GNU Linux-libre 4.19.211-gnu1
[releases.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23 #include <linux/sched/signal.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static mempool_t *bio_post_read_ctx_pool;
35
36 static bool __is_cp_guaranteed(struct page *page)
37 {
38         struct address_space *mapping = page->mapping;
39         struct inode *inode;
40         struct f2fs_sb_info *sbi;
41
42         if (!mapping)
43                 return false;
44
45         inode = mapping->host;
46         sbi = F2FS_I_SB(inode);
47
48         if (inode->i_ino == F2FS_META_INO(sbi) ||
49                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
50                         S_ISDIR(inode->i_mode) ||
51                         (S_ISREG(inode->i_mode) &&
52                         is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
53                         is_cold_data(page))
54                 return true;
55         return false;
56 }
57
58 /* postprocessing steps for read bios */
59 enum bio_post_read_step {
60         STEP_INITIAL = 0,
61         STEP_DECRYPT,
62 };
63
64 struct bio_post_read_ctx {
65         struct bio *bio;
66         struct work_struct work;
67         unsigned int cur_step;
68         unsigned int enabled_steps;
69 };
70
71 static void __read_end_io(struct bio *bio)
72 {
73         struct page *page;
74         struct bio_vec *bv;
75         int i;
76
77         bio_for_each_segment_all(bv, bio, i) {
78                 page = bv->bv_page;
79
80                 /* PG_error was set if any post_read step failed */
81                 if (bio->bi_status || PageError(page)) {
82                         ClearPageUptodate(page);
83                         /* will re-read again later */
84                         ClearPageError(page);
85                 } else {
86                         SetPageUptodate(page);
87                 }
88                 unlock_page(page);
89         }
90         if (bio->bi_private)
91                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
92         bio_put(bio);
93 }
94
95 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
96
97 static void decrypt_work(struct work_struct *work)
98 {
99         struct bio_post_read_ctx *ctx =
100                 container_of(work, struct bio_post_read_ctx, work);
101
102         fscrypt_decrypt_bio(ctx->bio);
103
104         bio_post_read_processing(ctx);
105 }
106
107 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
108 {
109         switch (++ctx->cur_step) {
110         case STEP_DECRYPT:
111                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
112                         INIT_WORK(&ctx->work, decrypt_work);
113                         fscrypt_enqueue_decrypt_work(&ctx->work);
114                         return;
115                 }
116                 ctx->cur_step++;
117                 /* fall-through */
118         default:
119                 __read_end_io(ctx->bio);
120         }
121 }
122
123 static bool f2fs_bio_post_read_required(struct bio *bio)
124 {
125         return bio->bi_private && !bio->bi_status;
126 }
127
128 static void f2fs_read_end_io(struct bio *bio)
129 {
130         if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
131                 f2fs_show_injection_info(FAULT_IO);
132                 bio->bi_status = BLK_STS_IOERR;
133         }
134
135         if (f2fs_bio_post_read_required(bio)) {
136                 struct bio_post_read_ctx *ctx = bio->bi_private;
137
138                 ctx->cur_step = STEP_INITIAL;
139                 bio_post_read_processing(ctx);
140                 return;
141         }
142
143         __read_end_io(bio);
144 }
145
146 static void f2fs_write_end_io(struct bio *bio)
147 {
148         struct f2fs_sb_info *sbi = bio->bi_private;
149         struct bio_vec *bvec;
150         int i;
151
152         bio_for_each_segment_all(bvec, bio, i) {
153                 struct page *page = bvec->bv_page;
154                 enum count_type type = WB_DATA_TYPE(page);
155
156                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
157                         set_page_private(page, (unsigned long)NULL);
158                         ClearPagePrivate(page);
159                         unlock_page(page);
160                         mempool_free(page, sbi->write_io_dummy);
161
162                         if (unlikely(bio->bi_status))
163                                 f2fs_stop_checkpoint(sbi, true);
164                         continue;
165                 }
166
167                 fscrypt_pullback_bio_page(&page, true);
168
169                 if (unlikely(bio->bi_status)) {
170                         mapping_set_error(page->mapping, -EIO);
171                         if (type == F2FS_WB_CP_DATA)
172                                 f2fs_stop_checkpoint(sbi, true);
173                 }
174
175                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
176                                         page->index != nid_of_node(page));
177
178                 dec_page_count(sbi, type);
179                 if (f2fs_in_warm_node_list(sbi, page))
180                         f2fs_del_fsync_node_entry(sbi, page);
181                 clear_cold_data(page);
182                 end_page_writeback(page);
183         }
184         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
185                                 wq_has_sleeper(&sbi->cp_wait))
186                 wake_up(&sbi->cp_wait);
187
188         bio_put(bio);
189 }
190
191 /*
192  * Return true, if pre_bio's bdev is same as its target device.
193  */
194 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
195                                 block_t blk_addr, struct bio *bio)
196 {
197         struct block_device *bdev = sbi->sb->s_bdev;
198         int i;
199
200         if (f2fs_is_multi_device(sbi)) {
201                 for (i = 0; i < sbi->s_ndevs; i++) {
202                         if (FDEV(i).start_blk <= blk_addr &&
203                             FDEV(i).end_blk >= blk_addr) {
204                                 blk_addr -= FDEV(i).start_blk;
205                                 bdev = FDEV(i).bdev;
206                                 break;
207                         }
208                 }
209         }
210         if (bio) {
211                 bio_set_dev(bio, bdev);
212                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
213         }
214         return bdev;
215 }
216
217 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
218 {
219         int i;
220
221         if (!f2fs_is_multi_device(sbi))
222                 return 0;
223
224         for (i = 0; i < sbi->s_ndevs; i++)
225                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
226                         return i;
227         return 0;
228 }
229
230 static bool __same_bdev(struct f2fs_sb_info *sbi,
231                                 block_t blk_addr, struct bio *bio)
232 {
233         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
234         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
235 }
236
237 /*
238  * Low-level block read/write IO operations.
239  */
240 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
241                                 struct writeback_control *wbc,
242                                 int npages, bool is_read,
243                                 enum page_type type, enum temp_type temp)
244 {
245         struct bio *bio;
246
247         bio = f2fs_bio_alloc(sbi, npages, true);
248
249         f2fs_target_device(sbi, blk_addr, bio);
250         if (is_read) {
251                 bio->bi_end_io = f2fs_read_end_io;
252                 bio->bi_private = NULL;
253         } else {
254                 bio->bi_end_io = f2fs_write_end_io;
255                 bio->bi_private = sbi;
256                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
257         }
258         if (wbc)
259                 wbc_init_bio(wbc, bio);
260
261         return bio;
262 }
263
264 static inline void __submit_bio(struct f2fs_sb_info *sbi,
265                                 struct bio *bio, enum page_type type)
266 {
267         if (!is_read_io(bio_op(bio))) {
268                 unsigned int start;
269
270                 if (type != DATA && type != NODE)
271                         goto submit_io;
272
273                 if (test_opt(sbi, LFS) && current->plug)
274                         blk_finish_plug(current->plug);
275
276                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
277                 start %= F2FS_IO_SIZE(sbi);
278
279                 if (start == 0)
280                         goto submit_io;
281
282                 /* fill dummy pages */
283                 for (; start < F2FS_IO_SIZE(sbi); start++) {
284                         struct page *page =
285                                 mempool_alloc(sbi->write_io_dummy,
286                                         GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
287                         f2fs_bug_on(sbi, !page);
288
289                         SetPagePrivate(page);
290                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
291                         lock_page(page);
292                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
293                                 f2fs_bug_on(sbi, 1);
294                 }
295                 /*
296                  * In the NODE case, we lose next block address chain. So, we
297                  * need to do checkpoint in f2fs_sync_file.
298                  */
299                 if (type == NODE)
300                         set_sbi_flag(sbi, SBI_NEED_CP);
301         }
302 submit_io:
303         if (is_read_io(bio_op(bio)))
304                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
305         else
306                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
307         submit_bio(bio);
308 }
309
310 static void __submit_merged_bio(struct f2fs_bio_info *io)
311 {
312         struct f2fs_io_info *fio = &io->fio;
313
314         if (!io->bio)
315                 return;
316
317         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
318
319         if (is_read_io(fio->op))
320                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
321         else
322                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
323
324         __submit_bio(io->sbi, io->bio, fio->type);
325         io->bio = NULL;
326 }
327
328 static bool __has_merged_page(struct f2fs_bio_info *io,
329                                 struct inode *inode, nid_t ino, pgoff_t idx)
330 {
331         struct bio_vec *bvec;
332         struct page *target;
333         int i;
334
335         if (!io->bio)
336                 return false;
337
338         if (!inode && !ino)
339                 return true;
340
341         bio_for_each_segment_all(bvec, io->bio, i) {
342
343                 if (bvec->bv_page->mapping)
344                         target = bvec->bv_page;
345                 else
346                         target = fscrypt_control_page(bvec->bv_page);
347
348                 if (idx != target->index)
349                         continue;
350
351                 if (inode && inode == target->mapping->host)
352                         return true;
353                 if (ino && ino == ino_of_node(target))
354                         return true;
355         }
356
357         return false;
358 }
359
360 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
361                                 nid_t ino, pgoff_t idx, enum page_type type)
362 {
363         enum page_type btype = PAGE_TYPE_OF_BIO(type);
364         enum temp_type temp;
365         struct f2fs_bio_info *io;
366         bool ret = false;
367
368         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
369                 io = sbi->write_io[btype] + temp;
370
371                 down_read(&io->io_rwsem);
372                 ret = __has_merged_page(io, inode, ino, idx);
373                 up_read(&io->io_rwsem);
374
375                 /* TODO: use HOT temp only for meta pages now. */
376                 if (ret || btype == META)
377                         break;
378         }
379         return ret;
380 }
381
382 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
383                                 enum page_type type, enum temp_type temp)
384 {
385         enum page_type btype = PAGE_TYPE_OF_BIO(type);
386         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
387
388         down_write(&io->io_rwsem);
389
390         /* change META to META_FLUSH in the checkpoint procedure */
391         if (type >= META_FLUSH) {
392                 io->fio.type = META_FLUSH;
393                 io->fio.op = REQ_OP_WRITE;
394                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
395                 if (!test_opt(sbi, NOBARRIER))
396                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
397         }
398         __submit_merged_bio(io);
399         up_write(&io->io_rwsem);
400 }
401
402 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
403                                 struct inode *inode, nid_t ino, pgoff_t idx,
404                                 enum page_type type, bool force)
405 {
406         enum temp_type temp;
407
408         if (!force && !has_merged_page(sbi, inode, ino, idx, type))
409                 return;
410
411         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
412
413                 __f2fs_submit_merged_write(sbi, type, temp);
414
415                 /* TODO: use HOT temp only for meta pages now. */
416                 if (type >= META)
417                         break;
418         }
419 }
420
421 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
422 {
423         __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
424 }
425
426 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
427                                 struct inode *inode, nid_t ino, pgoff_t idx,
428                                 enum page_type type)
429 {
430         __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
431 }
432
433 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
434 {
435         f2fs_submit_merged_write(sbi, DATA);
436         f2fs_submit_merged_write(sbi, NODE);
437         f2fs_submit_merged_write(sbi, META);
438 }
439
440 /*
441  * Fill the locked page with data located in the block address.
