GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         si_meminfo(&val);
53
54         /* only uses low memory */
55         avail_ram = val.totalram - val.totalhigh;
56
57         /*
58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59          */
60         if (type == FREE_NIDS) {
61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64         } else if (type == NAT_ENTRIES) {
65                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68                 if (excess_cached_nats(sbi))
69                         res = false;
70         } else if (type == DIRTY_DENTS) {
71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72                         return false;
73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else if (type == INO_ENTRIES) {
76                 int i;
77
78                 for (i = 0; i < MAX_INO_ENTRY; i++)
79                         mem_size += sbi->im[i].ino_num *
80                                                 sizeof(struct ino_entry);
81                 mem_size >>= PAGE_SHIFT;
82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83         } else if (type == EXTENT_CACHE) {
84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
85                                 sizeof(struct extent_tree) +
86                                 atomic_read(&sbi->total_ext_node) *
87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89         } else if (type == INMEM_PAGES) {
90                 /* it allows 20% / total_ram for inmemory pages */
91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92                 res = mem_size < (val.totalram / 5);
93         } else {
94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95                         return true;
96         }
97         return res;
98 }
99
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138
139         set_to_next_nat(nm_i, nid);
140
141         return dst_page;
142 }
143
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179
180         nm_i->nat_cnt[TOTAL_NAT]++;
181         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt[TOTAL_NAT]--;
212         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213         __free_nat_entry(e);
214 }
215
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217                                                         struct nat_entry *ne)
218 {
219         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220         struct nat_entry_set *head;
221
222         head = radix_tree_lookup(&nm_i->nat_set_root, set);
223         if (!head) {
224                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226                 INIT_LIST_HEAD(&head->entry_list);
227                 INIT_LIST_HEAD(&head->set_list);
228                 head->set = set;
229                 head->entry_cnt = 0;
230                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231         }
232         return head;
233 }
234
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236                                                 struct nat_entry *ne)
237 {
238         struct nat_entry_set *head;
239         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241         if (!new_ne)
242                 head = __grab_nat_entry_set(nm_i, ne);
243
244         /*
245          * update entry_cnt in below condition:
246          * 1. update NEW_ADDR to valid block address;
247          * 2. update old block address to new one;
248          */
249         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250                                 !get_nat_flag(ne, IS_DIRTY)))
251                 head->entry_cnt++;
252
253         set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255         if (get_nat_flag(ne, IS_DIRTY))
256                 goto refresh_list;
257
258         nm_i->nat_cnt[DIRTY_NAT]++;
259         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260         set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262         spin_lock(&nm_i->nat_list_lock);
263         if (new_ne)
264                 list_del_init(&ne->list);
265         else
266                 list_move_tail(&ne->list, &head->entry_list);
267         spin_unlock(&nm_i->nat_list_lock);
268 }
269
270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271                 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273         spin_lock(&nm_i->nat_list_lock);
274         list_move_tail(&ne->list, &nm_i->nat_entries);
275         spin_unlock(&nm_i->nat_list_lock);
276
277         set_nat_flag(ne, IS_DIRTY, false);
278         set->entry_cnt--;
279         nm_i->nat_cnt[DIRTY_NAT]--;
280         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287                                                         start, nr);
288 }
289
290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292         return NODE_MAPPING(sbi) == page->mapping &&
293                         IS_DNODE(page) && is_cold_node(page);
294 }
295
296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298         spin_lock_init(&sbi->fsync_node_lock);
299         INIT_LIST_HEAD(&sbi->fsync_node_list);
300         sbi->fsync_seg_id = 0;
301         sbi->fsync_node_num = 0;
302 }
303
304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305                                                         struct page *page)
306 {
307         struct fsync_node_entry *fn;
308         unsigned long flags;
309         unsigned int seq_id;
310
311         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313         get_page(page);
314         fn->page = page;
315         INIT_LIST_HEAD(&fn->list);
316
317         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318         list_add_tail(&fn->list, &sbi->fsync_node_list);
319         fn->seq_id = sbi->fsync_seg_id++;
320         seq_id = fn->seq_id;
321         sbi->fsync_node_num++;
322         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324         return seq_id;
325 }
326
327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329         struct fsync_node_entry *fn;
330         unsigned long flags;
331
332         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334                 if (fn->page == page) {
335                         list_del(&fn->list);
336                         sbi->fsync_node_num--;
337                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338                         kmem_cache_free(fsync_node_entry_slab, fn);
339                         put_page(page);
340                         return;
341                 }
342         }
343         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344         f2fs_bug_on(sbi, 1);
345 }
346
347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349         unsigned long flags;
350
351         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352         sbi->fsync_seg_id = 0;
353         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358         struct f2fs_nm_info *nm_i = NM_I(sbi);
359         struct nat_entry *e;
360         bool need = false;
361
362         down_read(&nm_i->nat_tree_lock);
363         e = __lookup_nat_cache(nm_i, nid);
364         if (e) {
365                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
367                         need = true;
368         }
369         up_read(&nm_i->nat_tree_lock);
370         return need;
371 }
372
373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375         struct f2fs_nm_info *nm_i = NM_I(sbi);
376         struct nat_entry *e;
377         bool is_cp = true;
378
379         down_read(&nm_i->nat_tree_lock);
380         e = __lookup_nat_cache(nm_i, nid);
381         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382                 is_cp = false;
383         up_read(&nm_i->nat_tree_lock);
384         return is_cp;
385 }
386
387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389         struct f2fs_nm_info *nm_i = NM_I(sbi);
390         struct nat_entry *e;
391         bool need_update = true;
392
393         down_read(&nm_i->nat_tree_lock);
394         e = __lookup_nat_cache(nm_i, ino);
395         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396                         (get_nat_flag(e, IS_CHECKPOINTED) ||
397                          get_nat_flag(e, HAS_FSYNCED_INODE)))
398                 need_update = false;
399         up_read(&nm_i->nat_tree_lock);
400         return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405                                                 struct f2fs_nat_entry *ne)
406 {
407         struct f2fs_nm_info *nm_i = NM_I(sbi);
408         struct nat_entry *new, *e;
409
410         new = __alloc_nat_entry(nid, false);
411         if (!new)
412                 return;
413
414         down_write(&nm_i->nat_tree_lock);
415         e = __lookup_nat_cache(nm_i, nid);
416         if (!e)
417                 e = __init_nat_entry(nm_i, new, ne, false);
418         else
419                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420                                 nat_get_blkaddr(e) !=
421                                         le32_to_cpu(ne->block_addr) ||
422                                 nat_get_version(e) != ne->version);
423         up_write(&nm_i->nat_tree_lock);
424         if (e != new)
425                 __free_nat_entry(new);
426 }
427
428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429                         block_t new_blkaddr, bool fsync_done)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *e;
433         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435         down_write(&nm_i->nat_tree_lock);
436         e = __lookup_nat_cache(nm_i, ni->nid);
437         if (!e) {
438                 e = __init_nat_entry(nm_i, new, NULL, true);
439                 copy_node_info(&e->ni, ni);
440                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441         } else if (new_blkaddr == NEW_ADDR) {
442                 /*
443                  * when nid is reallocated,
444                  * previous nat entry can be remained in nat cache.
445                  * So, reinitialize it with new information.
446                  */
447                 copy_node_info(&e->ni, ni);
448                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449         }
450         /* let's free early to reduce memory consumption */
451         if (e != new)
452                 __free_nat_entry(new);
453
454         /* sanity check */
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457                         new_blkaddr == NULL_ADDR);
458         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459                         new_blkaddr == NEW_ADDR);
460         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461                         new_blkaddr == NEW_ADDR);
462
463         /* increment version no as node is removed */
464         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465                 unsigned char version = nat_get_version(e);
466                 nat_set_version(e, inc_node_version(version));
467         }
468
469         /* change address */
470         nat_set_blkaddr(e, new_blkaddr);
471         if (!__is_valid_data_blkaddr(new_blkaddr))
472                 set_nat_flag(e, IS_CHECKPOINTED, false);
473         __set_nat_cache_dirty(nm_i, e);
474
475         /* update fsync_mark if its inode nat entry is still alive */
476         if (ni->nid != ni->ino)
477                 e = __lookup_nat_cache(nm_i, ni->ino);
478         if (e) {
479                 if (fsync_done && ni->nid == ni->ino)
480                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
481                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482         }
483         up_write(&nm_i->nat_tree_lock);
484 }
485
486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488         struct f2fs_nm_info *nm_i = NM_I(sbi);
489         int nr = nr_shrink;
490
491         if (!down_write_trylock(&nm_i->nat_tree_lock))
492                 return 0;
493
494         spin_lock(&nm_i->nat_list_lock);
495         while (nr_shrink) {
496                 struct nat_entry *ne;
497
498                 if (list_empty(&nm_i->nat_entries))
499                         break;
500
501                 ne = list_first_entry(&nm_i->nat_entries,
502                                         struct nat_entry, list);
503                 list_del(&ne->list);
504                 spin_unlock(&nm_i->nat_list_lock);
505
506                 __del_from_nat_cache(nm_i, ne);
507                 nr_shrink--;
508
509                 spin_lock(&nm_i->nat_list_lock);
510         }
511         spin_unlock(&nm_i->nat_list_lock);
512
513         up_write(&nm_i->nat_tree_lock);
514         return nr - nr_shrink;
515 }
516
517 /*
518  * This function always returns success
519  */
520 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
521                                                 struct node_info *ni)
522 {
523         struct f2fs_nm_info *nm_i = NM_I(sbi);
524         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
525         struct f2fs_journal *journal = curseg->journal;
526         nid_t start_nid = START_NID(nid);
527         struct f2fs_nat_block *nat_blk;
528         struct page *page = NULL;
529         struct f2fs_nat_entry ne;
530         struct nat_entry *e;
531         pgoff_t index;
532         block_t blkaddr;
533         int i;
534
535         ni->nid = nid;
536
537         /* Check nat cache */
538         down_read(&nm_i->nat_tree_lock);
539         e = __lookup_nat_cache(nm_i, nid);
540         if (e) {
541                 ni->ino = nat_get_ino(e);
542                 ni->blk_addr = nat_get_blkaddr(e);
543                 ni->version = nat_get_version(e);
544                 up_read(&nm_i->nat_tree_lock);
545                 return 0;
546         }
547
548         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
549
550         /* Check current segment summary */
551         down_read(&curseg->journal_rwsem);
552         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
553         if (i >= 0) {
554                 ne = nat_in_journal(journal, i);
555                 node_info_from_raw_nat(ni, &ne);
556         }
557         up_read(&curseg->journal_rwsem);
558         if (i >= 0) {
559                 up_read(&nm_i->nat_tree_lock);
560                 goto cache;
561         }
562
563         /* Fill node_info from nat page */
564         index = current_nat_addr(sbi, nid);
565         up_read(&nm_i->nat_tree_lock);
566
567         page = f2fs_get_meta_page(sbi, index);
568         if (IS_ERR(page))
569                 return PTR_ERR(page);
570
571         nat_blk = (struct f2fs_nat_block *)page_address(page);
572         ne = nat_blk->entries[nid - start_nid];
573         node_info_from_raw_nat(ni, &ne);
574         f2fs_put_page(page, 1);
575 cache:
576         blkaddr = le32_to_cpu(ne.block_addr);
577         if (__is_valid_data_blkaddr(blkaddr) &&
578                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
579                 return -EFAULT;
580
581         /* cache nat entry */
582         cache_nat_entry(sbi, nid, &ne);
583         return 0;
584 }
585
586 /*
587  * readahead MAX_RA_NODE number of node pages.
