GNU Linux-libre 5.15.137-gnu
[releases.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40         struct inode *inode = file_inode(vmf->vma->vm_file);
41         vm_fault_t ret;
42
43         ret = filemap_fault(vmf);
44         if (!ret)
45                 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46                                                         F2FS_BLKSIZE);
47
48         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49
50         return ret;
51 }
52
53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55         struct page *page = vmf->page;
56         struct inode *inode = file_inode(vmf->vma->vm_file);
57         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58         struct dnode_of_data dn;
59         bool need_alloc = true;
60         int err = 0;
61
62         if (unlikely(IS_IMMUTABLE(inode)))
63                 return VM_FAULT_SIGBUS;
64
65         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
66                 return VM_FAULT_SIGBUS;
67
68         if (unlikely(f2fs_cp_error(sbi))) {
69                 err = -EIO;
70                 goto err;
71         }
72
73         if (!f2fs_is_checkpoint_ready(sbi)) {
74                 err = -ENOSPC;
75                 goto err;
76         }
77
78         err = f2fs_convert_inline_inode(inode);
79         if (err)
80                 goto err;
81
82 #ifdef CONFIG_F2FS_FS_COMPRESSION
83         if (f2fs_compressed_file(inode)) {
84                 int ret = f2fs_is_compressed_cluster(inode, page->index);
85
86                 if (ret < 0) {
87                         err = ret;
88                         goto err;
89                 } else if (ret) {
90                         need_alloc = false;
91                 }
92         }
93 #endif
94         /* should do out of any locked page */
95         if (need_alloc)
96                 f2fs_balance_fs(sbi, true);
97
98         sb_start_pagefault(inode->i_sb);
99
100         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
101
102         file_update_time(vmf->vma->vm_file);
103         filemap_invalidate_lock_shared(inode->i_mapping);
104         lock_page(page);
105         if (unlikely(page->mapping != inode->i_mapping ||
106                         page_offset(page) > i_size_read(inode) ||
107                         !PageUptodate(page))) {
108                 unlock_page(page);
109                 err = -EFAULT;
110                 goto out_sem;
111         }
112
113         if (need_alloc) {
114                 /* block allocation */
115                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
116                 set_new_dnode(&dn, inode, NULL, NULL, 0);
117                 err = f2fs_get_block(&dn, page->index);
118                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
119         }
120
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122         if (!need_alloc) {
123                 set_new_dnode(&dn, inode, NULL, NULL, 0);
124                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125                 f2fs_put_dnode(&dn);
126         }
127 #endif
128         if (err) {
129                 unlock_page(page);
130                 goto out_sem;
131         }
132
133         f2fs_wait_on_page_writeback(page, DATA, false, true);
134
135         /* wait for GCed page writeback via META_MAPPING */
136         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
137
138         /*
139          * check to see if the page is mapped already (no holes)
140          */
141         if (PageMappedToDisk(page))
142                 goto out_sem;
143
144         /* page is wholly or partially inside EOF */
145         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
146                                                 i_size_read(inode)) {
147                 loff_t offset;
148
149                 offset = i_size_read(inode) & ~PAGE_MASK;
150                 zero_user_segment(page, offset, PAGE_SIZE);
151         }
152         set_page_dirty(page);
153         if (!PageUptodate(page))
154                 SetPageUptodate(page);
155
156         f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
157         f2fs_update_time(sbi, REQ_TIME);
158
159         trace_f2fs_vm_page_mkwrite(page, DATA);
160 out_sem:
161         filemap_invalidate_unlock_shared(inode->i_mapping);
162
163         sb_end_pagefault(inode->i_sb);
164 err:
165         return block_page_mkwrite_return(err);
166 }
167
168 static const struct vm_operations_struct f2fs_file_vm_ops = {
169         .fault          = f2fs_filemap_fault,
170         .map_pages      = filemap_map_pages,
171         .page_mkwrite   = f2fs_vm_page_mkwrite,
172 };
173
174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176         struct dentry *dentry;
177
178         /*
179          * Make sure to get the non-deleted alias.  The alias associated with
180          * the open file descriptor being fsync()'ed may be deleted already.
181          */
182         dentry = d_find_alias(inode);
183         if (!dentry)
184                 return 0;
185
186         *pino = parent_ino(dentry);
187         dput(dentry);
188         return 1;
189 }
190
191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194         enum cp_reason_type cp_reason = CP_NO_NEEDED;
195
196         if (!S_ISREG(inode->i_mode))
197                 cp_reason = CP_NON_REGULAR;
198         else if (f2fs_compressed_file(inode))
199                 cp_reason = CP_COMPRESSED;
200         else if (inode->i_nlink != 1)
201                 cp_reason = CP_HARDLINK;
202         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203                 cp_reason = CP_SB_NEED_CP;
204         else if (file_wrong_pino(inode))
205                 cp_reason = CP_WRONG_PINO;
206         else if (!f2fs_space_for_roll_forward(sbi))
207                 cp_reason = CP_NO_SPC_ROLL;
208         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209                 cp_reason = CP_NODE_NEED_CP;
210         else if (test_opt(sbi, FASTBOOT))
211                 cp_reason = CP_FASTBOOT_MODE;
212         else if (F2FS_OPTION(sbi).active_logs == 2)
213                 cp_reason = CP_SPEC_LOG_NUM;
214         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217                                                         TRANS_DIR_INO))
218                 cp_reason = CP_RECOVER_DIR;
219
220         return cp_reason;
221 }
222
223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226         bool ret = false;
227         /* But we need to avoid that there are some inode updates */
228         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229                 ret = true;
230         f2fs_put_page(i, 0);
231         return ret;
232 }
233
234 static void try_to_fix_pino(struct inode *inode)
235 {
236         struct f2fs_inode_info *fi = F2FS_I(inode);
237         nid_t pino;
238
239         down_write(&fi->i_sem);
240         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241                         get_parent_ino(inode, &pino)) {
242                 f2fs_i_pino_write(inode, pino);
243                 file_got_pino(inode);
244         }
245         up_write(&fi->i_sem);
246 }
247
248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249                                                 int datasync, bool atomic)
250 {
251         struct inode *inode = file->f_mapping->host;
252         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253         nid_t ino = inode->i_ino;
254         int ret = 0;
255         enum cp_reason_type cp_reason = 0;
256         struct writeback_control wbc = {
257                 .sync_mode = WB_SYNC_ALL,
258                 .nr_to_write = LONG_MAX,
259                 .for_reclaim = 0,
260         };
261         unsigned int seq_id = 0;
262
263         if (unlikely(f2fs_readonly(inode->i_sb)))
264                 return 0;
265
266         trace_f2fs_sync_file_enter(inode);
267
268         if (S_ISDIR(inode->i_mode))
269                 goto go_write;
270
271         /* if fdatasync is triggered, let's do in-place-update */
272         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273                 set_inode_flag(inode, FI_NEED_IPU);
274         ret = file_write_and_wait_range(file, start, end);
275         clear_inode_flag(inode, FI_NEED_IPU);
276
277         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279                 return ret;
280         }
281
282         /* if the inode is dirty, let's recover all the time */
283         if (!f2fs_skip_inode_update(inode, datasync)) {
284                 f2fs_write_inode(inode, NULL);
285                 goto go_write;
286         }
287
288         /*
289          * if there is no written data, don't waste time to write recovery info.
290          */
291         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294                 /* it may call write_inode just prior to fsync */
295                 if (need_inode_page_update(sbi, ino))
296                         goto go_write;
297
298                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300                         goto flush_out;
301                 goto out;
302         } else {
303                 /*
304                  * for OPU case, during fsync(), node can be persisted before
305                  * data when lower device doesn't support write barrier, result
306                  * in data corruption after SPO.
307                  * So for strict fsync mode, force to use atomic write sematics
308                  * to keep write order in between data/node and last node to
309                  * avoid potential data corruption.
310                  */
311                 if (F2FS_OPTION(sbi).fsync_mode ==
312                                 FSYNC_MODE_STRICT && !atomic)
313                         atomic = true;
314         }
315 go_write:
316         /*
317          * Both of fdatasync() and fsync() are able to be recovered from
318          * sudden-power-off.
319          */
320         down_read(&F2FS_I(inode)->i_sem);
321         cp_reason = need_do_checkpoint(inode);
322         up_read(&F2FS_I(inode)->i_sem);
323
324         if (cp_reason) {
325                 /* all the dirty node pages should be flushed for POR */
326                 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328                 /*
329                  * We've secured consistency through sync_fs. Following pino
330                  * will be used only for fsynced inodes after checkpoint.
331                  */
332                 try_to_fix_pino(inode);
333                 clear_inode_flag(inode, FI_APPEND_WRITE);
334                 clear_inode_flag(inode, FI_UPDATE_WRITE);
335                 goto out;
336         }
337 sync_nodes:
338         atomic_inc(&sbi->wb_sync_req[NODE]);
339         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340         atomic_dec(&sbi->wb_sync_req[NODE]);
341         if (ret)
342                 goto out;
343
344         /* if cp_error was enabled, we should avoid infinite loop */
345         if (unlikely(f2fs_cp_error(sbi))) {
346                 ret = -EIO;
347                 goto out;
348         }
349
350         if (f2fs_need_inode_block_update(sbi, ino)) {
351                 f2fs_mark_inode_dirty_sync(inode, true);
352                 f2fs_write_inode(inode, NULL);
353                 goto sync_nodes;
354         }
355
356         /*
357          * If it's atomic_write, it's just fine to keep write ordering. So
358          * here we don't need to wait for node write completion, since we use
359          * node chain which serializes node blocks. If one of node writes are
360          * reordered, we can see simply broken chain, resulting in stopping
361          * roll-forward recovery. It means we'll recover all or none node blocks
362          * given fsync mark.
363          */
364         if (!atomic) {
365                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366                 if (ret)
367                         goto out;
368         }
369
370         /* once recovery info is written, don't need to tack this */
371         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372         clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374         if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
375                 ret = f2fs_issue_flush(sbi, inode->i_ino);
376         if (!ret) {
377                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
378                 clear_inode_flag(inode, FI_UPDATE_WRITE);
379                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
380         }
381         f2fs_update_time(sbi, REQ_TIME);
382 out:
383         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
384         return ret;
385 }
386
387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
388 {
389         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
390                 return -EIO;
391         return f2fs_do_sync_file(file, start, end, datasync, false);
392 }
393
394 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
395                                 pgoff_t index, int whence)
396 {
397         switch (whence) {
398         case SEEK_DATA:
399                 if (__is_valid_data_blkaddr(blkaddr))
400                         return true;
401                 if (blkaddr == NEW_ADDR &&
402                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
403                         return true;
404                 break;
405         case SEEK_HOLE:
406                 if (blkaddr == NULL_ADDR)
407                         return true;
408                 break;
409         }
410         return false;
411 }
412
413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
414 {
415         struct inode *inode = file->f_mapping->host;
416         loff_t maxbytes = inode->i_sb->s_maxbytes;
417         struct dnode_of_data dn;
418         pgoff_t pgofs, end_offset;
419         loff_t data_ofs = offset;
420         loff_t isize;
421         int err = 0;
422
423         inode_lock(inode);
424
425         isize = i_size_read(inode);
426         if (offset >= isize)
427                 goto fail;
428
429         /* handle inline data case */
430         if (f2fs_has_inline_data(inode)) {
431                 if (whence == SEEK_HOLE) {
432                         data_ofs = isize;
433                         goto found;
434                 } else if (whence == SEEK_DATA) {
435                         data_ofs = offset;
436                         goto found;
437                 }
438         }
439
440         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
441
442         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443                 set_new_dnode(&dn, inode, NULL, NULL, 0);
444                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
445                 if (err && err != -ENOENT) {
446                         goto fail;
447                 } else if (err == -ENOENT) {
448                         /* direct node does not exists */
449                         if (whence == SEEK_DATA) {
450                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
451                                 continue;
452                         } else {
453                                 goto found;
454                         }
455                 }
456
457                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
458
459                 /* find data/hole in dnode block */
460                 for (; dn.ofs_in_node < end_offset;
461                                 dn.ofs_in_node++, pgofs++,
462                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
463                         block_t blkaddr;
464
465                         blkaddr = f2fs_data_blkaddr(&dn);
466
467                         if (__is_valid_data_blkaddr(blkaddr) &&
468                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
469                                         blkaddr, DATA_GENERIC_ENHANCE)) {
470                                 f2fs_put_dnode(&dn);
471                                 goto fail;
472                         }
473
474                         if (__found_offset(file->f_mapping, blkaddr,
475                                                         pgofs, whence)) {
476                                 f2fs_put_dnode(&dn);
477                                 goto found;
478                         }
479                 }
480                 f2fs_put_dnode(&dn);
481         }
482
483         if (whence == SEEK_DATA)
484                 goto fail;
485 found:
486         if (whence == SEEK_HOLE && data_ofs > isize)
487                 data_ofs = isize;
488         inode_unlock(inode);
489         return vfs_setpos(file, data_ofs, maxbytes);
490 fail:
491         inode_unlock(inode);
492         return -ENXIO;
493 }
494
495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
496 {
497         struct inode *inode = file->f_mapping->host;
498         loff_t maxbytes = inode->i_sb->s_maxbytes;
499
500         if (f2fs_compressed_file(inode))
501                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
502
503         switch (whence) {
504         case SEEK_SET:
505         case SEEK_CUR:
506         case SEEK_END:
507                 return generic_file_llseek_size(file, offset, whence,
508                                                 maxbytes, i_size_read(inode));
509         case SEEK_DATA:
510         case SEEK_HOLE:
511                 if (offset < 0)
512                         return -ENXIO;
513                 return f2fs_seek_block(file, offset, whence);
514         }
515
516         return -EINVAL;
517 }
518
519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521         struct inode *inode = file_inode(file);
522
523         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
524                 return -EIO;
525
526         if (!f2fs_is_compress_backend_ready(inode))
527                 return -EOPNOTSUPP;
528
529         file_accessed(file);
530         vma->vm_ops = &f2fs_file_vm_ops;
531         set_inode_flag(inode, FI_MMAP_FILE);
532         return 0;
533 }
534
535 static int f2fs_file_open(struct inode *inode, struct file *filp)
536 {
537         int err = fscrypt_file_open(inode, filp);
538
539         if (err)
540                 return err;
541
542         if (!f2fs_is_compress_backend_ready(inode))
543                 return -EOPNOTSUPP;
544
545         err = fsverity_file_open(inode, filp);
546         if (err)
547                 return err;
548
549         filp->f_mode |= FMODE_NOWAIT;
550
551         return dquot_file_open(inode, filp);
552 }
553
554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
555 {
556         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
557         struct f2fs_node *raw_node;
558         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
559         __le32 *addr;
560         int base = 0;
561         bool compressed_cluster = false;
562         int cluster_index = 0, valid_blocks = 0;
563         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
564         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
565
566         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
567                 base = get_extra_isize(dn->inode);
568
569         raw_node = F2FS_NODE(dn->node_page);
570         addr = blkaddr_in_node(raw_node) + base + ofs;
571
572         /* Assumption: truncateion starts with cluster */
573         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
574                 block_t blkaddr = le32_to_cpu(*addr);
575
576                 if (f2fs_compressed_file(dn->inode) &&
577                                         !(cluster_index & (cluster_size - 1))) {
578                         if (compressed_cluster)
579                                 f2fs_i_compr_blocks_update(dn->inode,
580                                                         valid_blocks, false);
581                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
582                         valid_blocks = 0;
583                 }
584
585                 if (blkaddr == NULL_ADDR)
586                         continue;
587
588                 dn->data_blkaddr = NULL_ADDR;
589                 f2fs_set_data_blkaddr(dn);
590
591                 if (__is_valid_data_blkaddr(blkaddr)) {
592                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
593                                         DATA_GENERIC_ENHANCE))
594                                 continue;
595                         if (compressed_cluster)
596                                 valid_blocks++;
597                 }
598
599                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
600                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
601
602                 f2fs_invalidate_blocks(sbi, blkaddr);
603
604                 if (!released || blkaddr != COMPRESS_ADDR)
605                         nr_free++;
606         }
607
608         if (compressed_cluster)
609                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
610
611         if (nr_free) {
612                 pgoff_t fofs;
613                 /*
614                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
615                  * we will invalidate all blkaddr in the whole range.
