438                 if (++i >= FREE_NID_PAGES)
2439                         break;
2440         }
2441
2442         /* go to the next free nat pages to find free nids abundantly */
2443         nm_i->next_scan_nid = nid;
2444
2445         /* find free nids from current sum_pages */
2446         scan_curseg_cache(sbi);
2447
2448         up_read(&nm_i->nat_tree_lock);
2449
2450         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2451                                         nm_i->ra_nid_pages, META_NAT, false);
2452
2453         return 0;
2454 }
2455
2456 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2457 {
2458         int ret;
2459
2460         mutex_lock(&NM_I(sbi)->build_lock);
2461         ret = __f2fs_build_free_nids(sbi, sync, mount);
2462         mutex_unlock(&NM_I(sbi)->build_lock);
2463
2464         return ret;
2465 }
2466
2467 /*
2468  * If this function returns success, caller can obtain a new nid
2469  * from second parameter of this function.
2470  * The returned nid could be used ino as well as nid when inode is created.
2471  */
2472 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2473 {
2474         struct f2fs_nm_info *nm_i = NM_I(sbi);
2475         struct free_nid *i = NULL;
2476 retry:
2477         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2478                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2479                 return false;
2480         }
2481
2482         spin_lock(&nm_i->nid_list_lock);
2483
2484         if (unlikely(nm_i->available_nids == 0)) {
2485                 spin_unlock(&nm_i->nid_list_lock);
2486                 return false;
2487         }
2488
2489         /* We should not use stale free nids created by f2fs_build_free_nids */
2490         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2491                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2492                 i = list_first_entry(&nm_i->free_nid_list,
2493                                         struct free_nid, list);
2494                 *nid = i->nid;
2495
2496                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2497                 nm_i->available_nids--;
2498
2499                 update_free_nid_bitmap(sbi, *nid, false, false);
2500
2501                 spin_unlock(&nm_i->nid_list_lock);
2502                 return true;
2503         }
2504         spin_unlock(&nm_i->nid_list_lock);
2505
2506         /* Let's scan nat pages and its caches to get free nids */
2507         if (!f2fs_build_free_nids(sbi, true, false))
2508                 goto retry;
2509         return false;
2510 }
2511
2512 /*
2513  * f2fs_alloc_nid() should be called prior to this function.
2514  */
2515 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2516 {
2517         struct f2fs_nm_info *nm_i = NM_I(sbi);
2518         struct free_nid *i;
2519
2520         spin_lock(&nm_i->nid_list_lock);
2521         i = __lookup_free_nid_list(nm_i, nid);
2522         f2fs_bug_on(sbi, !i);
2523         __remove_free_nid(sbi, i, PREALLOC_NID);
2524         spin_unlock(&nm_i->nid_list_lock);
2525
2526         kmem_cache_free(free_nid_slab, i);
2527 }
2528
2529 /*
2530  * f2fs_alloc_nid() should be called prior to this function.