588  */
589 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
590 {
591         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
592         struct blk_plug plug;
593         int i, end;
594         nid_t nid;
595
596         blk_start_plug(&plug);
597
598         /* Then, try readahead for siblings of the desired node */
599         end = start + n;
600         end = min(end, NIDS_PER_BLOCK);
601         for (i = start; i < end; i++) {
602                 nid = get_nid(parent, i, false);
603                 f2fs_ra_node_page(sbi, nid);
604         }
605
606         blk_finish_plug(&plug);
607 }
608
609 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
610 {
611         const long direct_index = ADDRS_PER_INODE(dn->inode);
612         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
613         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
614         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
615         int cur_level = dn->cur_level;
616         int max_level = dn->max_level;
617         pgoff_t base = 0;
618
619         if (!dn->max_level)
620                 return pgofs + 1;
621
622         while (max_level-- > cur_level)
623                 skipped_unit *= NIDS_PER_BLOCK;
624
625         switch (dn->max_level) {
626         case 3:
627                 base += 2 * indirect_blks;
628                 /* fall through */
629         case 2:
630                 base += 2 * direct_blks;
631                 /* fall through */
632         case 1:
633                 base += direct_index;
634                 break;
635         default:
636                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
637         }
638
639         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
640 }
641
642 /*
643  * The maximum depth is four.
644  * Offset[0] will have raw inode offset.
645  */
646 static int get_node_path(struct inode *inode, long block,
647                                 int offset[4], unsigned int noffset[4])
648 {
649         const long direct_index = ADDRS_PER_INODE(inode);
650         const long direct_blks = ADDRS_PER_BLOCK(inode);
651         const long dptrs_per_blk = NIDS_PER_BLOCK;
652         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
653         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
654         int n = 0;
655         int level = 0;
656
657         noffset[0] = 0;
658
659         if (block < direct_index) {
660                 offset[n] = block;
661                 goto got;
662         }
663         block -= direct_index;
664         if (block < direct_blks) {
665                 offset[n++] = NODE_DIR1_BLOCK;
666                 noffset[n] = 1;
667                 offset[n] = block;
668                 level = 1;
669                 goto got;
670         }
671         block -= direct_blks;
672         if (block < direct_blks) {
673                 offset[n++] = NODE_DIR2_BLOCK;
674                 noffset[n] = 2;
675                 offset[n] = block;
676                 level = 1;
677                 goto got;
678         }
679         block -= direct_blks;
680         if (block < indirect_blks) {
681                 offset[n++] = NODE_IND1_BLOCK;
682                 noffset[n] = 3;
683                 offset[n++] = block / direct_blks;
684                 noffset[n] = 4 + offset[n - 1];
685                 offset[n] = block % direct_blks;
686                 level = 2;
687                 goto got;
688         }
689         block -= indirect_blks;
690         if (block < indirect_blks) {
691                 offset[n++] = NODE_IND2_BLOCK;
692                 noffset[n] = 4 + dptrs_per_blk;
693                 offset[n++] = block / direct_blks;
694                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
695                 offset[n] = block % direct_blks;
696                 level = 2;
697                 goto got;
698         }
699         block -= indirect_blks;
700         if (block < dindirect_blks) {
701                 offset[n++] = NODE_DIND_BLOCK;
702                 noffset[n] = 5 + (dptrs_per_blk * 2);
703                 offset[n++] = block / indirect_blks;
704                 noffset[n] = 6 + (dptrs_per_blk * 2) +
705                               offset[n - 1] * (dptrs_per_blk + 1);
706                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
707                 noffset[n] = 7 + (dptrs_per_blk * 2) +
708                               offset[n - 2] * (dptrs_per_blk + 1) +
709                               offset[n - 1];
710                 offset[n] = block % direct_blks;
711                 level = 3;
712                 goto got;
713         } else {
714                 return -E2BIG;
715         }
716 got:
717         return level;
718 }
719
720 /*
721  * Caller should call f2fs_put_dnode(dn).
722  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
723  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
724  * In the case of RDONLY_NODE, we don't need to care about mutex.
725  */
726 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
727 {
728         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
729         struct page *npage[4];
730         struct page *parent = NULL;
731         int offset[4];
732         unsigned int noffset[4];
733         nid_t nids[4];
734         int level, i = 0;
735         int err = 0;
736
737         level = get_node_path(dn->inode, index, offset, noffset);
738         if (level < 0)
739                 return level;
740
741         nids[0] = dn->inode->i_ino;
742         npage[0] = dn->inode_page;
743
744         if (!npage[0]) {
745                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
746                 if (IS_ERR(npage[0]))
747                         return PTR_ERR(npage[0]);
748         }
749
750         /* if inline_data is set, should not report any block indices */
751         if (f2fs_has_inline_data(dn->inode) && index) {
752                 err = -ENOENT;
753                 f2fs_put_page(npage[0], 1);
754                 goto release_out;
755         }
756
757         parent = npage[0];
758         if (level != 0)
759                 nids[1] = get_nid(parent, offset[0], true);
760         dn->inode_page = npage[0];
761         dn->inode_page_locked = true;
762
763         /* get indirect or direct nodes */
764         for (i = 1; i <= level; i++) {
765                 bool done = false;
766
767                 if (!nids[i] && mode == ALLOC_NODE) {
768                         /* alloc new node */
769                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
770                                 err = -ENOSPC;
771                                 goto release_pages;
772                         }
773
774                         dn->nid = nids[i];
775                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
776                         if (IS_ERR(npage[i])) {
777                                 f2fs_alloc_nid_failed(sbi, nids[i]);
778                                 err = PTR_ERR(npage[i]);
779                                 goto release_pages;
780                         }
781
782                         set_nid(parent, offset[i - 1], nids[i], i == 1);
783                         f2fs_alloc_nid_done(sbi, nids[i]);
784                         done = true;
785                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
786                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
787                         if (IS_ERR(npage[i])) {
788                                 err = PTR_ERR(npage[i]);
789                                 goto release_pages;
790                         }
791                         done = true;
792                 }
793                 if (i == 1) {
794                         dn->inode_page_locked = false;
795                         unlock_page(parent);
796                 } else {
797                         f2fs_put_page(parent, 1);
798                 }
799
800                 if (!done) {
801                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
802                         if (IS_ERR(npage[i])) {
803                                 err = PTR_ERR(npage[i]);
804                                 f2fs_put_page(npage[0], 0);
805                                 goto release_out;
806                         }
807                 }
808                 if (i < level) {
809                         parent = npage[i];
810                         nids[i + 1] = get_nid(parent, offset[i], false);
811                 }
812         }
813         dn->nid = nids[level];
814         dn->ofs_in_node = offset[level];
815         dn->node_page = npage[level];
816         dn->data_blkaddr = datablock_addr(dn->inode,
817                                 dn->node_page, dn->ofs_in_node);
818         return 0;
819
820 release_pages:
821         f2fs_put_page(parent, 1);
822         if (i > 1)
823                 f2fs_put_page(npage[0], 0);
824 release_out:
825         dn->inode_page = NULL;
826         dn->node_page = NULL;
827         if (err == -ENOENT) {
828                 dn->cur_level = i;
829                 dn->max_level = level;
830                 dn->ofs_in_node = offset[level];
831         }
832         return err;
833 }
834
835 static int truncate_node(struct dnode_of_data *dn)
836 {
837         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
838         struct node_info ni;
839         int err;
840         pgoff_t index;
841
842         err = f2fs_get_node_info(sbi, dn->nid, &ni);
843         if (err)
844                 return err;
845
846         /* Deallocate node address */
847         f2fs_invalidate_blocks(sbi, ni.blk_addr);
848         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
849         set_node_addr(sbi, &ni, NULL_ADDR, false);
850
851         if (dn->nid == dn->inode->i_ino) {
852                 f2fs_remove_orphan_inode(sbi, dn->nid);
853                 dec_valid_inode_count(sbi);
854                 f2fs_inode_synced(dn->inode);
855         }
856
857         clear_node_page_dirty(dn->node_page);
858         set_sbi_flag(sbi, SBI_IS_DIRTY);
859
860         index = dn->node_page->index;
861         f2fs_put_page(dn->node_page, 1);
862
863         invalidate_mapping_pages(NODE_MAPPING(sbi),
864                         index, index);
865
866         dn->node_page = NULL;
867         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
868
869         return 0;
870 }
871
872 static int truncate_dnode(struct dnode_of_data *dn)
873 {
874         struct page *page;
875         int err;
876
877         if (dn->nid == 0)
878                 return 1;
879
880         /* get direct node */
881         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
882         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
883                 return 1;
884         else if (IS_ERR(page))
885                 return PTR_ERR(page);
886
887         /* Make dnode_of_data for parameter */
888         dn->node_page = page;
889         dn->ofs_in_node = 0;
890         f2fs_truncate_data_blocks(dn);
891         err = truncate_node(dn);
892         if (err) {
893                 f2fs_put_page(page, 1);
894                 return err;
895         }
896
897         return 1;
898 }
899
900 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
901                                                 int ofs, int depth)
902 {
903         struct dnode_of_data rdn = *dn;
904         struct page *page;
905         struct f2fs_node *rn;
906         nid_t child_nid;
907         unsigned int child_nofs;
908         int freed = 0;
909         int i, ret;
910
911         if (dn->nid == 0)
912                 return NIDS_PER_BLOCK + 1;
913
914         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
915
916         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
917         if (IS_ERR(page)) {
918                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
919                 return PTR_ERR(page);
920         }
921
922         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
923
924         rn = F2FS_NODE(page);
925         if (depth < 3) {
926                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
927                         child_nid = le32_to_cpu(rn->in.nid[i]);
928                         if (child_nid == 0)
929                                 continue;
930                         rdn.nid = child_nid;
931                         ret = truncate_dnode(&rdn);
932                         if (ret < 0)
933                                 goto out_err;
934                         if (set_nid(page, i, 0, false))
935                                 dn->node_changed = true;
936                 }
937         } else {
938                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
939                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
940                         child_nid = le32_to_cpu(rn->in.nid[i]);
941                         if (child_nid == 0) {
942                                 child_nofs += NIDS_PER_BLOCK + 1;
943                                 continue;
944                         }
945                         rdn.nid = child_nid;
946                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
947                         if (ret == (NIDS_PER_BLOCK + 1)) {
948                                 if (set_nid(page, i, 0, false))
949                                         dn->node_changed = true;
950                                 child_nofs += ret;
951                         } else if (ret < 0 && ret != -ENOENT) {
952                                 goto out_err;
953                         }
954                 }
955                 freed = child_nofs;
956         }
957
958         if (!ofs) {
959                 /* remove current indirect node */
960                 dn->node_page = page;
961                 ret = truncate_node(dn);
962                 if (ret)
963                         goto out_err;
964                 freed++;
965         } else {
966                 f2fs_put_page(page, 1);
967         }
968         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
969         return freed;
970
971 out_err:
972         f2fs_put_page(page, 1);
973         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
974         return ret;
975 }
976
977 static int truncate_partial_nodes(struct dnode_of_data *dn,
978                         struct f2fs_inode *ri, int *offset, int depth)
979 {
980         struct page *pages[2];
981         nid_t nid[3];
982         nid_t child_nid;
983         int err = 0;
984         int i;
985         int idx = depth - 2;
986
987         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
988         if (!nid[0])
989                 return 0;
990
991         /* get indirect nodes in the path */
992         for (i = 0; i < idx + 1; i++) {
993                 /* reference count'll be increased */
994                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
995                 if (IS_ERR(pages[i])) {
996                         err = PTR_ERR(pages[i]);
997                         idx = i - 1;
998                         goto fail;
999                 }
1000                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1001         }
1002
1003         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1004
1005         /* free direct nodes linked to a partial indirect node */
1006         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1007                 child_nid = get_nid(pages[idx], i, false);
1008                 if (!child_nid)
1009                         continue;
1010                 dn->nid = child_nid;
1011                 err = truncate_dnode(dn);
1012                 if (err < 0)
1013                         goto fail;
1014                 if (set_nid(pages[idx], i, 0, false))
1015                         dn->node_changed = true;
1016         }
1017
1018         if (offset[idx + 1] == 0) {
1019                 dn->node_page = pages[idx];
1020                 dn->nid = nid[idx];
1021                 err = truncate_node(dn);
1022                 if (err)
1023                         goto fail;
1024         } else {
1025                 f2fs_put_page(pages[idx], 1);
1026         }
1027         offset[idx]++;
1028         offset[idx + 1] = 0;
1029         idx--;
1030 fail:
1031         for (i = idx; i >= 0; i--)
1032                 f2fs_put_page(pages[i], 1);
1033
1034         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1035
1036         return err;
1037 }
1038
1039 /*
1040  * All the block addresses of data and nodes should be nullified.
