arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS);
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct inode *inode;
55         struct f2fs_sb_info *sbi;
56
57         if (!mapping)
58                 return false;
59
60         inode = mapping->host;
61         sbi = F2FS_I_SB(inode);
62
63         if (inode->i_ino == F2FS_META_INO(sbi) ||
64                         inode->i_ino == F2FS_NODE_INO(sbi) ||
65                         S_ISDIR(inode->i_mode))
66                 return true;
67
68         if (f2fs_is_compressed_page(page))
69                 return false;
70         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71                         page_private_gcing(page))
72                 return true;
73         return false;
74 }
75
76 static enum count_type __read_io_type(struct page *page)
77 {
78         struct address_space *mapping = page_file_mapping(page);
79
80         if (mapping) {
81                 struct inode *inode = mapping->host;
82                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84                 if (inode->i_ino == F2FS_META_INO(sbi))
85                         return F2FS_RD_META;
86
87                 if (inode->i_ino == F2FS_NODE_INO(sbi))
88                         return F2FS_RD_NODE;
89         }
90         return F2FS_RD_DATA;
91 }
92
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96         STEP_DECRYPT    = BIT(0),
97 #else
98         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101         STEP_DECOMPRESS = BIT(1),
102 #else
103         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106         STEP_VERITY     = BIT(2),
107 #else
108         STEP_VERITY     = 0,    /* compile out the verity-related code */
109 #endif
110 };
111
112 struct bio_post_read_ctx {
113         struct bio *bio;
114         struct f2fs_sb_info *sbi;
115         struct work_struct work;
116         unsigned int enabled_steps;
117         /*
118          * decompression_attempted keeps track of whether
119          * f2fs_end_read_compressed_page() has been called on the pages in the
120          * bio that belong to a compressed cluster yet.
121          */
122         bool decompression_attempted;
123         block_t fs_blkaddr;
124 };
125
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142         struct bio_vec *bv;
143         struct bvec_iter_all iter_all;
144         struct bio_post_read_ctx *ctx = bio->bi_private;
145
146         bio_for_each_segment_all(bv, bio, iter_all) {
147                 struct page *page = bv->bv_page;
148
149                 if (f2fs_is_compressed_page(page)) {
150                         if (ctx && !ctx->decompression_attempted)
151                                 f2fs_end_read_compressed_page(page, true, 0,
152                                                         in_task);
153                         f2fs_put_page_dic(page, in_task);
154                         continue;
155                 }
156
157                 if (bio->bi_status)
158                         ClearPageUptodate(page);
159                 else
160                         SetPageUptodate(page);
161                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162                 unlock_page(page);
163         }
164
165         if (ctx)
166                 mempool_free(ctx, bio_post_read_ctx_pool);
167         bio_put(bio);
168 }
169
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172         struct bio_post_read_ctx *ctx =
173                 container_of(work, struct bio_post_read_ctx, work);
174         struct bio *bio = ctx->bio;
175         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177         /*
178          * fsverity_verify_bio() may call readahead() again, and while verity
179          * will be disabled for this, decryption and/or decompression may still
180          * be needed, resulting in another bio_post_read_ctx being allocated.
181          * So to prevent deadlocks we need to release the current ctx to the
182          * mempool first.  This assumes that verity is the last post-read step.
183          */
184         mempool_free(ctx, bio_post_read_ctx_pool);
185         bio->bi_private = NULL;
186
187         /*
188          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189          * as those were handled separately by f2fs_end_read_compressed_page().
190          */
191         if (may_have_compressed_pages) {
192                 struct bio_vec *bv;
193                 struct bvec_iter_all iter_all;
194
195                 bio_for_each_segment_all(bv, bio, iter_all) {
196                         struct page *page = bv->bv_page;
197
198                         if (!f2fs_is_compressed_page(page) &&
199                             !fsverity_verify_page(page)) {
200                                 bio->bi_status = BLK_STS_IOERR;
201                                 break;
202                         }
203                 }
204         } else {
205                 fsverity_verify_bio(bio);
206         }
207
208         f2fs_finish_read_bio(bio, true);
209 }
210
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222         struct bio_post_read_ctx *ctx = bio->bi_private;
223
224         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225                 INIT_WORK(&ctx->work, f2fs_verify_bio);
226                 fsverity_enqueue_verify_work(&ctx->work);
227         } else {
228                 f2fs_finish_read_bio(bio, in_task);
229         }
230 }
231
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242                 bool in_task)
243 {
244         struct bio_vec *bv;
245         struct bvec_iter_all iter_all;
246         bool all_compressed = true;
247         block_t blkaddr = ctx->fs_blkaddr;
248
249         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250                 struct page *page = bv->bv_page;
251
252                 if (f2fs_is_compressed_page(page))
253                         f2fs_end_read_compressed_page(page, false, blkaddr,
254                                                       in_task);
255                 else
256                         all_compressed = false;
257
258                 blkaddr++;
259         }
260
261         ctx->decompression_attempted = true;
262
263         /*
264          * Optimization: if all the bio's pages are compressed, then scheduling
265          * the per-bio verity work is unnecessary, as verity will be fully
266          * handled at the compression cluster level.
267          */
268         if (all_compressed)
269                 ctx->enabled_steps &= ~STEP_VERITY;
270 }
271
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274         struct bio_post_read_ctx *ctx =
275                 container_of(work, struct bio_post_read_ctx, work);
276         struct bio *bio = ctx->bio;
277
278         if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279                 f2fs_finish_read_bio(bio, true);
280                 return;
281         }
282
283         if (ctx->enabled_steps & STEP_DECOMPRESS)
284                 f2fs_handle_step_decompress(ctx, true);
285
286         f2fs_verify_and_finish_bio(bio, true);
287 }
288
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292         struct bio_post_read_ctx *ctx;
293         bool intask = in_task();
294
295         iostat_update_and_unbind_ctx(bio);
296         ctx = bio->bi_private;
297
298         if (time_to_inject(sbi, FAULT_READ_IO))
299                 bio->bi_status = BLK_STS_IOERR;
300
301         if (bio->bi_status) {
302                 f2fs_finish_read_bio(bio, intask);
303                 return;
304         }
305
306         if (ctx) {
307                 unsigned int enabled_steps = ctx->enabled_steps &
308                                         (STEP_DECRYPT | STEP_DECOMPRESS);
309
310                 /*
311                  * If we have only decompression step between decompression and
312                  * decrypt, we don't need post processing for this.
313                  */
314                 if (enabled_steps == STEP_DECOMPRESS &&
315                                 !f2fs_low_mem_mode(sbi)) {
316                         f2fs_handle_step_decompress(ctx, intask);
317                 } else if (enabled_steps) {
318                         INIT_WORK(&ctx->work, f2fs_post_read_work);
319                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
320                         return;
321                 }
322         }
323
324         f2fs_verify_and_finish_bio(bio, intask);
325 }
326
327 static void f2fs_write_end_io(struct bio *bio)
328 {
329         struct f2fs_sb_info *sbi;
330         struct bio_vec *bvec;
331         struct bvec_iter_all iter_all;
332
333         iostat_update_and_unbind_ctx(bio);
334         sbi = bio->bi_private;
335
336         if (time_to_inject(sbi, FAULT_WRITE_IO))
337                 bio->bi_status = BLK_STS_IOERR;
338
339         bio_for_each_segment_all(bvec, bio, iter_all) {
340                 struct page *page = bvec->bv_page;
341                 enum count_type type = WB_DATA_TYPE(page);
342
343                 if (page_private_dummy(page)) {
344                         clear_page_private_dummy(page);
345                         unlock_page(page);
346                         mempool_free(page, sbi->write_io_dummy);
347
348                         if (unlikely(bio->bi_status))
349                                 f2fs_stop_checkpoint(sbi, true,
350                                                 STOP_CP_REASON_WRITE_FAIL);
351                         continue;
352                 }
353
354                 fscrypt_finalize_bounce_page(&page);
355
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357                 if (f2fs_is_compressed_page(page)) {
358                         f2fs_compress_write_end_io(bio, page);
359                         continue;
360                 }
361 #endif
362
363                 if (unlikely(bio->bi_status)) {
364                         mapping_set_error(page->mapping, -EIO);
365                         if (type == F2FS_WB_CP_DATA)
366                                 f2fs_stop_checkpoint(sbi, true,
367                                                 STOP_CP_REASON_WRITE_FAIL);
368                 }
369
370                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371                                         page->index != nid_of_node(page));
372
373                 dec_page_count(sbi, type);
374                 if (f2fs_in_warm_node_list(sbi, page))
375                         f2fs_del_fsync_node_entry(sbi, page);
376                 clear_page_private_gcing(page);
377                 end_page_writeback(page);
378         }
379         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380                                 wq_has_sleeper(&sbi->cp_wait))
381                 wake_up(&sbi->cp_wait);
382
383         bio_put(bio);
384 }
385
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static void f2fs_zone_write_end_io(struct bio *bio)
388 {
389         struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390
391         bio->bi_private = io->bi_private;
392         complete(&io->zone_wait);
393         f2fs_write_end_io(bio);
394 }
395 #endif
396
397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398                 block_t blk_addr, sector_t *sector)
399 {
400         struct block_device *bdev = sbi->sb->s_bdev;
401         int i;
402
403         if (f2fs_is_multi_device(sbi)) {
404                 for (i = 0; i < sbi->s_ndevs; i++) {
405                         if (FDEV(i).start_blk <= blk_addr &&
406                             FDEV(i).end_blk >= blk_addr) {
407                                 blk_addr -= FDEV(i).start_blk;
408                                 bdev = FDEV(i).bdev;
409                                 break;
410                         }
411                 }
412         }
413
414         if (sector)
415                 *sector = SECTOR_FROM_BLOCK(blk_addr);
416         return bdev;
417 }
418
419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420 {
421         int i;
422
423         if (!f2fs_is_multi_device(sbi))
424                 return 0;
425
426         for (i = 0; i < sbi->s_ndevs; i++)
427                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428                         return i;
429         return 0;
430 }
431
432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433 {
434         unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435         unsigned int fua_flag, meta_flag, io_flag;
436         blk_opf_t op_flags = 0;
437
438         if (fio->op != REQ_OP_WRITE)
439                 return 0;
440         if (fio->type == DATA)
441                 io_flag = fio->sbi->data_io_flag;
442         else if (fio->type == NODE)
443                 io_flag = fio->sbi->node_io_flag;
444         else
445                 return 0;
446
447         fua_flag = io_flag & temp_mask;
448         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449
450         /*
451          * data/node io flag bits per temp:
452          *      REQ_META     |      REQ_FUA      |
453          *    5 |    4 |   3 |    2 |    1 |   0 |
454          * Cold | Warm | Hot | Cold | Warm | Hot |
455          */
456         if (BIT(fio->temp) & meta_flag)
457                 op_flags |= REQ_META;
458         if (BIT(fio->temp) & fua_flag)
459                 op_flags |= REQ_FUA;
460         return op_flags;
461 }
462
463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464 {
465         struct f2fs_sb_info *sbi = fio->sbi;
466         struct block_device *bdev;
467         sector_t sector;
468         struct bio *bio;
469
470         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
471         bio = bio_alloc_bioset(bdev, npages,
472                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
473                                 GFP_NOIO, &f2fs_bioset);
474         bio->bi_iter.bi_sector = sector;
475         if (is_read_io(fio->op)) {
476                 bio->bi_end_io = f2fs_read_end_io;
477                 bio->bi_private = NULL;
478         } else {
479                 bio->bi_end_io = f2fs_write_end_io;
480                 bio->bi_private = sbi;
481         }
482         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483
484         if (fio->io_wbc)
485                 wbc_init_bio(fio->io_wbc, bio);
486
487         return bio;
488 }
489
490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491                                   pgoff_t first_idx,
492                                   const struct f2fs_io_info *fio,
493                                   gfp_t gfp_mask)
494 {
495         /*
496          * The f2fs garbage collector sets ->encrypted_page when it wants to
497          * read/write raw data without encryption.
498          */
499         if (!fio || !fio->encrypted_page)
500                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501 }
502
503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504                                      pgoff_t next_idx,
505                                      const struct f2fs_io_info *fio)
506 {
507         /*
508          * The f2fs garbage collector sets ->encrypted_page when it wants to
509          * read/write raw data without encryption.
510          */
511         if (fio && fio->encrypted_page)
512                 return !bio_has_crypt_ctx(bio);
513
514         return fscrypt_mergeable_bio(bio, inode, next_idx);
515 }
516
517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518                                  enum page_type type)
519 {
520         WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521         trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522
523         iostat_update_submit_ctx(bio, type);
524         submit_bio(bio);
525 }
526
527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528 {
529         unsigned int start =
530                 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531
532         if (start == 0)
533                 return;
534
535         /* fill dummy pages */
536         for (; start < F2FS_IO_SIZE(sbi); start++) {
537                 struct page *page =
538                         mempool_alloc(sbi->write_io_dummy,
539                                       GFP_NOIO | __GFP_NOFAIL);
540                 f2fs_bug_on(sbi, !page);
541
542                 lock_page(page);
543
544                 zero_user_segment(page, 0, PAGE_SIZE);
545                 set_page_private_dummy(page);
546
547                 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548                         f2fs_bug_on(sbi, 1);
549         }
550 }
551
552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553                                   enum page_type type)
554 {
555         WARN_ON_ONCE(is_read_io(bio_op(bio)));
556
557         if (type == DATA || type == NODE) {
558                 if (f2fs_lfs_mode(sbi) && current->plug)
559                         blk_finish_plug(current->plug);
560
561                 if (F2FS_IO_ALIGNED(sbi)) {
562                         f2fs_align_write_bio(sbi, bio);
563                         /*
564                          * In the NODE case, we lose next block address chain.
565                          * So, we need to do checkpoint in f2fs_sync_file.