616                  */
617                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
618                                                         dn->inode) + ofs;
619                 f2fs_update_extent_cache_range(dn, fofs, 0, len);
620                 dec_valid_block_count(sbi, dn->inode, nr_free);
621         }
622         dn->ofs_in_node = ofs;
623
624         f2fs_update_time(sbi, REQ_TIME);
625         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
626                                          dn->ofs_in_node, nr_free);
627 }
628
629 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
630 {
631         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
632 }
633
634 static int truncate_partial_data_page(struct inode *inode, u64 from,
635                                                                 bool cache_only)
636 {
637         loff_t offset = from & (PAGE_SIZE - 1);
638         pgoff_t index = from >> PAGE_SHIFT;
639         struct address_space *mapping = inode->i_mapping;
640         struct page *page;
641
642         if (!offset && !cache_only)
643                 return 0;
644
645         if (cache_only) {
646                 page = find_lock_page(mapping, index);
647                 if (page && PageUptodate(page))
648                         goto truncate_out;
649                 f2fs_put_page(page, 1);
650                 return 0;
651         }
652
653         page = f2fs_get_lock_data_page(inode, index, true);
654         if (IS_ERR(page))
655                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
656 truncate_out:
657         f2fs_wait_on_page_writeback(page, DATA, true, true);
658         zero_user(page, offset, PAGE_SIZE - offset);
659
660         /* An encrypted inode should have a key and truncate the last page. */
661         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
662         if (!cache_only)
663                 set_page_dirty(page);
664         f2fs_put_page(page, 1);
665         return 0;
666 }
667
668 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
669 {
670         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671         struct dnode_of_data dn;
672         pgoff_t free_from;
673         int count = 0, err = 0;
674         struct page *ipage;
675         bool truncate_page = false;
676
677         trace_f2fs_truncate_blocks_enter(inode, from);
678
679         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
680
681         if (free_from >= max_file_blocks(inode))
682                 goto free_partial;
683
684         if (lock)
685                 f2fs_lock_op(sbi);
686
687         ipage = f2fs_get_node_page(sbi, inode->i_ino);
688         if (IS_ERR(ipage)) {
689                 err = PTR_ERR(ipage);
690                 goto out;
691         }
692
693         if (f2fs_has_inline_data(inode)) {
694                 f2fs_truncate_inline_inode(inode, ipage, from);
695                 f2fs_put_page(ipage, 1);
696                 truncate_page = true;
697                 goto out;
698         }
699
700         set_new_dnode(&dn, inode, ipage, NULL, 0);
701         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
702         if (err) {
703                 if (err == -ENOENT)
704                         goto free_next;
705                 goto out;
706         }
707
708         count = ADDRS_PER_PAGE(dn.node_page, inode);
709
710         count -= dn.ofs_in_node;
711         f2fs_bug_on(sbi, count < 0);
712
713         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
714                 f2fs_truncate_data_blocks_range(&dn, count);
715                 free_from += count;
716         }
717
718         f2fs_put_dnode(&dn);
719 free_next:
720         err = f2fs_truncate_inode_blocks(inode, free_from);
721 out:
722         if (lock)
723                 f2fs_unlock_op(sbi);
724 free_partial:
725         /* lastly zero out the first data page */
726         if (!err)
727                 err = truncate_partial_data_page(inode, from, truncate_page);
728
729         trace_f2fs_truncate_blocks_exit(inode, err);
730         return err;
731 }
732
733 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
734 {
735         u64 free_from = from;
736         int err;
737
738 #ifdef CONFIG_F2FS_FS_COMPRESSION
739         /*
740          * for compressed file, only support cluster size
741          * aligned truncation.
742          */
743         if (f2fs_compressed_file(inode))
744                 free_from = round_up(from,
745                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
746 #endif
747
748         err = f2fs_do_truncate_blocks(inode, free_from, lock);
749         if (err)
750                 return err;
751
752 #ifdef CONFIG_F2FS_FS_COMPRESSION
753         /*
754          * For compressed file, after release compress blocks, don't allow write
755          * direct, but we should allow write direct after truncate to zero.
756          */
757         if (f2fs_compressed_file(inode) && !free_from
758                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
759                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
760
761         if (from != free_from) {
762                 err = f2fs_truncate_partial_cluster(inode, from, lock);
763                 if (err)
764                         return err;
765         }
766 #endif
767
768         return 0;
769 }
770
771 int f2fs_truncate(struct inode *inode)
772 {
773         int err;
774
775         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
776                 return -EIO;
777
778         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
779                                 S_ISLNK(inode->i_mode)))
780                 return 0;
781
782         trace_f2fs_truncate(inode);
783
784         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
785                 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
786                 return -EIO;
787         }
788
789         err = f2fs_dquot_initialize(inode);
790         if (err)
791                 return err;
792
793         /* we should check inline_data size */
794         if (!f2fs_may_inline_data(inode)) {
795                 err = f2fs_convert_inline_inode(inode);
796                 if (err)
797                         return err;
798         }
799
800         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
801         if (err)
802                 return err;
803
804         inode->i_mtime = inode->i_ctime = current_time(inode);
805         f2fs_mark_inode_dirty_sync(inode, false);
806         return 0;
807 }
808
809 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
810                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
811 {
812         struct inode *inode = d_inode(path->dentry);
813         struct f2fs_inode_info *fi = F2FS_I(inode);
814         struct f2fs_inode *ri;
815         unsigned int flags;
816
817         if (f2fs_has_extra_attr(inode) &&
818                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
819                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
820                 stat->result_mask |= STATX_BTIME;
821                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
822                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
823         }
824
825         flags = fi->i_flags;
826         if (flags & F2FS_COMPR_FL)
827                 stat->attributes |= STATX_ATTR_COMPRESSED;
828         if (flags & F2FS_APPEND_FL)
829                 stat->attributes |= STATX_ATTR_APPEND;
830         if (IS_ENCRYPTED(inode))
831                 stat->attributes |= STATX_ATTR_ENCRYPTED;
832         if (flags & F2FS_IMMUTABLE_FL)
833                 stat->attributes |= STATX_ATTR_IMMUTABLE;
834         if (flags & F2FS_NODUMP_FL)
835                 stat->attributes |= STATX_ATTR_NODUMP;
836         if (IS_VERITY(inode))
837                 stat->attributes |= STATX_ATTR_VERITY;
838
839         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
840                                   STATX_ATTR_APPEND |
841                                   STATX_ATTR_ENCRYPTED |
842                                   STATX_ATTR_IMMUTABLE |
843                                   STATX_ATTR_NODUMP |
844                                   STATX_ATTR_VERITY);
845
846         generic_fillattr(&init_user_ns, inode, stat);
847
848         /* we need to show initial sectors used for inline_data/dentries */
849         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
850                                         f2fs_has_inline_dentry(inode))
851                 stat->blocks += (stat->size + 511) >> 9;
852
853         return 0;
854 }
855
856 #ifdef CONFIG_F2FS_FS_POSIX_ACL
857 static void __setattr_copy(struct user_namespace *mnt_userns,
858                            struct inode *inode, const struct iattr *attr)
859 {
860         unsigned int ia_valid = attr->ia_valid;
861
862         if (ia_valid & ATTR_UID)
863                 inode->i_uid = attr->ia_uid;
864         if (ia_valid & ATTR_GID)
865                 inode->i_gid = attr->ia_gid;
866         if (ia_valid & ATTR_ATIME)
867                 inode->i_atime = attr->ia_atime;
868         if (ia_valid & ATTR_MTIME)
869                 inode->i_mtime = attr->ia_mtime;
870         if (ia_valid & ATTR_CTIME)
871                 inode->i_ctime = attr->ia_ctime;
872         if (ia_valid & ATTR_MODE) {
873                 umode_t mode = attr->ia_mode;
874                 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
875
876                 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
877                         mode &= ~S_ISGID;
878                 set_acl_inode(inode, mode);
879         }
880 }
881 #else
882 #define __setattr_copy setattr_copy
883 #endif
884
885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
886                  struct iattr *attr)
887 {
888         struct inode *inode = d_inode(dentry);
889         int err;
890
891         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
892                 return -EIO;
893
894         if (unlikely(IS_IMMUTABLE(inode)))
895                 return -EPERM;
896
897         if (unlikely(IS_APPEND(inode) &&
898                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
899                                   ATTR_GID | ATTR_TIMES_SET))))
900                 return -EPERM;
901
902         if ((attr->ia_valid & ATTR_SIZE) &&
903                 !f2fs_is_compress_backend_ready(inode))
904                 return -EOPNOTSUPP;
905
906         err = setattr_prepare(&init_user_ns, dentry, attr);
907         if (err)
908                 return err;
909
910         err = fscrypt_prepare_setattr(dentry, attr);
911         if (err)
912                 return err;
913
914         err = fsverity_prepare_setattr(dentry, attr);
915         if (err)
916                 return err;
917
918         if (is_quota_modification(inode, attr)) {
919                 err = f2fs_dquot_initialize(inode);
920                 if (err)
921                         return err;
922         }
923         if ((attr->ia_valid & ATTR_UID &&
924                 !uid_eq(attr->ia_uid, inode->i_uid)) ||
925                 (attr->ia_valid & ATTR_GID &&
926                 !gid_eq(attr->ia_gid, inode->i_gid))) {
927                 f2fs_lock_op(F2FS_I_SB(inode));
928                 err = dquot_transfer(inode, attr);
929                 if (err) {
930                         set_sbi_flag(F2FS_I_SB(inode),
931                                         SBI_QUOTA_NEED_REPAIR);
932                         f2fs_unlock_op(F2FS_I_SB(inode));
933                         return err;
934                 }
935                 /*
936                  * update uid/gid under lock_op(), so that dquot and inode can
937                  * be updated atomically.
938                  */
939                 if (attr->ia_valid & ATTR_UID)
940                         inode->i_uid = attr->ia_uid;
941                 if (attr->ia_valid & ATTR_GID)
942                         inode->i_gid = attr->ia_gid;
943                 f2fs_mark_inode_dirty_sync(inode, true);
944                 f2fs_unlock_op(F2FS_I_SB(inode));
945         }
946
947         if (attr->ia_valid & ATTR_SIZE) {
948                 loff_t old_size = i_size_read(inode);
949
950                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
951                         /*
952                          * should convert inline inode before i_size_write to
953                          * keep smaller than inline_data size with inline flag.
954                          */
955                         err = f2fs_convert_inline_inode(inode);
956                         if (err)
957                                 return err;
958                 }
959
960                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961                 filemap_invalidate_lock(inode->i_mapping);
962
963                 truncate_setsize(inode, attr->ia_size);
964
965                 if (attr->ia_size <= old_size)
966                         err = f2fs_truncate(inode);
967                 /*
968                  * do not trim all blocks after i_size if target size is
969                  * larger than i_size.
970                  */
971                 filemap_invalidate_unlock(inode->i_mapping);
972                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
973                 if (err)
974                         return err;
975
976                 spin_lock(&F2FS_I(inode)->i_size_lock);
977                 inode->i_mtime = inode->i_ctime = current_time(inode);
978                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
979                 spin_unlock(&F2FS_I(inode)->i_size_lock);
980         }
981
982         __setattr_copy(&init_user_ns, inode, attr);
983
984         if (attr->ia_valid & ATTR_MODE) {
985                 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
986
987                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
988                         if (!err)
989                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
990                         clear_inode_flag(inode, FI_ACL_MODE);
991                 }
992         }
993
994         /* file size may changed here */
995         f2fs_mark_inode_dirty_sync(inode, true);
996
997         /* inode change will produce dirty node pages flushed by checkpoint */
998         f2fs_balance_fs(F2FS_I_SB(inode), true);
999
1000         return err;
1001 }
1002
1003 const struct inode_operations f2fs_file_inode_operations = {
1004         .getattr        = f2fs_getattr,
1005         .setattr        = f2fs_setattr,
1006         .get_acl        = f2fs_get_acl,
1007         .set_acl        = f2fs_set_acl,
1008         .listxattr      = f2fs_listxattr,
1009         .fiemap         = f2fs_fiemap,
1010         .fileattr_get   = f2fs_fileattr_get,
1011         .fileattr_set   = f2fs_fileattr_set,
1012 };
1013
1014 static int fill_zero(struct inode *inode, pgoff_t index,
1015                                         loff_t start, loff_t len)
1016 {
1017         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018         struct page *page;
1019
1020         if (!len)
1021                 return 0;
1022
1023         f2fs_balance_fs(sbi, true);
1024
1025         f2fs_lock_op(sbi);
1026         page = f2fs_get_new_data_page(inode, NULL, index, false);
1027         f2fs_unlock_op(sbi);
1028
1029         if (IS_ERR(page))
1030                 return PTR_ERR(page);
1031
1032         f2fs_wait_on_page_writeback(page, DATA, true, true);
1033         zero_user(page, start, len);
1034         set_page_dirty(page);
1035         f2fs_put_page(page, 1);
1036         return 0;
1037 }
1038
1039 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1040 {
1041         int err;
1042
1043         while (pg_start < pg_end) {
1044                 struct dnode_of_data dn;
1045                 pgoff_t end_offset, count;
1046
1047                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1048                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1049                 if (err) {
1050                         if (err == -ENOENT) {
1051                                 pg_start = f2fs_get_next_page_offset(&dn,
1052                                                                 pg_start);
1053                                 continue;
1054                         }
1055                         return err;
1056                 }
1057
1058                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1059                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1060
1061                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1062
1063                 f2fs_truncate_data_blocks_range(&dn, count);
1064                 f2fs_put_dnode(&dn);
1065
1066                 pg_start += count;
1067         }
1068         return 0;
1069 }
1070
1071 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1072 {
1073         pgoff_t pg_start, pg_end;
1074         loff_t off_start, off_end;
1075         int ret;
1076
1077         ret = f2fs_convert_inline_inode(inode);
1078         if (ret)
1079                 return ret;
1080
1081         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1082         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1083
1084         off_start = offset & (PAGE_SIZE - 1);
1085         off_end = (offset + len) & (PAGE_SIZE - 1);
1086
1087         if (pg_start == pg_end) {
1088                 ret = fill_zero(inode, pg_start, off_start,
1089                                                 off_end - off_start);
1090                 if (ret)
1091                         return ret;
1092         } else {
1093                 if (off_start) {
1094                         ret = fill_zero(inode, pg_start++, off_start,
1095                                                 PAGE_SIZE - off_start);
1096                         if (ret)
1097                                 return ret;
1098                 }
1099                 if (off_end) {
1100                         ret = fill_zero(inode, pg_end, 0, off_end);
1101                         if (ret)
1102                                 return ret;
1103                 }
1104
1105                 if (pg_start < pg_end) {
1106                         loff_t blk_start, blk_end;
1107                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1108
1109                         f2fs_balance_fs(sbi, true);
1110
1111                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1112                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1113
1114                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1115                         filemap_invalidate_lock(inode->i_mapping);
1116
1117                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1118
1119                         f2fs_lock_op(sbi);
1120                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1121                         f2fs_unlock_op(sbi);
1122
1123                         filemap_invalidate_unlock(inode->i_mapping);
1124                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1125                 }
1126         }
1127
1128         return ret;
1129 }
1130
1131 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1132                                 int *do_replace, pgoff_t off, pgoff_t len)
1133 {
1134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135         struct dnode_of_data dn;
1136         int ret, done, i;
1137
1138 next_dnode:
1139         set_new_dnode(&dn, inode, NULL, NULL, 0);
1140         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1141         if (ret && ret != -ENOENT) {
1142                 return ret;
1143         } else if (ret == -ENOENT) {
1144                 if (dn.max_level == 0)
1145                         return -ENOENT;
1146                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1147                                                 dn.ofs_in_node, len);
1148                 blkaddr += done;
1149                 do_replace += done;
1150                 goto next;
1151         }
1152
1153         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1154                                                         dn.ofs_in_node, len);
1155         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1156                 *blkaddr = f2fs_data_blkaddr(&dn);
1157
1158                 if (__is_valid_data_blkaddr(*blkaddr) &&
1159                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1160                                         DATA_GENERIC_ENHANCE)) {
1161                         f2fs_put_dnode(&dn);
1162                         return -EFSCORRUPTED;
1163                 }
1164
1165                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1166
1167                         if (f2fs_lfs_mode(sbi)) {
1168                                 f2fs_put_dnode(&dn);
1169                                 return -EOPNOTSUPP;
1170                         }
1171
1172                         /* do not invalidate this block address */
1173                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1174                         *do_replace = 1;
1175                 }
1176         }
1177         f2fs_put_dnode(&dn);
1178 next:
1179         len -= done;
1180         off += done;
1181         if (len)
1182                 goto next_dnode;
1183         return 0;
1184 }
1185
1186 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1187                                 int *do_replace, pgoff_t off, int len)
1188 {
1189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190         struct dnode_of_data dn;
1191         int ret, i;
1192
1193         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1194                 if (*do_replace == 0)
1195                         continue;
1196
1197                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1198                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1199                 if (ret) {
1200                         dec_valid_block_count(sbi, inode, 1);
1201                         f2fs_invalidate_blocks(sbi, *blkaddr);
1202                 } else {
1203                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1204                 }
1205                 f2fs_put_dnode(&dn);
1206         }
1207         return 0;
1208 }
1209
1210 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1211                         block_t *blkaddr, int *do_replace,
1212                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1213 {
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1215         pgoff_t i = 0;
1216         int ret;
1217
1218         while (i < len) {
1219                 if (blkaddr[i] == NULL_ADDR && !full) {
1220                         i++;
1221                         continue;
1222                 }
1223
1224                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1225                         struct dnode_of_data dn;
