GNU Linux-libre 6.0.2-gnu
[releases.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55         struct address_space *mapping = page->mapping;
56         struct inode *inode;
57         struct f2fs_sb_info *sbi;
58
59         if (!mapping)
60                 return false;
61
62         inode = mapping->host;
63         sbi = F2FS_I_SB(inode);
64
65         if (inode->i_ino == F2FS_META_INO(sbi) ||
66                         inode->i_ino == F2FS_NODE_INO(sbi) ||
67                         S_ISDIR(inode->i_mode))
68                 return true;
69
70         if (f2fs_is_compressed_page(page))
71                 return false;
72         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73                         page_private_gcing(page))
74                 return true;
75         return false;
76 }
77
78 static enum count_type __read_io_type(struct page *page)
79 {
80         struct address_space *mapping = page_file_mapping(page);
81
82         if (mapping) {
83                 struct inode *inode = mapping->host;
84                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85
86                 if (inode->i_ino == F2FS_META_INO(sbi))
87                         return F2FS_RD_META;
88
89                 if (inode->i_ino == F2FS_NODE_INO(sbi))
90                         return F2FS_RD_NODE;
91         }
92         return F2FS_RD_DATA;
93 }
94
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98         STEP_DECRYPT    = 1 << 0,
99 #else
100         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103         STEP_DECOMPRESS = 1 << 1,
104 #else
105         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108         STEP_VERITY     = 1 << 2,
109 #else
110         STEP_VERITY     = 0,    /* compile out the verity-related code */
111 #endif
112 };
113
114 struct bio_post_read_ctx {
115         struct bio *bio;
116         struct f2fs_sb_info *sbi;
117         struct work_struct work;
118         unsigned int enabled_steps;
119         block_t fs_blkaddr;
120 };
121
122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
123 {
124         struct bio_vec *bv;
125         struct bvec_iter_all iter_all;
126
127         /*
128          * Update and unlock the bio's pagecache pages, and put the
129          * decompression context for any compressed pages.
130          */
131         bio_for_each_segment_all(bv, bio, iter_all) {
132                 struct page *page = bv->bv_page;
133
134                 if (f2fs_is_compressed_page(page)) {
135                         if (bio->bi_status)
136                                 f2fs_end_read_compressed_page(page, true, 0,
137                                                         in_task);
138                         f2fs_put_page_dic(page, in_task);
139                         continue;
140                 }
141
142                 /* PG_error was set if decryption or verity failed. */
143                 if (bio->bi_status || PageError(page)) {
144                         ClearPageUptodate(page);
145                         /* will re-read again later */
146                         ClearPageError(page);
147                 } else {
148                         SetPageUptodate(page);
149                 }
150                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151                 unlock_page(page);
152         }
153
154         if (bio->bi_private)
155                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156         bio_put(bio);
157 }
158
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161         struct bio_post_read_ctx *ctx =
162                 container_of(work, struct bio_post_read_ctx, work);
163         struct bio *bio = ctx->bio;
164         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166         /*
167          * fsverity_verify_bio() may call readahead() again, and while verity
168          * will be disabled for this, decryption and/or decompression may still
169          * be needed, resulting in another bio_post_read_ctx being allocated.
170          * So to prevent deadlocks we need to release the current ctx to the
171          * mempool first.  This assumes that verity is the last post-read step.
172          */
173         mempool_free(ctx, bio_post_read_ctx_pool);
174         bio->bi_private = NULL;
175
176         /*
177          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178          * as those were handled separately by f2fs_end_read_compressed_page().
179          */
180         if (may_have_compressed_pages) {
181                 struct bio_vec *bv;
182                 struct bvec_iter_all iter_all;
183
184                 bio_for_each_segment_all(bv, bio, iter_all) {
185                         struct page *page = bv->bv_page;
186
187                         if (!f2fs_is_compressed_page(page) &&
188                             !PageError(page) && !fsverity_verify_page(page))
189                                 SetPageError(page);
190                 }
191         } else {
192                 fsverity_verify_bio(bio);
193         }
194
195         f2fs_finish_read_bio(bio, true);
196 }
197
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
208 {
209         struct bio_post_read_ctx *ctx = bio->bi_private;
210
211         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212                 INIT_WORK(&ctx->work, f2fs_verify_bio);
213                 fsverity_enqueue_verify_work(&ctx->work);
214         } else {
215                 f2fs_finish_read_bio(bio, in_task);
216         }
217 }
218
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
229                 bool in_task)
230 {
231         struct bio_vec *bv;
232         struct bvec_iter_all iter_all;
233         bool all_compressed = true;
234         block_t blkaddr = ctx->fs_blkaddr;
235
236         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237                 struct page *page = bv->bv_page;
238
239                 /* PG_error was set if decryption failed. */
240                 if (f2fs_is_compressed_page(page))
241                         f2fs_end_read_compressed_page(page, PageError(page),
242                                                 blkaddr, in_task);
243                 else
244                         all_compressed = false;
245
246                 blkaddr++;
247         }
248
249         /*
250          * Optimization: if all the bio's pages are compressed, then scheduling
251          * the per-bio verity work is unnecessary, as verity will be fully
252          * handled at the compression cluster level.
253          */
254         if (all_compressed)
255                 ctx->enabled_steps &= ~STEP_VERITY;
256 }
257
258 static void f2fs_post_read_work(struct work_struct *work)
259 {
260         struct bio_post_read_ctx *ctx =
261                 container_of(work, struct bio_post_read_ctx, work);
262
263         if (ctx->enabled_steps & STEP_DECRYPT)
264                 fscrypt_decrypt_bio(ctx->bio);
265
266         if (ctx->enabled_steps & STEP_DECOMPRESS)
267                 f2fs_handle_step_decompress(ctx, true);
268
269         f2fs_verify_and_finish_bio(ctx->bio, true);
270 }
271
272 static void f2fs_read_end_io(struct bio *bio)
273 {
274         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
275         struct bio_post_read_ctx *ctx;
276         bool intask = in_task();
277
278         iostat_update_and_unbind_ctx(bio, 0);
279         ctx = bio->bi_private;
280
281         if (time_to_inject(sbi, FAULT_READ_IO)) {
282                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
283                 bio->bi_status = BLK_STS_IOERR;
284         }
285
286         if (bio->bi_status) {
287                 f2fs_finish_read_bio(bio, intask);
288                 return;
289         }
290
291         if (ctx) {
292                 unsigned int enabled_steps = ctx->enabled_steps &
293                                         (STEP_DECRYPT | STEP_DECOMPRESS);
294
295                 /*
296                  * If we have only decompression step between decompression and
297                  * decrypt, we don't need post processing for this.
298                  */
299                 if (enabled_steps == STEP_DECOMPRESS &&
300                                 !f2fs_low_mem_mode(sbi)) {
301                         f2fs_handle_step_decompress(ctx, intask);
302                 } else if (enabled_steps) {
303                         INIT_WORK(&ctx->work, f2fs_post_read_work);
304                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
305                         return;
306                 }
307         }
308
309         f2fs_verify_and_finish_bio(bio, intask);
310 }
311
312 static void f2fs_write_end_io(struct bio *bio)
313 {
314         struct f2fs_sb_info *sbi;
315         struct bio_vec *bvec;
316         struct bvec_iter_all iter_all;
317
318         iostat_update_and_unbind_ctx(bio, 1);
319         sbi = bio->bi_private;
320
321         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
322                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
323                 bio->bi_status = BLK_STS_IOERR;
324         }
325
326         bio_for_each_segment_all(bvec, bio, iter_all) {
327                 struct page *page = bvec->bv_page;
328                 enum count_type type = WB_DATA_TYPE(page);
329
330                 if (page_private_dummy(page)) {
331                         clear_page_private_dummy(page);
332                         unlock_page(page);
333                         mempool_free(page, sbi->write_io_dummy);
334
335                         if (unlikely(bio->bi_status))
336                                 f2fs_stop_checkpoint(sbi, true);
337                         continue;
338                 }
339
340                 fscrypt_finalize_bounce_page(&page);
341
342 #ifdef CONFIG_F2FS_FS_COMPRESSION
343                 if (f2fs_is_compressed_page(page)) {
344                         f2fs_compress_write_end_io(bio, page);
345                         continue;
346                 }
347 #endif
348
349                 if (unlikely(bio->bi_status)) {
350                         mapping_set_error(page->mapping, -EIO);
351                         if (type == F2FS_WB_CP_DATA)
352                                 f2fs_stop_checkpoint(sbi, true);
353                 }
354
355                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
356                                         page->index != nid_of_node(page));
357
358                 dec_page_count(sbi, type);
359                 if (f2fs_in_warm_node_list(sbi, page))
360                         f2fs_del_fsync_node_entry(sbi, page);
361                 clear_page_private_gcing(page);
362                 end_page_writeback(page);
363         }
364         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
365                                 wq_has_sleeper(&sbi->cp_wait))
366                 wake_up(&sbi->cp_wait);
367
368         bio_put(bio);
369 }
370
371 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
372                 block_t blk_addr, sector_t *sector)
373 {
374         struct block_device *bdev = sbi->sb->s_bdev;
375         int i;
376
377         if (f2fs_is_multi_device(sbi)) {
378                 for (i = 0; i < sbi->s_ndevs; i++) {
379                         if (FDEV(i).start_blk <= blk_addr &&
380                             FDEV(i).end_blk >= blk_addr) {
381                                 blk_addr -= FDEV(i).start_blk;
382                                 bdev = FDEV(i).bdev;
383                                 break;
384                         }
385                 }
386         }
387
388         if (sector)
389                 *sector = SECTOR_FROM_BLOCK(blk_addr);
390         return bdev;
391 }
392
393 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
394 {
395         int i;
396
397         if (!f2fs_is_multi_device(sbi))
398                 return 0;
399
400         for (i = 0; i < sbi->s_ndevs; i++)
401                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
402                         return i;
403         return 0;
404 }
405
406 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
407 {
408         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
409         unsigned int fua_flag, meta_flag, io_flag;
410         blk_opf_t op_flags = 0;
411
412         if (fio->op != REQ_OP_WRITE)
413                 return 0;
414         if (fio->type == DATA)
415                 io_flag = fio->sbi->data_io_flag;
416         else if (fio->type == NODE)
417                 io_flag = fio->sbi->node_io_flag;
418         else
419                 return 0;
420
421         fua_flag = io_flag & temp_mask;
422         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
423
424         /*
425          * data/node io flag bits per temp:
426          *      REQ_META     |      REQ_FUA      |
427          *    5 |    4 |   3 |    2 |    1 |   0 |
428          * Cold | Warm | Hot | Cold | Warm | Hot |
429          */
430         if ((1 << fio->temp) & meta_flag)
431                 op_flags |= REQ_META;
432         if ((1 << fio->temp) & fua_flag)
433                 op_flags |= REQ_FUA;
434         return op_flags;
435 }
436
437 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
438 {
439         struct f2fs_sb_info *sbi = fio->sbi;
440         struct block_device *bdev;
441         sector_t sector;
442         struct bio *bio;
443
444         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
445         bio = bio_alloc_bioset(bdev, npages,
446                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
447                                 GFP_NOIO, &f2fs_bioset);
448         bio->bi_iter.bi_sector = sector;
449         if (is_read_io(fio->op)) {
450                 bio->bi_end_io = f2fs_read_end_io;
451                 bio->bi_private = NULL;
452         } else {
453                 bio->bi_end_io = f2fs_write_end_io;
454                 bio->bi_private = sbi;
455         }
456         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
457
458         if (fio->io_wbc)
459                 wbc_init_bio(fio->io_wbc, bio);
460
461         return bio;
462 }
463
464 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
465                                   pgoff_t first_idx,
466                                   const struct f2fs_io_info *fio,
467                                   gfp_t gfp_mask)
468 {
469         /*
470          * The f2fs garbage collector sets ->encrypted_page when it wants to
471          * read/write raw data without encryption.
472          */
473         if (!fio || !fio->encrypted_page)
474                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
475 }
476
477 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
478                                      pgoff_t next_idx,
479                                      const struct f2fs_io_info *fio)
480 {
481         /*
482          * The f2fs garbage collector sets ->encrypted_page when it wants to
483          * read/write raw data without encryption.
484          */
485         if (fio && fio->encrypted_page)
486                 return !bio_has_crypt_ctx(bio);
487
488         return fscrypt_mergeable_bio(bio, inode, next_idx);
489 }
490
491 static inline void __submit_bio(struct f2fs_sb_info *sbi,
492                                 struct bio *bio, enum page_type type)
493 {
494         if (!is_read_io(bio_op(bio))) {
495                 unsigned int start;
496
497                 if (type != DATA && type != NODE)
498                         goto submit_io;
499
500                 if (f2fs_lfs_mode(sbi) && current->plug)
501                         blk_finish_plug(current->plug);
502
503                 if (!F2FS_IO_ALIGNED(sbi))
504                         goto submit_io;
505
506                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
507                 start %= F2FS_IO_SIZE(sbi);
508
509                 if (start == 0)
510                         goto submit_io;
511
512                 /* fill dummy pages */
513                 for (; start < F2FS_IO_SIZE(sbi); start++) {
514                         struct page *page =
515                                 mempool_alloc(sbi->write_io_dummy,
516                                               GFP_NOIO | __GFP_NOFAIL);
517                         f2fs_bug_on(sbi, !page);
518
519                         lock_page(page);
520
521                         zero_user_segment(page, 0, PAGE_SIZE);
522                         set_page_private_dummy(page);
523
524                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
525                                 f2fs_bug_on(sbi, 1);
526                 }
527                 /*
528                  * In the NODE case, we lose next block address chain. So, we
529                  * need to do checkpoint in f2fs_sync_file.