1041  */
1042 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1043 {
1044         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045         int err = 0, cont = 1;
1046         int level, offset[4], noffset[4];
1047         unsigned int nofs = 0;
1048         struct f2fs_inode *ri;
1049         struct dnode_of_data dn;
1050         struct page *page;
1051
1052         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1053
1054         level = get_node_path(inode, from, offset, noffset);
1055         if (level < 0)
1056                 return level;
1057
1058         page = f2fs_get_node_page(sbi, inode->i_ino);
1059         if (IS_ERR(page)) {
1060                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1061                 return PTR_ERR(page);
1062         }
1063
1064         set_new_dnode(&dn, inode, page, NULL, 0);
1065         unlock_page(page);
1066
1067         ri = F2FS_INODE(page);
1068         switch (level) {
1069         case 0:
1070         case 1:
1071                 nofs = noffset[1];
1072                 break;
1073         case 2:
1074                 nofs = noffset[1];
1075                 if (!offset[level - 1])
1076                         goto skip_partial;
1077                 err = truncate_partial_nodes(&dn, ri, offset, level);
1078                 if (err < 0 && err != -ENOENT)
1079                         goto fail;
1080                 nofs += 1 + NIDS_PER_BLOCK;
1081                 break;
1082         case 3:
1083                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1084                 if (!offset[level - 1])
1085                         goto skip_partial;
1086                 err = truncate_partial_nodes(&dn, ri, offset, level);
1087                 if (err < 0 && err != -ENOENT)
1088                         goto fail;
1089                 break;
1090         default:
1091                 BUG();
1092         }
1093
1094 skip_partial:
1095         while (cont) {
1096                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1097                 switch (offset[0]) {
1098                 case NODE_DIR1_BLOCK:
1099                 case NODE_DIR2_BLOCK:
1100                         err = truncate_dnode(&dn);
1101                         break;
1102
1103                 case NODE_IND1_BLOCK:
1104                 case NODE_IND2_BLOCK:
1105                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1106                         break;
1107
1108                 case NODE_DIND_BLOCK:
1109                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1110                         cont = 0;
1111                         break;
1112
1113                 default:
1114                         BUG();
1115                 }
1116                 if (err < 0 && err != -ENOENT)
1117                         goto fail;
1118                 if (offset[1] == 0 &&
1119                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1120                         lock_page(page);
1121                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1122                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1123                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1124                         set_page_dirty(page);
1125                         unlock_page(page);
1126                 }
1127                 offset[1] = 0;
1128                 offset[0]++;
1129                 nofs += err;
1130         }
1131 fail:
1132         f2fs_put_page(page, 0);
1133         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1134         return err > 0 ? 0 : err;
1135 }
1136
1137 /* caller must lock inode page */
1138 int f2fs_truncate_xattr_node(struct inode *inode)
1139 {
1140         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1142         struct dnode_of_data dn;
1143         struct page *npage;
1144         int err;
1145
1146         if (!nid)
1147                 return 0;
1148
1149         npage = f2fs_get_node_page(sbi, nid);
1150         if (IS_ERR(npage))
1151                 return PTR_ERR(npage);
1152
1153         set_new_dnode(&dn, inode, NULL, npage, nid);
1154         err = truncate_node(&dn);
1155         if (err) {
1156                 f2fs_put_page(npage, 1);
1157                 return err;
1158         }
1159
1160         f2fs_i_xnid_write(inode, 0);
1161
1162         return 0;
1163 }
1164
1165 /*
1166  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1167  * f2fs_unlock_op().
1168  */
1169 int f2fs_remove_inode_page(struct inode *inode)
1170 {
1171         struct dnode_of_data dn;
1172         int err;
1173
1174         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1175         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1176         if (err)
1177                 return err;
1178
1179         err = f2fs_truncate_xattr_node(inode);
1180         if (err) {
1181                 f2fs_put_dnode(&dn);
1182                 return err;
1183         }
1184
1185         /* remove potential inline_data blocks */
1186         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1187                                 S_ISLNK(inode->i_mode))
1188                 f2fs_truncate_data_blocks_range(&dn, 1);
1189
1190         /* 0 is possible, after f2fs_new_inode() has failed */
1191         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1192                 f2fs_put_dnode(&dn);
1193                 return -EIO;
1194         }
1195
1196         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1197                 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1198                           inode->i_ino, (unsigned long long)inode->i_blocks);
1199                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1200         }
1201
1202         /* will put inode & node pages */
1203         err = truncate_node(&dn);
1204         if (err) {
1205                 f2fs_put_dnode(&dn);
1206                 return err;
1207         }
1208         return 0;
1209 }
1210
1211 struct page *f2fs_new_inode_page(struct inode *inode)
1212 {
1213         struct dnode_of_data dn;
1214
1215         /* allocate inode page for new inode */
1216         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1217
1218         /* caller should f2fs_put_page(page, 1); */
1219         return f2fs_new_node_page(&dn, 0);
1220 }
1221
1222 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1223 {
1224         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1225         struct node_info new_ni;
1226         struct page *page;
1227         int err;
1228
1229         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1230                 return ERR_PTR(-EPERM);
1231
1232         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1233         if (!page)
1234                 return ERR_PTR(-ENOMEM);
1235
1236         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1237                 goto fail;
1238
1239 #ifdef CONFIG_F2FS_CHECK_FS
1240         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1241         if (err) {
1242                 dec_valid_node_count(sbi, dn->inode, !ofs);
1243                 goto fail;
1244         }
1245         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1246                 err = -EFSCORRUPTED;
1247                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1248                 goto fail;
1249         }
1250 #endif
1251         new_ni.nid = dn->nid;
1252         new_ni.ino = dn->inode->i_ino;
1253         new_ni.blk_addr = NULL_ADDR;
1254         new_ni.flag = 0;
1255         new_ni.version = 0;
1256         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1257
1258         f2fs_wait_on_page_writeback(page, NODE, true, true);
1259         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1260         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1261         if (!PageUptodate(page))
1262                 SetPageUptodate(page);
1263         if (set_page_dirty(page))
1264                 dn->node_changed = true;
1265
1266         if (f2fs_has_xattr_block(ofs))
1267                 f2fs_i_xnid_write(dn->inode, dn->nid);
1268
1269         if (ofs == 0)
1270                 inc_valid_inode_count(sbi);
1271         return page;
1272
1273 fail:
1274         clear_node_page_dirty(page);
1275         f2fs_put_page(page, 1);
1276         return ERR_PTR(err);
1277 }
1278
1279 /*
1280  * Caller should do after getting the following values.