1226                         struct node_info ni;
1227                         size_t new_size;
1228                         pgoff_t ilen;
1229
1230                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1231                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1232                         if (ret)
1233                                 return ret;
1234
1235                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1236                         if (ret) {
1237                                 f2fs_put_dnode(&dn);
1238                                 return ret;
1239                         }
1240
1241                         ilen = min((pgoff_t)
1242                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1243                                                 dn.ofs_in_node, len - i);
1244                         do {
1245                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1246                                 f2fs_truncate_data_blocks_range(&dn, 1);
1247
1248                                 if (do_replace[i]) {
1249                                         f2fs_i_blocks_write(src_inode,
1250                                                         1, false, false);
1251                                         f2fs_i_blocks_write(dst_inode,
1252                                                         1, true, false);
1253                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1254                                         blkaddr[i], ni.version, true, false);
1255
1256                                         do_replace[i] = 0;
1257                                 }
1258                                 dn.ofs_in_node++;
1259                                 i++;
1260                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1261                                 if (dst_inode->i_size < new_size)
1262                                         f2fs_i_size_write(dst_inode, new_size);
1263                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1264
1265                         f2fs_put_dnode(&dn);
1266                 } else {
1267                         struct page *psrc, *pdst;
1268
1269                         psrc = f2fs_get_lock_data_page(src_inode,
1270                                                         src + i, true);
1271                         if (IS_ERR(psrc))
1272                                 return PTR_ERR(psrc);
1273                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1274                                                                 true);
1275                         if (IS_ERR(pdst)) {
1276                                 f2fs_put_page(psrc, 1);
1277                                 return PTR_ERR(pdst);
1278                         }
1279                         f2fs_copy_page(psrc, pdst);
1280                         set_page_dirty(pdst);
1281                         f2fs_put_page(pdst, 1);
1282                         f2fs_put_page(psrc, 1);
1283
1284                         ret = f2fs_truncate_hole(src_inode,
1285                                                 src + i, src + i + 1);
1286                         if (ret)
1287                                 return ret;
1288                         i++;
1289                 }
1290         }
1291         return 0;
1292 }
1293
1294 static int __exchange_data_block(struct inode *src_inode,
1295                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1296                         pgoff_t len, bool full)
1297 {
1298         block_t *src_blkaddr;
1299         int *do_replace;
1300         pgoff_t olen;
1301         int ret;
1302
1303         while (len) {
1304                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1305
1306                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1307                                         array_size(olen, sizeof(block_t)),
1308                                         GFP_NOFS);
1309                 if (!src_blkaddr)
1310                         return -ENOMEM;
1311
1312                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1313                                         array_size(olen, sizeof(int)),
1314                                         GFP_NOFS);
1315                 if (!do_replace) {
1316                         kvfree(src_blkaddr);
1317                         return -ENOMEM;
1318                 }
1319
1320                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1321                                         do_replace, src, olen);
1322                 if (ret)
1323                         goto roll_back;
1324
1325                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1326                                         do_replace, src, dst, olen, full);
1327                 if (ret)
1328                         goto roll_back;
1329
1330                 src += olen;
1331                 dst += olen;
1332                 len -= olen;
1333
1334                 kvfree(src_blkaddr);
1335                 kvfree(do_replace);
1336         }
1337         return 0;
1338
1339 roll_back:
1340         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1341         kvfree(src_blkaddr);
1342         kvfree(do_replace);
1343         return ret;
1344 }
1345
1346 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1347 {
1348         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1349         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1350         pgoff_t start = offset >> PAGE_SHIFT;
1351         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1352         int ret;
1353
1354         f2fs_balance_fs(sbi, true);
1355
1356         /* avoid gc operation during block exchange */
1357         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1358         filemap_invalidate_lock(inode->i_mapping);
1359
1360         f2fs_lock_op(sbi);
1361         f2fs_drop_extent_tree(inode);
1362         truncate_pagecache(inode, offset);
1363         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1364         f2fs_unlock_op(sbi);
1365
1366         filemap_invalidate_unlock(inode->i_mapping);
1367         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1368         return ret;
1369 }
1370
1371 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1372 {
1373         loff_t new_size;
1374         int ret;
1375
1376         if (offset + len >= i_size_read(inode))
1377                 return -EINVAL;
1378
1379         /* collapse range should be aligned to block size of f2fs. */
1380         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1381                 return -EINVAL;
1382
1383         ret = f2fs_convert_inline_inode(inode);
1384         if (ret)
1385                 return ret;
1386
1387         /* write out all dirty pages from offset */
1388         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1389         if (ret)
1390                 return ret;
1391
1392         ret = f2fs_do_collapse(inode, offset, len);
1393         if (ret)
1394                 return ret;
1395
1396         /* write out all moved pages, if possible */
1397         filemap_invalidate_lock(inode->i_mapping);
1398         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1399         truncate_pagecache(inode, offset);
1400
1401         new_size = i_size_read(inode) - len;
1402         ret = f2fs_truncate_blocks(inode, new_size, true);
1403         filemap_invalidate_unlock(inode->i_mapping);
1404         if (!ret)
1405                 f2fs_i_size_write(inode, new_size);
1406         return ret;
1407 }
1408
1409 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1410                                                                 pgoff_t end)
1411 {
1412         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1413         pgoff_t index = start;
1414         unsigned int ofs_in_node = dn->ofs_in_node;
1415         blkcnt_t count = 0;
1416         int ret;
1417
1418         for (; index < end; index++, dn->ofs_in_node++) {
1419                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1420                         count++;
1421         }
1422
1423         dn->ofs_in_node = ofs_in_node;
1424         ret = f2fs_reserve_new_blocks(dn, count);
1425         if (ret)
1426                 return ret;
1427
1428         dn->ofs_in_node = ofs_in_node;
1429         for (index = start; index < end; index++, dn->ofs_in_node++) {
1430                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1431                 /*
1432                  * f2fs_reserve_new_blocks will not guarantee entire block
1433                  * allocation.
1434                  */
1435                 if (dn->data_blkaddr == NULL_ADDR) {
1436                         ret = -ENOSPC;
1437                         break;
1438                 }
1439
1440                 if (dn->data_blkaddr == NEW_ADDR)
1441                         continue;
1442
1443                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1444                                         DATA_GENERIC_ENHANCE)) {
1445                         ret = -EFSCORRUPTED;
1446                         break;
1447                 }
1448
1449                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1450                 dn->data_blkaddr = NEW_ADDR;
1451                 f2fs_set_data_blkaddr(dn);
1452         }
1453
1454         f2fs_update_extent_cache_range(dn, start, 0, index - start);
1455
1456         return ret;
1457 }
1458
1459 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1460                                                                 int mode)
1461 {
1462         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1463         struct address_space *mapping = inode->i_mapping;
1464         pgoff_t index, pg_start, pg_end;
1465         loff_t new_size = i_size_read(inode);
1466         loff_t off_start, off_end;
1467         int ret = 0;
1468
1469         ret = inode_newsize_ok(inode, (len + offset));
1470         if (ret)
1471                 return ret;
1472
1473         ret = f2fs_convert_inline_inode(inode);
1474         if (ret)
1475                 return ret;
1476
1477         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1478         if (ret)
1479                 return ret;
1480
1481         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1482         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1483
1484         off_start = offset & (PAGE_SIZE - 1);
1485         off_end = (offset + len) & (PAGE_SIZE - 1);
1486
1487         if (pg_start == pg_end) {
1488                 ret = fill_zero(inode, pg_start, off_start,
1489                                                 off_end - off_start);
1490                 if (ret)
1491                         return ret;
1492
1493                 new_size = max_t(loff_t, new_size, offset + len);
1494         } else {
1495                 if (off_start) {
1496                         ret = fill_zero(inode, pg_start++, off_start,
1497                                                 PAGE_SIZE - off_start);
1498                         if (ret)
1499                                 return ret;
1500
1501                         new_size = max_t(loff_t, new_size,
1502                                         (loff_t)pg_start << PAGE_SHIFT);
1503                 }
1504
1505                 for (index = pg_start; index < pg_end;) {
1506                         struct dnode_of_data dn;
1507                         unsigned int end_offset;
1508                         pgoff_t end;
1509
1510                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1511                         filemap_invalidate_lock(mapping);
1512
1513                         truncate_pagecache_range(inode,
1514                                 (loff_t)index << PAGE_SHIFT,
1515                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1516
1517                         f2fs_lock_op(sbi);
1518
1519                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1520                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1521                         if (ret) {
1522                                 f2fs_unlock_op(sbi);
1523                                 filemap_invalidate_unlock(mapping);
1524                                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1525                                 goto out;
1526                         }
1527
1528                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1529                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1530
1531                         ret = f2fs_do_zero_range(&dn, index, end);
1532                         f2fs_put_dnode(&dn);
1533
1534                         f2fs_unlock_op(sbi);
1535                         filemap_invalidate_unlock(mapping);
1536                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1537
1538                         f2fs_balance_fs(sbi, dn.node_changed);
1539
1540                         if (ret)
1541                                 goto out;
1542
1543                         index = end;
1544                         new_size = max_t(loff_t, new_size,
1545                                         (loff_t)index << PAGE_SHIFT);
1546                 }
1547
1548                 if (off_end) {
1549                         ret = fill_zero(inode, pg_end, 0, off_end);
1550                         if (ret)
1551                                 goto out;
1552
1553                         new_size = max_t(loff_t, new_size, offset + len);
1554                 }
1555         }
1556
1557 out:
1558         if (new_size > i_size_read(inode)) {
1559                 if (mode & FALLOC_FL_KEEP_SIZE)
1560                         file_set_keep_isize(inode);
1561                 else
1562                         f2fs_i_size_write(inode, new_size);
1563         }
1564         return ret;
1565 }
1566
1567 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1568 {
1569         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1570         struct address_space *mapping = inode->i_mapping;
1571         pgoff_t nr, pg_start, pg_end, delta, idx;
1572         loff_t new_size;
1573         int ret = 0;
1574
1575         new_size = i_size_read(inode) + len;
1576         ret = inode_newsize_ok(inode, new_size);
1577         if (ret)
1578                 return ret;
1579
1580         if (offset >= i_size_read(inode))
1581                 return -EINVAL;
1582
1583         /* insert range should be aligned to block size of f2fs. */
1584         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1585                 return -EINVAL;
1586
1587         ret = f2fs_convert_inline_inode(inode);
1588         if (ret)
1589                 return ret;
1590
1591         f2fs_balance_fs(sbi, true);
1592
1593         filemap_invalidate_lock(mapping);
1594         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1595         filemap_invalidate_unlock(mapping);
1596         if (ret)
1597                 return ret;
1598
1599         /* write out all dirty pages from offset */
1600         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1601         if (ret)
1602                 return ret;
1603
1604         pg_start = offset >> PAGE_SHIFT;
1605         pg_end = (offset + len) >> PAGE_SHIFT;
1606         delta = pg_end - pg_start;
1607         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1608
1609         /* avoid gc operation during block exchange */
1610         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1611         filemap_invalidate_lock(mapping);
1612         truncate_pagecache(inode, offset);
1613
1614         while (!ret && idx > pg_start) {
1615                 nr = idx - pg_start;
1616                 if (nr > delta)
1617                         nr = delta;
1618                 idx -= nr;
1619
1620                 f2fs_lock_op(sbi);
1621                 f2fs_drop_extent_tree(inode);
1622
1623                 ret = __exchange_data_block(inode, inode, idx,
1624                                         idx + delta, nr, false);
1625                 f2fs_unlock_op(sbi);
1626         }
1627         filemap_invalidate_unlock(mapping);
1628         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1629
1630         /* write out all moved pages, if possible */
1631         filemap_invalidate_lock(mapping);
1632         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1633         truncate_pagecache(inode, offset);
1634         filemap_invalidate_unlock(mapping);
1635
1636         if (!ret)
1637                 f2fs_i_size_write(inode, new_size);
1638         return ret;
1639 }
1640
1641 static int expand_inode_data(struct inode *inode, loff_t offset,
1642                                         loff_t len, int mode)
1643 {
1644         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1645         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1646                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1647                         .m_may_create = true };
1648         pgoff_t pg_start, pg_end;
1649         loff_t new_size = i_size_read(inode);
1650         loff_t off_end;
1651         block_t expanded = 0;
1652         int err;
1653
1654         err = inode_newsize_ok(inode, (len + offset));
1655         if (err)
1656                 return err;
1657
1658         err = f2fs_convert_inline_inode(inode);
1659         if (err)
1660                 return err;
1661
1662         f2fs_balance_fs(sbi, true);
1663
1664         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1665         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1666         off_end = (offset + len) & (PAGE_SIZE - 1);
1667
1668         map.m_lblk = pg_start;
1669         map.m_len = pg_end - pg_start;
1670         if (off_end)
1671                 map.m_len++;
1672
1673         if (!map.m_len)
1674                 return 0;
1675
1676         if (f2fs_is_pinned_file(inode)) {
1677                 block_t sec_blks = BLKS_PER_SEC(sbi);
1678                 block_t sec_len = roundup(map.m_len, sec_blks);
1679
1680                 map.m_len = sec_blks;
1681 next_alloc:
1682                 if (has_not_enough_free_secs(sbi, 0,
1683                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1684                         down_write(&sbi->gc_lock);
1685                         err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1686                         if (err && err != -ENODATA && err != -EAGAIN)
1687                                 goto out_err;
1688                 }
1689
1690                 down_write(&sbi->pin_sem);
1691
1692                 f2fs_lock_op(sbi);
1693                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1694                 f2fs_unlock_op(sbi);
1695
1696                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1697                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1698
1699                 up_write(&sbi->pin_sem);
1700
1701                 expanded += map.m_len;
1702                 sec_len -= map.m_len;
1703                 map.m_lblk += map.m_len;
1704                 if (!err && sec_len)
1705                         goto next_alloc;
1706
1707                 map.m_len = expanded;
1708         } else {
1709                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1710                 expanded = map.m_len;
1711         }
1712 out_err:
1713         if (err) {
1714                 pgoff_t last_off;
1715
1716                 if (!expanded)
1717                         return err;
1718
1719                 last_off = pg_start + expanded - 1;
1720
1721                 /* update new size to the failed position */
1722                 new_size = (last_off == pg_end) ? offset + len :
1723                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1724         } else {
1725                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1726         }
1727
1728         if (new_size > i_size_read(inode)) {
1729                 if (mode & FALLOC_FL_KEEP_SIZE)
1730                         file_set_keep_isize(inode);
1731                 else
1732                         f2fs_i_size_write(inode, new_size);
1733         }
1734
1735         return err;
1736 }
1737
1738 static long f2fs_fallocate(struct file *file, int mode,
1739                                 loff_t offset, loff_t len)
1740 {
1741         struct inode *inode = file_inode(file);
1742         long ret = 0;
1743
1744         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1745                 return -EIO;
1746         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1747                 return -ENOSPC;
1748         if (!f2fs_is_compress_backend_ready(inode))
1749                 return -EOPNOTSUPP;
1750
1751         /* f2fs only support ->fallocate for regular file */
1752         if (!S_ISREG(inode->i_mode))
1753                 return -EINVAL;
1754
1755         if (IS_ENCRYPTED(inode) &&
1756                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1757                 return -EOPNOTSUPP;
1758
1759         if (f2fs_compressed_file(inode) &&
1760                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1761                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1762                 return -EOPNOTSUPP;
1763
1764         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1765                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1766                         FALLOC_FL_INSERT_RANGE))
1767                 return -EOPNOTSUPP;
1768
1769         inode_lock(inode);
1770
1771         ret = file_modified(file);
1772         if (ret)
1773                 goto out;
1774
1775         if (mode & FALLOC_FL_PUNCH_HOLE) {
1776                 if (offset >= inode->i_size)
1777                         goto out;
1778
1779                 ret = punch_hole(inode, offset, len);
1780         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1781                 ret = f2fs_collapse_range(inode, offset, len);
1782         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1783                 ret = f2fs_zero_range(inode, offset, len, mode);
1784         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1785                 ret = f2fs_insert_range(inode, offset, len);
1786         } else {
1787                 ret = expand_inode_data(inode, offset, len, mode);
1788         }
1789
1790         if (!ret) {
1791                 inode->i_mtime = inode->i_ctime = current_time(inode);
1792                 f2fs_mark_inode_dirty_sync(inode, false);
1793                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1794         }
1795
1796 out:
1797         inode_unlock(inode);
1798
1799         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1800         return ret;
1801 }
1802
1803 static int f2fs_release_file(struct inode *inode, struct file *filp)
1804 {
1805         /*
1806          * f2fs_relase_file is called at every close calls. So we should
1807          * not drop any inmemory pages by close called by other process.
