GNU Linux-libre 5.10.215-gnu1
[releases.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54                                                 unsigned int nr_iovecs)
55 {
56         return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58
59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61         if (noio) {
62                 /* No failure on bio allocation */
63                 return __f2fs_bio_alloc(GFP_NOIO, npages);
64         }
65
66         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67                 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68                 return NULL;
69         }
70
71         return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73
74 static bool __is_cp_guaranteed(struct page *page)
75 {
76         struct address_space *mapping = page->mapping;
77         struct inode *inode;
78         struct f2fs_sb_info *sbi;
79
80         if (!mapping)
81                 return false;
82
83         if (f2fs_is_compressed_page(page))
84                 return false;
85
86         inode = mapping->host;
87         sbi = F2FS_I_SB(inode);
88
89         if (inode->i_ino == F2FS_META_INO(sbi) ||
90                         inode->i_ino == F2FS_NODE_INO(sbi) ||
91                         S_ISDIR(inode->i_mode) ||
92                         (S_ISREG(inode->i_mode) &&
93                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94                         is_cold_data(page))
95                 return true;
96         return false;
97 }
98
99 static enum count_type __read_io_type(struct page *page)
100 {
101         struct address_space *mapping = page_file_mapping(page);
102
103         if (mapping) {
104                 struct inode *inode = mapping->host;
105                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106
107                 if (inode->i_ino == F2FS_META_INO(sbi))
108                         return F2FS_RD_META;
109
110                 if (inode->i_ino == F2FS_NODE_INO(sbi))
111                         return F2FS_RD_NODE;
112         }
113         return F2FS_RD_DATA;
114 }
115
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118         STEP_DECRYPT,
119         STEP_DECOMPRESS_NOWQ,           /* handle normal cluster data inplace */
120         STEP_DECOMPRESS,                /* handle compressed cluster data in workqueue */
121         STEP_VERITY,
122 };
123
124 struct bio_post_read_ctx {
125         struct bio *bio;
126         struct f2fs_sb_info *sbi;
127         struct work_struct work;
128         unsigned int enabled_steps;
129 };
130
131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133         struct page *page;
134         struct bio_vec *bv;
135         struct bvec_iter_all iter_all;
136
137         bio_for_each_segment_all(bv, bio, iter_all) {
138                 page = bv->bv_page;
139
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141                 if (compr && f2fs_is_compressed_page(page)) {
142                         f2fs_decompress_pages(bio, page, verity);
143                         continue;
144                 }
145                 if (verity)
146                         continue;
147 #endif
148
149                 /* PG_error was set if any post_read step failed */
150                 if (bio->bi_status || PageError(page)) {
151                         ClearPageUptodate(page);
152                         /* will re-read again later */
153                         ClearPageError(page);
154                 } else {
155                         SetPageUptodate(page);
156                 }
157                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158                 unlock_page(page);
159         }
160 }
161
162 static void f2fs_release_read_bio(struct bio *bio);
163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165         if (!compr)
166                 __read_end_io(bio, false, verity);
167         f2fs_release_read_bio(bio);
168 }
169
170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172         __read_end_io(bio, true, verity);
173 }
174
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176
177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179         fscrypt_decrypt_bio(ctx->bio);
180 }
181
182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184         f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190         f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192
193 static void f2fs_verify_bio(struct bio *bio)
194 {
195         struct bio_vec *bv;
196         struct bvec_iter_all iter_all;
197
198         bio_for_each_segment_all(bv, bio, iter_all) {
199                 struct page *page = bv->bv_page;
200                 struct decompress_io_ctx *dic;
201
202                 dic = (struct decompress_io_ctx *)page_private(page);
203
204                 if (dic) {
205                         if (atomic_dec_return(&dic->verity_pages))
206                                 continue;
207                         f2fs_verify_pages(dic->rpages,
208                                                 dic->cluster_size);
209                         f2fs_free_dic(dic);
210                         continue;
211                 }
212
213                 if (bio->bi_status || PageError(page))
214                         goto clear_uptodate;
215
216                 if (fsverity_verify_page(page)) {
217                         SetPageUptodate(page);
218                         goto unlock;
219                 }
220 clear_uptodate:
221                 ClearPageUptodate(page);
222                 ClearPageError(page);
223 unlock:
224                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225                 unlock_page(page);
226         }
227 }
228 #endif
229
230 static void f2fs_verity_work(struct work_struct *work)
231 {
232         struct bio_post_read_ctx *ctx =
233                 container_of(work, struct bio_post_read_ctx, work);
234         struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236         unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238
239         /*
240          * fsverity_verify_bio() may call readpages() again, and while verity
241          * will be disabled for this, decryption may still be needed, resulting
242          * in another bio_post_read_ctx being allocated.  So to prevent
243          * deadlocks we need to release the current ctx to the mempool first.
244          * This assumes that verity is the last post-read step.
245          */
246         mempool_free(ctx, bio_post_read_ctx_pool);
247         bio->bi_private = NULL;
248
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250         /* previous step is decompression */
251         if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252                 f2fs_verify_bio(bio);
253                 f2fs_release_read_bio(bio);
254                 return;
255         }
256 #endif
257
258         fsverity_verify_bio(bio);
259         __f2fs_read_end_io(bio, false, false);
260 }
261
262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264         struct bio_post_read_ctx *ctx =
265                 container_of(work, struct bio_post_read_ctx, work);
266
267         if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268                 f2fs_decrypt_work(ctx);
269
270         if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271                 f2fs_decompress_work(ctx);
272
273         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274                 INIT_WORK(&ctx->work, f2fs_verity_work);
275                 fsverity_enqueue_verify_work(&ctx->work);
276                 return;
277         }
278
279         __f2fs_read_end_io(ctx->bio,
280                 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282
283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284                                                 struct work_struct *work)
285 {
286         queue_work(sbi->post_read_wq, work);
287 }
288
289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291         /*
292          * We use different work queues for decryption and for verity because
293          * verity may require reading metadata pages that need decryption, and
294          * we shouldn't recurse to the same workqueue.
295          */
296
297         if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298                 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299                 INIT_WORK(&ctx->work, f2fs_post_read_work);
300                 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301                 return;
302         }
303
304         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305                 INIT_WORK(&ctx->work, f2fs_verity_work);
306                 fsverity_enqueue_verify_work(&ctx->work);
307                 return;
308         }
309
310         __f2fs_read_end_io(ctx->bio, false, false);
311 }
312
313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315         return bio->bi_private;
316 }
317
318 static void f2fs_read_end_io(struct bio *bio)
319 {
320         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321
322         if (time_to_inject(sbi, FAULT_READ_IO)) {
323                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
324                 bio->bi_status = BLK_STS_IOERR;
325         }
326
327         if (f2fs_bio_post_read_required(bio)) {
328                 struct bio_post_read_ctx *ctx = bio->bi_private;
329
330                 bio_post_read_processing(ctx);
331                 return;
332         }
333
334         __f2fs_read_end_io(bio, false, false);
335 }
336
337 static void f2fs_write_end_io(struct bio *bio)
338 {
339         struct f2fs_sb_info *sbi = bio->bi_private;
340         struct bio_vec *bvec;
341         struct bvec_iter_all iter_all;
342
343         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345                 bio->bi_status = BLK_STS_IOERR;
346         }
347
348         bio_for_each_segment_all(bvec, bio, iter_all) {
349                 struct page *page = bvec->bv_page;
350                 enum count_type type = WB_DATA_TYPE(page);
351
352                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
353                         set_page_private(page, (unsigned long)NULL);
354                         ClearPagePrivate(page);
355                         unlock_page(page);
356                         mempool_free(page, sbi->write_io_dummy);
357
358                         if (unlikely(bio->bi_status))
359                                 f2fs_stop_checkpoint(sbi, true);
360                         continue;
361                 }
362
363                 fscrypt_finalize_bounce_page(&page);
364
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366                 if (f2fs_is_compressed_page(page)) {
367                         f2fs_compress_write_end_io(bio, page);
368                         continue;
369                 }
370 #endif
371
372                 if (unlikely(bio->bi_status)) {
373                         mapping_set_error(page->mapping, -EIO);
374                         if (type == F2FS_WB_CP_DATA)
375                                 f2fs_stop_checkpoint(sbi, true);
376                 }
377
378                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379                                         page->index != nid_of_node(page));
380
381                 dec_page_count(sbi, type);
382                 if (f2fs_in_warm_node_list(sbi, page))
383                         f2fs_del_fsync_node_entry(sbi, page);
384                 clear_cold_data(page);
385                 end_page_writeback(page);
386         }
387         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388                                 wq_has_sleeper(&sbi->cp_wait))
389                 wake_up(&sbi->cp_wait);
390
391         bio_put(bio);
392 }
393
394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395                                 block_t blk_addr, struct bio *bio)
396 {
397         struct block_device *bdev = sbi->sb->s_bdev;
398         int i;
399
400         if (f2fs_is_multi_device(sbi)) {
401                 for (i = 0; i < sbi->s_ndevs; i++) {
402                         if (FDEV(i).start_blk <= blk_addr &&
403                             FDEV(i).end_blk >= blk_addr) {
404                                 blk_addr -= FDEV(i).start_blk;
405                                 bdev = FDEV(i).bdev;
406                                 break;
407                         }
408                 }
409         }
410         if (bio) {
411                 bio_set_dev(bio, bdev);
412                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413         }
414         return bdev;
415 }
416
417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419         int i;
420
421         if (!f2fs_is_multi_device(sbi))
422                 return 0;
423
424         for (i = 0; i < sbi->s_ndevs; i++)
425                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426                         return i;
427         return 0;
428 }
429
430 /*
431  * Return true, if pre_bio's bdev is same as its target device.
432  */
433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434                                 block_t blk_addr, struct bio *bio)
435 {
436         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439
440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442         struct f2fs_sb_info *sbi = fio->sbi;
443         struct bio *bio;
444
445         bio = f2fs_bio_alloc(sbi, npages, true);
446
447         f2fs_target_device(sbi, fio->new_blkaddr, bio);
448         if (is_read_io(fio->op)) {
449                 bio->bi_end_io = f2fs_read_end_io;
450                 bio->bi_private = NULL;
451         } else {
452                 bio->bi_end_io = f2fs_write_end_io;
453                 bio->bi_private = sbi;
454                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455                                                 fio->type, fio->temp);
456         }
457         if (fio->io_wbc)
458                 wbc_init_bio(fio->io_wbc, bio);
459
460         return bio;
461 }
462
463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464                                   pgoff_t first_idx,
465                                   const struct f2fs_io_info *fio,
466                                   gfp_t gfp_mask)
467 {
468         /*
469          * The f2fs garbage collector sets ->encrypted_page when it wants to
470          * read/write raw data without encryption.
471          */
472         if (!fio || !fio->encrypted_page)
473                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475
476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477                                      pgoff_t next_idx,
478                                      const struct f2fs_io_info *fio)
479 {
480         /*
481          * The f2fs garbage collector sets ->encrypted_page when it wants to
482          * read/write raw data without encryption.
483          */
484         if (fio && fio->encrypted_page)
485                 return !bio_has_crypt_ctx(bio);
486
487         return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489
490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491                                 struct bio *bio, enum page_type type)
492 {
493         if (!is_read_io(bio_op(bio))) {
494                 unsigned int start;
495
496                 if (type != DATA && type != NODE)
497                         goto submit_io;
498
499                 if (f2fs_lfs_mode(sbi) && current->plug)
500                         blk_finish_plug(current->plug);
501
502                 if (!F2FS_IO_ALIGNED(sbi))
503                         goto submit_io;
504
505                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506                 start %= F2FS_IO_SIZE(sbi);
507
508                 if (start == 0)
509                         goto submit_io;
510
511                 /* fill dummy pages */
512                 for (; start < F2FS_IO_SIZE(sbi); start++) {
513                         struct page *page =
514                                 mempool_alloc(sbi->write_io_dummy,
515                                               GFP_NOIO | __GFP_NOFAIL);
516                         f2fs_bug_on(sbi, !page);
517
518                         zero_user_segment(page, 0, PAGE_SIZE);
519                         SetPagePrivate(page);
520                         set_page_private(page, DUMMY_WRITTEN_PAGE);
521                         lock_page(page);
522                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523                                 f2fs_bug_on(sbi, 1);
524                 }
525                 /*
526                  * In the NODE case, we lose next block address chain. So, we
527                  * need to do checkpoint in f2fs_sync_file.
528                  */
529                 if (type == NODE)
530                         set_sbi_flag(sbi, SBI_NEED_CP);
531         }
532 submit_io:
533         if (is_read_io(bio_op(bio)))
534                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535         else
536                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537         submit_bio(bio);
538 }
539
540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541                                 struct bio *bio, enum page_type type)
542 {
543         __submit_bio(sbi, bio, type);
544 }
545
546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548         struct f2fs_sb_info *sbi = fio->sbi;
549         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550         unsigned int io_flag, fua_flag, meta_flag;
551
552         if (fio->type == DATA)
553                 io_flag = sbi->data_io_flag;
554         else if (fio->type == NODE)
555                 io_flag = sbi->node_io_flag;
556         else
557                 return;
558
559         fua_flag = io_flag & temp_mask;
560         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561
562         /*
563          * data/node io flag bits per temp:
564          *      REQ_META     |      REQ_FUA      |
565          *    5 |    4 |   3 |    2 |    1 |   0 |
566          * Cold | Warm | Hot | Cold | Warm | Hot |
567          */
568         if ((1 << fio->temp) & meta_flag)
569                 fio->op_flags |= REQ_META;
570         if ((1 << fio->temp) & fua_flag)
571                 fio->op_flags |= REQ_FUA;
572 }
573
574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576         struct f2fs_io_info *fio = &io->fio;
577
578         if (!io->bio)
579                 return;
580
581         __attach_io_flag(fio);
582         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583
584         if (is_read_io(fio->op))
585                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586         else
587                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588
589         __submit_bio(io->sbi, io->bio, fio->type);
590         io->bio = NULL;
591 }
592
593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594                                                 struct page *page, nid_t ino)
595 {
596         struct bio_vec *bvec;
597         struct bvec_iter_all iter_all;
598
599         if (!bio)
600                 return false;
601
602         if (!inode && !page && !ino)
603                 return true;
604
605         bio_for_each_segment_all(bvec, bio, iter_all) {
606                 struct page *target = bvec->bv_page;
607
608                 if (fscrypt_is_bounce_page(target)) {
609                         target = fscrypt_pagecache_page(target);
610                         if (IS_ERR(target))
611                                 continue;
612                 }
613                 if (f2fs_is_compressed_page(target)) {
614                         target = f2fs_compress_control_page(target);
615                         if (IS_ERR(target))
616                                 continue;
617                 }
618
619                 if (inode && inode == target->mapping->host)
620                         return true;
621                 if (page && page == target)
622                         return true;
623                 if (ino && ino == ino_of_node(target))
624                         return true;
625         }
626
627         return false;
628 }
629
630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631                                 enum page_type type, enum temp_type temp)
632 {
633         enum page_type btype = PAGE_TYPE_OF_BIO(type);
634         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635
636         down_write(&io->io_rwsem);
637
638         /* change META to META_FLUSH in the checkpoint procedure */
639         if (type >= META_FLUSH) {
640                 io->fio.type = META_FLUSH;
641                 io->fio.op = REQ_OP_WRITE;
642                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643                 if (!test_opt(sbi, NOBARRIER))
644                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645         }
646         __submit_merged_bio(io);
647         up_write(&io->io_rwsem);
648 }
649
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651                                 struct inode *inode, struct page *page,
652                                 nid_t ino, enum page_type type, bool force)
653 {
654         enum temp_type temp;
655         bool ret = true;
656
657         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658                 if (!force)     {
659                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
660                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662                         down_read(&io->io_rwsem);
663                         ret = __has_merged_page(io->bio, inode, page, ino);
664                         up_read(&io->io_rwsem);
665                 }
666                 if (ret)
667                         __f2fs_submit_merged_write(sbi, type, temp);
668
669                 /* TODO: use HOT temp only for meta pages now. */
670                 if (type >= META)
671                         break;
672         }
673 }
674
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681                                 struct inode *inode, struct page *page,
682                                 nid_t ino, enum page_type type)
683 {
684         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689         f2fs_submit_merged_write(sbi, DATA);
690         f2fs_submit_merged_write(sbi, NODE);
691         f2fs_submit_merged_write(sbi, META);
692 }
693
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700         struct bio *bio;
701         struct page *page = fio->encrypted_page ?