2531  */
2532 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2533 {
2534         struct f2fs_nm_info *nm_i = NM_I(sbi);
2535         struct free_nid *i;
2536         bool need_free = false;
2537
2538         if (!nid)
2539                 return;
2540
2541         spin_lock(&nm_i->nid_list_lock);
2542         i = __lookup_free_nid_list(nm_i, nid);
2543         f2fs_bug_on(sbi, !i);
2544
2545         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2546                 __remove_free_nid(sbi, i, PREALLOC_NID);
2547                 need_free = true;
2548         } else {
2549                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2550         }
2551
2552         nm_i->available_nids++;
2553
2554         update_free_nid_bitmap(sbi, nid, true, false);
2555
2556         spin_unlock(&nm_i->nid_list_lock);
2557
2558         if (need_free)
2559                 kmem_cache_free(free_nid_slab, i);
2560 }
2561
2562 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2563 {
2564         struct f2fs_nm_info *nm_i = NM_I(sbi);
2565         int nr = nr_shrink;
2566
2567         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2568                 return 0;
2569
2570         if (!mutex_trylock(&nm_i->build_lock))
2571                 return 0;
2572
2573         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2574                 struct free_nid *i, *next;
2575                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2576
2577                 spin_lock(&nm_i->nid_list_lock);
2578                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2579                         if (!nr_shrink || !batch ||
2580                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2581                                 break;
2582                         __remove_free_nid(sbi, i, FREE_NID);
2583                         kmem_cache_free(free_nid_slab, i);
2584                         nr_shrink--;
2585                         batch--;
2586                 }
2587                 spin_unlock(&nm_i->nid_list_lock);
2588         }
2589
2590         mutex_unlock(&nm_i->build_lock);
2591
2592         return nr - nr_shrink;
2593 }
2594
2595 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2596 {
2597         void *src_addr, *dst_addr;
2598         size_t inline_size;
2599         struct page *ipage;
2600         struct f2fs_inode *ri;
2601
2602         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2603         if (IS_ERR(ipage))
2604                 return PTR_ERR(ipage);
2605
2606         ri = F2FS_INODE(page);
2607         if (ri->i_inline & F2FS_INLINE_XATTR) {
2608                 set_inode_flag(inode, FI_INLINE_XATTR);
2609         } else {
2610                 clear_inode_flag(inode, FI_INLINE_XATTR);
2611                 goto update_inode;
2612         }
2613
2614         dst_addr = inline_xattr_addr(inode, ipage);
2615         src_addr = inline_xattr_addr(inode, page);
2616         inline_size = inline_xattr_size(inode);
2617
2618         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2619         memcpy(dst_addr, src_addr, inline_size);
2620 update_inode:
2621         f2fs_update_inode(inode, ipage);
2622         f2fs_put_page(ipage, 1);
2623         return 0;
2624 }
2625
2626 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2627 {
2628         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2629         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2630         nid_t new_xnid;
2631         struct dnode_of_data dn;
2632         struct node_info ni;
2633         struct page *xpage;
2634         int err;
2635
2636         if (!prev_xnid)
2637                 goto recover_xnid;
2638
2639         /* 1: invalidate the previous xattr nid */
2640         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2641         if (err)
2642                 return err;
2643
2644         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2645         dec_valid_node_count(sbi, inode, false);
2646         set_node_addr(sbi, &ni, NULL_ADDR, false);
2647
2648 recover_xnid:
2649         /* 2: update xattr nid in inode */
2650         if (!f2fs_alloc_nid(sbi, &new_xnid))
2651                 return -ENOSPC;
2652
2653         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2654         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2655         if (IS_ERR(xpage)) {
2656                 f2fs_alloc_nid_failed(sbi, new_xnid);
2657                 return PTR_ERR(xpage);
2658         }
2659
2660         f2fs_alloc_nid_done(sbi, new_xnid);
2661         f2fs_update_inode_page(inode);
2662
2663         /* 3: update and set xattr node page dirty */
2664         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2665
2666         set_page_dirty(xpage);
2667         f2fs_put_page(xpage, 1);
2668
2669         return 0;
2670 }
2671
2672 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2673 {
2674         struct f2fs_inode *src, *dst;
2675         nid_t ino = ino_of_node(page);
2676         struct node_info old_ni, new_ni;
2677         struct page *ipage;
2678         int err;
2679
2680         err = f2fs_get_node_info(sbi, ino, &old_ni);
2681         if (err)
2682                 return err;
2683