530                  */
531                 if (type == NODE)
532                         set_sbi_flag(sbi, SBI_NEED_CP);
533         }
534 submit_io:
535         if (is_read_io(bio_op(bio)))
536                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
537         else
538                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
539
540         iostat_update_submit_ctx(bio, type);
541         submit_bio(bio);
542 }
543
544 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
545                                 struct bio *bio, enum page_type type)
546 {
547         __submit_bio(sbi, bio, type);
548 }
549
550 static void __submit_merged_bio(struct f2fs_bio_info *io)
551 {
552         struct f2fs_io_info *fio = &io->fio;
553
554         if (!io->bio)
555                 return;
556
557         if (is_read_io(fio->op))
558                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
559         else
560                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
561
562         __submit_bio(io->sbi, io->bio, fio->type);
563         io->bio = NULL;
564 }
565
566 static bool __has_merged_page(struct bio *bio, struct inode *inode,
567                                                 struct page *page, nid_t ino)
568 {
569         struct bio_vec *bvec;
570         struct bvec_iter_all iter_all;
571
572         if (!bio)
573                 return false;
574
575         if (!inode && !page && !ino)
576                 return true;
577
578         bio_for_each_segment_all(bvec, bio, iter_all) {
579                 struct page *target = bvec->bv_page;
580
581                 if (fscrypt_is_bounce_page(target)) {
582                         target = fscrypt_pagecache_page(target);
583                         if (IS_ERR(target))
584                                 continue;
585                 }
586                 if (f2fs_is_compressed_page(target)) {
587                         target = f2fs_compress_control_page(target);
588                         if (IS_ERR(target))
589                                 continue;
590                 }
591
592                 if (inode && inode == target->mapping->host)
593                         return true;
594                 if (page && page == target)
595                         return true;
596                 if (ino && ino == ino_of_node(target))
597                         return true;
598         }
599
600         return false;
601 }
602
603 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
604 {
605         int i;
606
607         for (i = 0; i < NR_PAGE_TYPE; i++) {
608                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
609                 int j;
610
611                 sbi->write_io[i] = f2fs_kmalloc(sbi,
612                                 array_size(n, sizeof(struct f2fs_bio_info)),
613                                 GFP_KERNEL);
614                 if (!sbi->write_io[i])
615                         return -ENOMEM;
616
617                 for (j = HOT; j < n; j++) {
618                         init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
619                         sbi->write_io[i][j].sbi = sbi;
620                         sbi->write_io[i][j].bio = NULL;
621                         spin_lock_init(&sbi->write_io[i][j].io_lock);
622                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
623                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
624                         init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
625                 }
626         }
627
628         return 0;
629 }
630
631 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
632                                 enum page_type type, enum temp_type temp)
633 {
634         enum page_type btype = PAGE_TYPE_OF_BIO(type);
635         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
636
637         f2fs_down_write(&io->io_rwsem);
638
639         /* change META to META_FLUSH in the checkpoint procedure */
640         if (type >= META_FLUSH) {
641                 io->fio.type = META_FLUSH;
642                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
643                 if (!test_opt(sbi, NOBARRIER))
644                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
645         }
646         __submit_merged_bio(io);
647         f2fs_up_write(&io->io_rwsem);
648 }
649
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651                                 struct inode *inode, struct page *page,
652                                 nid_t ino, enum page_type type, bool force)
653 {
654         enum temp_type temp;
655         bool ret = true;
656
657         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658                 if (!force)     {
659                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
660                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662                         f2fs_down_read(&io->io_rwsem);
663                         ret = __has_merged_page(io->bio, inode, page, ino);
664                         f2fs_up_read(&io->io_rwsem);
665                 }
666                 if (ret)
667                         __f2fs_submit_merged_write(sbi, type, temp);
668
669                 /* TODO: use HOT temp only for meta pages now. */
670                 if (type >= META)
671                         break;
672         }
673 }
674
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681                                 struct inode *inode, struct page *page,
682                                 nid_t ino, enum page_type type)
683 {
684         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689         f2fs_submit_merged_write(sbi, DATA);
690         f2fs_submit_merged_write(sbi, NODE);
691         f2fs_submit_merged_write(sbi, META);
692 }
693
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700         struct bio *bio;
701         struct page *page = fio->encrypted_page ?
702                         fio->encrypted_page : fio->page;
703
704         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
706                         META_GENERIC : DATA_GENERIC_ENHANCE)))
707                 return -EFSCORRUPTED;
708
709         trace_f2fs_submit_page_bio(page, fio);
710
711         /* Allocate a new bio */
712         bio = __bio_alloc(fio, 1);
713
714         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
715                                fio->page->index, fio, GFP_NOIO);
716
717         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
718                 bio_put(bio);
719                 return -EFAULT;
720         }
721
722         if (fio->io_wbc && !is_read_io(fio->op))
723                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
724
725         inc_page_count(fio->sbi, is_read_io(fio->op) ?
726                         __read_io_type(page): WB_DATA_TYPE(fio->page));
727
728         __submit_bio(fio->sbi, bio, fio->type);
729         return 0;
730 }
731
732 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
733                                 block_t last_blkaddr, block_t cur_blkaddr)
734 {
735         if (unlikely(sbi->max_io_bytes &&
736                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
737                 return false;
738         if (last_blkaddr + 1 != cur_blkaddr)
739                 return false;
740         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
741 }
742
743 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
744                                                 struct f2fs_io_info *fio)
745 {
746         if (io->fio.op != fio->op)
747                 return false;
748         return io->fio.op_flags == fio->op_flags;
749 }
750
751 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
752                                         struct f2fs_bio_info *io,
753                                         struct f2fs_io_info *fio,
754                                         block_t last_blkaddr,
755                                         block_t cur_blkaddr)
756 {
757         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
758                 unsigned int filled_blocks =
759                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
760                 unsigned int io_size = F2FS_IO_SIZE(sbi);
761                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
762
763                 /* IOs in bio is aligned and left space of vectors is not enough */
764                 if (!(filled_blocks % io_size) && left_vecs < io_size)
765                         return false;
766         }
767         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
768                 return false;
769         return io_type_is_mergeable(io, fio);
770 }
771
772 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
773                                 struct page *page, enum temp_type temp)
774 {
775         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
776         struct bio_entry *be;
777
778         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
779         be->bio = bio;
780         bio_get(bio);
781
782         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
783                 f2fs_bug_on(sbi, 1);
784
785         f2fs_down_write(&io->bio_list_lock);
786         list_add_tail(&be->list, &io->bio_list);
787         f2fs_up_write(&io->bio_list_lock);
788 }
789
790 static void del_bio_entry(struct bio_entry *be)
791 {
792         list_del(&be->list);
793         kmem_cache_free(bio_entry_slab, be);
794 }
795
796 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
797                                                         struct page *page)
798 {
799         struct f2fs_sb_info *sbi = fio->sbi;
800         enum temp_type temp;
801         bool found = false;
802         int ret = -EAGAIN;
803
804         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
805                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
806                 struct list_head *head = &io->bio_list;
807                 struct bio_entry *be;
808
809                 f2fs_down_write(&io->bio_list_lock);
810                 list_for_each_entry(be, head, list) {
811                         if (be->bio != *bio)
812                                 continue;
813
814                         found = true;
815
816                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
817                                                             *fio->last_block,
818                                                             fio->new_blkaddr));
819                         if (f2fs_crypt_mergeable_bio(*bio,
820                                         fio->page->mapping->host,
821                                         fio->page->index, fio) &&
822                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
823                                         PAGE_SIZE) {
824                                 ret = 0;
825                                 break;
826                         }
827
828                         /* page can't be merged into bio; submit the bio */
829                         del_bio_entry(be);
830                         __submit_bio(sbi, *bio, DATA);
831                         break;
832                 }
833                 f2fs_up_write(&io->bio_list_lock);
834         }
835
836         if (ret) {
837                 bio_put(*bio);
838                 *bio = NULL;
839         }
840
841         return ret;
842 }
843
844 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
845                                         struct bio **bio, struct page *page)
846 {
847         enum temp_type temp;
848         bool found = false;
849         struct bio *target = bio ? *bio : NULL;
850
851         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
852                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
853                 struct list_head *head = &io->bio_list;
854                 struct bio_entry *be;
855
856                 if (list_empty(head))
857                         continue;
858
859                 f2fs_down_read(&io->bio_list_lock);
860                 list_for_each_entry(be, head, list) {
861                         if (target)
862                                 found = (target == be->bio);
863                         else
864                                 found = __has_merged_page(be->bio, NULL,
865                                                                 page, 0);
866                         if (found)
867                                 break;
868                 }
869                 f2fs_up_read(&io->bio_list_lock);
870
871                 if (!found)
872                         continue;
873
874                 found = false;
875
876                 f2fs_down_write(&io->bio_list_lock);
877                 list_for_each_entry(be, head, list) {
878                         if (target)
879                                 found = (target == be->bio);
880                         else
881                                 found = __has_merged_page(be->bio, NULL,
882                                                                 page, 0);
883                         if (found) {
884                                 target = be->bio;
885                                 del_bio_entry(be);
886                                 break;
887                         }
888                 }
889                 f2fs_up_write(&io->bio_list_lock);
890         }
891
892         if (found)
893                 __submit_bio(sbi, target, DATA);
894         if (bio && *bio) {
895                 bio_put(*bio);
896                 *bio = NULL;
897         }
898 }
899
900 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
901 {
902         struct bio *bio = *fio->bio;
903         struct page *page = fio->encrypted_page ?
904                         fio->encrypted_page : fio->page;
905
906         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
907                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
908                 return -EFSCORRUPTED;
909
910         trace_f2fs_submit_page_bio(page, fio);
911
912         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
913                                                 fio->new_blkaddr))
914                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
915 alloc_new:
916         if (!bio) {
917                 bio = __bio_alloc(fio, BIO_MAX_VECS);
918                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
919                                        fio->page->index, fio, GFP_NOIO);
920
921                 add_bio_entry(fio->sbi, bio, page, fio->temp);
922         } else {
923                 if (add_ipu_page(fio, &bio, page))
924                         goto alloc_new;
925         }
926
927         if (fio->io_wbc)
928                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
929
930         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
931
932         *fio->last_block = fio->new_blkaddr;
933         *fio->bio = bio;
934
935         return 0;
936 }
937
938 void f2fs_submit_page_write(struct f2fs_io_info *fio)
939 {
940         struct f2fs_sb_info *sbi = fio->sbi;
941         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
942         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
943         struct page *bio_page;
944
945         f2fs_bug_on(sbi, is_read_io(fio->op));
946
947         f2fs_down_write(&io->io_rwsem);
948 next:
949         if (fio->in_list) {
950                 spin_lock(&io->io_lock);
951                 if (list_empty(&io->io_list)) {
952                         spin_unlock(&io->io_lock);
953                         goto out;
954                 }
955                 fio = list_first_entry(&io->io_list,
956                                                 struct f2fs_io_info, list);
957                 list_del(&fio->list);
958                 spin_unlock(&io->io_lock);
959         }
960
961         verify_fio_blkaddr(fio);
962
963         if (fio->encrypted_page)
964                 bio_page = fio->encrypted_page;
965         else if (fio->compressed_page)
966                 bio_page = fio->compressed_page;
967         else
968                 bio_page = fio->page;
969
970         /* set submitted = true as a return value */
971         fio->submitted = true;
972
973         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
974
975         if (io->bio &&
976             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
977                               fio->new_blkaddr) ||
978              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
979                                        bio_page->index, fio)))
980                 __submit_merged_bio(io);
981 alloc_new:
982         if (io->bio == NULL) {
983                 if (F2FS_IO_ALIGNED(sbi) &&
984                                 (fio->type == DATA || fio->type == NODE) &&
985                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
986                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
987                         fio->retry = true;
988                         goto skip;
989                 }
990                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
991                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
992                                        bio_page->index, fio, GFP_NOIO);
993                 io->fio = *fio;
994         }
995
996         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
997                 __submit_merged_bio(io);
998                 goto alloc_new;
999         }
1000
1001         if (fio->io_wbc)
1002                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1003
1004         io->last_block_in_bio = fio->new_blkaddr;
1005
1006         trace_f2fs_submit_page_write(fio->page, fio);
1007 skip:
1008         if (fio->in_list)
1009                 goto next;
1010 out:
1011         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1012                                 !f2fs_is_checkpoint_ready(sbi))
1013                 __submit_merged_bio(io);
1014         f2fs_up_write(&io->io_rwsem);
1015 }
1016
1017 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1018                                       unsigned nr_pages, blk_opf_t op_flag,
1019                                       pgoff_t first_idx, bool for_write)
1020 {
1021         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1022         struct bio *bio;
1023         struct bio_post_read_ctx *ctx = NULL;
1024         unsigned int post_read_steps = 0;
1025         sector_t sector;
1026         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1027
1028         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1029                                REQ_OP_READ | op_flag,
1030                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1031         if (!bio)
1032                 return ERR_PTR(-ENOMEM);
1033         bio->bi_iter.bi_sector = sector;
1034         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1035         bio->bi_end_io = f2fs_read_end_io;
1036
1037         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1038                 post_read_steps |= STEP_DECRYPT;
1039
1040         if (f2fs_need_verity(inode, first_idx))
1041                 post_read_steps |= STEP_VERITY;
1042
1043         /*
1044          * STEP_DECOMPRESS is handled specially, since a compressed file might
1045          * contain both compressed and uncompressed clusters.  We'll allocate a
1046          * bio_post_read_ctx if the file is compressed, but the caller is
1047          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1048          */
1049
1050         if (post_read_steps || f2fs_compressed_file(inode)) {
1051                 /* Due to the mempool, this never fails. */
1052                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1053                 ctx->bio = bio;
1054                 ctx->sbi = sbi;
1055                 ctx->enabled_steps = post_read_steps;
1056                 ctx->fs_blkaddr = blkaddr;
1057                 bio->bi_private = ctx;
1058         }
1059         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1060
1061         return bio;
1062 }
1063
1064 /* This can handle encryption stuffs */
1065 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1066                                  block_t blkaddr, blk_opf_t op_flags,
1067                                  bool for_write)
1068 {
1069         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1070         struct bio *bio;
1071
1072         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1073                                         page->index, for_write);
1074         if (IS_ERR(bio))
1075                 return PTR_ERR(bio);
1076
1077         /* wait for GCed page writeback via META_MAPPING */
1078         f2fs_wait_on_block_writeback(inode, blkaddr);
1079
1080         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1081                 bio_put(bio);
1082                 return -EFAULT;
1083         }
1084         ClearPageError(page);
1085         inc_page_count(sbi, F2FS_RD_DATA);
1086         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1087         __submit_bio(sbi, bio, DATA);
1088         return 0;
1089 }
1090
1091 static void __set_data_blkaddr(struct dnode_of_data *dn)
1092 {
1093         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1094         __le32 *addr_array;
1095         int base = 0;
1096
1097         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1098                 base = get_extra_isize(dn->inode);
1099
1100         /* Get physical address of data block */
1101         addr_array = blkaddr_in_node(rn);
1102         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1103 }
1104
1105 /*
1106  * Lock ordering for the change of data block address:
1107  * ->data_page
1108  *  ->node_page
1109  *    update block addresses in the node page
1110  */
1111 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1112 {
1113         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1114         __set_data_blkaddr(dn);
1115         if (set_page_dirty(dn->node_page))
1116                 dn->node_changed = true;
1117 }
1118
1119 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1120 {
1121         dn->data_blkaddr = blkaddr;
1122         f2fs_set_data_blkaddr(dn);
1123         f2fs_update_extent_cache(dn);
1124 }
1125
1126 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1127 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1128 {
1129         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1130         int err;
1131
1132         if (!count)
1133                 return 0;
1134
1135         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1136                 return -EPERM;
1137         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1138                 return err;
1139
1140         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1141                                                 dn->ofs_in_node, count);
1142
1143         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1144
1145         for (; count > 0; dn->ofs_in_node++) {
1146                 block_t blkaddr = f2fs_data_blkaddr(dn);
1147
1148                 if (blkaddr == NULL_ADDR) {
1149                         dn->data_blkaddr = NEW_ADDR;
1150                         __set_data_blkaddr(dn);
1151                         count--;
1152                 }
1153         }
1154
1155         if (set_page_dirty(dn->node_page))
1156                 dn->node_changed = true;
1157         return 0;
1158 }
1159
1160 /* Should keep dn->ofs_in_node unchanged */
1161 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1162 {
1163         unsigned int ofs_in_node = dn->ofs_in_node;
1164         int ret;
1165
1166         ret = f2fs_reserve_new_blocks(dn, 1);
1167         dn->ofs_in_node = ofs_in_node;
1168         return ret;
1169 }
1170
1171 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1172 {
1173         bool need_put = dn->inode_page ? false : true;
1174         int err;
1175
1176         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1177         if (err)
1178                 return err;
1179
1180         if (dn->data_blkaddr == NULL_ADDR)
1181                 err = f2fs_reserve_new_block(dn);
1182         if (err || need_put)
1183                 f2fs_put_dnode(dn);
1184         return err;
1185 }
1186
1187 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1188 {
1189         struct extent_info ei = {0, };
1190         struct inode *inode = dn->inode;
1191
1192         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1193                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1194                 return 0;
1195         }
1196
1197         return f2fs_reserve_block(dn, index);
1198 }
1199
1200 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1201                                      blk_opf_t op_flags, bool for_write)
1202 {
1203         struct address_space *mapping = inode->i_mapping;
1204         struct dnode_of_data dn;
1205         struct page *page;
1206         struct extent_info ei = {0, };
1207         int err;
1208
1209         page = f2fs_grab_cache_page(mapping, index, for_write);
1210         if (!page)
1211                 return ERR_PTR(-ENOMEM);
1212
1213         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1214                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1215                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1216                                                 DATA_GENERIC_ENHANCE_READ)) {
1217                         err = -EFSCORRUPTED;
1218                         goto put_err;
1219                 }
1220                 goto got_it;
1221         }
1222
1223         set_new_dnode(&dn, inode, NULL, NULL, 0);
1224         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1225         if (err)
1226                 goto put_err;
1227         f2fs_put_dnode(&dn);
1228
1229         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1230                 err = -ENOENT;
1231                 goto put_err;
1232         }
1233         if (dn.data_blkaddr != NEW_ADDR &&
1234                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1235                                                 dn.data_blkaddr,
1236                                                 DATA_GENERIC_ENHANCE)) {
1237                 err = -EFSCORRUPTED;
1238                 goto put_err;
1239         }
1240 got_it:
1241         if (PageUptodate(page)) {
1242                 unlock_page(page);
1243                 return page;
1244         }
1245
1246         /*
1247          * A new dentry page is allocated but not able to be written, since its
1248          * new inode page couldn't be allocated due to -ENOSPC.