702                         fio->encrypted_page : fio->page;
703
704         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
706                         META_GENERIC : DATA_GENERIC_ENHANCE)))
707                 return -EFSCORRUPTED;
708
709         trace_f2fs_submit_page_bio(page, fio);
710         f2fs_trace_ios(fio, 0);
711
712         /* Allocate a new bio */
713         bio = __bio_alloc(fio, 1);
714
715         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716                                fio->page->index, fio, GFP_NOIO);
717
718         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719                 bio_put(bio);
720                 return -EFAULT;
721         }
722
723         if (fio->io_wbc && !is_read_io(fio->op))
724                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
725
726         __attach_io_flag(fio);
727         bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729         inc_page_count(fio->sbi, is_read_io(fio->op) ?
730                         __read_io_type(page): WB_DATA_TYPE(fio->page));
731
732         __submit_bio(fio->sbi, bio, fio->type);
733         return 0;
734 }
735
736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737                                 block_t last_blkaddr, block_t cur_blkaddr)
738 {
739         if (last_blkaddr + 1 != cur_blkaddr)
740                 return false;
741         return __same_bdev(sbi, cur_blkaddr, bio);
742 }
743
744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745                                                 struct f2fs_io_info *fio)
746 {
747         if (io->fio.op != fio->op)
748                 return false;
749         return io->fio.op_flags == fio->op_flags;
750 }
751
752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753                                         struct f2fs_bio_info *io,
754                                         struct f2fs_io_info *fio,
755                                         block_t last_blkaddr,
756                                         block_t cur_blkaddr)
757 {
758         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759                 unsigned int filled_blocks =
760                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761                 unsigned int io_size = F2FS_IO_SIZE(sbi);
762                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763
764                 /* IOs in bio is aligned and left space of vectors is not enough */
765                 if (!(filled_blocks % io_size) && left_vecs < io_size)
766                         return false;
767         }
768         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769                 return false;
770         return io_type_is_mergeable(io, fio);
771 }
772
773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774                                 struct page *page, enum temp_type temp)
775 {
776         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777         struct bio_entry *be;
778
779         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780         be->bio = bio;
781         bio_get(bio);
782
783         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784                 f2fs_bug_on(sbi, 1);
785
786         down_write(&io->bio_list_lock);
787         list_add_tail(&be->list, &io->bio_list);
788         up_write(&io->bio_list_lock);
789 }
790
791 static void del_bio_entry(struct bio_entry *be)
792 {
793         list_del(&be->list);
794         kmem_cache_free(bio_entry_slab, be);
795 }
796
797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798                                                         struct page *page)
799 {
800         struct f2fs_sb_info *sbi = fio->sbi;
801         enum temp_type temp;
802         bool found = false;
803         int ret = -EAGAIN;
804
805         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807                 struct list_head *head = &io->bio_list;
808                 struct bio_entry *be;
809
810                 down_write(&io->bio_list_lock);
811                 list_for_each_entry(be, head, list) {
812                         if (be->bio != *bio)
813                                 continue;
814
815                         found = true;
816
817                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818                                                             *fio->last_block,
819                                                             fio->new_blkaddr));
820                         if (f2fs_crypt_mergeable_bio(*bio,
821                                         fio->page->mapping->host,
822                                         fio->page->index, fio) &&
823                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824                                         PAGE_SIZE) {
825                                 ret = 0;
826                                 break;
827                         }
828
829                         /* page can't be merged into bio; submit the bio */
830                         del_bio_entry(be);
831                         __submit_bio(sbi, *bio, DATA);
832                         break;
833                 }
834                 up_write(&io->bio_list_lock);
835         }
836
837         if (ret) {
838                 bio_put(*bio);
839                 *bio = NULL;
840         }
841
842         return ret;
843 }
844
845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846                                         struct bio **bio, struct page *page)
847 {
848         enum temp_type temp;
849         bool found = false;
850         struct bio *target = bio ? *bio : NULL;
851
852         f2fs_bug_on(sbi, !target && !page);
853
854         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
855                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
856                 struct list_head *head = &io->bio_list;
857                 struct bio_entry *be;
858
859                 if (list_empty(head))
860                         continue;
861
862                 down_read(&io->bio_list_lock);
863                 list_for_each_entry(be, head, list) {
864                         if (target)
865                                 found = (target == be->bio);
866                         else
867                                 found = __has_merged_page(be->bio, NULL,
868                                                                 page, 0);
869                         if (found)
870                                 break;
871                 }
872                 up_read(&io->bio_list_lock);
873
874                 if (!found)
875                         continue;
876
877                 found = false;
878
879                 down_write(&io->bio_list_lock);
880                 list_for_each_entry(be, head, list) {
881                         if (target)
882                                 found = (target == be->bio);
883                         else
884                                 found = __has_merged_page(be->bio, NULL,
885                                                                 page, 0);
886                         if (found) {
887                                 target = be->bio;
888                                 del_bio_entry(be);
889                                 break;
890                         }
891                 }
892                 up_write(&io->bio_list_lock);
893         }
894
895         if (found)
896                 __submit_bio(sbi, target, DATA);
897         if (bio && *bio) {
898                 bio_put(*bio);
899                 *bio = NULL;
900         }
901 }
902
903 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
904 {
905         struct bio *bio = *fio->bio;
906         struct page *page = fio->encrypted_page ?
907                         fio->encrypted_page : fio->page;
908
909         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
910                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
911                 return -EFSCORRUPTED;
912
913         trace_f2fs_submit_page_bio(page, fio);
914         f2fs_trace_ios(fio, 0);
915
916         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
917                                                 fio->new_blkaddr))
918                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
919 alloc_new:
920         if (!bio) {
921                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
922                 __attach_io_flag(fio);
923                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
924                                        fio->page->index, fio, GFP_NOIO);
925                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
926
927                 add_bio_entry(fio->sbi, bio, page, fio->temp);
928         } else {
929                 if (add_ipu_page(fio, &bio, page))
930                         goto alloc_new;
931         }
932
933         if (fio->io_wbc)
934                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
935
936         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
937
938         *fio->last_block = fio->new_blkaddr;
939         *fio->bio = bio;
940
941         return 0;
942 }
943
944 void f2fs_submit_page_write(struct f2fs_io_info *fio)
945 {
946         struct f2fs_sb_info *sbi = fio->sbi;
947         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
948         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
949         struct page *bio_page;
950
951         f2fs_bug_on(sbi, is_read_io(fio->op));
952
953         down_write(&io->io_rwsem);
954 next:
955         if (fio->in_list) {
956                 spin_lock(&io->io_lock);
957                 if (list_empty(&io->io_list)) {
958                         spin_unlock(&io->io_lock);
959                         goto out;
960                 }
961                 fio = list_first_entry(&io->io_list,
962                                                 struct f2fs_io_info, list);
963                 list_del(&fio->list);
964                 spin_unlock(&io->io_lock);
965         }
966
967         verify_fio_blkaddr(fio);
968
969         if (fio->encrypted_page)
970                 bio_page = fio->encrypted_page;
971         else if (fio->compressed_page)
972                 bio_page = fio->compressed_page;
973         else
974                 bio_page = fio->page;
975
976         /* set submitted = true as a return value */
977         fio->submitted = true;
978
979         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
980
981         if (io->bio &&
982             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
983                               fio->new_blkaddr) ||
984              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
985                                        bio_page->index, fio)))
986                 __submit_merged_bio(io);
987 alloc_new:
988         if (io->bio == NULL) {
989                 if (F2FS_IO_ALIGNED(sbi) &&
990                                 (fio->type == DATA || fio->type == NODE) &&
991                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
992                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
993                         fio->retry = true;
994                         goto skip;
995                 }
996                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
997                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
998                                        bio_page->index, fio, GFP_NOIO);
999                 io->fio = *fio;
1000         }
1001
1002         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1003                 __submit_merged_bio(io);
1004                 goto alloc_new;
1005         }
1006
1007         if (fio->io_wbc)
1008                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1009
1010         io->last_block_in_bio = fio->new_blkaddr;
1011         f2fs_trace_ios(fio, 0);
1012
1013         trace_f2fs_submit_page_write(fio->page, fio);
1014 skip:
1015         if (fio->in_list)
1016                 goto next;
1017 out:
1018         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1019                                 !f2fs_is_checkpoint_ready(sbi))
1020                 __submit_merged_bio(io);
1021         up_write(&io->io_rwsem);
1022 }
1023
1024 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1025 {
1026         return fsverity_active(inode) &&
1027                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1028 }
1029
1030 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1031                                       unsigned nr_pages, unsigned op_flag,
1032                                       pgoff_t first_idx, bool for_write,
1033                                       bool for_verity)
1034 {
1035         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036         struct bio *bio;
1037         struct bio_post_read_ctx *ctx;
1038         unsigned int post_read_steps = 0;
1039
1040         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1041                                                                 for_write);
1042         if (!bio)
1043                 return ERR_PTR(-ENOMEM);
1044
1045         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1046
1047         f2fs_target_device(sbi, blkaddr, bio);
1048         bio->bi_end_io = f2fs_read_end_io;
1049         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1050
1051         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1052                 post_read_steps |= 1 << STEP_DECRYPT;
1053         if (f2fs_compressed_file(inode))
1054                 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1055         if (for_verity && f2fs_need_verity(inode, first_idx))
1056                 post_read_steps |= 1 << STEP_VERITY;
1057
1058         if (post_read_steps) {
1059                 /* Due to the mempool, this never fails. */
1060                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1061                 ctx->bio = bio;
1062                 ctx->sbi = sbi;
1063                 ctx->enabled_steps = post_read_steps;
1064                 bio->bi_private = ctx;
1065         }
1066
1067         return bio;
1068 }
1069
1070 static void f2fs_release_read_bio(struct bio *bio)
1071 {
1072         if (bio->bi_private)
1073                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1074         bio_put(bio);
1075 }
1076
1077 /* This can handle encryption stuffs */
1078 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1079                                  block_t blkaddr, int op_flags, bool for_write)
1080 {
1081         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1082         struct bio *bio;
1083
1084         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1085                                         page->index, for_write, true);
1086         if (IS_ERR(bio))
1087                 return PTR_ERR(bio);
1088
1089         /* wait for GCed page writeback via META_MAPPING */
1090         f2fs_wait_on_block_writeback(inode, blkaddr);
1091
1092         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1093                 bio_put(bio);
1094                 return -EFAULT;
1095         }
1096         ClearPageError(page);
1097         inc_page_count(sbi, F2FS_RD_DATA);
1098         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1099         __submit_bio(sbi, bio, DATA);
1100         return 0;
1101 }
1102
1103 static void __set_data_blkaddr(struct dnode_of_data *dn)
1104 {
1105         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1106         __le32 *addr_array;
1107         int base = 0;
1108
1109         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1110                 base = get_extra_isize(dn->inode);
1111
1112         /* Get physical address of data block */
1113         addr_array = blkaddr_in_node(rn);
1114         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1115 }
1116
1117 /*
1118  * Lock ordering for the change of data block address:
1119  * ->data_page
1120  *  ->node_page
1121  *    update block addresses in the node page
1122  */
1123 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1124 {
1125         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1126         __set_data_blkaddr(dn);
1127         if (set_page_dirty(dn->node_page))
1128                 dn->node_changed = true;
1129 }
1130
1131 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133         dn->data_blkaddr = blkaddr;
1134         f2fs_set_data_blkaddr(dn);
1135         f2fs_update_extent_cache(dn);
1136 }
1137
1138 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1139 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1140 {
1141         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1142         int err;
1143
1144         if (!count)
1145                 return 0;
1146
1147         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1148                 return -EPERM;
1149         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1150                 return err;
1151
1152         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1153                                                 dn->ofs_in_node, count);
1154
1155         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1156
1157         for (; count > 0; dn->ofs_in_node++) {
1158                 block_t blkaddr = f2fs_data_blkaddr(dn);
1159                 if (blkaddr == NULL_ADDR) {
1160                         dn->data_blkaddr = NEW_ADDR;
1161                         __set_data_blkaddr(dn);
1162                         count--;
1163                 }
1164         }
1165
1166         if (set_page_dirty(dn->node_page))
1167                 dn->node_changed = true;
1168         return 0;
1169 }
1170
1171 /* Should keep dn->ofs_in_node unchanged */
1172 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1173 {
1174         unsigned int ofs_in_node = dn->ofs_in_node;
1175         int ret;
1176
1177         ret = f2fs_reserve_new_blocks(dn, 1);
1178         dn->ofs_in_node = ofs_in_node;
1179         return ret;
1180 }
1181
1182 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1183 {
1184         bool need_put = dn->inode_page ? false : true;
1185         int err;
1186
1187         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1188         if (err)
1189                 return err;
1190
1191         if (dn->data_blkaddr == NULL_ADDR)
1192                 err = f2fs_reserve_new_block(dn);
1193         if (err || need_put)
1194                 f2fs_put_dnode(dn);
1195         return err;
1196 }
1197
1198 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1199 {
1200         struct extent_info ei = {0, 0, 0};
1201         struct inode *inode = dn->inode;
1202
1203         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1204                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1205                 return 0;
1206         }
1207
1208         return f2fs_reserve_block(dn, index);
1209 }
1210
1211 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1212                                                 int op_flags, bool for_write)
1213 {
1214         struct address_space *mapping = inode->i_mapping;
1215         struct dnode_of_data dn;
1216         struct page *page;
1217         struct extent_info ei = {0,0,0};
1218         int err;
1219
1220         page = f2fs_grab_cache_page(mapping, index, for_write);
1221         if (!page)
1222                 return ERR_PTR(-ENOMEM);
1223
1224         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1225                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1226                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1227                                                 DATA_GENERIC_ENHANCE_READ)) {
1228                         err = -EFSCORRUPTED;
1229                         goto put_err;
1230                 }
1231                 goto got_it;
1232         }
1233
1234         set_new_dnode(&dn, inode, NULL, NULL, 0);
1235         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1236         if (err)
1237                 goto put_err;
1238         f2fs_put_dnode(&dn);
1239
1240         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1241                 err = -ENOENT;
1242                 goto put_err;
1243         }
1244         if (dn.data_blkaddr != NEW_ADDR &&
1245                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246                                                 dn.data_blkaddr,
1247                                                 DATA_GENERIC_ENHANCE)) {
1248                 err = -EFSCORRUPTED;
1249                 goto put_err;
1250         }
1251 got_it:
1252         if (PageUptodate(page)) {
1253                 unlock_page(page);
1254                 return page;
1255         }
1256
1257         /*
1258          * A new dentry page is allocated but not able to be written, since its
1259          * new inode page couldn't be allocated due to -ENOSPC.