1808          */
1809         if (!(filp->f_mode & FMODE_WRITE) ||
1810                         atomic_read(&inode->i_writecount) != 1)
1811                 return 0;
1812
1813         /* some remained atomic pages should discarded */
1814         if (f2fs_is_atomic_file(inode))
1815                 f2fs_drop_inmem_pages(inode);
1816         if (f2fs_is_volatile_file(inode)) {
1817                 set_inode_flag(inode, FI_DROP_CACHE);
1818                 filemap_fdatawrite(inode->i_mapping);
1819                 clear_inode_flag(inode, FI_DROP_CACHE);
1820                 clear_inode_flag(inode, FI_VOLATILE_FILE);
1821                 stat_dec_volatile_write(inode);
1822         }
1823         return 0;
1824 }
1825
1826 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1827 {
1828         struct inode *inode = file_inode(file);
1829
1830         /*
1831          * If the process doing a transaction is crashed, we should do
1832          * roll-back. Otherwise, other reader/write can see corrupted database
1833          * until all the writers close its file. Since this should be done
1834          * before dropping file lock, it needs to do in ->flush.
1835          */
1836         if (f2fs_is_atomic_file(inode) &&
1837                         F2FS_I(inode)->inmem_task == current)
1838                 f2fs_drop_inmem_pages(inode);
1839         return 0;
1840 }
1841
1842 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1843 {
1844         struct f2fs_inode_info *fi = F2FS_I(inode);
1845         u32 masked_flags = fi->i_flags & mask;
1846
1847         /* mask can be shrunk by flags_valid selector */
1848         iflags &= mask;
1849
1850         /* Is it quota file? Do not allow user to mess with it */
1851         if (IS_NOQUOTA(inode))
1852                 return -EPERM;
1853
1854         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1855                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1856                         return -EOPNOTSUPP;
1857                 if (!f2fs_empty_dir(inode))
1858                         return -ENOTEMPTY;
1859         }
1860
1861         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1862                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1863                         return -EOPNOTSUPP;
1864                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1865                         return -EINVAL;
1866         }
1867
1868         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1869                 if (masked_flags & F2FS_COMPR_FL) {
1870                         if (!f2fs_disable_compressed_file(inode))
1871                                 return -EINVAL;
1872                 } else {
1873                         if (!f2fs_may_compress(inode))
1874                                 return -EINVAL;
1875                         if (S_ISREG(inode->i_mode) && inode->i_size)
1876                                 return -EINVAL;
1877
1878                         set_compress_context(inode);
1879                 }
1880         }
1881
1882         fi->i_flags = iflags | (fi->i_flags & ~mask);
1883         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1884                                         (fi->i_flags & F2FS_NOCOMP_FL));
1885
1886         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1887                 set_inode_flag(inode, FI_PROJ_INHERIT);
1888         else
1889                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1890
1891         inode->i_ctime = current_time(inode);
1892         f2fs_set_inode_flags(inode);
1893         f2fs_mark_inode_dirty_sync(inode, true);
1894         return 0;
1895 }
1896
1897 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1898
1899 /*
1900  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1901  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1902  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1903  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1904  *
1905  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1906  * FS_IOC_FSSETXATTR is done by the VFS.
1907  */
1908
1909 static const struct {
1910         u32 iflag;
1911         u32 fsflag;
1912 } f2fs_fsflags_map[] = {
1913         { F2FS_COMPR_FL,        FS_COMPR_FL },
1914         { F2FS_SYNC_FL,         FS_SYNC_FL },
1915         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1916         { F2FS_APPEND_FL,       FS_APPEND_FL },
1917         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1918         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1919         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1920         { F2FS_INDEX_FL,        FS_INDEX_FL },
1921         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1922         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1923         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1924 };
1925
1926 #define F2FS_GETTABLE_FS_FL (           \
1927                 FS_COMPR_FL |           \
1928                 FS_SYNC_FL |            \
1929                 FS_IMMUTABLE_FL |       \
1930                 FS_APPEND_FL |          \
1931                 FS_NODUMP_FL |          \
1932                 FS_NOATIME_FL |         \
1933                 FS_NOCOMP_FL |          \
1934                 FS_INDEX_FL |           \
1935                 FS_DIRSYNC_FL |         \
1936                 FS_PROJINHERIT_FL |     \
1937                 FS_ENCRYPT_FL |         \
1938                 FS_INLINE_DATA_FL |     \
1939                 FS_NOCOW_FL |           \
1940                 FS_VERITY_FL |          \
1941                 FS_CASEFOLD_FL)
1942
1943 #define F2FS_SETTABLE_FS_FL (           \
1944                 FS_COMPR_FL |           \
1945                 FS_SYNC_FL |            \
1946                 FS_IMMUTABLE_FL |       \
1947                 FS_APPEND_FL |          \
1948                 FS_NODUMP_FL |          \
1949                 FS_NOATIME_FL |         \
1950                 FS_NOCOMP_FL |          \
1951                 FS_DIRSYNC_FL |         \
1952                 FS_PROJINHERIT_FL |     \
1953                 FS_CASEFOLD_FL)
1954
1955 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1956 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1957 {
1958         u32 fsflags = 0;
1959         int i;
1960
1961         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1962                 if (iflags & f2fs_fsflags_map[i].iflag)
1963                         fsflags |= f2fs_fsflags_map[i].fsflag;
1964
1965         return fsflags;
1966 }
1967
1968 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1969 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1970 {
1971         u32 iflags = 0;
1972         int i;
1973
1974         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1975                 if (fsflags & f2fs_fsflags_map[i].fsflag)
1976                         iflags |= f2fs_fsflags_map[i].iflag;
1977
1978         return iflags;
1979 }
1980
1981 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1982 {
1983         struct inode *inode = file_inode(filp);
1984
1985         return put_user(inode->i_generation, (int __user *)arg);
1986 }
1987
1988 static int f2fs_ioc_start_atomic_write(struct file *filp)
1989 {
1990         struct inode *inode = file_inode(filp);
1991         struct f2fs_inode_info *fi = F2FS_I(inode);
1992         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1993         int ret;
1994
1995         if (!inode_owner_or_capable(&init_user_ns, inode))
1996                 return -EACCES;
1997
1998         if (!S_ISREG(inode->i_mode))
1999                 return -EINVAL;
2000
2001         if (filp->f_flags & O_DIRECT)
2002                 return -EINVAL;
2003
2004         ret = mnt_want_write_file(filp);
2005         if (ret)
2006                 return ret;
2007
2008         inode_lock(inode);
2009
2010         if (!f2fs_disable_compressed_file(inode)) {
2011                 ret = -EINVAL;
2012                 goto out;
2013         }
2014
2015         if (f2fs_is_atomic_file(inode)) {
2016                 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2017                         ret = -EINVAL;
2018                 goto out;
2019         }
2020
2021         ret = f2fs_convert_inline_inode(inode);
2022         if (ret)
2023                 goto out;
2024
2025         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2026
2027         /*
2028          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2029          * f2fs_is_atomic_file.
2030          */
2031         if (get_dirty_pages(inode))
2032                 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2033                           inode->i_ino, get_dirty_pages(inode));
2034         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2035         if (ret) {
2036                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2037                 goto out;
2038         }
2039
2040         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2041         if (list_empty(&fi->inmem_ilist))
2042                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2043         sbi->atomic_files++;
2044         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2045
2046         /* add inode in inmem_list first and set atomic_file */
2047         set_inode_flag(inode, FI_ATOMIC_FILE);
2048         clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2049         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2050
2051         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2052         F2FS_I(inode)->inmem_task = current;
2053         stat_update_max_atomic_write(inode);
2054 out:
2055         inode_unlock(inode);
2056         mnt_drop_write_file(filp);
2057         return ret;
2058 }
2059
2060 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2061 {
2062         struct inode *inode = file_inode(filp);
2063         int ret;
2064
2065         if (!inode_owner_or_capable(&init_user_ns, inode))
2066                 return -EACCES;
2067
2068         ret = mnt_want_write_file(filp);
2069         if (ret)
2070                 return ret;
2071
2072         f2fs_balance_fs(F2FS_I_SB(inode), true);
2073
2074         inode_lock(inode);
2075
2076         if (f2fs_is_volatile_file(inode)) {
2077                 ret = -EINVAL;
2078                 goto err_out;
2079         }
2080
2081         if (f2fs_is_atomic_file(inode)) {
2082                 ret = f2fs_commit_inmem_pages(inode);
2083                 if (ret)
2084                         goto err_out;
2085
2086                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2087                 if (!ret)
2088                         f2fs_drop_inmem_pages(inode);
2089         } else {
2090                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2091         }
2092 err_out:
2093         if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2094                 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2095                 ret = -EINVAL;
2096         }
2097         inode_unlock(inode);
2098         mnt_drop_write_file(filp);
2099         return ret;
2100 }
2101
2102 static int f2fs_ioc_start_volatile_write(struct file *filp)
2103 {
2104         struct inode *inode = file_inode(filp);
2105         int ret;
2106
2107         if (!inode_owner_or_capable(&init_user_ns, inode))
2108                 return -EACCES;
2109
2110         if (!S_ISREG(inode->i_mode))
2111                 return -EINVAL;
2112
2113         ret = mnt_want_write_file(filp);
2114         if (ret)
2115                 return ret;
2116
2117         inode_lock(inode);
2118
2119         if (f2fs_is_volatile_file(inode))
2120                 goto out;
2121
2122         ret = f2fs_convert_inline_inode(inode);
2123         if (ret)
2124                 goto out;
2125
2126         stat_inc_volatile_write(inode);
2127         stat_update_max_volatile_write(inode);
2128
2129         set_inode_flag(inode, FI_VOLATILE_FILE);
2130         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2131 out:
2132         inode_unlock(inode);
2133         mnt_drop_write_file(filp);
2134         return ret;
2135 }
2136
2137 static int f2fs_ioc_release_volatile_write(struct file *filp)
2138 {
2139         struct inode *inode = file_inode(filp);
2140         int ret;
2141
2142         if (!inode_owner_or_capable(&init_user_ns, inode))
2143                 return -EACCES;
2144
2145         ret = mnt_want_write_file(filp);
2146         if (ret)
2147                 return ret;
2148
2149         inode_lock(inode);
2150
2151         if (!f2fs_is_volatile_file(inode))
2152                 goto out;
2153
2154         if (!f2fs_is_first_block_written(inode)) {
2155                 ret = truncate_partial_data_page(inode, 0, true);
2156                 goto out;
2157         }
2158
2159         ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2160 out:
2161         inode_unlock(inode);
2162         mnt_drop_write_file(filp);
2163         return ret;
2164 }
2165
2166 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2167 {
2168         struct inode *inode = file_inode(filp);
2169         int ret;
2170
2171         if (!inode_owner_or_capable(&init_user_ns, inode))
2172                 return -EACCES;
2173
2174         ret = mnt_want_write_file(filp);
2175         if (ret)
2176                 return ret;
2177
2178         inode_lock(inode);
2179
2180         if (f2fs_is_atomic_file(inode))
2181                 f2fs_drop_inmem_pages(inode);
2182         if (f2fs_is_volatile_file(inode)) {
2183                 clear_inode_flag(inode, FI_VOLATILE_FILE);
2184                 stat_dec_volatile_write(inode);
2185                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2186         }
2187
2188         clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2189
2190         inode_unlock(inode);
2191
2192         mnt_drop_write_file(filp);
2193         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2194         return ret;
2195 }
2196
2197 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2198 {
2199         struct inode *inode = file_inode(filp);
2200         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2201         struct super_block *sb = sbi->sb;
2202         __u32 in;
2203         int ret = 0;
2204
2205         if (!capable(CAP_SYS_ADMIN))
2206                 return -EPERM;
2207
2208         if (get_user(in, (__u32 __user *)arg))
2209                 return -EFAULT;
2210
2211         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2212                 ret = mnt_want_write_file(filp);
2213                 if (ret) {
2214                         if (ret == -EROFS) {
2215                                 ret = 0;
2216                                 f2fs_stop_checkpoint(sbi, false);
2217                                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2218                                 trace_f2fs_shutdown(sbi, in, ret);
2219                         }
2220                         return ret;
2221                 }
2222         }
2223
2224         switch (in) {
2225         case F2FS_GOING_DOWN_FULLSYNC:
2226                 ret = freeze_bdev(sb->s_bdev);
2227                 if (ret)
2228                         goto out;
2229                 f2fs_stop_checkpoint(sbi, false);
2230                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2231                 thaw_bdev(sb->s_bdev);
2232                 break;
2233         case F2FS_GOING_DOWN_METASYNC:
2234                 /* do checkpoint only */
2235                 ret = f2fs_sync_fs(sb, 1);
2236                 if (ret)
2237                         goto out;
2238                 f2fs_stop_checkpoint(sbi, false);
2239                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2240                 break;
2241         case F2FS_GOING_DOWN_NOSYNC:
2242                 f2fs_stop_checkpoint(sbi, false);
2243                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2244                 break;
2245         case F2FS_GOING_DOWN_METAFLUSH:
2246                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2247                 f2fs_stop_checkpoint(sbi, false);
2248                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2249                 break;
2250         case F2FS_GOING_DOWN_NEED_FSCK:
2251                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2252                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2253                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2254                 /* do checkpoint only */
2255                 ret = f2fs_sync_fs(sb, 1);
2256                 goto out;
2257         default:
2258                 ret = -EINVAL;
2259                 goto out;
2260         }
2261
2262         f2fs_stop_gc_thread(sbi);
2263         f2fs_stop_discard_thread(sbi);
2264
2265         f2fs_drop_discard_cmd(sbi);
2266         clear_opt(sbi, DISCARD);
2267
2268         f2fs_update_time(sbi, REQ_TIME);
2269 out:
2270         if (in != F2FS_GOING_DOWN_FULLSYNC)
2271                 mnt_drop_write_file(filp);
2272
2273         trace_f2fs_shutdown(sbi, in, ret);
2274
2275         return ret;
2276 }
2277
2278 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2279 {
2280         struct inode *inode = file_inode(filp);
2281         struct super_block *sb = inode->i_sb;
2282         struct request_queue *q = bdev_get_queue(sb->s_bdev);
2283         struct fstrim_range range;
2284         int ret;
2285
2286         if (!capable(CAP_SYS_ADMIN))
2287                 return -EPERM;
2288
2289         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2290                 return -EOPNOTSUPP;
2291
2292         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2293                                 sizeof(range)))
2294                 return -EFAULT;
2295
2296         ret = mnt_want_write_file(filp);
2297         if (ret)
2298                 return ret;
2299
2300         range.minlen = max((unsigned int)range.minlen,
2301                                 q->limits.discard_granularity);
2302         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2303         mnt_drop_write_file(filp);
2304         if (ret < 0)
2305                 return ret;
2306
2307         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2308                                 sizeof(range)))
2309                 return -EFAULT;
2310         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2311         return 0;
2312 }
2313
2314 static bool uuid_is_nonzero(__u8 u[16])
2315 {
2316         int i;
2317
2318         for (i = 0; i < 16; i++)
2319                 if (u[i])
2320                         return true;
2321         return false;
2322 }
2323
2324 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2325 {
2326         struct inode *inode = file_inode(filp);
2327
2328         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2329                 return -EOPNOTSUPP;
2330
2331         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2332
2333         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2334 }
2335
2336 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2337 {
2338         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2339                 return -EOPNOTSUPP;
2340         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2341 }
2342
2343 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2344 {
2345         struct inode *inode = file_inode(filp);
2346         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2347         int err;
2348
2349         if (!f2fs_sb_has_encrypt(sbi))
2350                 return -EOPNOTSUPP;
2351
2352         err = mnt_want_write_file(filp);
2353         if (err)
2354                 return err;
2355
2356         down_write(&sbi->sb_lock);
2357
2358         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2359                 goto got_it;
2360
2361         /* update superblock with uuid */
