4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
30 #include <trace/events/f2fs.h>
32 static void f2fs_read_end_io(struct bio *bio)
37 #ifdef CONFIG_F2FS_FAULT_INJECTION
38 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
42 if (f2fs_bio_encrypted(bio)) {
44 fscrypt_release_ctx(bio->bi_private);
46 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
51 bio_for_each_segment_all(bvec, bio, i) {
52 struct page *page = bvec->bv_page;
55 if (!PageUptodate(page))
56 SetPageUptodate(page);
58 ClearPageUptodate(page);
66 static void f2fs_write_end_io(struct bio *bio)
68 struct f2fs_sb_info *sbi = bio->bi_private;
72 bio_for_each_segment_all(bvec, bio, i) {
73 struct page *page = bvec->bv_page;
75 fscrypt_pullback_bio_page(&page, true);
77 if (unlikely(bio->bi_error)) {
78 mapping_set_error(page->mapping, -EIO);
79 f2fs_stop_checkpoint(sbi, true);
81 end_page_writeback(page);
83 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
84 wq_has_sleeper(&sbi->cp_wait))
85 wake_up(&sbi->cp_wait);
91 * Low-level block read/write IO operations.
93 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
94 int npages, bool is_read)
98 bio = f2fs_bio_alloc(npages);
100 bio->bi_bdev = sbi->sb->s_bdev;
101 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
102 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
103 bio->bi_private = is_read ? NULL : sbi;
108 static inline void __submit_bio(struct f2fs_sb_info *sbi,
109 struct bio *bio, enum page_type type)
111 if (!is_read_io(bio_op(bio))) {
112 atomic_inc(&sbi->nr_wb_bios);
113 if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
114 current->plug && (type == DATA || type == NODE))
115 blk_finish_plug(current->plug);
120 static void __submit_merged_bio(struct f2fs_bio_info *io)
122 struct f2fs_io_info *fio = &io->fio;
127 if (is_read_io(fio->op))
128 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
130 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
132 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
134 __submit_bio(io->sbi, io->bio, fio->type);
138 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
139 struct page *page, nid_t ino)
141 struct bio_vec *bvec;
148 if (!inode && !page && !ino)
151 bio_for_each_segment_all(bvec, io->bio, i) {
153 if (bvec->bv_page->mapping)
154 target = bvec->bv_page;
156 target = fscrypt_control_page(bvec->bv_page);
158 if (inode && inode == target->mapping->host)
160 if (page && page == target)
162 if (ino && ino == ino_of_node(target))
169 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
170 struct page *page, nid_t ino,
173 enum page_type btype = PAGE_TYPE_OF_BIO(type);
174 struct f2fs_bio_info *io = &sbi->write_io[btype];
177 down_read(&io->io_rwsem);
178 ret = __has_merged_page(io, inode, page, ino);
179 up_read(&io->io_rwsem);
183 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
184 struct inode *inode, struct page *page,
185 nid_t ino, enum page_type type, int rw)
187 enum page_type btype = PAGE_TYPE_OF_BIO(type);
188 struct f2fs_bio_info *io;
190 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
192 down_write(&io->io_rwsem);
194 if (!__has_merged_page(io, inode, page, ino))
197 /* change META to META_FLUSH in the checkpoint procedure */
198 if (type >= META_FLUSH) {
199 io->fio.type = META_FLUSH;
200 io->fio.op = REQ_OP_WRITE;
201 if (test_opt(sbi, NOBARRIER))
202 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
204 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META |
207 __submit_merged_bio(io);
209 up_write(&io->io_rwsem);
212 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
215 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
218 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
219 struct inode *inode, struct page *page,
220 nid_t ino, enum page_type type, int rw)
222 if (has_merged_page(sbi, inode, page, ino, type))
223 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
226 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
228 f2fs_submit_merged_bio(sbi, DATA, WRITE);
229 f2fs_submit_merged_bio(sbi, NODE, WRITE);
230 f2fs_submit_merged_bio(sbi, META, WRITE);
234 * Fill the locked page with data located in the block address.
235 * Return unlocked page.
237 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
240 struct page *page = fio->encrypted_page ?