566                          */
567                         if (type == NODE)
568                                 set_sbi_flag(sbi, SBI_NEED_CP);
569                 }
570         }
571
572         trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573         iostat_update_submit_ctx(bio, type);
574         submit_bio(bio);
575 }
576
577 static void __submit_merged_bio(struct f2fs_bio_info *io)
578 {
579         struct f2fs_io_info *fio = &io->fio;
580
581         if (!io->bio)
582                 return;
583
584         if (is_read_io(fio->op)) {
585                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586                 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587         } else {
588                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589                 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590         }
591         io->bio = NULL;
592 }
593
594 static bool __has_merged_page(struct bio *bio, struct inode *inode,
595                                                 struct page *page, nid_t ino)
596 {
597         struct bio_vec *bvec;
598         struct bvec_iter_all iter_all;
599
600         if (!bio)
601                 return false;
602
603         if (!inode && !page && !ino)
604                 return true;
605
606         bio_for_each_segment_all(bvec, bio, iter_all) {
607                 struct page *target = bvec->bv_page;
608
609                 if (fscrypt_is_bounce_page(target)) {
610                         target = fscrypt_pagecache_page(target);
611                         if (IS_ERR(target))
612                                 continue;
613                 }
614                 if (f2fs_is_compressed_page(target)) {
615                         target = f2fs_compress_control_page(target);
616                         if (IS_ERR(target))
617                                 continue;
618                 }
619
620                 if (inode && inode == target->mapping->host)
621                         return true;
622                 if (page && page == target)
623                         return true;
624                 if (ino && ino == ino_of_node(target))
625                         return true;
626         }
627
628         return false;
629 }
630
631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632 {
633         int i;
634
635         for (i = 0; i < NR_PAGE_TYPE; i++) {
636                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
637                 int j;
638
639                 sbi->write_io[i] = f2fs_kmalloc(sbi,
640                                 array_size(n, sizeof(struct f2fs_bio_info)),
641                                 GFP_KERNEL);
642                 if (!sbi->write_io[i])
643                         return -ENOMEM;
644
645                 for (j = HOT; j < n; j++) {
646                         init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647                         sbi->write_io[i][j].sbi = sbi;
648                         sbi->write_io[i][j].bio = NULL;
649                         spin_lock_init(&sbi->write_io[i][j].io_lock);
650                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652                         init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653 #ifdef CONFIG_BLK_DEV_ZONED
654                         init_completion(&sbi->write_io[i][j].zone_wait);
655                         sbi->write_io[i][j].zone_pending_bio = NULL;
656                         sbi->write_io[i][j].bi_private = NULL;
657 #endif
658                 }
659         }
660
661         return 0;
662 }
663
664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665                                 enum page_type type, enum temp_type temp)
666 {
667         enum page_type btype = PAGE_TYPE_OF_BIO(type);
668         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669
670         f2fs_down_write(&io->io_rwsem);
671
672         if (!io->bio)
673                 goto unlock_out;
674
675         /* change META to META_FLUSH in the checkpoint procedure */
676         if (type >= META_FLUSH) {
677                 io->fio.type = META_FLUSH;
678                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679                 if (!test_opt(sbi, NOBARRIER))
680                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681         }
682         __submit_merged_bio(io);
683 unlock_out:
684         f2fs_up_write(&io->io_rwsem);
685 }
686
687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688                                 struct inode *inode, struct page *page,
689                                 nid_t ino, enum page_type type, bool force)
690 {
691         enum temp_type temp;
692         bool ret = true;
693
694         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695                 if (!force)     {
696                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
697                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698
699                         f2fs_down_read(&io->io_rwsem);
700                         ret = __has_merged_page(io->bio, inode, page, ino);
701                         f2fs_up_read(&io->io_rwsem);
702                 }
703                 if (ret)
704                         __f2fs_submit_merged_write(sbi, type, temp);
705
706                 /* TODO: use HOT temp only for meta pages now. */
707                 if (type >= META)
708                         break;
709         }
710 }
711
712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713 {
714         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715 }
716
717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718                                 struct inode *inode, struct page *page,
719                                 nid_t ino, enum page_type type)
720 {
721         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
722 }
723
724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725 {
726         f2fs_submit_merged_write(sbi, DATA);
727         f2fs_submit_merged_write(sbi, NODE);
728         f2fs_submit_merged_write(sbi, META);
729 }
730
731 /*
732  * Fill the locked page with data located in the block address.
733  * A caller needs to unlock the page on failure.
734  */
735 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736 {
737         struct bio *bio;
738         struct page *page = fio->encrypted_page ?
739                         fio->encrypted_page : fio->page;
740
741         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
743                         META_GENERIC : DATA_GENERIC_ENHANCE))) {
744                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745                 return -EFSCORRUPTED;
746         }
747
748         trace_f2fs_submit_page_bio(page, fio);
749
750         /* Allocate a new bio */
751         bio = __bio_alloc(fio, 1);
752
753         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754                                fio->page->index, fio, GFP_NOIO);
755
756         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757                 bio_put(bio);
758                 return -EFAULT;
759         }
760
761         if (fio->io_wbc && !is_read_io(fio->op))
762                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763
764         inc_page_count(fio->sbi, is_read_io(fio->op) ?
765                         __read_io_type(page) : WB_DATA_TYPE(fio->page));
766
767         if (is_read_io(bio_op(bio)))
768                 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769         else
770                 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771         return 0;
772 }
773
774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775                                 block_t last_blkaddr, block_t cur_blkaddr)
776 {
777         if (unlikely(sbi->max_io_bytes &&
778                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
779                 return false;
780         if (last_blkaddr + 1 != cur_blkaddr)
781                 return false;
782         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783 }
784
785 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786                                                 struct f2fs_io_info *fio)
787 {
788         if (io->fio.op != fio->op)
789                 return false;
790         return io->fio.op_flags == fio->op_flags;
791 }
792
793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794                                         struct f2fs_bio_info *io,
795                                         struct f2fs_io_info *fio,
796                                         block_t last_blkaddr,
797                                         block_t cur_blkaddr)
798 {
799         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800                 unsigned int filled_blocks =
801                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802                 unsigned int io_size = F2FS_IO_SIZE(sbi);
803                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804
805                 /* IOs in bio is aligned and left space of vectors is not enough */
806                 if (!(filled_blocks % io_size) && left_vecs < io_size)
807                         return false;
808         }
809         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810                 return false;
811         return io_type_is_mergeable(io, fio);
812 }
813
814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815                                 struct page *page, enum temp_type temp)
816 {
817         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818         struct bio_entry *be;
819
820         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821         be->bio = bio;
822         bio_get(bio);
823
824         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825                 f2fs_bug_on(sbi, 1);
826
827         f2fs_down_write(&io->bio_list_lock);
828         list_add_tail(&be->list, &io->bio_list);
829         f2fs_up_write(&io->bio_list_lock);
830 }
831
832 static void del_bio_entry(struct bio_entry *be)
833 {
834         list_del(&be->list);
835         kmem_cache_free(bio_entry_slab, be);
836 }
837
838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839                                                         struct page *page)
840 {
841         struct f2fs_sb_info *sbi = fio->sbi;
842         enum temp_type temp;
843         bool found = false;
844         int ret = -EAGAIN;
845
846         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848                 struct list_head *head = &io->bio_list;
849                 struct bio_entry *be;
850
851                 f2fs_down_write(&io->bio_list_lock);
852                 list_for_each_entry(be, head, list) {
853                         if (be->bio != *bio)
854                                 continue;
855
856                         found = true;
857
858                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859                                                             *fio->last_block,
860                                                             fio->new_blkaddr));
861                         if (f2fs_crypt_mergeable_bio(*bio,
862                                         fio->page->mapping->host,
863                                         fio->page->index, fio) &&
864                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865                                         PAGE_SIZE) {
866                                 ret = 0;
867                                 break;
868                         }
869
870                         /* page can't be merged into bio; submit the bio */
871                         del_bio_entry(be);
872                         f2fs_submit_write_bio(sbi, *bio, DATA);
873                         break;
874                 }
875                 f2fs_up_write(&io->bio_list_lock);
876         }
877
878         if (ret) {
879                 bio_put(*bio);
880                 *bio = NULL;
881         }
882
883         return ret;
884 }
885
886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887                                         struct bio **bio, struct page *page)
888 {
889         enum temp_type temp;
890         bool found = false;
891         struct bio *target = bio ? *bio : NULL;
892
893         f2fs_bug_on(sbi, !target && !page);
894
895         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897                 struct list_head *head = &io->bio_list;
898                 struct bio_entry *be;
899
900                 if (list_empty(head))
901                         continue;
902
903                 f2fs_down_read(&io->bio_list_lock);
904                 list_for_each_entry(be, head, list) {
905                         if (target)
906                                 found = (target == be->bio);
907                         else
908                                 found = __has_merged_page(be->bio, NULL,
909                                                                 page, 0);
910                         if (found)
911                                 break;
912                 }
913                 f2fs_up_read(&io->bio_list_lock);
914
915                 if (!found)
916                         continue;
917
918                 found = false;
919
920                 f2fs_down_write(&io->bio_list_lock);
921                 list_for_each_entry(be, head, list) {
922                         if (target)
923                                 found = (target == be->bio);
924                         else
925                                 found = __has_merged_page(be->bio, NULL,
926                                                                 page, 0);
927                         if (found) {
928                                 target = be->bio;
929                                 del_bio_entry(be);
930                                 break;
931                         }
932                 }
933                 f2fs_up_write(&io->bio_list_lock);
934         }
935
936         if (found)
937                 f2fs_submit_write_bio(sbi, target, DATA);
938         if (bio && *bio) {
939                 bio_put(*bio);
940                 *bio = NULL;
941         }
942 }
943
944 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945 {
946         struct bio *bio = *fio->bio;
947         struct page *page = fio->encrypted_page ?
948                         fio->encrypted_page : fio->page;
949
950         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953                 return -EFSCORRUPTED;
954         }
955
956         trace_f2fs_submit_page_bio(page, fio);
957
958         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959                                                 fio->new_blkaddr))
960                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961 alloc_new:
962         if (!bio) {
963                 bio = __bio_alloc(fio, BIO_MAX_VECS);
964                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965                                        fio->page->index, fio, GFP_NOIO);
966
967                 add_bio_entry(fio->sbi, bio, page, fio->temp);
968         } else {
969                 if (add_ipu_page(fio, &bio, page))
970                         goto alloc_new;
971         }
972
973         if (fio->io_wbc)
974                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975
976         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977
978         *fio->last_block = fio->new_blkaddr;
979         *fio->bio = bio;
980
981         return 0;
982 }
983
984 #ifdef CONFIG_BLK_DEV_ZONED
985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986 {
987         int devi = 0;
988
989         if (f2fs_is_multi_device(sbi)) {
990                 devi = f2fs_target_device_index(sbi, blkaddr);
991                 if (blkaddr < FDEV(devi).start_blk ||
992                     blkaddr > FDEV(devi).end_blk) {
993                         f2fs_err(sbi, "Invalid block %x", blkaddr);
994                         return false;
995                 }
996                 blkaddr -= FDEV(devi).start_blk;
997         }
998         return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
999                 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000                 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001 }
1002 #endif
1003
1004 void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005 {
1006         struct f2fs_sb_info *sbi = fio->sbi;
1007         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009         struct page *bio_page;
1010
1011         f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013         f2fs_down_write(&io->io_rwsem);
1014
1015 #ifdef CONFIG_BLK_DEV_ZONED
1016         if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017                 wait_for_completion_io(&io->zone_wait);
1018                 bio_put(io->zone_pending_bio);
1019                 io->zone_pending_bio = NULL;
1020                 io->bi_private = NULL;
1021         }
1022 #endif
1023
1024 next:
1025         if (fio->in_list) {
1026                 spin_lock(&io->io_lock);
1027                 if (list_empty(&io->io_list)) {
1028                         spin_unlock(&io->io_lock);
1029                         goto out;
1030                 }
1031                 fio = list_first_entry(&io->io_list,
1032                                                 struct f2fs_io_info, list);
1033                 list_del(&fio->list);
1034                 spin_unlock(&io->io_lock);
1035         }
1036
1037         verify_fio_blkaddr(fio);
1038
1039         if (fio->encrypted_page)
1040                 bio_page = fio->encrypted_page;
1041         else if (fio->compressed_page)
1042                 bio_page = fio->compressed_page;
1043         else
1044                 bio_page = fio->page;
1045
1046         /* set submitted = true as a return value */
1047         fio->submitted = 1;
1048
1049         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051         if (io->bio &&
1052             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053                               fio->new_blkaddr) ||
1054              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055                                        bio_page->index, fio)))
1056                 __submit_merged_bio(io);
1057 alloc_new:
1058         if (io->bio == NULL) {
1059                 if (F2FS_IO_ALIGNED(sbi) &&
1060                                 (fio->type == DATA || fio->type == NODE) &&
1061                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063                         fio->retry = 1;
1064                         goto skip;
1065                 }
1066                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068                                        bio_page->index, fio, GFP_NOIO);
1069                 io->fio = *fio;
1070         }
1071
1072         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073                 __submit_merged_bio(io);
1074                 goto alloc_new;
1075         }
1076
1077         if (fio->io_wbc)
1078                 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080         io->last_block_in_bio = fio->new_blkaddr;
1081
1082         trace_f2fs_submit_page_write(fio->page, fio);
1083 skip:
1084         if (fio->in_list)
1085                 goto next;
1086 out:
1087 #ifdef CONFIG_BLK_DEV_ZONED
1088         if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089                         is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090                 bio_get(io->bio);
1091                 reinit_completion(&io->zone_wait);
1092                 io->bi_private = io->bio->bi_private;
1093                 io->bio->bi_private = io;
1094                 io->bio->bi_end_io = f2fs_zone_write_end_io;
1095                 io->zone_pending_bio = io->bio;
1096                 __submit_merged_bio(io);
1097         }
1098 #endif
1099         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100                                 !f2fs_is_checkpoint_ready(sbi))
1101                 __submit_merged_bio(io);
1102         f2fs_up_write(&io->io_rwsem);
1103 }
1104
1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106                                       unsigned nr_pages, blk_opf_t op_flag,
1107                                       pgoff_t first_idx, bool for_write)
1108 {
1109         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110         struct bio *bio;
1111         struct bio_post_read_ctx *ctx = NULL;
1112         unsigned int post_read_steps = 0;
1113         sector_t sector;
1114         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1115
1116         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117                                REQ_OP_READ | op_flag,
1118                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119         if (!bio)
1120                 return ERR_PTR(-ENOMEM);
1121         bio->bi_iter.bi_sector = sector;
1122         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123         bio->bi_end_io = f2fs_read_end_io;
1124
1125         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126                 post_read_steps |= STEP_DECRYPT;
1127
1128         if (f2fs_need_verity(inode, first_idx))
1129                 post_read_steps |= STEP_VERITY;
1130
1131         /*
1132          * STEP_DECOMPRESS is handled specially, since a compressed file might
1133          * contain both compressed and uncompressed clusters.  We'll allocate a
1134          * bio_post_read_ctx if the file is compressed, but the caller is
1135          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136          */
1137
1138         if (post_read_steps || f2fs_compressed_file(inode)) {
1139                 /* Due to the mempool, this never fails. */
1140                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141                 ctx->bio = bio;
1142                 ctx->sbi = sbi;
1143                 ctx->enabled_steps = post_read_steps;
1144                 ctx->fs_blkaddr = blkaddr;
1145                 ctx->decompression_attempted = false;
1146                 bio->bi_private = ctx;
1147         }
1148         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150         return bio;
1151 }
1152
1153 /* This can handle encryption stuffs */
1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155                                  block_t blkaddr, blk_opf_t op_flags,
1156                                  bool for_write)
1157 {
1158         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159         struct bio *bio;
1160
1161         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162                                         page->index, for_write);
1163         if (IS_ERR(bio))
1164                 return PTR_ERR(bio);
1165
1166         /* wait for GCed page writeback via META_MAPPING */
1167         f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170                 iostat_update_and_unbind_ctx(bio);
1171                 if (bio->bi_private)
1172                         mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173                 bio_put(bio);
1174                 return -EFAULT;
1175         }
1176         inc_page_count(sbi, F2FS_RD_DATA);
1177         f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178         f2fs_submit_read_bio(sbi, bio, DATA);
1179         return 0;
1180 }
1181
1182 static void __set_data_blkaddr(struct dnode_of_data *dn)
1183 {
1184         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1185         __le32 *addr_array;
1186         int base = 0;
1187
1188         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1189                 base = get_extra_isize(dn->inode);
1190
1191         /* Get physical address of data block */
1192         addr_array = blkaddr_in_node(rn);
1193         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1194 }
1195
1196 /*
1197  * Lock ordering for the change of data block address:
1198  * ->data_page
1199  *  ->node_page
1200  *    update block addresses in the node page
1201  */
1202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1203 {
1204         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1205         __set_data_blkaddr(dn);
1206         if (set_page_dirty(dn->node_page))
1207                 dn->node_changed = true;
1208 }
1209
1210 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1211 {
1212         dn->data_blkaddr = blkaddr;
1213         f2fs_set_data_blkaddr(dn);
1214         f2fs_update_read_extent_cache(dn);
1215 }
1216
1217 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1218 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1219 {
1220         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221         int err;
1222
1223         if (!count)
1224                 return 0;
1225
1226         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1227                 return -EPERM;
1228         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1229                 return err;
1230
1231         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1232                                                 dn->ofs_in_node, count);
1233
1234         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1235
1236         for (; count > 0; dn->ofs_in_node++) {
1237                 block_t blkaddr = f2fs_data_blkaddr(dn);
1238
1239                 if (blkaddr == NULL_ADDR) {
1240                         dn->data_blkaddr = NEW_ADDR;
1241                         __set_data_blkaddr(dn);
1242                         count--;
1243                 }
1244         }
1245
1246         if (set_page_dirty(dn->node_page))
1247                 dn->node_changed = true;
1248         return 0;
1249 }
1250
1251 /* Should keep dn->ofs_in_node unchanged */
1252 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1253 {
1254         unsigned int ofs_in_node = dn->ofs_in_node;
1255         int ret;
1256
1257         ret = f2fs_reserve_new_blocks(dn, 1);
1258         dn->ofs_in_node = ofs_in_node;
1259         return ret;
1260 }
1261
1262 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1263 {
1264         bool need_put = dn->inode_page ? false : true;
1265         int err;
1266
1267         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1268         if (err)
1269                 return err;
1270
1271         if (dn->data_blkaddr == NULL_ADDR)
1272                 err = f2fs_reserve_new_block(dn);
1273         if (err || need_put)
1274                 f2fs_put_dnode(dn);
1275         return err;
1276 }
1277
1278 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1279                                      blk_opf_t op_flags, bool for_write,
1280                                      pgoff_t *next_pgofs)
1281 {
1282         struct address_space *mapping = inode->i_mapping;
1283         struct dnode_of_data dn;
1284         struct page *page;
1285         int err;
1286
1287         page = f2fs_grab_cache_page(mapping, index, for_write);
1288         if (!page)
1289                 return ERR_PTR(-ENOMEM);
1290
1291         if (f2fs_lookup_read_extent_cache_block(inode, index,
1292                                                 &dn.data_blkaddr)) {
1293                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1294                                                 DATA_GENERIC_ENHANCE_READ)) {
1295                         err = -EFSCORRUPTED;
1296                         f2fs_handle_error(F2FS_I_SB(inode),
1297                                                 ERROR_INVALID_BLKADDR);
1298                         goto put_err;
1299                 }
1300                 goto got_it;
1301         }
1302
1303         set_new_dnode(&dn, inode, NULL, NULL, 0);
1304         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1305         if (err) {
1306                 if (err == -ENOENT && next_pgofs)
1307                         *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1308                 goto put_err;
1309         }
1310         f2fs_put_dnode(&dn);
1311
1312         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1313                 err = -ENOENT;
1314                 if (next_pgofs)
1315                         *next_pgofs = index + 1;
1316                 goto put_err;
1317         }
1318         if (dn.data_blkaddr != NEW_ADDR &&
1319                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1320                                                 dn.data_blkaddr,
1321                                                 DATA_GENERIC_ENHANCE)) {
1322                 err = -EFSCORRUPTED;
1323                 f2fs_handle_error(F2FS_I_SB(inode),
1324                                         ERROR_INVALID_BLKADDR);
1325                 goto put_err;
1326         }
1327 got_it:
1328         if (PageUptodate(page)) {
1329                 unlock_page(page);
1330                 return page;
1331         }
1332
1333         /*
1334          * A new dentry page is allocated but not able to be written, since its
1335          * new inode page couldn't be allocated due to -ENOSPC.