1260          * In such the case, its blkaddr can be remained as NEW_ADDR.
1261          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1262          * f2fs_init_inode_metadata.
1263          */
1264         if (dn.data_blkaddr == NEW_ADDR) {
1265                 zero_user_segment(page, 0, PAGE_SIZE);
1266                 if (!PageUptodate(page))
1267                         SetPageUptodate(page);
1268                 unlock_page(page);
1269                 return page;
1270         }
1271
1272         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1273                                                 op_flags, for_write);
1274         if (err)
1275                 goto put_err;
1276         return page;
1277
1278 put_err:
1279         f2fs_put_page(page, 1);
1280         return ERR_PTR(err);
1281 }
1282
1283 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1284 {
1285         struct address_space *mapping = inode->i_mapping;
1286         struct page *page;
1287
1288         page = find_get_page(mapping, index);
1289         if (page && PageUptodate(page))
1290                 return page;
1291         f2fs_put_page(page, 0);
1292
1293         page = f2fs_get_read_data_page(inode, index, 0, false);
1294         if (IS_ERR(page))
1295                 return page;
1296
1297         if (PageUptodate(page))
1298                 return page;
1299
1300         wait_on_page_locked(page);
1301         if (unlikely(!PageUptodate(page))) {
1302                 f2fs_put_page(page, 0);
1303                 return ERR_PTR(-EIO);
1304         }
1305         return page;
1306 }
1307
1308 /*
1309  * If it tries to access a hole, return an error.
1310  * Because, the callers, functions in dir.c and GC, should be able to know
1311  * whether this page exists or not.
1312  */
1313 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1314                                                         bool for_write)
1315 {
1316         struct address_space *mapping = inode->i_mapping;
1317         struct page *page;
1318 repeat:
1319         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1320         if (IS_ERR(page))
1321                 return page;
1322
1323         /* wait for read completion */
1324         lock_page(page);
1325         if (unlikely(page->mapping != mapping)) {
1326                 f2fs_put_page(page, 1);
1327                 goto repeat;
1328         }
1329         if (unlikely(!PageUptodate(page))) {
1330                 f2fs_put_page(page, 1);
1331                 return ERR_PTR(-EIO);
1332         }
1333         return page;
1334 }
1335
1336 /*
1337  * Caller ensures that this data page is never allocated.
1338  * A new zero-filled data page is allocated in the page cache.
1339  *
1340  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1341  * f2fs_unlock_op().
1342  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1343  * ipage should be released by this function.
1344  */
1345 struct page *f2fs_get_new_data_page(struct inode *inode,
1346                 struct page *ipage, pgoff_t index, bool new_i_size)
1347 {
1348         struct address_space *mapping = inode->i_mapping;
1349         struct page *page;
1350         struct dnode_of_data dn;
1351         int err;
1352
1353         page = f2fs_grab_cache_page(mapping, index, true);
1354         if (!page) {
1355                 /*
1356                  * before exiting, we should make sure ipage will be released
1357                  * if any error occur.
1358                  */
1359                 f2fs_put_page(ipage, 1);
1360                 return ERR_PTR(-ENOMEM);
1361         }
1362
1363         set_new_dnode(&dn, inode, ipage, NULL, 0);
1364         err = f2fs_reserve_block(&dn, index);
1365         if (err) {
1366                 f2fs_put_page(page, 1);
1367                 return ERR_PTR(err);
1368         }
1369         if (!ipage)
1370                 f2fs_put_dnode(&dn);
1371
1372         if (PageUptodate(page))
1373                 goto got_it;
1374
1375         if (dn.data_blkaddr == NEW_ADDR) {
1376                 zero_user_segment(page, 0, PAGE_SIZE);
1377                 if (!PageUptodate(page))
1378                         SetPageUptodate(page);
1379         } else {
1380                 f2fs_put_page(page, 1);
1381
1382                 /* if ipage exists, blkaddr should be NEW_ADDR */
1383                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1384                 page = f2fs_get_lock_data_page(inode, index, true);
1385                 if (IS_ERR(page))
1386                         return page;
1387         }
1388 got_it:
1389         if (new_i_size && i_size_read(inode) <
1390                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1391                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1392         return page;
1393 }
1394
1395 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1396 {
1397         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1398         struct f2fs_summary sum;
1399         struct node_info ni;
1400         block_t old_blkaddr;
1401         blkcnt_t count = 1;
1402         int err;
1403
1404         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1405                 return -EPERM;
1406
1407         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1408         if (err)
1409                 return err;
1410
1411         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1412         if (dn->data_blkaddr != NULL_ADDR)
1413                 goto alloc;
1414
1415         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1416                 return err;
1417
1418 alloc:
1419         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1420         old_blkaddr = dn->data_blkaddr;
1421         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1422                                 &sum, seg_type, NULL);
1423         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1424                 invalidate_mapping_pages(META_MAPPING(sbi),
1425                                         old_blkaddr, old_blkaddr);
1426         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1427
1428         /*
1429          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1430          * data from unwritten block via dio_read.
1431          */
1432         return 0;
1433 }
1434
1435 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1436 {
1437         struct inode *inode = file_inode(iocb->ki_filp);
1438         struct f2fs_map_blocks map;
1439         int flag;
1440         int err = 0;
1441         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1442
1443         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1444         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1445         if (map.m_len > map.m_lblk)
1446                 map.m_len -= map.m_lblk;
1447         else
1448                 map.m_len = 0;
1449
1450         map.m_next_pgofs = NULL;
1451         map.m_next_extent = NULL;
1452         map.m_seg_type = NO_CHECK_TYPE;
1453         map.m_may_create = true;
1454
1455         if (direct_io) {
1456                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1457                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1458                                         F2FS_GET_BLOCK_PRE_AIO :
1459                                         F2FS_GET_BLOCK_PRE_DIO;
1460                 goto map_blocks;
1461         }
1462         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1463                 err = f2fs_convert_inline_inode(inode);
1464                 if (err)
1465                         return err;
1466         }
1467         if (f2fs_has_inline_data(inode))
1468                 return err;
1469
1470         flag = F2FS_GET_BLOCK_PRE_AIO;
1471
1472 map_blocks:
1473         err = f2fs_map_blocks(inode, &map, 1, flag);
1474         if (map.m_len > 0 && err == -ENOSPC) {
1475                 if (!direct_io)
1476                         set_inode_flag(inode, FI_NO_PREALLOC);
1477                 err = 0;
1478         }
1479         return err;
1480 }
1481
1482 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1483 {
1484         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1485                 if (lock)
1486                         down_read(&sbi->node_change);
1487                 else
1488                         up_read(&sbi->node_change);
1489         } else {
1490                 if (lock)
1491                         f2fs_lock_op(sbi);
1492                 else
1493                         f2fs_unlock_op(sbi);
1494         }
1495 }
1496
1497 /*
1498  * f2fs_map_blocks() tries to find or build mapping relationship which
1499  * maps continuous logical blocks to physical blocks, and return such
1500  * info via f2fs_map_blocks structure.
1501  */
1502 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1503                                                 int create, int flag)
1504 {
1505         unsigned int maxblocks = map->m_len;
1506         struct dnode_of_data dn;
1507         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1509         pgoff_t pgofs, end_offset, end;
1510         int err = 0, ofs = 1;
1511         unsigned int ofs_in_node, last_ofs_in_node;
1512         blkcnt_t prealloc;
1513         struct extent_info ei = {0,0,0};
1514         block_t blkaddr;
1515         unsigned int start_pgofs;
1516
1517         if (!maxblocks)
1518                 return 0;
1519
1520         map->m_len = 0;
1521         map->m_flags = 0;
1522
1523         /* it only supports block size == page size */
1524         pgofs = (pgoff_t)map->m_lblk;
1525         end = pgofs + maxblocks;
1526
1527         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1528                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1529                                                         map->m_may_create)
1530                         goto next_dnode;
1531
1532                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1533                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1534                 map->m_flags = F2FS_MAP_MAPPED;
1535                 if (map->m_next_extent)
1536                         *map->m_next_extent = pgofs + map->m_len;
1537
1538                 /* for hardware encryption, but to avoid potential issue in future */
1539                 if (flag == F2FS_GET_BLOCK_DIO)
1540                         f2fs_wait_on_block_writeback_range(inode,
1541                                                 map->m_pblk, map->m_len);
1542                 goto out;
1543         }
1544
1545 next_dnode:
1546         if (map->m_may_create)
1547                 f2fs_do_map_lock(sbi, flag, true);
1548
1549         /* When reading holes, we need its node page */
1550         set_new_dnode(&dn, inode, NULL, NULL, 0);
1551         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1552         if (err) {
1553                 if (flag == F2FS_GET_BLOCK_BMAP)
1554                         map->m_pblk = 0;
1555
1556                 if (err == -ENOENT) {
1557                         /*
1558                          * There is one exceptional case that read_node_page()
1559                          * may return -ENOENT due to filesystem has been
1560                          * shutdown or cp_error, so force to convert error
1561                          * number to EIO for such case.
1562                          */
1563                         if (map->m_may_create &&
1564                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1565                                 f2fs_cp_error(sbi))) {
1566                                 err = -EIO;
1567                                 goto unlock_out;
1568                         }
1569
1570                         err = 0;
1571                         if (map->m_next_pgofs)
1572                                 *map->m_next_pgofs =
1573                                         f2fs_get_next_page_offset(&dn, pgofs);
1574                         if (map->m_next_extent)
1575                                 *map->m_next_extent =
1576                                         f2fs_get_next_page_offset(&dn, pgofs);
1577                 }
1578                 goto unlock_out;
1579         }
1580
1581         start_pgofs = pgofs;
1582         prealloc = 0;
1583         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1584         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1585
1586 next_block:
1587         blkaddr = f2fs_data_blkaddr(&dn);
1588
1589         if (__is_valid_data_blkaddr(blkaddr) &&
1590                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1591                 err = -EFSCORRUPTED;
1592                 goto sync_out;
1593         }
1594
1595         if (__is_valid_data_blkaddr(blkaddr)) {
1596                 /* use out-place-update for driect IO under LFS mode */
1597                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1598                                                         map->m_may_create) {
1599                         err = __allocate_data_block(&dn, map->m_seg_type);
1600                         if (err)
1601                                 goto sync_out;
1602                         blkaddr = dn.data_blkaddr;
1603                         set_inode_flag(inode, FI_APPEND_WRITE);
1604                 }
1605         } else {
1606                 if (create) {
1607                         if (unlikely(f2fs_cp_error(sbi))) {
1608                                 err = -EIO;
1609                                 goto sync_out;
1610                         }
1611                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1612                                 if (blkaddr == NULL_ADDR) {
1613                                         prealloc++;
1614                                         last_ofs_in_node = dn.ofs_in_node;
1615                                 }
1616                         } else {
1617                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1618                                         flag != F2FS_GET_BLOCK_DIO);
1619                                 err = __allocate_data_block(&dn,
1620                                                         map->m_seg_type);
1621                                 if (!err)
1622                                         set_inode_flag(inode, FI_APPEND_WRITE);
1623                         }
1624                         if (err)
1625                                 goto sync_out;
1626                         map->m_flags |= F2FS_MAP_NEW;
1627                         blkaddr = dn.data_blkaddr;
1628                 } else {
1629                         if (flag == F2FS_GET_BLOCK_BMAP) {
1630                                 map->m_pblk = 0;
1631                                 goto sync_out;
1632                         }
1633                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1634                                 goto sync_out;
1635                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1636                                                 blkaddr == NULL_ADDR) {
1637                                 if (map->m_next_pgofs)
1638                                         *map->m_next_pgofs = pgofs + 1;
1639                                 goto sync_out;
1640                         }
1641                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1642                                 /* for defragment case */
1643                                 if (map->m_next_pgofs)
1644                                         *map->m_next_pgofs = pgofs + 1;
1645                                 goto sync_out;
1646                         }
1647                 }
1648         }
1649
1650         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1651                 goto skip;
1652
1653         if (map->m_len == 0) {
1654                 /* preallocated unwritten block should be mapped for fiemap. */
1655                 if (blkaddr == NEW_ADDR)
1656                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1657                 map->m_flags |= F2FS_MAP_MAPPED;
1658
1659                 map->m_pblk = blkaddr;
1660                 map->m_len = 1;
1661         } else if ((map->m_pblk != NEW_ADDR &&
1662                         blkaddr == (map->m_pblk + ofs)) ||
1663                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1664                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1665                 ofs++;
1666                 map->m_len++;
1667         } else {
1668                 goto sync_out;
1669         }
1670
1671 skip:
1672         dn.ofs_in_node++;
1673         pgofs++;
1674
1675         /* preallocate blocks in batch for one dnode page */
1676         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1677                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1678
1679                 dn.ofs_in_node = ofs_in_node;
1680                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1681                 if (err)
1682                         goto sync_out;
1683
1684                 map->m_len += dn.ofs_in_node - ofs_in_node;
1685                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1686                         err = -ENOSPC;
1687                         goto sync_out;
1688                 }
1689                 dn.ofs_in_node = end_offset;
1690         }
1691
1692         if (pgofs >= end)
1693                 goto sync_out;
1694         else if (dn.ofs_in_node < end_offset)
1695                 goto next_block;
1696
1697         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1698                 if (map->m_flags & F2FS_MAP_MAPPED) {
1699                         unsigned int ofs = start_pgofs - map->m_lblk;
1700
1701                         f2fs_update_extent_cache_range(&dn,
1702                                 start_pgofs, map->m_pblk + ofs,
1703                                 map->m_len - ofs);
1704                 }
1705         }
1706
1707         f2fs_put_dnode(&dn);
1708
1709         if (map->m_may_create) {
1710                 f2fs_do_map_lock(sbi, flag, false);
1711                 f2fs_balance_fs(sbi, dn.node_changed);
1712         }
1713         goto next_dnode;
1714
1715 sync_out:
1716
1717         /* for hardware encryption, but to avoid potential issue in future */
1718         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1719                 f2fs_wait_on_block_writeback_range(inode,
1720                                                 map->m_pblk, map->m_len);
1721
1722         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1723                 if (map->m_flags & F2FS_MAP_MAPPED) {
1724                         unsigned int ofs = start_pgofs - map->m_lblk;
1725
1726                         f2fs_update_extent_cache_range(&dn,
1727                                 start_pgofs, map->m_pblk + ofs,
1728                                 map->m_len - ofs);
1729                 }
1730                 if (map->m_next_extent)
1731                         *map->m_next_extent = pgofs + 1;
1732         }
1733         f2fs_put_dnode(&dn);
1734 unlock_out:
1735         if (map->m_may_create) {
1736                 f2fs_do_map_lock(sbi, flag, false);
1737                 f2fs_balance_fs(sbi, dn.node_changed);
1738         }
1739 out:
1740         trace_f2fs_map_blocks(inode, map, err);
1741         return err;
1742 }
1743
1744 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1745 {
1746         struct f2fs_map_blocks map;
1747         block_t last_lblk;
1748         int err;
1749
1750         if (pos + len > i_size_read(inode))
1751                 return false;
1752
1753         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1754         map.m_next_pgofs = NULL;