241 fio->encrypted_page : fio->page;
243 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
244 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
247 trace_f2fs_submit_page_bio(page, fio);
248 f2fs_trace_ios(fio, 0);
250 /* Allocate a new bio */
251 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
253 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
257 bio_set_op_attrs(bio, fio->op, fio->op_flags);
259 __submit_bio(fio->sbi, bio, fio->type);
263 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
265 struct f2fs_sb_info *sbi = fio->sbi;
266 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
267 struct f2fs_bio_info *io;
268 bool is_read = is_read_io(fio->op);
269 struct page *bio_page;
271 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
273 if (__is_valid_data_blkaddr(fio->old_blkaddr))
274 verify_block_addr(fio, fio->old_blkaddr);
275 verify_block_addr(fio, fio->new_blkaddr);
277 down_write(&io->io_rwsem);
279 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
280 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags)))
281 __submit_merged_bio(io);
283 if (io->bio == NULL) {
284 int bio_blocks = MAX_BIO_BLOCKS(sbi);
286 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
287 bio_blocks, is_read);
291 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
293 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
295 __submit_merged_bio(io);
299 io->last_block_in_bio = fio->new_blkaddr;
300 f2fs_trace_ios(fio, 0);
302 up_write(&io->io_rwsem);
303 trace_f2fs_submit_page_mbio(fio->page, fio);
306 static void __set_data_blkaddr(struct dnode_of_data *dn)
308 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
311 /* Get physical address of data block */
312 addr_array = blkaddr_in_node(rn);
313 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
317 * Lock ordering for the change of data block address:
320 * update block addresses in the node page
322 void set_data_blkaddr(struct dnode_of_data *dn)
324 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
325 __set_data_blkaddr(dn);
326 if (set_page_dirty(dn->node_page))
327 dn->node_changed = true;
330 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
332 dn->data_blkaddr = blkaddr;
333 set_data_blkaddr(dn);
334 f2fs_update_extent_cache(dn);
337 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
338 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
340 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
345 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
347 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
350 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
351 dn->ofs_in_node, count);
353 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
355 for (; count > 0; dn->ofs_in_node++) {
357 datablock_addr(dn->node_page, dn->ofs_in_node);
358 if (blkaddr == NULL_ADDR) {
359 dn->data_blkaddr = NEW_ADDR;
360 __set_data_blkaddr(dn);
365 if (set_page_dirty(dn->node_page))
366 dn->node_changed = true;
370 /* Should keep dn->ofs_in_node unchanged */
371 int reserve_new_block(struct dnode_of_data *dn)
373 unsigned int ofs_in_node = dn->ofs_in_node;
376 ret = reserve_new_blocks(dn, 1);
377 dn->ofs_in_node = ofs_in_node;
381 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
383 bool need_put = dn->inode_page ? false : true;
386 err = get_dnode_of_data(dn, index, ALLOC_NODE);
390 if (dn->data_blkaddr == NULL_ADDR)
391 err = reserve_new_block(dn);
397 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
399 struct extent_info ei;
400 struct inode *inode = dn->inode;
402 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
403 dn->data_blkaddr = ei.blk + index - ei.fofs;
407 return f2fs_reserve_block(dn, index);
410 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
411 int op_flags, bool for_write)
413 struct address_space *mapping = inode->i_mapping;
414 struct dnode_of_data dn;
416 struct extent_info ei;
418 struct f2fs_io_info fio = {
419 .sbi = F2FS_I_SB(inode),
422 .op_flags = op_flags,
423 .encrypted_page = NULL,
426 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
427 return read_mapping_page(mapping, index, NULL);
429 page = f2fs_grab_cache_page(mapping, index, for_write);
431 return ERR_PTR(-ENOMEM);
433 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
434 dn.data_blkaddr = ei.blk + index - ei.fofs;
438 set_new_dnode(&dn, inode, NULL, NULL, 0);
439 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
444 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
449 if (PageUptodate(page)) {
455 * A new dentry page is allocated but not able to be written, since its
456 * new inode page couldn't be allocated due to -ENOSPC.
457 * In such the case, its blkaddr can be remained as NEW_ADDR.
458 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
460 if (dn.data_blkaddr == NEW_ADDR) {
461 zero_user_segment(page, 0, PAGE_SIZE);
462 if (!PageUptodate(page))
463 SetPageUptodate(page);
468 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
470 err = f2fs_submit_page_bio(&fio);
476 f2fs_put_page(page, 1);
480 struct page *find_data_page(struct inode *inode, pgoff_t index)
482 struct address_space *mapping = inode->i_mapping;
485 page = find_get_page(mapping, index);
486 if (page && PageUptodate(page))
488 f2fs_put_page(page, 0);
490 page = get_read_data_page(inode, index, READ_SYNC, false);
494 if (PageUptodate(page))
497 wait_on_page_locked(page);
498 if (unlikely(!PageUptodate(page))) {
499 f2fs_put_page(page, 0);
500 return ERR_PTR(-EIO);
506 * If it tries to access a hole, return an error.
507 * Because, the callers, functions in dir.c and GC, should be able to know
508 * whether this page exists or not.
510 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
513 struct address_space *mapping = inode->i_mapping;
516 page = get_read_data_page(inode, index, READ_SYNC, for_write);
520 /* wait for read completion */
522 if (unlikely(page->mapping != mapping)) {
523 f2fs_put_page(page, 1);
526 if (unlikely(!PageUptodate(page))) {
527 f2fs_put_page(page, 1);
528 return ERR_PTR(-EIO);
534 * Caller ensures that this data page is never allocated.
535 * A new zero-filled data page is allocated in the page cache.
537 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
539 * Note that, ipage is set only by make_empty_dir, and if any error occur,
540 * ipage should be released by this function.
542 struct page *get_new_data_page(struct inode *inode,
543 struct page *ipage, pgoff_t index, bool new_i_size)
545 struct address_space *mapping = inode->i_mapping;
547 struct dnode_of_data dn;
550 page = f2fs_grab_cache_page(mapping, index, true);
553 * before exiting, we should make sure ipage will be released
554 * if any error occur.