2684         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2685                 return -EINVAL;
2686 retry:
2687         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2688         if (!ipage) {
2689                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2690                 goto retry;
2691         }
2692
2693         /* Should not use this inode from free nid list */
2694         remove_free_nid(sbi, ino);
2695
2696         if (!PageUptodate(ipage))
2697                 SetPageUptodate(ipage);
2698         fill_node_footer(ipage, ino, ino, 0, true);
2699         set_cold_node(ipage, false);
2700
2701         src = F2FS_INODE(page);
2702         dst = F2FS_INODE(ipage);
2703
2704         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2705         dst->i_size = 0;
2706         dst->i_blocks = cpu_to_le64(1);
2707         dst->i_links = cpu_to_le32(1);
2708         dst->i_xattr_nid = 0;
2709         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2710         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2711                 dst->i_extra_isize = src->i_extra_isize;
2712
2713                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2714                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715                                                         i_inline_xattr_size))
2716                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2717
2718                 if (f2fs_sb_has_project_quota(sbi) &&
2719                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2720                                                                 i_projid))
2721                         dst->i_projid = src->i_projid;
2722
2723                 if (f2fs_sb_has_inode_crtime(sbi) &&
2724                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2725                                                         i_crtime_nsec)) {
2726                         dst->i_crtime = src->i_crtime;
2727                         dst->i_crtime_nsec = src->i_crtime_nsec;
2728                 }
2729         }
2730
2731         new_ni = old_ni;
2732         new_ni.ino = ino;
2733
2734         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2735                 WARN_ON(1);
2736         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2737         inc_valid_inode_count(sbi);
2738         set_page_dirty(ipage);
2739         f2fs_put_page(ipage, 1);
2740         return 0;
2741 }
2742
2743 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2744                         unsigned int segno, struct f2fs_summary_block *sum)
2745 {
2746         struct f2fs_node *rn;
2747         struct f2fs_summary *sum_entry;
2748         block_t addr;
2749         int i, idx, last_offset, nrpages;
2750
2751         /* scan the node segment */
2752         last_offset = sbi->blocks_per_seg;
2753         addr = START_BLOCK(sbi, segno);
2754         sum_entry = &sum->entries[0];
2755
2756         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2757                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2758
2759                 /* readahead node pages */
2760                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2761
2762                 for (idx = addr; idx < addr + nrpages; idx++) {
2763                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2764
2765                         if (IS_ERR(page))
2766                                 return PTR_ERR(page);
2767
2768                         rn = F2FS_NODE(page);
2769                         sum_entry->nid = rn->footer.nid;
2770                         sum_entry->version = 0;
2771                         sum_entry->ofs_in_node = 0;
2772                         sum_entry++;
2773                         f2fs_put_page(page, 1);
2774                 }
2775
2776                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2777                                                         addr + nrpages);
2778         }
2779         return 0;
2780 }
2781
2782 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2783 {
2784         struct f2fs_nm_info *nm_i = NM_I(sbi);
2785         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2786         struct f2fs_journal *journal = curseg->journal;
2787         int i;
2788
2789         down_write(&curseg->journal_rwsem);
2790         for (i = 0; i < nats_in_cursum(journal); i++) {
2791                 struct nat_entry *ne;
2792                 struct f2fs_nat_entry raw_ne;
2793                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2794
2795                 if (f2fs_check_nid_range(sbi, nid))
2796                         continue;
2797
2798                 raw_ne = nat_in_journal(journal, i);
2799
2800                 ne = __lookup_nat_cache(nm_i, nid);
2801                 if (!ne) {
2802                         ne = __alloc_nat_entry(nid, true);
2803                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2804                 }
2805
2806                 /*
2807                  * if a free nat in journal has not been used after last
2808                  * checkpoint, we should remove it from available nids,
2809                  * since later we will add it again.