1336          * In such the case, its blkaddr can be remained as NEW_ADDR.
1337          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1338          * f2fs_init_inode_metadata.
1339          */
1340         if (dn.data_blkaddr == NEW_ADDR) {
1341                 zero_user_segment(page, 0, PAGE_SIZE);
1342                 if (!PageUptodate(page))
1343                         SetPageUptodate(page);
1344                 unlock_page(page);
1345                 return page;
1346         }
1347
1348         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1349                                                 op_flags, for_write);
1350         if (err)
1351                 goto put_err;
1352         return page;
1353
1354 put_err:
1355         f2fs_put_page(page, 1);
1356         return ERR_PTR(err);
1357 }
1358
1359 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1360                                         pgoff_t *next_pgofs)
1361 {
1362         struct address_space *mapping = inode->i_mapping;
1363         struct page *page;
1364
1365         page = find_get_page(mapping, index);
1366         if (page && PageUptodate(page))
1367                 return page;
1368         f2fs_put_page(page, 0);
1369
1370         page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1371         if (IS_ERR(page))
1372                 return page;
1373
1374         if (PageUptodate(page))
1375                 return page;
1376
1377         wait_on_page_locked(page);
1378         if (unlikely(!PageUptodate(page))) {
1379                 f2fs_put_page(page, 0);
1380                 return ERR_PTR(-EIO);
1381         }
1382         return page;
1383 }
1384
1385 /*
1386  * If it tries to access a hole, return an error.
1387  * Because, the callers, functions in dir.c and GC, should be able to know
1388  * whether this page exists or not.
1389  */
1390 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1391                                                         bool for_write)
1392 {
1393         struct address_space *mapping = inode->i_mapping;
1394         struct page *page;
1395
1396         page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1397         if (IS_ERR(page))
1398                 return page;
1399
1400         /* wait for read completion */
1401         lock_page(page);
1402         if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1403                 f2fs_put_page(page, 1);
1404                 return ERR_PTR(-EIO);
1405         }
1406         return page;
1407 }
1408
1409 /*
1410  * Caller ensures that this data page is never allocated.
1411  * A new zero-filled data page is allocated in the page cache.
1412  *
1413  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1414  * f2fs_unlock_op().
1415  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1416  * ipage should be released by this function.
1417  */
1418 struct page *f2fs_get_new_data_page(struct inode *inode,
1419                 struct page *ipage, pgoff_t index, bool new_i_size)
1420 {
1421         struct address_space *mapping = inode->i_mapping;
1422         struct page *page;
1423         struct dnode_of_data dn;
1424         int err;
1425
1426         page = f2fs_grab_cache_page(mapping, index, true);
1427         if (!page) {
1428                 /*
1429                  * before exiting, we should make sure ipage will be released
1430                  * if any error occur.
1431                  */
1432                 f2fs_put_page(ipage, 1);
1433                 return ERR_PTR(-ENOMEM);
1434         }
1435
1436         set_new_dnode(&dn, inode, ipage, NULL, 0);
1437         err = f2fs_reserve_block(&dn, index);
1438         if (err) {
1439                 f2fs_put_page(page, 1);
1440                 return ERR_PTR(err);
1441         }
1442         if (!ipage)
1443                 f2fs_put_dnode(&dn);
1444
1445         if (PageUptodate(page))
1446                 goto got_it;
1447
1448         if (dn.data_blkaddr == NEW_ADDR) {
1449                 zero_user_segment(page, 0, PAGE_SIZE);
1450                 if (!PageUptodate(page))
1451                         SetPageUptodate(page);
1452         } else {
1453                 f2fs_put_page(page, 1);
1454
1455                 /* if ipage exists, blkaddr should be NEW_ADDR */
1456                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1457                 page = f2fs_get_lock_data_page(inode, index, true);
1458                 if (IS_ERR(page))
1459                         return page;
1460         }
1461 got_it:
1462         if (new_i_size && i_size_read(inode) <
1463                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1464                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1465         return page;
1466 }
1467
1468 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1469 {
1470         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471         struct f2fs_summary sum;
1472         struct node_info ni;
1473         block_t old_blkaddr;
1474         blkcnt_t count = 1;
1475         int err;
1476
1477         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1478                 return -EPERM;
1479
1480         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1481         if (err)
1482                 return err;
1483
1484         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1485         if (dn->data_blkaddr == NULL_ADDR) {
1486                 err = inc_valid_block_count(sbi, dn->inode, &count);
1487                 if (unlikely(err))
1488                         return err;
1489         }
1490
1491         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1492         old_blkaddr = dn->data_blkaddr;
1493         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1494                                 &sum, seg_type, NULL);
1495         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1496                 invalidate_mapping_pages(META_MAPPING(sbi),
1497                                         old_blkaddr, old_blkaddr);
1498                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1499         }
1500         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1501         return 0;
1502 }
1503
1504 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1505 {
1506         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1507                 f2fs_down_read(&sbi->node_change);
1508         else
1509                 f2fs_lock_op(sbi);
1510 }
1511
1512 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1513 {
1514         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1515                 f2fs_up_read(&sbi->node_change);
1516         else
1517                 f2fs_unlock_op(sbi);
1518 }
1519
1520 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1521 {
1522         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1523         int err = 0;
1524
1525         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1526         if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1527                                                 &dn->data_blkaddr))
1528                 err = f2fs_reserve_block(dn, index);
1529         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1530
1531         return err;
1532 }
1533
1534 static int f2fs_map_no_dnode(struct inode *inode,
1535                 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1536                 pgoff_t pgoff)
1537 {
1538         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1539
1540         /*
1541          * There is one exceptional case that read_node_page() may return
1542          * -ENOENT due to filesystem has been shutdown or cp_error, return
1543          * -EIO in that case.
1544          */
1545         if (map->m_may_create &&
1546             (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1547                 return -EIO;
1548
1549         if (map->m_next_pgofs)
1550                 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1551         if (map->m_next_extent)
1552                 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1553         return 0;
1554 }
1555
1556 static bool f2fs_map_blocks_cached(struct inode *inode,
1557                 struct f2fs_map_blocks *map, int flag)
1558 {
1559         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1560         unsigned int maxblocks = map->m_len;
1561         pgoff_t pgoff = (pgoff_t)map->m_lblk;
1562         struct extent_info ei = {};
1563
1564         if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1565                 return false;
1566
1567         map->m_pblk = ei.blk + pgoff - ei.fofs;
1568         map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1569         map->m_flags = F2FS_MAP_MAPPED;
1570         if (map->m_next_extent)
1571                 *map->m_next_extent = pgoff + map->m_len;
1572
1573         /* for hardware encryption, but to avoid potential issue in future */
1574         if (flag == F2FS_GET_BLOCK_DIO)
1575                 f2fs_wait_on_block_writeback_range(inode,
1576                                         map->m_pblk, map->m_len);
1577
1578         if (f2fs_allow_multi_device_dio(sbi, flag)) {
1579                 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1580                 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1581
1582                 map->m_bdev = dev->bdev;
1583                 map->m_pblk -= dev->start_blk;
1584                 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1585         } else {
1586                 map->m_bdev = inode->i_sb->s_bdev;
1587         }
1588         return true;
1589 }
1590
1591 /*
1592  * f2fs_map_blocks() tries to find or build mapping relationship which
1593  * maps continuous logical blocks to physical blocks, and return such
1594  * info via f2fs_map_blocks structure.
1595  */
1596 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1597 {
1598         unsigned int maxblocks = map->m_len;
1599         struct dnode_of_data dn;
1600         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1602         pgoff_t pgofs, end_offset, end;
1603         int err = 0, ofs = 1;
1604         unsigned int ofs_in_node, last_ofs_in_node;
1605         blkcnt_t prealloc;
1606         block_t blkaddr;
1607         unsigned int start_pgofs;
1608         int bidx = 0;
1609         bool is_hole;
1610
1611         if (!maxblocks)
1612                 return 0;
1613
1614         if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1615                 goto out;
1616
1617         map->m_bdev = inode->i_sb->s_bdev;
1618         map->m_multidev_dio =
1619                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1620
1621         map->m_len = 0;
1622         map->m_flags = 0;
1623
1624         /* it only supports block size == page size */
1625         pgofs = (pgoff_t)map->m_lblk;
1626         end = pgofs + maxblocks;
1627
1628 next_dnode:
1629         if (map->m_may_create)
1630                 f2fs_map_lock(sbi, flag);
1631
1632         /* When reading holes, we need its node page */
1633         set_new_dnode(&dn, inode, NULL, NULL, 0);
1634         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1635         if (err) {
1636                 if (flag == F2FS_GET_BLOCK_BMAP)
1637                         map->m_pblk = 0;
1638                 if (err == -ENOENT)
1639                         err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1640                 goto unlock_out;
1641         }
1642
1643         start_pgofs = pgofs;
1644         prealloc = 0;
1645         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1646         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1647
1648 next_block:
1649         blkaddr = f2fs_data_blkaddr(&dn);
1650         is_hole = !__is_valid_data_blkaddr(blkaddr);
1651         if (!is_hole &&
1652             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1653                 err = -EFSCORRUPTED;
1654                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1655                 goto sync_out;
1656         }
1657
1658         /* use out-place-update for direct IO under LFS mode */
1659         if (map->m_may_create &&
1660             (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1661                 if (unlikely(f2fs_cp_error(sbi))) {
1662                         err = -EIO;
1663                         goto sync_out;
1664                 }
1665
1666                 switch (flag) {
1667                 case F2FS_GET_BLOCK_PRE_AIO:
1668                         if (blkaddr == NULL_ADDR) {
1669                                 prealloc++;
1670                                 last_ofs_in_node = dn.ofs_in_node;
1671                         }
1672                         break;
1673                 case F2FS_GET_BLOCK_PRE_DIO:
1674                 case F2FS_GET_BLOCK_DIO:
1675                         err = __allocate_data_block(&dn, map->m_seg_type);
1676                         if (err)
1677                                 goto sync_out;
1678                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1679                                 file_need_truncate(inode);
1680                         set_inode_flag(inode, FI_APPEND_WRITE);
1681                         break;
1682                 default:
1683                         WARN_ON_ONCE(1);
1684                         err = -EIO;
1685                         goto sync_out;
1686                 }
1687
1688                 blkaddr = dn.data_blkaddr;
1689                 if (is_hole)
1690                         map->m_flags |= F2FS_MAP_NEW;
1691         } else if (is_hole) {
1692                 if (f2fs_compressed_file(inode) &&
1693                     f2fs_sanity_check_cluster(&dn)) {
1694                         err = -EFSCORRUPTED;
1695                         f2fs_handle_error(sbi,
1696                                         ERROR_CORRUPTED_CLUSTER);
1697                         goto sync_out;
1698                 }
1699
1700                 switch (flag) {
1701                 case F2FS_GET_BLOCK_PRECACHE:
1702                         goto sync_out;
1703                 case F2FS_GET_BLOCK_BMAP:
1704                         map->m_pblk = 0;
1705                         goto sync_out;
1706                 case F2FS_GET_BLOCK_FIEMAP:
1707                         if (blkaddr == NULL_ADDR) {
1708                                 if (map->m_next_pgofs)
1709                                         *map->m_next_pgofs = pgofs + 1;
1710                                 goto sync_out;
1711                         }
1712                         break;
1713                 default:
1714                         /* for defragment case */
1715                         if (map->m_next_pgofs)
1716                                 *map->m_next_pgofs = pgofs + 1;
1717                         goto sync_out;
1718                 }
1719         }
1720
1721         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1722                 goto skip;
1723
1724         if (map->m_multidev_dio)
1725                 bidx = f2fs_target_device_index(sbi, blkaddr);
1726
1727         if (map->m_len == 0) {
1728                 /* reserved delalloc block should be mapped for fiemap. */
1729                 if (blkaddr == NEW_ADDR)
1730                         map->m_flags |= F2FS_MAP_DELALLOC;
1731                 map->m_flags |= F2FS_MAP_MAPPED;
1732
1733                 map->m_pblk = blkaddr;
1734                 map->m_len = 1;
1735
1736                 if (map->m_multidev_dio)
1737                         map->m_bdev = FDEV(bidx).bdev;
1738         } else if ((map->m_pblk != NEW_ADDR &&
1739                         blkaddr == (map->m_pblk + ofs)) ||
1740                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1741                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1742                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1743                         goto sync_out;
1744                 ofs++;
1745                 map->m_len++;
1746         } else {
1747                 goto sync_out;
1748         }
1749
1750 skip:
1751         dn.ofs_in_node++;
1752         pgofs++;
1753
1754         /* preallocate blocks in batch for one dnode page */
1755         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1756                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1757
1758                 dn.ofs_in_node = ofs_in_node;
1759                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1760                 if (err)
1761                         goto sync_out;
1762
1763                 map->m_len += dn.ofs_in_node - ofs_in_node;
1764                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1765                         err = -ENOSPC;
1766                         goto sync_out;
1767                 }
1768                 dn.ofs_in_node = end_offset;
1769         }
1770
1771         if (pgofs >= end)
1772                 goto sync_out;