556 f2fs_put_page(ipage, 1);
557 return ERR_PTR(-ENOMEM);
560 set_new_dnode(&dn, inode, ipage, NULL, 0);
561 err = f2fs_reserve_block(&dn, index);
563 f2fs_put_page(page, 1);
569 if (PageUptodate(page))
572 if (dn.data_blkaddr == NEW_ADDR) {
573 zero_user_segment(page, 0, PAGE_SIZE);
574 if (!PageUptodate(page))
575 SetPageUptodate(page);
577 f2fs_put_page(page, 1);
579 /* if ipage exists, blkaddr should be NEW_ADDR */
580 f2fs_bug_on(F2FS_I_SB(inode), ipage);
581 page = get_lock_data_page(inode, index, true);
586 if (new_i_size && i_size_read(inode) <
587 ((loff_t)(index + 1) << PAGE_SHIFT))
588 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
592 static int __allocate_data_block(struct dnode_of_data *dn)
594 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
595 struct f2fs_summary sum;
597 int seg = CURSEG_WARM_DATA;
601 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
604 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
605 if (dn->data_blkaddr == NEW_ADDR)
608 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
612 get_node_info(sbi, dn->nid, &ni);
613 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
615 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
616 seg = CURSEG_DIRECT_IO;
618 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
620 set_data_blkaddr(dn);
623 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
625 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
626 f2fs_i_size_write(dn->inode,
627 ((loff_t)(fofs + 1) << PAGE_SHIFT));
631 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
633 struct inode *inode = file_inode(iocb->ki_filp);
634 struct f2fs_map_blocks map;
637 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
638 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
639 if (map.m_len > map.m_lblk)
640 map.m_len -= map.m_lblk;
644 map.m_next_pgofs = NULL;
646 if (iocb->ki_flags & IOCB_DIRECT) {
647 ret = f2fs_convert_inline_inode(inode);
650 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
652 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
653 ret = f2fs_convert_inline_inode(inode);
657 if (!f2fs_has_inline_data(inode))
658 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
663 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
664 * f2fs_map_blocks structure.
665 * If original data blocks are allocated, then give them to blockdev.
667 * a. preallocate requested block addresses
668 * b. do not use extent cache for better performance
669 * c. give the block addresses to blockdev
671 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
672 int create, int flag)
674 unsigned int maxblocks = map->m_len;
675 struct dnode_of_data dn;
676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
677 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
678 pgoff_t pgofs, end_offset, end;
679 int err = 0, ofs = 1;
680 unsigned int ofs_in_node, last_ofs_in_node;
682 struct extent_info ei;
683 bool allocated = false;
692 /* it only supports block size == page size */
693 pgofs = (pgoff_t)map->m_lblk;
694 end = pgofs + maxblocks;
696 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
697 map->m_pblk = ei.blk + pgofs - ei.fofs;
698 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
699 map->m_flags = F2FS_MAP_MAPPED;
707 /* When reading holes, we need its node page */
708 set_new_dnode(&dn, inode, NULL, NULL, 0);
709 err = get_dnode_of_data(&dn, pgofs, mode);
711 if (flag == F2FS_GET_BLOCK_BMAP)
713 if (err == -ENOENT) {
715 if (map->m_next_pgofs)
717 get_next_page_offset(&dn, pgofs);
723 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
724 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
727 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
729 if (__is_valid_data_blkaddr(blkaddr) &&
730 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
735 if (!is_valid_data_blkaddr(sbi, blkaddr)) {
737 if (unlikely(f2fs_cp_error(sbi))) {
741 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
742 if (blkaddr == NULL_ADDR) {
744 last_ofs_in_node = dn.ofs_in_node;
747 err = __allocate_data_block(&dn);
749 set_inode_flag(inode, FI_APPEND_WRITE);
755 map->m_flags = F2FS_MAP_NEW;
756 blkaddr = dn.data_blkaddr;
758 if (flag == F2FS_GET_BLOCK_BMAP) {
762 if (flag == F2FS_GET_BLOCK_FIEMAP &&
763 blkaddr == NULL_ADDR) {
764 if (map->m_next_pgofs)
765 *map->m_next_pgofs = pgofs + 1;
767 if (flag != F2FS_GET_BLOCK_FIEMAP ||
773 if (flag == F2FS_GET_BLOCK_PRE_AIO)
776 if (map->m_len == 0) {
777 /* preallocated unwritten block should be mapped for fiemap. */
778 if (blkaddr == NEW_ADDR)
779 map->m_flags |= F2FS_MAP_UNWRITTEN;
780 map->m_flags |= F2FS_MAP_MAPPED;
782 map->m_pblk = blkaddr;
784 } else if ((map->m_pblk != NEW_ADDR &&
785 blkaddr == (map->m_pblk + ofs)) ||
786 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
787 flag == F2FS_GET_BLOCK_PRE_DIO) {
798 /* preallocate blocks in batch for one dnode page */
799 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
800 (pgofs == end || dn.ofs_in_node == end_offset)) {
802 dn.ofs_in_node = ofs_in_node;
803 err = reserve_new_blocks(&dn, prealloc);
806 allocated = dn.node_changed;