1281  * 0: f2fs_put_page(page, 0)
1282  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1283  */
1284 static int read_node_page(struct page *page, int op_flags)
1285 {
1286         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1287         struct node_info ni;
1288         struct f2fs_io_info fio = {
1289                 .sbi = sbi,
1290                 .type = NODE,
1291                 .op = REQ_OP_READ,
1292                 .op_flags = op_flags,
1293                 .page = page,
1294                 .encrypted_page = NULL,
1295         };
1296         int err;
1297
1298         if (PageUptodate(page)) {
1299                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1300                         ClearPageUptodate(page);
1301                         return -EFSBADCRC;
1302                 }
1303                 return LOCKED_PAGE;
1304         }
1305
1306         err = f2fs_get_node_info(sbi, page->index, &ni);
1307         if (err)
1308                 return err;
1309
1310         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1311                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1312                 ClearPageUptodate(page);
1313                 return -ENOENT;
1314         }
1315
1316         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1317         return f2fs_submit_page_bio(&fio);
1318 }
1319
1320 /*
1321  * Readahead a node page
1322  */
1323 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1324 {
1325         struct page *apage;
1326         int err;
1327
1328         if (!nid)
1329                 return;
1330         if (f2fs_check_nid_range(sbi, nid))
1331                 return;
1332
1333         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1334         if (apage)
1335                 return;
1336
1337         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1338         if (!apage)
1339                 return;
1340
1341         err = read_node_page(apage, REQ_RAHEAD);
1342         f2fs_put_page(apage, err ? 1 : 0);
1343 }
1344
1345 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1346                                         struct page *parent, int start)
1347 {
1348         struct page *page;
1349         int err;
1350
1351         if (!nid)
1352                 return ERR_PTR(-ENOENT);
1353         if (f2fs_check_nid_range(sbi, nid))
1354                 return ERR_PTR(-EINVAL);
1355 repeat:
1356         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1357         if (!page)
1358                 return ERR_PTR(-ENOMEM);
1359
1360         err = read_node_page(page, 0);
1361         if (err < 0) {
1362                 f2fs_put_page(page, 1);
1363                 return ERR_PTR(err);
1364         } else if (err == LOCKED_PAGE) {
1365                 err = 0;
1366                 goto page_hit;
1367         }
1368
1369         if (parent)
1370                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1371
1372         lock_page(page);
1373
1374         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1375                 f2fs_put_page(page, 1);
1376                 goto repeat;
1377         }
1378
1379         if (unlikely(!PageUptodate(page))) {
1380                 err = -EIO;
1381                 goto out_err;
1382         }
1383
1384         if (!f2fs_inode_chksum_verify(sbi, page)) {
1385                 err = -EFSBADCRC;
1386                 goto out_err;
1387         }
1388 page_hit:
1389         if(unlikely(nid != nid_of_node(page))) {
1390                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1391                           nid, nid_of_node(page), ino_of_node(page),
1392                           ofs_of_node(page), cpver_of_node(page),
1393                           next_blkaddr_of_node(page));
1394                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1395                 err = -EINVAL;
1396 out_err:
1397                 ClearPageUptodate(page);
1398                 f2fs_put_page(page, 1);
1399                 return ERR_PTR(err);
1400         }
1401         return page;
1402 }
1403
1404 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1405 {
1406         return __get_node_page(sbi, nid, NULL, 0);
1407 }
1408
1409 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1410 {
1411         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1412         nid_t nid = get_nid(parent, start, false);
1413
1414         return __get_node_page(sbi, nid, parent, start);
1415 }
1416
1417 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1418 {
1419         struct inode *inode;
1420         struct page *page;
1421         int ret;
1422
1423         /* should flush inline_data before evict_inode */
1424         inode = ilookup(sbi->sb, ino);
1425         if (!inode)
1426                 return;
1427
1428         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1429                                         FGP_LOCK|FGP_NOWAIT, 0);
1430         if (!page)
1431                 goto iput_out;
1432
1433         if (!PageUptodate(page))
1434                 goto page_out;
1435
1436         if (!PageDirty(page))
1437                 goto page_out;
1438
1439         if (!clear_page_dirty_for_io(page))
1440                 goto page_out;
1441
1442         ret = f2fs_write_inline_data(inode, page);
1443         inode_dec_dirty_pages(inode);
1444         f2fs_remove_dirty_inode(inode);
1445         if (ret)
1446                 set_page_dirty(page);
1447 page_out:
1448         f2fs_put_page(page, 1);
1449 iput_out:
1450         iput(inode);
1451 }
1452
1453 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1454 {
1455         pgoff_t index;
1456         struct pagevec pvec;
1457         struct page *last_page = NULL;
1458         int nr_pages;
1459
1460         pagevec_init(&pvec);
1461         index = 0;
1462
1463         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1464                                 PAGECACHE_TAG_DIRTY))) {
1465                 int i;
1466
1467                 for (i = 0; i < nr_pages; i++) {
1468                         struct page *page = pvec.pages[i];
1469
1470                         if (unlikely(f2fs_cp_error(sbi))) {
1471                                 f2fs_put_page(last_page, 0);
1472                                 pagevec_release(&pvec);
1473                                 return ERR_PTR(-EIO);
1474                         }
1475
1476                         if (!IS_DNODE(page) || !is_cold_node(page))
1477                                 continue;
1478                         if (ino_of_node(page) != ino)
1479                                 continue;
1480
1481                         lock_page(page);
1482
1483                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1484 continue_unlock:
1485                                 unlock_page(page);
1486                                 continue;
1487                         }
1488                         if (ino_of_node(page) != ino)
1489                                 goto continue_unlock;
1490
1491                         if (!PageDirty(page)) {
1492                                 /* someone wrote it for us */
1493                                 goto continue_unlock;
1494                         }
1495
1496                         if (last_page)
1497                                 f2fs_put_page(last_page, 0);
1498
1499                         get_page(page);
1500                         last_page = page;
1501                         unlock_page(page);
1502                 }
1503                 pagevec_release(&pvec);
1504                 cond_resched();
1505         }
1506         return last_page;
1507 }
1508
1509 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1510                                 struct writeback_control *wbc, bool do_balance,
1511                                 enum iostat_type io_type, unsigned int *seq_id)
1512 {
1513         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1514         nid_t nid;
1515         struct node_info ni;
1516         struct f2fs_io_info fio = {
1517                 .sbi = sbi,
1518                 .ino = ino_of_node(page),
1519                 .type = NODE,
1520                 .op = REQ_OP_WRITE,
1521                 .op_flags = wbc_to_write_flags(wbc),
1522                 .page = page,
1523                 .encrypted_page = NULL,
1524                 .submitted = false,
1525                 .io_type = io_type,
1526                 .io_wbc = wbc,
1527         };
1528         unsigned int seq;
1529
1530         trace_f2fs_writepage(page, NODE);
1531
1532         if (unlikely(f2fs_cp_error(sbi)))
1533                 goto redirty_out;
1534
1535         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1536                 goto redirty_out;
1537
1538         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1539                         wbc->sync_mode == WB_SYNC_NONE &&
1540                         IS_DNODE(page) && is_cold_node(page))
1541                 goto redirty_out;
1542
1543         /* get old block addr of this node page */
1544         nid = nid_of_node(page);
1545         f2fs_bug_on(sbi, page->index != nid);
1546
1547         if (f2fs_get_node_info(sbi, nid, &ni))
1548                 goto redirty_out;
1549
1550         if (wbc->for_reclaim) {
1551                 if (!down_read_trylock(&sbi->node_write))
1552                         goto redirty_out;
1553         } else {
1554                 down_read(&sbi->node_write);
1555         }
1556
1557         /* This page is already truncated */
1558         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1559                 ClearPageUptodate(page);
1560                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1561                 up_read(&sbi->node_write);
1562                 unlock_page(page);
1563                 return 0;
1564         }
1565
1566         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1567                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1568                                         DATA_GENERIC_ENHANCE)) {
1569                 up_read(&sbi->node_write);
1570                 goto redirty_out;
1571         }
1572
1573         if (atomic && !test_opt(sbi, NOBARRIER))
1574                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1575
1576         /* should add to global list before clearing PAGECACHE status */
1577         if (f2fs_in_warm_node_list(sbi, page)) {
1578                 seq = f2fs_add_fsync_node_entry(sbi, page);
1579                 if (seq_id)
1580                         *seq_id = seq;
1581         }
1582
1583         set_page_writeback(page);
1584         ClearPageError(page);
1585
1586         fio.old_blkaddr = ni.blk_addr;
1587         f2fs_do_write_node_page(nid, &fio);
1588         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1589         dec_page_count(sbi, F2FS_DIRTY_NODES);
1590         up_read(&sbi->node_write);
1591
1592         if (wbc->for_reclaim) {
1593                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1594                 submitted = NULL;
1595         }
1596
1597         unlock_page(page);
1598
1599         if (unlikely(f2fs_cp_error(sbi))) {
1600                 f2fs_submit_merged_write(sbi, NODE);
1601                 submitted = NULL;
1602         }
1603         if (submitted)
1604                 *submitted = fio.submitted;
1605
1606         if (do_balance)
1607                 f2fs_balance_fs(sbi, false);
1608         return 0;
1609
1610 redirty_out:
1611         redirty_page_for_writepage(wbc, page);
1612         return AOP_WRITEPAGE_ACTIVATE;
1613 }
1614
1615 int f2fs_move_node_page(struct page *node_page, int gc_type)
1616 {
1617         int err = 0;
1618
1619         if (gc_type == FG_GC) {
1620                 struct writeback_control wbc = {
1621                         .sync_mode = WB_SYNC_ALL,
1622                         .nr_to_write = 1,
1623                         .for_reclaim = 0,
1624                 };
1625
1626                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1627
1628                 set_page_dirty(node_page);
1629
1630                 if (!clear_page_dirty_for_io(node_page)) {
1631                         err = -EAGAIN;
1632                         goto out_page;
1633                 }
1634
1635                 if (__write_node_page(node_page, false, NULL,
1636                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1637                         err = -EAGAIN;
1638                         unlock_page(node_page);
1639                 }
1640                 goto release_page;
1641         } else {
1642                 /* set page dirty and write it */
1643                 if (!PageWriteback(node_page))
1644                         set_page_dirty(node_page);
1645         }
1646 out_page:
1647         unlock_page(node_page);
1648 release_page:
1649         f2fs_put_page(node_page, 0);
1650         return err;
1651 }
1652
1653 static int f2fs_write_node_page(struct page *page,
1654                                 struct writeback_control *wbc)
1655 {
1656         return __write_node_page(page, false, NULL, wbc, false,
1657                                                 FS_NODE_IO, NULL);
1658 }
1659
1660 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1661                         struct writeback_control *wbc, bool atomic,
1662                         unsigned int *seq_id)
1663 {
1664         pgoff_t index;
1665         struct pagevec pvec;
1666         int ret = 0;
1667         struct page *last_page = NULL;
1668         bool marked = false;
1669         nid_t ino = inode->i_ino;
1670         int nr_pages;
1671         int nwritten = 0;
1672
1673         if (atomic) {
1674                 last_page = last_fsync_dnode(sbi, ino);
1675                 if (IS_ERR_OR_NULL(last_page))
1676                         return PTR_ERR_OR_ZERO(last_page);
1677         }
1678 retry:
1679         pagevec_init(&pvec);
1680         index = 0;
1681
1682         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1683                                 PAGECACHE_TAG_DIRTY))) {
1684                 int i;
1685
1686                 for (i = 0; i < nr_pages; i++) {
1687                         struct page *page = pvec.pages[i];
1688                         bool submitted = false;
1689
1690                         if (unlikely(f2fs_cp_error(sbi))) {
1691                                 f2fs_put_page(last_page, 0);
1692                                 pagevec_release(&pvec);
1693                                 ret = -EIO;
1694                                 goto out;
1695                         }
1696
1697                         if (!IS_DNODE(page) || !is_cold_node(page))
1698                                 continue;
1699                         if (ino_of_node(page) != ino)