2810                  */
2811                 if (!get_nat_flag(ne, IS_DIRTY) &&
2812                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2813                         spin_lock(&nm_i->nid_list_lock);
2814                         nm_i->available_nids--;
2815                         spin_unlock(&nm_i->nid_list_lock);
2816                 }
2817
2818                 __set_nat_cache_dirty(nm_i, ne);
2819         }
2820         update_nats_in_cursum(journal, -i);
2821         up_write(&curseg->journal_rwsem);
2822 }
2823
2824 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2825                                                 struct list_head *head, int max)
2826 {
2827         struct nat_entry_set *cur;
2828
2829         if (nes->entry_cnt >= max)
2830                 goto add_out;
2831
2832         list_for_each_entry(cur, head, set_list) {
2833                 if (cur->entry_cnt >= nes->entry_cnt) {
2834                         list_add(&nes->set_list, cur->set_list.prev);
2835                         return;
2836                 }
2837         }
2838 add_out:
2839         list_add_tail(&nes->set_list, head);
2840 }
2841
2842 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2843                                                 struct page *page)
2844 {
2845         struct f2fs_nm_info *nm_i = NM_I(sbi);
2846         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2847         struct f2fs_nat_block *nat_blk = page_address(page);
2848         int valid = 0;
2849         int i = 0;
2850
2851         if (!enabled_nat_bits(sbi, NULL))
2852                 return;
2853
2854         if (nat_index == 0) {
2855                 valid = 1;
2856                 i = 1;
2857         }
2858         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2859                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2860                         valid++;
2861         }
2862         if (valid == 0) {
2863                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2864                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2865                 return;
2866         }
2867
2868         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2869         if (valid == NAT_ENTRY_PER_BLOCK)
2870                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2871         else
2872                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2873 }
2874
2875 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2876                 struct nat_entry_set *set, struct cp_control *cpc)
2877 {
2878         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2879         struct f2fs_journal *journal = curseg->journal;
2880         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2881         bool to_journal = true;
2882         struct f2fs_nat_block *nat_blk;
2883         struct nat_entry *ne, *cur;
2884         struct page *page = NULL;
2885
2886         /*
2887          * there are two steps to flush nat entries:
2888          * #1, flush nat entries to journal in current hot data summary block.
2889          * #2, flush nat entries to nat page.
2890          */
2891         if (enabled_nat_bits(sbi, cpc) ||
2892                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2893                 to_journal = false;
2894
2895         if (to_journal) {
2896                 down_write(&curseg->journal_rwsem);
2897         } else {
2898                 page = get_next_nat_page(sbi, start_nid);
2899                 if (IS_ERR(page))
2900                         return PTR_ERR(page);
2901
2902                 nat_blk = page_address(page);
2903                 f2fs_bug_on(sbi, !nat_blk);
2904         }
2905
2906         /* flush dirty nats in nat entry set */
2907         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2908                 struct f2fs_nat_entry *raw_ne;
2909                 nid_t nid = nat_get_nid(ne);
2910                 int offset;
2911
2912                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2913
2914                 if (to_journal) {
2915                         offset = f2fs_lookup_journal_in_cursum(journal,
2916                                                         NAT_JOURNAL, nid, 1);
2917                         f2fs_bug_on(sbi, offset < 0);
2918                         raw_ne = &nat_in_journal(journal, offset);
2919                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2920                 } else {
2921                         raw_ne = &nat_blk->entries[nid - start_nid];
2922                 }
2923                 raw_nat_from_node_info(raw_ne, &ne->ni);
2924                 nat_reset_flag(ne);
2925                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2926                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2927                         add_free_nid(sbi, nid, false, true);
2928                 } else {
2929                         spin_lock(&NM_I(sbi)->nid_list_lock);
2930                         update_free_nid_bitmap(sbi, nid, false, false);
2931                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2932                 }
2933         }
2934
2935         if (to_journal) {
2936                 up_write(&curseg->journal_rwsem);
2937         } else {
2938                 __update_nat_bits(sbi, start_nid, page);
2939                 f2fs_put_page(page, 1);
2940         }
2941
2942         /* Allow dirty nats by node block allocation in write_begin */
2943         if (!set->entry_cnt) {
2944                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2945                 kmem_cache_free(nat_entry_set_slab, set);
2946         }
2947         return 0;
2948 }
2949
2950 /*
2951  * This function is called during the checkpointing process.
