GNU Linux-libre 6.9.1-gnu
[releases.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30                                                 unsigned char reason)
31 {
32         f2fs_build_fault_attr(sbi, 0, 0);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35         f2fs_handle_critical_error(sbi, reason, end_io);
36 }
37
38 /*
39  * We guarantee no failure on the returned page.
40  */
41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 {
43         struct address_space *mapping = META_MAPPING(sbi);
44         struct page *page;
45 repeat:
46         page = f2fs_grab_cache_page(mapping, index, false);
47         if (!page) {
48                 cond_resched();
49                 goto repeat;
50         }
51         f2fs_wait_on_page_writeback(page, META, true, true);
52         if (!PageUptodate(page))
53                 SetPageUptodate(page);
54         return page;
55 }
56
57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
58                                                         bool is_meta)
59 {
60         struct address_space *mapping = META_MAPPING(sbi);
61         struct page *page;
62         struct f2fs_io_info fio = {
63                 .sbi = sbi,
64                 .type = META,
65                 .op = REQ_OP_READ,
66                 .op_flags = REQ_META | REQ_PRIO,
67                 .old_blkaddr = index,
68                 .new_blkaddr = index,
69                 .encrypted_page = NULL,
70                 .is_por = !is_meta ? 1 : 0,
71         };
72         int err;
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         err = f2fs_submit_page_bio(&fio);
88         if (err) {
89                 f2fs_put_page(page, 1);
90                 return ERR_PTR(err);
91         }
92
93         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
94
95         lock_page(page);
96         if (unlikely(page->mapping != mapping)) {
97                 f2fs_put_page(page, 1);
98                 goto repeat;
99         }
100
101         if (unlikely(!PageUptodate(page))) {
102                 f2fs_handle_page_eio(sbi, page->index, META);
103                 f2fs_put_page(page, 1);
104                 return ERR_PTR(-EIO);
105         }
106 out:
107         return page;
108 }
109
110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112         return __get_meta_page(sbi, index, true);
113 }
114
115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         struct page *page;
118         int count = 0;
119
120 retry:
121         page = __get_meta_page(sbi, index, true);
122         if (IS_ERR(page)) {
123                 if (PTR_ERR(page) == -EIO &&
124                                 ++count <= DEFAULT_RETRY_IO_COUNT)
125                         goto retry;
126                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127         }
128         return page;
129 }
130
131 /* for POR only */
132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134         return __get_meta_page(sbi, index, false);
135 }
136
137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138                                                         int type)
139 {
140         struct seg_entry *se;
141         unsigned int segno, offset;
142         bool exist;
143
144         if (type == DATA_GENERIC)
145                 return true;
146
147         segno = GET_SEGNO(sbi, blkaddr);
148         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149         se = get_seg_entry(sbi, segno);
150
151         exist = f2fs_test_bit(offset, se->cur_valid_map);
152
153         /* skip data, if we already have an error in checkpoint. */
154         if (unlikely(f2fs_cp_error(sbi)))
155                 return exist;
156
157         if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158                 (!exist && type == DATA_GENERIC_ENHANCE))
159                 goto out_err;
160         if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161                 goto out_handle;
162         return exist;
163
164 out_err:
165         f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166                  blkaddr, exist);
167         set_sbi_flag(sbi, SBI_NEED_FSCK);
168         dump_stack();
169 out_handle:
170         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
171         return exist;
172 }
173
174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175                                         block_t blkaddr, int type)
176 {
177         switch (type) {
178         case META_NAT:
179                 break;
180         case META_SIT:
181                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182                         goto err;
183                 break;
184         case META_SSA:
185                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186                         blkaddr < SM_I(sbi)->ssa_blkaddr))
187                         goto err;
188                 break;
189         case META_CP:
190                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191                         blkaddr < __start_cp_addr(sbi)))
192                         goto err;
193                 break;
194         case META_POR:
195                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196                         blkaddr < MAIN_BLKADDR(sbi)))
197                         goto err;
198                 break;
199         case DATA_GENERIC:
200         case DATA_GENERIC_ENHANCE:
201         case DATA_GENERIC_ENHANCE_READ:
202         case DATA_GENERIC_ENHANCE_UPDATE:
203                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204                                 blkaddr < MAIN_BLKADDR(sbi))) {
205
206                         /* Skip to emit an error message. */
207                         if (unlikely(f2fs_cp_error(sbi)))
208                                 return false;
209
210                         f2fs_warn(sbi, "access invalid blkaddr:%u",
211                                   blkaddr);
212                         set_sbi_flag(sbi, SBI_NEED_FSCK);
213                         dump_stack();
214                         goto err;
215                 } else {
216                         return __is_bitmap_valid(sbi, blkaddr, type);