1700                                 continue;
1701
1702                         lock_page(page);
1703
1704                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1705 continue_unlock:
1706                                 unlock_page(page);
1707                                 continue;
1708                         }
1709                         if (ino_of_node(page) != ino)
1710                                 goto continue_unlock;
1711
1712                         if (!PageDirty(page) && page != last_page) {
1713                                 /* someone wrote it for us */
1714                                 goto continue_unlock;
1715                         }
1716
1717                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1718
1719                         set_fsync_mark(page, 0);
1720                         set_dentry_mark(page, 0);
1721
1722                         if (!atomic || page == last_page) {
1723                                 set_fsync_mark(page, 1);
1724                                 if (IS_INODE(page)) {
1725                                         if (is_inode_flag_set(inode,
1726                                                                 FI_DIRTY_INODE))
1727                                                 f2fs_update_inode(inode, page);
1728                                         set_dentry_mark(page,
1729                                                 f2fs_need_dentry_mark(sbi, ino));
1730                                 }
1731                                 /*  may be written by other thread */
1732                                 if (!PageDirty(page))
1733                                         set_page_dirty(page);
1734                         }
1735
1736                         if (!clear_page_dirty_for_io(page))
1737                                 goto continue_unlock;
1738
1739                         ret = __write_node_page(page, atomic &&
1740                                                 page == last_page,
1741                                                 &submitted, wbc, true,
1742                                                 FS_NODE_IO, seq_id);
1743                         if (ret) {
1744                                 unlock_page(page);
1745                                 f2fs_put_page(last_page, 0);
1746                                 break;
1747                         } else if (submitted) {
1748                                 nwritten++;
1749                         }
1750
1751                         if (page == last_page) {
1752                                 f2fs_put_page(page, 0);
1753                                 marked = true;
1754                                 break;
1755                         }
1756                 }
1757                 pagevec_release(&pvec);
1758                 cond_resched();
1759
1760                 if (ret || marked)
1761                         break;
1762         }
1763         if (!ret && atomic && !marked) {
1764                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1765                            ino, last_page->index);
1766                 lock_page(last_page);
1767                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1768                 set_page_dirty(last_page);
1769                 unlock_page(last_page);
1770                 goto retry;
1771         }
1772 out:
1773         if (nwritten)
1774                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1775         return ret ? -EIO: 0;
1776 }
1777
1778 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1779 {
1780         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781         bool clean;
1782
1783         if (inode->i_ino != ino)
1784                 return 0;
1785
1786         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1787                 return 0;
1788
1789         spin_lock(&sbi->inode_lock[DIRTY_META]);
1790         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1791         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1792
1793         if (clean)
1794                 return 0;
1795
1796         inode = igrab(inode);
1797         if (!inode)
1798                 return 0;
1799         return 1;
1800 }
1801
1802 static bool flush_dirty_inode(struct page *page)
1803 {
1804         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1805         struct inode *inode;
1806         nid_t ino = ino_of_node(page);
1807
1808         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1809         if (!inode)
1810                 return false;
1811
1812         f2fs_update_inode(inode, page);
1813         unlock_page(page);
1814
1815         iput(inode);
1816         return true;
1817 }
1818
1819 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1820                                 struct writeback_control *wbc,
1821                                 bool do_balance, enum iostat_type io_type)
1822 {
1823         pgoff_t index;
1824         struct pagevec pvec;
1825         int step = 0;
1826         int nwritten = 0;
1827         int ret = 0;
1828         int nr_pages, done = 0;
1829
1830         pagevec_init(&pvec);
1831
1832 next_step:
1833         index = 0;
1834
1835         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1836                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1837                 int i;
1838
1839                 for (i = 0; i < nr_pages; i++) {
1840                         struct page *page = pvec.pages[i];
1841                         bool submitted = false;
1842                         bool may_dirty = true;
1843
1844                         /* give a priority to WB_SYNC threads */
1845                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1846                                         wbc->sync_mode == WB_SYNC_NONE) {
1847                                 done = 1;
1848                                 break;
1849                         }
1850
1851                         /*
1852                          * flushing sequence with step:
1853                          * 0. indirect nodes
1854                          * 1. dentry dnodes
1855                          * 2. file dnodes
1856                          */
1857                         if (step == 0 && IS_DNODE(page))
1858                                 continue;
1859                         if (step == 1 && (!IS_DNODE(page) ||
1860                                                 is_cold_node(page)))
1861                                 continue;
1862                         if (step == 2 && (!IS_DNODE(page) ||
1863                                                 !is_cold_node(page)))
1864                                 continue;
1865 lock_node:
1866                         if (wbc->sync_mode == WB_SYNC_ALL)
1867                                 lock_page(page);
1868                         else if (!trylock_page(page))
1869                                 continue;
1870
1871                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1872 continue_unlock:
1873                                 unlock_page(page);
1874                                 continue;
1875                         }
1876
1877                         if (!PageDirty(page)) {
1878                                 /* someone wrote it for us */
1879                                 goto continue_unlock;
1880                         }
1881
1882                         /* flush inline_data */
1883                         if (is_inline_node(page)) {
1884                                 clear_inline_node(page);
1885                                 unlock_page(page);
1886                                 flush_inline_data(sbi, ino_of_node(page));
1887                                 goto lock_node;
1888                         }
1889
1890                         /* flush dirty inode */
1891                         if (IS_INODE(page) && may_dirty) {
1892                                 may_dirty = false;
1893                                 if (flush_dirty_inode(page))
1894                                         goto lock_node;
1895                         }
1896
1897                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1898
1899                         if (!clear_page_dirty_for_io(page))
1900                                 goto continue_unlock;
1901
1902                         set_fsync_mark(page, 0);
1903                         set_dentry_mark(page, 0);
1904
1905                         ret = __write_node_page(page, false, &submitted,
1906                                                 wbc, do_balance, io_type, NULL);
1907                         if (ret)
1908                                 unlock_page(page);
1909                         else if (submitted)
1910                                 nwritten++;
1911
1912                         if (--wbc->nr_to_write == 0)
1913                                 break;
1914                 }
1915                 pagevec_release(&pvec);
1916                 cond_resched();
1917
1918                 if (wbc->nr_to_write == 0) {
1919                         step = 2;
1920                         break;
1921                 }
1922         }
1923
1924         if (step < 2) {
1925                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1926                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1927                         goto out;
1928                 step++;
1929                 goto next_step;
1930         }
1931 out:
1932         if (nwritten)
1933                 f2fs_submit_merged_write(sbi, NODE);
1934
1935         if (unlikely(f2fs_cp_error(sbi)))
1936                 return -EIO;
1937         return ret;
1938 }
1939
1940 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1941                                                 unsigned int seq_id)
1942 {
1943         struct fsync_node_entry *fn;
1944         struct page *page;
1945         struct list_head *head = &sbi->fsync_node_list;
1946         unsigned long flags;
1947         unsigned int cur_seq_id = 0;
1948         int ret2, ret = 0;
1949
1950         while (seq_id && cur_seq_id < seq_id) {
1951                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1952                 if (list_empty(head)) {
1953                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1954                         break;
1955                 }
1956                 fn = list_first_entry(head, struct fsync_node_entry, list);
1957                 if (fn->seq_id > seq_id) {
1958                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1959                         break;
1960                 }
1961                 cur_seq_id = fn->seq_id;
1962                 page = fn->page;
1963                 get_page(page);
1964                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1965
1966                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1967                 if (TestClearPageError(page))
1968                         ret = -EIO;
1969
1970                 put_page(page);
1971
1972                 if (ret)
1973                         break;
1974         }
1975
1976         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1977         if (!ret)
1978                 ret = ret2;
1979
1980         return ret;
1981 }
1982
1983 static int f2fs_write_node_pages(struct address_space *mapping,
1984                             struct writeback_control *wbc)
1985 {
1986         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1987         struct blk_plug plug;
1988         long diff;
1989
1990         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1991                 goto skip_write;
1992
1993         /* balancing f2fs's metadata in background */
1994         f2fs_balance_fs_bg(sbi);
1995
1996         /* collect a number of dirty node pages and write together */
1997         if (wbc->sync_mode != WB_SYNC_ALL &&
1998                         get_pages(sbi, F2FS_DIRTY_NODES) <
1999                                         nr_pages_to_skip(sbi, NODE))
2000                 goto skip_write;
2001
2002         if (wbc->sync_mode == WB_SYNC_ALL)
2003                 atomic_inc(&sbi->wb_sync_req[NODE]);
2004         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2005                 /* to avoid potential deadlock */
2006                 if (current->plug)
2007                         blk_finish_plug(current->plug);
2008                 goto skip_write;
2009         }
2010
2011         trace_f2fs_writepages(mapping->host, wbc, NODE);
2012
2013         diff = nr_pages_to_write(sbi, NODE, wbc);
2014         blk_start_plug(&plug);
2015         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2016         blk_finish_plug(&plug);
2017         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2018
2019         if (wbc->sync_mode == WB_SYNC_ALL)
2020                 atomic_dec(&sbi->wb_sync_req[NODE]);
2021         return 0;
2022
2023 skip_write:
2024         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2025         trace_f2fs_writepages(mapping->host, wbc, NODE);
2026         return 0;
2027 }
2028
2029 static int f2fs_set_node_page_dirty(struct page *page)
2030 {
2031         trace_f2fs_set_page_dirty(page, NODE);
2032
2033         if (!PageUptodate(page))
2034                 SetPageUptodate(page);
2035 #ifdef CONFIG_F2FS_CHECK_FS
2036         if (IS_INODE(page))
2037                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2038 #endif
2039         if (!PageDirty(page)) {
2040                 __set_page_dirty_nobuffers(page);
2041                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2042                 f2fs_set_page_private(page, 0);
2043                 f2fs_trace_pid(page);
2044                 return 1;
2045         }
2046         return 0;
2047 }
2048
2049 /*
2050  * Structure of the f2fs node operations
2051  */
2052 const struct address_space_operations f2fs_node_aops = {
2053         .writepage      = f2fs_write_node_page,
2054         .writepages     = f2fs_write_node_pages,
2055         .set_page_dirty = f2fs_set_node_page_dirty,
2056         .invalidatepage = f2fs_invalidate_page,
2057         .releasepage    = f2fs_release_page,
2058 #ifdef CONFIG_MIGRATION
2059         .migratepage    = f2fs_migrate_page,
2060 #endif
2061 };
2062
2063 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2064                                                 nid_t n)
2065 {
2066         return radix_tree_lookup(&nm_i->free_nid_root, n);
2067 }
2068
2069 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2070                         struct free_nid *i, enum nid_state state)
2071 {
2072         struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2075         if (err)
2076                 return err;
2077
2078         f2fs_bug_on(sbi, state != i->state);