1755         map.m_next_extent = NULL;
1756         map.m_seg_type = NO_CHECK_TYPE;
1757         map.m_may_create = false;
1758         last_lblk = F2FS_BLK_ALIGN(pos + len);
1759
1760         while (map.m_lblk < last_lblk) {
1761                 map.m_len = last_lblk - map.m_lblk;
1762                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1763                 if (err || map.m_len == 0)
1764                         return false;
1765                 map.m_lblk += map.m_len;
1766         }
1767         return true;
1768 }
1769
1770 static int __get_data_block(struct inode *inode, sector_t iblock,
1771                         struct buffer_head *bh, int create, int flag,
1772                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1773 {
1774         struct f2fs_map_blocks map;
1775         int err;
1776
1777         map.m_lblk = iblock;
1778         map.m_len = bh->b_size >> inode->i_blkbits;
1779         map.m_next_pgofs = next_pgofs;
1780         map.m_next_extent = NULL;
1781         map.m_seg_type = seg_type;
1782         map.m_may_create = may_write;
1783
1784         err = f2fs_map_blocks(inode, &map, create, flag);
1785         if (!err) {
1786                 map_bh(bh, inode->i_sb, map.m_pblk);
1787                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1788                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1789         }
1790         return err;
1791 }
1792
1793 static int get_data_block(struct inode *inode, sector_t iblock,
1794                         struct buffer_head *bh_result, int create, int flag,
1795                         pgoff_t *next_pgofs)
1796 {
1797         return __get_data_block(inode, iblock, bh_result, create,
1798                                                         flag, next_pgofs,
1799                                                         NO_CHECK_TYPE, create);
1800 }
1801
1802 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1803                         struct buffer_head *bh_result, int create)
1804 {
1805         return __get_data_block(inode, iblock, bh_result, create,
1806                                 F2FS_GET_BLOCK_DIO, NULL,
1807                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1808                                 IS_SWAPFILE(inode) ? false : true);
1809 }
1810
1811 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1812                         struct buffer_head *bh_result, int create)
1813 {
1814         return __get_data_block(inode, iblock, bh_result, create,
1815                                 F2FS_GET_BLOCK_DIO, NULL,
1816                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1817                                 false);
1818 }
1819
1820 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1821                         struct buffer_head *bh_result, int create)
1822 {
1823         return __get_data_block(inode, iblock, bh_result, create,
1824                                                 F2FS_GET_BLOCK_BMAP, NULL,
1825                                                 NO_CHECK_TYPE, create);
1826 }
1827
1828 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1829 {
1830         return (offset >> inode->i_blkbits);
1831 }
1832
1833 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1834 {
1835         return (blk << inode->i_blkbits);
1836 }
1837
1838 static int f2fs_xattr_fiemap(struct inode *inode,
1839                                 struct fiemap_extent_info *fieinfo)
1840 {
1841         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842         struct page *page;
1843         struct node_info ni;
1844         __u64 phys = 0, len;
1845         __u32 flags;
1846         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1847         int err = 0;
1848
1849         if (f2fs_has_inline_xattr(inode)) {
1850                 int offset;
1851
1852                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1853                                                 inode->i_ino, false);
1854                 if (!page)
1855                         return -ENOMEM;
1856
1857                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1858                 if (err) {
1859                         f2fs_put_page(page, 1);
1860                         return err;
1861                 }
1862
1863                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1864                 offset = offsetof(struct f2fs_inode, i_addr) +
1865                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1866                                         get_inline_xattr_addrs(inode));
1867
1868                 phys += offset;
1869                 len = inline_xattr_size(inode);
1870
1871                 f2fs_put_page(page, 1);
1872
1873                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1874
1875                 if (!xnid)
1876                         flags |= FIEMAP_EXTENT_LAST;
1877
1878                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1879                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1880                 if (err || err == 1)
1881                         return err;
1882         }
1883
1884         if (xnid) {
1885                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1886                 if (!page)
1887                         return -ENOMEM;
1888
1889                 err = f2fs_get_node_info(sbi, xnid, &ni);
1890                 if (err) {
1891                         f2fs_put_page(page, 1);
1892                         return err;
1893                 }
1894
1895                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1896                 len = inode->i_sb->s_blocksize;
1897
1898                 f2fs_put_page(page, 1);
1899
1900                 flags = FIEMAP_EXTENT_LAST;
1901         }
1902
1903         if (phys) {
1904                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1905                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1906         }
1907
1908         return (err < 0 ? err : 0);
1909 }
1910
1911 static loff_t max_inode_blocks(struct inode *inode)
1912 {
1913         loff_t result = ADDRS_PER_INODE(inode);
1914         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1915
1916         /* two direct node blocks */
1917         result += (leaf_count * 2);
1918
1919         /* two indirect node blocks */
1920         leaf_count *= NIDS_PER_BLOCK;
1921         result += (leaf_count * 2);
1922
1923         /* one double indirect node block */
1924         leaf_count *= NIDS_PER_BLOCK;
1925         result += leaf_count;
1926
1927         return result;
1928 }
1929
1930 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1931                 u64 start, u64 len)
1932 {
1933         struct buffer_head map_bh;
1934         sector_t start_blk, last_blk;
1935         pgoff_t next_pgofs;
1936         u64 logical = 0, phys = 0, size = 0;
1937         u32 flags = 0;
1938         int ret = 0;
1939         bool compr_cluster = false;
1940         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1941
1942         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1943                 ret = f2fs_precache_extents(inode);
1944                 if (ret)
1945                         return ret;
1946         }
1947
1948         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1949         if (ret)
1950                 return ret;
1951
1952         inode_lock(inode);
1953
1954         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1955                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1956                 goto out;
1957         }
1958
1959         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1960                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1961                 if (ret != -EAGAIN)
1962                         goto out;
1963         }
1964
1965         if (logical_to_blk(inode, len) == 0)
1966                 len = blk_to_logical(inode, 1);
1967
1968         start_blk = logical_to_blk(inode, start);
1969         last_blk = logical_to_blk(inode, start + len - 1);
1970
1971 next:
1972         memset(&map_bh, 0, sizeof(struct buffer_head));
1973         map_bh.b_size = len;
1974
1975         if (compr_cluster)
1976                 map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1977
1978         ret = get_data_block(inode, start_blk, &map_bh, 0,
1979                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1980         if (ret)
1981                 goto out;
1982
1983         /* HOLE */
1984         if (!buffer_mapped(&map_bh)) {
1985                 start_blk = next_pgofs;
1986
1987                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1988                                                 max_inode_blocks(inode)))
1989                         goto prep_next;
1990
1991                 flags |= FIEMAP_EXTENT_LAST;
1992         }
1993
1994         if (size) {
1995                 if (IS_ENCRYPTED(inode))
1996                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1997
1998                 ret = fiemap_fill_next_extent(fieinfo, logical,
1999                                 phys, size, flags);
2000                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2001                 if (ret)
2002                         goto out;
2003                 size = 0;
2004         }
2005
2006         if (start_blk > last_blk)
2007                 goto out;
2008
2009         if (compr_cluster) {
2010                 compr_cluster = false;
2011
2012
2013                 logical = blk_to_logical(inode, start_blk - 1);
2014                 phys = blk_to_logical(inode, map_bh.b_blocknr);
2015                 size = blk_to_logical(inode, cluster_size);
2016
2017                 flags |= FIEMAP_EXTENT_ENCODED;
2018
2019                 start_blk += cluster_size - 1;
2020
2021                 if (start_blk > last_blk)
2022                         goto out;
2023
2024                 goto prep_next;
2025         }
2026
2027         if (map_bh.b_blocknr == COMPRESS_ADDR) {
2028                 compr_cluster = true;
2029                 start_blk++;
2030                 goto prep_next;
2031         }
2032
2033         logical = blk_to_logical(inode, start_blk);
2034         phys = blk_to_logical(inode, map_bh.b_blocknr);
2035         size = map_bh.b_size;
2036         flags = 0;
2037         if (buffer_unwritten(&map_bh))
2038                 flags = FIEMAP_EXTENT_UNWRITTEN;
2039
2040         start_blk += logical_to_blk(inode, size);
2041
2042 prep_next:
2043         cond_resched();
2044         if (fatal_signal_pending(current))
2045                 ret = -EINTR;
2046         else
2047                 goto next;
2048 out:
2049         if (ret == 1)
2050                 ret = 0;
2051
2052         inode_unlock(inode);
2053         return ret;
2054 }
2055
2056 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2057 {
2058         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2059             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2060                 return inode->i_sb->s_maxbytes;
2061
2062         return i_size_read(inode);
2063 }
2064
2065 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2066                                         unsigned nr_pages,
2067                                         struct f2fs_map_blocks *map,
2068                                         struct bio **bio_ret,
2069                                         sector_t *last_block_in_bio,
2070                                         bool is_readahead)
2071 {
2072         struct bio *bio = *bio_ret;
2073         const unsigned blkbits = inode->i_blkbits;
2074         const unsigned blocksize = 1 << blkbits;
2075         sector_t block_in_file;
2076         sector_t last_block;
2077         sector_t last_block_in_file;
2078         sector_t block_nr;
2079         int ret = 0;
2080
2081         block_in_file = (sector_t)page_index(page);
2082         last_block = block_in_file + nr_pages;
2083         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2084                                                         blkbits;
2085         if (last_block > last_block_in_file)
2086                 last_block = last_block_in_file;
2087
2088         /* just zeroing out page which is beyond EOF */
2089         if (block_in_file >= last_block)
2090                 goto zero_out;
2091         /*
2092          * Map blocks using the previous result first.
2093          */
2094         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2095                         block_in_file > map->m_lblk &&
2096                         block_in_file < (map->m_lblk + map->m_len))
2097                 goto got_it;
2098
2099         /*
2100          * Then do more f2fs_map_blocks() calls until we are
2101          * done with this page.
2102          */
2103         map->m_lblk = block_in_file;
2104         map->m_len = last_block - block_in_file;
2105
2106         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2107         if (ret)
2108                 goto out;
2109 got_it:
2110         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2111                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2112                 SetPageMappedToDisk(page);
2113
2114                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2115                                         !cleancache_get_page(page))) {
2116                         SetPageUptodate(page);
2117                         goto confused;
2118                 }
2119
2120                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2121                                                 DATA_GENERIC_ENHANCE_READ)) {
2122                         ret = -EFSCORRUPTED;
2123                         goto out;
2124                 }
2125         } else {
2126 zero_out:
2127                 zero_user_segment(page, 0, PAGE_SIZE);
2128                 if (f2fs_need_verity(inode, page->index) &&
2129                     !fsverity_verify_page(page)) {
2130                         ret = -EIO;
2131                         goto out;
2132                 }
2133                 if (!PageUptodate(page))
2134                         SetPageUptodate(page);
2135                 unlock_page(page);
2136                 goto out;
2137         }
2138
2139         /*
2140          * This page will go to BIO.  Do we need to send this
2141          * BIO off first?
2142          */
2143         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2144                                        *last_block_in_bio, block_nr) ||
2145                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2146 submit_and_realloc:
2147                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2148                 bio = NULL;
2149         }
2150         if (bio == NULL) {
2151                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2152                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2153                                 false, true);
2154                 if (IS_ERR(bio)) {
2155                         ret = PTR_ERR(bio);
2156                         bio = NULL;
2157                         goto out;
2158                 }
2159         }
2160
2161         /*
2162          * If the page is under writeback, we need to wait for
2163          * its completion to see the correct decrypted data.
2164          */
2165         f2fs_wait_on_block_writeback(inode, block_nr);
2166
2167         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2168                 goto submit_and_realloc;
2169
2170         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2171         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2172         ClearPageError(page);
2173         *last_block_in_bio = block_nr;
2174         goto out;
2175 confused:
2176         if (bio) {
2177                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2178                 bio = NULL;
2179         }
2180         unlock_page(page);
2181 out:
2182         *bio_ret = bio;
2183         return ret;
2184 }
2185
2186 #ifdef CONFIG_F2FS_FS_COMPRESSION
2187 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2188                                 unsigned nr_pages, sector_t *last_block_in_bio,
2189                                 bool is_readahead, bool for_write)
2190 {
2191         struct dnode_of_data dn;
2192         struct inode *inode = cc->inode;
2193         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2194         struct bio *bio = *bio_ret;
2195         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2196         sector_t last_block_in_file;
2197         const unsigned blkbits = inode->i_blkbits;
2198         const unsigned blocksize = 1 << blkbits;
2199         struct decompress_io_ctx *dic = NULL;
2200         struct bio_post_read_ctx *ctx;
2201         bool for_verity = false;
2202         int i;
2203         int ret = 0;
2204
2205         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2206
2207         last_block_in_file = (f2fs_readpage_limit(inode) +
2208                                         blocksize - 1) >> blkbits;
2209
2210         /* get rid of pages beyond EOF */
2211         for (i = 0; i < cc->cluster_size; i++) {
2212                 struct page *page = cc->rpages[i];
2213
2214                 if (!page)
2215                         continue;
2216                 if ((sector_t)page->index >= last_block_in_file) {
2217                         zero_user_segment(page, 0, PAGE_SIZE);
2218                         if (!PageUptodate(page))
2219                                 SetPageUptodate(page);
2220                 } else if (!PageUptodate(page)) {
2221                         continue;
2222                 }
2223                 unlock_page(page);
2224                 if (for_write)
2225                         put_page(page);
2226                 cc->rpages[i] = NULL;
2227                 cc->nr_rpages--;
2228         }
2229
2230         /* we are done since all pages are beyond EOF */
2231         if (f2fs_cluster_is_empty(cc))
2232                 goto out;
2233
2234         set_new_dnode(&dn, inode, NULL, NULL, 0);
2235         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2236         if (ret)
2237                 goto out;
2238
2239         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2240
2241         for (i = 1; i < cc->cluster_size; i++) {
2242                 block_t blkaddr;
2243
2244                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2245                                                 dn.ofs_in_node + i);
2246
2247                 if (!__is_valid_data_blkaddr(blkaddr))
2248                         break;
2249
2250                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2251                         ret = -EFAULT;
2252                         goto out_put_dnode;
2253                 }
2254                 cc->nr_cpages++;
2255         }
2256
2257         /* nothing to decompress */
2258         if (cc->nr_cpages == 0) {
2259                 ret = 0;
2260                 goto out_put_dnode;
2261         }
2262
2263         dic = f2fs_alloc_dic(cc);
2264         if (IS_ERR(dic)) {
2265                 ret = PTR_ERR(dic);
2266                 goto out_put_dnode;
2267         }
2268
2269         /*
2270          * It's possible to enable fsverity on the fly when handling a cluster,
2271          * which requires complicated error handling. Instead of adding more
2272          * complexity, let's give a rule where end_io post-processes fsverity
2273          * per cluster. In order to do that, we need to submit bio, if previous
2274          * bio sets a different post-process policy.