1773         else if (dn.ofs_in_node < end_offset)
1774                 goto next_block;
1775
1776         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1777                 if (map->m_flags & F2FS_MAP_MAPPED) {
1778                         unsigned int ofs = start_pgofs - map->m_lblk;
1779
1780                         f2fs_update_read_extent_cache_range(&dn,
1781                                 start_pgofs, map->m_pblk + ofs,
1782                                 map->m_len - ofs);
1783                 }
1784         }
1785
1786         f2fs_put_dnode(&dn);
1787
1788         if (map->m_may_create) {
1789                 f2fs_map_unlock(sbi, flag);
1790                 f2fs_balance_fs(sbi, dn.node_changed);
1791         }
1792         goto next_dnode;
1793
1794 sync_out:
1795
1796         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1797                 /*
1798                  * for hardware encryption, but to avoid potential issue
1799                  * in future
1800                  */
1801                 f2fs_wait_on_block_writeback_range(inode,
1802                                                 map->m_pblk, map->m_len);
1803
1804                 if (map->m_multidev_dio) {
1805                         block_t blk_addr = map->m_pblk;
1806
1807                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1808
1809                         map->m_bdev = FDEV(bidx).bdev;
1810                         map->m_pblk -= FDEV(bidx).start_blk;
1811
1812                         if (map->m_may_create)
1813                                 f2fs_update_device_state(sbi, inode->i_ino,
1814                                                         blk_addr, map->m_len);
1815
1816                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1817                                                 FDEV(bidx).end_blk + 1);
1818                 }
1819         }
1820
1821         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1822                 if (map->m_flags & F2FS_MAP_MAPPED) {
1823                         unsigned int ofs = start_pgofs - map->m_lblk;
1824
1825                         f2fs_update_read_extent_cache_range(&dn,
1826                                 start_pgofs, map->m_pblk + ofs,
1827                                 map->m_len - ofs);
1828                 }
1829                 if (map->m_next_extent)
1830                         *map->m_next_extent = pgofs + 1;
1831         }
1832         f2fs_put_dnode(&dn);
1833 unlock_out:
1834         if (map->m_may_create) {
1835                 f2fs_map_unlock(sbi, flag);
1836                 f2fs_balance_fs(sbi, dn.node_changed);
1837         }
1838 out:
1839         trace_f2fs_map_blocks(inode, map, flag, err);
1840         return err;
1841 }
1842
1843 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1844 {
1845         struct f2fs_map_blocks map;
1846         block_t last_lblk;
1847         int err;
1848
1849         if (pos + len > i_size_read(inode))
1850                 return false;
1851
1852         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1853         map.m_next_pgofs = NULL;
1854         map.m_next_extent = NULL;
1855         map.m_seg_type = NO_CHECK_TYPE;
1856         map.m_may_create = false;
1857         last_lblk = F2FS_BLK_ALIGN(pos + len);
1858
1859         while (map.m_lblk < last_lblk) {
1860                 map.m_len = last_lblk - map.m_lblk;
1861                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1862                 if (err || map.m_len == 0)
1863                         return false;
1864                 map.m_lblk += map.m_len;
1865         }
1866         return true;
1867 }
1868
1869 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1870 {
1871         return (bytes >> inode->i_blkbits);
1872 }
1873
1874 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1875 {
1876         return (blks << inode->i_blkbits);
1877 }
1878
1879 static int f2fs_xattr_fiemap(struct inode *inode,
1880                                 struct fiemap_extent_info *fieinfo)
1881 {
1882         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1883         struct page *page;
1884         struct node_info ni;
1885         __u64 phys = 0, len;
1886         __u32 flags;
1887         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1888         int err = 0;
1889
1890         if (f2fs_has_inline_xattr(inode)) {
1891                 int offset;
1892
1893                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1894                                                 inode->i_ino, false);
1895                 if (!page)
1896                         return -ENOMEM;
1897
1898                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1899                 if (err) {
1900                         f2fs_put_page(page, 1);
1901                         return err;
1902                 }
1903
1904                 phys = blks_to_bytes(inode, ni.blk_addr);
1905                 offset = offsetof(struct f2fs_inode, i_addr) +
1906                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1907                                         get_inline_xattr_addrs(inode));
1908
1909                 phys += offset;
1910                 len = inline_xattr_size(inode);
1911
1912                 f2fs_put_page(page, 1);
1913
1914                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1915
1916                 if (!xnid)
1917                         flags |= FIEMAP_EXTENT_LAST;
1918
1919                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1920                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1921                 if (err)
1922                         return err;
1923         }
1924
1925         if (xnid) {
1926                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1927                 if (!page)
1928                         return -ENOMEM;
1929
1930                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1931                 if (err) {
1932                         f2fs_put_page(page, 1);
1933                         return err;
1934                 }
1935
1936                 phys = blks_to_bytes(inode, ni.blk_addr);
1937                 len = inode->i_sb->s_blocksize;
1938
1939                 f2fs_put_page(page, 1);
1940
1941                 flags = FIEMAP_EXTENT_LAST;
1942         }
1943
1944         if (phys) {
1945                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1946                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1947         }
1948
1949         return (err < 0 ? err : 0);
1950 }
1951
1952 static loff_t max_inode_blocks(struct inode *inode)
1953 {
1954         loff_t result = ADDRS_PER_INODE(inode);
1955         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1956
1957         /* two direct node blocks */
1958         result += (leaf_count * 2);
1959
1960         /* two indirect node blocks */
1961         leaf_count *= NIDS_PER_BLOCK;
1962         result += (leaf_count * 2);
1963
1964         /* one double indirect node block */
1965         leaf_count *= NIDS_PER_BLOCK;
1966         result += leaf_count;
1967
1968         return result;
1969 }
1970
1971 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1972                 u64 start, u64 len)
1973 {
1974         struct f2fs_map_blocks map;
1975         sector_t start_blk, last_blk;
1976         pgoff_t next_pgofs;
1977         u64 logical = 0, phys = 0, size = 0;
1978         u32 flags = 0;
1979         int ret = 0;
1980         bool compr_cluster = false, compr_appended;
1981         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1982         unsigned int count_in_cluster = 0;
1983         loff_t maxbytes;
1984
1985         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1986                 ret = f2fs_precache_extents(inode);
1987                 if (ret)
1988                         return ret;
1989         }
1990
1991         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1992         if (ret)
1993                 return ret;
1994
1995         inode_lock(inode);
1996
1997         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1998         if (start > maxbytes) {
1999                 ret = -EFBIG;
2000                 goto out;
2001         }
2002
2003         if (len > maxbytes || (maxbytes - len) < start)
2004                 len = maxbytes - start;
2005
2006         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2007                 ret = f2fs_xattr_fiemap(inode, fieinfo);
2008                 goto out;
2009         }
2010
2011         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2012                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2013                 if (ret != -EAGAIN)
2014                         goto out;
2015         }
2016
2017         if (bytes_to_blks(inode, len) == 0)
2018                 len = blks_to_bytes(inode, 1);
2019
2020         start_blk = bytes_to_blks(inode, start);
2021         last_blk = bytes_to_blks(inode, start + len - 1);
2022
2023 next:
2024         memset(&map, 0, sizeof(map));
2025         map.m_lblk = start_blk;
2026         map.m_len = bytes_to_blks(inode, len);
2027         map.m_next_pgofs = &next_pgofs;
2028         map.m_seg_type = NO_CHECK_TYPE;
2029
2030         if (compr_cluster) {
2031                 map.m_lblk += 1;
2032                 map.m_len = cluster_size - count_in_cluster;
2033         }
2034
2035         ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2036         if (ret)
2037                 goto out;
2038
2039         /* HOLE */
2040         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2041                 start_blk = next_pgofs;
2042
2043                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2044                                                 max_inode_blocks(inode)))
2045                         goto prep_next;
2046
2047                 flags |= FIEMAP_EXTENT_LAST;
2048         }
2049
2050         compr_appended = false;
2051         /* In a case of compressed cluster, append this to the last extent */
2052         if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2053                         !(map.m_flags & F2FS_MAP_FLAGS))) {
2054                 compr_appended = true;
2055                 goto skip_fill;
2056         }
2057
2058         if (size) {
2059                 flags |= FIEMAP_EXTENT_MERGED;
2060                 if (IS_ENCRYPTED(inode))
2061                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2062
2063                 ret = fiemap_fill_next_extent(fieinfo, logical,
2064                                 phys, size, flags);
2065                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2066                 if (ret)
2067                         goto out;
2068                 size = 0;
2069         }
2070
2071         if (start_blk > last_blk)
2072                 goto out;
2073
2074 skip_fill:
2075         if (map.m_pblk == COMPRESS_ADDR) {
2076                 compr_cluster = true;
2077                 count_in_cluster = 1;
2078         } else if (compr_appended) {
2079                 unsigned int appended_blks = cluster_size -
2080                                                 count_in_cluster + 1;
2081                 size += blks_to_bytes(inode, appended_blks);
2082                 start_blk += appended_blks;
2083                 compr_cluster = false;
2084         } else {
2085                 logical = blks_to_bytes(inode, start_blk);
2086                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2087                         blks_to_bytes(inode, map.m_pblk) : 0;
2088                 size = blks_to_bytes(inode, map.m_len);
2089                 flags = 0;
2090
2091                 if (compr_cluster) {
2092                         flags = FIEMAP_EXTENT_ENCODED;
2093                         count_in_cluster += map.m_len;
2094                         if (count_in_cluster == cluster_size) {
2095                                 compr_cluster = false;
2096                                 size += blks_to_bytes(inode, 1);
2097                         }
2098                 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2099                         flags = FIEMAP_EXTENT_UNWRITTEN;
2100                 }
2101
2102                 start_blk += bytes_to_blks(inode, size);
2103         }
2104
2105 prep_next:
2106         cond_resched();
2107         if (fatal_signal_pending(current))
2108                 ret = -EINTR;
2109         else
2110                 goto next;
2111 out:
2112         if (ret == 1)
2113                 ret = 0;
2114
2115         inode_unlock(inode);
2116         return ret;
2117 }
2118
2119 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2120 {
2121         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2122                 return inode->i_sb->s_maxbytes;
2123
2124         return i_size_read(inode);
2125 }
2126
2127 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2128                                         unsigned nr_pages,
2129                                         struct f2fs_map_blocks *map,
2130                                         struct bio **bio_ret,
2131                                         sector_t *last_block_in_bio,
2132                                         bool is_readahead)
2133 {
2134         struct bio *bio = *bio_ret;
2135         const unsigned blocksize = blks_to_bytes(inode, 1);
2136         sector_t block_in_file;
2137         sector_t last_block;
2138         sector_t last_block_in_file;
2139         sector_t block_nr;
2140         int ret = 0;
2141
2142         block_in_file = (sector_t)page_index(page);
2143         last_block = block_in_file + nr_pages;
2144         last_block_in_file = bytes_to_blks(inode,
2145                         f2fs_readpage_limit(inode) + blocksize - 1);
2146         if (last_block > last_block_in_file)
2147                 last_block = last_block_in_file;
2148
2149         /* just zeroing out page which is beyond EOF */
2150         if (block_in_file >= last_block)
2151                 goto zero_out;
2152         /*
2153          * Map blocks using the previous result first.
2154          */
2155         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2156                         block_in_file > map->m_lblk &&
2157                         block_in_file < (map->m_lblk + map->m_len))
2158                 goto got_it;
2159
2160         /*
2161          * Then do more f2fs_map_blocks() calls until we are
2162          * done with this page.
2163          */
2164         map->m_lblk = block_in_file;
2165         map->m_len = last_block - block_in_file;
2166
2167         ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2168         if (ret)
2169                 goto out;
2170 got_it:
2171         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2172                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2173                 SetPageMappedToDisk(page);
2174
2175                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2176                                                 DATA_GENERIC_ENHANCE_READ)) {
2177                         ret = -EFSCORRUPTED;
2178                         f2fs_handle_error(F2FS_I_SB(inode),
2179                                                 ERROR_INVALID_BLKADDR);
2180                         goto out;
2181                 }
2182         } else {
2183 zero_out:
2184                 zero_user_segment(page, 0, PAGE_SIZE);
2185                 if (f2fs_need_verity(inode, page->index) &&
2186                     !fsverity_verify_page(page)) {
2187                         ret = -EIO;
2188                         goto out;
2189                 }
2190                 if (!PageUptodate(page))
2191                         SetPageUptodate(page);
2192                 unlock_page(page);
2193                 goto out;
2194         }
2195
2196         /*
2197          * This page will go to BIO.  Do we need to send this
2198          * BIO off first?
2199          */
2200         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2201                                        *last_block_in_bio, block_nr) ||
2202                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2203 submit_and_realloc:
2204                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2205                 bio = NULL;
2206         }
2207         if (bio == NULL) {
2208                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2209                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2210                                 false);
2211                 if (IS_ERR(bio)) {
2212                         ret = PTR_ERR(bio);
2213                         bio = NULL;
2214                         goto out;
2215                 }
2216         }
2217
2218         /*
2219          * If the page is under writeback, we need to wait for
2220          * its completion to see the correct decrypted data.