1249          * In such the case, its blkaddr can be remained as NEW_ADDR.
1250          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1251          * f2fs_init_inode_metadata.
1252          */
1253         if (dn.data_blkaddr == NEW_ADDR) {
1254                 zero_user_segment(page, 0, PAGE_SIZE);
1255                 if (!PageUptodate(page))
1256                         SetPageUptodate(page);
1257                 unlock_page(page);
1258                 return page;
1259         }
1260
1261         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1262                                                 op_flags, for_write);
1263         if (err)
1264                 goto put_err;
1265         return page;
1266
1267 put_err:
1268         f2fs_put_page(page, 1);
1269         return ERR_PTR(err);
1270 }
1271
1272 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1273 {
1274         struct address_space *mapping = inode->i_mapping;
1275         struct page *page;
1276
1277         page = find_get_page(mapping, index);
1278         if (page && PageUptodate(page))
1279                 return page;
1280         f2fs_put_page(page, 0);
1281
1282         page = f2fs_get_read_data_page(inode, index, 0, false);
1283         if (IS_ERR(page))
1284                 return page;
1285
1286         if (PageUptodate(page))
1287                 return page;
1288
1289         wait_on_page_locked(page);
1290         if (unlikely(!PageUptodate(page))) {
1291                 f2fs_put_page(page, 0);
1292                 return ERR_PTR(-EIO);
1293         }
1294         return page;
1295 }
1296
1297 /*
1298  * If it tries to access a hole, return an error.
1299  * Because, the callers, functions in dir.c and GC, should be able to know
1300  * whether this page exists or not.
1301  */
1302 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1303                                                         bool for_write)
1304 {
1305         struct address_space *mapping = inode->i_mapping;
1306         struct page *page;
1307 repeat:
1308         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1309         if (IS_ERR(page))
1310                 return page;
1311
1312         /* wait for read completion */
1313         lock_page(page);
1314         if (unlikely(page->mapping != mapping)) {
1315                 f2fs_put_page(page, 1);
1316                 goto repeat;
1317         }
1318         if (unlikely(!PageUptodate(page))) {
1319                 f2fs_put_page(page, 1);
1320                 return ERR_PTR(-EIO);
1321         }
1322         return page;
1323 }
1324
1325 /*
1326  * Caller ensures that this data page is never allocated.
1327  * A new zero-filled data page is allocated in the page cache.
1328  *
1329  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1330  * f2fs_unlock_op().
1331  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1332  * ipage should be released by this function.
1333  */
1334 struct page *f2fs_get_new_data_page(struct inode *inode,
1335                 struct page *ipage, pgoff_t index, bool new_i_size)
1336 {
1337         struct address_space *mapping = inode->i_mapping;
1338         struct page *page;
1339         struct dnode_of_data dn;
1340         int err;
1341
1342         page = f2fs_grab_cache_page(mapping, index, true);
1343         if (!page) {
1344                 /*
1345                  * before exiting, we should make sure ipage will be released
1346                  * if any error occur.
1347                  */
1348                 f2fs_put_page(ipage, 1);
1349                 return ERR_PTR(-ENOMEM);
1350         }
1351
1352         set_new_dnode(&dn, inode, ipage, NULL, 0);
1353         err = f2fs_reserve_block(&dn, index);
1354         if (err) {
1355                 f2fs_put_page(page, 1);
1356                 return ERR_PTR(err);
1357         }
1358         if (!ipage)
1359                 f2fs_put_dnode(&dn);
1360
1361         if (PageUptodate(page))
1362                 goto got_it;
1363
1364         if (dn.data_blkaddr == NEW_ADDR) {
1365                 zero_user_segment(page, 0, PAGE_SIZE);
1366                 if (!PageUptodate(page))
1367                         SetPageUptodate(page);
1368         } else {
1369                 f2fs_put_page(page, 1);
1370
1371                 /* if ipage exists, blkaddr should be NEW_ADDR */
1372                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1373                 page = f2fs_get_lock_data_page(inode, index, true);
1374                 if (IS_ERR(page))
1375                         return page;
1376         }
1377 got_it:
1378         if (new_i_size && i_size_read(inode) <
1379                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1380                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1381         return page;
1382 }
1383
1384 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1385 {
1386         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1387         struct f2fs_summary sum;
1388         struct node_info ni;
1389         block_t old_blkaddr;
1390         blkcnt_t count = 1;
1391         int err;
1392
1393         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1394                 return -EPERM;
1395
1396         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1397         if (err)
1398                 return err;
1399
1400         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1401         if (dn->data_blkaddr != NULL_ADDR)
1402                 goto alloc;
1403
1404         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1405                 return err;
1406
1407 alloc:
1408         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1409         old_blkaddr = dn->data_blkaddr;
1410         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1411                                 &sum, seg_type, NULL);
1412         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1413                 invalidate_mapping_pages(META_MAPPING(sbi),
1414                                         old_blkaddr, old_blkaddr);
1415                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1416         }
1417         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1418         return 0;
1419 }
1420
1421 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1422 {
1423         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1424                 if (lock)
1425                         f2fs_down_read(&sbi->node_change);
1426                 else
1427                         f2fs_up_read(&sbi->node_change);
1428         } else {
1429                 if (lock)
1430                         f2fs_lock_op(sbi);
1431                 else
1432                         f2fs_unlock_op(sbi);
1433         }
1434 }
1435
1436 /*
1437  * f2fs_map_blocks() tries to find or build mapping relationship which
1438  * maps continuous logical blocks to physical blocks, and return such
1439  * info via f2fs_map_blocks structure.
1440  */
1441 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1442                                                 int create, int flag)
1443 {
1444         unsigned int maxblocks = map->m_len;
1445         struct dnode_of_data dn;
1446         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1447         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1448         pgoff_t pgofs, end_offset, end;
1449         int err = 0, ofs = 1;
1450         unsigned int ofs_in_node, last_ofs_in_node;
1451         blkcnt_t prealloc;
1452         struct extent_info ei = {0, };
1453         block_t blkaddr;
1454         unsigned int start_pgofs;
1455         int bidx = 0;
1456
1457         if (!maxblocks)
1458                 return 0;
1459
1460         map->m_bdev = inode->i_sb->s_bdev;
1461         map->m_multidev_dio =
1462                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1463
1464         map->m_len = 0;
1465         map->m_flags = 0;
1466
1467         /* it only supports block size == page size */
1468         pgofs = (pgoff_t)map->m_lblk;
1469         end = pgofs + maxblocks;
1470
1471         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1472                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1473                                                         map->m_may_create)
1474                         goto next_dnode;
1475
1476                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1477                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1478                 map->m_flags = F2FS_MAP_MAPPED;
1479                 if (map->m_next_extent)
1480                         *map->m_next_extent = pgofs + map->m_len;
1481
1482                 /* for hardware encryption, but to avoid potential issue in future */
1483                 if (flag == F2FS_GET_BLOCK_DIO)
1484                         f2fs_wait_on_block_writeback_range(inode,
1485                                                 map->m_pblk, map->m_len);
1486
1487                 if (map->m_multidev_dio) {
1488                         block_t blk_addr = map->m_pblk;
1489
1490                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1491
1492                         map->m_bdev = FDEV(bidx).bdev;
1493                         map->m_pblk -= FDEV(bidx).start_blk;
1494                         map->m_len = min(map->m_len,
1495                                 FDEV(bidx).end_blk + 1 - map->m_pblk);
1496
1497                         if (map->m_may_create)
1498                                 f2fs_update_device_state(sbi, inode->i_ino,
1499                                                         blk_addr, map->m_len);
1500                 }
1501                 goto out;
1502         }
1503
1504 next_dnode:
1505         if (map->m_may_create)
1506                 f2fs_do_map_lock(sbi, flag, true);
1507
1508         /* When reading holes, we need its node page */
1509         set_new_dnode(&dn, inode, NULL, NULL, 0);
1510         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1511         if (err) {
1512                 if (flag == F2FS_GET_BLOCK_BMAP)
1513                         map->m_pblk = 0;
1514
1515                 if (err == -ENOENT) {
1516                         /*
1517                          * There is one exceptional case that read_node_page()
1518                          * may return -ENOENT due to filesystem has been
1519                          * shutdown or cp_error, so force to convert error
1520                          * number to EIO for such case.
1521                          */
1522                         if (map->m_may_create &&
1523                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1524                                 f2fs_cp_error(sbi))) {
1525                                 err = -EIO;
1526                                 goto unlock_out;
1527                         }
1528
1529                         err = 0;
1530                         if (map->m_next_pgofs)
1531                                 *map->m_next_pgofs =
1532                                         f2fs_get_next_page_offset(&dn, pgofs);
1533                         if (map->m_next_extent)
1534                                 *map->m_next_extent =
1535                                         f2fs_get_next_page_offset(&dn, pgofs);
1536                 }
1537                 goto unlock_out;
1538         }
1539
1540         start_pgofs = pgofs;
1541         prealloc = 0;
1542         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1543         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1544
1545 next_block:
1546         blkaddr = f2fs_data_blkaddr(&dn);
1547
1548         if (__is_valid_data_blkaddr(blkaddr) &&
1549                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1550                 err = -EFSCORRUPTED;
1551                 goto sync_out;
1552         }
1553
1554         if (__is_valid_data_blkaddr(blkaddr)) {
1555                 /* use out-place-update for driect IO under LFS mode */
1556                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1557                                                         map->m_may_create) {
1558                         err = __allocate_data_block(&dn, map->m_seg_type);
1559                         if (err)
1560                                 goto sync_out;
1561                         blkaddr = dn.data_blkaddr;
1562                         set_inode_flag(inode, FI_APPEND_WRITE);
1563                 }
1564         } else {
1565                 if (create) {
1566                         if (unlikely(f2fs_cp_error(sbi))) {
1567                                 err = -EIO;
1568                                 goto sync_out;
1569                         }
1570                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1571                                 if (blkaddr == NULL_ADDR) {
1572                                         prealloc++;
1573                                         last_ofs_in_node = dn.ofs_in_node;
1574                                 }
1575                         } else {
1576                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1577                                         flag != F2FS_GET_BLOCK_DIO);
1578                                 err = __allocate_data_block(&dn,
1579                                                         map->m_seg_type);
1580                                 if (!err) {
1581                                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1582                                                 file_need_truncate(inode);
1583                                         set_inode_flag(inode, FI_APPEND_WRITE);
1584                                 }
1585                         }
1586                         if (err)
1587                                 goto sync_out;
1588                         map->m_flags |= F2FS_MAP_NEW;
1589                         blkaddr = dn.data_blkaddr;
1590                 } else {
1591                         if (f2fs_compressed_file(inode) &&
1592                                         f2fs_sanity_check_cluster(&dn) &&
1593                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1594                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1595                                 err = -EFSCORRUPTED;
1596                                 goto sync_out;
1597                         }
1598                         if (flag == F2FS_GET_BLOCK_BMAP) {
1599                                 map->m_pblk = 0;
1600                                 goto sync_out;
1601                         }
1602                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1603                                 goto sync_out;
1604                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1605                                                 blkaddr == NULL_ADDR) {
1606                                 if (map->m_next_pgofs)
1607                                         *map->m_next_pgofs = pgofs + 1;
1608                                 goto sync_out;
1609                         }
1610                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1611                                 /* for defragment case */
1612                                 if (map->m_next_pgofs)
1613                                         *map->m_next_pgofs = pgofs + 1;
1614                                 goto sync_out;
1615                         }
1616                 }
1617         }
1618
1619         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1620                 goto skip;
1621
1622         if (map->m_multidev_dio)
1623                 bidx = f2fs_target_device_index(sbi, blkaddr);
1624
1625         if (map->m_len == 0) {
1626                 /* preallocated unwritten block should be mapped for fiemap. */
1627                 if (blkaddr == NEW_ADDR)
1628                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1629                 map->m_flags |= F2FS_MAP_MAPPED;
1630
1631                 map->m_pblk = blkaddr;
1632                 map->m_len = 1;
1633
1634                 if (map->m_multidev_dio)
1635                         map->m_bdev = FDEV(bidx).bdev;
1636         } else if ((map->m_pblk != NEW_ADDR &&
1637                         blkaddr == (map->m_pblk + ofs)) ||
1638                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1639                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1640                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1641                         goto sync_out;
1642                 ofs++;
1643                 map->m_len++;
1644         } else {
1645                 goto sync_out;
1646         }
1647
1648 skip:
1649         dn.ofs_in_node++;
1650         pgofs++;
1651
1652         /* preallocate blocks in batch for one dnode page */
1653         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1654                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1655
1656                 dn.ofs_in_node = ofs_in_node;
1657                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1658                 if (err)
1659                         goto sync_out;
1660
1661                 map->m_len += dn.ofs_in_node - ofs_in_node;