2275          */
2276         if (fsverity_active(cc->inode)) {
2277                 atomic_set(&dic->verity_pages, cc->nr_cpages);
2278                 for_verity = true;
2279
2280                 if (bio) {
2281                         ctx = bio->bi_private;
2282                         if (!(ctx->enabled_steps & (1 << STEP_VERITY))) {
2283                                 __submit_bio(sbi, bio, DATA);
2284                                 bio = NULL;
2285                         }
2286                 }
2287         }
2288
2289         for (i = 0; i < dic->nr_cpages; i++) {
2290                 struct page *page = dic->cpages[i];
2291                 block_t blkaddr;
2292
2293                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2294                                                 dn.ofs_in_node + i + 1);
2295
2296                 if (bio && (!page_is_mergeable(sbi, bio,
2297                                         *last_block_in_bio, blkaddr) ||
2298                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2299 submit_and_realloc:
2300                         __submit_bio(sbi, bio, DATA);
2301                         bio = NULL;
2302                 }
2303
2304                 if (!bio) {
2305                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2306                                         is_readahead ? REQ_RAHEAD : 0,
2307                                         page->index, for_write, for_verity);
2308                         if (IS_ERR(bio)) {
2309                                 unsigned int remained = dic->nr_cpages - i;
2310                                 bool release = false;
2311
2312                                 ret = PTR_ERR(bio);
2313                                 dic->failed = true;
2314
2315                                 if (for_verity) {
2316                                         if (!atomic_sub_return(remained,
2317                                                 &dic->verity_pages))
2318                                                 release = true;
2319                                 } else {
2320                                         if (!atomic_sub_return(remained,
2321                                                 &dic->pending_pages))
2322                                                 release = true;
2323                                 }
2324
2325                                 if (release) {
2326                                         f2fs_decompress_end_io(dic->rpages,
2327                                                 cc->cluster_size, true,
2328                                                 false);
2329                                         f2fs_free_dic(dic);
2330                                 }
2331
2332                                 f2fs_put_dnode(&dn);
2333                                 *bio_ret = NULL;
2334                                 return ret;
2335                         }
2336                 }
2337
2338                 f2fs_wait_on_block_writeback(inode, blkaddr);
2339
2340                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2341                         goto submit_and_realloc;
2342
2343                 /* tag STEP_DECOMPRESS to handle IO in wq */
2344                 ctx = bio->bi_private;
2345                 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2346                         ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2347
2348                 inc_page_count(sbi, F2FS_RD_DATA);
2349                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2350                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2351                 ClearPageError(page);
2352                 *last_block_in_bio = blkaddr;
2353         }
2354
2355         f2fs_put_dnode(&dn);
2356
2357         *bio_ret = bio;
2358         return 0;
2359
2360 out_put_dnode:
2361         f2fs_put_dnode(&dn);
2362 out:
2363         f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2364         *bio_ret = bio;
2365         return ret;
2366 }
2367 #endif
2368
2369 /*
2370  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2371  * Major change was from block_size == page_size in f2fs by default.
2372  *
2373  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2374  * this function ever deviates from doing just read-ahead, it should either
2375  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2376  * from read-ahead.
2377  */
2378 static int f2fs_mpage_readpages(struct inode *inode,
2379                 struct readahead_control *rac, struct page *page)
2380 {
2381         struct bio *bio = NULL;
2382         sector_t last_block_in_bio = 0;
2383         struct f2fs_map_blocks map;
2384 #ifdef CONFIG_F2FS_FS_COMPRESSION
2385         struct compress_ctx cc = {
2386                 .inode = inode,
2387                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2388                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2389                 .cluster_idx = NULL_CLUSTER,
2390                 .rpages = NULL,
2391                 .cpages = NULL,
2392                 .nr_rpages = 0,
2393                 .nr_cpages = 0,
2394         };
2395 #endif
2396         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2397         unsigned max_nr_pages = nr_pages;
2398         int ret = 0;
2399         bool drop_ra = false;
2400
2401         map.m_pblk = 0;
2402         map.m_lblk = 0;
2403         map.m_len = 0;
2404         map.m_flags = 0;
2405         map.m_next_pgofs = NULL;
2406         map.m_next_extent = NULL;
2407         map.m_seg_type = NO_CHECK_TYPE;
2408         map.m_may_create = false;
2409
2410         /*
2411          * Two readahead threads for same address range can cause race condition
2412          * which fragments sequential read IOs. So let's avoid each other.
2413          */
2414         if (rac && readahead_count(rac)) {
2415                 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2416                         drop_ra = true;
2417                 else
2418                         WRITE_ONCE(F2FS_I(inode)->ra_offset,
2419                                                 readahead_index(rac));
2420         }
2421
2422         for (; nr_pages; nr_pages--) {
2423                 if (rac) {
2424                         page = readahead_page(rac);
2425                         prefetchw(&page->flags);
2426                         if (drop_ra) {
2427                                 f2fs_put_page(page, 1);
2428                                 continue;
2429                         }
2430                 }
2431
2432 #ifdef CONFIG_F2FS_FS_COMPRESSION
2433                 if (f2fs_compressed_file(inode)) {
2434                         /* there are remained comressed pages, submit them */
2435                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2436                                 ret = f2fs_read_multi_pages(&cc, &bio,
2437                                                         max_nr_pages,
2438                                                         &last_block_in_bio,
2439                                                         rac != NULL, false);
2440                                 f2fs_destroy_compress_ctx(&cc, false);
2441                                 if (ret)
2442                                         goto set_error_page;
2443                         }
2444                         ret = f2fs_is_compressed_cluster(inode, page->index);
2445                         if (ret < 0)
2446                                 goto set_error_page;
2447                         else if (!ret)
2448                                 goto read_single_page;
2449
2450                         ret = f2fs_init_compress_ctx(&cc);
2451                         if (ret)
2452                                 goto set_error_page;
2453
2454                         f2fs_compress_ctx_add_page(&cc, page);
2455
2456                         goto next_page;
2457                 }
2458 read_single_page:
2459 #endif
2460
2461                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2462                                         &bio, &last_block_in_bio, rac);
2463                 if (ret) {
2464 #ifdef CONFIG_F2FS_FS_COMPRESSION
2465 set_error_page:
2466 #endif
2467                         SetPageError(page);
2468                         zero_user_segment(page, 0, PAGE_SIZE);
2469                         unlock_page(page);
2470                 }
2471 #ifdef CONFIG_F2FS_FS_COMPRESSION
2472 next_page:
2473 #endif
2474                 if (rac)
2475                         put_page(page);
2476
2477 #ifdef CONFIG_F2FS_FS_COMPRESSION
2478                 if (f2fs_compressed_file(inode)) {
2479                         /* last page */
2480                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2481                                 ret = f2fs_read_multi_pages(&cc, &bio,
2482                                                         max_nr_pages,
2483                                                         &last_block_in_bio,
2484                                                         rac != NULL, false);
2485                                 f2fs_destroy_compress_ctx(&cc, false);
2486                         }
2487                 }
2488 #endif
2489         }
2490         if (bio)
2491                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2492
2493         if (rac && readahead_count(rac) && !drop_ra)
2494                 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2495         return ret;
2496 }
2497
2498 static int f2fs_read_data_page(struct file *file, struct page *page)
2499 {
2500         struct inode *inode = page_file_mapping(page)->host;
2501         int ret = -EAGAIN;
2502
2503         trace_f2fs_readpage(page, DATA);
2504
2505         if (!f2fs_is_compress_backend_ready(inode)) {
2506                 unlock_page(page);
2507                 return -EOPNOTSUPP;
2508         }
2509
2510         /* If the file has inline data, try to read it directly */
2511         if (f2fs_has_inline_data(inode))
2512                 ret = f2fs_read_inline_data(inode, page);
2513         if (ret == -EAGAIN)
2514                 ret = f2fs_mpage_readpages(inode, NULL, page);
2515         return ret;
2516 }
2517
2518 static void f2fs_readahead(struct readahead_control *rac)
2519 {
2520         struct inode *inode = rac->mapping->host;
2521
2522         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2523
2524         if (!f2fs_is_compress_backend_ready(inode))
2525                 return;
2526
2527         /* If the file has inline data, skip readpages */
2528         if (f2fs_has_inline_data(inode))
2529                 return;
2530
2531         f2fs_mpage_readpages(inode, rac, NULL);
2532 }
2533
2534 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2535 {
2536         struct inode *inode = fio->page->mapping->host;
2537         struct page *mpage, *page;
2538         gfp_t gfp_flags = GFP_NOFS;
2539
2540         if (!f2fs_encrypted_file(inode))
2541                 return 0;
2542
2543         page = fio->compressed_page ? fio->compressed_page : fio->page;
2544
2545         /* wait for GCed page writeback via META_MAPPING */
2546         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2547
2548         if (fscrypt_inode_uses_inline_crypto(inode))
2549                 return 0;
2550
2551 retry_encrypt:
2552         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2553                                         PAGE_SIZE, 0, gfp_flags);
2554         if (IS_ERR(fio->encrypted_page)) {
2555                 /* flush pending IOs and wait for a while in the ENOMEM case */
2556                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2557                         f2fs_flush_merged_writes(fio->sbi);
2558                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2559                         gfp_flags |= __GFP_NOFAIL;
2560                         goto retry_encrypt;
2561                 }
2562                 return PTR_ERR(fio->encrypted_page);
2563         }
2564
2565         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2566         if (mpage) {
2567                 if (PageUptodate(mpage))
2568                         memcpy(page_address(mpage),
2569                                 page_address(fio->encrypted_page), PAGE_SIZE);
2570                 f2fs_put_page(mpage, 1);
2571         }
2572         return 0;
2573 }
2574
2575 static inline bool check_inplace_update_policy(struct inode *inode,
2576                                 struct f2fs_io_info *fio)
2577 {
2578         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2579         unsigned int policy = SM_I(sbi)->ipu_policy;
2580
2581         if (policy & (0x1 << F2FS_IPU_FORCE))
2582                 return true;
2583         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2584                 return true;
2585         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2586                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2587                 return true;
2588         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2589                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2590                 return true;
2591
2592         /*
2593          * IPU for rewrite async pages
2594          */
2595         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2596                         fio && fio->op == REQ_OP_WRITE &&
2597                         !(fio->op_flags & REQ_SYNC) &&
2598                         !IS_ENCRYPTED(inode))
2599                 return true;
2600
2601         /* this is only set during fdatasync */
2602         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2603                         is_inode_flag_set(inode, FI_NEED_IPU))
2604                 return true;
2605
2606         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2607                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2608                 return true;
2609
2610         return false;
2611 }
2612
2613 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2614 {
2615         if (f2fs_is_pinned_file(inode))
2616                 return true;
2617
2618         /* if this is cold file, we should overwrite to avoid fragmentation */
2619         if (file_is_cold(inode))
2620                 return true;
2621
2622         return check_inplace_update_policy(inode, fio);
2623 }
2624
2625 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2626 {
2627         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2628
2629         if (f2fs_lfs_mode(sbi))
2630                 return true;
2631         if (S_ISDIR(inode->i_mode))
2632                 return true;
2633         if (IS_NOQUOTA(inode))
2634                 return true;
2635         if (f2fs_is_atomic_file(inode))
2636                 return true;
2637         if (fio) {
2638                 if (is_cold_data(fio->page))
2639                         return true;
2640                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2641                         return true;
2642                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2643                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2644                         return true;
2645         }
2646         return false;
2647 }
2648
2649 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2650 {
2651         struct inode *inode = fio->page->mapping->host;
2652
2653         if (f2fs_should_update_outplace(inode, fio))
2654                 return false;
2655
2656         return f2fs_should_update_inplace(inode, fio);
2657 }
2658
2659 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2660 {
2661         struct page *page = fio->page;
2662         struct inode *inode = page->mapping->host;
2663         struct dnode_of_data dn;
2664         struct extent_info ei = {0,0,0};
2665         struct node_info ni;
2666         bool ipu_force = false;
2667         int err = 0;
2668
2669         set_new_dnode(&dn, inode, NULL, NULL, 0);
2670         if (need_inplace_update(fio) &&
2671                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2672                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2673
2674                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2675                                                 DATA_GENERIC_ENHANCE))
2676                         return -EFSCORRUPTED;
2677
2678                 ipu_force = true;
2679                 fio->need_lock = LOCK_DONE;
2680                 goto got_it;
2681         }
2682
2683         /* Deadlock due to between page->lock and f2fs_lock_op */
2684         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2685                 return -EAGAIN;
2686
2687         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2688         if (err)
2689                 goto out;
2690
2691         fio->old_blkaddr = dn.data_blkaddr;
2692
2693         /* This page is already truncated */
2694         if (fio->old_blkaddr == NULL_ADDR) {
2695                 ClearPageUptodate(page);
2696                 clear_cold_data(page);
2697                 goto out_writepage;
2698         }
2699 got_it:
2700         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2701                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2702                                                 DATA_GENERIC_ENHANCE)) {
2703                 err = -EFSCORRUPTED;
2704                 goto out_writepage;
2705         }
2706         /*
2707          * If current allocation needs SSR,
2708          * it had better in-place writes for updated data.
2709          */
2710         if (ipu_force ||
2711                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2712                                         need_inplace_update(fio))) {
2713                 err = f2fs_encrypt_one_page(fio);
2714                 if (err)
2715                         goto out_writepage;
2716
2717                 set_page_writeback(page);
2718                 ClearPageError(page);
2719                 f2fs_put_dnode(&dn);
2720                 if (fio->need_lock == LOCK_REQ)
2721                         f2fs_unlock_op(fio->sbi);
2722                 err = f2fs_inplace_write_data(fio);
2723                 if (err) {
2724                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2725                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2726                         if (PageWriteback(page))
2727                                 end_page_writeback(page);
2728                 } else {
2729                         set_inode_flag(inode, FI_UPDATE_WRITE);
2730                 }
2731                 trace_f2fs_do_write_data_page(fio->page, IPU);
2732                 return err;
2733         }
2734
2735         if (fio->need_lock == LOCK_RETRY) {
2736                 if (!f2fs_trylock_op(fio->sbi)) {
2737                         err = -EAGAIN;
2738                         goto out_writepage;
2739                 }
2740                 fio->need_lock = LOCK_REQ;
2741         }
2742
2743         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2744         if (err)
2745                 goto out_writepage;
2746
2747         fio->version = ni.version;
2748
2749         err = f2fs_encrypt_one_page(fio);
2750         if (err)
2751                 goto out_writepage;
2752
2753         set_page_writeback(page);
2754         ClearPageError(page);
2755
2756         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2757                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2758
2759         /* LFS mode write path */
2760         f2fs_outplace_write_data(&dn, fio);
2761         trace_f2fs_do_write_data_page(page, OPU);
2762         set_inode_flag(inode, FI_APPEND_WRITE);
2763         if (page->index == 0)
2764                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2765 out_writepage:
2766         f2fs_put_dnode(&dn);
2767 out:
2768         if (fio->need_lock == LOCK_REQ)
2769                 f2fs_unlock_op(fio->sbi);
2770         return err;
2771 }
2772
2773 int f2fs_write_single_data_page(struct page *page, int *submitted,
2774                                 struct bio **bio,
2775                                 sector_t *last_block,
2776                                 struct writeback_control *wbc,
2777                                 enum iostat_type io_type,
2778                                 int compr_blocks,
2779                                 bool allow_balance)
2780 {
2781         struct inode *inode = page->mapping->host;
2782         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2783         loff_t i_size = i_size_read(inode);
2784         const pgoff_t end_index = ((unsigned long long)i_size)
2785                                                         >> PAGE_SHIFT;
2786         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2787         unsigned offset = 0;
2788         bool need_balance_fs = false;
2789         int err = 0;
2790         struct f2fs_io_info fio = {
2791                 .sbi = sbi,
2792                 .ino = inode->i_ino,
2793                 .type = DATA,
2794                 .op = REQ_OP_WRITE,
2795                 .op_flags = wbc_to_write_flags(wbc),
2796                 .old_blkaddr = NULL_ADDR,
2797                 .page = page,
2798                 .encrypted_page = NULL,
2799                 .submitted = false,
2800                 .compr_blocks = compr_blocks,
2801                 .need_lock = LOCK_RETRY,
2802                 .io_type = io_type,
2803                 .io_wbc = wbc,
2804                 .bio = bio,
2805                 .last_block = last_block,
2806         };
2807
2808         trace_f2fs_writepage(page, DATA);
2809
2810         /* we should bypass data pages to proceed the kworkder jobs */
2811         if (unlikely(f2fs_cp_error(sbi))) {
2812                 mapping_set_error(page->mapping, -EIO);
2813                 /*
2814                  * don't drop any dirty dentry pages for keeping lastest
2815                  * directory structure.