2952  */
2953 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2954 {
2955         struct f2fs_nm_info *nm_i = NM_I(sbi);
2956         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2957         struct f2fs_journal *journal = curseg->journal;
2958         struct nat_entry_set *setvec[SETVEC_SIZE];
2959         struct nat_entry_set *set, *tmp;
2960         unsigned int found;
2961         nid_t set_idx = 0;
2962         LIST_HEAD(sets);
2963         int err = 0;
2964
2965         /*
2966          * during unmount, let's flush nat_bits before checking
2967          * nat_cnt[DIRTY_NAT].
2968          */
2969         if (enabled_nat_bits(sbi, cpc)) {
2970                 down_write(&nm_i->nat_tree_lock);
2971                 remove_nats_in_journal(sbi);
2972                 up_write(&nm_i->nat_tree_lock);
2973         }
2974
2975         if (!nm_i->nat_cnt[DIRTY_NAT])
2976                 return 0;
2977
2978         down_write(&nm_i->nat_tree_lock);
2979
2980         /*
2981          * if there are no enough space in journal to store dirty nat
2982          * entries, remove all entries from journal and merge them
2983          * into nat entry set.
2984          */
2985         if (enabled_nat_bits(sbi, cpc) ||
2986                 !__has_cursum_space(journal,
2987                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2988                 remove_nats_in_journal(sbi);
2989
2990         while ((found = __gang_lookup_nat_set(nm_i,
2991                                         set_idx, SETVEC_SIZE, setvec))) {
2992                 unsigned idx;
2993                 set_idx = setvec[found - 1]->set + 1;
2994                 for (idx = 0; idx < found; idx++)
2995                         __adjust_nat_entry_set(setvec[idx], &sets,
2996                                                 MAX_NAT_JENTRIES(journal));
2997         }
2998
2999         /* flush dirty nats in nat entry set */
3000         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3001                 err = __flush_nat_entry_set(sbi, set, cpc);
3002                 if (err)
3003                         break;
3004         }
3005
3006         up_write(&nm_i->nat_tree_lock);
3007         /* Allow dirty nats by node block allocation in write_begin */
3008
3009         return err;
3010 }
3011
3012 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3013 {
3014         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3015         struct f2fs_nm_info *nm_i = NM_I(sbi);
3016         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3017         unsigned int i;
3018         __u64 cp_ver = cur_cp_version(ckpt);
3019         block_t nat_bits_addr;
3020
3021         if (!enabled_nat_bits(sbi, NULL))
3022                 return 0;
3023
3024         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3025         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3026                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3027         if (!nm_i->nat_bits)
3028                 return -ENOMEM;
3029
3030         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3031                                                 nm_i->nat_bits_blocks;
3032         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3033                 struct page *page;
3034
3035                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3036                 if (IS_ERR(page))
3037                         return PTR_ERR(page);
3038
3039                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3040                                         page_address(page), F2FS_BLKSIZE);
3041                 f2fs_put_page(page, 1);
3042         }
3043
3044         cp_ver |= (cur_cp_crc(ckpt) << 32);
3045         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3046                 disable_nat_bits(sbi, true);
3047                 return 0;
3048         }
3049
3050         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3051         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3052
3053         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3054         return 0;
3055 }
3056
3057 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3058 {
3059         struct f2fs_nm_info *nm_i = NM_I(sbi);
3060         unsigned int i = 0;
3061         nid_t nid, last_nid;
3062
3063         if (!enabled_nat_bits(sbi, NULL))
3064                 return;
3065
3066         for (i = 0; i < nm_i->nat_blocks; i++) {
3067                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3068                 if (i >= nm_i->nat_blocks)
3069                         break;
3070
3071                 __set_bit_le(i, nm_i->nat_block_bitmap);
3072
3073                 nid = i * NAT_ENTRY_PER_BLOCK;
3074                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3075