1662                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1663                         err = -ENOSPC;
1664                         goto sync_out;
1665                 }
1666                 dn.ofs_in_node = end_offset;
1667         }
1668
1669         if (pgofs >= end)
1670                 goto sync_out;
1671         else if (dn.ofs_in_node < end_offset)
1672                 goto next_block;
1673
1674         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1675                 if (map->m_flags & F2FS_MAP_MAPPED) {
1676                         unsigned int ofs = start_pgofs - map->m_lblk;
1677
1678                         f2fs_update_extent_cache_range(&dn,
1679                                 start_pgofs, map->m_pblk + ofs,
1680                                 map->m_len - ofs);
1681                 }
1682         }
1683
1684         f2fs_put_dnode(&dn);
1685
1686         if (map->m_may_create) {
1687                 f2fs_do_map_lock(sbi, flag, false);
1688                 f2fs_balance_fs(sbi, dn.node_changed);
1689         }
1690         goto next_dnode;
1691
1692 sync_out:
1693
1694         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1695                 /*
1696                  * for hardware encryption, but to avoid potential issue
1697                  * in future
1698                  */
1699                 f2fs_wait_on_block_writeback_range(inode,
1700                                                 map->m_pblk, map->m_len);
1701
1702                 if (map->m_multidev_dio) {
1703                         block_t blk_addr = map->m_pblk;
1704
1705                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1706
1707                         map->m_bdev = FDEV(bidx).bdev;
1708                         map->m_pblk -= FDEV(bidx).start_blk;
1709
1710                         if (map->m_may_create)
1711                                 f2fs_update_device_state(sbi, inode->i_ino,
1712                                                         blk_addr, map->m_len);
1713
1714                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1715                                                 FDEV(bidx).end_blk + 1);
1716                 }
1717         }
1718
1719         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1720                 if (map->m_flags & F2FS_MAP_MAPPED) {
1721                         unsigned int ofs = start_pgofs - map->m_lblk;
1722
1723                         f2fs_update_extent_cache_range(&dn,
1724                                 start_pgofs, map->m_pblk + ofs,
1725                                 map->m_len - ofs);
1726                 }
1727                 if (map->m_next_extent)
1728                         *map->m_next_extent = pgofs + 1;
1729         }
1730         f2fs_put_dnode(&dn);
1731 unlock_out:
1732         if (map->m_may_create) {
1733                 f2fs_do_map_lock(sbi, flag, false);
1734                 f2fs_balance_fs(sbi, dn.node_changed);
1735         }
1736 out:
1737         trace_f2fs_map_blocks(inode, map, create, flag, err);
1738         return err;
1739 }
1740
1741 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1742 {
1743         struct f2fs_map_blocks map;
1744         block_t last_lblk;
1745         int err;
1746
1747         if (pos + len > i_size_read(inode))
1748                 return false;
1749
1750         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1751         map.m_next_pgofs = NULL;
1752         map.m_next_extent = NULL;
1753         map.m_seg_type = NO_CHECK_TYPE;
1754         map.m_may_create = false;
1755         last_lblk = F2FS_BLK_ALIGN(pos + len);
1756
1757         while (map.m_lblk < last_lblk) {
1758                 map.m_len = last_lblk - map.m_lblk;
1759                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1760                 if (err || map.m_len == 0)
1761                         return false;
1762                 map.m_lblk += map.m_len;
1763         }
1764         return true;
1765 }
1766
1767 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1768 {
1769         return (bytes >> inode->i_blkbits);
1770 }
1771
1772 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1773 {
1774         return (blks << inode->i_blkbits);
1775 }
1776
1777 static int f2fs_xattr_fiemap(struct inode *inode,
1778                                 struct fiemap_extent_info *fieinfo)
1779 {
1780         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781         struct page *page;
1782         struct node_info ni;
1783         __u64 phys = 0, len;
1784         __u32 flags;
1785         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1786         int err = 0;
1787
1788         if (f2fs_has_inline_xattr(inode)) {
1789                 int offset;
1790
1791                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1792                                                 inode->i_ino, false);
1793                 if (!page)
1794                         return -ENOMEM;
1795
1796                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1797                 if (err) {
1798                         f2fs_put_page(page, 1);
1799                         return err;
1800                 }
1801
1802                 phys = blks_to_bytes(inode, ni.blk_addr);
1803                 offset = offsetof(struct f2fs_inode, i_addr) +
1804                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1805                                         get_inline_xattr_addrs(inode));
1806
1807                 phys += offset;
1808                 len = inline_xattr_size(inode);
1809
1810                 f2fs_put_page(page, 1);
1811
1812                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1813
1814                 if (!xnid)
1815                         flags |= FIEMAP_EXTENT_LAST;
1816
1817                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1818                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1819                 if (err || err == 1)
1820                         return err;
1821         }
1822
1823         if (xnid) {
1824                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1825                 if (!page)
1826                         return -ENOMEM;
1827
1828                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1829                 if (err) {
1830                         f2fs_put_page(page, 1);
1831                         return err;
1832                 }
1833
1834                 phys = blks_to_bytes(inode, ni.blk_addr);
1835                 len = inode->i_sb->s_blocksize;
1836
1837                 f2fs_put_page(page, 1);
1838
1839                 flags = FIEMAP_EXTENT_LAST;
1840         }
1841
1842         if (phys) {
1843                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1844                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1845         }
1846
1847         return (err < 0 ? err : 0);
1848 }
1849
1850 static loff_t max_inode_blocks(struct inode *inode)
1851 {
1852         loff_t result = ADDRS_PER_INODE(inode);
1853         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1854
1855         /* two direct node blocks */
1856         result += (leaf_count * 2);
1857
1858         /* two indirect node blocks */
1859         leaf_count *= NIDS_PER_BLOCK;
1860         result += (leaf_count * 2);
1861
1862         /* one double indirect node block */
1863         leaf_count *= NIDS_PER_BLOCK;
1864         result += leaf_count;
1865
1866         return result;
1867 }
1868
1869 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1870                 u64 start, u64 len)
1871 {
1872         struct f2fs_map_blocks map;
1873         sector_t start_blk, last_blk;
1874         pgoff_t next_pgofs;
1875         u64 logical = 0, phys = 0, size = 0;
1876         u32 flags = 0;
1877         int ret = 0;
1878         bool compr_cluster = false, compr_appended;
1879         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1880         unsigned int count_in_cluster = 0;
1881         loff_t maxbytes;
1882
1883         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1884                 ret = f2fs_precache_extents(inode);
1885                 if (ret)
1886                         return ret;
1887         }
1888
1889         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1890         if (ret)
1891                 return ret;
1892
1893         inode_lock(inode);
1894
1895         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1896         if (start > maxbytes) {
1897                 ret = -EFBIG;
1898                 goto out;
1899         }
1900
1901         if (len > maxbytes || (maxbytes - len) < start)
1902                 len = maxbytes - start;
1903
1904         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1905                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1906                 goto out;
1907         }
1908
1909         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1910                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1911                 if (ret != -EAGAIN)
1912                         goto out;
1913         }
1914
1915         if (bytes_to_blks(inode, len) == 0)
1916                 len = blks_to_bytes(inode, 1);
1917
1918         start_blk = bytes_to_blks(inode, start);
1919         last_blk = bytes_to_blks(inode, start + len - 1);
1920
1921 next:
1922         memset(&map, 0, sizeof(map));
1923         map.m_lblk = start_blk;
1924         map.m_len = bytes_to_blks(inode, len);
1925         map.m_next_pgofs = &next_pgofs;
1926         map.m_seg_type = NO_CHECK_TYPE;
1927
1928         if (compr_cluster) {
1929                 map.m_lblk += 1;
1930                 map.m_len = cluster_size - count_in_cluster;
1931         }
1932
1933         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1934         if (ret)
1935                 goto out;
1936
1937         /* HOLE */
1938         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1939                 start_blk = next_pgofs;
1940
1941                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1942                                                 max_inode_blocks(inode)))
1943                         goto prep_next;
1944
1945                 flags |= FIEMAP_EXTENT_LAST;
1946         }
1947
1948         compr_appended = false;
1949         /* In a case of compressed cluster, append this to the last extent */
1950         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1951                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1952                 compr_appended = true;
1953                 goto skip_fill;
1954         }
1955
1956         if (size) {
1957                 flags |= FIEMAP_EXTENT_MERGED;
1958                 if (IS_ENCRYPTED(inode))
1959                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1960
1961                 ret = fiemap_fill_next_extent(fieinfo, logical,
1962                                 phys, size, flags);
1963                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1964                 if (ret)
1965                         goto out;
1966                 size = 0;
1967         }
1968
1969         if (start_blk > last_blk)
1970                 goto out;
1971
1972 skip_fill:
1973         if (map.m_pblk == COMPRESS_ADDR) {
1974                 compr_cluster = true;
1975                 count_in_cluster = 1;
1976         } else if (compr_appended) {
1977                 unsigned int appended_blks = cluster_size -
1978                                                 count_in_cluster + 1;
1979                 size += blks_to_bytes(inode, appended_blks);
1980                 start_blk += appended_blks;
1981                 compr_cluster = false;
1982         } else {
1983                 logical = blks_to_bytes(inode, start_blk);
1984                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1985                         blks_to_bytes(inode, map.m_pblk) : 0;
1986                 size = blks_to_bytes(inode, map.m_len);
1987                 flags = 0;
1988
1989                 if (compr_cluster) {
1990                         flags = FIEMAP_EXTENT_ENCODED;
1991                         count_in_cluster += map.m_len;
1992                         if (count_in_cluster == cluster_size) {
1993                                 compr_cluster = false;
1994                                 size += blks_to_bytes(inode, 1);
1995                         }
1996                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1997                         flags = FIEMAP_EXTENT_UNWRITTEN;
1998                 }
1999
2000                 start_blk += bytes_to_blks(inode, size);
2001         }
2002
2003 prep_next:
2004         cond_resched();
2005         if (fatal_signal_pending(current))
2006                 ret = -EINTR;
2007         else
2008                 goto next;
2009 out:
2010         if (ret == 1)
2011                 ret = 0;
2012
2013         inode_unlock(inode);
2014         return ret;
2015 }
2016
2017 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2018 {
2019         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2020             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2021                 return inode->i_sb->s_maxbytes;
2022
2023         return i_size_read(inode);
2024 }
2025
2026 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2027                                         unsigned nr_pages,
2028                                         struct f2fs_map_blocks *map,
2029                                         struct bio **bio_ret,
2030                                         sector_t *last_block_in_bio,
2031                                         bool is_readahead)
2032 {
2033         struct bio *bio = *bio_ret;
2034         const unsigned blocksize = blks_to_bytes(inode, 1);
2035         sector_t block_in_file;
2036         sector_t last_block;
2037         sector_t last_block_in_file;
2038         sector_t block_nr;
2039         int ret = 0;
2040
2041         block_in_file = (sector_t)page_index(page);
2042         last_block = block_in_file + nr_pages;
2043         last_block_in_file = bytes_to_blks(inode,
2044                         f2fs_readpage_limit(inode) + blocksize - 1);
2045         if (last_block > last_block_in_file)
2046                 last_block = last_block_in_file;
2047
2048         /* just zeroing out page which is beyond EOF */
2049         if (block_in_file >= last_block)
2050                 goto zero_out;
2051         /*
2052          * Map blocks using the previous result first.
2053          */
2054         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2055                         block_in_file > map->m_lblk &&
2056                         block_in_file < (map->m_lblk + map->m_len))
2057                 goto got_it;
2058
2059         /*
2060          * Then do more f2fs_map_blocks() calls until we are
2061          * done with this page.
2062          */
2063         map->m_lblk = block_in_file;
2064         map->m_len = last_block - block_in_file;
2065
2066         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2067         if (ret)
2068                 goto out;
2069 got_it:
2070         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2071                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2072                 SetPageMappedToDisk(page);
2073
2074                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2075                                                 DATA_GENERIC_ENHANCE_READ)) {
2076                         ret = -EFSCORRUPTED;
2077                         goto out;
2078                 }
2079         } else {
2080 zero_out:
2081                 zero_user_segment(page, 0, PAGE_SIZE);
2082                 if (f2fs_need_verity(inode, page->index) &&
2083                     !fsverity_verify_page(page)) {
2084                         ret = -EIO;
2085                         goto out;
2086                 }
2087                 if (!PageUptodate(page))
2088                         SetPageUptodate(page);
2089                 unlock_page(page);
2090                 goto out;
2091         }
2092
2093         /*
2094          * This page will go to BIO.  Do we need to send this
2095          * BIO off first?
2096          */
2097         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2098                                        *last_block_in_bio, block_nr) ||
2099                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2100 submit_and_realloc:
2101                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2102                 bio = NULL;
2103         }
2104         if (bio == NULL) {
2105                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2106                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2107                                 false);
2108                 if (IS_ERR(bio)) {
2109                         ret = PTR_ERR(bio);
2110                         bio = NULL;
2111                         goto out;
2112                 }
2113         }
2114
2115         /*
2116          * If the page is under writeback, we need to wait for
2117          * its completion to see the correct decrypted data.