2362         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2363
2364         err = f2fs_commit_super(sbi, false);
2365         if (err) {
2366                 /* undo new data */
2367                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2368                 goto out_err;
2369         }
2370 got_it:
2371         if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2372                                                                         16))
2373                 err = -EFAULT;
2374 out_err:
2375         up_write(&sbi->sb_lock);
2376         mnt_drop_write_file(filp);
2377         return err;
2378 }
2379
2380 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2381                                              unsigned long arg)
2382 {
2383         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2384                 return -EOPNOTSUPP;
2385
2386         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2387 }
2388
2389 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2390 {
2391         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2392                 return -EOPNOTSUPP;
2393
2394         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2395 }
2396
2397 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2398 {
2399         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2400                 return -EOPNOTSUPP;
2401
2402         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2403 }
2404
2405 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2406                                                     unsigned long arg)
2407 {
2408         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2409                 return -EOPNOTSUPP;
2410
2411         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2412 }
2413
2414 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2415                                               unsigned long arg)
2416 {
2417         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418                 return -EOPNOTSUPP;
2419
2420         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2421 }
2422
2423 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2424 {
2425         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2426                 return -EOPNOTSUPP;
2427
2428         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2429 }
2430
2431 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2432 {
2433         struct inode *inode = file_inode(filp);
2434         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2435         __u32 sync;
2436         int ret;
2437
2438         if (!capable(CAP_SYS_ADMIN))
2439                 return -EPERM;
2440
2441         if (get_user(sync, (__u32 __user *)arg))
2442                 return -EFAULT;
2443
2444         if (f2fs_readonly(sbi->sb))
2445                 return -EROFS;
2446
2447         ret = mnt_want_write_file(filp);
2448         if (ret)
2449                 return ret;
2450
2451         if (!sync) {
2452                 if (!down_write_trylock(&sbi->gc_lock)) {
2453                         ret = -EBUSY;
2454                         goto out;
2455                 }
2456         } else {
2457                 down_write(&sbi->gc_lock);
2458         }
2459
2460         ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2461 out:
2462         mnt_drop_write_file(filp);
2463         return ret;
2464 }
2465
2466 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2467 {
2468         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2469         u64 end;
2470         int ret;
2471
2472         if (!capable(CAP_SYS_ADMIN))
2473                 return -EPERM;
2474         if (f2fs_readonly(sbi->sb))
2475                 return -EROFS;
2476
2477         end = range->start + range->len;
2478         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2479                                         end >= MAX_BLKADDR(sbi))
2480                 return -EINVAL;
2481
2482         ret = mnt_want_write_file(filp);
2483         if (ret)
2484                 return ret;
2485
2486 do_more:
2487         if (!range->sync) {
2488                 if (!down_write_trylock(&sbi->gc_lock)) {
2489                         ret = -EBUSY;
2490                         goto out;
2491                 }
2492         } else {
2493                 down_write(&sbi->gc_lock);
2494         }
2495
2496         ret = f2fs_gc(sbi, range->sync, true, false,
2497                                 GET_SEGNO(sbi, range->start));
2498         if (ret) {
2499                 if (ret == -EBUSY)
2500                         ret = -EAGAIN;
2501                 goto out;
2502         }
2503         range->start += BLKS_PER_SEC(sbi);
2504         if (range->start <= end)
2505                 goto do_more;
2506 out:
2507         mnt_drop_write_file(filp);
2508         return ret;
2509 }
2510
2511 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2512 {
2513         struct f2fs_gc_range range;
2514
2515         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2516                                                         sizeof(range)))
2517                 return -EFAULT;
2518         return __f2fs_ioc_gc_range(filp, &range);
2519 }
2520
2521 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2522 {
2523         struct inode *inode = file_inode(filp);
2524         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2525         int ret;
2526
2527         if (!capable(CAP_SYS_ADMIN))
2528                 return -EPERM;
2529
2530         if (f2fs_readonly(sbi->sb))
2531                 return -EROFS;
2532
2533         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2534                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2535                 return -EINVAL;
2536         }
2537
2538         ret = mnt_want_write_file(filp);
2539         if (ret)
2540                 return ret;
2541
2542         ret = f2fs_sync_fs(sbi->sb, 1);
2543
2544         mnt_drop_write_file(filp);
2545         return ret;
2546 }
2547
2548 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2549                                         struct file *filp,
2550                                         struct f2fs_defragment *range)
2551 {
2552         struct inode *inode = file_inode(filp);
2553         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2554                                         .m_seg_type = NO_CHECK_TYPE,
2555                                         .m_may_create = false };
2556         struct extent_info ei = {0, 0, 0};
2557         pgoff_t pg_start, pg_end, next_pgofs;
2558         unsigned int blk_per_seg = sbi->blocks_per_seg;
2559         unsigned int total = 0, sec_num;
2560         block_t blk_end = 0;
2561         bool fragmented = false;
2562         int err;
2563
2564         /* if in-place-update policy is enabled, don't waste time here */
2565         if (f2fs_should_update_inplace(inode, NULL))
2566                 return -EINVAL;
2567
2568         pg_start = range->start >> PAGE_SHIFT;
2569         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2570
2571         f2fs_balance_fs(sbi, true);
2572
2573         inode_lock(inode);
2574
2575         /* writeback all dirty pages in the range */
2576         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2577                                                 range->start + range->len - 1);
2578         if (err)
2579                 goto out;
2580
2581         /*
2582          * lookup mapping info in extent cache, skip defragmenting if physical
2583          * block addresses are continuous.
2584          */
2585         if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2586                 if (ei.fofs + ei.len >= pg_end)
2587                         goto out;
2588         }
2589
2590         map.m_lblk = pg_start;
2591         map.m_next_pgofs = &next_pgofs;
2592
2593         /*
2594          * lookup mapping info in dnode page cache, skip defragmenting if all
2595          * physical block addresses are continuous even if there are hole(s)
2596          * in logical blocks.
2597          */
2598         while (map.m_lblk < pg_end) {
2599                 map.m_len = pg_end - map.m_lblk;
2600                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2601                 if (err)
2602                         goto out;
2603
2604                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2605                         map.m_lblk = next_pgofs;
2606                         continue;
2607                 }
2608
2609                 if (blk_end && blk_end != map.m_pblk)
2610                         fragmented = true;
2611
2612                 /* record total count of block that we're going to move */
2613                 total += map.m_len;
2614
2615                 blk_end = map.m_pblk + map.m_len;
2616
2617                 map.m_lblk += map.m_len;
2618         }
2619
2620         if (!fragmented) {
2621                 total = 0;
2622                 goto out;
2623         }
2624
2625         sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2626
2627         /*
2628          * make sure there are enough free section for LFS allocation, this can
2629          * avoid defragment running in SSR mode when free section are allocated
2630          * intensively
2631          */
2632         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2633                 err = -EAGAIN;
2634                 goto out;
2635         }
2636
2637         map.m_lblk = pg_start;
2638         map.m_len = pg_end - pg_start;
2639         total = 0;
2640
2641         while (map.m_lblk < pg_end) {
2642                 pgoff_t idx;
2643                 int cnt = 0;
2644
2645 do_map:
2646                 map.m_len = pg_end - map.m_lblk;
2647                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2648                 if (err)
2649                         goto clear_out;
2650
2651                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2652                         map.m_lblk = next_pgofs;
2653                         goto check;
2654                 }
2655
2656                 set_inode_flag(inode, FI_DO_DEFRAG);
2657
2658                 idx = map.m_lblk;
2659                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2660                         struct page *page;
2661
2662                         page = f2fs_get_lock_data_page(inode, idx, true);
2663                         if (IS_ERR(page)) {
2664                                 err = PTR_ERR(page);
2665                                 goto clear_out;
2666                         }
2667
2668                         set_page_dirty(page);
2669                         set_page_private_gcing(page);
2670                         f2fs_put_page(page, 1);
2671
2672                         idx++;
2673                         cnt++;
2674                         total++;
2675                 }
2676
2677                 map.m_lblk = idx;
2678 check:
2679                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2680                         goto do_map;
2681
2682                 clear_inode_flag(inode, FI_DO_DEFRAG);
2683
2684                 err = filemap_fdatawrite(inode->i_mapping);
2685                 if (err)
2686                         goto out;
2687         }
2688 clear_out:
2689         clear_inode_flag(inode, FI_DO_DEFRAG);
2690 out:
2691         inode_unlock(inode);
2692         if (!err)
2693                 range->len = (u64)total << PAGE_SHIFT;
2694         return err;
2695 }
2696
2697 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2698 {
2699         struct inode *inode = file_inode(filp);
2700         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2701         struct f2fs_defragment range;
2702         int err;
2703
2704         if (!capable(CAP_SYS_ADMIN))
2705                 return -EPERM;
2706
2707         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2708                 return -EINVAL;
2709
2710         if (f2fs_readonly(sbi->sb))
2711                 return -EROFS;
2712
2713         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2714                                                         sizeof(range)))
2715                 return -EFAULT;
2716
2717         /* verify alignment of offset & size */
2718         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2719                 return -EINVAL;
2720
2721         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2722                                         max_file_blocks(inode)))
2723                 return -EINVAL;
2724
2725         err = mnt_want_write_file(filp);
2726         if (err)
2727                 return err;
2728
2729         err = f2fs_defragment_range(sbi, filp, &range);
2730         mnt_drop_write_file(filp);
2731
2732         f2fs_update_time(sbi, REQ_TIME);
2733         if (err < 0)
2734                 return err;
2735
2736         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2737                                                         sizeof(range)))
2738                 return -EFAULT;
2739
2740         return 0;
2741 }
2742
2743 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2744                         struct file *file_out, loff_t pos_out, size_t len)
2745 {
2746         struct inode *src = file_inode(file_in);
2747         struct inode *dst = file_inode(file_out);
2748         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2749         size_t olen = len, dst_max_i_size = 0;
2750         size_t dst_osize;
2751         int ret;
2752
2753         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2754                                 src->i_sb != dst->i_sb)
2755                 return -EXDEV;
2756
2757         if (unlikely(f2fs_readonly(src->i_sb)))
2758                 return -EROFS;
2759
2760         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2761                 return -EINVAL;
2762
2763         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2764                 return -EOPNOTSUPP;
2765
2766         if (pos_out < 0 || pos_in < 0)
2767                 return -EINVAL;
2768
2769         if (src == dst) {
2770                 if (pos_in == pos_out)
2771                         return 0;
2772                 if (pos_out > pos_in && pos_out < pos_in + len)
2773                         return -EINVAL;
2774         }
2775
2776         inode_lock(src);
2777         if (src != dst) {
2778                 ret = -EBUSY;
2779                 if (!inode_trylock(dst))
2780                         goto out;
2781         }
2782
2783         ret = -EINVAL;
2784         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2785                 goto out_unlock;
2786         if (len == 0)
2787                 olen = len = src->i_size - pos_in;
2788         if (pos_in + len == src->i_size)
2789                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2790         if (len == 0) {
2791                 ret = 0;
2792                 goto out_unlock;
2793         }
2794
2795         dst_osize = dst->i_size;
2796         if (pos_out + olen > dst->i_size)
2797                 dst_max_i_size = pos_out + olen;
2798
2799         /* verify the end result is block aligned */
2800         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2801                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2802                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2803                 goto out_unlock;
2804
2805         ret = f2fs_convert_inline_inode(src);
2806         if (ret)
2807                 goto out_unlock;
2808
2809         ret = f2fs_convert_inline_inode(dst);
2810         if (ret)
2811                 goto out_unlock;
2812
2813         /* write out all dirty pages from offset */
2814         ret = filemap_write_and_wait_range(src->i_mapping,
2815                                         pos_in, pos_in + len);
2816         if (ret)
2817                 goto out_unlock;
2818
2819         ret = filemap_write_and_wait_range(dst->i_mapping,
2820                                         pos_out, pos_out + len);
2821         if (ret)
2822                 goto out_unlock;
2823
2824         f2fs_balance_fs(sbi, true);
2825
2826         down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2827         if (src != dst) {
2828                 ret = -EBUSY;
2829                 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2830                         goto out_src;
2831         }
2832
2833         f2fs_lock_op(sbi);
2834         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2835                                 pos_out >> F2FS_BLKSIZE_BITS,
2836                                 len >> F2FS_BLKSIZE_BITS, false);
2837
2838         if (!ret) {
2839                 if (dst_max_i_size)
2840                         f2fs_i_size_write(dst, dst_max_i_size);
2841                 else if (dst_osize != dst->i_size)
2842                         f2fs_i_size_write(dst, dst_osize);
2843         }
2844         f2fs_unlock_op(sbi);
2845
2846         if (src != dst)
2847                 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2848 out_src:
2849         up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2850 out_unlock:
2851         if (src != dst)
2852                 inode_unlock(dst);
2853 out:
2854         inode_unlock(src);
2855         return ret;
2856 }
2857
2858 static int __f2fs_ioc_move_range(struct file *filp,
2859                                 struct f2fs_move_range *range)
2860 {
2861         struct fd dst;
2862         int err;
2863
2864         if (!(filp->f_mode & FMODE_READ) ||
2865                         !(filp->f_mode & FMODE_WRITE))
2866                 return -EBADF;
2867
2868         dst = fdget(range->dst_fd);
2869         if (!dst.file)
2870                 return -EBADF;
2871
2872         if (!(dst.file->f_mode & FMODE_WRITE)) {
2873                 err = -EBADF;
2874                 goto err_out;
2875         }
2876
2877         err = mnt_want_write_file(filp);
2878         if (err)
2879                 goto err_out;
2880
2881         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2882                                         range->pos_out, range->len);
2883
2884         mnt_drop_write_file(filp);
2885 err_out:
2886         fdput(dst);
2887         return err;
2888 }
2889
2890 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2891 {
2892         struct f2fs_move_range range;
2893
2894         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2895                                                         sizeof(range)))
2896                 return -EFAULT;
2897         return __f2fs_ioc_move_range(filp, &range);
2898 }
2899
2900 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2901 {
2902         struct inode *inode = file_inode(filp);
2903         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2904         struct sit_info *sm = SIT_I(sbi);
2905         unsigned int start_segno = 0, end_segno = 0;
2906         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2907         struct f2fs_flush_device range;
2908         int ret;
2909
2910         if (!capable(CAP_SYS_ADMIN))
2911                 return -EPERM;
2912
2913         if (f2fs_readonly(sbi->sb))
2914                 return -EROFS;
2915
2916         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2917                 return -EINVAL;
2918
2919         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2920                                                         sizeof(range)))
2921                 return -EFAULT;
2922
2923         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2924                         __is_large_section(sbi)) {
2925                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2926                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2927                 return -EINVAL;
2928         }
2929
2930         ret = mnt_want_write_file(filp);
2931         if (ret)
2932                 return ret;