808 map->m_len += dn.ofs_in_node - ofs_in_node;
809 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
813 dn.ofs_in_node = end_offset;
818 else if (dn.ofs_in_node < end_offset)
825 f2fs_balance_fs(sbi, allocated);
835 f2fs_balance_fs(sbi, allocated);
838 trace_f2fs_map_blocks(inode, map, err);
842 static int __get_data_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create, int flag,
846 struct f2fs_map_blocks map;
850 map.m_len = bh->b_size >> inode->i_blkbits;
851 map.m_next_pgofs = next_pgofs;
853 ret = f2fs_map_blocks(inode, &map, create, flag);
855 map_bh(bh, inode->i_sb, map.m_pblk);
856 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
857 bh->b_size = (u64)map.m_len << inode->i_blkbits;
862 static int get_data_block(struct inode *inode, sector_t iblock,
863 struct buffer_head *bh_result, int create, int flag,
866 return __get_data_block(inode, iblock, bh_result, create,
870 static int get_data_block_dio(struct inode *inode, sector_t iblock,
871 struct buffer_head *bh_result, int create)
873 return __get_data_block(inode, iblock, bh_result, create,
874 F2FS_GET_BLOCK_DIO, NULL);
877 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
878 struct buffer_head *bh_result, int create)
880 /* Block number less than F2FS MAX BLOCKS */
881 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
884 return __get_data_block(inode, iblock, bh_result, create,
885 F2FS_GET_BLOCK_BMAP, NULL);
888 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
890 return (offset >> inode->i_blkbits);
893 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
895 return (blk << inode->i_blkbits);
898 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
901 struct buffer_head map_bh;
902 sector_t start_blk, last_blk;
905 u64 logical = 0, phys = 0, size = 0;
909 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
913 if (f2fs_has_inline_data(inode)) {
914 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
921 isize = i_size_read(inode);
925 if (start + len > isize)
928 if (logical_to_blk(inode, len) == 0)
929 len = blk_to_logical(inode, 1);
931 start_blk = logical_to_blk(inode, start);
932 last_blk = logical_to_blk(inode, start + len - 1);
935 memset(&map_bh, 0, sizeof(struct buffer_head));
938 ret = get_data_block(inode, start_blk, &map_bh, 0,
939 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
944 if (!buffer_mapped(&map_bh)) {
945 start_blk = next_pgofs;
946 /* Go through holes util pass the EOF */
947 if (blk_to_logical(inode, start_blk) < isize)
949 /* Found a hole beyond isize means no more extents.
950 * Note that the premise is that filesystems don't
951 * punch holes beyond isize and keep size unchanged.
953 flags |= FIEMAP_EXTENT_LAST;
957 if (f2fs_encrypted_inode(inode))
958 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
960 ret = fiemap_fill_next_extent(fieinfo, logical,
964 if (start_blk > last_blk || ret)
967 logical = blk_to_logical(inode, start_blk);
968 phys = blk_to_logical(inode, map_bh.b_blocknr);
969 size = map_bh.b_size;
971 if (buffer_unwritten(&map_bh))
972 flags = FIEMAP_EXTENT_UNWRITTEN;
974 start_blk += logical_to_blk(inode, size);
978 if (fatal_signal_pending(current))
990 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
993 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
994 struct fscrypt_ctx *ctx = NULL;
995 struct block_device *bdev = sbi->sb->s_bdev;
998 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
999 return ERR_PTR(-EFAULT);
1001 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1002 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1004 return ERR_CAST(ctx);
1006 /* wait the page to be moved by cleaning */
1007 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1010 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1013 fscrypt_release_ctx(ctx);
1014 return ERR_PTR(-ENOMEM);
1016 bio->bi_bdev = bdev;
1017 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
1018 bio->bi_end_io = f2fs_read_end_io;
1019 bio->bi_private = ctx;
1025 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1026 * Major change was from block_size == page_size in f2fs by default.
1028 static int f2fs_mpage_readpages(struct address_space *mapping,
1029 struct list_head *pages, struct page *page,
1032 struct bio *bio = NULL;
1034 sector_t last_block_in_bio = 0;
1035 struct inode *inode = mapping->host;
1036 const unsigned blkbits = inode->i_blkbits;
1037 const unsigned blocksize = 1 << blkbits;
1038 sector_t block_in_file;
1039 sector_t last_block;
1040 sector_t last_block_in_file;
1042 struct f2fs_map_blocks map;
1048 map.m_next_pgofs = NULL;
1050 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1052 prefetchw(&page->flags);
1054 page = list_entry(pages->prev, struct page, lru);
1055 list_del(&page->lru);
1056 if (add_to_page_cache_lru(page, mapping,
1058 readahead_gfp_mask(mapping)))
1062 block_in_file = (sector_t)page->index;
1063 last_block = block_in_file + nr_pages;
1064 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1066 if (last_block > last_block_in_file)
1067 last_block = last_block_in_file;
1070 * Map blocks using the previous result first.