2118          */
2119         f2fs_wait_on_block_writeback(inode, block_nr);
2120
2121         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2122                 goto submit_and_realloc;
2123
2124         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2125         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2126         ClearPageError(page);
2127         *last_block_in_bio = block_nr;
2128         goto out;
2129 out:
2130         *bio_ret = bio;
2131         return ret;
2132 }
2133
2134 #ifdef CONFIG_F2FS_FS_COMPRESSION
2135 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2136                                 unsigned nr_pages, sector_t *last_block_in_bio,
2137                                 bool is_readahead, bool for_write)
2138 {
2139         struct dnode_of_data dn;
2140         struct inode *inode = cc->inode;
2141         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2142         struct bio *bio = *bio_ret;
2143         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2144         sector_t last_block_in_file;
2145         const unsigned blocksize = blks_to_bytes(inode, 1);
2146         struct decompress_io_ctx *dic = NULL;
2147         struct extent_info ei = {0, };
2148         bool from_dnode = true;
2149         int i;
2150         int ret = 0;
2151
2152         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2153
2154         last_block_in_file = bytes_to_blks(inode,
2155                         f2fs_readpage_limit(inode) + blocksize - 1);
2156
2157         /* get rid of pages beyond EOF */
2158         for (i = 0; i < cc->cluster_size; i++) {
2159                 struct page *page = cc->rpages[i];
2160
2161                 if (!page)
2162                         continue;
2163                 if ((sector_t)page->index >= last_block_in_file) {
2164                         zero_user_segment(page, 0, PAGE_SIZE);
2165                         if (!PageUptodate(page))
2166                                 SetPageUptodate(page);
2167                 } else if (!PageUptodate(page)) {
2168                         continue;
2169                 }
2170                 unlock_page(page);
2171                 if (for_write)
2172                         put_page(page);
2173                 cc->rpages[i] = NULL;
2174                 cc->nr_rpages--;
2175         }
2176
2177         /* we are done since all pages are beyond EOF */
2178         if (f2fs_cluster_is_empty(cc))
2179                 goto out;
2180
2181         if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2182                 from_dnode = false;
2183
2184         if (!from_dnode)
2185                 goto skip_reading_dnode;
2186
2187         set_new_dnode(&dn, inode, NULL, NULL, 0);
2188         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2189         if (ret)
2190                 goto out;
2191
2192         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2193
2194 skip_reading_dnode:
2195         for (i = 1; i < cc->cluster_size; i++) {
2196                 block_t blkaddr;
2197
2198                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2199                                         dn.ofs_in_node + i) :
2200                                         ei.blk + i - 1;
2201
2202                 if (!__is_valid_data_blkaddr(blkaddr))
2203                         break;
2204
2205                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2206                         ret = -EFAULT;
2207                         goto out_put_dnode;
2208                 }
2209                 cc->nr_cpages++;
2210
2211                 if (!from_dnode && i >= ei.c_len)
2212                         break;
2213         }
2214
2215         /* nothing to decompress */
2216         if (cc->nr_cpages == 0) {
2217                 ret = 0;
2218                 goto out_put_dnode;
2219         }
2220
2221         dic = f2fs_alloc_dic(cc);
2222         if (IS_ERR(dic)) {
2223                 ret = PTR_ERR(dic);
2224                 goto out_put_dnode;
2225         }
2226
2227         for (i = 0; i < cc->nr_cpages; i++) {
2228                 struct page *page = dic->cpages[i];
2229                 block_t blkaddr;
2230                 struct bio_post_read_ctx *ctx;
2231
2232                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2233                                         dn.ofs_in_node + i + 1) :
2234                                         ei.blk + i;
2235
2236                 f2fs_wait_on_block_writeback(inode, blkaddr);
2237
2238                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2239                         if (atomic_dec_and_test(&dic->remaining_pages))
2240                                 f2fs_decompress_cluster(dic, true);
2241                         continue;
2242                 }
2243
2244                 if (bio && (!page_is_mergeable(sbi, bio,
2245                                         *last_block_in_bio, blkaddr) ||
2246                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2247 submit_and_realloc:
2248                         __submit_bio(sbi, bio, DATA);
2249                         bio = NULL;
2250                 }
2251
2252                 if (!bio) {
2253                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2254                                         is_readahead ? REQ_RAHEAD : 0,
2255                                         page->index, for_write);
2256                         if (IS_ERR(bio)) {
2257                                 ret = PTR_ERR(bio);
2258                                 f2fs_decompress_end_io(dic, ret, true);
2259                                 f2fs_put_dnode(&dn);
2260                                 *bio_ret = NULL;
2261                                 return ret;
2262                         }
2263                 }
2264
2265                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2266                         goto submit_and_realloc;
2267
2268                 ctx = get_post_read_ctx(bio);
2269                 ctx->enabled_steps |= STEP_DECOMPRESS;
2270                 refcount_inc(&dic->refcnt);
2271
2272                 inc_page_count(sbi, F2FS_RD_DATA);
2273                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2274                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2275                 ClearPageError(page);
2276                 *last_block_in_bio = blkaddr;
2277         }
2278
2279         if (from_dnode)
2280                 f2fs_put_dnode(&dn);
2281
2282         *bio_ret = bio;
2283         return 0;
2284
2285 out_put_dnode:
2286         if (from_dnode)
2287                 f2fs_put_dnode(&dn);
2288 out:
2289         for (i = 0; i < cc->cluster_size; i++) {
2290                 if (cc->rpages[i]) {
2291                         ClearPageUptodate(cc->rpages[i]);
2292                         ClearPageError(cc->rpages[i]);
2293                         unlock_page(cc->rpages[i]);
2294                 }
2295         }
2296         *bio_ret = bio;
2297         return ret;
2298 }
2299 #endif
2300
2301 /*
2302  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2303  * Major change was from block_size == page_size in f2fs by default.
2304  */
2305 static int f2fs_mpage_readpages(struct inode *inode,
2306                 struct readahead_control *rac, struct page *page)
2307 {
2308         struct bio *bio = NULL;
2309         sector_t last_block_in_bio = 0;
2310         struct f2fs_map_blocks map;
2311 #ifdef CONFIG_F2FS_FS_COMPRESSION
2312         struct compress_ctx cc = {
2313                 .inode = inode,
2314                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2315                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2316                 .cluster_idx = NULL_CLUSTER,
2317                 .rpages = NULL,
2318                 .cpages = NULL,
2319                 .nr_rpages = 0,
2320                 .nr_cpages = 0,
2321         };
2322         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2323 #endif
2324         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2325         unsigned max_nr_pages = nr_pages;
2326         int ret = 0;
2327
2328         map.m_pblk = 0;
2329         map.m_lblk = 0;
2330         map.m_len = 0;
2331         map.m_flags = 0;
2332         map.m_next_pgofs = NULL;
2333         map.m_next_extent = NULL;
2334         map.m_seg_type = NO_CHECK_TYPE;
2335         map.m_may_create = false;
2336
2337         for (; nr_pages; nr_pages--) {
2338                 if (rac) {
2339                         page = readahead_page(rac);
2340                         prefetchw(&page->flags);
2341                 }
2342
2343 #ifdef CONFIG_F2FS_FS_COMPRESSION
2344                 if (f2fs_compressed_file(inode)) {
2345                         /* there are remained comressed pages, submit them */
2346                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2347                                 ret = f2fs_read_multi_pages(&cc, &bio,
2348                                                         max_nr_pages,
2349                                                         &last_block_in_bio,
2350                                                         rac != NULL, false);
2351                                 f2fs_destroy_compress_ctx(&cc, false);
2352                                 if (ret)
2353                                         goto set_error_page;
2354                         }
2355                         if (cc.cluster_idx == NULL_CLUSTER) {
2356                                 if (nc_cluster_idx ==
2357                                         page->index >> cc.log_cluster_size) {
2358                                         goto read_single_page;
2359                                 }
2360
2361                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2362                                 if (ret < 0)
2363                                         goto set_error_page;
2364                                 else if (!ret) {
2365                                         nc_cluster_idx =
2366                                                 page->index >> cc.log_cluster_size;
2367                                         goto read_single_page;
2368                                 }
2369
2370                                 nc_cluster_idx = NULL_CLUSTER;
2371                         }
2372                         ret = f2fs_init_compress_ctx(&cc);
2373                         if (ret)
2374                                 goto set_error_page;
2375
2376                         f2fs_compress_ctx_add_page(&cc, page);
2377
2378                         goto next_page;
2379                 }
2380 read_single_page:
2381 #endif
2382
2383                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2384                                         &bio, &last_block_in_bio, rac);
2385                 if (ret) {
2386 #ifdef CONFIG_F2FS_FS_COMPRESSION
2387 set_error_page:
2388 #endif
2389                         SetPageError(page);
2390                         zero_user_segment(page, 0, PAGE_SIZE);
2391                         unlock_page(page);
2392                 }
2393 #ifdef CONFIG_F2FS_FS_COMPRESSION
2394 next_page:
2395 #endif
2396                 if (rac)
2397                         put_page(page);
2398
2399 #ifdef CONFIG_F2FS_FS_COMPRESSION
2400                 if (f2fs_compressed_file(inode)) {
2401                         /* last page */
2402                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2403                                 ret = f2fs_read_multi_pages(&cc, &bio,
2404                                                         max_nr_pages,
2405                                                         &last_block_in_bio,
2406                                                         rac != NULL, false);
2407                                 f2fs_destroy_compress_ctx(&cc, false);
2408                         }
2409                 }
2410 #endif
2411         }
2412         if (bio)
2413                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2414         return ret;
2415 }
2416
2417 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2418 {
2419         struct page *page = &folio->page;
2420         struct inode *inode = page_file_mapping(page)->host;
2421         int ret = -EAGAIN;
2422
2423         trace_f2fs_readpage(page, DATA);
2424
2425         if (!f2fs_is_compress_backend_ready(inode)) {
2426                 unlock_page(page);
2427                 return -EOPNOTSUPP;
2428         }
2429
2430         /* If the file has inline data, try to read it directly */
2431         if (f2fs_has_inline_data(inode))
2432                 ret = f2fs_read_inline_data(inode, page);
2433         if (ret == -EAGAIN)
2434                 ret = f2fs_mpage_readpages(inode, NULL, page);
2435         return ret;
2436 }
2437
2438 static void f2fs_readahead(struct readahead_control *rac)
2439 {
2440         struct inode *inode = rac->mapping->host;
2441
2442         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2443
2444         if (!f2fs_is_compress_backend_ready(inode))
2445                 return;
2446
2447         /* If the file has inline data, skip readahead */
2448         if (f2fs_has_inline_data(inode))
2449                 return;
2450
2451         f2fs_mpage_readpages(inode, rac, NULL);
2452 }
2453
2454 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2455 {
2456         struct inode *inode = fio->page->mapping->host;
2457         struct page *mpage, *page;
2458         gfp_t gfp_flags = GFP_NOFS;
2459
2460         if (!f2fs_encrypted_file(inode))
2461                 return 0;
2462
2463         page = fio->compressed_page ? fio->compressed_page : fio->page;
2464
2465         /* wait for GCed page writeback via META_MAPPING */
2466         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2467
2468         if (fscrypt_inode_uses_inline_crypto(inode))
2469                 return 0;
2470
2471 retry_encrypt:
2472         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2473                                         PAGE_SIZE, 0, gfp_flags);
2474         if (IS_ERR(fio->encrypted_page)) {
2475                 /* flush pending IOs and wait for a while in the ENOMEM case */
2476                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2477                         f2fs_flush_merged_writes(fio->sbi);
2478                         memalloc_retry_wait(GFP_NOFS);
2479                         gfp_flags |= __GFP_NOFAIL;
2480                         goto retry_encrypt;
2481                 }
2482                 return PTR_ERR(fio->encrypted_page);
2483         }
2484
2485         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2486         if (mpage) {
2487                 if (PageUptodate(mpage))
2488                         memcpy(page_address(mpage),
2489                                 page_address(fio->encrypted_page), PAGE_SIZE);
2490                 f2fs_put_page(mpage, 1);
2491         }
2492         return 0;
2493 }
2494
2495 static inline bool check_inplace_update_policy(struct inode *inode,
2496                                 struct f2fs_io_info *fio)
2497 {
2498         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2499         unsigned int policy = SM_I(sbi)->ipu_policy;
2500
2501         if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2502                         is_inode_flag_set(inode, FI_OPU_WRITE))
2503                 return false;
2504         if (policy & (0x1 << F2FS_IPU_FORCE))
2505                 return true;
2506         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2507                 return true;
2508         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2509                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2510                 return true;
2511         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2512                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2513                 return true;
2514
2515         /*
2516          * IPU for rewrite async pages
2517          */
2518         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2519                         fio && fio->op == REQ_OP_WRITE &&
2520                         !(fio->op_flags & REQ_SYNC) &&
2521                         !IS_ENCRYPTED(inode))
2522                 return true;
2523
2524         /* this is only set during fdatasync */
2525         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2526                         is_inode_flag_set(inode, FI_NEED_IPU))
2527                 return true;
2528
2529         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2530                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2531                 return true;
2532
2533         return false;
2534 }
2535
2536 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2537 {
2538         /* swap file is migrating in aligned write mode */
2539         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2540                 return false;
2541
2542         if (f2fs_is_pinned_file(inode))
2543                 return true;
2544
2545         /* if this is cold file, we should overwrite to avoid fragmentation */
2546         if (file_is_cold(inode))
2547                 return true;
2548
2549         return check_inplace_update_policy(inode, fio);
2550 }
2551
2552 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2553 {
2554         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2555
2556         /* The below cases were checked when setting it. */
2557         if (f2fs_is_pinned_file(inode))
2558                 return false;
2559         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2560                 return true;
2561         if (f2fs_lfs_mode(sbi))
2562                 return true;
2563         if (S_ISDIR(inode->i_mode))
2564                 return true;
2565         if (IS_NOQUOTA(inode))
2566                 return true;
2567         if (f2fs_is_atomic_file(inode))
2568                 return true;
2569
2570         /* swap file is migrating in aligned write mode */
2571         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2572                 return true;
2573
2574         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2575                 return true;
2576
2577         if (fio) {
2578                 if (page_private_gcing(fio->page))
2579                         return true;
2580                 if (page_private_dummy(fio->page))
2581                         return true;
2582                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2583                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2584                         return true;
2585         }
2586         return false;
2587 }
2588
2589 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2590 {
2591         struct inode *inode = fio->page->mapping->host;
2592
2593         if (f2fs_should_update_outplace(inode, fio))
2594                 return false;
2595
2596         return f2fs_should_update_inplace(inode, fio);
2597 }
2598
2599 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2600 {
2601         struct page *page = fio->page;
2602         struct inode *inode = page->mapping->host;
2603         struct dnode_of_data dn;
2604         struct extent_info ei = {0, };
2605         struct node_info ni;
2606         bool ipu_force = false;
2607         int err = 0;
2608
2609         /* Use COW inode to make dnode_of_data for atomic write */
2610         if (f2fs_is_atomic_file(inode))
2611                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2612         else
2613                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2614
2615         if (need_inplace_update(fio) &&
2616                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2617                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2618
2619                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2620                                                 DATA_GENERIC_ENHANCE))
2621                         return -EFSCORRUPTED;
2622
2623                 ipu_force = true;
2624                 fio->need_lock = LOCK_DONE;
2625                 goto got_it;
2626         }
2627
2628         /* Deadlock due to between page->lock and f2fs_lock_op */
2629         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2630                 return -EAGAIN;
2631
2632         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2633         if (err)
2634                 goto out;
2635
2636         fio->old_blkaddr = dn.data_blkaddr;
2637
2638         /* This page is already truncated */
2639         if (fio->old_blkaddr == NULL_ADDR) {
2640                 ClearPageUptodate(page);
2641                 clear_page_private_gcing(page);
2642                 goto out_writepage;
2643         }
2644 got_it:
2645         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2646                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2647                                                 DATA_GENERIC_ENHANCE)) {
2648                 err = -EFSCORRUPTED;
2649                 goto out_writepage;
2650         }
2651
2652         /*
2653          * If current allocation needs SSR,
2654          * it had better in-place writes for updated data.