2933
2934         if (range.dev_num != 0)
2935                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2936         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2937
2938         start_segno = sm->last_victim[FLUSH_DEVICE];
2939         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2940                 start_segno = dev_start_segno;
2941         end_segno = min(start_segno + range.segments, dev_end_segno);
2942
2943         while (start_segno < end_segno) {
2944                 if (!down_write_trylock(&sbi->gc_lock)) {
2945                         ret = -EBUSY;
2946                         goto out;
2947                 }
2948                 sm->last_victim[GC_CB] = end_segno + 1;
2949                 sm->last_victim[GC_GREEDY] = end_segno + 1;
2950                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2951                 ret = f2fs_gc(sbi, true, true, true, start_segno);
2952                 if (ret == -EAGAIN)
2953                         ret = 0;
2954                 else if (ret < 0)
2955                         break;
2956                 start_segno++;
2957         }
2958 out:
2959         mnt_drop_write_file(filp);
2960         return ret;
2961 }
2962
2963 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2964 {
2965         struct inode *inode = file_inode(filp);
2966         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2967
2968         /* Must validate to set it with SQLite behavior in Android. */
2969         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2970
2971         return put_user(sb_feature, (u32 __user *)arg);
2972 }
2973
2974 #ifdef CONFIG_QUOTA
2975 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2976 {
2977         struct dquot *transfer_to[MAXQUOTAS] = {};
2978         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2979         struct super_block *sb = sbi->sb;
2980         int err;
2981
2982         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2983         if (IS_ERR(transfer_to[PRJQUOTA]))
2984                 return PTR_ERR(transfer_to[PRJQUOTA]);
2985
2986         err = __dquot_transfer(inode, transfer_to);
2987         if (err)
2988                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2989         dqput(transfer_to[PRJQUOTA]);
2990         return err;
2991 }
2992
2993 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2994 {
2995         struct f2fs_inode_info *fi = F2FS_I(inode);
2996         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2997         struct page *ipage;
2998         kprojid_t kprojid;
2999         int err;
3000
3001         if (!f2fs_sb_has_project_quota(sbi)) {
3002                 if (projid != F2FS_DEF_PROJID)
3003                         return -EOPNOTSUPP;
3004                 else
3005                         return 0;
3006         }
3007
3008         if (!f2fs_has_extra_attr(inode))
3009                 return -EOPNOTSUPP;
3010
3011         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3012
3013         if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3014                 return 0;
3015
3016         err = -EPERM;
3017         /* Is it quota file? Do not allow user to mess with it */
3018         if (IS_NOQUOTA(inode))
3019                 return err;
3020
3021         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3022         if (IS_ERR(ipage))
3023                 return PTR_ERR(ipage);
3024
3025         if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3026                                                                 i_projid)) {
3027                 err = -EOVERFLOW;
3028                 f2fs_put_page(ipage, 1);
3029                 return err;
3030         }
3031         f2fs_put_page(ipage, 1);
3032
3033         err = f2fs_dquot_initialize(inode);
3034         if (err)
3035                 return err;
3036
3037         f2fs_lock_op(sbi);
3038         err = f2fs_transfer_project_quota(inode, kprojid);
3039         if (err)
3040                 goto out_unlock;
3041
3042         F2FS_I(inode)->i_projid = kprojid;
3043         inode->i_ctime = current_time(inode);
3044         f2fs_mark_inode_dirty_sync(inode, true);
3045 out_unlock:
3046         f2fs_unlock_op(sbi);
3047         return err;
3048 }
3049 #else
3050 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3051 {
3052         return 0;
3053 }
3054
3055 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3056 {
3057         if (projid != F2FS_DEF_PROJID)
3058                 return -EOPNOTSUPP;
3059         return 0;
3060 }
3061 #endif
3062
3063 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3064 {
3065         struct inode *inode = d_inode(dentry);
3066         struct f2fs_inode_info *fi = F2FS_I(inode);
3067         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3068
3069         if (IS_ENCRYPTED(inode))
3070                 fsflags |= FS_ENCRYPT_FL;
3071         if (IS_VERITY(inode))
3072                 fsflags |= FS_VERITY_FL;
3073         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3074                 fsflags |= FS_INLINE_DATA_FL;
3075         if (is_inode_flag_set(inode, FI_PIN_FILE))
3076                 fsflags |= FS_NOCOW_FL;
3077
3078         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3079
3080         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3081                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3082
3083         return 0;
3084 }
3085
3086 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3087                       struct dentry *dentry, struct fileattr *fa)
3088 {
3089         struct inode *inode = d_inode(dentry);
3090         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3091         u32 iflags;
3092         int err;
3093
3094         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3095                 return -EIO;
3096         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3097                 return -ENOSPC;
3098         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3099                 return -EOPNOTSUPP;
3100         fsflags &= F2FS_SETTABLE_FS_FL;
3101         if (!fa->flags_valid)
3102                 mask &= FS_COMMON_FL;
3103
3104         iflags = f2fs_fsflags_to_iflags(fsflags);
3105         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3106                 return -EOPNOTSUPP;
3107
3108         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3109         if (!err)
3110                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3111
3112         return err;
3113 }
3114
3115 int f2fs_pin_file_control(struct inode *inode, bool inc)
3116 {
3117         struct f2fs_inode_info *fi = F2FS_I(inode);
3118         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3119
3120         /* Use i_gc_failures for normal file as a risk signal. */
3121         if (inc)
3122                 f2fs_i_gc_failures_write(inode,
3123                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3124
3125         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3126                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3127                           __func__, inode->i_ino,
3128                           fi->i_gc_failures[GC_FAILURE_PIN]);
3129                 clear_inode_flag(inode, FI_PIN_FILE);
3130                 return -EAGAIN;
3131         }
3132         return 0;
3133 }
3134
3135 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3136 {
3137         struct inode *inode = file_inode(filp);
3138         __u32 pin;
3139         int ret = 0;
3140
3141         if (get_user(pin, (__u32 __user *)arg))
3142                 return -EFAULT;
3143
3144         if (!S_ISREG(inode->i_mode))
3145                 return -EINVAL;
3146
3147         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3148                 return -EROFS;
3149
3150         ret = mnt_want_write_file(filp);
3151         if (ret)
3152                 return ret;
3153
3154         inode_lock(inode);
3155
3156         if (!pin) {
3157                 clear_inode_flag(inode, FI_PIN_FILE);
3158                 f2fs_i_gc_failures_write(inode, 0);
3159                 goto done;
3160         }
3161
3162         if (f2fs_should_update_outplace(inode, NULL)) {
3163                 ret = -EINVAL;
3164                 goto out;
3165         }
3166
3167         if (f2fs_pin_file_control(inode, false)) {
3168                 ret = -EAGAIN;
3169                 goto out;
3170         }
3171
3172         ret = f2fs_convert_inline_inode(inode);
3173         if (ret)
3174                 goto out;
3175
3176         if (!f2fs_disable_compressed_file(inode)) {
3177                 ret = -EOPNOTSUPP;
3178                 goto out;
3179         }
3180
3181         set_inode_flag(inode, FI_PIN_FILE);
3182         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3183 done:
3184         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3185 out:
3186         inode_unlock(inode);
3187         mnt_drop_write_file(filp);
3188         return ret;
3189 }
3190
3191 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3192 {
3193         struct inode *inode = file_inode(filp);
3194         __u32 pin = 0;
3195
3196         if (is_inode_flag_set(inode, FI_PIN_FILE))
3197                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3198         return put_user(pin, (u32 __user *)arg);
3199 }
3200
3201 int f2fs_precache_extents(struct inode *inode)
3202 {
3203         struct f2fs_inode_info *fi = F2FS_I(inode);
3204         struct f2fs_map_blocks map;
3205         pgoff_t m_next_extent;
3206         loff_t end;
3207         int err;
3208
3209         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3210                 return -EOPNOTSUPP;
3211
3212         map.m_lblk = 0;
3213         map.m_next_pgofs = NULL;
3214         map.m_next_extent = &m_next_extent;
3215         map.m_seg_type = NO_CHECK_TYPE;
3216         map.m_may_create = false;
3217         end = max_file_blocks(inode);
3218
3219         while (map.m_lblk < end) {
3220                 map.m_len = end - map.m_lblk;
3221
3222                 down_write(&fi->i_gc_rwsem[WRITE]);
3223                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3224                 up_write(&fi->i_gc_rwsem[WRITE]);
3225                 if (err)
3226                         return err;
3227
3228                 map.m_lblk = m_next_extent;
3229         }
3230
3231         return 0;
3232 }
3233
3234 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3235 {
3236         return f2fs_precache_extents(file_inode(filp));
3237 }
3238
3239 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3240 {
3241         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3242         __u64 block_count;
3243
3244         if (!capable(CAP_SYS_ADMIN))
3245                 return -EPERM;
3246
3247         if (f2fs_readonly(sbi->sb))
3248                 return -EROFS;
3249
3250         if (copy_from_user(&block_count, (void __user *)arg,
3251                            sizeof(block_count)))
3252                 return -EFAULT;
3253
3254         return f2fs_resize_fs(filp, block_count);
3255 }
3256
3257 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3258 {
3259         struct inode *inode = file_inode(filp);
3260
3261         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3262
3263         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3264                 f2fs_warn(F2FS_I_SB(inode),
3265                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3266                           inode->i_ino);
3267                 return -EOPNOTSUPP;
3268         }
3269
3270         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3271 }
3272
3273 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3274 {
3275         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3276                 return -EOPNOTSUPP;
3277
3278         return fsverity_ioctl_measure(filp, (void __user *)arg);
3279 }
3280
3281 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3282 {
3283         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3284                 return -EOPNOTSUPP;
3285
3286         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3287 }
3288
3289 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3290 {
3291         struct inode *inode = file_inode(filp);
3292         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3293         char *vbuf;
3294         int count;
3295         int err = 0;
3296
3297         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3298         if (!vbuf)
3299                 return -ENOMEM;
3300
3301         down_read(&sbi->sb_lock);
3302         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3303                         ARRAY_SIZE(sbi->raw_super->volume_name),
3304                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3305         up_read(&sbi->sb_lock);
3306
3307         if (copy_to_user((char __user *)arg, vbuf,
3308                                 min(FSLABEL_MAX, count)))
3309                 err = -EFAULT;
3310
3311         kfree(vbuf);
3312         return err;
3313 }
3314
3315 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3316 {
3317         struct inode *inode = file_inode(filp);
3318         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3319         char *vbuf;
3320         int err = 0;
3321
3322         if (!capable(CAP_SYS_ADMIN))
3323                 return -EPERM;
3324
3325         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3326         if (IS_ERR(vbuf))
3327                 return PTR_ERR(vbuf);
3328
3329         err = mnt_want_write_file(filp);
3330         if (err)
3331                 goto out;
3332
3333         down_write(&sbi->sb_lock);
3334
3335         memset(sbi->raw_super->volume_name, 0,
3336                         sizeof(sbi->raw_super->volume_name));
3337         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3338                         sbi->raw_super->volume_name,
3339                         ARRAY_SIZE(sbi->raw_super->volume_name));
3340
3341         err = f2fs_commit_super(sbi, false);
3342
3343         up_write(&sbi->sb_lock);
3344
3345         mnt_drop_write_file(filp);
3346 out:
3347         kfree(vbuf);
3348         return err;
3349 }
3350
3351 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3352 {
3353         struct inode *inode = file_inode(filp);
3354         __u64 blocks;
3355
3356         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3357                 return -EOPNOTSUPP;
3358
3359         if (!f2fs_compressed_file(inode))
3360                 return -EINVAL;
3361
3362         blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3363         return put_user(blocks, (u64 __user *)arg);
3364 }
3365
3366 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3367 {
3368         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3369         unsigned int released_blocks = 0;
3370         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3371         block_t blkaddr;
3372         int i;
3373
3374         for (i = 0; i < count; i++) {
3375                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3376                                                 dn->ofs_in_node + i);
3377
3378                 if (!__is_valid_data_blkaddr(blkaddr))
3379                         continue;
3380                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3381                                         DATA_GENERIC_ENHANCE)))
3382                         return -EFSCORRUPTED;
3383         }
3384
3385         while (count) {
3386                 int compr_blocks = 0;
3387
3388                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3389                         blkaddr = f2fs_data_blkaddr(dn);
3390
3391                         if (i == 0) {
3392                                 if (blkaddr == COMPRESS_ADDR)
3393                                         continue;
3394                                 dn->ofs_in_node += cluster_size;
3395                                 goto next;
3396                         }
3397
3398                         if (__is_valid_data_blkaddr(blkaddr))
3399                                 compr_blocks++;
3400
3401                         if (blkaddr != NEW_ADDR)
3402                                 continue;
3403
3404                         dn->data_blkaddr = NULL_ADDR;
3405                         f2fs_set_data_blkaddr(dn);
3406                 }
3407
3408                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3409                 dec_valid_block_count(sbi, dn->inode,
3410                                         cluster_size - compr_blocks);
3411
3412                 released_blocks += cluster_size - compr_blocks;
3413 next:
3414                 count -= cluster_size;
3415         }
3416
3417         return released_blocks;
3418 }
3419
3420 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3421 {
3422         struct inode *inode = file_inode(filp);
3423         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3424         pgoff_t page_idx = 0, last_idx;
3425         unsigned int released_blocks = 0;
3426         int ret;
3427         int writecount;
3428
3429         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3430                 return -EOPNOTSUPP;
3431
3432         if (!f2fs_compressed_file(inode))
3433                 return -EINVAL;
3434
3435         if (f2fs_readonly(sbi->sb))
3436                 return -EROFS;
3437
3438         ret = mnt_want_write_file(filp);
3439         if (ret)
3440                 return ret;
3441
3442         f2fs_balance_fs(F2FS_I_SB(inode), true);
3443
3444         inode_lock(inode);
3445
3446         writecount = atomic_read(&inode->i_writecount);
3447         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3448                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3449                 ret = -EBUSY;
3450                 goto out;
3451         }
3452
3453         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3454                 ret = -EINVAL;
3455                 goto out;
3456         }
3457
3458         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3459         if (ret)
3460                 goto out;
3461
3462         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3463         inode->i_ctime = current_time(inode);
3464         f2fs_mark_inode_dirty_sync(inode, true);
3465
3466         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3467                 goto out;
3468
3469         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3470         filemap_invalidate_lock(inode->i_mapping);
3471
3472         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3473
3474         while (page_idx < last_idx) {
3475                 struct dnode_of_data dn;
3476                 pgoff_t end_offset, count;
3477
3478                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3479                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3480                 if (ret) {
3481                         if (ret == -ENOENT) {
3482                                 page_idx = f2fs_get_next_page_offset(&dn,
3483                                                                 page_idx);
3484                                 ret = 0;
3485                                 continue;
3486                         }
3487                         break;
3488                 }
3489
3490                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3491                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3492                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3493
3494                 ret = release_compress_blocks(&dn, count);
3495
3496                 f2fs_put_dnode(&dn);
3497
3498                 if (ret < 0)
3499                         break;
3500
3501                 page_idx += count;
3502                 released_blocks += ret;
3503         }
3504
3505         filemap_invalidate_unlock(inode->i_mapping);