442  * A caller needs to unlock the page on failure.
443  */
444 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
445 {
446         struct bio *bio;
447         struct page *page = fio->encrypted_page ?
448                         fio->encrypted_page : fio->page;
449
450         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
451                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
452                 return -EFSCORRUPTED;
453
454         trace_f2fs_submit_page_bio(page, fio);
455         f2fs_trace_ios(fio, 0);
456
457         /* Allocate a new bio */
458         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
459                                 1, is_read_io(fio->op), fio->type, fio->temp);
460
461         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
462                 bio_put(bio);
463                 return -EFAULT;
464         }
465
466         if (fio->io_wbc && !is_read_io(fio->op))
467                 wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
468
469         bio_set_op_attrs(bio, fio->op, fio->op_flags);
470
471         if (!is_read_io(fio->op))
472                 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
473
474         __submit_bio(fio->sbi, bio, fio->type);
475         return 0;
476 }
477
478 void f2fs_submit_page_write(struct f2fs_io_info *fio)
479 {
480         struct f2fs_sb_info *sbi = fio->sbi;
481         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
482         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
483         struct page *bio_page;
484
485         f2fs_bug_on(sbi, is_read_io(fio->op));
486
487         down_write(&io->io_rwsem);
488 next:
489         if (fio->in_list) {
490                 spin_lock(&io->io_lock);
491                 if (list_empty(&io->io_list)) {
492                         spin_unlock(&io->io_lock);
493                         goto out;
494                 }
495                 fio = list_first_entry(&io->io_list,
496                                                 struct f2fs_io_info, list);
497                 list_del(&fio->list);
498                 spin_unlock(&io->io_lock);
499         }
500
501         if (__is_valid_data_blkaddr(fio->old_blkaddr))
502                 verify_block_addr(fio, fio->old_blkaddr);
503         verify_block_addr(fio, fio->new_blkaddr);
504
505         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
506
507         /* set submitted = true as a return value */
508         fio->submitted = true;
509
510         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
511
512         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
513             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
514                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
515                 __submit_merged_bio(io);
516 alloc_new:
517         if (io->bio == NULL) {
518                 if ((fio->type == DATA || fio->type == NODE) &&
519                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
520                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
521                         fio->retry = true;
522                         goto skip;
523                 }
524                 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
525                                                 BIO_MAX_PAGES, false,
526                                                 fio->type, fio->temp);
527                 io->fio = *fio;
528         }
529
530         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
531                 __submit_merged_bio(io);
532                 goto alloc_new;
533         }
534
535         if (fio->io_wbc)
536                 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
537
538         io->last_block_in_bio = fio->new_blkaddr;
539         f2fs_trace_ios(fio, 0);
540
541         trace_f2fs_submit_page_write(fio->page, fio);
542 skip:
543         if (fio->in_list)
544                 goto next;
545 out:
546         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
547                 __submit_merged_bio(io);
548         up_write(&io->io_rwsem);
549 }
550
551 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
552                                         unsigned nr_pages, unsigned op_flag)
553 {
554         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555         struct bio *bio;
556         struct bio_post_read_ctx *ctx;
557         unsigned int post_read_steps = 0;
558
559         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
560                 return ERR_PTR(-EFAULT);
561
562         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
563         if (!bio)
564                 return ERR_PTR(-ENOMEM);
565         f2fs_target_device(sbi, blkaddr, bio);
566         bio->bi_end_io = f2fs_read_end_io;
567         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
568
569         if (f2fs_encrypted_file(inode))
570                 post_read_steps |= 1 << STEP_DECRYPT;
571         if (post_read_steps) {
572                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
573                 if (!ctx) {
574                         bio_put(bio);
575                         return ERR_PTR(-ENOMEM);
576                 }
577                 ctx->bio = bio;
578                 ctx->enabled_steps = post_read_steps;
579                 bio->bi_private = ctx;
580         }
581
582         return bio;
583 }
584
585 /* This can handle encryption stuffs */
586 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
587                                                         block_t blkaddr)
588 {
589         struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
590
591         if (IS_ERR(bio))
592                 return PTR_ERR(bio);
593
594         /* wait for GCed page writeback via META_MAPPING */
595         f2fs_wait_on_block_writeback(inode, blkaddr);
596
597         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
598                 bio_put(bio);
599                 return -EFAULT;
600         }
601         ClearPageError(page);
602         __submit_bio(F2FS_I_SB(inode), bio, DATA);
603         return 0;
604 }
605
606 static void __set_data_blkaddr(struct dnode_of_data *dn)
607 {
608         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
609         __le32 *addr_array;
610         int base = 0;
611
612         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
613                 base = get_extra_isize(dn->inode);
614
615         /* Get physical address of data block */
616         addr_array = blkaddr_in_node(rn);
617         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
618 }
619
620 /*
621  * Lock ordering for the change of data block address:
622  * ->data_page
623  *  ->node_page
624  *    update block addresses in the node page
625  */
626 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
627 {
628         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
629         __set_data_blkaddr(dn);
630         if (set_page_dirty(dn->node_page))
631                 dn->node_changed = true;
632 }
633
634 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
635 {
636         dn->data_blkaddr = blkaddr;
637         f2fs_set_data_blkaddr(dn);
638         f2fs_update_extent_cache(dn);
639 }
640
641 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
642 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
643 {
644         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
645         int err;
646
647         if (!count)
648                 return 0;
649
650         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
651                 return -EPERM;
652         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
653                 return err;
654
655         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
656                                                 dn->ofs_in_node, count);
657
658         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
659
660         for (; count > 0; dn->ofs_in_node++) {
661                 block_t blkaddr = datablock_addr(dn->inode,
662                                         dn->node_page, dn->ofs_in_node);
663                 if (blkaddr == NULL_ADDR) {
664                         dn->data_blkaddr = NEW_ADDR;
665                         __set_data_blkaddr(dn);
666                         count--;
667                 }
668         }
669
670         if (set_page_dirty(dn->node_page))
671                 dn->node_changed = true;
672         return 0;
673 }
674
675 /* Should keep dn->ofs_in_node unchanged */
676 int f2fs_reserve_new_block(struct dnode_of_data *dn)
677 {
678         unsigned int ofs_in_node = dn->ofs_in_node;
679         int ret;
680
681         ret = f2fs_reserve_new_blocks(dn, 1);
682         dn->ofs_in_node = ofs_in_node;
683         return ret;
684 }
685
686 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
687 {
688         bool need_put = dn->inode_page ? false : true;
689         int err;
690
691         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
692         if (err)
693                 return err;
694
695         if (dn->data_blkaddr == NULL_ADDR)
696                 err = f2fs_reserve_new_block(dn);
697         if (err || need_put)
698                 f2fs_put_dnode(dn);
699         return err;
700 }
701
702 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
703 {
704         struct extent_info ei  = {0,0,0};
705         struct inode *inode = dn->inode;
706
707         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
708                 dn->data_blkaddr = ei.blk + index - ei.fofs;
709                 return 0;
710         }
711
712         return f2fs_reserve_block(dn, index);
713 }
714
715 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
716                                                 int op_flags, bool for_write)
717 {
718         struct address_space *mapping = inode->i_mapping;
719         struct dnode_of_data dn;
720         struct page *page;
721         struct extent_info ei = {0,0,0};
722         int err;
723
724         page = f2fs_grab_cache_page(mapping, index, for_write);
725         if (!page)
726                 return ERR_PTR(-ENOMEM);
727
728         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
729                 dn.data_blkaddr = ei.blk + index - ei.fofs;
730                 goto got_it;
731         }
732
733         set_new_dnode(&dn, inode, NULL, NULL, 0);
734         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
735         if (err)
736                 goto put_err;
737         f2fs_put_dnode(&dn);
738
739         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
740                 err = -ENOENT;
741                 goto put_err;
742         }
743 got_it:
744         if (PageUptodate(page)) {
745                 unlock_page(page);
746                 return page;
747         }
748
749         /*
750          * A new dentry page is allocated but not able to be written, since its
751          * new inode page couldn't be allocated due to -ENOSPC.
752          * In such the case, its blkaddr can be remained as NEW_ADDR.
753          * see, f2fs_add_link -> f2fs_get_new_data_page ->
754          * f2fs_init_inode_metadata.
755          */
756         if (dn.data_blkaddr == NEW_ADDR) {
757                 zero_user_segment(page, 0, PAGE_SIZE);
758                 if (!PageUptodate(page))
759                         SetPageUptodate(page);
760                 unlock_page(page);
761                 return page;
762         }
763
764         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
765         if (err)
766                 goto put_err;
767         return page;
768
769 put_err:
770         f2fs_put_page(page, 1);
771         return ERR_PTR(err);
772 }
773
774 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
775 {
776         struct address_space *mapping = inode->i_mapping;
777         struct page *page;
778
779         page = find_get_page(mapping, index);
780         if (page && PageUptodate(page))
781                 return page;
782         f2fs_put_page(page, 0);
783
784         page = f2fs_get_read_data_page(inode, index, 0, false);
785         if (IS_ERR(page))
786                 return page;
787
788         if (PageUptodate(page))
789                 return page;
790
791         wait_on_page_locked(page);
792         if (unlikely(!PageUptodate(page))) {
793                 f2fs_put_page(page, 0);
794                 return ERR_PTR(-EIO);
795         }
796         return page;
797 }
798
799 /*
800  * If it tries to access a hole, return an error.