3076                 spin_lock(&NM_I(sbi)->nid_list_lock);
3077                 for (; nid < last_nid; nid++)
3078                         update_free_nid_bitmap(sbi, nid, true, true);
3079                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3080         }
3081
3082         for (i = 0; i < nm_i->nat_blocks; i++) {
3083                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3084                 if (i >= nm_i->nat_blocks)
3085                         break;
3086
3087                 __set_bit_le(i, nm_i->nat_block_bitmap);
3088         }
3089 }
3090
3091 static int init_node_manager(struct f2fs_sb_info *sbi)
3092 {
3093         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3094         struct f2fs_nm_info *nm_i = NM_I(sbi);
3095         unsigned char *version_bitmap;
3096         unsigned int nat_segs;
3097         int err;
3098
3099         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3100
3101         /* segment_count_nat includes pair segment so divide to 2. */
3102         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3103         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3104         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3105
3106         /* not used nids: 0, node, meta, (and root counted as valid node) */
3107         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3108                                                 F2FS_RESERVED_NODE_NUM;
3109         nm_i->nid_cnt[FREE_NID] = 0;
3110         nm_i->nid_cnt[PREALLOC_NID] = 0;
3111         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3112         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3113         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3114
3115         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3116         INIT_LIST_HEAD(&nm_i->free_nid_list);
3117         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3118         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3119         INIT_LIST_HEAD(&nm_i->nat_entries);
3120         spin_lock_init(&nm_i->nat_list_lock);
3121
3122         mutex_init(&nm_i->build_lock);
3123         spin_lock_init(&nm_i->nid_list_lock);
3124         init_rwsem(&nm_i->nat_tree_lock);
3125
3126         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3127         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3128         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3129         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3130                                         GFP_KERNEL);
3131         if (!nm_i->nat_bitmap)
3132                 return -ENOMEM;
3133
3134         err = __get_nat_bitmaps(sbi);
3135         if (err)
3136                 return err;
3137
3138 #ifdef CONFIG_F2FS_CHECK_FS
3139         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3140                                         GFP_KERNEL);
3141         if (!nm_i->nat_bitmap_mir)
3142                 return -ENOMEM;
3143 #endif
3144
3145         return 0;
3146 }
3147
3148 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3149 {
3150         struct f2fs_nm_info *nm_i = NM_I(sbi);
3151         int i;
3152
3153         nm_i->free_nid_bitmap =
3154                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3155                                               nm_i->nat_blocks),
3156                               GFP_KERNEL);
3157         if (!nm_i->free_nid_bitmap)
3158                 return -ENOMEM;
3159
3160         for (i = 0; i < nm_i->nat_blocks; i++) {
3161                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3162                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3163                 if (!nm_i->free_nid_bitmap[i])
3164                         return -ENOMEM;
3165         }
3166
3167         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3168                                                                 GFP_KERNEL);
3169         if (!nm_i->nat_block_bitmap)
3170                 return -ENOMEM;
3171
3172         nm_i->free_nid_count =
3173                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3174                                               nm_i->nat_blocks),
3175                               GFP_KERNEL);
3176         if (!nm_i->free_nid_count)
3177                 return -ENOMEM;
3178         return 0;
3179 }
3180
3181 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3182 {
3183         int err;
3184
3185         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3186                                                         GFP_KERNEL);
3187         if (!sbi->nm_info)
3188                 return -ENOMEM;
3189
3190         err = init_node_manager(sbi);
3191         if (err)
3192                 return err;
3193
3194         err = init_free_nid_cache(sbi);