3506         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3507 out:
3508         inode_unlock(inode);
3509
3510         mnt_drop_write_file(filp);
3511
3512         if (ret >= 0) {
3513                 ret = put_user(released_blocks, (u64 __user *)arg);
3514         } else if (released_blocks &&
3515                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3516                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3517                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3518                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3519                         "run fsck to fix.",
3520                         __func__, inode->i_ino, inode->i_blocks,
3521                         released_blocks,
3522                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3523         }
3524
3525         return ret;
3526 }
3527
3528 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3529 {
3530         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3531         unsigned int reserved_blocks = 0;
3532         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3533         block_t blkaddr;
3534         int i;
3535
3536         for (i = 0; i < count; i++) {
3537                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3538                                                 dn->ofs_in_node + i);
3539
3540                 if (!__is_valid_data_blkaddr(blkaddr))
3541                         continue;
3542                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3543                                         DATA_GENERIC_ENHANCE)))
3544                         return -EFSCORRUPTED;
3545         }
3546
3547         while (count) {
3548                 int compr_blocks = 0;
3549                 blkcnt_t reserved;
3550                 int ret;
3551
3552                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3553                         blkaddr = f2fs_data_blkaddr(dn);
3554
3555                         if (i == 0) {
3556                                 if (blkaddr == COMPRESS_ADDR)
3557                                         continue;
3558                                 dn->ofs_in_node += cluster_size;
3559                                 goto next;
3560                         }
3561
3562                         if (__is_valid_data_blkaddr(blkaddr)) {
3563                                 compr_blocks++;
3564                                 continue;
3565                         }
3566
3567                         dn->data_blkaddr = NEW_ADDR;
3568                         f2fs_set_data_blkaddr(dn);
3569                 }
3570
3571                 reserved = cluster_size - compr_blocks;
3572                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3573                 if (ret)
3574                         return ret;
3575
3576                 if (reserved != cluster_size - compr_blocks)
3577                         return -ENOSPC;
3578
3579                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3580
3581                 reserved_blocks += reserved;
3582 next:
3583                 count -= cluster_size;
3584         }
3585
3586         return reserved_blocks;
3587 }
3588
3589 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3590 {
3591         struct inode *inode = file_inode(filp);
3592         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3593         pgoff_t page_idx = 0, last_idx;
3594         unsigned int reserved_blocks = 0;
3595         int ret;
3596
3597         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3598                 return -EOPNOTSUPP;
3599
3600         if (!f2fs_compressed_file(inode))
3601                 return -EINVAL;
3602
3603         if (f2fs_readonly(sbi->sb))
3604                 return -EROFS;
3605
3606         ret = mnt_want_write_file(filp);
3607         if (ret)
3608                 return ret;
3609
3610         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3611                 goto out;
3612
3613         f2fs_balance_fs(F2FS_I_SB(inode), true);
3614
3615         inode_lock(inode);
3616
3617         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3618                 ret = -EINVAL;
3619                 goto unlock_inode;
3620         }
3621
3622         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3623         filemap_invalidate_lock(inode->i_mapping);
3624
3625         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3626
3627         while (page_idx < last_idx) {
3628                 struct dnode_of_data dn;
3629                 pgoff_t end_offset, count;
3630
3631                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3632                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3633                 if (ret) {
3634                         if (ret == -ENOENT) {
3635                                 page_idx = f2fs_get_next_page_offset(&dn,
3636                                                                 page_idx);
3637                                 ret = 0;
3638                                 continue;
3639                         }
3640                         break;
3641                 }
3642
3643                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3644                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3645                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3646
3647                 ret = reserve_compress_blocks(&dn, count);
3648
3649                 f2fs_put_dnode(&dn);
3650
3651                 if (ret < 0)
3652                         break;
3653
3654                 page_idx += count;
3655                 reserved_blocks += ret;
3656         }
3657
3658         filemap_invalidate_unlock(inode->i_mapping);
3659         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3660
3661         if (ret >= 0) {
3662                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3663                 inode->i_ctime = current_time(inode);
3664                 f2fs_mark_inode_dirty_sync(inode, true);
3665         }
3666 unlock_inode:
3667         inode_unlock(inode);
3668 out:
3669         mnt_drop_write_file(filp);
3670
3671         if (ret >= 0) {
3672                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3673         } else if (reserved_blocks &&
3674                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3675                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3676                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3677                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3678                         "run fsck to fix.",
3679                         __func__, inode->i_ino, inode->i_blocks,
3680                         reserved_blocks,
3681                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3682         }
3683
3684         return ret;
3685 }
3686
3687 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3688                 pgoff_t off, block_t block, block_t len, u32 flags)
3689 {
3690         struct request_queue *q = bdev_get_queue(bdev);
3691         sector_t sector = SECTOR_FROM_BLOCK(block);
3692         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3693         int ret = 0;
3694
3695         if (!q)
3696                 return -ENXIO;
3697
3698         if (flags & F2FS_TRIM_FILE_DISCARD)
3699                 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3700                                                 blk_queue_secure_erase(q) ?
3701                                                 BLKDEV_DISCARD_SECURE : 0);
3702
3703         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3704                 if (IS_ENCRYPTED(inode))
3705                         ret = fscrypt_zeroout_range(inode, off, block, len);
3706                 else
3707                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3708                                         GFP_NOFS, 0);
3709         }
3710
3711         return ret;
3712 }
3713
3714 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3715 {
3716         struct inode *inode = file_inode(filp);
3717         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3718         struct address_space *mapping = inode->i_mapping;
3719         struct block_device *prev_bdev = NULL;
3720         struct f2fs_sectrim_range range;
3721         pgoff_t index, pg_end, prev_index = 0;
3722         block_t prev_block = 0, len = 0;
3723         loff_t end_addr;
3724         bool to_end = false;
3725         int ret = 0;
3726
3727         if (!(filp->f_mode & FMODE_WRITE))
3728                 return -EBADF;
3729
3730         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3731                                 sizeof(range)))
3732                 return -EFAULT;
3733
3734         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3735                         !S_ISREG(inode->i_mode))
3736                 return -EINVAL;
3737
3738         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3739                         !f2fs_hw_support_discard(sbi)) ||
3740                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3741                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3742                 return -EOPNOTSUPP;
3743
3744         file_start_write(filp);
3745         inode_lock(inode);
3746
3747         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3748                         range.start >= inode->i_size) {
3749                 ret = -EINVAL;
3750                 goto err;
3751         }
3752
3753         if (range.len == 0)
3754                 goto err;
3755
3756         if (inode->i_size - range.start > range.len) {
3757                 end_addr = range.start + range.len;
3758         } else {
3759                 end_addr = range.len == (u64)-1 ?
3760                         sbi->sb->s_maxbytes : inode->i_size;
3761                 to_end = true;
3762         }
3763
3764         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3765                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3766                 ret = -EINVAL;
3767                 goto err;
3768         }
3769
3770         index = F2FS_BYTES_TO_BLK(range.start);
3771         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3772
3773         ret = f2fs_convert_inline_inode(inode);
3774         if (ret)
3775                 goto err;
3776
3777         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3778         filemap_invalidate_lock(mapping);
3779
3780         ret = filemap_write_and_wait_range(mapping, range.start,
3781                         to_end ? LLONG_MAX : end_addr - 1);
3782         if (ret)
3783                 goto out;
3784
3785         truncate_inode_pages_range(mapping, range.start,
3786                         to_end ? -1 : end_addr - 1);
3787
3788         while (index < pg_end) {
3789                 struct dnode_of_data dn;
3790                 pgoff_t end_offset, count;
3791                 int i;
3792
3793                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3794                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3795                 if (ret) {
3796                         if (ret == -ENOENT) {
3797                                 index = f2fs_get_next_page_offset(&dn, index);
3798                                 continue;
3799                         }
3800                         goto out;
3801                 }
3802
3803                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3804                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3805                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3806                         struct block_device *cur_bdev;
3807                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3808
3809                         if (!__is_valid_data_blkaddr(blkaddr))
3810                                 continue;
3811
3812                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3813                                                 DATA_GENERIC_ENHANCE)) {
3814                                 ret = -EFSCORRUPTED;
3815                                 f2fs_put_dnode(&dn);
3816                                 goto out;
3817                         }
3818
3819                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3820                         if (f2fs_is_multi_device(sbi)) {
3821                                 int di = f2fs_target_device_index(sbi, blkaddr);
3822
3823                                 blkaddr -= FDEV(di).start_blk;
3824                         }
3825
3826                         if (len) {
3827                                 if (prev_bdev == cur_bdev &&
3828                                                 index == prev_index + len &&
3829                                                 blkaddr == prev_block + len) {
3830                                         len++;
3831                                 } else {
3832                                         ret = f2fs_secure_erase(prev_bdev,
3833                                                 inode, prev_index, prev_block,
3834                                                 len, range.flags);
3835                                         if (ret) {
3836                                                 f2fs_put_dnode(&dn);
3837                                                 goto out;
3838                                         }
3839
3840                                         len = 0;
3841                                 }
3842                         }
3843
3844                         if (!len) {
3845                                 prev_bdev = cur_bdev;
3846                                 prev_index = index;
3847                                 prev_block = blkaddr;
3848                                 len = 1;
3849                         }
3850                 }
3851
3852                 f2fs_put_dnode(&dn);
3853
3854                 if (fatal_signal_pending(current)) {
3855                         ret = -EINTR;
3856                         goto out;
3857                 }
3858                 cond_resched();
3859         }
3860
3861         if (len)
3862                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3863                                 prev_block, len, range.flags);
3864 out:
3865         filemap_invalidate_unlock(mapping);
3866         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3867 err:
3868         inode_unlock(inode);
3869         file_end_write(filp);
3870
3871         return ret;
3872 }
3873
3874 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3875 {
3876         struct inode *inode = file_inode(filp);
3877         struct f2fs_comp_option option;
3878
3879         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3880                 return -EOPNOTSUPP;
3881
3882         inode_lock_shared(inode);
3883
3884         if (!f2fs_compressed_file(inode)) {
3885                 inode_unlock_shared(inode);
3886                 return -ENODATA;
3887         }
3888
3889         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3890         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3891
3892         inode_unlock_shared(inode);
3893
3894         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3895                                 sizeof(option)))
3896                 return -EFAULT;
3897
3898         return 0;
3899 }
3900
3901 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3902 {
3903         struct inode *inode = file_inode(filp);
3904         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3905         struct f2fs_comp_option option;
3906         int ret = 0;
3907
3908         if (!f2fs_sb_has_compression(sbi))
3909                 return -EOPNOTSUPP;
3910
3911         if (!(filp->f_mode & FMODE_WRITE))
3912                 return -EBADF;
3913
3914         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3915                                 sizeof(option)))
3916                 return -EFAULT;
3917
3918         if (!f2fs_compressed_file(inode) ||
3919                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3920                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3921                         option.algorithm >= COMPRESS_MAX)
3922                 return -EINVAL;
3923
3924         file_start_write(filp);
3925         inode_lock(inode);
3926
3927         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3928                 ret = -EBUSY;
3929                 goto out;
3930         }
3931
3932         if (F2FS_HAS_BLOCKS(inode)) {
3933                 ret = -EFBIG;
3934                 goto out;
3935         }
3936
3937         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3938         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3939         F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3940         f2fs_mark_inode_dirty_sync(inode, true);
3941
3942         if (!f2fs_is_compress_backend_ready(inode))
3943                 f2fs_warn(sbi, "compression algorithm is successfully set, "
3944                         "but current kernel doesn't support this algorithm.");
3945 out:
3946         inode_unlock(inode);
3947         file_end_write(filp);
3948
3949         return ret;
3950 }
3951
3952 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3953 {
3954         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3955         struct address_space *mapping = inode->i_mapping;
3956         struct page *page;
3957         pgoff_t redirty_idx = page_idx;
3958         int i, page_len = 0, ret = 0;
3959
3960         page_cache_ra_unbounded(&ractl, len, 0);
3961
3962         for (i = 0; i < len; i++, page_idx++) {
3963                 page = read_cache_page(mapping, page_idx, NULL, NULL);
3964                 if (IS_ERR(page)) {
3965                         ret = PTR_ERR(page);
3966                         break;
3967                 }
3968                 page_len++;
3969         }
3970
3971         for (i = 0; i < page_len; i++, redirty_idx++) {
3972                 page = find_lock_page(mapping, redirty_idx);
3973                 if (!page) {
3974                         ret = -ENOMEM;
3975                         break;
3976                 }
3977                 set_page_dirty(page);
3978                 f2fs_put_page(page, 1);
3979                 f2fs_put_page(page, 0);
3980         }
3981
3982         return ret;
3983 }
3984
3985 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3986 {
3987         struct inode *inode = file_inode(filp);
3988         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3989         struct f2fs_inode_info *fi = F2FS_I(inode);
3990         pgoff_t page_idx = 0, last_idx;
3991         unsigned int blk_per_seg = sbi->blocks_per_seg;
3992         int cluster_size = F2FS_I(inode)->i_cluster_size;
3993         int count, ret;
3994
3995         if (!f2fs_sb_has_compression(sbi) ||
3996                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3997                 return -EOPNOTSUPP;
3998
3999         if (!(filp->f_mode & FMODE_WRITE))
4000                 return -EBADF;
4001
4002         if (!f2fs_compressed_file(inode))
4003                 return -EINVAL;
4004
4005         f2fs_balance_fs(F2FS_I_SB(inode), true);
4006
4007         file_start_write(filp);
4008         inode_lock(inode);
4009
4010         if (!f2fs_is_compress_backend_ready(inode)) {
4011                 ret = -EOPNOTSUPP;
4012                 goto out;
4013         }
4014
4015         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4016                 ret = -EINVAL;
4017                 goto out;
4018         }
4019
4020         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4021         if (ret)
4022                 goto out;
4023
4024         if (!atomic_read(&fi->i_compr_blocks))
4025                 goto out;
4026
4027         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4028