1072 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1073 block_in_file > map.m_lblk &&
1074 block_in_file < (map.m_lblk + map.m_len))
1078 * Then do more f2fs_map_blocks() calls until we are
1079 * done with this page.
1083 if (block_in_file < last_block) {
1084 map.m_lblk = block_in_file;
1085 map.m_len = last_block - block_in_file;
1087 if (f2fs_map_blocks(inode, &map, 0,
1088 F2FS_GET_BLOCK_READ))
1089 goto set_error_page;
1092 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1093 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1094 SetPageMappedToDisk(page);
1096 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1097 SetPageUptodate(page);
1101 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1103 goto set_error_page;
1105 zero_user_segment(page, 0, PAGE_SIZE);
1106 if (!PageUptodate(page))
1107 SetPageUptodate(page);
1113 * This page will go to BIO. Do we need to send this
1116 if (bio && (last_block_in_bio != block_nr - 1)) {
1118 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1122 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1125 goto set_error_page;
1127 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1130 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1131 goto submit_and_realloc;
1133 last_block_in_bio = block_nr;
1137 zero_user_segment(page, 0, PAGE_SIZE);
1142 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1150 BUG_ON(pages && !list_empty(pages));
1152 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1156 static int f2fs_read_data_page(struct file *file, struct page *page)
1158 struct inode *inode = page->mapping->host;
1161 trace_f2fs_readpage(page, DATA);
1163 /* If the file has inline data, try to read it directly */
1164 if (f2fs_has_inline_data(inode))
1165 ret = f2fs_read_inline_data(inode, page);
1167 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1171 static int f2fs_read_data_pages(struct file *file,
1172 struct address_space *mapping,
1173 struct list_head *pages, unsigned nr_pages)
1175 struct inode *inode = file->f_mapping->host;
1176 struct page *page = list_entry(pages->prev, struct page, lru);
1178 trace_f2fs_readpages(inode, page, nr_pages);
1180 /* If the file has inline data, skip readpages */
1181 if (f2fs_has_inline_data(inode))
1184 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1187 int do_write_data_page(struct f2fs_io_info *fio)
1189 struct page *page = fio->page;
1190 struct inode *inode = page->mapping->host;
1191 struct dnode_of_data dn;
1194 set_new_dnode(&dn, inode, NULL, NULL, 0);
1195 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1199 fio->old_blkaddr = dn.data_blkaddr;
1201 /* This page is already truncated */
1202 if (fio->old_blkaddr == NULL_ADDR) {
1203 ClearPageUptodate(page);
1204 clear_cold_data(page);
1208 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1209 gfp_t gfp_flags = GFP_NOFS;
1211 /* wait for GCed encrypted page writeback */
1212 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1215 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1217 if (IS_ERR(fio->encrypted_page)) {
1218 err = PTR_ERR(fio->encrypted_page);
1219 if (err == -ENOMEM) {
1220 /* flush pending ios and wait for a while */
1221 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1222 congestion_wait(BLK_RW_ASYNC, HZ/50);
1223 gfp_flags |= __GFP_NOFAIL;
1231 set_page_writeback(page);
1233 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1234 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1240 * If current allocation needs SSR,
1241 * it had better in-place writes for updated data.
1243 if (unlikely(is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1244 !is_cold_data(page) &&
1245 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1246 need_inplace_update(inode))) {
1247 rewrite_data_page(fio);
1248 set_inode_flag(inode, FI_UPDATE_WRITE);
1249 trace_f2fs_do_write_data_page(page, IPU);
1251 write_data_page(&dn, fio);
1252 trace_f2fs_do_write_data_page(page, OPU);
1253 set_inode_flag(inode, FI_APPEND_WRITE);
1254 if (page->index == 0)
1255 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1258 f2fs_put_dnode(&dn);
1262 static int f2fs_write_data_page(struct page *page,
1263 struct writeback_control *wbc)
1265 struct inode *inode = page->mapping->host;
1266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1267 loff_t i_size = i_size_read(inode);
1268 const pgoff_t end_index = ((unsigned long long) i_size)
1270 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1271 unsigned offset = 0;
1272 bool need_balance_fs = false;
1274 struct f2fs_io_info fio = {
1278 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1280 .encrypted_page = NULL,
1283 trace_f2fs_writepage(page, DATA);
1285 if (page->index < end_index)
1289 * If the offset is out-of-range of file size,
1290 * this page does not have to be written to disk.