801  * Because, the callers, functions in dir.c and GC, should be able to know
802  * whether this page exists or not.
803  */
804 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
805                                                         bool for_write)
806 {
807         struct address_space *mapping = inode->i_mapping;
808         struct page *page;
809 repeat:
810         page = f2fs_get_read_data_page(inode, index, 0, for_write);
811         if (IS_ERR(page))
812                 return page;
813
814         /* wait for read completion */
815         lock_page(page);
816         if (unlikely(page->mapping != mapping)) {
817                 f2fs_put_page(page, 1);
818                 goto repeat;
819         }
820         if (unlikely(!PageUptodate(page))) {
821                 f2fs_put_page(page, 1);
822                 return ERR_PTR(-EIO);
823         }
824         return page;
825 }
826
827 /*
828  * Caller ensures that this data page is never allocated.
829  * A new zero-filled data page is allocated in the page cache.
830  *
831  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
832  * f2fs_unlock_op().
833  * Note that, ipage is set only by make_empty_dir, and if any error occur,
834  * ipage should be released by this function.
835  */
836 struct page *f2fs_get_new_data_page(struct inode *inode,
837                 struct page *ipage, pgoff_t index, bool new_i_size)
838 {
839         struct address_space *mapping = inode->i_mapping;
840         struct page *page;
841         struct dnode_of_data dn;
842         int err;
843
844         page = f2fs_grab_cache_page(mapping, index, true);
845         if (!page) {
846                 /*
847                  * before exiting, we should make sure ipage will be released
848                  * if any error occur.
849                  */
850                 f2fs_put_page(ipage, 1);
851                 return ERR_PTR(-ENOMEM);
852         }
853
854         set_new_dnode(&dn, inode, ipage, NULL, 0);
855         err = f2fs_reserve_block(&dn, index);
856         if (err) {
857                 f2fs_put_page(page, 1);
858                 return ERR_PTR(err);
859         }
860         if (!ipage)
861                 f2fs_put_dnode(&dn);
862
863         if (PageUptodate(page))
864                 goto got_it;
865
866         if (dn.data_blkaddr == NEW_ADDR) {
867                 zero_user_segment(page, 0, PAGE_SIZE);
868                 if (!PageUptodate(page))
869                         SetPageUptodate(page);
870         } else {
871                 f2fs_put_page(page, 1);
872
873                 /* if ipage exists, blkaddr should be NEW_ADDR */
874                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
875                 page = f2fs_get_lock_data_page(inode, index, true);
876                 if (IS_ERR(page))
877                         return page;
878         }
879 got_it:
880         if (new_i_size && i_size_read(inode) <
881                                 ((loff_t)(index + 1) << PAGE_SHIFT))
882                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
883         return page;
884 }
885
886 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
887 {
888         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
889         struct f2fs_summary sum;
890         struct node_info ni;
891         block_t old_blkaddr;
892         blkcnt_t count = 1;
893         int err;
894
895         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
896                 return -EPERM;
897
898         err = f2fs_get_node_info(sbi, dn->nid, &ni);
899         if (err)
900                 return err;
901
902         dn->data_blkaddr = datablock_addr(dn->inode,
903                                 dn->node_page, dn->ofs_in_node);
904         if (dn->data_blkaddr == NEW_ADDR)
905                 goto alloc;
906
907         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
908                 return err;
909
910 alloc:
911         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
912         old_blkaddr = dn->data_blkaddr;
913         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
914                                         &sum, seg_type, NULL, false);
915         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
916                 invalidate_mapping_pages(META_MAPPING(sbi),
917                                         old_blkaddr, old_blkaddr);
918         f2fs_set_data_blkaddr(dn);
919
920         /*
921          * i_size will be updated by direct_IO. Otherwise, we'll get stale
922          * data from unwritten block via dio_read.
923          */
924         return 0;
925 }
926
927 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
928 {
929         struct inode *inode = file_inode(iocb->ki_filp);
930         struct f2fs_map_blocks map;
931         int flag;
932         int err = 0;
933         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
934
935         /* convert inline data for Direct I/O*/
936         if (direct_io) {
937                 err = f2fs_convert_inline_inode(inode);
938                 if (err)
939                         return err;
940         }
941
942         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
943                 return 0;
944
945         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
946         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
947         if (map.m_len > map.m_lblk)
948                 map.m_len -= map.m_lblk;
949         else
950                 map.m_len = 0;
951
952         map.m_next_pgofs = NULL;
953         map.m_next_extent = NULL;
954         map.m_seg_type = NO_CHECK_TYPE;
955
956         if (direct_io) {
957                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
958                 flag = f2fs_force_buffered_io(inode, WRITE) ?
959                                         F2FS_GET_BLOCK_PRE_AIO :
960                                         F2FS_GET_BLOCK_PRE_DIO;
961                 goto map_blocks;
962         }
963         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
964                 err = f2fs_convert_inline_inode(inode);
965                 if (err)
966                         return err;
967         }
968         if (f2fs_has_inline_data(inode))
969                 return err;
970
971         flag = F2FS_GET_BLOCK_PRE_AIO;
972
973 map_blocks:
974         err = f2fs_map_blocks(inode, &map, 1, flag);
975         if (map.m_len > 0 && err == -ENOSPC) {
976                 if (!direct_io)
977                         set_inode_flag(inode, FI_NO_PREALLOC);
978                 err = 0;
979         }
980         return err;
981 }
982
983 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
984 {
985         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
986                 if (lock)
987                         down_read(&sbi->node_change);
988                 else
989                         up_read(&sbi->node_change);
990         } else {
991                 if (lock)
992                         f2fs_lock_op(sbi);
993                 else
994                         f2fs_unlock_op(sbi);
995         }
996 }
997
998 /*
999  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1000  * f2fs_map_blocks structure.
1001  * If original data blocks are allocated, then give them to blockdev.
1002  * Otherwise,
1003  *     a. preallocate requested block addresses
1004  *     b. do not use extent cache for better performance
1005  *     c. give the block addresses to blockdev
1006  */
1007 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1008                                                 int create, int flag)
1009 {
1010         unsigned int maxblocks = map->m_len;
1011         struct dnode_of_data dn;
1012         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1013         int mode = create ? ALLOC_NODE : LOOKUP_NODE;
1014         pgoff_t pgofs, end_offset, end;
1015         int err = 0, ofs = 1;
1016         unsigned int ofs_in_node, last_ofs_in_node;
1017         blkcnt_t prealloc;
1018         struct extent_info ei = {0,0,0};
1019         block_t blkaddr;
1020         unsigned int start_pgofs;
1021
1022         if (!maxblocks)
1023                 return 0;
1024
1025         map->m_len = 0;
1026         map->m_flags = 0;
1027
1028         /* it only supports block size == page size */
1029         pgofs = (pgoff_t)map->m_lblk;
1030         end = pgofs + maxblocks;
1031
1032         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1033                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1034                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1035                 map->m_flags = F2FS_MAP_MAPPED;
1036                 if (map->m_next_extent)
1037                         *map->m_next_extent = pgofs + map->m_len;
1038                 goto out;
1039         }
1040
1041 next_dnode:
1042         if (create)
1043                 __do_map_lock(sbi, flag, true);
1044
1045         /* When reading holes, we need its node page */
1046         set_new_dnode(&dn, inode, NULL, NULL, 0);
1047         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1048         if (err) {
1049                 if (flag == F2FS_GET_BLOCK_BMAP)
1050                         map->m_pblk = 0;
1051                 if (err == -ENOENT) {
1052                         err = 0;
1053                         if (map->m_next_pgofs)
1054                                 *map->m_next_pgofs =
1055                                         f2fs_get_next_page_offset(&dn, pgofs);
1056                         if (map->m_next_extent)
1057                                 *map->m_next_extent =
1058                                         f2fs_get_next_page_offset(&dn, pgofs);
1059                 }
1060                 goto unlock_out;
1061         }
1062
1063         start_pgofs = pgofs;
1064         prealloc = 0;
1065         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1066         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1067
1068 next_block:
1069         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1070
1071         if (__is_valid_data_blkaddr(blkaddr) &&
1072                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1073                 err = -EFSCORRUPTED;
1074                 goto sync_out;
1075         }
1076
1077         if (!is_valid_data_blkaddr(sbi, blkaddr)) {
1078                 if (create) {
1079                         if (unlikely(f2fs_cp_error(sbi))) {
1080                                 err = -EIO;
1081                                 goto sync_out;
1082                         }
1083                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1084                                 if (blkaddr == NULL_ADDR) {
1085                                         prealloc++;
1086                                         last_ofs_in_node = dn.ofs_in_node;
1087                                 }
1088                         } else {
1089                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1090                                         flag != F2FS_GET_BLOCK_DIO);
1091                                 err = __allocate_data_block(&dn,
1092                                                         map->m_seg_type);
1093                                 if (!err)
1094                                         set_inode_flag(inode, FI_APPEND_WRITE);
1095                         }
1096                         if (err)
1097                                 goto sync_out;
1098                         map->m_flags |= F2FS_MAP_NEW;
1099                         blkaddr = dn.data_blkaddr;
1100                 } else {
1101                         if (flag == F2FS_GET_BLOCK_BMAP) {
1102                                 map->m_pblk = 0;
1103                                 goto sync_out;
1104                         }
1105                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1106                                 goto sync_out;
1107                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1108                                                 blkaddr == NULL_ADDR) {
1109                                 if (map->m_next_pgofs)
1110                                         *map->m_next_pgofs = pgofs + 1;
1111                                 goto sync_out;
1112                         }
1113                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1114                                 /* for defragment case */
1115                                 if (map->m_next_pgofs)
1116                                         *map->m_next_pgofs = pgofs + 1;
1117                                 goto sync_out;