2221          */
2222         f2fs_wait_on_block_writeback(inode, block_nr);
2223
2224         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2225                 goto submit_and_realloc;
2226
2227         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2228         f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2229                                                         F2FS_BLKSIZE);
2230         *last_block_in_bio = block_nr;
2231 out:
2232         *bio_ret = bio;
2233         return ret;
2234 }
2235
2236 #ifdef CONFIG_F2FS_FS_COMPRESSION
2237 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2238                                 unsigned nr_pages, sector_t *last_block_in_bio,
2239                                 bool is_readahead, bool for_write)
2240 {
2241         struct dnode_of_data dn;
2242         struct inode *inode = cc->inode;
2243         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2244         struct bio *bio = *bio_ret;
2245         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2246         sector_t last_block_in_file;
2247         const unsigned blocksize = blks_to_bytes(inode, 1);
2248         struct decompress_io_ctx *dic = NULL;
2249         struct extent_info ei = {};
2250         bool from_dnode = true;
2251         int i;
2252         int ret = 0;
2253
2254         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2255
2256         last_block_in_file = bytes_to_blks(inode,
2257                         f2fs_readpage_limit(inode) + blocksize - 1);
2258
2259         /* get rid of pages beyond EOF */
2260         for (i = 0; i < cc->cluster_size; i++) {
2261                 struct page *page = cc->rpages[i];
2262
2263                 if (!page)
2264                         continue;
2265                 if ((sector_t)page->index >= last_block_in_file) {
2266                         zero_user_segment(page, 0, PAGE_SIZE);
2267                         if (!PageUptodate(page))
2268                                 SetPageUptodate(page);
2269                 } else if (!PageUptodate(page)) {
2270                         continue;
2271                 }
2272                 unlock_page(page);
2273                 if (for_write)
2274                         put_page(page);
2275                 cc->rpages[i] = NULL;
2276                 cc->nr_rpages--;
2277         }
2278
2279         /* we are done since all pages are beyond EOF */
2280         if (f2fs_cluster_is_empty(cc))
2281                 goto out;
2282
2283         if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2284                 from_dnode = false;
2285
2286         if (!from_dnode)
2287                 goto skip_reading_dnode;
2288
2289         set_new_dnode(&dn, inode, NULL, NULL, 0);
2290         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2291         if (ret)
2292                 goto out;
2293
2294         if (unlikely(f2fs_cp_error(sbi))) {
2295                 ret = -EIO;
2296                 goto out_put_dnode;
2297         }
2298         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2299
2300 skip_reading_dnode:
2301         for (i = 1; i < cc->cluster_size; i++) {
2302                 block_t blkaddr;
2303
2304                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2305                                         dn.ofs_in_node + i) :
2306                                         ei.blk + i - 1;
2307
2308                 if (!__is_valid_data_blkaddr(blkaddr))
2309                         break;
2310
2311                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2312                         ret = -EFAULT;
2313                         goto out_put_dnode;
2314                 }
2315                 cc->nr_cpages++;
2316
2317                 if (!from_dnode && i >= ei.c_len)
2318                         break;
2319         }
2320
2321         /* nothing to decompress */
2322         if (cc->nr_cpages == 0) {
2323                 ret = 0;
2324                 goto out_put_dnode;
2325         }
2326
2327         dic = f2fs_alloc_dic(cc);
2328         if (IS_ERR(dic)) {
2329                 ret = PTR_ERR(dic);
2330                 goto out_put_dnode;
2331         }
2332
2333         for (i = 0; i < cc->nr_cpages; i++) {
2334                 struct page *page = dic->cpages[i];
2335                 block_t blkaddr;
2336                 struct bio_post_read_ctx *ctx;
2337
2338                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2339                                         dn.ofs_in_node + i + 1) :
2340                                         ei.blk + i;
2341
2342                 f2fs_wait_on_block_writeback(inode, blkaddr);
2343
2344                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2345                         if (atomic_dec_and_test(&dic->remaining_pages)) {
2346                                 f2fs_decompress_cluster(dic, true);
2347                                 break;
2348                         }
2349                         continue;
2350                 }
2351
2352                 if (bio && (!page_is_mergeable(sbi, bio,
2353                                         *last_block_in_bio, blkaddr) ||
2354                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2355 submit_and_realloc:
2356                         f2fs_submit_read_bio(sbi, bio, DATA);
2357                         bio = NULL;
2358                 }
2359
2360                 if (!bio) {
2361                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2362                                         is_readahead ? REQ_RAHEAD : 0,
2363                                         page->index, for_write);
2364                         if (IS_ERR(bio)) {
2365                                 ret = PTR_ERR(bio);
2366                                 f2fs_decompress_end_io(dic, ret, true);
2367                                 f2fs_put_dnode(&dn);
2368                                 *bio_ret = NULL;
2369                                 return ret;
2370                         }
2371                 }
2372
2373                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2374                         goto submit_and_realloc;
2375
2376                 ctx = get_post_read_ctx(bio);
2377                 ctx->enabled_steps |= STEP_DECOMPRESS;
2378                 refcount_inc(&dic->refcnt);
2379
2380                 inc_page_count(sbi, F2FS_RD_DATA);
2381                 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2382                 *last_block_in_bio = blkaddr;
2383         }
2384
2385         if (from_dnode)
2386                 f2fs_put_dnode(&dn);
2387
2388         *bio_ret = bio;
2389         return 0;
2390
2391 out_put_dnode:
2392         if (from_dnode)
2393                 f2fs_put_dnode(&dn);
2394 out:
2395         for (i = 0; i < cc->cluster_size; i++) {
2396                 if (cc->rpages[i]) {
2397                         ClearPageUptodate(cc->rpages[i]);
2398                         unlock_page(cc->rpages[i]);
2399                 }
2400         }
2401         *bio_ret = bio;
2402         return ret;
2403 }
2404 #endif
2405
2406 /*
2407  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2408  * Major change was from block_size == page_size in f2fs by default.
2409  */
2410 static int f2fs_mpage_readpages(struct inode *inode,
2411                 struct readahead_control *rac, struct page *page)
2412 {
2413         struct bio *bio = NULL;
2414         sector_t last_block_in_bio = 0;
2415         struct f2fs_map_blocks map;
2416 #ifdef CONFIG_F2FS_FS_COMPRESSION
2417         struct compress_ctx cc = {
2418                 .inode = inode,
2419                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2420                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2421                 .cluster_idx = NULL_CLUSTER,
2422                 .rpages = NULL,
2423                 .cpages = NULL,
2424                 .nr_rpages = 0,
2425                 .nr_cpages = 0,
2426         };
2427         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2428 #endif
2429         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2430         unsigned max_nr_pages = nr_pages;
2431         int ret = 0;
2432
2433         map.m_pblk = 0;
2434         map.m_lblk = 0;
2435         map.m_len = 0;
2436         map.m_flags = 0;
2437         map.m_next_pgofs = NULL;
2438         map.m_next_extent = NULL;
2439         map.m_seg_type = NO_CHECK_TYPE;
2440         map.m_may_create = false;
2441
2442         for (; nr_pages; nr_pages--) {
2443                 if (rac) {
2444                         page = readahead_page(rac);
2445                         prefetchw(&page->flags);
2446                 }
2447
2448 #ifdef CONFIG_F2FS_FS_COMPRESSION
2449                 if (f2fs_compressed_file(inode)) {
2450                         /* there are remained compressed pages, submit them */
2451                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2452                                 ret = f2fs_read_multi_pages(&cc, &bio,
2453                                                         max_nr_pages,
2454                                                         &last_block_in_bio,
2455                                                         rac != NULL, false);
2456                                 f2fs_destroy_compress_ctx(&cc, false);
2457                                 if (ret)
2458                                         goto set_error_page;
2459                         }
2460                         if (cc.cluster_idx == NULL_CLUSTER) {
2461                                 if (nc_cluster_idx ==
2462                                         page->index >> cc.log_cluster_size) {
2463                                         goto read_single_page;
2464                                 }
2465
2466                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2467                                 if (ret < 0)
2468                                         goto set_error_page;
2469                                 else if (!ret) {
2470                                         nc_cluster_idx =
2471                                                 page->index >> cc.log_cluster_size;
2472                                         goto read_single_page;
2473                                 }
2474
2475                                 nc_cluster_idx = NULL_CLUSTER;
2476                         }
2477                         ret = f2fs_init_compress_ctx(&cc);
2478                         if (ret)
2479                                 goto set_error_page;
2480
2481                         f2fs_compress_ctx_add_page(&cc, page);
2482
2483                         goto next_page;
2484                 }
2485 read_single_page:
2486 #endif
2487
2488                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2489                                         &bio, &last_block_in_bio, rac);
2490                 if (ret) {
2491 #ifdef CONFIG_F2FS_FS_COMPRESSION
2492 set_error_page:
2493 #endif
2494                         zero_user_segment(page, 0, PAGE_SIZE);
2495                         unlock_page(page);
2496                 }
2497 #ifdef CONFIG_F2FS_FS_COMPRESSION
2498 next_page:
2499 #endif
2500                 if (rac)
2501                         put_page(page);
2502
2503 #ifdef CONFIG_F2FS_FS_COMPRESSION
2504                 if (f2fs_compressed_file(inode)) {
2505                         /* last page */
2506                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2507                                 ret = f2fs_read_multi_pages(&cc, &bio,
2508                                                         max_nr_pages,
2509                                                         &last_block_in_bio,
2510                                                         rac != NULL, false);
2511                                 f2fs_destroy_compress_ctx(&cc, false);
2512                         }
2513                 }
2514 #endif
2515         }
2516         if (bio)
2517                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2518         return ret;
2519 }
2520
2521 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2522 {
2523         struct page *page = &folio->page;
2524         struct inode *inode = page_file_mapping(page)->host;
2525         int ret = -EAGAIN;
2526
2527         trace_f2fs_readpage(page, DATA);
2528
2529         if (!f2fs_is_compress_backend_ready(inode)) {
2530                 unlock_page(page);
2531                 return -EOPNOTSUPP;
2532         }
2533
2534         /* If the file has inline data, try to read it directly */
2535         if (f2fs_has_inline_data(inode))
2536                 ret = f2fs_read_inline_data(inode, page);
2537         if (ret == -EAGAIN)
2538                 ret = f2fs_mpage_readpages(inode, NULL, page);
2539         return ret;
2540 }
2541
2542 static void f2fs_readahead(struct readahead_control *rac)
2543 {
2544         struct inode *inode = rac->mapping->host;
2545
2546         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2547
2548         if (!f2fs_is_compress_backend_ready(inode))
2549                 return;
2550
2551         /* If the file has inline data, skip readahead */
2552         if (f2fs_has_inline_data(inode))
2553                 return;
2554
2555         f2fs_mpage_readpages(inode, rac, NULL);
2556 }
2557
2558 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2559 {
2560         struct inode *inode = fio->page->mapping->host;
2561         struct page *mpage, *page;
2562         gfp_t gfp_flags = GFP_NOFS;
2563
2564         if (!f2fs_encrypted_file(inode))
2565                 return 0;
2566
2567         page = fio->compressed_page ? fio->compressed_page : fio->page;
2568
2569         /* wait for GCed page writeback via META_MAPPING */
2570         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2571
2572         if (fscrypt_inode_uses_inline_crypto(inode))
2573                 return 0;
2574
2575 retry_encrypt:
2576         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2577                                         PAGE_SIZE, 0, gfp_flags);
2578         if (IS_ERR(fio->encrypted_page)) {
2579                 /* flush pending IOs and wait for a while in the ENOMEM case */
2580                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2581                         f2fs_flush_merged_writes(fio->sbi);
2582                         memalloc_retry_wait(GFP_NOFS);
2583                         gfp_flags |= __GFP_NOFAIL;
2584                         goto retry_encrypt;
2585                 }
2586                 return PTR_ERR(fio->encrypted_page);
2587         }
2588
2589         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2590         if (mpage) {
2591                 if (PageUptodate(mpage))
2592                         memcpy(page_address(mpage),
2593                                 page_address(fio->encrypted_page), PAGE_SIZE);
2594                 f2fs_put_page(mpage, 1);
2595         }
2596         return 0;
2597 }
2598
2599 static inline bool check_inplace_update_policy(struct inode *inode,
2600                                 struct f2fs_io_info *fio)
2601 {
2602         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2603
2604         if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2605             is_inode_flag_set(inode, FI_OPU_WRITE))
2606                 return false;
2607         if (IS_F2FS_IPU_FORCE(sbi))
2608                 return true;
2609         if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2610                 return true;
2611         if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2612                 return true;
2613         if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2614             utilization(sbi) > SM_I(sbi)->min_ipu_util)
2615                 return true;
2616
2617         /*
2618          * IPU for rewrite async pages
2619          */
2620         if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2621             !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2622                 return true;
2623
2624         /* this is only set during fdatasync */
2625         if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2626                 return true;
2627
2628         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2629                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2630                 return true;
2631
2632         return false;
2633 }
2634
2635 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2636 {
2637         /* swap file is migrating in aligned write mode */
2638         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2639                 return false;
2640
2641         if (f2fs_is_pinned_file(inode))
2642                 return true;
2643
2644         /* if this is cold file, we should overwrite to avoid fragmentation */
2645         if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2646                 return true;
2647
2648         return check_inplace_update_policy(inode, fio);
2649 }
2650
2651 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2652 {
2653         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2654
2655         /* The below cases were checked when setting it. */
2656         if (f2fs_is_pinned_file(inode))
2657                 return false;
2658         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2659                 return true;
2660         if (f2fs_lfs_mode(sbi))
2661                 return true;
2662         if (S_ISDIR(inode->i_mode))
2663                 return true;
2664         if (IS_NOQUOTA(inode))
2665                 return true;
2666         if (f2fs_is_atomic_file(inode))
2667                 return true;
2668         /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2669         if (f2fs_compressed_file(inode) &&
2670                 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2671                 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2672                 return true;
2673
2674         /* swap file is migrating in aligned write mode */
2675         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2676                 return true;
2677
2678         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2679                 return true;
2680
2681         if (fio) {
2682                 if (page_private_gcing(fio->page))
2683                         return true;
2684                 if (page_private_dummy(fio->page))
2685                         return true;
2686                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2687                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2688                         return true;
2689         }
2690         return false;
2691 }
2692
2693 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2694 {
2695         struct inode *inode = fio->page->mapping->host;
2696
2697         if (f2fs_should_update_outplace(inode, fio))
2698                 return false;
2699
2700         return f2fs_should_update_inplace(inode, fio);
2701 }
2702
2703 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2704 {
2705         struct page *page = fio->page;
2706         struct inode *inode = page->mapping->host;
2707         struct dnode_of_data dn;
2708         struct node_info ni;
2709         bool ipu_force = false;
2710         int err = 0;
2711
2712         /* Use COW inode to make dnode_of_data for atomic write */
2713         if (f2fs_is_atomic_file(inode))
2714                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2715         else
2716                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2717
2718         if (need_inplace_update(fio) &&
2719             f2fs_lookup_read_extent_cache_block(inode, page->index,
2720                                                 &fio->old_blkaddr)) {
2721                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2722                                                 DATA_GENERIC_ENHANCE)) {
2723                         f2fs_handle_error(fio->sbi,
2724                                                 ERROR_INVALID_BLKADDR);
2725                         return -EFSCORRUPTED;
2726                 }
2727
2728                 ipu_force = true;
2729                 fio->need_lock = LOCK_DONE;
2730                 goto got_it;
2731         }
2732
2733         /* Deadlock due to between page->lock and f2fs_lock_op */
2734         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2735                 return -EAGAIN;
2736
2737         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2738         if (err)
2739                 goto out;
2740
2741         fio->old_blkaddr = dn.data_blkaddr;
2742
2743         /* This page is already truncated */
2744         if (fio->old_blkaddr == NULL_ADDR) {
2745                 ClearPageUptodate(page);
2746                 clear_page_private_gcing(page);
2747                 goto out_writepage;
2748         }
2749 got_it:
2750         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2751                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2752                                                 DATA_GENERIC_ENHANCE)) {
2753                 err = -EFSCORRUPTED;
2754                 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2755                 goto out_writepage;
2756         }
2757
2758         /*
2759          * If current allocation needs SSR,
2760          * it had better in-place writes for updated data.