2816                  */
2817                 if (S_ISDIR(inode->i_mode) &&
2818                                 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2819                         goto redirty_out;
2820                 goto out;
2821         }
2822
2823         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2824                 goto redirty_out;
2825
2826         if (page->index < end_index ||
2827                         f2fs_verity_in_progress(inode) ||
2828                         compr_blocks)
2829                 goto write;
2830
2831         /*
2832          * If the offset is out-of-range of file size,
2833          * this page does not have to be written to disk.
2834          */
2835         offset = i_size & (PAGE_SIZE - 1);
2836         if ((page->index >= end_index + 1) || !offset)
2837                 goto out;
2838
2839         zero_user_segment(page, offset, PAGE_SIZE);
2840 write:
2841         if (f2fs_is_drop_cache(inode))
2842                 goto out;
2843         /* we should not write 0'th page having journal header */
2844         if (f2fs_is_volatile_file(inode) && (!page->index ||
2845                         (!wbc->for_reclaim &&
2846                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2847                 goto redirty_out;
2848
2849         /* Dentry/quota blocks are controlled by checkpoint */
2850         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2851                 /*
2852                  * We need to wait for node_write to avoid block allocation during
2853                  * checkpoint. This can only happen to quota writes which can cause
2854                  * the below discard race condition.
2855                  */
2856                 if (IS_NOQUOTA(inode))
2857                         down_read(&sbi->node_write);
2858
2859                 fio.need_lock = LOCK_DONE;
2860                 err = f2fs_do_write_data_page(&fio);
2861
2862                 if (IS_NOQUOTA(inode))
2863                         up_read(&sbi->node_write);
2864
2865                 goto done;
2866         }
2867
2868         if (!wbc->for_reclaim)
2869                 need_balance_fs = true;
2870         else if (has_not_enough_free_secs(sbi, 0, 0))
2871                 goto redirty_out;
2872         else
2873                 set_inode_flag(inode, FI_HOT_DATA);
2874
2875         err = -EAGAIN;
2876         if (f2fs_has_inline_data(inode)) {
2877                 err = f2fs_write_inline_data(inode, page);
2878                 if (!err)
2879                         goto out;
2880         }
2881
2882         if (err == -EAGAIN) {
2883                 err = f2fs_do_write_data_page(&fio);
2884                 if (err == -EAGAIN) {
2885                         fio.need_lock = LOCK_REQ;
2886                         err = f2fs_do_write_data_page(&fio);
2887                 }
2888         }
2889
2890         if (err) {
2891                 file_set_keep_isize(inode);
2892         } else {
2893                 spin_lock(&F2FS_I(inode)->i_size_lock);
2894                 if (F2FS_I(inode)->last_disk_size < psize)
2895                         F2FS_I(inode)->last_disk_size = psize;
2896                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2897         }
2898
2899 done:
2900         if (err && err != -ENOENT)
2901                 goto redirty_out;
2902
2903 out:
2904         inode_dec_dirty_pages(inode);
2905         if (err) {
2906                 ClearPageUptodate(page);
2907                 clear_cold_data(page);
2908         }
2909
2910         if (wbc->for_reclaim) {
2911                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2912                 clear_inode_flag(inode, FI_HOT_DATA);
2913                 f2fs_remove_dirty_inode(inode);
2914                 submitted = NULL;
2915         }
2916         unlock_page(page);
2917         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2918                         !F2FS_I(inode)->wb_task && allow_balance)
2919                 f2fs_balance_fs(sbi, need_balance_fs);
2920
2921         if (unlikely(f2fs_cp_error(sbi))) {
2922                 f2fs_submit_merged_write(sbi, DATA);
2923                 if (bio && *bio)
2924                         f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2925                 submitted = NULL;
2926         }
2927
2928         if (submitted)
2929                 *submitted = fio.submitted ? 1 : 0;
2930
2931         return 0;
2932
2933 redirty_out:
2934         redirty_page_for_writepage(wbc, page);
2935         /*
2936          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2937          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2938          * file_write_and_wait_range() will see EIO error, which is critical
2939          * to return value of fsync() followed by atomic_write failure to user.
2940          */
2941         if (!err || wbc->for_reclaim)
2942                 return AOP_WRITEPAGE_ACTIVATE;
2943         unlock_page(page);
2944         return err;
2945 }
2946
2947 static int f2fs_write_data_page(struct page *page,
2948                                         struct writeback_control *wbc)
2949 {
2950 #ifdef CONFIG_F2FS_FS_COMPRESSION
2951         struct inode *inode = page->mapping->host;
2952
2953         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2954                 goto out;
2955
2956         if (f2fs_compressed_file(inode)) {
2957                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2958                         redirty_page_for_writepage(wbc, page);
2959                         return AOP_WRITEPAGE_ACTIVATE;
2960                 }
2961         }
2962 out:
2963 #endif
2964
2965         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2966                                                 wbc, FS_DATA_IO, 0, true);
2967 }
2968
2969 /*
2970  * This function was copied from write_cche_pages from mm/page-writeback.c.
2971  * The major change is making write step of cold data page separately from
2972  * warm/hot data page.
2973  */
2974 static int f2fs_write_cache_pages(struct address_space *mapping,
2975                                         struct writeback_control *wbc,
2976                                         enum iostat_type io_type)
2977 {
2978         int ret = 0;
2979         int done = 0, retry = 0;
2980         struct pagevec pvec;
2981         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2982         struct bio *bio = NULL;
2983         sector_t last_block;
2984 #ifdef CONFIG_F2FS_FS_COMPRESSION
2985         struct inode *inode = mapping->host;
2986         struct compress_ctx cc = {
2987                 .inode = inode,
2988                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2989                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2990                 .cluster_idx = NULL_CLUSTER,
2991                 .rpages = NULL,
2992                 .nr_rpages = 0,
2993                 .cpages = NULL,
2994                 .rbuf = NULL,
2995                 .cbuf = NULL,
2996                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2997                 .private = NULL,
2998         };
2999 #endif
3000         int nr_pages;
3001         pgoff_t index;
3002         pgoff_t end;            /* Inclusive */
3003         pgoff_t done_index;
3004         int range_whole = 0;
3005         xa_mark_t tag;
3006         int nwritten = 0;
3007         int submitted = 0;
3008         int i;
3009
3010         pagevec_init(&pvec);
3011
3012         if (get_dirty_pages(mapping->host) <=
3013                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3014                 set_inode_flag(mapping->host, FI_HOT_DATA);
3015         else
3016                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3017
3018         if (wbc->range_cyclic) {
3019                 index = mapping->writeback_index; /* prev offset */
3020                 end = -1;
3021         } else {
3022                 index = wbc->range_start >> PAGE_SHIFT;
3023                 end = wbc->range_end >> PAGE_SHIFT;
3024                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3025                         range_whole = 1;
3026         }
3027         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3028                 tag = PAGECACHE_TAG_TOWRITE;
3029         else
3030                 tag = PAGECACHE_TAG_DIRTY;
3031 retry:
3032         retry = 0;
3033         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3034                 tag_pages_for_writeback(mapping, index, end);
3035         done_index = index;
3036         while (!done && !retry && (index <= end)) {
3037                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3038                                 tag);
3039                 if (nr_pages == 0)
3040                         break;
3041
3042                 for (i = 0; i < nr_pages; i++) {
3043                         struct page *page = pvec.pages[i];
3044                         bool need_readd;
3045 readd:
3046                         need_readd = false;
3047 #ifdef CONFIG_F2FS_FS_COMPRESSION
3048                         if (f2fs_compressed_file(inode)) {
3049                                 ret = f2fs_init_compress_ctx(&cc);
3050                                 if (ret) {
3051                                         done = 1;
3052                                         break;
3053                                 }
3054
3055                                 if (!f2fs_cluster_can_merge_page(&cc,
3056                                                                 page->index)) {
3057                                         ret = f2fs_write_multi_pages(&cc,
3058                                                 &submitted, wbc, io_type);
3059                                         if (!ret)
3060                                                 need_readd = true;
3061                                         goto result;
3062                                 }
3063
3064                                 if (unlikely(f2fs_cp_error(sbi)))
3065                                         goto lock_page;
3066
3067                                 if (f2fs_cluster_is_empty(&cc)) {
3068                                         void *fsdata = NULL;
3069                                         struct page *pagep;
3070                                         int ret2;
3071
3072                                         ret2 = f2fs_prepare_compress_overwrite(
3073                                                         inode, &pagep,
3074                                                         page->index, &fsdata);
3075                                         if (ret2 < 0) {
3076                                                 ret = ret2;
3077                                                 done = 1;
3078                                                 break;
3079                                         } else if (ret2 &&
3080                                                 !f2fs_compress_write_end(inode,
3081                                                                 fsdata, page->index,
3082                                                                 1)) {
3083                                                 retry = 1;
3084                                                 break;
3085                                         }
3086                                 } else {
3087                                         goto lock_page;
3088                                 }
3089                         }
3090 #endif
3091                         /* give a priority to WB_SYNC threads */
3092                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3093                                         wbc->sync_mode == WB_SYNC_NONE) {
3094                                 done = 1;
3095                                 break;
3096                         }
3097 #ifdef CONFIG_F2FS_FS_COMPRESSION
3098 lock_page:
3099 #endif
3100                         done_index = page->index;
3101 retry_write:
3102                         lock_page(page);
3103
3104                         if (unlikely(page->mapping != mapping)) {
3105 continue_unlock:
3106                                 unlock_page(page);
3107                                 continue;
3108                         }
3109
3110                         if (!PageDirty(page)) {
3111                                 /* someone wrote it for us */
3112                                 goto continue_unlock;
3113                         }
3114
3115                         if (PageWriteback(page)) {
3116                                 if (wbc->sync_mode != WB_SYNC_NONE)
3117                                         f2fs_wait_on_page_writeback(page,
3118                                                         DATA, true, true);
3119                                 else
3120                                         goto continue_unlock;
3121                         }
3122
3123                         if (!clear_page_dirty_for_io(page))
3124                                 goto continue_unlock;
3125
3126 #ifdef CONFIG_F2FS_FS_COMPRESSION
3127                         if (f2fs_compressed_file(inode)) {
3128                                 get_page(page);
3129                                 f2fs_compress_ctx_add_page(&cc, page);
3130                                 continue;
3131                         }
3132 #endif
3133                         ret = f2fs_write_single_data_page(page, &submitted,
3134                                         &bio, &last_block, wbc, io_type,
3135                                         0, true);
3136                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3137                                 unlock_page(page);
3138 #ifdef CONFIG_F2FS_FS_COMPRESSION
3139 result:
3140 #endif
3141                         nwritten += submitted;
3142                         wbc->nr_to_write -= submitted;
3143
3144                         if (unlikely(ret)) {
3145                                 /*
3146                                  * keep nr_to_write, since vfs uses this to
3147                                  * get # of written pages.
3148                                  */
3149                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3150                                         ret = 0;
3151                                         goto next;
3152                                 } else if (ret == -EAGAIN) {
3153                                         ret = 0;
3154                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3155                                                 cond_resched();
3156                                                 congestion_wait(BLK_RW_ASYNC,
3157                                                         DEFAULT_IO_TIMEOUT);
3158                                                 goto retry_write;
3159                                         }
3160                                         goto next;
3161                                 }
3162                                 done_index = page->index + 1;
3163                                 done = 1;
3164                                 break;
3165                         }
3166
3167                         if (wbc->nr_to_write <= 0 &&
3168                                         wbc->sync_mode == WB_SYNC_NONE) {
3169                                 done = 1;
3170                                 break;
3171                         }
3172 next:
3173                         if (need_readd)
3174                                 goto readd;
3175                 }
3176                 pagevec_release(&pvec);
3177                 cond_resched();
3178         }
3179 #ifdef CONFIG_F2FS_FS_COMPRESSION
3180         /* flush remained pages in compress cluster */
3181         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3182                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3183                 nwritten += submitted;
3184                 wbc->nr_to_write -= submitted;
3185                 if (ret) {
3186                         done = 1;
3187                         retry = 0;
3188                 }
3189         }
3190         if (f2fs_compressed_file(inode))
3191                 f2fs_destroy_compress_ctx(&cc, false);
3192 #endif
3193         if (retry) {
3194                 index = 0;
3195                 end = -1;
3196                 goto retry;
3197         }
3198         if (wbc->range_cyclic && !done)
3199                 done_index = 0;
3200         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3201                 mapping->writeback_index = done_index;
3202
3203         if (nwritten)
3204                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3205                                                                 NULL, 0, DATA);
3206         /* submit cached bio of IPU write */
3207         if (bio)
3208                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3209
3210         return ret;
3211 }
3212
3213 static inline bool __should_serialize_io(struct inode *inode,
3214                                         struct writeback_control *wbc)
3215 {
3216         /* to avoid deadlock in path of data flush */
3217         if (F2FS_I(inode)->wb_task)
3218                 return false;
3219
3220         if (!S_ISREG(inode->i_mode))
3221                 return false;
3222         if (IS_NOQUOTA(inode))
3223                 return false;
3224
3225         if (f2fs_compressed_file(inode))
3226                 return true;
3227         if (wbc->sync_mode != WB_SYNC_ALL)
3228                 return true;
3229         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3230                 return true;
3231         return false;
3232 }
3233
3234 static int __f2fs_write_data_pages(struct address_space *mapping,
3235                                                 struct writeback_control *wbc,
3236                                                 enum iostat_type io_type)
3237 {
3238         struct inode *inode = mapping->host;
3239         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3240         struct blk_plug plug;
3241         int ret;
3242         bool locked = false;
3243
3244         /* deal with chardevs and other special file */
3245         if (!mapping->a_ops->writepage)
3246                 return 0;
3247
3248         /* skip writing if there is no dirty page in this inode */
3249         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3250                 return 0;
3251
3252         /* during POR, we don't need to trigger writepage at all. */
3253         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3254                 goto skip_write;
3255
3256         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3257                         wbc->sync_mode == WB_SYNC_NONE &&
3258                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3259                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3260                 goto skip_write;
3261
3262         /* skip writing during file defragment */
3263         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3264                 goto skip_write;
3265
3266         trace_f2fs_writepages(mapping->host, wbc, DATA);
3267
3268         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3269         if (wbc->sync_mode == WB_SYNC_ALL)
3270                 atomic_inc(&sbi->wb_sync_req[DATA]);
3271         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3272                 /* to avoid potential deadlock */
3273                 if (current->plug)
3274                         blk_finish_plug(current->plug);
3275                 goto skip_write;
3276         }
3277
3278         if (__should_serialize_io(inode, wbc)) {
3279                 mutex_lock(&sbi->writepages);
3280                 locked = true;
3281         }
3282
3283         blk_start_plug(&plug);
3284         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3285         blk_finish_plug(&plug);
3286
3287         if (locked)
3288                 mutex_unlock(&sbi->writepages);
3289
3290         if (wbc->sync_mode == WB_SYNC_ALL)
3291                 atomic_dec(&sbi->wb_sync_req[DATA]);
3292         /*
3293          * if some pages were truncated, we cannot guarantee its mapping->host
3294          * to detect pending bios.