2655          */
2656         if (ipu_force ||
2657                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2658                                         need_inplace_update(fio))) {
2659                 err = f2fs_encrypt_one_page(fio);
2660                 if (err)
2661                         goto out_writepage;
2662
2663                 set_page_writeback(page);
2664                 ClearPageError(page);
2665                 f2fs_put_dnode(&dn);
2666                 if (fio->need_lock == LOCK_REQ)
2667                         f2fs_unlock_op(fio->sbi);
2668                 err = f2fs_inplace_write_data(fio);
2669                 if (err) {
2670                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2671                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2672                         if (PageWriteback(page))
2673                                 end_page_writeback(page);
2674                 } else {
2675                         set_inode_flag(inode, FI_UPDATE_WRITE);
2676                 }
2677                 trace_f2fs_do_write_data_page(fio->page, IPU);
2678                 return err;
2679         }
2680
2681         if (fio->need_lock == LOCK_RETRY) {
2682                 if (!f2fs_trylock_op(fio->sbi)) {
2683                         err = -EAGAIN;
2684                         goto out_writepage;
2685                 }
2686                 fio->need_lock = LOCK_REQ;
2687         }
2688
2689         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2690         if (err)
2691                 goto out_writepage;
2692
2693         fio->version = ni.version;
2694
2695         err = f2fs_encrypt_one_page(fio);
2696         if (err)
2697                 goto out_writepage;
2698
2699         set_page_writeback(page);
2700         ClearPageError(page);
2701
2702         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2703                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2704
2705         /* LFS mode write path */
2706         f2fs_outplace_write_data(&dn, fio);
2707         trace_f2fs_do_write_data_page(page, OPU);
2708         set_inode_flag(inode, FI_APPEND_WRITE);
2709         if (page->index == 0)
2710                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2711 out_writepage:
2712         f2fs_put_dnode(&dn);
2713 out:
2714         if (fio->need_lock == LOCK_REQ)
2715                 f2fs_unlock_op(fio->sbi);
2716         return err;
2717 }
2718
2719 int f2fs_write_single_data_page(struct page *page, int *submitted,
2720                                 struct bio **bio,
2721                                 sector_t *last_block,
2722                                 struct writeback_control *wbc,
2723                                 enum iostat_type io_type,
2724                                 int compr_blocks,
2725                                 bool allow_balance)
2726 {
2727         struct inode *inode = page->mapping->host;
2728         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2729         loff_t i_size = i_size_read(inode);
2730         const pgoff_t end_index = ((unsigned long long)i_size)
2731                                                         >> PAGE_SHIFT;
2732         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2733         unsigned offset = 0;
2734         bool need_balance_fs = false;
2735         int err = 0;
2736         struct f2fs_io_info fio = {
2737                 .sbi = sbi,
2738                 .ino = inode->i_ino,
2739                 .type = DATA,
2740                 .op = REQ_OP_WRITE,
2741                 .op_flags = wbc_to_write_flags(wbc),
2742                 .old_blkaddr = NULL_ADDR,
2743                 .page = page,
2744                 .encrypted_page = NULL,
2745                 .submitted = false,
2746                 .compr_blocks = compr_blocks,
2747                 .need_lock = LOCK_RETRY,
2748                 .post_read = f2fs_post_read_required(inode),
2749                 .io_type = io_type,
2750                 .io_wbc = wbc,
2751                 .bio = bio,
2752                 .last_block = last_block,
2753         };
2754
2755         trace_f2fs_writepage(page, DATA);
2756
2757         /* we should bypass data pages to proceed the kworkder jobs */
2758         if (unlikely(f2fs_cp_error(sbi))) {
2759                 mapping_set_error(page->mapping, -EIO);
2760                 /*
2761                  * don't drop any dirty dentry pages for keeping lastest
2762                  * directory structure.
2763                  */
2764                 if (S_ISDIR(inode->i_mode))
2765                         goto redirty_out;
2766                 goto out;
2767         }
2768
2769         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2770                 goto redirty_out;
2771
2772         if (page->index < end_index ||
2773                         f2fs_verity_in_progress(inode) ||
2774                         compr_blocks)
2775                 goto write;
2776
2777         /*
2778          * If the offset is out-of-range of file size,
2779          * this page does not have to be written to disk.
2780          */
2781         offset = i_size & (PAGE_SIZE - 1);
2782         if ((page->index >= end_index + 1) || !offset)
2783                 goto out;
2784
2785         zero_user_segment(page, offset, PAGE_SIZE);
2786 write:
2787         if (f2fs_is_drop_cache(inode))
2788                 goto out;
2789
2790         /* Dentry/quota blocks are controlled by checkpoint */
2791         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2792                 /*
2793                  * We need to wait for node_write to avoid block allocation during
2794                  * checkpoint. This can only happen to quota writes which can cause
2795                  * the below discard race condition.
2796                  */
2797                 if (IS_NOQUOTA(inode))
2798                         f2fs_down_read(&sbi->node_write);
2799
2800                 fio.need_lock = LOCK_DONE;
2801                 err = f2fs_do_write_data_page(&fio);
2802
2803                 if (IS_NOQUOTA(inode))
2804                         f2fs_up_read(&sbi->node_write);
2805
2806                 goto done;
2807         }
2808
2809         if (!wbc->for_reclaim)
2810                 need_balance_fs = true;
2811         else if (has_not_enough_free_secs(sbi, 0, 0))
2812                 goto redirty_out;
2813         else
2814                 set_inode_flag(inode, FI_HOT_DATA);
2815
2816         err = -EAGAIN;
2817         if (f2fs_has_inline_data(inode)) {
2818                 err = f2fs_write_inline_data(inode, page);
2819                 if (!err)
2820                         goto out;
2821         }
2822
2823         if (err == -EAGAIN) {
2824                 err = f2fs_do_write_data_page(&fio);
2825                 if (err == -EAGAIN) {
2826                         fio.need_lock = LOCK_REQ;
2827                         err = f2fs_do_write_data_page(&fio);
2828                 }
2829         }
2830
2831         if (err) {
2832                 file_set_keep_isize(inode);
2833         } else {
2834                 spin_lock(&F2FS_I(inode)->i_size_lock);
2835                 if (F2FS_I(inode)->last_disk_size < psize)
2836                         F2FS_I(inode)->last_disk_size = psize;
2837                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2838         }
2839
2840 done:
2841         if (err && err != -ENOENT)
2842                 goto redirty_out;
2843
2844 out:
2845         inode_dec_dirty_pages(inode);
2846         if (err) {
2847                 ClearPageUptodate(page);
2848                 clear_page_private_gcing(page);
2849         }
2850
2851         if (wbc->for_reclaim) {
2852                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2853                 clear_inode_flag(inode, FI_HOT_DATA);
2854                 f2fs_remove_dirty_inode(inode);
2855                 submitted = NULL;
2856         }
2857         unlock_page(page);
2858         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2859                         !F2FS_I(inode)->cp_task && allow_balance)
2860                 f2fs_balance_fs(sbi, need_balance_fs);
2861
2862         if (unlikely(f2fs_cp_error(sbi))) {
2863                 f2fs_submit_merged_write(sbi, DATA);
2864                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2865                 submitted = NULL;
2866         }
2867
2868         if (submitted)
2869                 *submitted = fio.submitted ? 1 : 0;
2870
2871         return 0;
2872
2873 redirty_out:
2874         redirty_page_for_writepage(wbc, page);
2875         /*
2876          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2877          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2878          * file_write_and_wait_range() will see EIO error, which is critical
2879          * to return value of fsync() followed by atomic_write failure to user.
2880          */
2881         if (!err || wbc->for_reclaim)
2882                 return AOP_WRITEPAGE_ACTIVATE;
2883         unlock_page(page);
2884         return err;
2885 }
2886
2887 static int f2fs_write_data_page(struct page *page,
2888                                         struct writeback_control *wbc)
2889 {
2890 #ifdef CONFIG_F2FS_FS_COMPRESSION
2891         struct inode *inode = page->mapping->host;
2892
2893         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2894                 goto out;
2895
2896         if (f2fs_compressed_file(inode)) {
2897                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2898                         redirty_page_for_writepage(wbc, page);
2899                         return AOP_WRITEPAGE_ACTIVATE;
2900                 }
2901         }
2902 out:
2903 #endif
2904
2905         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2906                                                 wbc, FS_DATA_IO, 0, true);
2907 }
2908
2909 /*
2910  * This function was copied from write_cche_pages from mm/page-writeback.c.
2911  * The major change is making write step of cold data page separately from
2912  * warm/hot data page.
2913  */
2914 static int f2fs_write_cache_pages(struct address_space *mapping,
2915                                         struct writeback_control *wbc,
2916                                         enum iostat_type io_type)
2917 {
2918         int ret = 0;
2919         int done = 0, retry = 0;
2920         struct page *pages[F2FS_ONSTACK_PAGES];
2921         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2922         struct bio *bio = NULL;
2923         sector_t last_block;
2924 #ifdef CONFIG_F2FS_FS_COMPRESSION
2925         struct inode *inode = mapping->host;
2926         struct compress_ctx cc = {
2927                 .inode = inode,
2928                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2929                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2930                 .cluster_idx = NULL_CLUSTER,
2931                 .rpages = NULL,
2932                 .nr_rpages = 0,
2933                 .cpages = NULL,
2934                 .valid_nr_cpages = 0,
2935                 .rbuf = NULL,
2936                 .cbuf = NULL,
2937                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2938                 .private = NULL,
2939         };
2940 #endif
2941         int nr_pages;
2942         pgoff_t index;
2943         pgoff_t end;            /* Inclusive */
2944         pgoff_t done_index;
2945         int range_whole = 0;
2946         xa_mark_t tag;
2947         int nwritten = 0;
2948         int submitted = 0;
2949         int i;
2950
2951         if (get_dirty_pages(mapping->host) <=
2952                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2953                 set_inode_flag(mapping->host, FI_HOT_DATA);
2954         else
2955                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2956
2957         if (wbc->range_cyclic) {
2958                 index = mapping->writeback_index; /* prev offset */
2959                 end = -1;
2960         } else {
2961                 index = wbc->range_start >> PAGE_SHIFT;
2962                 end = wbc->range_end >> PAGE_SHIFT;
2963                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2964                         range_whole = 1;
2965         }
2966         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2967                 tag = PAGECACHE_TAG_TOWRITE;
2968         else
2969                 tag = PAGECACHE_TAG_DIRTY;
2970 retry:
2971         retry = 0;
2972         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2973                 tag_pages_for_writeback(mapping, index, end);
2974         done_index = index;
2975         while (!done && !retry && (index <= end)) {
2976                 nr_pages = find_get_pages_range_tag(mapping, &index, end,
2977                                 tag, F2FS_ONSTACK_PAGES, pages);
2978                 if (nr_pages == 0)
2979                         break;
2980
2981                 for (i = 0; i < nr_pages; i++) {
2982                         struct page *page = pages[i];
2983                         bool need_readd;
2984 readd:
2985                         need_readd = false;
2986 #ifdef CONFIG_F2FS_FS_COMPRESSION
2987                         if (f2fs_compressed_file(inode)) {
2988                                 void *fsdata = NULL;
2989                                 struct page *pagep;
2990                                 int ret2;
2991
2992                                 ret = f2fs_init_compress_ctx(&cc);
2993                                 if (ret) {
2994                                         done = 1;
2995                                         break;
2996                                 }
2997
2998                                 if (!f2fs_cluster_can_merge_page(&cc,
2999                                                                 page->index)) {
3000                                         ret = f2fs_write_multi_pages(&cc,
3001                                                 &submitted, wbc, io_type);
3002                                         if (!ret)
3003                                                 need_readd = true;
3004                                         goto result;
3005                                 }
3006
3007                                 if (unlikely(f2fs_cp_error(sbi)))
3008                                         goto lock_page;
3009
3010                                 if (!f2fs_cluster_is_empty(&cc))
3011                                         goto lock_page;
3012
3013                                 if (f2fs_all_cluster_page_ready(&cc,
3014                                         pages, i, nr_pages, true))
3015                                         goto lock_page;
3016
3017                                 ret2 = f2fs_prepare_compress_overwrite(
3018                                                         inode, &pagep,
3019                                                         page->index, &fsdata);
3020                                 if (ret2 < 0) {
3021                                         ret = ret2;
3022                                         done = 1;
3023                                         break;
3024                                 } else if (ret2 &&
3025                                         (!f2fs_compress_write_end(inode,
3026                                                 fsdata, page->index, 1) ||
3027                                          !f2fs_all_cluster_page_ready(&cc,
3028                                                 pages, i, nr_pages, false))) {
3029                                         retry = 1;
3030                                         break;
3031                                 }
3032                         }
3033 #endif
3034                         /* give a priority to WB_SYNC threads */
3035                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3036                                         wbc->sync_mode == WB_SYNC_NONE) {
3037                                 done = 1;
3038                                 break;
3039                         }
3040 #ifdef CONFIG_F2FS_FS_COMPRESSION
3041 lock_page:
3042 #endif
3043                         done_index = page->index;
3044 retry_write:
3045                         lock_page(page);
3046
3047                         if (unlikely(page->mapping != mapping)) {
3048 continue_unlock:
3049                                 unlock_page(page);
3050                                 continue;
3051                         }
3052
3053                         if (!PageDirty(page)) {
3054                                 /* someone wrote it for us */
3055                                 goto continue_unlock;
3056                         }
3057
3058                         if (PageWriteback(page)) {
3059                                 if (wbc->sync_mode != WB_SYNC_NONE)
3060                                         f2fs_wait_on_page_writeback(page,
3061                                                         DATA, true, true);
3062                                 else
3063                                         goto continue_unlock;
3064                         }
3065
3066                         if (!clear_page_dirty_for_io(page))
3067                                 goto continue_unlock;
3068
3069 #ifdef CONFIG_F2FS_FS_COMPRESSION
3070                         if (f2fs_compressed_file(inode)) {
3071                                 get_page(page);
3072                                 f2fs_compress_ctx_add_page(&cc, page);
3073                                 continue;
3074                         }
3075 #endif
3076                         ret = f2fs_write_single_data_page(page, &submitted,
3077                                         &bio, &last_block, wbc, io_type,
3078                                         0, true);
3079                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3080                                 unlock_page(page);
3081 #ifdef CONFIG_F2FS_FS_COMPRESSION
3082 result:
3083 #endif
3084                         nwritten += submitted;
3085                         wbc->nr_to_write -= submitted;
3086
3087                         if (unlikely(ret)) {
3088                                 /*
3089                                  * keep nr_to_write, since vfs uses this to
3090                                  * get # of written pages.