2761          */
2762         if (ipu_force ||
2763                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2764                                         need_inplace_update(fio))) {
2765                 err = f2fs_encrypt_one_page(fio);
2766                 if (err)
2767                         goto out_writepage;
2768
2769                 set_page_writeback(page);
2770                 f2fs_put_dnode(&dn);
2771                 if (fio->need_lock == LOCK_REQ)
2772                         f2fs_unlock_op(fio->sbi);
2773                 err = f2fs_inplace_write_data(fio);
2774                 if (err) {
2775                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2776                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2777                         if (PageWriteback(page))
2778                                 end_page_writeback(page);
2779                 } else {
2780                         set_inode_flag(inode, FI_UPDATE_WRITE);
2781                 }
2782                 trace_f2fs_do_write_data_page(fio->page, IPU);
2783                 return err;
2784         }
2785
2786         if (fio->need_lock == LOCK_RETRY) {
2787                 if (!f2fs_trylock_op(fio->sbi)) {
2788                         err = -EAGAIN;
2789                         goto out_writepage;
2790                 }
2791                 fio->need_lock = LOCK_REQ;
2792         }
2793
2794         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2795         if (err)
2796                 goto out_writepage;
2797
2798         fio->version = ni.version;
2799
2800         err = f2fs_encrypt_one_page(fio);
2801         if (err)
2802                 goto out_writepage;
2803
2804         set_page_writeback(page);
2805
2806         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2807                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2808
2809         /* LFS mode write path */
2810         f2fs_outplace_write_data(&dn, fio);
2811         trace_f2fs_do_write_data_page(page, OPU);
2812         set_inode_flag(inode, FI_APPEND_WRITE);
2813         if (page->index == 0)
2814                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2815 out_writepage:
2816         f2fs_put_dnode(&dn);
2817 out:
2818         if (fio->need_lock == LOCK_REQ)
2819                 f2fs_unlock_op(fio->sbi);
2820         return err;
2821 }
2822
2823 int f2fs_write_single_data_page(struct page *page, int *submitted,
2824                                 struct bio **bio,
2825                                 sector_t *last_block,
2826                                 struct writeback_control *wbc,
2827                                 enum iostat_type io_type,
2828                                 int compr_blocks,
2829                                 bool allow_balance)
2830 {
2831         struct inode *inode = page->mapping->host;
2832         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2833         loff_t i_size = i_size_read(inode);
2834         const pgoff_t end_index = ((unsigned long long)i_size)
2835                                                         >> PAGE_SHIFT;
2836         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2837         unsigned offset = 0;
2838         bool need_balance_fs = false;
2839         bool quota_inode = IS_NOQUOTA(inode);
2840         int err = 0;
2841         struct f2fs_io_info fio = {
2842                 .sbi = sbi,
2843                 .ino = inode->i_ino,
2844                 .type = DATA,
2845                 .op = REQ_OP_WRITE,
2846                 .op_flags = wbc_to_write_flags(wbc),
2847                 .old_blkaddr = NULL_ADDR,
2848                 .page = page,
2849                 .encrypted_page = NULL,
2850                 .submitted = 0,
2851                 .compr_blocks = compr_blocks,
2852                 .need_lock = LOCK_RETRY,
2853                 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2854                 .io_type = io_type,
2855                 .io_wbc = wbc,
2856                 .bio = bio,
2857                 .last_block = last_block,
2858         };
2859
2860         trace_f2fs_writepage(page, DATA);
2861
2862         /* we should bypass data pages to proceed the kworker jobs */
2863         if (unlikely(f2fs_cp_error(sbi))) {
2864                 mapping_set_error(page->mapping, -EIO);
2865                 /*
2866                  * don't drop any dirty dentry pages for keeping lastest
2867                  * directory structure.
2868                  */
2869                 if (S_ISDIR(inode->i_mode) &&
2870                                 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2871                         goto redirty_out;
2872
2873                 /* keep data pages in remount-ro mode */
2874                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2875                         goto redirty_out;
2876                 goto out;
2877         }
2878
2879         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2880                 goto redirty_out;
2881
2882         if (page->index < end_index ||
2883                         f2fs_verity_in_progress(inode) ||
2884                         compr_blocks)
2885                 goto write;
2886
2887         /*
2888          * If the offset is out-of-range of file size,
2889          * this page does not have to be written to disk.
2890          */
2891         offset = i_size & (PAGE_SIZE - 1);
2892         if ((page->index >= end_index + 1) || !offset)
2893                 goto out;
2894
2895         zero_user_segment(page, offset, PAGE_SIZE);
2896 write:
2897         if (f2fs_is_drop_cache(inode))
2898                 goto out;
2899
2900         /* Dentry/quota blocks are controlled by checkpoint */
2901         if (S_ISDIR(inode->i_mode) || quota_inode) {
2902                 /*
2903                  * We need to wait for node_write to avoid block allocation during
2904                  * checkpoint. This can only happen to quota writes which can cause
2905                  * the below discard race condition.
2906                  */
2907                 if (quota_inode)
2908                         f2fs_down_read(&sbi->node_write);
2909
2910                 fio.need_lock = LOCK_DONE;
2911                 err = f2fs_do_write_data_page(&fio);
2912
2913                 if (quota_inode)
2914                         f2fs_up_read(&sbi->node_write);
2915
2916                 goto done;
2917         }
2918
2919         if (!wbc->for_reclaim)
2920                 need_balance_fs = true;
2921         else if (has_not_enough_free_secs(sbi, 0, 0))
2922                 goto redirty_out;
2923         else
2924                 set_inode_flag(inode, FI_HOT_DATA);
2925
2926         err = -EAGAIN;
2927         if (f2fs_has_inline_data(inode)) {
2928                 err = f2fs_write_inline_data(inode, page);
2929                 if (!err)
2930                         goto out;
2931         }
2932
2933         if (err == -EAGAIN) {
2934                 err = f2fs_do_write_data_page(&fio);
2935                 if (err == -EAGAIN) {
2936                         fio.need_lock = LOCK_REQ;
2937                         err = f2fs_do_write_data_page(&fio);
2938                 }
2939         }
2940
2941         if (err) {
2942                 file_set_keep_isize(inode);
2943         } else {
2944                 spin_lock(&F2FS_I(inode)->i_size_lock);
2945                 if (F2FS_I(inode)->last_disk_size < psize)
2946                         F2FS_I(inode)->last_disk_size = psize;
2947                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2948         }
2949
2950 done:
2951         if (err && err != -ENOENT)
2952                 goto redirty_out;
2953
2954 out:
2955         inode_dec_dirty_pages(inode);
2956         if (err) {
2957                 ClearPageUptodate(page);
2958                 clear_page_private_gcing(page);
2959         }
2960
2961         if (wbc->for_reclaim) {
2962                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2963                 clear_inode_flag(inode, FI_HOT_DATA);
2964                 f2fs_remove_dirty_inode(inode);
2965                 submitted = NULL;
2966         }
2967         unlock_page(page);
2968         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2969                         !F2FS_I(inode)->wb_task && allow_balance)
2970                 f2fs_balance_fs(sbi, need_balance_fs);
2971
2972         if (unlikely(f2fs_cp_error(sbi))) {
2973                 f2fs_submit_merged_write(sbi, DATA);
2974                 if (bio && *bio)
2975                         f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2976                 submitted = NULL;
2977         }
2978
2979         if (submitted)
2980                 *submitted = fio.submitted;
2981
2982         return 0;
2983
2984 redirty_out:
2985         redirty_page_for_writepage(wbc, page);
2986         /*
2987          * pageout() in MM translates EAGAIN, so calls handle_write_error()
2988          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2989          * file_write_and_wait_range() will see EIO error, which is critical
2990          * to return value of fsync() followed by atomic_write failure to user.
2991          */
2992         if (!err || wbc->for_reclaim)
2993                 return AOP_WRITEPAGE_ACTIVATE;
2994         unlock_page(page);
2995         return err;
2996 }
2997
2998 static int f2fs_write_data_page(struct page *page,
2999                                         struct writeback_control *wbc)
3000 {
3001 #ifdef CONFIG_F2FS_FS_COMPRESSION
3002         struct inode *inode = page->mapping->host;
3003
3004         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3005                 goto out;
3006
3007         if (f2fs_compressed_file(inode)) {
3008                 if (f2fs_is_compressed_cluster(inode, page->index)) {
3009                         redirty_page_for_writepage(wbc, page);
3010                         return AOP_WRITEPAGE_ACTIVATE;
3011                 }
3012         }
3013 out:
3014 #endif
3015
3016         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3017                                                 wbc, FS_DATA_IO, 0, true);
3018 }
3019
3020 /*
3021  * This function was copied from write_cache_pages from mm/page-writeback.c.
3022  * The major change is making write step of cold data page separately from
3023  * warm/hot data page.
3024  */
3025 static int f2fs_write_cache_pages(struct address_space *mapping,
3026                                         struct writeback_control *wbc,
3027                                         enum iostat_type io_type)
3028 {
3029         int ret = 0;
3030         int done = 0, retry = 0;
3031         struct page *pages_local[F2FS_ONSTACK_PAGES];
3032         struct page **pages = pages_local;
3033         struct folio_batch fbatch;
3034         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3035         struct bio *bio = NULL;
3036         sector_t last_block;
3037 #ifdef CONFIG_F2FS_FS_COMPRESSION
3038         struct inode *inode = mapping->host;
3039         struct compress_ctx cc = {
3040                 .inode = inode,
3041                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3042                 .cluster_size = F2FS_I(inode)->i_cluster_size,
3043                 .cluster_idx = NULL_CLUSTER,
3044                 .rpages = NULL,
3045                 .nr_rpages = 0,
3046                 .cpages = NULL,
3047                 .valid_nr_cpages = 0,
3048                 .rbuf = NULL,
3049                 .cbuf = NULL,
3050                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3051                 .private = NULL,
3052         };
3053 #endif
3054         int nr_folios, p, idx;
3055         int nr_pages;
3056         unsigned int max_pages = F2FS_ONSTACK_PAGES;
3057         pgoff_t index;
3058         pgoff_t end;            /* Inclusive */
3059         pgoff_t done_index;
3060         int range_whole = 0;
3061         xa_mark_t tag;
3062         int nwritten = 0;
3063         int submitted = 0;
3064         int i;
3065
3066 #ifdef CONFIG_F2FS_FS_COMPRESSION
3067         if (f2fs_compressed_file(inode) &&
3068                 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3069                 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3070                                 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3071                 max_pages = 1 << cc.log_cluster_size;
3072         }
3073 #endif
3074
3075         folio_batch_init(&fbatch);
3076
3077         if (get_dirty_pages(mapping->host) <=
3078                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3079                 set_inode_flag(mapping->host, FI_HOT_DATA);
3080         else
3081                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3082
3083         if (wbc->range_cyclic) {
3084                 index = mapping->writeback_index; /* prev offset */
3085                 end = -1;
3086         } else {
3087                 index = wbc->range_start >> PAGE_SHIFT;
3088                 end = wbc->range_end >> PAGE_SHIFT;
3089                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3090                         range_whole = 1;
3091         }
3092         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3093                 tag = PAGECACHE_TAG_TOWRITE;
3094         else
3095                 tag = PAGECACHE_TAG_DIRTY;
3096 retry:
3097         retry = 0;
3098         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3099                 tag_pages_for_writeback(mapping, index, end);
3100         done_index = index;
3101         while (!done && !retry && (index <= end)) {
3102                 nr_pages = 0;
3103 again:
3104                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3105                                 tag, &fbatch);
3106                 if (nr_folios == 0) {
3107                         if (nr_pages)
3108                                 goto write;
3109                         break;
3110                 }
3111
3112                 for (i = 0; i < nr_folios; i++) {
3113                         struct folio *folio = fbatch.folios[i];
3114
3115                         idx = 0;
3116                         p = folio_nr_pages(folio);
3117 add_more:
3118                         pages[nr_pages] = folio_page(folio, idx);
3119                         folio_get(folio);
3120                         if (++nr_pages == max_pages) {
3121                                 index = folio->index + idx + 1;
3122                                 folio_batch_release(&fbatch);
3123                                 goto write;
3124                         }
3125                         if (++idx < p)
3126                                 goto add_more;
3127                 }
3128                 folio_batch_release(&fbatch);
3129                 goto again;
3130 write:
3131                 for (i = 0; i < nr_pages; i++) {
3132                         struct page *page = pages[i];
3133                         struct folio *folio = page_folio(page);
3134                         bool need_readd;
3135 readd:
3136                         need_readd = false;
3137 #ifdef CONFIG_F2FS_FS_COMPRESSION
3138                         if (f2fs_compressed_file(inode)) {
3139                                 void *fsdata = NULL;
3140                                 struct page *pagep;
3141                                 int ret2;
3142
3143                                 ret = f2fs_init_compress_ctx(&cc);
3144                                 if (ret) {
3145                                         done = 1;
3146                                         break;
3147                                 }
3148
3149                                 if (!f2fs_cluster_can_merge_page(&cc,
3150                                                                 folio->index)) {
3151                                         ret = f2fs_write_multi_pages(&cc,
3152                                                 &submitted, wbc, io_type);
3153                                         if (!ret)
3154                                                 need_readd = true;
3155                                         goto result;
3156                                 }
3157
3158                                 if (unlikely(f2fs_cp_error(sbi)))
3159                                         goto lock_folio;
3160
3161                                 if (!f2fs_cluster_is_empty(&cc))
3162                                         goto lock_folio;
3163
3164                                 if (f2fs_all_cluster_page_ready(&cc,
3165                                         pages, i, nr_pages, true))
3166                                         goto lock_folio;
3167
3168                                 ret2 = f2fs_prepare_compress_overwrite(
3169                                                         inode, &pagep,
3170                                                         folio->index, &fsdata);
3171                                 if (ret2 < 0) {
3172                                         ret = ret2;
3173                                         done = 1;
3174                                         break;
3175                                 } else if (ret2 &&
3176                                         (!f2fs_compress_write_end(inode,
3177                                                 fsdata, folio->index, 1) ||
3178                                          !f2fs_all_cluster_page_ready(&cc,
3179                                                 pages, i, nr_pages,
3180                                                 false))) {
3181                                         retry = 1;
3182                                         break;
3183                                 }
3184                         }
3185 #endif
3186                         /* give a priority to WB_SYNC threads */
3187                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3188                                         wbc->sync_mode == WB_SYNC_NONE) {
3189                                 done = 1;
3190                                 break;
3191                         }
3192 #ifdef CONFIG_F2FS_FS_COMPRESSION
3193 lock_folio:
3194 #endif
3195                         done_index = folio->index;
3196 retry_write:
3197                         folio_lock(folio);
3198
3199                         if (unlikely(folio->mapping != mapping)) {
3200 continue_unlock:
3201                                 folio_unlock(folio);
3202                                 continue;
3203                         }
3204
3205                         if (!folio_test_dirty(folio)) {
3206                                 /* someone wrote it for us */
3207                                 goto continue_unlock;
3208                         }
3209
3210                         if (folio_test_writeback(folio)) {
3211                                 if (wbc->sync_mode == WB_SYNC_NONE)
3212                                         goto continue_unlock;
3213                                 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3214                         }
3215
3216                         if (!folio_clear_dirty_for_io(folio))
3217                                 goto continue_unlock;
3218
3219 #ifdef CONFIG_F2FS_FS_COMPRESSION
3220                         if (f2fs_compressed_file(inode)) {
3221                                 folio_get(folio);
3222                                 f2fs_compress_ctx_add_page(&cc, &folio->page);
3223                                 continue;
3224                         }
3225 #endif
3226                         ret = f2fs_write_single_data_page(&folio->page,
3227                                         &submitted, &bio, &last_block,
3228                                         wbc, io_type, 0, true);
3229                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3230                                 folio_unlock(folio);
3231 #ifdef CONFIG_F2FS_FS_COMPRESSION
3232 result:
3233 #endif
3234                         nwritten += submitted;
3235                         wbc->nr_to_write -= submitted;
3236
3237                         if (unlikely(ret)) {
3238                                 /*
3239                                  * keep nr_to_write, since vfs uses this to
3240                                  * get # of written pages.