3295          */
3296
3297         f2fs_remove_dirty_inode(inode);
3298         return ret;
3299
3300 skip_write:
3301         wbc->pages_skipped += get_dirty_pages(inode);
3302         trace_f2fs_writepages(mapping->host, wbc, DATA);
3303         return 0;
3304 }
3305
3306 static int f2fs_write_data_pages(struct address_space *mapping,
3307                             struct writeback_control *wbc)
3308 {
3309         struct inode *inode = mapping->host;
3310
3311         return __f2fs_write_data_pages(mapping, wbc,
3312                         F2FS_I(inode)->cp_task == current ?
3313                         FS_CP_DATA_IO : FS_DATA_IO);
3314 }
3315
3316 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3317 {
3318         struct inode *inode = mapping->host;
3319         loff_t i_size = i_size_read(inode);
3320
3321         if (IS_NOQUOTA(inode))
3322                 return;
3323
3324         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3325         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3326                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3327                 down_write(&F2FS_I(inode)->i_mmap_sem);
3328
3329                 truncate_pagecache(inode, i_size);
3330                 f2fs_truncate_blocks(inode, i_size, true);
3331
3332                 up_write(&F2FS_I(inode)->i_mmap_sem);
3333                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3334         }
3335 }
3336
3337 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3338                         struct page *page, loff_t pos, unsigned len,
3339                         block_t *blk_addr, bool *node_changed)
3340 {
3341         struct inode *inode = page->mapping->host;
3342         pgoff_t index = page->index;
3343         struct dnode_of_data dn;
3344         struct page *ipage;
3345         bool locked = false;
3346         struct extent_info ei = {0,0,0};
3347         int err = 0;
3348         int flag;
3349
3350         /*
3351          * we already allocated all the blocks, so we don't need to get
3352          * the block addresses when there is no need to fill the page.
3353          */
3354         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3355             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3356             !f2fs_verity_in_progress(inode))
3357                 return 0;
3358
3359         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3360         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3361                 flag = F2FS_GET_BLOCK_DEFAULT;
3362         else
3363                 flag = F2FS_GET_BLOCK_PRE_AIO;
3364
3365         if (f2fs_has_inline_data(inode) ||
3366                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3367                 f2fs_do_map_lock(sbi, flag, true);
3368                 locked = true;
3369         }
3370
3371 restart:
3372         /* check inline_data */
3373         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3374         if (IS_ERR(ipage)) {
3375                 err = PTR_ERR(ipage);
3376                 goto unlock_out;
3377         }
3378
3379         set_new_dnode(&dn, inode, ipage, ipage, 0);
3380
3381         if (f2fs_has_inline_data(inode)) {
3382                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3383                         f2fs_do_read_inline_data(page, ipage);
3384                         set_inode_flag(inode, FI_DATA_EXIST);
3385                         if (inode->i_nlink)
3386                                 set_inline_node(ipage);
3387                 } else {
3388                         err = f2fs_convert_inline_page(&dn, page);
3389                         if (err)
3390                                 goto out;
3391                         if (dn.data_blkaddr == NULL_ADDR)
3392                                 err = f2fs_get_block(&dn, index);
3393                 }
3394         } else if (locked) {
3395                 err = f2fs_get_block(&dn, index);
3396         } else {
3397                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3398                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3399                 } else {
3400                         /* hole case */
3401                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3402                         if (err || dn.data_blkaddr == NULL_ADDR) {
3403                                 f2fs_put_dnode(&dn);
3404                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3405                                                                 true);
3406                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3407                                 locked = true;
3408                                 goto restart;
3409                         }
3410                 }
3411         }
3412
3413         /* convert_inline_page can make node_changed */
3414         *blk_addr = dn.data_blkaddr;
3415         *node_changed = dn.node_changed;
3416 out:
3417         f2fs_put_dnode(&dn);
3418 unlock_out:
3419         if (locked)
3420                 f2fs_do_map_lock(sbi, flag, false);
3421         return err;
3422 }
3423
3424 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3425                 loff_t pos, unsigned len, unsigned flags,
3426                 struct page **pagep, void **fsdata)
3427 {
3428         struct inode *inode = mapping->host;
3429         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3430         struct page *page = NULL;
3431         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3432         bool need_balance = false, drop_atomic = false;
3433         block_t blkaddr = NULL_ADDR;
3434         int err = 0;
3435
3436         trace_f2fs_write_begin(inode, pos, len, flags);
3437
3438         if (!f2fs_is_checkpoint_ready(sbi)) {
3439                 err = -ENOSPC;
3440                 goto fail;
3441         }
3442
3443         if ((f2fs_is_atomic_file(inode) &&
3444                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3445                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3446                 err = -ENOMEM;
3447                 drop_atomic = true;
3448                 goto fail;
3449         }
3450
3451         /*
3452          * We should check this at this moment to avoid deadlock on inode page
3453          * and #0 page. The locking rule for inline_data conversion should be:
3454          * lock_page(page #0) -> lock_page(inode_page)
3455          */
3456         if (index != 0) {
3457                 err = f2fs_convert_inline_inode(inode);
3458                 if (err)
3459                         goto fail;
3460         }
3461
3462 #ifdef CONFIG_F2FS_FS_COMPRESSION
3463         if (f2fs_compressed_file(inode)) {
3464                 int ret;
3465
3466                 *fsdata = NULL;
3467
3468                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3469                         goto repeat;
3470
3471                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3472                                                         index, fsdata);
3473                 if (ret < 0) {
3474                         err = ret;
3475                         goto fail;
3476                 } else if (ret) {
3477                         return 0;
3478                 }
3479         }
3480 #endif
3481
3482 repeat:
3483         /*
3484          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3485          * wait_for_stable_page. Will wait that below with our IO control.
3486          */
3487         page = f2fs_pagecache_get_page(mapping, index,
3488                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3489         if (!page) {
3490                 err = -ENOMEM;
3491                 goto fail;
3492         }
3493
3494         /* TODO: cluster can be compressed due to race with .writepage */
3495
3496         *pagep = page;
3497
3498         err = prepare_write_begin(sbi, page, pos, len,
3499                                         &blkaddr, &need_balance);
3500         if (err)
3501                 goto fail;
3502
3503         if (need_balance && !IS_NOQUOTA(inode) &&
3504                         has_not_enough_free_secs(sbi, 0, 0)) {
3505                 unlock_page(page);
3506                 f2fs_balance_fs(sbi, true);
3507                 lock_page(page);
3508                 if (page->mapping != mapping) {
3509                         /* The page got truncated from under us */
3510                         f2fs_put_page(page, 1);
3511                         goto repeat;
3512                 }
3513         }
3514
3515         f2fs_wait_on_page_writeback(page, DATA, false, true);
3516
3517         if (len == PAGE_SIZE || PageUptodate(page))
3518                 return 0;
3519
3520         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3521             !f2fs_verity_in_progress(inode)) {
3522                 zero_user_segment(page, len, PAGE_SIZE);
3523                 return 0;
3524         }
3525
3526         if (blkaddr == NEW_ADDR) {
3527                 zero_user_segment(page, 0, PAGE_SIZE);
3528                 SetPageUptodate(page);
3529         } else {
3530                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3531                                 DATA_GENERIC_ENHANCE_READ)) {
3532                         err = -EFSCORRUPTED;
3533                         goto fail;
3534                 }
3535                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3536                 if (err)
3537                         goto fail;
3538
3539                 lock_page(page);
3540                 if (unlikely(page->mapping != mapping)) {
3541                         f2fs_put_page(page, 1);
3542                         goto repeat;
3543                 }
3544                 if (unlikely(!PageUptodate(page))) {
3545                         err = -EIO;
3546                         goto fail;
3547                 }
3548         }
3549         return 0;
3550
3551 fail:
3552         f2fs_put_page(page, 1);
3553         f2fs_write_failed(mapping, pos + len);
3554         if (drop_atomic)
3555                 f2fs_drop_inmem_pages_all(sbi, false);
3556         return err;
3557 }
3558
3559 static int f2fs_write_end(struct file *file,
3560                         struct address_space *mapping,
3561                         loff_t pos, unsigned len, unsigned copied,
3562                         struct page *page, void *fsdata)
3563 {
3564         struct inode *inode = page->mapping->host;
3565
3566         trace_f2fs_write_end(inode, pos, len, copied);
3567
3568         /*
3569          * This should be come from len == PAGE_SIZE, and we expect copied
3570          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3571          * let generic_perform_write() try to copy data again through copied=0.
3572          */
3573         if (!PageUptodate(page)) {
3574                 if (unlikely(copied != len))
3575                         copied = 0;
3576                 else
3577                         SetPageUptodate(page);
3578         }
3579
3580 #ifdef CONFIG_F2FS_FS_COMPRESSION
3581         /* overwrite compressed file */
3582         if (f2fs_compressed_file(inode) && fsdata) {
3583                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3584                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3585
3586                 if (pos + copied > i_size_read(inode) &&
3587                                 !f2fs_verity_in_progress(inode))
3588                         f2fs_i_size_write(inode, pos + copied);
3589                 return copied;
3590         }
3591 #endif
3592
3593         if (!copied)
3594                 goto unlock_out;
3595
3596         set_page_dirty(page);
3597
3598         if (pos + copied > i_size_read(inode) &&
3599             !f2fs_verity_in_progress(inode))
3600                 f2fs_i_size_write(inode, pos + copied);
3601 unlock_out:
3602         f2fs_put_page(page, 1);
3603         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3604         return copied;
3605 }
3606
3607 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3608                            loff_t offset)
3609 {
3610         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3611         unsigned blkbits = i_blkbits;
3612         unsigned blocksize_mask = (1 << blkbits) - 1;
3613         unsigned long align = offset | iov_iter_alignment(iter);
3614         struct block_device *bdev = inode->i_sb->s_bdev;
3615
3616         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3617                 return 1;
3618
3619         if (align & blocksize_mask) {
3620                 if (bdev)
3621                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3622                 blocksize_mask = (1 << blkbits) - 1;
3623                 if (align & blocksize_mask)
3624                         return -EINVAL;
3625                 return 1;
3626         }
3627         return 0;
3628 }
3629
3630 static void f2fs_dio_end_io(struct bio *bio)
3631 {
3632         struct f2fs_private_dio *dio = bio->bi_private;
3633
3634         dec_page_count(F2FS_I_SB(dio->inode),
3635                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3636
3637         bio->bi_private = dio->orig_private;
3638         bio->bi_end_io = dio->orig_end_io;
3639
3640         kfree(dio);
3641
3642         bio_endio(bio);
3643 }
3644
3645 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3646                                                         loff_t file_offset)
3647 {
3648         struct f2fs_private_dio *dio;
3649         bool write = (bio_op(bio) == REQ_OP_WRITE);
3650
3651         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3652                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3653         if (!dio)
3654                 goto out;
3655
3656         dio->inode = inode;
3657         dio->orig_end_io = bio->bi_end_io;
3658         dio->orig_private = bio->bi_private;
3659         dio->write = write;
3660
3661         bio->bi_end_io = f2fs_dio_end_io;
3662         bio->bi_private = dio;
3663
3664         inc_page_count(F2FS_I_SB(inode),
3665                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3666
3667         submit_bio(bio);
3668         return;
3669 out:
3670         bio->bi_status = BLK_STS_IOERR;
3671         bio_endio(bio);
3672 }
3673
3674 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3675 {
3676         struct address_space *mapping = iocb->ki_filp->f_mapping;
3677         struct inode *inode = mapping->host;
3678         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3679         struct f2fs_inode_info *fi = F2FS_I(inode);
3680         size_t count = iov_iter_count(iter);
3681         loff_t offset = iocb->ki_pos;
3682         int rw = iov_iter_rw(iter);
3683         int err;
3684         enum rw_hint hint = iocb->ki_hint;
3685         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3686         bool do_opu;
3687
3688         err = check_direct_IO(inode, iter, offset);
3689         if (err)
3690                 return err < 0 ? err : 0;
3691
3692         if (f2fs_force_buffered_io(inode, iocb, iter))
3693                 return 0;
3694
3695         do_opu = allow_outplace_dio(inode, iocb, iter);
3696
3697         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3698
3699         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3700                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3701
3702         if (iocb->ki_flags & IOCB_NOWAIT) {
3703                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3704                         iocb->ki_hint = hint;
3705                         err = -EAGAIN;
3706                         goto out;
3707                 }
3708                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3709                         up_read(&fi->i_gc_rwsem[rw]);
3710                         iocb->ki_hint = hint;
3711                         err = -EAGAIN;
3712                         goto out;
3713                 }
3714         } else {
3715                 down_read(&fi->i_gc_rwsem[rw]);
3716                 if (do_opu)
3717                         down_read(&fi->i_gc_rwsem[READ]);
3718         }
3719
3720         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3721                         iter, rw == WRITE ? get_data_block_dio_write :
3722                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3723                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3724                         DIO_SKIP_HOLES);
3725
3726         if (do_opu)
3727                 up_read(&fi->i_gc_rwsem[READ]);
3728
3729         up_read(&fi->i_gc_rwsem[rw]);
3730
3731         if (rw == WRITE) {
3732                 if (whint_mode == WHINT_MODE_OFF)
3733                         iocb->ki_hint = hint;
3734                 if (err > 0) {
3735                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3736                                                                         err);
3737                         if (!do_opu)
3738                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3739                 } else if (err == -EIOCBQUEUED) {
3740                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3741                                                 count - iov_iter_count(iter));
3742                 } else if (err < 0) {
3743                         f2fs_write_failed(mapping, offset + count);
3744                 }
3745         } else {
3746                 if (err > 0)
3747                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3748                 else if (err == -EIOCBQUEUED)
3749                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3750                                                 count - iov_iter_count(iter));
3751         }
3752
3753 out:
3754         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3755
3756         return err;
3757 }
3758
3759 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3760                                                         unsigned int length)
3761 {
3762         struct inode *inode = page->mapping->host;
3763         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3764
3765         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3766                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3767                 return;
3768
3769         if (PageDirty(page)) {
3770                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3771                         dec_page_count(sbi, F2FS_DIRTY_META);
3772                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3773                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3774                 } else {
3775                         inode_dec_dirty_pages(inode);
3776                         f2fs_remove_dirty_inode(inode);
3777                 }
3778         }
3779
3780         clear_cold_data(page);
3781
3782         if (IS_ATOMIC_WRITTEN_PAGE(page))
3783                 return f2fs_drop_inmem_page(inode, page);
3784
3785         f2fs_clear_page_private(page);
3786 }
3787
3788 int f2fs_release_page(struct page *page, gfp_t wait)
3789 {
3790         /* If this is dirty page, keep PagePrivate */
3791         if (PageDirty(page))
3792                 return 0;
3793
3794         /* This is atomic written page, keep Private */
3795         if (IS_ATOMIC_WRITTEN_PAGE(page))
3796                 return 0;
3797
3798         clear_cold_data(page);
3799         f2fs_clear_page_private(page);
3800         return 1;
3801 }
3802
3803 static int f2fs_set_data_page_dirty(struct page *page)
3804 {
3805         struct inode *inode = page_file_mapping(page)->host;
3806
3807         trace_f2fs_set_page_dirty(page, DATA);
3808
3809         if (!PageUptodate(page))
3810                 SetPageUptodate(page);
3811         if (PageSwapCache(page))
3812                 return __set_page_dirty_nobuffers(page);
3813
3814         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3815                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3816                         f2fs_register_inmem_page(inode, page);
3817                         return 1;
3818                 }
3819                 /*
3820                  * Previously, this page has been registered, we just
3821                  * return here.