1292 offset = i_size & (PAGE_SIZE - 1);
1293 if ((page->index >= end_index + 1) || !offset)
1296 zero_user_segment(page, offset, PAGE_SIZE);
1298 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1300 if (f2fs_is_drop_cache(inode))
1302 /* we should not write 0'th page having journal header */
1303 if (f2fs_is_volatile_file(inode) && (!page->index ||
1304 (!wbc->for_reclaim &&
1305 available_free_memory(sbi, BASE_CHECK))))
1308 /* we should bypass data pages to proceed the kworkder jobs */
1309 if (unlikely(f2fs_cp_error(sbi))) {
1310 mapping_set_error(page->mapping, -EIO);
1314 /* Dentry blocks are controlled by checkpoint */
1315 if (S_ISDIR(inode->i_mode)) {
1316 err = do_write_data_page(&fio);
1320 if (!wbc->for_reclaim)
1321 need_balance_fs = true;
1322 else if (has_not_enough_free_secs(sbi, 0, 0))
1327 if (f2fs_has_inline_data(inode))
1328 err = f2fs_write_inline_data(inode, page);
1330 err = do_write_data_page(&fio);
1331 if (F2FS_I(inode)->last_disk_size < psize)
1332 F2FS_I(inode)->last_disk_size = psize;
1333 f2fs_unlock_op(sbi);
1335 if (err && err != -ENOENT)
1338 clear_cold_data(page);
1340 inode_dec_dirty_pages(inode);
1342 ClearPageUptodate(page);
1343 clear_cold_data(page);
1346 if (wbc->for_reclaim) {
1347 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1348 remove_dirty_inode(inode);
1352 f2fs_balance_fs(sbi, need_balance_fs);
1354 if (unlikely(f2fs_cp_error(sbi)))
1355 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1360 redirty_page_for_writepage(wbc, page);
1366 * This function was copied from write_cche_pages from mm/page-writeback.c.
1367 * The major change is making write step of cold data page separately from
1368 * warm/hot data page.
1370 static int f2fs_write_cache_pages(struct address_space *mapping,
1371 struct writeback_control *wbc)
1375 struct pagevec pvec;
1377 pgoff_t uninitialized_var(writeback_index);
1379 pgoff_t end; /* Inclusive */
1382 int range_whole = 0;
1386 pagevec_init(&pvec, 0);
1388 if (wbc->range_cyclic) {
1389 writeback_index = mapping->writeback_index; /* prev offset */
1390 index = writeback_index;
1397 index = wbc->range_start >> PAGE_SHIFT;
1398 end = wbc->range_end >> PAGE_SHIFT;
1399 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1401 cycled = 1; /* ignore range_cyclic tests */
1403 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1404 tag = PAGECACHE_TAG_TOWRITE;
1406 tag = PAGECACHE_TAG_DIRTY;
1408 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1409 tag_pages_for_writeback(mapping, index, end);
1411 while (!done && (index <= end)) {
1414 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1415 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1419 for (i = 0; i < nr_pages; i++) {
1420 struct page *page = pvec.pages[i];
1422 if (page->index > end) {
1427 done_index = page->index;
1431 if (unlikely(page->mapping != mapping)) {
1437 if (!PageDirty(page)) {
1438 /* someone wrote it for us */
1439 goto continue_unlock;
1442 if (PageWriteback(page)) {
1443 if (wbc->sync_mode != WB_SYNC_NONE)
1444 f2fs_wait_on_page_writeback(page,
1447 goto continue_unlock;
1450 BUG_ON(PageWriteback(page));
1451 if (!clear_page_dirty_for_io(page))
1452 goto continue_unlock;
1454 ret = mapping->a_ops->writepage(page, wbc);
1455 if (unlikely(ret)) {
1456 done_index = page->index + 1;
1463 if (--wbc->nr_to_write <= 0 &&
1464 wbc->sync_mode == WB_SYNC_NONE) {
1469 pagevec_release(&pvec);
1473 if (!cycled && !done) {
1476 end = writeback_index - 1;
1479 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1480 mapping->writeback_index = done_index;
1483 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1484 NULL, 0, DATA, WRITE);
1489 static int f2fs_write_data_pages(struct address_space *mapping,
1490 struct writeback_control *wbc)
1492 struct inode *inode = mapping->host;
1493 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1494 struct blk_plug plug;
1497 /* deal with chardevs and other special file */
1498 if (!mapping->a_ops->writepage)
1501 /* skip writing if there is no dirty page in this inode */
1502 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1505 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1506 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1507 available_free_memory(sbi, DIRTY_DENTS))
1510 /* skip writing during file defragment */
1511 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1514 /* during POR, we don't need to trigger writepage at all. */
1515 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1518 trace_f2fs_writepages(mapping->host, wbc, DATA);
1520 blk_start_plug(&plug);
1521 ret = f2fs_write_cache_pages(mapping, wbc);
1522 blk_finish_plug(&plug);
1524 * if some pages were truncated, we cannot guarantee its mapping->host
1525 * to detect pending bios.
1528 remove_dirty_inode(inode);
1532 wbc->pages_skipped += get_dirty_pages(inode);
1533 trace_f2fs_writepages(mapping->host, wbc, DATA);
1537 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1539 struct inode *inode = mapping->host;
1540 loff_t i_size = i_size_read(inode);
1543 truncate_pagecache(inode, i_size);
1544 truncate_blocks(inode, i_size, true);
1548 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1549 struct page *page, loff_t pos, unsigned len,
1550 block_t *blk_addr, bool *node_changed)
1552 struct inode *inode = page->mapping->host;
1553 pgoff_t index = page->index;
1554 struct dnode_of_data dn;
1556 bool locked = false;
1557 struct extent_info ei;
1561 * we already allocated all the blocks, so we don't need to get
1562 * the block addresses when there is no need to fill the page.