217                 }
218                 break;
219         case META_GENERIC:
220                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221                         blkaddr >= MAIN_BLKADDR(sbi)))
222                         goto err;
223                 break;
224         default:
225                 BUG();
226         }
227
228         return true;
229 err:
230         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
231         return false;
232 }
233
234 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
235                                         block_t blkaddr, int type)
236 {
237         if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
238                 return false;
239         return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
240 }
241
242 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
243                                         block_t blkaddr, int type)
244 {
245         return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
246 }
247
248 /*
249  * Readahead CP/NAT/SIT/SSA/POR pages
250  */
251 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
252                                                         int type, bool sync)
253 {
254         struct page *page;
255         block_t blkno = start;
256         struct f2fs_io_info fio = {
257                 .sbi = sbi,
258                 .type = META,
259                 .op = REQ_OP_READ,
260                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
261                 .encrypted_page = NULL,
262                 .in_list = 0,
263                 .is_por = (type == META_POR) ? 1 : 0,
264         };
265         struct blk_plug plug;
266         int err;
267
268         if (unlikely(type == META_POR))
269                 fio.op_flags &= ~REQ_META;
270
271         blk_start_plug(&plug);
272         for (; nrpages-- > 0; blkno++) {
273
274                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
275                         goto out;
276
277                 switch (type) {
278                 case META_NAT:
279                         if (unlikely(blkno >=
280                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
281                                 blkno = 0;
282                         /* get nat block addr */
283                         fio.new_blkaddr = current_nat_addr(sbi,
284                                         blkno * NAT_ENTRY_PER_BLOCK);
285                         break;
286                 case META_SIT:
287                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
288                                 goto out;
289                         /* get sit block addr */
290                         fio.new_blkaddr = current_sit_addr(sbi,
291                                         blkno * SIT_ENTRY_PER_BLOCK);
292                         break;
293                 case META_SSA:
294                 case META_CP:
295                 case META_POR:
296                         fio.new_blkaddr = blkno;
297                         break;
298                 default:
299                         BUG();
300                 }
301
302                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
303                                                 fio.new_blkaddr, false);
304                 if (!page)
305                         continue;
306                 if (PageUptodate(page)) {
307                         f2fs_put_page(page, 1);
308                         continue;
309                 }
310
311                 fio.page = page;
312                 err = f2fs_submit_page_bio(&fio);
313                 f2fs_put_page(page, err ? 1 : 0);
314
315                 if (!err)
316                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
317                                                         F2FS_BLKSIZE);
318         }
319 out:
320         blk_finish_plug(&plug);
321         return blkno - start;
322 }
323
324 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
325                                                         unsigned int ra_blocks)
326 {
327         struct page *page;
328         bool readahead = false;
329
330         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
331                 return;
332
333         page = find_get_page(META_MAPPING(sbi), index);
334         if (!page || !PageUptodate(page))
335                 readahead = true;
336         f2fs_put_page(page, 0);
337
338         if (readahead)
339                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
340 }
341
342 static int __f2fs_write_meta_page(struct page *page,
343                                 struct writeback_control *wbc,
344                                 enum iostat_type io_type)
345 {
346         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
347
348         trace_f2fs_writepage(page, META);
349
350         if (unlikely(f2fs_cp_error(sbi))) {
351                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
352                         ClearPageUptodate(page);
353                         dec_page_count(sbi, F2FS_DIRTY_META);
354                         unlock_page(page);
355                         return 0;
356                 }
357                 goto redirty_out;
358         }
359         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
360                 goto redirty_out;
361         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
362                 goto redirty_out;
363
364         f2fs_do_write_meta_page(sbi, page, io_type);
365         dec_page_count(sbi, F2FS_DIRTY_META);
366
367         if (wbc->for_reclaim)
368                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
369
370         unlock_page(page);
371
372         if (unlikely(f2fs_cp_error(sbi)))
373                 f2fs_submit_merged_write(sbi, META);
374
375         return 0;
376
377 redirty_out:
378         redirty_page_for_writepage(wbc, page);
379         return AOP_WRITEPAGE_ACTIVATE;
380 }
381
382 static int f2fs_write_meta_page(struct page *page,
383                                 struct writeback_control *wbc)
384 {
385         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