1118                         }
1119                 }
1120         }
1121
1122         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1123                 goto skip;
1124
1125         if (map->m_len == 0) {
1126                 /* preallocated unwritten block should be mapped for fiemap. */
1127                 if (blkaddr == NEW_ADDR)
1128                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1129                 map->m_flags |= F2FS_MAP_MAPPED;
1130
1131                 map->m_pblk = blkaddr;
1132                 map->m_len = 1;
1133         } else if ((map->m_pblk != NEW_ADDR &&
1134                         blkaddr == (map->m_pblk + ofs)) ||
1135                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1136                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1137                 ofs++;
1138                 map->m_len++;
1139         } else {
1140                 goto sync_out;
1141         }
1142
1143 skip:
1144         dn.ofs_in_node++;
1145         pgofs++;
1146
1147         /* preallocate blocks in batch for one dnode page */
1148         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1149                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1150
1151                 dn.ofs_in_node = ofs_in_node;
1152                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1153                 if (err)
1154                         goto sync_out;
1155
1156                 map->m_len += dn.ofs_in_node - ofs_in_node;
1157                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1158                         err = -ENOSPC;
1159                         goto sync_out;
1160                 }
1161                 dn.ofs_in_node = end_offset;
1162         }
1163
1164         if (pgofs >= end)
1165                 goto sync_out;
1166         else if (dn.ofs_in_node < end_offset)
1167                 goto next_block;
1168
1169         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1170                 if (map->m_flags & F2FS_MAP_MAPPED) {
1171                         unsigned int ofs = start_pgofs - map->m_lblk;
1172
1173                         f2fs_update_extent_cache_range(&dn,
1174                                 start_pgofs, map->m_pblk + ofs,
1175                                 map->m_len - ofs);
1176                 }
1177         }
1178
1179         f2fs_put_dnode(&dn);
1180
1181         if (create) {
1182                 __do_map_lock(sbi, flag, false);
1183                 f2fs_balance_fs(sbi, dn.node_changed);
1184         }
1185         goto next_dnode;
1186
1187 sync_out:
1188         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1189                 if (map->m_flags & F2FS_MAP_MAPPED) {
1190                         unsigned int ofs = start_pgofs - map->m_lblk;
1191
1192                         f2fs_update_extent_cache_range(&dn,
1193                                 start_pgofs, map->m_pblk + ofs,
1194                                 map->m_len - ofs);
1195                 }
1196                 if (map->m_next_extent)
1197                         *map->m_next_extent = pgofs + 1;
1198         }
1199         f2fs_put_dnode(&dn);
1200 unlock_out:
1201         if (create) {
1202                 __do_map_lock(sbi, flag, false);
1203                 f2fs_balance_fs(sbi, dn.node_changed);
1204         }
1205 out:
1206         trace_f2fs_map_blocks(inode, map, err);
1207         return err;
1208 }
1209
1210 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1211 {
1212         struct f2fs_map_blocks map;
1213         block_t last_lblk;
1214         int err;
1215
1216         if (pos + len > i_size_read(inode))
1217                 return false;
1218
1219         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1220         map.m_next_pgofs = NULL;
1221         map.m_next_extent = NULL;
1222         map.m_seg_type = NO_CHECK_TYPE;
1223         last_lblk = F2FS_BLK_ALIGN(pos + len);
1224
1225         while (map.m_lblk < last_lblk) {
1226                 map.m_len = last_lblk - map.m_lblk;
1227                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1228                 if (err || map.m_len == 0)
1229                         return false;
1230                 map.m_lblk += map.m_len;
1231         }
1232         return true;
1233 }
1234
1235 static int __get_data_block(struct inode *inode, sector_t iblock,
1236                         struct buffer_head *bh, int create, int flag,
1237                         pgoff_t *next_pgofs, int seg_type)
1238 {
1239         struct f2fs_map_blocks map;
1240         int err;
1241
1242         map.m_lblk = iblock;
1243         map.m_len = bh->b_size >> inode->i_blkbits;
1244         map.m_next_pgofs = next_pgofs;
1245         map.m_next_extent = NULL;
1246         map.m_seg_type = seg_type;
1247
1248         err = f2fs_map_blocks(inode, &map, create, flag);
1249         if (!err) {
1250                 map_bh(bh, inode->i_sb, map.m_pblk);
1251                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1252                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1253         }
1254         return err;
1255 }
1256
1257 static int get_data_block(struct inode *inode, sector_t iblock,
1258                         struct buffer_head *bh_result, int create, int flag,
1259                         pgoff_t *next_pgofs)
1260 {
1261         return __get_data_block(inode, iblock, bh_result, create,
1262                                                         flag, next_pgofs,
1263                                                         NO_CHECK_TYPE);
1264 }
1265
1266 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1267                         struct buffer_head *bh_result, int create)
1268 {
1269         return __get_data_block(inode, iblock, bh_result, create,
1270                                                 F2FS_GET_BLOCK_DIO, NULL,
1271                                                 f2fs_rw_hint_to_seg_type(
1272                                                         inode->i_write_hint));
1273 }
1274
1275 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1276                         struct buffer_head *bh_result, int create)
1277 {
1278         /* Block number less than F2FS MAX BLOCKS */
1279         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1280                 return -EFBIG;
1281
1282         return __get_data_block(inode, iblock, bh_result, create,
1283                                                 F2FS_GET_BLOCK_BMAP, NULL,
1284                                                 NO_CHECK_TYPE);
1285 }
1286
1287 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1288 {
1289         return (offset >> inode->i_blkbits);
1290 }
1291
1292 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1293 {
1294         return (blk << inode->i_blkbits);
1295 }
1296
1297 static int f2fs_xattr_fiemap(struct inode *inode,
1298                                 struct fiemap_extent_info *fieinfo)
1299 {
1300         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1301         struct page *page;
1302         struct node_info ni;
1303         __u64 phys = 0, len;
1304         __u32 flags;
1305         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1306         int err = 0;
1307
1308         if (f2fs_has_inline_xattr(inode)) {
1309                 int offset;
1310
1311                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1312                                                 inode->i_ino, false);
1313                 if (!page)
1314                         return -ENOMEM;
1315
1316                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1317                 if (err) {
1318                         f2fs_put_page(page, 1);
1319                         return err;
1320                 }
1321
1322                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1323                 offset = offsetof(struct f2fs_inode, i_addr) +
1324                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1325                                         get_inline_xattr_addrs(inode));
1326
1327                 phys += offset;
1328                 len = inline_xattr_size(inode);
1329
1330                 f2fs_put_page(page, 1);
1331
1332                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1333
1334                 if (!xnid)
1335                         flags |= FIEMAP_EXTENT_LAST;
1336
1337                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1338                 if (err || err == 1)
1339                         return err;
1340         }
1341
1342         if (xnid) {
1343                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1344                 if (!page)
1345                         return -ENOMEM;
1346
1347                 err = f2fs_get_node_info(sbi, xnid, &ni);
1348                 if (err) {
1349                         f2fs_put_page(page, 1);
1350                         return err;
1351                 }
1352
1353                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1354                 len = inode->i_sb->s_blocksize;
1355
1356                 f2fs_put_page(page, 1);
1357
1358                 flags = FIEMAP_EXTENT_LAST;
1359         }
1360
1361         if (phys)
1362                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1363
1364         return (err < 0 ? err : 0);
1365 }
1366
1367 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1368                 u64 start, u64 len)
1369 {
1370         struct buffer_head map_bh;
1371         sector_t start_blk, last_blk;
1372         pgoff_t next_pgofs;
1373         u64 logical = 0, phys = 0, size = 0;
1374         u32 flags = 0;
1375         int ret = 0;
1376
1377         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1378                 ret = f2fs_precache_extents(inode);
1379                 if (ret)
1380                         return ret;
1381         }
1382
1383         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1384         if (ret)
1385                 return ret;
1386
1387         inode_lock(inode);
1388
1389         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1390                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1391                 goto out;
1392         }
1393
1394         if (f2fs_has_inline_data(inode)) {
1395                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1396                 if (ret != -EAGAIN)
1397                         goto out;
1398         }
1399
1400         if (logical_to_blk(inode, len) == 0)
1401                 len = blk_to_logical(inode, 1);
1402
1403         start_blk = logical_to_blk(inode, start);
1404         last_blk = logical_to_blk(inode, start + len - 1);
1405
1406 next:
1407         memset(&map_bh, 0, sizeof(struct buffer_head));
1408         map_bh.b_size = len;
1409
1410         ret = get_data_block(inode, start_blk, &map_bh, 0,
1411                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1412         if (ret)
1413                 goto out;
1414
1415         /* HOLE */
1416         if (!buffer_mapped(&map_bh)) {
1417                 start_blk = next_pgofs;
1418
1419                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1420                                         F2FS_I_SB(inode)->max_file_blocks))
1421                         goto prep_next;
1422
1423                 flags |= FIEMAP_EXTENT_LAST;
1424         }
1425
1426         if (size) {
1427                 if (f2fs_encrypted_inode(inode))
1428                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1429
1430                 ret = fiemap_fill_next_extent(fieinfo, logical,
1431                                 phys, size, flags);
1432         }
1433
1434         if (start_blk > last_blk || ret)
1435                 goto out;
1436
1437         logical = blk_to_logical(inode, start_blk);
1438         phys = blk_to_logical(inode, map_bh.b_blocknr);
1439         size = map_bh.b_size;
1440         flags = 0;
1441         if (buffer_unwritten(&map_bh))
1442                 flags = FIEMAP_EXTENT_UNWRITTEN;
1443
1444         start_blk += logical_to_blk(inode, size);
1445
1446 prep_next:
1447         cond_resched();
1448         if (fatal_signal_pending(current))
1449                 ret = -EINTR;
1450         else
1451                 goto next;
1452 out:
1453         if (ret == 1)
1454                 ret = 0;
1455
1456         inode_unlock(inode);
1457         return ret;
1458 }
1459
1460 /*
1461  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1462  * Major change was from block_size == page_size in f2fs by default.