1564 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1567 if (f2fs_has_inline_data(inode) ||
1568 (pos & PAGE_MASK) >= i_size_read(inode)) {
1573 /* check inline_data */
1574 ipage = get_node_page(sbi, inode->i_ino);
1575 if (IS_ERR(ipage)) {
1576 err = PTR_ERR(ipage);
1580 set_new_dnode(&dn, inode, ipage, ipage, 0);
1582 if (f2fs_has_inline_data(inode)) {
1583 if (pos + len <= MAX_INLINE_DATA) {
1584 read_inline_data(page, ipage);
1585 set_inode_flag(inode, FI_DATA_EXIST);
1587 set_inline_node(ipage);
1589 err = f2fs_convert_inline_page(&dn, page);
1592 if (dn.data_blkaddr == NULL_ADDR)
1593 err = f2fs_get_block(&dn, index);
1595 } else if (locked) {
1596 err = f2fs_get_block(&dn, index);
1598 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1599 dn.data_blkaddr = ei.blk + index - ei.fofs;
1602 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1603 if (err || dn.data_blkaddr == NULL_ADDR) {
1604 f2fs_put_dnode(&dn);
1612 /* convert_inline_page can make node_changed */
1613 *blk_addr = dn.data_blkaddr;
1614 *node_changed = dn.node_changed;
1616 f2fs_put_dnode(&dn);
1619 f2fs_unlock_op(sbi);
1623 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1624 loff_t pos, unsigned len, unsigned flags,
1625 struct page **pagep, void **fsdata)
1627 struct inode *inode = mapping->host;
1628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1629 struct page *page = NULL;
1630 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1631 bool need_balance = false;
1632 block_t blkaddr = NULL_ADDR;
1635 trace_f2fs_write_begin(inode, pos, len, flags);
1638 * We should check this at this moment to avoid deadlock on inode page
1639 * and #0 page. The locking rule for inline_data conversion should be:
1640 * lock_page(page #0) -> lock_page(inode_page)
1643 err = f2fs_convert_inline_inode(inode);
1649 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1650 * wait_for_stable_page. Will wait that below with our IO control.
1652 page = pagecache_get_page(mapping, index,
1653 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1661 err = prepare_write_begin(sbi, page, pos, len,
1662 &blkaddr, &need_balance);
1666 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1668 f2fs_balance_fs(sbi, true);
1670 if (page->mapping != mapping) {
1671 /* The page got truncated from under us */
1672 f2fs_put_page(page, 1);
1677 f2fs_wait_on_page_writeback(page, DATA, false);
1679 /* wait for GCed encrypted page writeback */
1680 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1681 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1683 if (len == PAGE_SIZE || PageUptodate(page))
1686 if (blkaddr == NEW_ADDR) {
1687 zero_user_segment(page, 0, PAGE_SIZE);
1688 SetPageUptodate(page);
1692 bio = f2fs_grab_bio(inode, blkaddr, 1);
1697 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC);
1698 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1704 __submit_bio(sbi, bio, DATA);
1707 if (unlikely(page->mapping != mapping)) {
1708 f2fs_put_page(page, 1);
1711 if (unlikely(!PageUptodate(page))) {
1719 f2fs_put_page(page, 1);
1720 f2fs_write_failed(mapping, pos + len);
1724 static int f2fs_write_end(struct file *file,
1725 struct address_space *mapping,
1726 loff_t pos, unsigned len, unsigned copied,
1727 struct page *page, void *fsdata)
1729 struct inode *inode = page->mapping->host;
1731 trace_f2fs_write_end(inode, pos, len, copied);
1734 * This should be come from len == PAGE_SIZE, and we expect copied
1735 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1736 * let generic_perform_write() try to copy data again through copied=0.