3195         if (err)
3196                 return err;
3197
3198         /* load free nid status from nat_bits table */
3199         load_free_nid_bitmap(sbi);
3200
3201         return f2fs_build_free_nids(sbi, true, true);
3202 }
3203
3204 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3205 {
3206         struct f2fs_nm_info *nm_i = NM_I(sbi);
3207         struct free_nid *i, *next_i;
3208         struct nat_entry *natvec[NATVEC_SIZE];
3209         struct nat_entry_set *setvec[SETVEC_SIZE];
3210         nid_t nid = 0;
3211         unsigned int found;
3212
3213         if (!nm_i)
3214                 return;
3215
3216         /* destroy free nid list */
3217         spin_lock(&nm_i->nid_list_lock);
3218         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3219                 __remove_free_nid(sbi, i, FREE_NID);
3220                 spin_unlock(&nm_i->nid_list_lock);
3221                 kmem_cache_free(free_nid_slab, i);
3222                 spin_lock(&nm_i->nid_list_lock);
3223         }
3224         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3225         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3226         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3227         spin_unlock(&nm_i->nid_list_lock);
3228
3229         /* destroy nat cache */
3230         down_write(&nm_i->nat_tree_lock);
3231         while ((found = __gang_lookup_nat_cache(nm_i,
3232                                         nid, NATVEC_SIZE, natvec))) {
3233                 unsigned idx;
3234
3235                 nid = nat_get_nid(natvec[found - 1]) + 1;
3236                 for (idx = 0; idx < found; idx++) {
3237                         spin_lock(&nm_i->nat_list_lock);
3238                         list_del(&natvec[idx]->list);
3239                         spin_unlock(&nm_i->nat_list_lock);
3240
3241                         __del_from_nat_cache(nm_i, natvec[idx]);
3242                 }
3243         }
3244         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3245
3246         /* destroy nat set cache */
3247         nid = 0;
3248         while ((found = __gang_lookup_nat_set(nm_i,
3249                                         nid, SETVEC_SIZE, setvec))) {
3250                 unsigned idx;
3251
3252                 nid = setvec[found - 1]->set + 1;
3253                 for (idx = 0; idx < found; idx++) {
3254                         /* entry_cnt is not zero, when cp_error was occurred */
3255                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3256                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3257                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3258                 }
3259         }
3260         up_write(&nm_i->nat_tree_lock);
3261
3262         kvfree(nm_i->nat_block_bitmap);
3263         if (nm_i->free_nid_bitmap) {
3264                 int i;
3265
3266                 for (i = 0; i < nm_i->nat_blocks; i++)
3267                         kvfree(nm_i->free_nid_bitmap[i]);
3268                 kvfree(nm_i->free_nid_bitmap);
3269         }
3270         kvfree(nm_i->free_nid_count);
3271
3272         kvfree(nm_i->nat_bitmap);
3273         kvfree(nm_i->nat_bits);
3274 #ifdef CONFIG_F2FS_CHECK_FS
3275         kvfree(nm_i->nat_bitmap_mir);
3276 #endif
3277         sbi->nm_info = NULL;
3278         kfree(nm_i);
3279 }
3280
3281 int __init f2fs_create_node_manager_caches(void)
3282 {
3283         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3284                         sizeof(struct nat_entry));
3285         if (!nat_entry_slab)
3286                 goto fail;
3287
3288         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3289                         sizeof(struct free_nid));
3290         if (!free_nid_slab)
3291                 goto destroy_nat_entry;
3292
3293         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3294                         sizeof(struct nat_entry_set));
3295         if (!nat_entry_set_slab)
3296                 goto destroy_free_nid;
3297
3298         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3299                         sizeof(struct fsync_node_entry));
3300         if (!fsync_node_entry_slab)
3301                 goto destroy_nat_entry_set;
3302         return 0;
3303
3304 destroy_nat_entry_set:
3305         kmem_cache_destroy(nat_entry_set_slab);
3306 destroy_free_nid:
3307         kmem_cache_destroy(free_nid_slab);
3308 destroy_nat_entry:
3309         kmem_cache_destroy(nat_entry_slab);
3310 fail:
3311         return -ENOMEM;
3312 }
3313
3314 void f2fs_destroy_node_manager_caches(void)
3315 {
3316         kmem_cache_destroy(fsync_node_entry_slab);
3317         kmem_cache_destroy(nat_entry_set_slab);
3318         kmem_cache_destroy(free_nid_slab);
3319         kmem_cache_destroy(nat_entry_slab);
3320 }