1463  *
1464  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1465  * this function ever deviates from doing just read-ahead, it should either
1466  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1467  * from read-ahead.
1468  */
1469 static int f2fs_mpage_readpages(struct address_space *mapping,
1470                         struct list_head *pages, struct page *page,
1471                         unsigned nr_pages, bool is_readahead)
1472 {
1473         struct bio *bio = NULL;
1474         sector_t last_block_in_bio = 0;
1475         struct inode *inode = mapping->host;
1476         const unsigned blkbits = inode->i_blkbits;
1477         const unsigned blocksize = 1 << blkbits;
1478         sector_t block_in_file;
1479         sector_t last_block;
1480         sector_t last_block_in_file;
1481         sector_t block_nr;
1482         struct f2fs_map_blocks map;
1483
1484         map.m_pblk = 0;
1485         map.m_lblk = 0;
1486         map.m_len = 0;
1487         map.m_flags = 0;
1488         map.m_next_pgofs = NULL;
1489         map.m_next_extent = NULL;
1490         map.m_seg_type = NO_CHECK_TYPE;
1491
1492         for (; nr_pages; nr_pages--) {
1493                 if (pages) {
1494                         page = list_last_entry(pages, struct page, lru);
1495
1496                         prefetchw(&page->flags);
1497                         list_del(&page->lru);
1498                         if (add_to_page_cache_lru(page, mapping,
1499                                                   page->index,
1500                                                   readahead_gfp_mask(mapping)))
1501                                 goto next_page;
1502                 }
1503
1504                 block_in_file = (sector_t)page->index;
1505                 last_block = block_in_file + nr_pages;
1506                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1507                                                                 blkbits;
1508                 if (last_block > last_block_in_file)
1509                         last_block = last_block_in_file;
1510
1511                 /*
1512                  * Map blocks using the previous result first.
1513                  */
1514                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1515                                 block_in_file > map.m_lblk &&
1516                                 block_in_file < (map.m_lblk + map.m_len))
1517                         goto got_it;
1518
1519                 /*
1520                  * Then do more f2fs_map_blocks() calls until we are
1521                  * done with this page.
1522                  */
1523                 map.m_flags = 0;
1524
1525                 if (block_in_file < last_block) {
1526                         map.m_lblk = block_in_file;
1527                         map.m_len = last_block - block_in_file;
1528
1529                         if (f2fs_map_blocks(inode, &map, 0,
1530                                                 F2FS_GET_BLOCK_DEFAULT))
1531                                 goto set_error_page;
1532                 }
1533 got_it:
1534                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1535                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1536                         SetPageMappedToDisk(page);
1537
1538                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1539                                 SetPageUptodate(page);
1540                                 goto confused;
1541                         }
1542
1543                         if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1544                                                                 DATA_GENERIC))
1545                                 goto set_error_page;
1546                 } else {
1547                         zero_user_segment(page, 0, PAGE_SIZE);
1548                         if (!PageUptodate(page))
1549                                 SetPageUptodate(page);
1550                         unlock_page(page);
1551                         goto next_page;
1552                 }
1553
1554                 /*
1555                  * This page will go to BIO.  Do we need to send this
1556                  * BIO off first?
1557                  */
1558                 if (bio && (last_block_in_bio != block_nr - 1 ||
1559                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1560 submit_and_realloc:
1561                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1562                         bio = NULL;
1563                 }
1564                 if (bio == NULL) {
1565                         bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1566                                         is_readahead ? REQ_RAHEAD : 0);
1567                         if (IS_ERR(bio)) {
1568                                 bio = NULL;
1569                                 goto set_error_page;
1570                         }
1571                 }
1572
1573                 /*
1574                  * If the page is under writeback, we need to wait for
1575                  * its completion to see the correct decrypted data.
1576                  */
1577                 f2fs_wait_on_block_writeback(inode, block_nr);
1578
1579                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1580                         goto submit_and_realloc;
1581
1582                 ClearPageError(page);
1583                 last_block_in_bio = block_nr;
1584                 goto next_page;
1585 set_error_page:
1586                 SetPageError(page);
1587                 zero_user_segment(page, 0, PAGE_SIZE);
1588                 unlock_page(page);
1589                 goto next_page;
1590 confused:
1591                 if (bio) {
1592                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1593                         bio = NULL;
1594                 }
1595                 unlock_page(page);
1596 next_page:
1597                 if (pages)
1598                         put_page(page);
1599         }
1600         BUG_ON(pages && !list_empty(pages));
1601         if (bio)
1602                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1603         return 0;
1604 }
1605
1606 static int f2fs_read_data_page(struct file *file, struct page *page)
1607 {
1608         struct inode *inode = page->mapping->host;
1609         int ret = -EAGAIN;
1610
1611         trace_f2fs_readpage(page, DATA);
1612
1613         /* If the file has inline data, try to read it directly */
1614         if (f2fs_has_inline_data(inode))
1615                 ret = f2fs_read_inline_data(inode, page);
1616         if (ret == -EAGAIN)
1617                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1618         return ret;
1619 }
1620
1621 static int f2fs_read_data_pages(struct file *file,
1622                         struct address_space *mapping,
1623                         struct list_head *pages, unsigned nr_pages)
1624 {
1625         struct inode *inode = mapping->host;
1626         struct page *page = list_last_entry(pages, struct page, lru);
1627
1628         trace_f2fs_readpages(inode, page, nr_pages);
1629
1630         /* If the file has inline data, skip readpages */
1631         if (f2fs_has_inline_data(inode))
1632                 return 0;
1633
1634         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1635 }
1636
1637 static int encrypt_one_page(struct f2fs_io_info *fio)
1638 {
1639         struct inode *inode = fio->page->mapping->host;
1640         struct page *mpage;
1641         gfp_t gfp_flags = GFP_NOFS;
1642
1643         if (!f2fs_encrypted_file(inode))
1644                 return 0;
1645
1646         /* wait for GCed page writeback via META_MAPPING */
1647         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1648
1649 retry_encrypt:
1650         fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1651                         PAGE_SIZE, 0, fio->page->index, gfp_flags);
1652         if (IS_ERR(fio->encrypted_page)) {
1653                 /* flush pending IOs and wait for a while in the ENOMEM case */
1654                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1655                         f2fs_flush_merged_writes(fio->sbi);
1656                         congestion_wait(BLK_RW_ASYNC, HZ/50);
1657                         gfp_flags |= __GFP_NOFAIL;
1658                         goto retry_encrypt;
1659                 }
1660                 return PTR_ERR(fio->encrypted_page);
1661         }
1662
1663         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1664         if (mpage) {
1665                 if (PageUptodate(mpage))
1666                         memcpy(page_address(mpage),
1667                                 page_address(fio->encrypted_page), PAGE_SIZE);
1668                 f2fs_put_page(mpage, 1);
1669         }
1670         return 0;
1671 }
1672
1673 static inline bool check_inplace_update_policy(struct inode *inode,
1674                                 struct f2fs_io_info *fio)
1675 {
1676         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1677         unsigned int policy = SM_I(sbi)->ipu_policy;
1678
1679         if (policy & (0x1 << F2FS_IPU_FORCE))
1680                 return true;
1681         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1682                 return true;
1683         if (policy & (0x1 << F2FS_IPU_UTIL) &&
1684                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1685                 return true;
1686         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1687                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1688                 return true;
1689
1690         /*
1691          * IPU for rewrite async pages
1692          */
1693         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1694                         fio && fio->op == REQ_OP_WRITE &&
1695                         !(fio->op_flags & REQ_SYNC) &&
1696                         !f2fs_encrypted_inode(inode))
1697                 return true;
1698
1699         /* this is only set during fdatasync */
1700         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1701                         is_inode_flag_set(inode, FI_NEED_IPU))
1702                 return true;
1703
1704         return false;
1705 }
1706
1707 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1708 {
1709         if (f2fs_is_pinned_file(inode))
1710                 return true;
1711
1712         /* if this is cold file, we should overwrite to avoid fragmentation */
1713         if (file_is_cold(inode))
1714                 return true;
1715
1716         return check_inplace_update_policy(inode, fio);
1717 }
1718
1719 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1720 {
1721         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1722
1723         if (test_opt(sbi, LFS))
1724                 return true;
1725         if (S_ISDIR(inode->i_mode))
1726                 return true;
1727         if (f2fs_is_atomic_file(inode))
1728                 return true;
1729         if (fio) {
1730                 if (is_cold_data(fio->page))
1731                         return true;
1732                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1733                         return true;
1734         }
1735         return false;
1736 }
1737
1738 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1739 {
1740         struct inode *inode = fio->page->mapping->host;
1741
1742         if (f2fs_should_update_outplace(inode, fio))
1743                 return false;
1744
1745         return f2fs_should_update_inplace(inode, fio);
1746 }
1747
1748 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1749 {
1750         struct page *page = fio->page;
1751         struct inode *inode = page->mapping->host;
1752         struct dnode_of_data dn;
1753         struct extent_info ei = {0,0,0};
1754         struct node_info ni;
1755         bool ipu_force = false;
1756         int err = 0;
1757
1758         set_new_dnode(&dn, inode, NULL, NULL, 0);
1759         if (need_inplace_update(fio) &&
1760                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1761                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1762
1763                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1764                                                         DATA_GENERIC))
1765                         return -EFSCORRUPTED;
1766
1767                 ipu_force = true;
1768                 fio->need_lock = LOCK_DONE;
1769                 goto got_it;
1770         }
1771
1772         /* Deadlock due to between page->lock and f2fs_lock_op */
1773         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1774                 return -EAGAIN;
1775
1776         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1777         if (err)
1778                 goto out;
1779
1780         fio->old_blkaddr = dn.data_blkaddr;
1781
1782         /* This page is already truncated */
1783         if (fio->old_blkaddr == NULL_ADDR) {
1784                 ClearPageUptodate(page);
1785                 clear_cold_data(page);
1786                 goto out_writepage;
1787         }
1788 got_it:
1789         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1790                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1791                                                         DATA_GENERIC)) {
1792                 err = -EFSCORRUPTED;
1793                 goto out_writepage;
1794         }
1795         /*
1796          * If current allocation needs SSR,
1797          * it had better in-place writes for updated data.