3091                                  */
3092                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3093                                         ret = 0;
3094                                         goto next;
3095                                 } else if (ret == -EAGAIN) {
3096                                         ret = 0;
3097                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3098                                                 f2fs_io_schedule_timeout(
3099                                                         DEFAULT_IO_TIMEOUT);
3100                                                 goto retry_write;
3101                                         }
3102                                         goto next;
3103                                 }
3104                                 done_index = page->index + 1;
3105                                 done = 1;
3106                                 break;
3107                         }
3108
3109                         if (wbc->nr_to_write <= 0 &&
3110                                         wbc->sync_mode == WB_SYNC_NONE) {
3111                                 done = 1;
3112                                 break;
3113                         }
3114 next:
3115                         if (need_readd)
3116                                 goto readd;
3117                 }
3118                 release_pages(pages, nr_pages);
3119                 cond_resched();
3120         }
3121 #ifdef CONFIG_F2FS_FS_COMPRESSION
3122         /* flush remained pages in compress cluster */
3123         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3124                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3125                 nwritten += submitted;
3126                 wbc->nr_to_write -= submitted;
3127                 if (ret) {
3128                         done = 1;
3129                         retry = 0;
3130                 }
3131         }
3132         if (f2fs_compressed_file(inode))
3133                 f2fs_destroy_compress_ctx(&cc, false);
3134 #endif
3135         if (retry) {
3136                 index = 0;
3137                 end = -1;
3138                 goto retry;
3139         }
3140         if (wbc->range_cyclic && !done)
3141                 done_index = 0;
3142         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3143                 mapping->writeback_index = done_index;
3144
3145         if (nwritten)
3146                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3147                                                                 NULL, 0, DATA);
3148         /* submit cached bio of IPU write */
3149         if (bio)
3150                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3151
3152         return ret;
3153 }
3154
3155 static inline bool __should_serialize_io(struct inode *inode,
3156                                         struct writeback_control *wbc)
3157 {
3158         /* to avoid deadlock in path of data flush */
3159         if (F2FS_I(inode)->cp_task)
3160                 return false;
3161
3162         if (!S_ISREG(inode->i_mode))
3163                 return false;
3164         if (IS_NOQUOTA(inode))
3165                 return false;
3166
3167         if (f2fs_need_compress_data(inode))
3168                 return true;
3169         if (wbc->sync_mode != WB_SYNC_ALL)
3170                 return true;
3171         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3172                 return true;
3173         return false;
3174 }
3175
3176 static int __f2fs_write_data_pages(struct address_space *mapping,
3177                                                 struct writeback_control *wbc,
3178                                                 enum iostat_type io_type)
3179 {
3180         struct inode *inode = mapping->host;
3181         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3182         struct blk_plug plug;
3183         int ret;
3184         bool locked = false;
3185
3186         /* deal with chardevs and other special file */
3187         if (!mapping->a_ops->writepage)
3188                 return 0;
3189
3190         /* skip writing if there is no dirty page in this inode */
3191         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3192                 return 0;
3193
3194         /* during POR, we don't need to trigger writepage at all. */
3195         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3196                 goto skip_write;
3197
3198         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3199                         wbc->sync_mode == WB_SYNC_NONE &&
3200                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3201                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3202                 goto skip_write;
3203
3204         /* skip writing in file defragment preparing stage */
3205         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3206                 goto skip_write;
3207
3208         trace_f2fs_writepages(mapping->host, wbc, DATA);
3209
3210         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3211         if (wbc->sync_mode == WB_SYNC_ALL)
3212                 atomic_inc(&sbi->wb_sync_req[DATA]);
3213         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3214                 /* to avoid potential deadlock */
3215                 if (current->plug)
3216                         blk_finish_plug(current->plug);
3217                 goto skip_write;
3218         }
3219
3220         if (__should_serialize_io(inode, wbc)) {
3221                 mutex_lock(&sbi->writepages);
3222                 locked = true;
3223         }
3224
3225         blk_start_plug(&plug);
3226         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3227         blk_finish_plug(&plug);
3228
3229         if (locked)
3230                 mutex_unlock(&sbi->writepages);
3231
3232         if (wbc->sync_mode == WB_SYNC_ALL)
3233                 atomic_dec(&sbi->wb_sync_req[DATA]);
3234         /*
3235          * if some pages were truncated, we cannot guarantee its mapping->host
3236          * to detect pending bios.
3237          */
3238
3239         f2fs_remove_dirty_inode(inode);
3240         return ret;
3241
3242 skip_write:
3243         wbc->pages_skipped += get_dirty_pages(inode);
3244         trace_f2fs_writepages(mapping->host, wbc, DATA);
3245         return 0;
3246 }
3247
3248 static int f2fs_write_data_pages(struct address_space *mapping,
3249                             struct writeback_control *wbc)
3250 {
3251         struct inode *inode = mapping->host;
3252
3253         return __f2fs_write_data_pages(mapping, wbc,
3254                         F2FS_I(inode)->cp_task == current ?
3255                         FS_CP_DATA_IO : FS_DATA_IO);
3256 }
3257
3258 void f2fs_write_failed(struct inode *inode, loff_t to)
3259 {
3260         loff_t i_size = i_size_read(inode);
3261
3262         if (IS_NOQUOTA(inode))
3263                 return;
3264
3265         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3266         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3267                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3268                 filemap_invalidate_lock(inode->i_mapping);
3269
3270                 truncate_pagecache(inode, i_size);
3271                 f2fs_truncate_blocks(inode, i_size, true);
3272
3273                 filemap_invalidate_unlock(inode->i_mapping);
3274                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3275         }
3276 }
3277
3278 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3279                         struct page *page, loff_t pos, unsigned len,
3280                         block_t *blk_addr, bool *node_changed)
3281 {
3282         struct inode *inode = page->mapping->host;
3283         pgoff_t index = page->index;
3284         struct dnode_of_data dn;
3285         struct page *ipage;
3286         bool locked = false;
3287         struct extent_info ei = {0, };
3288         int err = 0;
3289         int flag;
3290
3291         /*
3292          * If a whole page is being written and we already preallocated all the
3293          * blocks, then there is no need to get a block address now.
3294          */
3295         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3296                 return 0;
3297
3298         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3299         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3300                 flag = F2FS_GET_BLOCK_DEFAULT;
3301         else
3302                 flag = F2FS_GET_BLOCK_PRE_AIO;
3303
3304         if (f2fs_has_inline_data(inode) ||
3305                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3306                 f2fs_do_map_lock(sbi, flag, true);
3307                 locked = true;
3308         }
3309
3310 restart:
3311         /* check inline_data */
3312         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3313         if (IS_ERR(ipage)) {
3314                 err = PTR_ERR(ipage);
3315                 goto unlock_out;
3316         }
3317
3318         set_new_dnode(&dn, inode, ipage, ipage, 0);
3319
3320         if (f2fs_has_inline_data(inode)) {
3321                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3322                         f2fs_do_read_inline_data(page, ipage);
3323                         set_inode_flag(inode, FI_DATA_EXIST);
3324                         if (inode->i_nlink)
3325                                 set_page_private_inline(ipage);
3326                 } else {
3327                         err = f2fs_convert_inline_page(&dn, page);
3328                         if (err)
3329                                 goto out;
3330                         if (dn.data_blkaddr == NULL_ADDR)
3331                                 err = f2fs_get_block(&dn, index);
3332                 }
3333         } else if (locked) {
3334                 err = f2fs_get_block(&dn, index);
3335         } else {
3336                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3337                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3338                 } else {
3339                         /* hole case */
3340                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3341                         if (err || dn.data_blkaddr == NULL_ADDR) {
3342                                 f2fs_put_dnode(&dn);
3343                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3344                                                                 true);
3345                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3346                                 locked = true;
3347                                 goto restart;
3348                         }
3349                 }
3350         }
3351
3352         /* convert_inline_page can make node_changed */
3353         *blk_addr = dn.data_blkaddr;
3354         *node_changed = dn.node_changed;
3355 out:
3356         f2fs_put_dnode(&dn);
3357 unlock_out:
3358         if (locked)
3359                 f2fs_do_map_lock(sbi, flag, false);
3360         return err;
3361 }
3362
3363 static int __find_data_block(struct inode *inode, pgoff_t index,
3364                                 block_t *blk_addr)
3365 {
3366         struct dnode_of_data dn;
3367         struct page *ipage;
3368         struct extent_info ei = {0, };
3369         int err = 0;
3370
3371         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3372         if (IS_ERR(ipage))
3373                 return PTR_ERR(ipage);
3374
3375         set_new_dnode(&dn, inode, ipage, ipage, 0);
3376
3377         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3378                 dn.data_blkaddr = ei.blk + index - ei.fofs;
3379         } else {
3380                 /* hole case */
3381                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3382                 if (err) {
3383                         dn.data_blkaddr = NULL_ADDR;
3384                         err = 0;
3385                 }
3386         }
3387         *blk_addr = dn.data_blkaddr;
3388         f2fs_put_dnode(&dn);
3389         return err;
3390 }
3391
3392 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3393                                 block_t *blk_addr, bool *node_changed)
3394 {
3395         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3396         struct dnode_of_data dn;
3397         struct page *ipage;
3398         int err = 0;
3399
3400         f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3401
3402         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3403         if (IS_ERR(ipage)) {
3404                 err = PTR_ERR(ipage);
3405                 goto unlock_out;
3406         }
3407         set_new_dnode(&dn, inode, ipage, ipage, 0);
3408
3409         err = f2fs_get_block(&dn, index);
3410
3411         *blk_addr = dn.data_blkaddr;
3412         *node_changed = dn.node_changed;
3413         f2fs_put_dnode(&dn);
3414
3415 unlock_out:
3416         f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3417         return err;
3418 }
3419
3420 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3421                         struct page *page, loff_t pos, unsigned int len,
3422                         block_t *blk_addr, bool *node_changed)
3423 {
3424         struct inode *inode = page->mapping->host;
3425         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3426         pgoff_t index = page->index;
3427         int err = 0;
3428         block_t ori_blk_addr = NULL_ADDR;
3429
3430         /* If pos is beyond the end of file, reserve a new block in COW inode */
3431         if ((pos & PAGE_MASK) >= i_size_read(inode))
3432                 goto reserve_block;
3433
3434         /* Look for the block in COW inode first */
3435         err = __find_data_block(cow_inode, index, blk_addr);
3436         if (err)
3437                 return err;
3438         else if (*blk_addr != NULL_ADDR)
3439                 return 0;
3440
3441         /* Look for the block in the original inode */
3442         err = __find_data_block(inode, index, &ori_blk_addr);
3443         if (err)
3444                 return err;
3445
3446 reserve_block:
3447         /* Finally, we should reserve a new block in COW inode for the update */
3448         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3449         if (err)
3450                 return err;
3451         inc_atomic_write_cnt(inode);
3452
3453         if (ori_blk_addr != NULL_ADDR)
3454                 *blk_addr = ori_blk_addr;
3455         return 0;
3456 }
3457
3458 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3459                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3460 {
3461         struct inode *inode = mapping->host;
3462         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3463         struct page *page = NULL;
3464         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3465         bool need_balance = false;
3466         block_t blkaddr = NULL_ADDR;
3467         int err = 0;
3468
3469         trace_f2fs_write_begin(inode, pos, len);
3470
3471         if (!f2fs_is_checkpoint_ready(sbi)) {
3472                 err = -ENOSPC;
3473                 goto fail;
3474         }
3475
3476         /*
3477          * We should check this at this moment to avoid deadlock on inode page
3478          * and #0 page. The locking rule for inline_data conversion should be:
3479          * lock_page(page #0) -> lock_page(inode_page)
3480          */
3481         if (index != 0) {
3482                 err = f2fs_convert_inline_inode(inode);
3483                 if (err)
3484                         goto fail;
3485         }
3486
3487 #ifdef CONFIG_F2FS_FS_COMPRESSION
3488         if (f2fs_compressed_file(inode)) {
3489                 int ret;
3490
3491                 *fsdata = NULL;
3492
3493                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3494                         goto repeat;
3495
3496                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3497                                                         index, fsdata);
3498                 if (ret < 0) {
3499                         err = ret;
3500                         goto fail;
3501                 } else if (ret) {
3502                         return 0;
3503                 }
3504         }
3505 #endif
3506
3507 repeat:
3508         /*
3509          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3510          * wait_for_stable_page. Will wait that below with our IO control.
3511          */
3512         page = f2fs_pagecache_get_page(mapping, index,
3513                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3514         if (!page) {
3515                 err = -ENOMEM;
3516                 goto fail;
3517         }
3518
3519         /* TODO: cluster can be compressed due to race with .writepage */
3520
3521         *pagep = page;
3522
3523         if (f2fs_is_atomic_file(inode))
3524                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3525                                         &blkaddr, &need_balance);
3526         else
3527                 err = prepare_write_begin(sbi, page, pos, len,
3528                                         &blkaddr, &need_balance);
3529         if (err)
3530                 goto fail;
3531
3532         if (need_balance && !IS_NOQUOTA(inode) &&
3533                         has_not_enough_free_secs(sbi, 0, 0)) {
3534                 unlock_page(page);
3535                 f2fs_balance_fs(sbi, true);
3536                 lock_page(page);
3537                 if (page->mapping != mapping) {
3538                         /* The page got truncated from under us */
3539                         f2fs_put_page(page, 1);
3540                         goto repeat;
3541                 }
3542         }
3543
3544         f2fs_wait_on_page_writeback(page, DATA, false, true);
3545
3546         if (len == PAGE_SIZE || PageUptodate(page))
3547                 return 0;
3548
3549         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3550             !f2fs_verity_in_progress(inode)) {
3551                 zero_user_segment(page, len, PAGE_SIZE);
3552                 return 0;
3553         }
3554
3555         if (blkaddr == NEW_ADDR) {
3556                 zero_user_segment(page, 0, PAGE_SIZE);
3557                 SetPageUptodate(page);
3558         } else {
3559                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3560                                 DATA_GENERIC_ENHANCE_READ)) {
3561                         err = -EFSCORRUPTED;
3562                         goto fail;
3563                 }
3564                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3565                 if (err)
3566                         goto fail;
3567
3568                 lock_page(page);
3569                 if (unlikely(page->mapping != mapping)) {
3570                         f2fs_put_page(page, 1);
3571                         goto repeat;
3572                 }
3573                 if (unlikely(!PageUptodate(page))) {
3574                         err = -EIO;
3575                         goto fail;
3576                 }
3577         }
3578         return 0;
3579
3580 fail:
3581         f2fs_put_page(page, 1);
3582         f2fs_write_failed(inode, pos + len);
3583         return err;
3584 }
3585
3586 static int f2fs_write_end(struct file *file,
3587                         struct address_space *mapping,
3588                         loff_t pos, unsigned len, unsigned copied,
3589                         struct page *page, void *fsdata)
3590 {
3591         struct inode *inode = page->mapping->host;
3592
3593         trace_f2fs_write_end(inode, pos, len, copied);
3594
3595         /*
3596          * This should be come from len == PAGE_SIZE, and we expect copied
3597          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3598          * let generic_perform_write() try to copy data again through copied=0.