2079         nm_i->nid_cnt[state]++;
2080         if (state == FREE_NID)
2081                 list_add_tail(&i->list, &nm_i->free_nid_list);
2082         return 0;
2083 }
2084
2085 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2086                         struct free_nid *i, enum nid_state state)
2087 {
2088         struct f2fs_nm_info *nm_i = NM_I(sbi);
2089
2090         f2fs_bug_on(sbi, state != i->state);
2091         nm_i->nid_cnt[state]--;
2092         if (state == FREE_NID)
2093                 list_del(&i->list);
2094         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2095 }
2096
2097 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2098                         enum nid_state org_state, enum nid_state dst_state)
2099 {
2100         struct f2fs_nm_info *nm_i = NM_I(sbi);
2101
2102         f2fs_bug_on(sbi, org_state != i->state);
2103         i->state = dst_state;
2104         nm_i->nid_cnt[org_state]--;
2105         nm_i->nid_cnt[dst_state]++;
2106
2107         switch (dst_state) {
2108         case PREALLOC_NID:
2109                 list_del(&i->list);
2110                 break;
2111         case FREE_NID:
2112                 list_add_tail(&i->list, &nm_i->free_nid_list);
2113                 break;
2114         default:
2115                 BUG_ON(1);
2116         }
2117 }
2118
2119 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2120                                                         bool set, bool build)
2121 {
2122         struct f2fs_nm_info *nm_i = NM_I(sbi);
2123         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2124         unsigned int nid_ofs = nid - START_NID(nid);
2125
2126         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2127                 return;
2128
2129         if (set) {
2130                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2131                         return;
2132                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2133                 nm_i->free_nid_count[nat_ofs]++;
2134         } else {
2135                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2136                         return;
2137                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2138                 if (!build)
2139                         nm_i->free_nid_count[nat_ofs]--;
2140         }
2141 }
2142
2143 /* return if the nid is recognized as free */
2144 static bool add_free_nid(struct f2fs_sb_info *sbi,
2145                                 nid_t nid, bool build, bool update)
2146 {
2147         struct f2fs_nm_info *nm_i = NM_I(sbi);
2148         struct free_nid *i, *e;
2149         struct nat_entry *ne;
2150         int err = -EINVAL;
2151         bool ret = false;
2152
2153         /* 0 nid should not be used */
2154         if (unlikely(nid == 0))
2155                 return false;
2156
2157         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2158                 return false;
2159
2160         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2161         i->nid = nid;
2162         i->state = FREE_NID;
2163
2164         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2165
2166         spin_lock(&nm_i->nid_list_lock);
2167
2168         if (build) {
2169                 /*
2170                  *   Thread A             Thread B
2171                  *  - f2fs_create
2172                  *   - f2fs_new_inode
2173                  *    - f2fs_alloc_nid
2174                  *     - __insert_nid_to_list(PREALLOC_NID)
2175                  *                     - f2fs_balance_fs_bg
2176                  *                      - f2fs_build_free_nids
2177                  *                       - __f2fs_build_free_nids
2178                  *                        - scan_nat_page
2179                  *                         - add_free_nid
2180                  *                          - __lookup_nat_cache
2181                  *  - f2fs_add_link
2182                  *   - f2fs_init_inode_metadata
2183                  *    - f2fs_new_inode_page
2184                  *     - f2fs_new_node_page
2185                  *      - set_node_addr
2186                  *  - f2fs_alloc_nid_done
2187                  *   - __remove_nid_from_list(PREALLOC_NID)
2188                  *                         - __insert_nid_to_list(FREE_NID)
2189                  */
2190                 ne = __lookup_nat_cache(nm_i, nid);
2191                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2192                                 nat_get_blkaddr(ne) != NULL_ADDR))
2193                         goto err_out;
2194
2195                 e = __lookup_free_nid_list(nm_i, nid);
2196                 if (e) {
2197                         if (e->state == FREE_NID)
2198                                 ret = true;
2199                         goto err_out;
2200                 }
2201         }
2202         ret = true;
2203         err = __insert_free_nid(sbi, i, FREE_NID);
2204 err_out:
2205         if (update) {
2206                 update_free_nid_bitmap(sbi, nid, ret, build);
2207                 if (!build)
2208                         nm_i->available_nids++;
2209         }
2210         spin_unlock(&nm_i->nid_list_lock);
2211         radix_tree_preload_end();
2212
2213         if (err)
2214                 kmem_cache_free(free_nid_slab, i);
2215         return ret;
2216 }
2217
2218 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2219 {
2220         struct f2fs_nm_info *nm_i = NM_I(sbi);
2221         struct free_nid *i;
2222         bool need_free = false;
2223
2224         spin_lock(&nm_i->nid_list_lock);
2225         i = __lookup_free_nid_list(nm_i, nid);
2226         if (i && i->state == FREE_NID) {
2227                 __remove_free_nid(sbi, i, FREE_NID);
2228                 need_free = true;
2229         }
2230         spin_unlock(&nm_i->nid_list_lock);
2231
2232         if (need_free)
2233                 kmem_cache_free(free_nid_slab, i);
2234 }
2235
2236 static int scan_nat_page(struct f2fs_sb_info *sbi,
2237                         struct page *nat_page, nid_t start_nid)
2238 {
2239         struct f2fs_nm_info *nm_i = NM_I(sbi);
2240         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2241         block_t blk_addr;
2242         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2243         int i;
2244
2245         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2246
2247         i = start_nid % NAT_ENTRY_PER_BLOCK;
2248
2249         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2250                 if (unlikely(start_nid >= nm_i->max_nid))
2251                         break;
2252
2253                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2254
2255                 if (blk_addr == NEW_ADDR)
2256                         return -EINVAL;
2257
2258                 if (blk_addr == NULL_ADDR) {
2259                         add_free_nid(sbi, start_nid, true, true);
2260                 } else {
2261                         spin_lock(&NM_I(sbi)->nid_list_lock);
2262                         update_free_nid_bitmap(sbi, start_nid, false, true);
2263                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2264                 }
2265         }
2266
2267         return 0;
2268 }
2269
2270 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2271 {
2272         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2273         struct f2fs_journal *journal = curseg->journal;
2274         int i;
2275
2276         down_read(&curseg->journal_rwsem);
2277         for (i = 0; i < nats_in_cursum(journal); i++) {
2278                 block_t addr;
2279                 nid_t nid;
2280
2281                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2282                 nid = le32_to_cpu(nid_in_journal(journal, i));
2283                 if (addr == NULL_ADDR)
2284                         add_free_nid(sbi, nid, true, false);
2285                 else
2286                         remove_free_nid(sbi, nid);
2287         }
2288         up_read(&curseg->journal_rwsem);
2289 }
2290
2291 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2292 {
2293         struct f2fs_nm_info *nm_i = NM_I(sbi);
2294         unsigned int i, idx;
2295         nid_t nid;
2296
2297         down_read(&nm_i->nat_tree_lock);
2298
2299         for (i = 0; i < nm_i->nat_blocks; i++) {
2300                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2301                         continue;
2302                 if (!nm_i->free_nid_count[i])
2303                         continue;
2304                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2305                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2306                                                 NAT_ENTRY_PER_BLOCK, idx);
2307                         if (idx >= NAT_ENTRY_PER_BLOCK)
2308                                 break;
2309
2310                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2311                         add_free_nid(sbi, nid, true, false);
2312
2313                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2314                                 goto out;
2315                 }
2316         }
2317 out:
2318         scan_curseg_cache(sbi);
2319
2320         up_read(&nm_i->nat_tree_lock);
2321 }
2322
2323 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2324                                                 bool sync, bool mount)
2325 {
2326         struct f2fs_nm_info *nm_i = NM_I(sbi);
2327         int i = 0, ret;
2328         nid_t nid = nm_i->next_scan_nid;
2329
2330         if (unlikely(nid >= nm_i->max_nid))
2331                 nid = 0;
2332
2333         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2334                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2335
2336         /* Enough entries */
2337         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2338                 return 0;
2339
2340         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2341                 return 0;
2342
2343         if (!mount) {
2344                 /* try to find free nids in free_nid_bitmap */
2345                 scan_free_nid_bits(sbi);
2346
2347                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2348                         return 0;
2349         }
2350
2351         /* readahead nat pages to be scanned */
2352         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2353                                                         META_NAT, true);
2354
2355         down_read(&nm_i->nat_tree_lock);
2356
2357         while (1) {
2358                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2359                                                 nm_i->nat_block_bitmap)) {
2360                         struct page *page = get_current_nat_page(sbi, nid);
2361
2362                         if (IS_ERR(page)) {
2363                                 ret = PTR_ERR(page);
2364                         } else {
2365                                 ret = scan_nat_page(sbi, page, nid);
2366                                 f2fs_put_page(page, 1);
2367                         }
2368
2369                         if (ret) {
2370                                 up_read(&nm_i->nat_tree_lock);
2371                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2372                                 return ret;
2373                         }
2374                 }
2375
2376                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2377                 if (unlikely(nid >= nm_i->max_nid))
2378                         nid = 0;
2379
2380                 if (++i >= FREE_NID_PAGES)
2381                         break;
2382         }
2383
2384         /* go to the next free nat pages to find free nids abundantly */
2385         nm_i->next_scan_nid = nid;
2386
2387         /* find free nids from current sum_pages */
2388         scan_curseg_cache(sbi);
2389
2390         up_read(&nm_i->nat_tree_lock);
2391
2392         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2393                                         nm_i->ra_nid_pages, META_NAT, false);
2394
2395         return 0;
2396 }
2397
2398 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2399 {
2400         int ret;
2401
2402         mutex_lock(&NM_I(sbi)->build_lock);
2403         ret = __f2fs_build_free_nids(sbi, sync, mount);
2404         mutex_unlock(&NM_I(sbi)->build_lock);
2405
2406         return ret;
2407 }
2408
2409 /*
2410  * If this function returns success, caller can obtain a new nid
2411  * from second parameter of this function.
2412  * The returned nid could be used ino as well as nid when inode is created.
2413  */
2414 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2415 {
2416         struct f2fs_nm_info *nm_i = NM_I(sbi);
2417         struct free_nid *i = NULL;
2418 retry:
2419         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2420                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2421                 return false;
2422         }
2423
2424         spin_lock(&nm_i->nid_list_lock);
2425
2426         if (unlikely(nm_i->available_nids == 0)) {
2427                 spin_unlock(&nm_i->nid_list_lock);
2428                 return false;
2429         }
2430
2431         /* We should not use stale free nids created by f2fs_build_free_nids */
2432         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2433                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2434                 i = list_first_entry(&nm_i->free_nid_list,
2435                                         struct free_nid, list);
2436                 *nid = i->nid;
2437
2438                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2439                 nm_i->available_nids--;
2440
2441                 update_free_nid_bitmap(sbi, *nid, false, false);
2442
2443                 spin_unlock(&nm_i->nid_list_lock);
2444                 return true;
2445         }
2446         spin_unlock(&nm_i->nid_list_lock);
2447
2448         /* Let's scan nat pages and its caches to get free nids */
2449         if (!f2fs_build_free_nids(sbi, true, false))
2450                 goto retry;
2451         return false;
2452 }
2453
2454 /*
2455  * f2fs_alloc_nid() should be called prior to this function.
2456  */
2457 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2458 {
2459         struct f2fs_nm_info *nm_i = NM_I(sbi);
2460         struct free_nid *i;
2461
2462         spin_lock(&nm_i->nid_list_lock);
2463         i = __lookup_free_nid_list(nm_i, nid);
2464         f2fs_bug_on(sbi, !i);
2465         __remove_free_nid(sbi, i, PREALLOC_NID);
2466         spin_unlock(&nm_i->nid_list_lock);
2467
2468         kmem_cache_free(free_nid_slab, i);
2469 }
2470
2471 /*
2472  * f2fs_alloc_nid() should be called prior to this function.