1798          */
1799         if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1800                                         need_inplace_update(fio))) {
1801                 err = encrypt_one_page(fio);
1802                 if (err)
1803                         goto out_writepage;
1804
1805                 set_page_writeback(page);
1806                 ClearPageError(page);
1807                 f2fs_put_dnode(&dn);
1808                 if (fio->need_lock == LOCK_REQ)
1809                         f2fs_unlock_op(fio->sbi);
1810                 err = f2fs_inplace_write_data(fio);
1811                 trace_f2fs_do_write_data_page(fio->page, IPU);
1812                 set_inode_flag(inode, FI_UPDATE_WRITE);
1813                 return err;
1814         }
1815
1816         if (fio->need_lock == LOCK_RETRY) {
1817                 if (!f2fs_trylock_op(fio->sbi)) {
1818                         err = -EAGAIN;
1819                         goto out_writepage;
1820                 }
1821                 fio->need_lock = LOCK_REQ;
1822         }
1823
1824         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1825         if (err)
1826                 goto out_writepage;
1827
1828         fio->version = ni.version;
1829
1830         err = encrypt_one_page(fio);
1831         if (err)
1832                 goto out_writepage;
1833
1834         set_page_writeback(page);
1835         ClearPageError(page);
1836
1837         /* LFS mode write path */
1838         f2fs_outplace_write_data(&dn, fio);
1839         trace_f2fs_do_write_data_page(page, OPU);
1840         set_inode_flag(inode, FI_APPEND_WRITE);
1841         if (page->index == 0)
1842                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1843 out_writepage:
1844         f2fs_put_dnode(&dn);
1845 out:
1846         if (fio->need_lock == LOCK_REQ)
1847                 f2fs_unlock_op(fio->sbi);
1848         return err;
1849 }
1850
1851 static int __write_data_page(struct page *page, bool *submitted,
1852                                 struct writeback_control *wbc,
1853                                 enum iostat_type io_type)
1854 {
1855         struct inode *inode = page->mapping->host;
1856         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1857         loff_t i_size = i_size_read(inode);
1858         const pgoff_t end_index = ((unsigned long long) i_size)
1859                                                         >> PAGE_SHIFT;
1860         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1861         unsigned offset = 0;
1862         bool need_balance_fs = false;
1863         int err = 0;
1864         struct f2fs_io_info fio = {
1865                 .sbi = sbi,
1866                 .ino = inode->i_ino,
1867                 .type = DATA,
1868                 .op = REQ_OP_WRITE,
1869                 .op_flags = wbc_to_write_flags(wbc),
1870                 .old_blkaddr = NULL_ADDR,
1871                 .page = page,
1872                 .encrypted_page = NULL,
1873                 .submitted = false,
1874                 .need_lock = LOCK_RETRY,
1875                 .io_type = io_type,
1876                 .io_wbc = wbc,
1877         };
1878
1879         trace_f2fs_writepage(page, DATA);
1880
1881         /* we should bypass data pages to proceed the kworkder jobs */
1882         if (unlikely(f2fs_cp_error(sbi))) {
1883                 mapping_set_error(page->mapping, -EIO);
1884                 /*
1885                  * don't drop any dirty dentry pages for keeping lastest
1886                  * directory structure.
1887                  */
1888                 if (S_ISDIR(inode->i_mode))
1889                         goto redirty_out;
1890                 goto out;
1891         }
1892
1893         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1894                 goto redirty_out;
1895
1896         if (page->index < end_index)
1897                 goto write;
1898
1899         /*
1900          * If the offset is out-of-range of file size,
1901          * this page does not have to be written to disk.
1902          */
1903         offset = i_size & (PAGE_SIZE - 1);
1904         if ((page->index >= end_index + 1) || !offset)
1905                 goto out;
1906
1907         zero_user_segment(page, offset, PAGE_SIZE);
1908 write:
1909         if (f2fs_is_drop_cache(inode))
1910                 goto out;
1911         /* we should not write 0'th page having journal header */
1912         if (f2fs_is_volatile_file(inode) && (!page->index ||
1913                         (!wbc->for_reclaim &&
1914                         f2fs_available_free_memory(sbi, BASE_CHECK))))
1915                 goto redirty_out;
1916
1917         /* Dentry blocks are controlled by checkpoint */
1918         if (S_ISDIR(inode->i_mode)) {
1919                 fio.need_lock = LOCK_DONE;
1920                 err = f2fs_do_write_data_page(&fio);
1921                 goto done;
1922         }
1923
1924         if (!wbc->for_reclaim)
1925                 need_balance_fs = true;
1926         else if (has_not_enough_free_secs(sbi, 0, 0))
1927                 goto redirty_out;
1928         else
1929                 set_inode_flag(inode, FI_HOT_DATA);
1930
1931         err = -EAGAIN;
1932         if (f2fs_has_inline_data(inode)) {
1933                 err = f2fs_write_inline_data(inode, page);
1934                 if (!err)
1935                         goto out;
1936         }
1937
1938         if (err == -EAGAIN) {
1939                 err = f2fs_do_write_data_page(&fio);
1940                 if (err == -EAGAIN) {
1941                         fio.need_lock = LOCK_REQ;
1942                         err = f2fs_do_write_data_page(&fio);
1943                 }
1944         }
1945
1946         if (err) {
1947                 file_set_keep_isize(inode);
1948         } else {
1949                 down_write(&F2FS_I(inode)->i_sem);
1950                 if (F2FS_I(inode)->last_disk_size < psize)
1951                         F2FS_I(inode)->last_disk_size = psize;
1952                 up_write(&F2FS_I(inode)->i_sem);
1953         }
1954
1955 done:
1956         if (err && err != -ENOENT)
1957                 goto redirty_out;
1958
1959 out:
1960         inode_dec_dirty_pages(inode);
1961         if (err) {
1962                 ClearPageUptodate(page);
1963                 clear_cold_data(page);
1964         }
1965
1966         if (wbc->for_reclaim) {
1967                 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1968                 clear_inode_flag(inode, FI_HOT_DATA);
1969                 f2fs_remove_dirty_inode(inode);
1970                 submitted = NULL;
1971         }
1972
1973         unlock_page(page);
1974         if (!S_ISDIR(inode->i_mode))
1975                 f2fs_balance_fs(sbi, need_balance_fs);
1976
1977         if (unlikely(f2fs_cp_error(sbi))) {
1978                 f2fs_submit_merged_write(sbi, DATA);
1979                 submitted = NULL;
1980         }
1981
1982         if (submitted)
1983                 *submitted = fio.submitted;
1984
1985         return 0;
1986
1987 redirty_out:
1988         redirty_page_for_writepage(wbc, page);
1989         /*
1990          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1991          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1992          * file_write_and_wait_range() will see EIO error, which is critical
1993          * to return value of fsync() followed by atomic_write failure to user.
1994          */
1995         if (!err || wbc->for_reclaim)
1996                 return AOP_WRITEPAGE_ACTIVATE;
1997         unlock_page(page);
1998         return err;
1999 }
2000
2001 static int f2fs_write_data_page(struct page *page,
2002                                         struct writeback_control *wbc)
2003 {
2004         return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2005 }
2006
2007 /*
2008  * This function was copied from write_cche_pages from mm/page-writeback.c.
2009  * The major change is making write step of cold data page separately from
2010  * warm/hot data page.
2011  */
2012 static int f2fs_write_cache_pages(struct address_space *mapping,
2013                                         struct writeback_control *wbc,
2014                                         enum iostat_type io_type)
2015 {
2016         int ret = 0;
2017         int done = 0;
2018         struct pagevec pvec;
2019         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2020         int nr_pages;
2021         pgoff_t uninitialized_var(writeback_index);
2022         pgoff_t index;
2023         pgoff_t end;            /* Inclusive */
2024         pgoff_t done_index;
2025         pgoff_t last_idx = ULONG_MAX;
2026         int cycled;
2027         int range_whole = 0;
2028         int tag;
2029
2030         pagevec_init(&pvec);
2031
2032         if (get_dirty_pages(mapping->host) <=
2033                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2034                 set_inode_flag(mapping->host, FI_HOT_DATA);
2035         else
2036                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2037
2038         if (wbc->range_cyclic) {
2039                 writeback_index = mapping->writeback_index; /* prev offset */
2040                 index = writeback_index;
2041                 if (index == 0)
2042                         cycled = 1;
2043                 else
2044                         cycled = 0;
2045                 end = -1;
2046         } else {
2047                 index = wbc->range_start >> PAGE_SHIFT;
2048                 end = wbc->range_end >> PAGE_SHIFT;
2049                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2050                         range_whole = 1;
2051                 cycled = 1; /* ignore range_cyclic tests */
2052         }
2053         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2054                 tag = PAGECACHE_TAG_TOWRITE;
2055         else
2056                 tag = PAGECACHE_TAG_DIRTY;
2057 retry:
2058         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2059                 tag_pages_for_writeback(mapping, index, end);
2060         done_index = index;
2061         while (!done && (index <= end)) {
2062                 int i;
2063
2064                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2065                                 tag);
2066                 if (nr_pages == 0)
2067                         break;
2068
2069                 for (i = 0; i < nr_pages; i++) {
2070                         struct page *page = pvec.pages[i];
2071                         bool submitted = false;
2072
2073                         /* give a priority to WB_SYNC threads */
2074                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2075                                         wbc->sync_mode == WB_SYNC_NONE) {
2076                                 done = 1;
2077                                 break;
2078                         }
2079
2080                         done_index = page->index;
2081 retry_write:
2082                         lock_page(page);
2083
2084                         if (unlikely(page->mapping != mapping)) {
2085 continue_unlock:
2086                                 unlock_page(page);
2087                                 continue;
2088                         }
2089
2090                         if (!PageDirty(page)) {
2091                                 /* someone wrote it for us */
2092                                 goto continue_unlock;
2093                         }
2094
2095                         if (PageWriteback(page)) {
2096                                 if (wbc->sync_mode != WB_SYNC_NONE)
2097                                         f2fs_wait_on_page_writeback(page,
2098                                                                 DATA, true);
2099                                 else
2100                                         goto continue_unlock;
2101                         }
2102
2103                         BUG_ON(PageWriteback(page));
2104                         if (!clear_page_dirty_for_io(page))
2105                                 goto continue_unlock;
2106
2107                         ret = __write_data_page(page, &submitted, wbc, io_type);
2108                         if (unlikely(ret)) {
2109                                 /*
2110                                  * keep nr_to_write, since vfs uses this to
2111                                  * get # of written pages.