3599          */
3600         if (!PageUptodate(page)) {
3601                 if (unlikely(copied != len))
3602                         copied = 0;
3603                 else
3604                         SetPageUptodate(page);
3605         }
3606
3607 #ifdef CONFIG_F2FS_FS_COMPRESSION
3608         /* overwrite compressed file */
3609         if (f2fs_compressed_file(inode) && fsdata) {
3610                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3611                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3612
3613                 if (pos + copied > i_size_read(inode) &&
3614                                 !f2fs_verity_in_progress(inode))
3615                         f2fs_i_size_write(inode, pos + copied);
3616                 return copied;
3617         }
3618 #endif
3619
3620         if (!copied)
3621                 goto unlock_out;
3622
3623         set_page_dirty(page);
3624
3625         if (pos + copied > i_size_read(inode) &&
3626             !f2fs_verity_in_progress(inode)) {
3627                 f2fs_i_size_write(inode, pos + copied);
3628                 if (f2fs_is_atomic_file(inode))
3629                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3630                                         pos + copied);
3631         }
3632 unlock_out:
3633         f2fs_put_page(page, 1);
3634         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3635         return copied;
3636 }
3637
3638 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3639 {
3640         struct inode *inode = folio->mapping->host;
3641         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3642
3643         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3644                                 (offset || length != folio_size(folio)))
3645                 return;
3646
3647         if (folio_test_dirty(folio)) {
3648                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3649                         dec_page_count(sbi, F2FS_DIRTY_META);
3650                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3651                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3652                 } else {
3653                         inode_dec_dirty_pages(inode);
3654                         f2fs_remove_dirty_inode(inode);
3655                 }
3656         }
3657
3658         clear_page_private_gcing(&folio->page);
3659
3660         if (test_opt(sbi, COMPRESS_CACHE) &&
3661                         inode->i_ino == F2FS_COMPRESS_INO(sbi))
3662                 clear_page_private_data(&folio->page);
3663
3664         folio_detach_private(folio);
3665 }
3666
3667 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3668 {
3669         struct f2fs_sb_info *sbi;
3670
3671         /* If this is dirty folio, keep private data */
3672         if (folio_test_dirty(folio))
3673                 return false;
3674
3675         sbi = F2FS_M_SB(folio->mapping);
3676         if (test_opt(sbi, COMPRESS_CACHE)) {
3677                 struct inode *inode = folio->mapping->host;
3678
3679                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3680                         clear_page_private_data(&folio->page);
3681         }
3682
3683         clear_page_private_gcing(&folio->page);
3684
3685         folio_detach_private(folio);
3686         return true;
3687 }
3688
3689 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3690                 struct folio *folio)
3691 {
3692         struct inode *inode = mapping->host;
3693
3694         trace_f2fs_set_page_dirty(&folio->page, DATA);
3695
3696         if (!folio_test_uptodate(folio))
3697                 folio_mark_uptodate(folio);
3698         BUG_ON(folio_test_swapcache(folio));
3699
3700         if (!folio_test_dirty(folio)) {
3701                 filemap_dirty_folio(mapping, folio);
3702                 f2fs_update_dirty_folio(inode, folio);
3703                 return true;
3704         }
3705         return false;
3706 }
3707
3708
3709 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3710 {
3711 #ifdef CONFIG_F2FS_FS_COMPRESSION
3712         struct dnode_of_data dn;
3713         sector_t start_idx, blknr = 0;
3714         int ret;
3715
3716         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3717
3718         set_new_dnode(&dn, inode, NULL, NULL, 0);
3719         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3720         if (ret)
3721                 return 0;
3722
3723         if (dn.data_blkaddr != COMPRESS_ADDR) {
3724                 dn.ofs_in_node += block - start_idx;
3725                 blknr = f2fs_data_blkaddr(&dn);
3726                 if (!__is_valid_data_blkaddr(blknr))
3727                         blknr = 0;
3728         }
3729
3730         f2fs_put_dnode(&dn);
3731         return blknr;
3732 #else
3733         return 0;
3734 #endif
3735 }
3736
3737
3738 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3739 {
3740         struct inode *inode = mapping->host;
3741         sector_t blknr = 0;
3742
3743         if (f2fs_has_inline_data(inode))
3744                 goto out;
3745
3746         /* make sure allocating whole blocks */
3747         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3748                 filemap_write_and_wait(mapping);
3749
3750         /* Block number less than F2FS MAX BLOCKS */
3751         if (unlikely(block >= max_file_blocks(inode)))
3752                 goto out;
3753
3754         if (f2fs_compressed_file(inode)) {
3755                 blknr = f2fs_bmap_compress(inode, block);
3756         } else {
3757                 struct f2fs_map_blocks map;
3758
3759                 memset(&map, 0, sizeof(map));
3760                 map.m_lblk = block;
3761                 map.m_len = 1;
3762                 map.m_next_pgofs = NULL;
3763                 map.m_seg_type = NO_CHECK_TYPE;
3764
3765                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3766                         blknr = map.m_pblk;
3767         }
3768 out:
3769         trace_f2fs_bmap(inode, block, blknr);
3770         return blknr;
3771 }
3772
3773 #ifdef CONFIG_SWAP
3774 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3775                                                         unsigned int blkcnt)
3776 {
3777         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3778         unsigned int blkofs;
3779         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3780         unsigned int secidx = start_blk / blk_per_sec;
3781         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3782         int ret = 0;
3783
3784         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3785         filemap_invalidate_lock(inode->i_mapping);
3786
3787         set_inode_flag(inode, FI_ALIGNED_WRITE);
3788         set_inode_flag(inode, FI_OPU_WRITE);
3789
3790         for (; secidx < end_sec; secidx++) {
3791                 f2fs_down_write(&sbi->pin_sem);
3792
3793                 f2fs_lock_op(sbi);
3794                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3795                 f2fs_unlock_op(sbi);
3796
3797                 set_inode_flag(inode, FI_SKIP_WRITES);
3798
3799                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3800                         struct page *page;
3801                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3802
3803                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3804                         if (IS_ERR(page)) {
3805                                 f2fs_up_write(&sbi->pin_sem);
3806                                 ret = PTR_ERR(page);
3807                                 goto done;
3808                         }
3809
3810                         set_page_dirty(page);
3811                         f2fs_put_page(page, 1);
3812                 }
3813
3814                 clear_inode_flag(inode, FI_SKIP_WRITES);
3815
3816                 ret = filemap_fdatawrite(inode->i_mapping);
3817
3818                 f2fs_up_write(&sbi->pin_sem);
3819
3820                 if (ret)
3821                         break;
3822         }
3823
3824 done:
3825         clear_inode_flag(inode, FI_SKIP_WRITES);
3826         clear_inode_flag(inode, FI_OPU_WRITE);
3827         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3828
3829         filemap_invalidate_unlock(inode->i_mapping);
3830         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3831
3832         return ret;
3833 }
3834
3835 static int check_swap_activate(struct swap_info_struct *sis,
3836                                 struct file *swap_file, sector_t *span)
3837 {
3838         struct address_space *mapping = swap_file->f_mapping;
3839         struct inode *inode = mapping->host;
3840         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3841         sector_t cur_lblock;
3842         sector_t last_lblock;
3843         sector_t pblock;
3844         sector_t lowest_pblock = -1;
3845         sector_t highest_pblock = 0;
3846         int nr_extents = 0;
3847         unsigned long nr_pblocks;
3848         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3849         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3850         unsigned int not_aligned = 0;
3851         int ret = 0;
3852
3853         /*
3854          * Map all the blocks into the extent list.  This code doesn't try
3855          * to be very smart.
3856          */
3857         cur_lblock = 0;
3858         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3859
3860         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3861                 struct f2fs_map_blocks map;
3862 retry:
3863                 cond_resched();
3864
3865                 memset(&map, 0, sizeof(map));
3866                 map.m_lblk = cur_lblock;
3867                 map.m_len = last_lblock - cur_lblock;
3868                 map.m_next_pgofs = NULL;
3869                 map.m_next_extent = NULL;
3870                 map.m_seg_type = NO_CHECK_TYPE;
3871                 map.m_may_create = false;
3872
3873                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3874                 if (ret)
3875                         goto out;
3876
3877                 /* hole */
3878                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3879                         f2fs_err(sbi, "Swapfile has holes");
3880                         ret = -EINVAL;
3881                         goto out;
3882                 }
3883
3884                 pblock = map.m_pblk;
3885                 nr_pblocks = map.m_len;
3886
3887                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3888                                 nr_pblocks & sec_blks_mask) {
3889                         not_aligned++;
3890
3891                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3892                         if (cur_lblock + nr_pblocks > sis->max)
3893                                 nr_pblocks -= blks_per_sec;
3894
3895                         if (!nr_pblocks) {
3896                                 /* this extent is last one */
3897                                 nr_pblocks = map.m_len;
3898                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3899                                 goto next;
3900                         }
3901
3902                         ret = f2fs_migrate_blocks(inode, cur_lblock,
3903                                                         nr_pblocks);
3904                         if (ret)
3905                                 goto out;
3906                         goto retry;
3907                 }
3908 next:
3909                 if (cur_lblock + nr_pblocks >= sis->max)
3910                         nr_pblocks = sis->max - cur_lblock;
3911
3912                 if (cur_lblock) {       /* exclude the header page */
3913                         if (pblock < lowest_pblock)
3914                                 lowest_pblock = pblock;
3915                         if (pblock + nr_pblocks - 1 > highest_pblock)
3916                                 highest_pblock = pblock + nr_pblocks - 1;
3917                 }
3918
3919                 /*
3920                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3921                  */
3922                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3923                 if (ret < 0)
3924                         goto out;
3925                 nr_extents += ret;
3926                 cur_lblock += nr_pblocks;
3927         }
3928         ret = nr_extents;
3929         *span = 1 + highest_pblock - lowest_pblock;
3930         if (cur_lblock == 0)
3931                 cur_lblock = 1; /* force Empty message */
3932         sis->max = cur_lblock;
3933         sis->pages = cur_lblock - 1;
3934         sis->highest_bit = cur_lblock - 1;
3935 out:
3936         if (not_aligned)
3937                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3938                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
3939         return ret;
3940 }
3941
3942 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3943                                 sector_t *span)
3944 {
3945         struct inode *inode = file_inode(file);
3946         int ret;
3947
3948         if (!S_ISREG(inode->i_mode))
3949                 return -EINVAL;
3950
3951         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3952                 return -EROFS;
3953
3954         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3955                 f2fs_err(F2FS_I_SB(inode),
3956                         "Swapfile not supported in LFS mode");
3957                 return -EINVAL;
3958         }
3959
3960         ret = f2fs_convert_inline_inode(inode);
3961         if (ret)
3962                 return ret;
3963
3964         if (!f2fs_disable_compressed_file(inode))
3965                 return -EINVAL;
3966
3967         f2fs_precache_extents(inode);
3968
3969         ret = check_swap_activate(sis, file, span);
3970         if (ret < 0)
3971                 return ret;
3972
3973         set_inode_flag(inode, FI_PIN_FILE);
3974         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3975         return ret;
3976 }
3977
3978 static void f2fs_swap_deactivate(struct file *file)
3979 {
3980         struct inode *inode = file_inode(file);
3981
3982         clear_inode_flag(inode, FI_PIN_FILE);
3983 }
3984 #else
3985 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3986                                 sector_t *span)
3987 {
3988         return -EOPNOTSUPP;
3989 }
3990
3991 static void f2fs_swap_deactivate(struct file *file)
3992 {
3993 }
3994 #endif
3995
3996 const struct address_space_operations f2fs_dblock_aops = {
3997         .read_folio     = f2fs_read_data_folio,
3998         .readahead      = f2fs_readahead,
3999         .writepage      = f2fs_write_data_page,
4000         .writepages     = f2fs_write_data_pages,
4001         .write_begin    = f2fs_write_begin,
4002         .write_end      = f2fs_write_end,
4003         .dirty_folio    = f2fs_dirty_data_folio,
4004         .migrate_folio  = filemap_migrate_folio,
4005         .invalidate_folio = f2fs_invalidate_folio,
4006         .release_folio  = f2fs_release_folio,
4007         .direct_IO      = noop_direct_IO,
4008         .bmap           = f2fs_bmap,
4009         .swap_activate  = f2fs_swap_activate,
4010         .swap_deactivate = f2fs_swap_deactivate,
4011 };
4012
4013 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4014 {
4015         struct address_space *mapping = page_mapping(page);
4016         unsigned long flags;
4017
4018         xa_lock_irqsave(&mapping->i_pages, flags);
4019         __xa_clear_mark(&mapping->i_pages, page_index(page),
4020                                                 PAGECACHE_TAG_DIRTY);
4021         xa_unlock_irqrestore(&mapping->i_pages, flags);
4022 }
4023
4024 int __init f2fs_init_post_read_processing(void)
4025 {
4026         bio_post_read_ctx_cache =
4027                 kmem_cache_create("f2fs_bio_post_read_ctx",
4028                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4029         if (!bio_post_read_ctx_cache)
4030                 goto fail;
4031         bio_post_read_ctx_pool =
4032                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4033                                          bio_post_read_ctx_cache);
4034         if (!bio_post_read_ctx_pool)
4035                 goto fail_free_cache;
4036         return 0;
4037
4038 fail_free_cache:
4039         kmem_cache_destroy(bio_post_read_ctx_cache);
4040 fail:
4041         return -ENOMEM;
4042 }
4043
4044 void f2fs_destroy_post_read_processing(void)
4045 {
4046         mempool_destroy(bio_post_read_ctx_pool);
4047         kmem_cache_destroy(bio_post_read_ctx_cache);
4048 }
4049
4050 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4051 {
4052         if (!f2fs_sb_has_encrypt(sbi) &&
4053                 !f2fs_sb_has_verity(sbi) &&
4054                 !f2fs_sb_has_compression(sbi))
4055                 return 0;
4056
4057         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4058                                                  WQ_UNBOUND | WQ_HIGHPRI,
4059                                                  num_online_cpus());
4060         if (!sbi->post_read_wq)
4061                 return -ENOMEM;
4062         return 0;
4063 }
4064
4065 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4066 {
4067         if (sbi->post_read_wq)
4068                 destroy_workqueue(sbi->post_read_wq);
4069 }
4070
4071 int __init f2fs_init_bio_entry_cache(void)
4072 {
4073         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4074                         sizeof(struct bio_entry));
4075         if (!bio_entry_slab)
4076                 return -ENOMEM;
4077         return 0;
4078 }
4079
4080 void f2fs_destroy_bio_entry_cache(void)
4081 {
4082         kmem_cache_destroy(bio_entry_slab);
4083 }
4084
4085 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4086                             unsigned int flags, struct iomap *iomap,
4087                             struct iomap *srcmap)
4088 {
4089         struct f2fs_map_blocks map = {};
4090         pgoff_t next_pgofs = 0;
4091         int err;
4092
4093         map.m_lblk = bytes_to_blks(inode, offset);
4094         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4095         map.m_next_pgofs = &next_pgofs;
4096         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4097         if (flags & IOMAP_WRITE)
4098                 map.m_may_create = true;
4099
4100         err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4101                               F2FS_GET_BLOCK_DIO);
4102         if (err)
4103                 return err;
4104
4105         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4106
4107         /*
4108          * When inline encryption is enabled, sometimes I/O to an encrypted file
4109          * has to be broken up to guarantee DUN contiguity.  Handle this by
4110          * limiting the length of the mapping returned.
4111          */
4112         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4113
4114         if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4115                 iomap->length = blks_to_bytes(inode, map.m_len);
4116                 if (map.m_flags & F2FS_MAP_MAPPED) {
4117                         iomap->type = IOMAP_MAPPED;
4118                         iomap->flags |= IOMAP_F_MERGED;
4119                 } else {
4120                         iomap->type = IOMAP_UNWRITTEN;
4121                 }
4122                 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4123                         return -EINVAL;
4124
4125                 iomap->bdev = map.m_bdev;
4126                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4127         } else {
4128                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4129                                 iomap->offset;
4130                 iomap->type = IOMAP_HOLE;
4131                 iomap->addr = IOMAP_NULL_ADDR;
4132         }
4133
4134         if (map.m_flags & F2FS_MAP_NEW)
4135                 iomap->flags |= IOMAP_F_NEW;
4136         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4137             offset + length > i_size_read(inode))
4138                 iomap->flags |= IOMAP_F_DIRTY;
4139
4140         return 0;
4141 }
4142
4143 const struct iomap_ops f2fs_iomap_ops = {
4144         .iomap_begin    = f2fs_iomap_begin,
4145 };