4029         count = last_idx - page_idx;
4030         while (count) {
4031                 int len = min(cluster_size, count);
4032
4033                 ret = redirty_blocks(inode, page_idx, len);
4034                 if (ret < 0)
4035                         break;
4036
4037                 if (get_dirty_pages(inode) >= blk_per_seg)
4038                         filemap_fdatawrite(inode->i_mapping);
4039
4040                 count -= len;
4041                 page_idx += len;
4042         }
4043
4044         if (!ret)
4045                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4046                                                         LLONG_MAX);
4047
4048         if (ret)
4049                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4050                           __func__, ret);
4051 out:
4052         inode_unlock(inode);
4053         file_end_write(filp);
4054
4055         return ret;
4056 }
4057
4058 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4059 {
4060         struct inode *inode = file_inode(filp);
4061         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4062         pgoff_t page_idx = 0, last_idx;
4063         unsigned int blk_per_seg = sbi->blocks_per_seg;
4064         int cluster_size = F2FS_I(inode)->i_cluster_size;
4065         int count, ret;
4066
4067         if (!f2fs_sb_has_compression(sbi) ||
4068                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4069                 return -EOPNOTSUPP;
4070
4071         if (!(filp->f_mode & FMODE_WRITE))
4072                 return -EBADF;
4073
4074         if (!f2fs_compressed_file(inode))
4075                 return -EINVAL;
4076
4077         f2fs_balance_fs(F2FS_I_SB(inode), true);
4078
4079         file_start_write(filp);
4080         inode_lock(inode);
4081
4082         if (!f2fs_is_compress_backend_ready(inode)) {
4083                 ret = -EOPNOTSUPP;
4084                 goto out;
4085         }
4086
4087         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4088                 ret = -EINVAL;
4089                 goto out;
4090         }
4091
4092         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4093         if (ret)
4094                 goto out;
4095
4096         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4097
4098         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4099
4100         count = last_idx - page_idx;
4101         while (count) {
4102                 int len = min(cluster_size, count);
4103
4104                 ret = redirty_blocks(inode, page_idx, len);
4105                 if (ret < 0)
4106                         break;
4107
4108                 if (get_dirty_pages(inode) >= blk_per_seg)
4109                         filemap_fdatawrite(inode->i_mapping);
4110
4111                 count -= len;
4112                 page_idx += len;
4113         }
4114
4115         if (!ret)
4116                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4117                                                         LLONG_MAX);
4118
4119         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4120
4121         if (ret)
4122                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4123                           __func__, ret);
4124 out:
4125         inode_unlock(inode);
4126         file_end_write(filp);
4127
4128         return ret;
4129 }
4130
4131 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4132 {
4133         switch (cmd) {
4134         case FS_IOC_GETVERSION:
4135                 return f2fs_ioc_getversion(filp, arg);
4136         case F2FS_IOC_START_ATOMIC_WRITE:
4137                 return f2fs_ioc_start_atomic_write(filp);
4138         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4139                 return f2fs_ioc_commit_atomic_write(filp);
4140         case F2FS_IOC_START_VOLATILE_WRITE:
4141                 return f2fs_ioc_start_volatile_write(filp);
4142         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4143                 return f2fs_ioc_release_volatile_write(filp);
4144         case F2FS_IOC_ABORT_VOLATILE_WRITE:
4145                 return f2fs_ioc_abort_volatile_write(filp);
4146         case F2FS_IOC_SHUTDOWN:
4147                 return f2fs_ioc_shutdown(filp, arg);
4148         case FITRIM:
4149                 return f2fs_ioc_fitrim(filp, arg);
4150         case FS_IOC_SET_ENCRYPTION_POLICY:
4151                 return f2fs_ioc_set_encryption_policy(filp, arg);
4152         case FS_IOC_GET_ENCRYPTION_POLICY:
4153                 return f2fs_ioc_get_encryption_policy(filp, arg);
4154         case FS_IOC_GET_ENCRYPTION_PWSALT:
4155                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4156         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4157                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4158         case FS_IOC_ADD_ENCRYPTION_KEY:
4159                 return f2fs_ioc_add_encryption_key(filp, arg);
4160         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4161                 return f2fs_ioc_remove_encryption_key(filp, arg);
4162         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4163                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4164         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4165                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4166         case FS_IOC_GET_ENCRYPTION_NONCE:
4167                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4168         case F2FS_IOC_GARBAGE_COLLECT:
4169                 return f2fs_ioc_gc(filp, arg);
4170         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4171                 return f2fs_ioc_gc_range(filp, arg);
4172         case F2FS_IOC_WRITE_CHECKPOINT:
4173                 return f2fs_ioc_write_checkpoint(filp, arg);
4174         case F2FS_IOC_DEFRAGMENT:
4175                 return f2fs_ioc_defragment(filp, arg);
4176         case F2FS_IOC_MOVE_RANGE:
4177                 return f2fs_ioc_move_range(filp, arg);
4178         case F2FS_IOC_FLUSH_DEVICE:
4179                 return f2fs_ioc_flush_device(filp, arg);
4180         case F2FS_IOC_GET_FEATURES:
4181                 return f2fs_ioc_get_features(filp, arg);
4182         case F2FS_IOC_GET_PIN_FILE:
4183                 return f2fs_ioc_get_pin_file(filp, arg);
4184         case F2FS_IOC_SET_PIN_FILE:
4185                 return f2fs_ioc_set_pin_file(filp, arg);
4186         case F2FS_IOC_PRECACHE_EXTENTS:
4187                 return f2fs_ioc_precache_extents(filp, arg);
4188         case F2FS_IOC_RESIZE_FS:
4189                 return f2fs_ioc_resize_fs(filp, arg);
4190         case FS_IOC_ENABLE_VERITY:
4191                 return f2fs_ioc_enable_verity(filp, arg);
4192         case FS_IOC_MEASURE_VERITY:
4193                 return f2fs_ioc_measure_verity(filp, arg);
4194         case FS_IOC_READ_VERITY_METADATA:
4195                 return f2fs_ioc_read_verity_metadata(filp, arg);
4196         case FS_IOC_GETFSLABEL:
4197                 return f2fs_ioc_getfslabel(filp, arg);
4198         case FS_IOC_SETFSLABEL:
4199                 return f2fs_ioc_setfslabel(filp, arg);
4200         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4201                 return f2fs_get_compress_blocks(filp, arg);
4202         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4203                 return f2fs_release_compress_blocks(filp, arg);
4204         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4205                 return f2fs_reserve_compress_blocks(filp, arg);
4206         case F2FS_IOC_SEC_TRIM_FILE:
4207                 return f2fs_sec_trim_file(filp, arg);
4208         case F2FS_IOC_GET_COMPRESS_OPTION:
4209                 return f2fs_ioc_get_compress_option(filp, arg);
4210         case F2FS_IOC_SET_COMPRESS_OPTION:
4211                 return f2fs_ioc_set_compress_option(filp, arg);
4212         case F2FS_IOC_DECOMPRESS_FILE:
4213                 return f2fs_ioc_decompress_file(filp, arg);
4214         case F2FS_IOC_COMPRESS_FILE:
4215                 return f2fs_ioc_compress_file(filp, arg);
4216         default:
4217                 return -ENOTTY;
4218         }
4219 }
4220
4221 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4222 {
4223         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4224                 return -EIO;
4225         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4226                 return -ENOSPC;
4227
4228         return __f2fs_ioctl(filp, cmd, arg);
4229 }
4230
4231 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4232 {
4233         struct file *file = iocb->ki_filp;
4234         struct inode *inode = file_inode(file);
4235         int ret;
4236
4237         if (!f2fs_is_compress_backend_ready(inode))
4238                 return -EOPNOTSUPP;
4239
4240         ret = generic_file_read_iter(iocb, iter);
4241
4242         if (ret > 0)
4243                 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4244
4245         return ret;
4246 }
4247
4248 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4249 {
4250         struct file *file = iocb->ki_filp;
4251         struct inode *inode = file_inode(file);
4252         ssize_t ret;
4253
4254         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4255                 ret = -EIO;
4256                 goto out;
4257         }
4258
4259         if (!f2fs_is_compress_backend_ready(inode)) {
4260                 ret = -EOPNOTSUPP;
4261                 goto out;
4262         }
4263
4264         if (iocb->ki_flags & IOCB_NOWAIT) {
4265                 if (!inode_trylock(inode)) {
4266                         ret = -EAGAIN;
4267                         goto out;
4268                 }
4269         } else {
4270                 inode_lock(inode);
4271         }
4272
4273         if (unlikely(IS_IMMUTABLE(inode))) {
4274                 ret = -EPERM;
4275                 goto unlock;
4276         }
4277
4278         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4279                 ret = -EPERM;
4280                 goto unlock;
4281         }
4282
4283         ret = generic_write_checks(iocb, from);
4284         if (ret > 0) {
4285                 bool preallocated = false;
4286                 size_t target_size = 0;
4287                 int err;
4288
4289                 if (fault_in_iov_iter_readable(from, iov_iter_count(from)))
4290                         set_inode_flag(inode, FI_NO_PREALLOC);
4291
4292                 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4293                         if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4294                                                 iov_iter_count(from)) ||
4295                                 f2fs_has_inline_data(inode) ||
4296                                 f2fs_force_buffered_io(inode, iocb, from)) {
4297                                 clear_inode_flag(inode, FI_NO_PREALLOC);
4298                                 inode_unlock(inode);
4299                                 ret = -EAGAIN;
4300                                 goto out;
4301                         }
4302                         goto write;
4303                 }
4304
4305                 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4306                         goto write;
4307
4308                 if (iocb->ki_flags & IOCB_DIRECT) {
4309                         /*
4310                          * Convert inline data for Direct I/O before entering
4311                          * f2fs_direct_IO().
4312                          */
4313                         err = f2fs_convert_inline_inode(inode);
4314                         if (err)
4315                                 goto out_err;
4316                         /*
4317                          * If force_buffere_io() is true, we have to allocate
4318                          * blocks all the time, since f2fs_direct_IO will fall
4319                          * back to buffered IO.
4320                          */
4321                         if (!f2fs_force_buffered_io(inode, iocb, from) &&
4322                                         f2fs_lfs_mode(F2FS_I_SB(inode)))
4323                                 goto write;
4324                 }
4325                 preallocated = true;
4326                 target_size = iocb->ki_pos + iov_iter_count(from);
4327
4328                 err = f2fs_preallocate_blocks(iocb, from);
4329                 if (err) {
4330 out_err:
4331                         clear_inode_flag(inode, FI_NO_PREALLOC);
4332                         inode_unlock(inode);
4333                         ret = err;
4334                         goto out;
4335                 }
4336 write:
4337                 ret = __generic_file_write_iter(iocb, from);
4338                 clear_inode_flag(inode, FI_NO_PREALLOC);
4339
4340                 /* if we couldn't write data, we should deallocate blocks. */
4341                 if (preallocated && i_size_read(inode) < target_size) {
4342                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4343                         filemap_invalidate_lock(inode->i_mapping);
4344                         f2fs_truncate(inode);
4345                         filemap_invalidate_unlock(inode->i_mapping);
4346                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4347                 }
4348
4349                 if (ret > 0)
4350                         f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4351         }
4352 unlock:
4353         inode_unlock(inode);
4354 out:
4355         trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4356                                         iov_iter_count(from), ret);
4357         if (ret > 0)
4358                 ret = generic_write_sync(iocb, ret);
4359         return ret;
4360 }
4361
4362 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4363                 int advice)
4364 {
4365         struct inode *inode;
4366         struct address_space *mapping;
4367         struct backing_dev_info *bdi;
4368
4369         if (advice == POSIX_FADV_SEQUENTIAL) {
4370                 inode = file_inode(filp);
4371                 if (S_ISFIFO(inode->i_mode))
4372                         return -ESPIPE;
4373
4374                 mapping = filp->f_mapping;
4375                 if (!mapping || len < 0)
4376                         return -EINVAL;
4377
4378                 bdi = inode_to_bdi(mapping->host);
4379                 filp->f_ra.ra_pages = bdi->ra_pages *
4380                         F2FS_I_SB(inode)->seq_file_ra_mul;
4381                 spin_lock(&filp->f_lock);
4382                 filp->f_mode &= ~FMODE_RANDOM;
4383                 spin_unlock(&filp->f_lock);
4384                 return 0;
4385         }
4386
4387         return generic_fadvise(filp, offset, len, advice);
4388 }
4389
4390 #ifdef CONFIG_COMPAT
4391 struct compat_f2fs_gc_range {
4392         u32 sync;
4393         compat_u64 start;
4394         compat_u64 len;
4395 };
4396 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4397                                                 struct compat_f2fs_gc_range)
4398
4399 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4400 {
4401         struct compat_f2fs_gc_range __user *urange;
4402         struct f2fs_gc_range range;
4403         int err;
4404
4405         urange = compat_ptr(arg);
4406         err = get_user(range.sync, &urange->sync);
4407         err |= get_user(range.start, &urange->start);
4408         err |= get_user(range.len, &urange->len);
4409         if (err)
4410                 return -EFAULT;
4411
4412         return __f2fs_ioc_gc_range(file, &range);
4413 }
4414
4415 struct compat_f2fs_move_range {
4416         u32 dst_fd;
4417         compat_u64 pos_in;
4418         compat_u64 pos_out;
4419         compat_u64 len;
4420 };
4421 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4422                                         struct compat_f2fs_move_range)
4423
4424 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4425 {
4426         struct compat_f2fs_move_range __user *urange;
4427         struct f2fs_move_range range;
4428         int err;
4429
4430         urange = compat_ptr(arg);
4431         err = get_user(range.dst_fd, &urange->dst_fd);
4432         err |= get_user(range.pos_in, &urange->pos_in);
4433         err |= get_user(range.pos_out, &urange->pos_out);
4434         err |= get_user(range.len, &urange->len);
4435         if (err)
4436                 return -EFAULT;
4437
4438         return __f2fs_ioc_move_range(file, &range);
4439 }
4440
4441 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4442 {
4443         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4444                 return -EIO;
4445         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4446                 return -ENOSPC;
4447
4448         switch (cmd) {
4449         case FS_IOC32_GETVERSION:
4450                 cmd = FS_IOC_GETVERSION;
4451                 break;
4452         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4453                 return f2fs_compat_ioc_gc_range(file, arg);
4454         case F2FS_IOC32_MOVE_RANGE:
4455                 return f2fs_compat_ioc_move_range(file, arg);
4456         case F2FS_IOC_START_ATOMIC_WRITE:
4457         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4458         case F2FS_IOC_START_VOLATILE_WRITE:
4459         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4460         case F2FS_IOC_ABORT_VOLATILE_WRITE:
4461         case F2FS_IOC_SHUTDOWN:
4462         case FITRIM:
4463         case FS_IOC_SET_ENCRYPTION_POLICY:
4464         case FS_IOC_GET_ENCRYPTION_PWSALT:
4465         case FS_IOC_GET_ENCRYPTION_POLICY:
4466         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4467         case FS_IOC_ADD_ENCRYPTION_KEY:
4468         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4469         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4470         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4471         case FS_IOC_GET_ENCRYPTION_NONCE:
4472         case F2FS_IOC_GARBAGE_COLLECT:
4473         case F2FS_IOC_WRITE_CHECKPOINT:
4474         case F2FS_IOC_DEFRAGMENT:
4475         case F2FS_IOC_FLUSH_DEVICE:
4476         case F2FS_IOC_GET_FEATURES:
4477         case F2FS_IOC_GET_PIN_FILE:
4478         case F2FS_IOC_SET_PIN_FILE:
4479         case F2FS_IOC_PRECACHE_EXTENTS:
4480         case F2FS_IOC_RESIZE_FS:
4481         case FS_IOC_ENABLE_VERITY:
4482         case FS_IOC_MEASURE_VERITY:
4483         case FS_IOC_READ_VERITY_METADATA:
4484         case FS_IOC_GETFSLABEL:
4485         case FS_IOC_SETFSLABEL:
4486         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4487         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4488         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4489         case F2FS_IOC_SEC_TRIM_FILE:
4490         case F2FS_IOC_GET_COMPRESS_OPTION:
4491         case F2FS_IOC_SET_COMPRESS_OPTION:
4492         case F2FS_IOC_DECOMPRESS_FILE:
4493         case F2FS_IOC_COMPRESS_FILE:
4494                 break;
4495         default:
4496                 return -ENOIOCTLCMD;
4497         }
4498         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4499 }
4500 #endif
4501
4502 const struct file_operations f2fs_file_operations = {
4503         .llseek         = f2fs_llseek,
4504         .read_iter      = f2fs_file_read_iter,
4505         .write_iter     = f2fs_file_write_iter,
4506         .open           = f2fs_file_open,
4507         .release        = f2fs_release_file,
4508         .mmap           = f2fs_file_mmap,
4509         .flush          = f2fs_file_flush,
4510         .fsync          = f2fs_sync_file,
4511         .fallocate      = f2fs_fallocate,
4512         .unlocked_ioctl = f2fs_ioctl,
4513 #ifdef CONFIG_COMPAT
4514         .compat_ioctl   = f2fs_compat_ioctl,
4515 #endif
4516         .splice_read    = generic_file_splice_read,
4517         .splice_write   = iter_file_splice_write,
4518         .fadvise        = f2fs_file_fadvise,
4519 };