3822                  */
3823                 return 0;
3824         }
3825
3826         if (!PageDirty(page)) {
3827                 __set_page_dirty_nobuffers(page);
3828                 f2fs_update_dirty_page(inode, page);
3829                 return 1;
3830         }
3831         return 0;
3832 }
3833
3834
3835 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3836 {
3837 #ifdef CONFIG_F2FS_FS_COMPRESSION
3838         struct dnode_of_data dn;
3839         sector_t start_idx, blknr = 0;
3840         int ret;
3841
3842         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3843
3844         set_new_dnode(&dn, inode, NULL, NULL, 0);
3845         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3846         if (ret)
3847                 return 0;
3848
3849         if (dn.data_blkaddr != COMPRESS_ADDR) {
3850                 dn.ofs_in_node += block - start_idx;
3851                 blknr = f2fs_data_blkaddr(&dn);
3852                 if (!__is_valid_data_blkaddr(blknr))
3853                         blknr = 0;
3854         }
3855
3856         f2fs_put_dnode(&dn);
3857         return blknr;
3858 #else
3859         return 0;
3860 #endif
3861 }
3862
3863
3864 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3865 {
3866         struct inode *inode = mapping->host;
3867         struct buffer_head tmp = {
3868                 .b_size = i_blocksize(inode),
3869         };
3870         sector_t blknr = 0;
3871
3872         if (f2fs_has_inline_data(inode))
3873                 goto out;
3874
3875         /* make sure allocating whole blocks */
3876         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3877                 filemap_write_and_wait(mapping);
3878
3879         /* Block number less than F2FS MAX BLOCKS */
3880         if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3881                 goto out;
3882
3883         if (f2fs_compressed_file(inode)) {
3884                 blknr = f2fs_bmap_compress(inode, block);
3885         } else {
3886                 if (!get_data_block_bmap(inode, block, &tmp, 0))
3887                         blknr = tmp.b_blocknr;
3888         }
3889 out:
3890         trace_f2fs_bmap(inode, block, blknr);
3891         return blknr;
3892 }
3893
3894 #ifdef CONFIG_MIGRATION
3895 #include <linux/migrate.h>
3896
3897 int f2fs_migrate_page(struct address_space *mapping,
3898                 struct page *newpage, struct page *page, enum migrate_mode mode)
3899 {
3900         int rc, extra_count;
3901         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3902         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3903
3904         BUG_ON(PageWriteback(page));
3905
3906         /* migrating an atomic written page is safe with the inmem_lock hold */
3907         if (atomic_written) {
3908                 if (mode != MIGRATE_SYNC)
3909                         return -EBUSY;
3910                 if (!mutex_trylock(&fi->inmem_lock))
3911                         return -EAGAIN;
3912         }
3913
3914         /* one extra reference was held for atomic_write page */
3915         extra_count = atomic_written ? 1 : 0;
3916         rc = migrate_page_move_mapping(mapping, newpage,
3917                                 page, extra_count);
3918         if (rc != MIGRATEPAGE_SUCCESS) {
3919                 if (atomic_written)
3920                         mutex_unlock(&fi->inmem_lock);
3921                 return rc;
3922         }
3923
3924         if (atomic_written) {
3925                 struct inmem_pages *cur;
3926                 list_for_each_entry(cur, &fi->inmem_pages, list)
3927                         if (cur->page == page) {
3928                                 cur->page = newpage;
3929                                 break;
3930                         }
3931                 mutex_unlock(&fi->inmem_lock);
3932                 put_page(page);
3933                 get_page(newpage);
3934         }
3935
3936         if (PagePrivate(page)) {
3937                 f2fs_set_page_private(newpage, page_private(page));
3938                 f2fs_clear_page_private(page);
3939         }
3940
3941         if (mode != MIGRATE_SYNC_NO_COPY)
3942                 migrate_page_copy(newpage, page);
3943         else
3944                 migrate_page_states(newpage, page);
3945
3946         return MIGRATEPAGE_SUCCESS;
3947 }
3948 #endif
3949
3950 #ifdef CONFIG_SWAP
3951 static int check_swap_activate_fast(struct swap_info_struct *sis,
3952                                 struct file *swap_file, sector_t *span)
3953 {
3954         struct address_space *mapping = swap_file->f_mapping;
3955         struct inode *inode = mapping->host;
3956         sector_t cur_lblock;
3957         sector_t last_lblock;
3958         sector_t pblock;
3959         sector_t lowest_pblock = -1;
3960         sector_t highest_pblock = 0;
3961         int nr_extents = 0;
3962         unsigned long nr_pblocks;
3963         unsigned long len;
3964         int ret;
3965
3966         /*
3967          * Map all the blocks into the extent list.  This code doesn't try
3968          * to be very smart.
3969          */
3970         cur_lblock = 0;
3971         last_lblock = logical_to_blk(inode, i_size_read(inode));
3972         len = i_size_read(inode);
3973
3974         while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3975                 struct buffer_head map_bh;
3976                 pgoff_t next_pgofs;
3977
3978                 cond_resched();
3979
3980                 memset(&map_bh, 0, sizeof(struct buffer_head));
3981                 map_bh.b_size = len - cur_lblock;
3982
3983                 ret = get_data_block(inode, cur_lblock, &map_bh, 0,
3984                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
3985                 if (ret)
3986                         goto err_out;
3987
3988                 /* hole */
3989                 if (!buffer_mapped(&map_bh))
3990                         goto err_out;
3991
3992                 pblock = map_bh.b_blocknr;
3993                 nr_pblocks = logical_to_blk(inode, map_bh.b_size);
3994
3995                 if (cur_lblock + nr_pblocks >= sis->max)
3996                         nr_pblocks = sis->max - cur_lblock;
3997
3998                 if (cur_lblock) {       /* exclude the header page */
3999                         if (pblock < lowest_pblock)
4000                                 lowest_pblock = pblock;
4001                         if (pblock + nr_pblocks - 1 > highest_pblock)
4002                                 highest_pblock = pblock + nr_pblocks - 1;
4003                 }
4004
4005                 /*
4006                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4007                  */
4008                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4009                 if (ret < 0)
4010                         goto out;
4011                 nr_extents += ret;
4012                 cur_lblock += nr_pblocks;
4013         }
4014         ret = nr_extents;
4015         *span = 1 + highest_pblock - lowest_pblock;
4016         if (cur_lblock == 0)
4017                 cur_lblock = 1; /* force Empty message */
4018         sis->max = cur_lblock;
4019         sis->pages = cur_lblock - 1;
4020         sis->highest_bit = cur_lblock - 1;
4021 out:
4022         return ret;
4023 err_out:
4024         pr_err("swapon: swapfile has holes\n");
4025         return -EINVAL;
4026 }
4027
4028 /* Copied from generic_swapfile_activate() to check any holes */
4029 static int check_swap_activate(struct swap_info_struct *sis,
4030                                 struct file *swap_file, sector_t *span)
4031 {
4032         struct address_space *mapping = swap_file->f_mapping;
4033         struct inode *inode = mapping->host;
4034         unsigned blocks_per_page;
4035         unsigned long page_no;
4036         unsigned blkbits;
4037         sector_t probe_block;
4038         sector_t last_block;
4039         sector_t lowest_block = -1;
4040         sector_t highest_block = 0;
4041         int nr_extents = 0;
4042         int ret;
4043
4044         if (PAGE_SIZE == F2FS_BLKSIZE)
4045                 return check_swap_activate_fast(sis, swap_file, span);
4046
4047         blkbits = inode->i_blkbits;
4048         blocks_per_page = PAGE_SIZE >> blkbits;
4049
4050         /*
4051          * Map all the blocks into the extent list.  This code doesn't try
4052          * to be very smart.
4053          */
4054         probe_block = 0;
4055         page_no = 0;
4056         last_block = i_size_read(inode) >> blkbits;
4057         while ((probe_block + blocks_per_page) <= last_block &&
4058                         page_no < sis->max) {
4059                 unsigned block_in_page;
4060                 sector_t first_block;
4061                 sector_t block = 0;
4062                 int      err = 0;
4063
4064                 cond_resched();
4065
4066                 block = probe_block;
4067                 err = bmap(inode, &block);
4068                 if (err || !block)
4069                         goto bad_bmap;
4070                 first_block = block;
4071
4072                 /*
4073                  * It must be PAGE_SIZE aligned on-disk
4074                  */
4075                 if (first_block & (blocks_per_page - 1)) {
4076                         probe_block++;
4077                         goto reprobe;
4078                 }
4079
4080                 for (block_in_page = 1; block_in_page < blocks_per_page;
4081                                         block_in_page++) {
4082
4083                         block = probe_block + block_in_page;
4084                         err = bmap(inode, &block);
4085
4086                         if (err || !block)
4087                                 goto bad_bmap;
4088
4089                         if (block != first_block + block_in_page) {
4090                                 /* Discontiguity */
4091                                 probe_block++;
4092                                 goto reprobe;
4093                         }
4094                 }
4095
4096                 first_block >>= (PAGE_SHIFT - blkbits);
4097                 if (page_no) {  /* exclude the header page */
4098                         if (first_block < lowest_block)
4099                                 lowest_block = first_block;
4100                         if (first_block > highest_block)
4101                                 highest_block = first_block;
4102                 }
4103
4104                 /*
4105                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4106                  */
4107                 ret = add_swap_extent(sis, page_no, 1, first_block);
4108                 if (ret < 0)
4109                         goto out;
4110                 nr_extents += ret;
4111                 page_no++;
4112                 probe_block += blocks_per_page;
4113 reprobe:
4114                 continue;
4115         }
4116         ret = nr_extents;
4117         *span = 1 + highest_block - lowest_block;
4118         if (page_no == 0)
4119                 page_no = 1;    /* force Empty message */
4120         sis->max = page_no;
4121         sis->pages = page_no - 1;
4122         sis->highest_bit = page_no - 1;
4123 out:
4124         return ret;
4125 bad_bmap:
4126         pr_err("swapon: swapfile has holes\n");
4127         return -EINVAL;
4128 }
4129
4130 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4131                                 sector_t *span)
4132 {
4133         struct inode *inode = file_inode(file);
4134         int ret;
4135
4136         if (!S_ISREG(inode->i_mode))
4137                 return -EINVAL;
4138
4139         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4140                 return -EROFS;
4141
4142         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4143                 f2fs_err(F2FS_I_SB(inode),
4144                         "Swapfile not supported in LFS mode");
4145                 return -EINVAL;
4146         }
4147
4148         ret = f2fs_convert_inline_inode(inode);
4149         if (ret)
4150                 return ret;
4151
4152         if (!f2fs_disable_compressed_file(inode))
4153                 return -EINVAL;
4154
4155         ret = check_swap_activate(sis, file, span);
4156         if (ret < 0)
4157                 return ret;
4158
4159         set_inode_flag(inode, FI_PIN_FILE);
4160         f2fs_precache_extents(inode);
4161         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4162         return ret;
4163 }
4164
4165 static void f2fs_swap_deactivate(struct file *file)
4166 {
4167         struct inode *inode = file_inode(file);
4168
4169         clear_inode_flag(inode, FI_PIN_FILE);
4170 }
4171 #else
4172 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4173                                 sector_t *span)
4174 {
4175         return -EOPNOTSUPP;
4176 }
4177
4178 static void f2fs_swap_deactivate(struct file *file)
4179 {
4180 }
4181 #endif
4182
4183 const struct address_space_operations f2fs_dblock_aops = {
4184         .readpage       = f2fs_read_data_page,
4185         .readahead      = f2fs_readahead,
4186         .writepage      = f2fs_write_data_page,
4187         .writepages     = f2fs_write_data_pages,
4188         .write_begin    = f2fs_write_begin,
4189         .write_end      = f2fs_write_end,
4190         .set_page_dirty = f2fs_set_data_page_dirty,
4191         .invalidatepage = f2fs_invalidate_page,
4192         .releasepage    = f2fs_release_page,
4193         .direct_IO      = f2fs_direct_IO,
4194         .bmap           = f2fs_bmap,
4195         .swap_activate  = f2fs_swap_activate,
4196         .swap_deactivate = f2fs_swap_deactivate,
4197 #ifdef CONFIG_MIGRATION
4198         .migratepage    = f2fs_migrate_page,
4199 #endif
4200 };
4201
4202 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4203 {
4204         struct address_space *mapping = page_mapping(page);
4205         unsigned long flags;
4206
4207         xa_lock_irqsave(&mapping->i_pages, flags);
4208         __xa_clear_mark(&mapping->i_pages, page_index(page),
4209                                                 PAGECACHE_TAG_DIRTY);
4210         xa_unlock_irqrestore(&mapping->i_pages, flags);
4211 }
4212
4213 int __init f2fs_init_post_read_processing(void)
4214 {
4215         bio_post_read_ctx_cache =
4216                 kmem_cache_create("f2fs_bio_post_read_ctx",
4217                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4218         if (!bio_post_read_ctx_cache)
4219                 goto fail;
4220         bio_post_read_ctx_pool =
4221                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4222                                          bio_post_read_ctx_cache);
4223         if (!bio_post_read_ctx_pool)
4224                 goto fail_free_cache;
4225         return 0;
4226
4227 fail_free_cache:
4228         kmem_cache_destroy(bio_post_read_ctx_cache);
4229 fail:
4230         return -ENOMEM;
4231 }
4232
4233 void f2fs_destroy_post_read_processing(void)
4234 {
4235         mempool_destroy(bio_post_read_ctx_pool);
4236         kmem_cache_destroy(bio_post_read_ctx_cache);
4237 }
4238
4239 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4240 {
4241         if (!f2fs_sb_has_encrypt(sbi) &&
4242                 !f2fs_sb_has_verity(sbi) &&
4243                 !f2fs_sb_has_compression(sbi))
4244                 return 0;
4245
4246         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4247                                                  WQ_UNBOUND | WQ_HIGHPRI,
4248                                                  num_online_cpus());
4249         if (!sbi->post_read_wq)
4250                 return -ENOMEM;
4251         return 0;
4252 }
4253
4254 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4255 {
4256         if (sbi->post_read_wq)
4257                 destroy_workqueue(sbi->post_read_wq);
4258 }
4259
4260 int __init f2fs_init_bio_entry_cache(void)
4261 {
4262         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4263                         sizeof(struct bio_entry));
4264         if (!bio_entry_slab)
4265                 return -ENOMEM;
4266         return 0;
4267 }
4268
4269 void f2fs_destroy_bio_entry_cache(void)
4270 {
4271         kmem_cache_destroy(bio_entry_slab);
4272 }