2473  */
2474 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2475 {
2476         struct f2fs_nm_info *nm_i = NM_I(sbi);
2477         struct free_nid *i;
2478         bool need_free = false;
2479
2480         if (!nid)
2481                 return;
2482
2483         spin_lock(&nm_i->nid_list_lock);
2484         i = __lookup_free_nid_list(nm_i, nid);
2485         f2fs_bug_on(sbi, !i);
2486
2487         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2488                 __remove_free_nid(sbi, i, PREALLOC_NID);
2489                 need_free = true;
2490         } else {
2491                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2492         }
2493
2494         nm_i->available_nids++;
2495
2496         update_free_nid_bitmap(sbi, nid, true, false);
2497
2498         spin_unlock(&nm_i->nid_list_lock);
2499
2500         if (need_free)
2501                 kmem_cache_free(free_nid_slab, i);
2502 }
2503
2504 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2505 {
2506         struct f2fs_nm_info *nm_i = NM_I(sbi);
2507         struct free_nid *i, *next;
2508         int nr = nr_shrink;
2509
2510         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2511                 return 0;
2512
2513         if (!mutex_trylock(&nm_i->build_lock))
2514                 return 0;
2515
2516         spin_lock(&nm_i->nid_list_lock);
2517         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2518                 if (nr_shrink <= 0 ||
2519                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2520                         break;
2521
2522                 __remove_free_nid(sbi, i, FREE_NID);
2523                 kmem_cache_free(free_nid_slab, i);
2524                 nr_shrink--;
2525         }
2526         spin_unlock(&nm_i->nid_list_lock);
2527         mutex_unlock(&nm_i->build_lock);
2528
2529         return nr - nr_shrink;
2530 }
2531
2532 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2533 {
2534         void *src_addr, *dst_addr;
2535         size_t inline_size;
2536         struct page *ipage;
2537         struct f2fs_inode *ri;
2538
2539         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2540         if (IS_ERR(ipage))
2541                 return PTR_ERR(ipage);
2542
2543         ri = F2FS_INODE(page);
2544         if (ri->i_inline & F2FS_INLINE_XATTR) {
2545                 set_inode_flag(inode, FI_INLINE_XATTR);
2546         } else {
2547                 clear_inode_flag(inode, FI_INLINE_XATTR);
2548                 goto update_inode;
2549         }
2550
2551         dst_addr = inline_xattr_addr(inode, ipage);
2552         src_addr = inline_xattr_addr(inode, page);
2553         inline_size = inline_xattr_size(inode);
2554
2555         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2556         memcpy(dst_addr, src_addr, inline_size);
2557 update_inode:
2558         f2fs_update_inode(inode, ipage);
2559         f2fs_put_page(ipage, 1);
2560         return 0;
2561 }
2562
2563 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2564 {
2565         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2567         nid_t new_xnid;
2568         struct dnode_of_data dn;
2569         struct node_info ni;
2570         struct page *xpage;
2571         int err;
2572
2573         if (!prev_xnid)
2574                 goto recover_xnid;
2575
2576         /* 1: invalidate the previous xattr nid */
2577         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2578         if (err)
2579                 return err;
2580
2581         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2582         dec_valid_node_count(sbi, inode, false);
2583         set_node_addr(sbi, &ni, NULL_ADDR, false);
2584
2585 recover_xnid:
2586         /* 2: update xattr nid in inode */
2587         if (!f2fs_alloc_nid(sbi, &new_xnid))
2588                 return -ENOSPC;
2589
2590         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2591         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2592         if (IS_ERR(xpage)) {
2593                 f2fs_alloc_nid_failed(sbi, new_xnid);
2594                 return PTR_ERR(xpage);
2595         }
2596
2597         f2fs_alloc_nid_done(sbi, new_xnid);
2598         f2fs_update_inode_page(inode);
2599
2600         /* 3: update and set xattr node page dirty */
2601         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2602
2603         set_page_dirty(xpage);
2604         f2fs_put_page(xpage, 1);
2605
2606         return 0;
2607 }
2608
2609 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2610 {
2611         struct f2fs_inode *src, *dst;
2612         nid_t ino = ino_of_node(page);
2613         struct node_info old_ni, new_ni;
2614         struct page *ipage;
2615         int err;
2616
2617         err = f2fs_get_node_info(sbi, ino, &old_ni);
2618         if (err)
2619                 return err;
2620
2621         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2622                 return -EINVAL;
2623 retry:
2624         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2625         if (!ipage) {
2626                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2627                 goto retry;
2628         }
2629
2630         /* Should not use this inode from free nid list */
2631         remove_free_nid(sbi, ino);
2632
2633         if (!PageUptodate(ipage))
2634                 SetPageUptodate(ipage);
2635         fill_node_footer(ipage, ino, ino, 0, true);
2636         set_cold_node(ipage, false);
2637
2638         src = F2FS_INODE(page);
2639         dst = F2FS_INODE(ipage);
2640
2641         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2642         dst->i_size = 0;
2643         dst->i_blocks = cpu_to_le64(1);
2644         dst->i_links = cpu_to_le32(1);
2645         dst->i_xattr_nid = 0;
2646         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2647         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2648                 dst->i_extra_isize = src->i_extra_isize;
2649
2650                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2651                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2652                                                         i_inline_xattr_size))
2653                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2654
2655                 if (f2fs_sb_has_project_quota(sbi) &&
2656                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2657                                                                 i_projid))
2658                         dst->i_projid = src->i_projid;
2659
2660                 if (f2fs_sb_has_inode_crtime(sbi) &&
2661                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2662                                                         i_crtime_nsec)) {
2663                         dst->i_crtime = src->i_crtime;
2664                         dst->i_crtime_nsec = src->i_crtime_nsec;
2665                 }
2666         }
2667
2668         new_ni = old_ni;
2669         new_ni.ino = ino;
2670
2671         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2672                 WARN_ON(1);
2673         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2674         inc_valid_inode_count(sbi);
2675         set_page_dirty(ipage);
2676         f2fs_put_page(ipage, 1);
2677         return 0;
2678 }
2679
2680 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2681                         unsigned int segno, struct f2fs_summary_block *sum)
2682 {
2683         struct f2fs_node *rn;
2684         struct f2fs_summary *sum_entry;
2685         block_t addr;
2686         int i, idx, last_offset, nrpages;
2687
2688         /* scan the node segment */
2689         last_offset = sbi->blocks_per_seg;
2690         addr = START_BLOCK(sbi, segno);
2691         sum_entry = &sum->entries[0];
2692
2693         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2694                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2695
2696                 /* readahead node pages */
2697                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2698
2699                 for (idx = addr; idx < addr + nrpages; idx++) {
2700                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2701
2702                         if (IS_ERR(page))
2703                                 return PTR_ERR(page);
2704
2705                         rn = F2FS_NODE(page);
2706                         sum_entry->nid = rn->footer.nid;
2707                         sum_entry->version = 0;
2708                         sum_entry->ofs_in_node = 0;
2709                         sum_entry++;
2710                         f2fs_put_page(page, 1);
2711                 }
2712
2713                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2714                                                         addr + nrpages);
2715         }
2716         return 0;
2717 }
2718
2719 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2720 {
2721         struct f2fs_nm_info *nm_i = NM_I(sbi);
2722         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2723         struct f2fs_journal *journal = curseg->journal;
2724         int i;
2725
2726         down_write(&curseg->journal_rwsem);
2727         for (i = 0; i < nats_in_cursum(journal); i++) {
2728                 struct nat_entry *ne;
2729                 struct f2fs_nat_entry raw_ne;
2730                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2731
2732                 if (f2fs_check_nid_range(sbi, nid))
2733                         continue;
2734
2735                 raw_ne = nat_in_journal(journal, i);
2736
2737                 ne = __lookup_nat_cache(nm_i, nid);
2738                 if (!ne) {
2739                         ne = __alloc_nat_entry(nid, true);
2740                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2741                 }
2742
2743                 /*
2744                  * if a free nat in journal has not been used after last
2745                  * checkpoint, we should remove it from available nids,
2746                  * since later we will add it again.
2747                  */
2748                 if (!get_nat_flag(ne, IS_DIRTY) &&
2749                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2750                         spin_lock(&nm_i->nid_list_lock);
2751                         nm_i->available_nids--;
2752                         spin_unlock(&nm_i->nid_list_lock);
2753                 }
2754
2755                 __set_nat_cache_dirty(nm_i, ne);
2756         }
2757         update_nats_in_cursum(journal, -i);
2758         up_write(&curseg->journal_rwsem);
2759 }
2760
2761 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2762                                                 struct list_head *head, int max)
2763 {
2764         struct nat_entry_set *cur;
2765
2766         if (nes->entry_cnt >= max)
2767                 goto add_out;
2768
2769         list_for_each_entry(cur, head, set_list) {
2770                 if (cur->entry_cnt >= nes->entry_cnt) {
2771                         list_add(&nes->set_list, cur->set_list.prev);
2772                         return;
2773                 }
2774         }
2775 add_out:
2776         list_add_tail(&nes->set_list, head);
2777 }
2778
2779 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2780                                                 struct page *page)
2781 {
2782         struct f2fs_nm_info *nm_i = NM_I(sbi);
2783         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2784         struct f2fs_nat_block *nat_blk = page_address(page);
2785         int valid = 0;
2786         int i = 0;
2787
2788         if (!enabled_nat_bits(sbi, NULL))
2789                 return;
2790
2791         if (nat_index == 0) {
2792                 valid = 1;
2793                 i = 1;
2794         }
2795         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2796                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2797                         valid++;
2798         }
2799         if (valid == 0) {
2800                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2801                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2802                 return;
2803         }
2804
2805         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2806         if (valid == NAT_ENTRY_PER_BLOCK)
2807                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2808         else
2809                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2810 }
2811
2812 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2813                 struct nat_entry_set *set, struct cp_control *cpc)
2814 {
2815         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2816         struct f2fs_journal *journal = curseg->journal;
2817         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2818         bool to_journal = true;
2819         struct f2fs_nat_block *nat_blk;
2820         struct nat_entry *ne, *cur;
2821         struct page *page = NULL;
2822
2823         /*
2824          * there are two steps to flush nat entries:
2825          * #1, flush nat entries to journal in current hot data summary block.
2826          * #2, flush nat entries to nat page.
2827          */
2828         if (enabled_nat_bits(sbi, cpc) ||
2829                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2830                 to_journal = false;
2831
2832         if (to_journal) {
2833                 down_write(&curseg->journal_rwsem);
2834         } else {
2835                 page = get_next_nat_page(sbi, start_nid);
2836                 if (IS_ERR(page))
2837                         return PTR_ERR(page);
2838
2839                 nat_blk = page_address(page);
2840                 f2fs_bug_on(sbi, !nat_blk);
2841         }
2842
2843         /* flush dirty nats in nat entry set */
2844         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2845                 struct f2fs_nat_entry *raw_ne;
2846                 nid_t nid = nat_get_nid(ne);
2847                 int offset;
2848
2849                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2850
2851                 if (to_journal) {
2852                         offset = f2fs_lookup_journal_in_cursum(journal,
2853                                                         NAT_JOURNAL, nid, 1);
2854                         f2fs_bug_on(sbi, offset < 0);
2855                         raw_ne = &nat_in_journal(journal, offset);
2856                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2857                 } else {
2858                         raw_ne = &nat_blk->entries[nid - start_nid];
2859                 }
2860                 raw_nat_from_node_info(raw_ne, &ne->ni);
2861                 nat_reset_flag(ne);
2862                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2863                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2864                         add_free_nid(sbi, nid, false, true);
2865                 } else {
2866                         spin_lock(&NM_I(sbi)->nid_list_lock);
2867                         update_free_nid_bitmap(sbi, nid, false, false);
2868                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2869                 }
2870         }
2871
2872         if (to_journal) {
2873                 up_write(&curseg->journal_rwsem);
2874         } else {
2875                 __update_nat_bits(sbi, start_nid, page);
2876                 f2fs_put_page(page, 1);
2877         }
2878
2879         /* Allow dirty nats by node block allocation in write_begin */
2880         if (!set->entry_cnt) {
2881                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2882                 kmem_cache_free(nat_entry_set_slab, set);
2883         }
2884         return 0;
2885 }
2886
2887 /*
2888  * This function is called during the checkpointing process.
2889  */
2890 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2891 {
2892         struct f2fs_nm_info *nm_i = NM_I(sbi);
2893         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2894         struct f2fs_journal *journal = curseg->journal;
2895         struct nat_entry_set *setvec[SETVEC_SIZE];
2896         struct nat_entry_set *set, *tmp;
2897         unsigned int found;
2898         nid_t set_idx = 0;
2899         LIST_HEAD(sets);
2900         int err = 0;
2901
2902         /*
2903          * during unmount, let's flush nat_bits before checking
2904          * nat_cnt[DIRTY_NAT].