2112                                  */
2113                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2114                                         unlock_page(page);
2115                                         ret = 0;
2116                                         continue;
2117                                 } else if (ret == -EAGAIN) {
2118                                         ret = 0;
2119                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2120                                                 cond_resched();
2121                                                 congestion_wait(BLK_RW_ASYNC,
2122                                                                         HZ/50);
2123                                                 goto retry_write;
2124                                         }
2125                                         continue;
2126                                 }
2127                                 done_index = page->index + 1;
2128                                 done = 1;
2129                                 break;
2130                         } else if (submitted) {
2131                                 last_idx = page->index;
2132                         }
2133
2134                         if (--wbc->nr_to_write <= 0 &&
2135                                         wbc->sync_mode == WB_SYNC_NONE) {
2136                                 done = 1;
2137                                 break;
2138                         }
2139                 }
2140                 pagevec_release(&pvec);
2141                 cond_resched();
2142         }
2143
2144         if (!cycled && !done) {
2145                 cycled = 1;
2146                 index = 0;
2147                 end = writeback_index - 1;
2148                 goto retry;
2149         }
2150         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2151                 mapping->writeback_index = done_index;
2152
2153         if (last_idx != ULONG_MAX)
2154                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2155                                                 0, last_idx, DATA);
2156
2157         return ret;
2158 }
2159
2160 static inline bool __should_serialize_io(struct inode *inode,
2161                                         struct writeback_control *wbc)
2162 {
2163         if (!S_ISREG(inode->i_mode))
2164                 return false;
2165         if (wbc->sync_mode != WB_SYNC_ALL)
2166                 return true;
2167         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2168                 return true;
2169         return false;
2170 }
2171
2172 static int __f2fs_write_data_pages(struct address_space *mapping,
2173                                                 struct writeback_control *wbc,
2174                                                 enum iostat_type io_type)
2175 {
2176         struct inode *inode = mapping->host;
2177         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2178         struct blk_plug plug;
2179         int ret;
2180         bool locked = false;
2181
2182         /* deal with chardevs and other special file */
2183         if (!mapping->a_ops->writepage)
2184                 return 0;
2185
2186         /* skip writing if there is no dirty page in this inode */
2187         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2188                 return 0;
2189
2190         /* during POR, we don't need to trigger writepage at all. */
2191         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2192                 goto skip_write;
2193
2194         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2195                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2196                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
2197                 goto skip_write;
2198
2199         /* skip writing during file defragment */
2200         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2201                 goto skip_write;
2202
2203         trace_f2fs_writepages(mapping->host, wbc, DATA);
2204
2205         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2206         if (wbc->sync_mode == WB_SYNC_ALL)
2207                 atomic_inc(&sbi->wb_sync_req[DATA]);
2208         else if (atomic_read(&sbi->wb_sync_req[DATA]))
2209                 goto skip_write;
2210
2211         if (__should_serialize_io(inode, wbc)) {
2212                 mutex_lock(&sbi->writepages);
2213                 locked = true;
2214         }
2215
2216         blk_start_plug(&plug);
2217         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2218         blk_finish_plug(&plug);
2219
2220         if (locked)
2221                 mutex_unlock(&sbi->writepages);
2222
2223         if (wbc->sync_mode == WB_SYNC_ALL)
2224                 atomic_dec(&sbi->wb_sync_req[DATA]);
2225         /*
2226          * if some pages were truncated, we cannot guarantee its mapping->host
2227          * to detect pending bios.
2228          */
2229
2230         f2fs_remove_dirty_inode(inode);
2231         return ret;
2232
2233 skip_write:
2234         wbc->pages_skipped += get_dirty_pages(inode);
2235         trace_f2fs_writepages(mapping->host, wbc, DATA);
2236         return 0;
2237 }
2238
2239 static int f2fs_write_data_pages(struct address_space *mapping,
2240                             struct writeback_control *wbc)
2241 {
2242         struct inode *inode = mapping->host;
2243
2244         return __f2fs_write_data_pages(mapping, wbc,
2245                         F2FS_I(inode)->cp_task == current ?
2246                         FS_CP_DATA_IO : FS_DATA_IO);
2247 }
2248
2249 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2250 {
2251         struct inode *inode = mapping->host;
2252         loff_t i_size = i_size_read(inode);
2253
2254         if (to > i_size) {
2255                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2256                 down_write(&F2FS_I(inode)->i_mmap_sem);
2257
2258                 truncate_pagecache(inode, i_size);
2259                 f2fs_truncate_blocks(inode, i_size, true);
2260
2261                 up_write(&F2FS_I(inode)->i_mmap_sem);
2262                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2263         }
2264 }
2265
2266 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2267                         struct page *page, loff_t pos, unsigned len,
2268                         block_t *blk_addr, bool *node_changed)
2269 {
2270         struct inode *inode = page->mapping->host;
2271         pgoff_t index = page->index;
2272         struct dnode_of_data dn;
2273         struct page *ipage;
2274         bool locked = false;
2275         struct extent_info ei = {0,0,0};
2276         int err = 0;
2277         int flag;
2278
2279         /*
2280          * we already allocated all the blocks, so we don't need to get
2281          * the block addresses when there is no need to fill the page.
2282          */
2283         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2284                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
2285                 return 0;
2286
2287         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2288         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2289                 flag = F2FS_GET_BLOCK_DEFAULT;
2290         else
2291                 flag = F2FS_GET_BLOCK_PRE_AIO;
2292
2293         if (f2fs_has_inline_data(inode) ||
2294                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2295                 __do_map_lock(sbi, flag, true);
2296                 locked = true;
2297         }
2298 restart:
2299         /* check inline_data */
2300         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2301         if (IS_ERR(ipage)) {
2302                 err = PTR_ERR(ipage);
2303                 goto unlock_out;
2304         }
2305
2306         set_new_dnode(&dn, inode, ipage, ipage, 0);
2307
2308         if (f2fs_has_inline_data(inode)) {
2309                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2310                         f2fs_do_read_inline_data(page, ipage);
2311                         set_inode_flag(inode, FI_DATA_EXIST);
2312                         if (inode->i_nlink)
2313                                 set_inline_node(ipage);
2314                 } else {
2315                         err = f2fs_convert_inline_page(&dn, page);
2316                         if (err)
2317                                 goto out;
2318                         if (dn.data_blkaddr == NULL_ADDR)
2319                                 err = f2fs_get_block(&dn, index);
2320                 }
2321         } else if (locked) {
2322                 err = f2fs_get_block(&dn, index);
2323         } else {
2324                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2325                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2326                 } else {
2327                         /* hole case */
2328                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2329                         if (err || dn.data_blkaddr == NULL_ADDR) {
2330                                 f2fs_put_dnode(&dn);
2331                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2332                                                                 true);
2333                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2334                                 locked = true;
2335                                 goto restart;
2336                         }
2337                 }
2338         }
2339
2340         /* convert_inline_page can make node_changed */
2341         *blk_addr = dn.data_blkaddr;
2342         *node_changed = dn.node_changed;
2343 out:
2344         f2fs_put_dnode(&dn);
2345 unlock_out:
2346         if (locked)
2347                 __do_map_lock(sbi, flag, false);
2348         return err;
2349 }
2350
2351 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2352                 loff_t pos, unsigned len, unsigned flags,
2353                 struct page **pagep, void **fsdata)
2354 {
2355         struct inode *inode = mapping->host;
2356         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2357         struct page *page = NULL;
2358         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2359         bool need_balance = false, drop_atomic = false;
2360         block_t blkaddr = NULL_ADDR;
2361         int err = 0;
2362
2363         trace_f2fs_write_begin(inode, pos, len, flags);
2364
2365         if ((f2fs_is_atomic_file(inode) &&
2366                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2367                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2368                 err = -ENOMEM;
2369                 drop_atomic = true;
2370                 goto fail;
2371         }
2372
2373         /*
2374          * We should check this at this moment to avoid deadlock on inode page
2375          * and #0 page. The locking rule for inline_data conversion should be:
2376          * lock_page(page #0) -> lock_page(inode_page)
2377          */
2378         if (index != 0) {
2379                 err = f2fs_convert_inline_inode(inode);
2380                 if (err)
2381                         goto fail;
2382         }
2383 repeat:
2384         /*
2385          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2386          * wait_for_stable_page. Will wait that below with our IO control.
2387          */
2388         page = f2fs_pagecache_get_page(mapping, index,
2389                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2390         if (!page) {
2391                 err = -ENOMEM;
2392                 goto fail;
2393         }
2394
2395         *pagep = page;
2396
2397         err = prepare_write_begin(sbi, page, pos, len,
2398                                         &blkaddr, &need_balance);
2399         if (err)
2400                 goto fail;
2401
2402         if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2403                 unlock_page(page);
2404                 f2fs_balance_fs(sbi, true);
2405                 lock_page(page);
2406                 if (page->mapping != mapping) {
2407                         /* The page got truncated from under us */
2408                         f2fs_put_page(page, 1);
2409                         goto repeat;
2410                 }
2411         }
2412
2413         f2fs_wait_on_page_writeback(page, DATA, false);
2414
2415         if (len == PAGE_SIZE || PageUptodate(page))
2416                 return 0;
2417
2418         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2419                 zero_user_segment(page, len, PAGE_SIZE);
2420                 return 0;
2421         }
2422
2423         if (blkaddr == NEW_ADDR) {
2424                 zero_user_segment(page, 0, PAGE_SIZE);
2425                 SetPageUptodate(page);
2426         } else {
2427                 err = f2fs_submit_page_read(inode, page, blkaddr);
2428                 if (err)
2429                         goto fail;
2430
2431                 lock_page(page);
2432                 if (unlikely(page->mapping != mapping)) {
2433                         f2fs_put_page(page, 1);
2434                         goto repeat;
2435                 }
2436                 if (unlikely(!PageUptodate(page))) {
2437                         err = -EIO;
2438                         goto fail;
2439                 }
2440         }
2441         return 0;
2442
2443 fail:
2444         f2fs_put_page(page, 1);
2445         f2fs_write_failed(mapping, pos + len);
2446         if (drop_atomic)
2447                 f2fs_drop_inmem_pages_all(sbi, false);
2448         return err;
2449 }
2450
2451 static int f2fs_write_end(struct file *file,
2452                         struct address_space *mapping,
2453                         loff_t pos, unsigned len, unsigned copied,
2454                         struct page *page, void *fsdata)
2455 {
2456         struct inode *inode = page->mapping->host;
2457
2458         trace_f2fs_write_end(inode, pos, len, copied);
2459
2460         /*
2461          * This should be come from len == PAGE_SIZE, and we expect copied
2462          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2463          * let generic_perform_write() try to copy data again through copied=0.