3241                                  */
3242                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3243                                         ret = 0;
3244                                         goto next;
3245                                 } else if (ret == -EAGAIN) {
3246                                         ret = 0;
3247                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3248                                                 f2fs_io_schedule_timeout(
3249                                                         DEFAULT_IO_TIMEOUT);
3250                                                 goto retry_write;
3251                                         }
3252                                         goto next;
3253                                 }
3254                                 done_index = folio_next_index(folio);
3255                                 done = 1;
3256                                 break;
3257                         }
3258
3259                         if (wbc->nr_to_write <= 0 &&
3260                                         wbc->sync_mode == WB_SYNC_NONE) {
3261                                 done = 1;
3262                                 break;
3263                         }
3264 next:
3265                         if (need_readd)
3266                                 goto readd;
3267                 }
3268                 release_pages(pages, nr_pages);
3269                 cond_resched();
3270         }
3271 #ifdef CONFIG_F2FS_FS_COMPRESSION
3272         /* flush remained pages in compress cluster */
3273         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3274                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3275                 nwritten += submitted;
3276                 wbc->nr_to_write -= submitted;
3277                 if (ret) {
3278                         done = 1;
3279                         retry = 0;
3280                 }
3281         }
3282         if (f2fs_compressed_file(inode))
3283                 f2fs_destroy_compress_ctx(&cc, false);
3284 #endif
3285         if (retry) {
3286                 index = 0;
3287                 end = -1;
3288                 goto retry;
3289         }
3290         if (wbc->range_cyclic && !done)
3291                 done_index = 0;
3292         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3293                 mapping->writeback_index = done_index;
3294
3295         if (nwritten)
3296                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3297                                                                 NULL, 0, DATA);
3298         /* submit cached bio of IPU write */
3299         if (bio)
3300                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3301
3302 #ifdef CONFIG_F2FS_FS_COMPRESSION
3303         if (pages != pages_local)
3304                 kfree(pages);
3305 #endif
3306
3307         return ret;
3308 }
3309
3310 static inline bool __should_serialize_io(struct inode *inode,
3311                                         struct writeback_control *wbc)
3312 {
3313         /* to avoid deadlock in path of data flush */
3314         if (F2FS_I(inode)->wb_task)
3315                 return false;
3316
3317         if (!S_ISREG(inode->i_mode))
3318                 return false;
3319         if (IS_NOQUOTA(inode))
3320                 return false;
3321
3322         if (f2fs_need_compress_data(inode))
3323                 return true;
3324         if (wbc->sync_mode != WB_SYNC_ALL)
3325                 return true;
3326         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3327                 return true;
3328         return false;
3329 }
3330
3331 static int __f2fs_write_data_pages(struct address_space *mapping,
3332                                                 struct writeback_control *wbc,
3333                                                 enum iostat_type io_type)
3334 {
3335         struct inode *inode = mapping->host;
3336         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3337         struct blk_plug plug;
3338         int ret;
3339         bool locked = false;
3340
3341         /* deal with chardevs and other special file */
3342         if (!mapping->a_ops->writepage)
3343                 return 0;
3344
3345         /* skip writing if there is no dirty page in this inode */
3346         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3347                 return 0;
3348
3349         /* during POR, we don't need to trigger writepage at all. */
3350         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3351                 goto skip_write;
3352
3353         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3354                         wbc->sync_mode == WB_SYNC_NONE &&
3355                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3356                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3357                 goto skip_write;
3358
3359         /* skip writing in file defragment preparing stage */
3360         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3361                 goto skip_write;
3362
3363         trace_f2fs_writepages(mapping->host, wbc, DATA);
3364
3365         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3366         if (wbc->sync_mode == WB_SYNC_ALL)
3367                 atomic_inc(&sbi->wb_sync_req[DATA]);
3368         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3369                 /* to avoid potential deadlock */
3370                 if (current->plug)
3371                         blk_finish_plug(current->plug);
3372                 goto skip_write;
3373         }
3374
3375         if (__should_serialize_io(inode, wbc)) {
3376                 mutex_lock(&sbi->writepages);
3377                 locked = true;
3378         }
3379
3380         blk_start_plug(&plug);
3381         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3382         blk_finish_plug(&plug);
3383
3384         if (locked)
3385                 mutex_unlock(&sbi->writepages);
3386
3387         if (wbc->sync_mode == WB_SYNC_ALL)
3388                 atomic_dec(&sbi->wb_sync_req[DATA]);
3389         /*
3390          * if some pages were truncated, we cannot guarantee its mapping->host
3391          * to detect pending bios.
3392          */
3393
3394         f2fs_remove_dirty_inode(inode);
3395         return ret;
3396
3397 skip_write:
3398         wbc->pages_skipped += get_dirty_pages(inode);
3399         trace_f2fs_writepages(mapping->host, wbc, DATA);
3400         return 0;
3401 }
3402
3403 static int f2fs_write_data_pages(struct address_space *mapping,
3404                             struct writeback_control *wbc)
3405 {
3406         struct inode *inode = mapping->host;
3407
3408         return __f2fs_write_data_pages(mapping, wbc,
3409                         F2FS_I(inode)->cp_task == current ?
3410                         FS_CP_DATA_IO : FS_DATA_IO);
3411 }
3412
3413 void f2fs_write_failed(struct inode *inode, loff_t to)
3414 {
3415         loff_t i_size = i_size_read(inode);
3416
3417         if (IS_NOQUOTA(inode))
3418                 return;
3419
3420         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3421         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3422                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3423                 filemap_invalidate_lock(inode->i_mapping);
3424
3425                 truncate_pagecache(inode, i_size);
3426                 f2fs_truncate_blocks(inode, i_size, true);
3427
3428                 filemap_invalidate_unlock(inode->i_mapping);
3429                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3430         }
3431 }
3432
3433 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3434                         struct page *page, loff_t pos, unsigned len,
3435                         block_t *blk_addr, bool *node_changed)
3436 {
3437         struct inode *inode = page->mapping->host;
3438         pgoff_t index = page->index;
3439         struct dnode_of_data dn;
3440         struct page *ipage;
3441         bool locked = false;
3442         int flag = F2FS_GET_BLOCK_PRE_AIO;
3443         int err = 0;
3444
3445         /*
3446          * If a whole page is being written and we already preallocated all the
3447          * blocks, then there is no need to get a block address now.
3448          */
3449         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3450                 return 0;
3451
3452         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3453         if (f2fs_has_inline_data(inode)) {
3454                 if (pos + len > MAX_INLINE_DATA(inode))
3455                         flag = F2FS_GET_BLOCK_DEFAULT;
3456                 f2fs_map_lock(sbi, flag);
3457                 locked = true;
3458         } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3459                 f2fs_map_lock(sbi, flag);
3460                 locked = true;
3461         }
3462
3463 restart:
3464         /* check inline_data */
3465         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3466         if (IS_ERR(ipage)) {
3467                 err = PTR_ERR(ipage);
3468                 goto unlock_out;
3469         }
3470
3471         set_new_dnode(&dn, inode, ipage, ipage, 0);
3472
3473         if (f2fs_has_inline_data(inode)) {
3474                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3475                         f2fs_do_read_inline_data(page, ipage);
3476                         set_inode_flag(inode, FI_DATA_EXIST);
3477                         if (inode->i_nlink)
3478                                 set_page_private_inline(ipage);
3479                         goto out;
3480                 }
3481                 err = f2fs_convert_inline_page(&dn, page);
3482                 if (err || dn.data_blkaddr != NULL_ADDR)
3483                         goto out;
3484         }
3485
3486         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3487                                                  &dn.data_blkaddr)) {
3488                 if (locked) {
3489                         err = f2fs_reserve_block(&dn, index);
3490                         goto out;
3491                 }
3492
3493                 /* hole case */
3494                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3495                 if (!err && dn.data_blkaddr != NULL_ADDR)
3496                         goto out;
3497                 f2fs_put_dnode(&dn);
3498                 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3499                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3500                 locked = true;
3501                 goto restart;
3502         }
3503 out:
3504         if (!err) {
3505                 /* convert_inline_page can make node_changed */
3506                 *blk_addr = dn.data_blkaddr;
3507                 *node_changed = dn.node_changed;
3508         }
3509         f2fs_put_dnode(&dn);
3510 unlock_out:
3511         if (locked)
3512                 f2fs_map_unlock(sbi, flag);
3513         return err;
3514 }
3515
3516 static int __find_data_block(struct inode *inode, pgoff_t index,
3517                                 block_t *blk_addr)
3518 {
3519         struct dnode_of_data dn;
3520         struct page *ipage;
3521         int err = 0;
3522
3523         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3524         if (IS_ERR(ipage))
3525                 return PTR_ERR(ipage);
3526
3527         set_new_dnode(&dn, inode, ipage, ipage, 0);
3528
3529         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3530                                                  &dn.data_blkaddr)) {
3531                 /* hole case */
3532                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3533                 if (err) {
3534                         dn.data_blkaddr = NULL_ADDR;
3535                         err = 0;
3536                 }
3537         }
3538         *blk_addr = dn.data_blkaddr;
3539         f2fs_put_dnode(&dn);
3540         return err;
3541 }
3542
3543 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3544                                 block_t *blk_addr, bool *node_changed)
3545 {
3546         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3547         struct dnode_of_data dn;
3548         struct page *ipage;
3549         int err = 0;
3550
3551         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3552
3553         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3554         if (IS_ERR(ipage)) {
3555                 err = PTR_ERR(ipage);
3556                 goto unlock_out;
3557         }
3558         set_new_dnode(&dn, inode, ipage, ipage, 0);
3559
3560         if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3561                                                 &dn.data_blkaddr))
3562                 err = f2fs_reserve_block(&dn, index);
3563
3564         *blk_addr = dn.data_blkaddr;
3565         *node_changed = dn.node_changed;
3566         f2fs_put_dnode(&dn);
3567
3568 unlock_out:
3569         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3570         return err;
3571 }
3572
3573 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3574                         struct page *page, loff_t pos, unsigned int len,
3575                         block_t *blk_addr, bool *node_changed, bool *use_cow)
3576 {
3577         struct inode *inode = page->mapping->host;
3578         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3579         pgoff_t index = page->index;
3580         int err = 0;
3581         block_t ori_blk_addr = NULL_ADDR;
3582
3583         /* If pos is beyond the end of file, reserve a new block in COW inode */
3584         if ((pos & PAGE_MASK) >= i_size_read(inode))
3585                 goto reserve_block;
3586
3587         /* Look for the block in COW inode first */
3588         err = __find_data_block(cow_inode, index, blk_addr);
3589         if (err) {
3590                 return err;
3591         } else if (*blk_addr != NULL_ADDR) {
3592                 *use_cow = true;
3593                 return 0;
3594         }
3595
3596         if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3597                 goto reserve_block;
3598
3599         /* Look for the block in the original inode */
3600         err = __find_data_block(inode, index, &ori_blk_addr);
3601         if (err)
3602                 return err;
3603
3604 reserve_block:
3605         /* Finally, we should reserve a new block in COW inode for the update */
3606         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3607         if (err)
3608                 return err;
3609         inc_atomic_write_cnt(inode);
3610
3611         if (ori_blk_addr != NULL_ADDR)
3612                 *blk_addr = ori_blk_addr;
3613         return 0;
3614 }
3615
3616 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3617                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3618 {
3619         struct inode *inode = mapping->host;
3620         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3621         struct page *page = NULL;
3622         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3623         bool need_balance = false;
3624         bool use_cow = false;
3625         block_t blkaddr = NULL_ADDR;
3626         int err = 0;
3627
3628         trace_f2fs_write_begin(inode, pos, len);
3629
3630         if (!f2fs_is_checkpoint_ready(sbi)) {
3631                 err = -ENOSPC;
3632                 goto fail;
3633         }
3634
3635         /*
3636          * We should check this at this moment to avoid deadlock on inode page
3637          * and #0 page. The locking rule for inline_data conversion should be:
3638          * lock_page(page #0) -> lock_page(inode_page)
3639          */
3640         if (index != 0) {
3641                 err = f2fs_convert_inline_inode(inode);
3642                 if (err)
3643                         goto fail;
3644         }
3645
3646 #ifdef CONFIG_F2FS_FS_COMPRESSION
3647         if (f2fs_compressed_file(inode)) {
3648                 int ret;
3649
3650                 *fsdata = NULL;
3651
3652                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3653                         goto repeat;
3654
3655                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3656                                                         index, fsdata);
3657                 if (ret < 0) {
3658                         err = ret;
3659                         goto fail;
3660                 } else if (ret) {
3661                         return 0;
3662                 }
3663         }
3664 #endif
3665
3666 repeat:
3667         /*
3668          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3669          * wait_for_stable_page. Will wait that below with our IO control.
3670          */
3671         page = f2fs_pagecache_get_page(mapping, index,
3672                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3673         if (!page) {
3674                 err = -ENOMEM;
3675                 goto fail;
3676         }
3677
3678         /* TODO: cluster can be compressed due to race with .writepage */
3679
3680         *pagep = page;
3681
3682         if (f2fs_is_atomic_file(inode))
3683                 err = prepare_atomic_write_begin(sbi, page, pos, len,
3684                                         &blkaddr, &need_balance, &use_cow);
3685         else
3686                 err = prepare_write_begin(sbi, page, pos, len,
3687                                         &blkaddr, &need_balance);
3688         if (err)
3689                 goto fail;
3690
3691         if (need_balance && !IS_NOQUOTA(inode) &&
3692                         has_not_enough_free_secs(sbi, 0, 0)) {
3693                 unlock_page(page);
3694                 f2fs_balance_fs(sbi, true);
3695                 lock_page(page);
3696                 if (page->mapping != mapping) {
3697                         /* The page got truncated from under us */
3698                         f2fs_put_page(page, 1);
3699                         goto repeat;
3700                 }
3701         }
3702
3703         f2fs_wait_on_page_writeback(page, DATA, false, true);
3704
3705         if (len == PAGE_SIZE || PageUptodate(page))
3706                 return 0;
3707
3708         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3709             !f2fs_verity_in_progress(inode)) {
3710                 zero_user_segment(page, len, PAGE_SIZE);
3711                 return 0;
3712         }
3713
3714         if (blkaddr == NEW_ADDR) {
3715                 zero_user_segment(page, 0, PAGE_SIZE);
3716                 SetPageUptodate(page);
3717         } else {
3718                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3719                                 DATA_GENERIC_ENHANCE_READ)) {
3720                         err = -EFSCORRUPTED;
3721                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3722                         goto fail;
3723                 }
3724                 err = f2fs_submit_page_read(use_cow ?
3725                                 F2FS_I(inode)->cow_inode : inode, page,
3726                                 blkaddr, 0, true);
3727                 if (err)
3728                         goto fail;
3729
3730                 lock_page(page);
3731                 if (unlikely(page->mapping != mapping)) {
3732                         f2fs_put_page(page, 1);
3733                         goto repeat;
3734                 }
3735                 if (unlikely(!PageUptodate(page))) {
3736                         err = -EIO;
3737                         goto fail;
3738                 }
3739         }
3740         return 0;
3741
3742 fail:
3743         f2fs_put_page(page, 1);
3744         f2fs_write_failed(inode, pos + len);
3745         return err;
3746 }
3747
3748 static int f2fs_write_end(struct file *file,
3749                         struct address_space *mapping,
3750                         loff_t pos, unsigned len, unsigned copied,
3751                         struct page *page, void *fsdata)
3752 {
3753         struct inode *inode = page->mapping->host;
3754
3755         trace_f2fs_write_end(inode, pos, len, copied);
3756
3757         /*
3758          * This should be come from len == PAGE_SIZE, and we expect copied
3759          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3760          * let generic_perform_write() try to copy data again through copied=0.