1738 if (!PageUptodate(page)) {
1739 if (unlikely(copied != PAGE_SIZE))
1742 SetPageUptodate(page);
1747 set_page_dirty(page);
1748 clear_cold_data(page);
1750 if (pos + copied > i_size_read(inode))
1751 f2fs_i_size_write(inode, pos + copied);
1753 f2fs_put_page(page, 1);
1754 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1758 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1761 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1763 if (offset & blocksize_mask)
1766 if (iov_iter_alignment(iter) & blocksize_mask)
1772 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1774 struct address_space *mapping = iocb->ki_filp->f_mapping;
1775 struct inode *inode = mapping->host;
1776 size_t count = iov_iter_count(iter);
1777 loff_t offset = iocb->ki_pos;
1778 int rw = iov_iter_rw(iter);
1781 err = check_direct_IO(inode, iter, offset);
1785 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1787 if (test_opt(F2FS_I_SB(inode), LFS))
1790 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1792 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1793 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1794 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1798 set_inode_flag(inode, FI_UPDATE_WRITE);
1800 f2fs_write_failed(mapping, offset + count);
1803 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1808 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1809 unsigned int length)
1811 struct inode *inode = page->mapping->host;
1812 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1814 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1815 (offset % PAGE_SIZE || length != PAGE_SIZE))
1818 if (PageDirty(page)) {
1819 if (inode->i_ino == F2FS_META_INO(sbi))
1820 dec_page_count(sbi, F2FS_DIRTY_META);
1821 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1822 dec_page_count(sbi, F2FS_DIRTY_NODES);
1824 inode_dec_dirty_pages(inode);
1827 clear_cold_data(page);
1829 /* This is atomic written page, keep Private */
1830 if (IS_ATOMIC_WRITTEN_PAGE(page))
1833 set_page_private(page, 0);
1834 ClearPagePrivate(page);
1837 int f2fs_release_page(struct page *page, gfp_t wait)
1839 /* If this is dirty page, keep PagePrivate */
1840 if (PageDirty(page))
1843 /* This is atomic written page, keep Private */
1844 if (IS_ATOMIC_WRITTEN_PAGE(page))
1847 clear_cold_data(page);
1848 set_page_private(page, 0);
1849 ClearPagePrivate(page);
1854 * This was copied from __set_page_dirty_buffers which gives higher performance
1855 * in very high speed storages. (e.g., pmem)
1857 void f2fs_set_page_dirty_nobuffers(struct page *page)
1859 struct address_space *mapping = page->mapping;
1860 unsigned long flags;
1862 if (unlikely(!mapping))
1865 spin_lock(&mapping->private_lock);
1866 lock_page_memcg(page);
1868 spin_unlock(&mapping->private_lock);
1870 spin_lock_irqsave(&mapping->tree_lock, flags);
1871 WARN_ON_ONCE(!PageUptodate(page));
1872 account_page_dirtied(page, mapping);
1873 radix_tree_tag_set(&mapping->page_tree,
1874 page_index(page), PAGECACHE_TAG_DIRTY);
1875 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1876 unlock_page_memcg(page);
1878 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1882 static int f2fs_set_data_page_dirty(struct page *page)
1884 struct address_space *mapping = page->mapping;
1885 struct inode *inode = mapping->host;
1887 trace_f2fs_set_page_dirty(page, DATA);
1889 if (!PageUptodate(page))
1890 SetPageUptodate(page);
1892 if (f2fs_is_atomic_file(inode)) {
1893 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1894 register_inmem_page(inode, page);
1898 * Previously, this page has been registered, we just
1904 if (!PageDirty(page)) {
1905 f2fs_set_page_dirty_nobuffers(page);
1906 update_dirty_page(inode, page);
1912 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1914 struct inode *inode = mapping->host;
1916 if (f2fs_has_inline_data(inode))
1919 /* make sure allocating whole blocks */
1920 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1921 filemap_write_and_wait(mapping);
1923 return generic_block_bmap(mapping, block, get_data_block_bmap);
1926 #ifdef CONFIG_MIGRATION
1927 #include <linux/migrate.h>
1929 int f2fs_migrate_page(struct address_space *mapping,
1930 struct page *newpage, struct page *page, enum migrate_mode mode)
1932 int rc, extra_count;
1933 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1934 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1936 BUG_ON(PageWriteback(page));
1938 /* migrating an atomic written page is safe with the inmem_lock hold */
1939 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1943 * A reference is expected if PagePrivate set when move mapping,
1944 * however F2FS breaks this for maintaining dirty page counts when
1945 * truncating pages. So here adjusting the 'extra_count' make it work.
1947 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1948 rc = migrate_page_move_mapping(mapping, newpage,
1949 page, NULL, mode, extra_count);
1950 if (rc != MIGRATEPAGE_SUCCESS) {
1952 mutex_unlock(&fi->inmem_lock);
1956 if (atomic_written) {
1957 struct inmem_pages *cur;
1958 list_for_each_entry(cur, &fi->inmem_pages, list)
1959 if (cur->page == page) {
1960 cur->page = newpage;
1963 mutex_unlock(&fi->inmem_lock);
1968 if (PagePrivate(page))
1969 SetPagePrivate(newpage);
1970 set_page_private(newpage, page_private(page));
1972 migrate_page_copy(newpage, page);
1974 return MIGRATEPAGE_SUCCESS;
1978 const struct address_space_operations f2fs_dblock_aops = {
1979 .readpage = f2fs_read_data_page,
1980 .readpages = f2fs_read_data_pages,
1981 .writepage = f2fs_write_data_page,
1982 .writepages = f2fs_write_data_pages,
1983 .write_begin = f2fs_write_begin,
1984 .write_end = f2fs_write_end,
1985 .set_page_dirty = f2fs_set_data_page_dirty,
1986 .invalidatepage = f2fs_invalidate_page,
1987 .releasepage = f2fs_release_page,
1988 .direct_IO = f2fs_direct_IO,
1990 #ifdef CONFIG_MIGRATION
1991 .migratepage = f2fs_migrate_page,