2464          */
2465         if (!PageUptodate(page)) {
2466                 if (unlikely(copied != len))
2467                         copied = 0;
2468                 else
2469                         SetPageUptodate(page);
2470         }
2471         if (!copied)
2472                 goto unlock_out;
2473
2474         set_page_dirty(page);
2475
2476         if (pos + copied > i_size_read(inode))
2477                 f2fs_i_size_write(inode, pos + copied);
2478 unlock_out:
2479         f2fs_put_page(page, 1);
2480         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2481         return copied;
2482 }
2483
2484 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2485                            loff_t offset)
2486 {
2487         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2488         unsigned blkbits = i_blkbits;
2489         unsigned blocksize_mask = (1 << blkbits) - 1;
2490         unsigned long align = offset | iov_iter_alignment(iter);
2491         struct block_device *bdev = inode->i_sb->s_bdev;
2492
2493         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
2494                 return 1;
2495
2496         if (align & blocksize_mask) {
2497                 if (bdev)
2498                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
2499                 blocksize_mask = (1 << blkbits) - 1;
2500                 if (align & blocksize_mask)
2501                         return -EINVAL;
2502                 return 1;
2503         }
2504         return 0;
2505 }
2506
2507 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2508 {
2509         struct address_space *mapping = iocb->ki_filp->f_mapping;
2510         struct inode *inode = mapping->host;
2511         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2512         size_t count = iov_iter_count(iter);
2513         loff_t offset = iocb->ki_pos;
2514         int rw = iov_iter_rw(iter);
2515         int err;
2516         enum rw_hint hint = iocb->ki_hint;
2517         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2518
2519         err = check_direct_IO(inode, iter, offset);
2520         if (err)
2521                 return err < 0 ? err : 0;
2522
2523         if (f2fs_force_buffered_io(inode, rw))
2524                 return 0;
2525
2526         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2527
2528         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2529                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2530
2531         if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2532                 if (iocb->ki_flags & IOCB_NOWAIT) {
2533                         iocb->ki_hint = hint;
2534                         err = -EAGAIN;
2535                         goto out;
2536                 }
2537                 down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2538         }
2539
2540         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2541         up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2542
2543         if (rw == WRITE) {
2544                 if (whint_mode == WHINT_MODE_OFF)
2545                         iocb->ki_hint = hint;
2546                 if (err > 0) {
2547                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2548                                                                         err);
2549                         set_inode_flag(inode, FI_UPDATE_WRITE);
2550                 } else if (err < 0) {
2551                         f2fs_write_failed(mapping, offset + count);
2552                 }
2553         }
2554
2555 out:
2556         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2557
2558         return err;
2559 }
2560
2561 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2562                                                         unsigned int length)
2563 {
2564         struct inode *inode = page->mapping->host;
2565         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566
2567         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2568                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2569                 return;
2570
2571         if (PageDirty(page)) {
2572                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2573                         dec_page_count(sbi, F2FS_DIRTY_META);
2574                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2575                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2576                 } else {
2577                         inode_dec_dirty_pages(inode);
2578                         f2fs_remove_dirty_inode(inode);
2579                 }
2580         }
2581
2582         clear_cold_data(page);
2583
2584         /* This is atomic written page, keep Private */
2585         if (IS_ATOMIC_WRITTEN_PAGE(page))
2586                 return f2fs_drop_inmem_page(inode, page);
2587
2588         set_page_private(page, 0);
2589         ClearPagePrivate(page);
2590 }
2591
2592 int f2fs_release_page(struct page *page, gfp_t wait)
2593 {
2594         /* If this is dirty page, keep PagePrivate */
2595         if (PageDirty(page))
2596                 return 0;
2597
2598         /* This is atomic written page, keep Private */
2599         if (IS_ATOMIC_WRITTEN_PAGE(page))
2600                 return 0;
2601
2602         clear_cold_data(page);
2603         set_page_private(page, 0);
2604         ClearPagePrivate(page);
2605         return 1;
2606 }
2607
2608 static int f2fs_set_data_page_dirty(struct page *page)
2609 {
2610         struct address_space *mapping = page->mapping;
2611         struct inode *inode = mapping->host;
2612
2613         trace_f2fs_set_page_dirty(page, DATA);
2614
2615         if (!PageUptodate(page))
2616                 SetPageUptodate(page);
2617
2618         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2619                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2620                         f2fs_register_inmem_page(inode, page);
2621                         return 1;
2622                 }
2623                 /*
2624                  * Previously, this page has been registered, we just
2625                  * return here.
2626                  */
2627                 return 0;
2628         }
2629
2630         if (!PageDirty(page)) {
2631                 __set_page_dirty_nobuffers(page);
2632                 f2fs_update_dirty_page(inode, page);
2633                 return 1;
2634         }
2635         return 0;
2636 }
2637
2638 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2639 {
2640         struct inode *inode = mapping->host;
2641
2642         if (f2fs_has_inline_data(inode))
2643                 return 0;
2644
2645         /* make sure allocating whole blocks */
2646         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2647                 filemap_write_and_wait(mapping);
2648
2649         return generic_block_bmap(mapping, block, get_data_block_bmap);
2650 }
2651
2652 #ifdef CONFIG_MIGRATION
2653 #include <linux/migrate.h>
2654
2655 int f2fs_migrate_page(struct address_space *mapping,
2656                 struct page *newpage, struct page *page, enum migrate_mode mode)
2657 {
2658         int rc, extra_count;
2659         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2660         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2661
2662         BUG_ON(PageWriteback(page));
2663
2664         /* migrating an atomic written page is safe with the inmem_lock hold */
2665         if (atomic_written) {
2666                 if (mode != MIGRATE_SYNC)
2667                         return -EBUSY;
2668                 if (!mutex_trylock(&fi->inmem_lock))
2669                         return -EAGAIN;
2670         }
2671
2672         /*
2673          * A reference is expected if PagePrivate set when move mapping,
2674          * however F2FS breaks this for maintaining dirty page counts when
2675          * truncating pages. So here adjusting the 'extra_count' make it work.
2676          */
2677         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2678         rc = migrate_page_move_mapping(mapping, newpage,
2679                                 page, NULL, mode, extra_count);
2680         if (rc != MIGRATEPAGE_SUCCESS) {
2681                 if (atomic_written)
2682                         mutex_unlock(&fi->inmem_lock);
2683                 return rc;
2684         }
2685
2686         if (atomic_written) {
2687                 struct inmem_pages *cur;
2688                 list_for_each_entry(cur, &fi->inmem_pages, list)
2689                         if (cur->page == page) {
2690                                 cur->page = newpage;
2691                                 break;
2692                         }
2693                 mutex_unlock(&fi->inmem_lock);
2694                 put_page(page);
2695                 get_page(newpage);
2696         }
2697
2698         if (PagePrivate(page))
2699                 SetPagePrivate(newpage);
2700         set_page_private(newpage, page_private(page));
2701
2702         if (mode != MIGRATE_SYNC_NO_COPY)
2703                 migrate_page_copy(newpage, page);
2704         else
2705                 migrate_page_states(newpage, page);
2706
2707         return MIGRATEPAGE_SUCCESS;
2708 }
2709 #endif
2710
2711 const struct address_space_operations f2fs_dblock_aops = {
2712         .readpage       = f2fs_read_data_page,
2713         .readpages      = f2fs_read_data_pages,
2714         .writepage      = f2fs_write_data_page,
2715         .writepages     = f2fs_write_data_pages,
2716         .write_begin    = f2fs_write_begin,
2717         .write_end      = f2fs_write_end,
2718         .set_page_dirty = f2fs_set_data_page_dirty,
2719         .invalidatepage = f2fs_invalidate_page,
2720         .releasepage    = f2fs_release_page,
2721         .direct_IO      = f2fs_direct_IO,
2722         .bmap           = f2fs_bmap,
2723 #ifdef CONFIG_MIGRATION
2724         .migratepage    = f2fs_migrate_page,
2725 #endif
2726 };
2727
2728 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2729 {
2730         struct address_space *mapping = page_mapping(page);
2731         unsigned long flags;
2732
2733         xa_lock_irqsave(&mapping->i_pages, flags);
2734         radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2735                                                 PAGECACHE_TAG_DIRTY);
2736         xa_unlock_irqrestore(&mapping->i_pages, flags);
2737 }
2738
2739 int __init f2fs_init_post_read_processing(void)
2740 {
2741         bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2742         if (!bio_post_read_ctx_cache)
2743                 goto fail;
2744         bio_post_read_ctx_pool =
2745                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2746                                          bio_post_read_ctx_cache);
2747         if (!bio_post_read_ctx_pool)
2748                 goto fail_free_cache;
2749         return 0;
2750
2751 fail_free_cache:
2752         kmem_cache_destroy(bio_post_read_ctx_cache);
2753 fail:
2754         return -ENOMEM;
2755 }
2756
2757 void __exit f2fs_destroy_post_read_processing(void)
2758 {
2759         mempool_destroy(bio_post_read_ctx_pool);
2760         kmem_cache_destroy(bio_post_read_ctx_cache);
2761 }