3761          */
3762         if (!PageUptodate(page)) {
3763                 if (unlikely(copied != len))
3764                         copied = 0;
3765                 else
3766                         SetPageUptodate(page);
3767         }
3768
3769 #ifdef CONFIG_F2FS_FS_COMPRESSION
3770         /* overwrite compressed file */
3771         if (f2fs_compressed_file(inode) && fsdata) {
3772                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3773                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3774
3775                 if (pos + copied > i_size_read(inode) &&
3776                                 !f2fs_verity_in_progress(inode))
3777                         f2fs_i_size_write(inode, pos + copied);
3778                 return copied;
3779         }
3780 #endif
3781
3782         if (!copied)
3783                 goto unlock_out;
3784
3785         set_page_dirty(page);
3786
3787         if (pos + copied > i_size_read(inode) &&
3788             !f2fs_verity_in_progress(inode)) {
3789                 f2fs_i_size_write(inode, pos + copied);
3790                 if (f2fs_is_atomic_file(inode))
3791                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3792                                         pos + copied);
3793         }
3794 unlock_out:
3795         f2fs_put_page(page, 1);
3796         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3797         return copied;
3798 }
3799
3800 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3801 {
3802         struct inode *inode = folio->mapping->host;
3803         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3804
3805         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3806                                 (offset || length != folio_size(folio)))
3807                 return;
3808
3809         if (folio_test_dirty(folio)) {
3810                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3811                         dec_page_count(sbi, F2FS_DIRTY_META);
3812                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3813                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3814                 } else {
3815                         inode_dec_dirty_pages(inode);
3816                         f2fs_remove_dirty_inode(inode);
3817                 }
3818         }
3819         clear_page_private_all(&folio->page);
3820 }
3821
3822 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3823 {
3824         /* If this is dirty folio, keep private data */
3825         if (folio_test_dirty(folio))
3826                 return false;
3827
3828         clear_page_private_all(&folio->page);
3829         return true;
3830 }
3831
3832 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3833                 struct folio *folio)
3834 {
3835         struct inode *inode = mapping->host;
3836
3837         trace_f2fs_set_page_dirty(&folio->page, DATA);
3838
3839         if (!folio_test_uptodate(folio))
3840                 folio_mark_uptodate(folio);
3841         BUG_ON(folio_test_swapcache(folio));
3842
3843         if (filemap_dirty_folio(mapping, folio)) {
3844                 f2fs_update_dirty_folio(inode, folio);
3845                 return true;
3846         }
3847         return false;
3848 }
3849
3850
3851 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3852 {
3853 #ifdef CONFIG_F2FS_FS_COMPRESSION
3854         struct dnode_of_data dn;
3855         sector_t start_idx, blknr = 0;
3856         int ret;
3857
3858         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3859
3860         set_new_dnode(&dn, inode, NULL, NULL, 0);
3861         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3862         if (ret)
3863                 return 0;
3864
3865         if (dn.data_blkaddr != COMPRESS_ADDR) {
3866                 dn.ofs_in_node += block - start_idx;
3867                 blknr = f2fs_data_blkaddr(&dn);
3868                 if (!__is_valid_data_blkaddr(blknr))
3869                         blknr = 0;
3870         }
3871
3872         f2fs_put_dnode(&dn);
3873         return blknr;
3874 #else
3875         return 0;
3876 #endif
3877 }
3878
3879
3880 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3881 {
3882         struct inode *inode = mapping->host;
3883         sector_t blknr = 0;
3884
3885         if (f2fs_has_inline_data(inode))
3886                 goto out;
3887
3888         /* make sure allocating whole blocks */
3889         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3890                 filemap_write_and_wait(mapping);
3891
3892         /* Block number less than F2FS MAX BLOCKS */
3893         if (unlikely(block >= max_file_blocks(inode)))
3894                 goto out;
3895
3896         if (f2fs_compressed_file(inode)) {
3897                 blknr = f2fs_bmap_compress(inode, block);
3898         } else {
3899                 struct f2fs_map_blocks map;
3900
3901                 memset(&map, 0, sizeof(map));
3902                 map.m_lblk = block;
3903                 map.m_len = 1;
3904                 map.m_next_pgofs = NULL;
3905                 map.m_seg_type = NO_CHECK_TYPE;
3906
3907                 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3908                         blknr = map.m_pblk;
3909         }
3910 out:
3911         trace_f2fs_bmap(inode, block, blknr);
3912         return blknr;
3913 }
3914
3915 #ifdef CONFIG_SWAP
3916 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3917                                                         unsigned int blkcnt)
3918 {
3919         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3920         unsigned int blkofs;
3921         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3922         unsigned int secidx = start_blk / blk_per_sec;
3923         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3924         int ret = 0;
3925
3926         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3927         filemap_invalidate_lock(inode->i_mapping);
3928
3929         set_inode_flag(inode, FI_ALIGNED_WRITE);
3930         set_inode_flag(inode, FI_OPU_WRITE);
3931
3932         for (; secidx < end_sec; secidx++) {
3933                 f2fs_down_write(&sbi->pin_sem);
3934
3935                 f2fs_lock_op(sbi);
3936                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3937                 f2fs_unlock_op(sbi);
3938
3939                 set_inode_flag(inode, FI_SKIP_WRITES);
3940
3941                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3942                         struct page *page;
3943                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3944
3945                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3946                         if (IS_ERR(page)) {
3947                                 f2fs_up_write(&sbi->pin_sem);
3948                                 ret = PTR_ERR(page);
3949                                 goto done;
3950                         }
3951
3952                         set_page_dirty(page);
3953                         f2fs_put_page(page, 1);
3954                 }
3955
3956                 clear_inode_flag(inode, FI_SKIP_WRITES);
3957
3958                 ret = filemap_fdatawrite(inode->i_mapping);
3959
3960                 f2fs_up_write(&sbi->pin_sem);
3961
3962                 if (ret)
3963                         break;
3964         }
3965
3966 done:
3967         clear_inode_flag(inode, FI_SKIP_WRITES);
3968         clear_inode_flag(inode, FI_OPU_WRITE);
3969         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3970
3971         filemap_invalidate_unlock(inode->i_mapping);
3972         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3973
3974         return ret;
3975 }
3976
3977 static int check_swap_activate(struct swap_info_struct *sis,
3978                                 struct file *swap_file, sector_t *span)
3979 {
3980         struct address_space *mapping = swap_file->f_mapping;
3981         struct inode *inode = mapping->host;
3982         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3983         sector_t cur_lblock;
3984         sector_t last_lblock;
3985         sector_t pblock;
3986         sector_t lowest_pblock = -1;
3987         sector_t highest_pblock = 0;
3988         int nr_extents = 0;
3989         unsigned long nr_pblocks;
3990         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3991         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3992         unsigned int not_aligned = 0;
3993         int ret = 0;
3994
3995         /*
3996          * Map all the blocks into the extent list.  This code doesn't try
3997          * to be very smart.
3998          */
3999         cur_lblock = 0;
4000         last_lblock = bytes_to_blks(inode, i_size_read(inode));
4001
4002         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4003                 struct f2fs_map_blocks map;
4004 retry:
4005                 cond_resched();
4006
4007                 memset(&map, 0, sizeof(map));
4008                 map.m_lblk = cur_lblock;
4009                 map.m_len = last_lblock - cur_lblock;
4010                 map.m_next_pgofs = NULL;
4011                 map.m_next_extent = NULL;
4012                 map.m_seg_type = NO_CHECK_TYPE;
4013                 map.m_may_create = false;
4014
4015                 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
4016                 if (ret)
4017                         goto out;
4018
4019                 /* hole */
4020                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4021                         f2fs_err(sbi, "Swapfile has holes");
4022                         ret = -EINVAL;
4023                         goto out;
4024                 }
4025
4026                 pblock = map.m_pblk;
4027                 nr_pblocks = map.m_len;
4028
4029                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4030                                 nr_pblocks & sec_blks_mask) {
4031                         not_aligned++;
4032
4033                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4034                         if (cur_lblock + nr_pblocks > sis->max)
4035                                 nr_pblocks -= blks_per_sec;
4036
4037                         if (!nr_pblocks) {
4038                                 /* this extent is last one */
4039                                 nr_pblocks = map.m_len;
4040                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4041                                 goto next;
4042                         }
4043
4044                         ret = f2fs_migrate_blocks(inode, cur_lblock,
4045                                                         nr_pblocks);
4046                         if (ret)
4047                                 goto out;
4048                         goto retry;
4049                 }
4050 next:
4051                 if (cur_lblock + nr_pblocks >= sis->max)
4052                         nr_pblocks = sis->max - cur_lblock;
4053
4054                 if (cur_lblock) {       /* exclude the header page */
4055                         if (pblock < lowest_pblock)
4056                                 lowest_pblock = pblock;
4057                         if (pblock + nr_pblocks - 1 > highest_pblock)
4058                                 highest_pblock = pblock + nr_pblocks - 1;
4059                 }
4060
4061                 /*
4062                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4063                  */
4064                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4065                 if (ret < 0)
4066                         goto out;
4067                 nr_extents += ret;
4068                 cur_lblock += nr_pblocks;
4069         }
4070         ret = nr_extents;
4071         *span = 1 + highest_pblock - lowest_pblock;
4072         if (cur_lblock == 0)
4073                 cur_lblock = 1; /* force Empty message */
4074         sis->max = cur_lblock;
4075         sis->pages = cur_lblock - 1;
4076         sis->highest_bit = cur_lblock - 1;
4077 out:
4078         if (not_aligned)
4079                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4080                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4081         return ret;
4082 }
4083
4084 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4085                                 sector_t *span)
4086 {
4087         struct inode *inode = file_inode(file);
4088         int ret;
4089
4090         if (!S_ISREG(inode->i_mode))
4091                 return -EINVAL;
4092
4093         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4094                 return -EROFS;
4095
4096         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4097                 f2fs_err(F2FS_I_SB(inode),
4098                         "Swapfile not supported in LFS mode");
4099                 return -EINVAL;
4100         }
4101
4102         ret = f2fs_convert_inline_inode(inode);
4103         if (ret)
4104                 return ret;
4105
4106         if (!f2fs_disable_compressed_file(inode))
4107                 return -EINVAL;
4108
4109         f2fs_precache_extents(inode);
4110
4111         ret = check_swap_activate(sis, file, span);
4112         if (ret < 0)
4113                 return ret;
4114
4115         stat_inc_swapfile_inode(inode);
4116         set_inode_flag(inode, FI_PIN_FILE);
4117         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4118         return ret;
4119 }
4120
4121 static void f2fs_swap_deactivate(struct file *file)
4122 {
4123         struct inode *inode = file_inode(file);
4124
4125         stat_dec_swapfile_inode(inode);
4126         clear_inode_flag(inode, FI_PIN_FILE);
4127 }
4128 #else
4129 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4130                                 sector_t *span)
4131 {
4132         return -EOPNOTSUPP;
4133 }
4134
4135 static void f2fs_swap_deactivate(struct file *file)
4136 {
4137 }
4138 #endif
4139
4140 const struct address_space_operations f2fs_dblock_aops = {
4141         .read_folio     = f2fs_read_data_folio,
4142         .readahead      = f2fs_readahead,
4143         .writepage      = f2fs_write_data_page,
4144         .writepages     = f2fs_write_data_pages,
4145         .write_begin    = f2fs_write_begin,
4146         .write_end      = f2fs_write_end,
4147         .dirty_folio    = f2fs_dirty_data_folio,
4148         .migrate_folio  = filemap_migrate_folio,
4149         .invalidate_folio = f2fs_invalidate_folio,
4150         .release_folio  = f2fs_release_folio,
4151         .bmap           = f2fs_bmap,
4152         .swap_activate  = f2fs_swap_activate,
4153         .swap_deactivate = f2fs_swap_deactivate,
4154 };
4155
4156 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4157 {
4158         struct address_space *mapping = page_mapping(page);
4159         unsigned long flags;
4160
4161         xa_lock_irqsave(&mapping->i_pages, flags);
4162         __xa_clear_mark(&mapping->i_pages, page_index(page),
4163                                                 PAGECACHE_TAG_DIRTY);
4164         xa_unlock_irqrestore(&mapping->i_pages, flags);
4165 }
4166
4167 int __init f2fs_init_post_read_processing(void)
4168 {
4169         bio_post_read_ctx_cache =
4170                 kmem_cache_create("f2fs_bio_post_read_ctx",
4171                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4172         if (!bio_post_read_ctx_cache)
4173                 goto fail;
4174         bio_post_read_ctx_pool =
4175                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4176                                          bio_post_read_ctx_cache);
4177         if (!bio_post_read_ctx_pool)
4178                 goto fail_free_cache;
4179         return 0;
4180
4181 fail_free_cache:
4182         kmem_cache_destroy(bio_post_read_ctx_cache);
4183 fail:
4184         return -ENOMEM;
4185 }
4186
4187 void f2fs_destroy_post_read_processing(void)
4188 {
4189         mempool_destroy(bio_post_read_ctx_pool);
4190         kmem_cache_destroy(bio_post_read_ctx_cache);
4191 }
4192
4193 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4194 {
4195         if (!f2fs_sb_has_encrypt(sbi) &&
4196                 !f2fs_sb_has_verity(sbi) &&
4197                 !f2fs_sb_has_compression(sbi))
4198                 return 0;
4199
4200         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4201                                                  WQ_UNBOUND | WQ_HIGHPRI,
4202                                                  num_online_cpus());
4203         return sbi->post_read_wq ? 0 : -ENOMEM;
4204 }
4205
4206 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4207 {
4208         if (sbi->post_read_wq)
4209                 destroy_workqueue(sbi->post_read_wq);
4210 }
4211
4212 int __init f2fs_init_bio_entry_cache(void)
4213 {
4214         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4215                         sizeof(struct bio_entry));
4216         return bio_entry_slab ? 0 : -ENOMEM;
4217 }
4218
4219 void f2fs_destroy_bio_entry_cache(void)
4220 {
4221         kmem_cache_destroy(bio_entry_slab);
4222 }
4223
4224 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4225                             unsigned int flags, struct iomap *iomap,
4226                             struct iomap *srcmap)
4227 {
4228         struct f2fs_map_blocks map = {};
4229         pgoff_t next_pgofs = 0;
4230         int err;
4231
4232         map.m_lblk = bytes_to_blks(inode, offset);
4233         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4234         map.m_next_pgofs = &next_pgofs;
4235         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4236         if (flags & IOMAP_WRITE)
4237                 map.m_may_create = true;
4238
4239         err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4240         if (err)
4241                 return err;
4242
4243         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4244
4245         /*
4246          * When inline encryption is enabled, sometimes I/O to an encrypted file
4247          * has to be broken up to guarantee DUN contiguity.  Handle this by
4248          * limiting the length of the mapping returned.
4249          */
4250         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4251
4252         /*
4253          * We should never see delalloc or compressed extents here based on
4254          * prior flushing and checks.
4255          */
4256         if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4257                 return -EINVAL;
4258         if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4259                 return -EINVAL;
4260
4261         if (map.m_pblk != NULL_ADDR) {
4262                 iomap->length = blks_to_bytes(inode, map.m_len);
4263                 iomap->type = IOMAP_MAPPED;
4264                 iomap->flags |= IOMAP_F_MERGED;
4265                 iomap->bdev = map.m_bdev;
4266                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4267         } else {
4268                 if (flags & IOMAP_WRITE)
4269                         return -ENOTBLK;
4270                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4271                                 iomap->offset;
4272                 iomap->type = IOMAP_HOLE;
4273                 iomap->addr = IOMAP_NULL_ADDR;
4274         }
4275
4276         if (map.m_flags & F2FS_MAP_NEW)
4277                 iomap->flags |= IOMAP_F_NEW;
4278         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4279             offset + length > i_size_read(inode))
4280                 iomap->flags |= IOMAP_F_DIRTY;
4281
4282         return 0;
4283 }
4284
4285 const struct iomap_ops f2fs_iomap_ops = {
4286         .iomap_begin    = f2fs_iomap_begin,
4287 };