2905          */
2906         if (enabled_nat_bits(sbi, cpc)) {
2907                 down_write(&nm_i->nat_tree_lock);
2908                 remove_nats_in_journal(sbi);
2909                 up_write(&nm_i->nat_tree_lock);
2910         }
2911
2912         if (!nm_i->nat_cnt[DIRTY_NAT])
2913                 return 0;
2914
2915         down_write(&nm_i->nat_tree_lock);
2916
2917         /*
2918          * if there are no enough space in journal to store dirty nat
2919          * entries, remove all entries from journal and merge them
2920          * into nat entry set.
2921          */
2922         if (enabled_nat_bits(sbi, cpc) ||
2923                 !__has_cursum_space(journal,
2924                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2925                 remove_nats_in_journal(sbi);
2926
2927         while ((found = __gang_lookup_nat_set(nm_i,
2928                                         set_idx, SETVEC_SIZE, setvec))) {
2929                 unsigned idx;
2930                 set_idx = setvec[found - 1]->set + 1;
2931                 for (idx = 0; idx < found; idx++)
2932                         __adjust_nat_entry_set(setvec[idx], &sets,
2933                                                 MAX_NAT_JENTRIES(journal));
2934         }
2935
2936         /* flush dirty nats in nat entry set */
2937         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2938                 err = __flush_nat_entry_set(sbi, set, cpc);
2939                 if (err)
2940                         break;
2941         }
2942
2943         up_write(&nm_i->nat_tree_lock);
2944         /* Allow dirty nats by node block allocation in write_begin */
2945
2946         return err;
2947 }
2948
2949 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2950 {
2951         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2952         struct f2fs_nm_info *nm_i = NM_I(sbi);
2953         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2954         unsigned int i;
2955         __u64 cp_ver = cur_cp_version(ckpt);
2956         block_t nat_bits_addr;
2957
2958         if (!enabled_nat_bits(sbi, NULL))
2959                 return 0;
2960
2961         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2962         nm_i->nat_bits = f2fs_kvzalloc(sbi,
2963                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2964         if (!nm_i->nat_bits)
2965                 return -ENOMEM;
2966
2967         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2968                                                 nm_i->nat_bits_blocks;
2969         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2970                 struct page *page;
2971
2972                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2973                 if (IS_ERR(page))
2974                         return PTR_ERR(page);
2975
2976                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2977                                         page_address(page), F2FS_BLKSIZE);
2978                 f2fs_put_page(page, 1);
2979         }
2980
2981         cp_ver |= (cur_cp_crc(ckpt) << 32);
2982         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2983                 disable_nat_bits(sbi, true);
2984                 return 0;
2985         }
2986
2987         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2988         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2989
2990         f2fs_notice(sbi, "Found nat_bits in checkpoint");
2991         return 0;
2992 }
2993
2994 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2995 {
2996         struct f2fs_nm_info *nm_i = NM_I(sbi);
2997         unsigned int i = 0;
2998         nid_t nid, last_nid;
2999
3000         if (!enabled_nat_bits(sbi, NULL))
3001                 return;
3002
3003         for (i = 0; i < nm_i->nat_blocks; i++) {
3004                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3005                 if (i >= nm_i->nat_blocks)
3006                         break;
3007
3008                 __set_bit_le(i, nm_i->nat_block_bitmap);
3009
3010                 nid = i * NAT_ENTRY_PER_BLOCK;
3011                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3012
3013                 spin_lock(&NM_I(sbi)->nid_list_lock);
3014                 for (; nid < last_nid; nid++)
3015                         update_free_nid_bitmap(sbi, nid, true, true);
3016                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3017         }
3018
3019         for (i = 0; i < nm_i->nat_blocks; i++) {
3020                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3021                 if (i >= nm_i->nat_blocks)
3022                         break;
3023
3024                 __set_bit_le(i, nm_i->nat_block_bitmap);
3025         }
3026 }
3027
3028 static int init_node_manager(struct f2fs_sb_info *sbi)
3029 {
3030         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3031         struct f2fs_nm_info *nm_i = NM_I(sbi);
3032         unsigned char *version_bitmap;
3033         unsigned int nat_segs;
3034         int err;
3035
3036         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3037
3038         /* segment_count_nat includes pair segment so divide to 2. */
3039         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3040         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3041         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3042
3043         /* not used nids: 0, node, meta, (and root counted as valid node) */
3044         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3045                                                 F2FS_RESERVED_NODE_NUM;
3046         nm_i->nid_cnt[FREE_NID] = 0;
3047         nm_i->nid_cnt[PREALLOC_NID] = 0;
3048         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3049         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3050         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3051
3052         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3053         INIT_LIST_HEAD(&nm_i->free_nid_list);
3054         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3055         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3056         INIT_LIST_HEAD(&nm_i->nat_entries);
3057         spin_lock_init(&nm_i->nat_list_lock);
3058
3059         mutex_init(&nm_i->build_lock);
3060         spin_lock_init(&nm_i->nid_list_lock);
3061         init_rwsem(&nm_i->nat_tree_lock);
3062
3063         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3064         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3065         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3066         if (!version_bitmap)
3067                 return -EFAULT;
3068
3069         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3070                                         GFP_KERNEL);
3071         if (!nm_i->nat_bitmap)
3072                 return -ENOMEM;
3073
3074         err = __get_nat_bitmaps(sbi);
3075         if (err)
3076                 return err;
3077
3078 #ifdef CONFIG_F2FS_CHECK_FS
3079         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3080                                         GFP_KERNEL);
3081         if (!nm_i->nat_bitmap_mir)
3082                 return -ENOMEM;
3083 #endif
3084
3085         return 0;
3086 }
3087
3088 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3089 {
3090         struct f2fs_nm_info *nm_i = NM_I(sbi);
3091         int i;
3092
3093         nm_i->free_nid_bitmap =
3094                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3095                                               nm_i->nat_blocks),
3096                               GFP_KERNEL);
3097         if (!nm_i->free_nid_bitmap)
3098                 return -ENOMEM;
3099
3100         for (i = 0; i < nm_i->nat_blocks; i++) {
3101                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3102                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3103                 if (!nm_i->free_nid_bitmap[i])
3104                         return -ENOMEM;
3105         }
3106
3107         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3108                                                                 GFP_KERNEL);
3109         if (!nm_i->nat_block_bitmap)
3110                 return -ENOMEM;
3111
3112         nm_i->free_nid_count =
3113                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3114                                               nm_i->nat_blocks),
3115                               GFP_KERNEL);
3116         if (!nm_i->free_nid_count)
3117                 return -ENOMEM;
3118         return 0;
3119 }
3120
3121 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3122 {
3123         int err;
3124
3125         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3126                                                         GFP_KERNEL);
3127         if (!sbi->nm_info)
3128                 return -ENOMEM;
3129
3130         err = init_node_manager(sbi);
3131         if (err)
3132                 return err;
3133
3134         err = init_free_nid_cache(sbi);
3135         if (err)
3136                 return err;
3137
3138         /* load free nid status from nat_bits table */
3139         load_free_nid_bitmap(sbi);
3140
3141         return f2fs_build_free_nids(sbi, true, true);
3142 }
3143
3144 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3145 {
3146         struct f2fs_nm_info *nm_i = NM_I(sbi);
3147         struct free_nid *i, *next_i;
3148         struct nat_entry *natvec[NATVEC_SIZE];
3149         struct nat_entry_set *setvec[SETVEC_SIZE];
3150         nid_t nid = 0;
3151         unsigned int found;
3152
3153         if (!nm_i)
3154                 return;
3155
3156         /* destroy free nid list */
3157         spin_lock(&nm_i->nid_list_lock);
3158         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3159                 __remove_free_nid(sbi, i, FREE_NID);
3160                 spin_unlock(&nm_i->nid_list_lock);
3161                 kmem_cache_free(free_nid_slab, i);
3162                 spin_lock(&nm_i->nid_list_lock);
3163         }
3164         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3165         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3166         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3167         spin_unlock(&nm_i->nid_list_lock);
3168
3169         /* destroy nat cache */
3170         down_write(&nm_i->nat_tree_lock);
3171         while ((found = __gang_lookup_nat_cache(nm_i,
3172                                         nid, NATVEC_SIZE, natvec))) {
3173                 unsigned idx;
3174
3175                 nid = nat_get_nid(natvec[found - 1]) + 1;
3176                 for (idx = 0; idx < found; idx++) {
3177                         spin_lock(&nm_i->nat_list_lock);
3178                         list_del(&natvec[idx]->list);
3179                         spin_unlock(&nm_i->nat_list_lock);
3180
3181                         __del_from_nat_cache(nm_i, natvec[idx]);
3182                 }
3183         }
3184         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3185
3186         /* destroy nat set cache */
3187         nid = 0;
3188         while ((found = __gang_lookup_nat_set(nm_i,
3189                                         nid, SETVEC_SIZE, setvec))) {
3190                 unsigned idx;
3191
3192                 nid = setvec[found - 1]->set + 1;
3193                 for (idx = 0; idx < found; idx++) {
3194                         /* entry_cnt is not zero, when cp_error was occurred */
3195                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3196                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3197                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3198                 }
3199         }
3200         up_write(&nm_i->nat_tree_lock);
3201
3202         kvfree(nm_i->nat_block_bitmap);
3203         if (nm_i->free_nid_bitmap) {
3204                 int i;
3205
3206                 for (i = 0; i < nm_i->nat_blocks; i++)
3207                         kvfree(nm_i->free_nid_bitmap[i]);
3208                 kvfree(nm_i->free_nid_bitmap);
3209         }
3210         kvfree(nm_i->free_nid_count);
3211
3212         kvfree(nm_i->nat_bitmap);
3213         kvfree(nm_i->nat_bits);
3214 #ifdef CONFIG_F2FS_CHECK_FS
3215         kvfree(nm_i->nat_bitmap_mir);
3216 #endif
3217         sbi->nm_info = NULL;
3218         kvfree(nm_i);
3219 }
3220
3221 int __init f2fs_create_node_manager_caches(void)
3222 {
3223         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3224                         sizeof(struct nat_entry));
3225         if (!nat_entry_slab)
3226                 goto fail;
3227
3228         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3229                         sizeof(struct free_nid));
3230         if (!free_nid_slab)
3231                 goto destroy_nat_entry;
3232
3233         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3234                         sizeof(struct nat_entry_set));
3235         if (!nat_entry_set_slab)
3236                 goto destroy_free_nid;
3237
3238         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3239                         sizeof(struct fsync_node_entry));
3240         if (!fsync_node_entry_slab)
3241                 goto destroy_nat_entry_set;
3242         return 0;
3243
3244 destroy_nat_entry_set:
3245         kmem_cache_destroy(nat_entry_set_slab);
3246 destroy_free_nid:
3247         kmem_cache_destroy(free_nid_slab);
3248 destroy_nat_entry:
3249         kmem_cache_destroy(nat_entry_slab);
3250 fail:
3251         return -ENOMEM;
3252 }
3253
3254 void f2fs_destroy_node_manager_caches(void)
3255 {
3256         kmem_cache_destroy(fsync_node_entry_slab);
3257         kmem_cache_destroy(nat_entry_set_slab);
3258         kmem_cache_destroy(free_nid_slab);
3259         kmem_cache_destroy(nat_entry_slab);
3260 }