386 }
387
388 static int f2fs_write_meta_pages(struct address_space *mapping,
389                                 struct writeback_control *wbc)
390 {
391         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
392         long diff, written;
393
394         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
395                 goto skip_write;
396
397         /* collect a number of dirty meta pages and write together */
398         if (wbc->sync_mode != WB_SYNC_ALL &&
399                         get_pages(sbi, F2FS_DIRTY_META) <
400                                         nr_pages_to_skip(sbi, META))
401                 goto skip_write;
402
403         /* if locked failed, cp will flush dirty pages instead */
404         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
405                 goto skip_write;
406
407         trace_f2fs_writepages(mapping->host, wbc, META);
408         diff = nr_pages_to_write(sbi, META, wbc);
409         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
410         f2fs_up_write(&sbi->cp_global_sem);
411         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
412         return 0;
413
414 skip_write:
415         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
416         trace_f2fs_writepages(mapping->host, wbc, META);
417         return 0;
418 }
419
420 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
421                                 long nr_to_write, enum iostat_type io_type)
422 {
423         struct address_space *mapping = META_MAPPING(sbi);
424         pgoff_t index = 0, prev = ULONG_MAX;
425         struct folio_batch fbatch;
426         long nwritten = 0;
427         int nr_folios;
428         struct writeback_control wbc = {
429                 .for_reclaim = 0,
430         };
431         struct blk_plug plug;
432
433         folio_batch_init(&fbatch);
434
435         blk_start_plug(&plug);
436
437         while ((nr_folios = filemap_get_folios_tag(mapping, &index,
438                                         (pgoff_t)-1,
439                                         PAGECACHE_TAG_DIRTY, &fbatch))) {
440                 int i;
441
442                 for (i = 0; i < nr_folios; i++) {
443                         struct folio *folio = fbatch.folios[i];
444
445                         if (nr_to_write != LONG_MAX && i != 0 &&
446                                         folio->index != prev +
447                                         folio_nr_pages(fbatch.folios[i-1])) {
448                                 folio_batch_release(&fbatch);
449                                 goto stop;
450                         }
451
452                         folio_lock(folio);
453
454                         if (unlikely(folio->mapping != mapping)) {
455 continue_unlock:
456                                 folio_unlock(folio);
457                                 continue;
458                         }
459                         if (!folio_test_dirty(folio)) {
460                                 /* someone wrote it for us */
461                                 goto continue_unlock;
462                         }
463
464                         f2fs_wait_on_page_writeback(&folio->page, META,
465                                         true, true);
466
467                         if (!folio_clear_dirty_for_io(folio))
468                                 goto continue_unlock;
469
470                         if (__f2fs_write_meta_page(&folio->page, &wbc,
471                                                 io_type)) {
472                                 folio_unlock(folio);
473                                 break;
474                         }
475                         nwritten += folio_nr_pages(folio);
476                         prev = folio->index;
477                         if (unlikely(nwritten >= nr_to_write))
478                                 break;
479                 }
480                 folio_batch_release(&fbatch);
481                 cond_resched();
482         }
483 stop:
484         if (nwritten)
485                 f2fs_submit_merged_write(sbi, type);
486
487         blk_finish_plug(&plug);
488
489         return nwritten;
490 }
491
492 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
493                 struct folio *folio)
494 {
495         trace_f2fs_set_page_dirty(&folio->page, META);
496
497         if (!folio_test_uptodate(folio))
498                 folio_mark_uptodate(folio);
499         if (filemap_dirty_folio(mapping, folio)) {
500                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
501                 set_page_private_reference(&folio->page);
502                 return true;
503         }
504         return false;
505 }
506
507 const struct address_space_operations f2fs_meta_aops = {
508         .writepage      = f2fs_write_meta_page,
509         .writepages     = f2fs_write_meta_pages,
510         .dirty_folio    = f2fs_dirty_meta_folio,
511         .invalidate_folio = f2fs_invalidate_folio,
512         .release_folio  = f2fs_release_folio,
513         .migrate_folio  = filemap_migrate_folio,
514 };
515
516 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
517                                                 unsigned int devidx, int type)
518 {
519         struct inode_management *im = &sbi->im[type];
520         struct ino_entry *e = NULL, *new = NULL;
521
522         if (type == FLUSH_INO) {
523                 rcu_read_lock();
524                 e = radix_tree_lookup(&im->ino_root, ino);
525                 rcu_read_unlock();
526         }
527
528 retry:
529         if (!e)
530                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
531                                                 GFP_NOFS, true, NULL);
532
533         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
534
535         spin_lock(&im->ino_lock);
536         e = radix_tree_lookup(&im->ino_root, ino);
537         if (!e) {
538                 if (!new) {
539                         spin_unlock(&im->ino_lock);
540                         radix_tree_preload_end();
541                         goto retry;
542                 }
543                 e = new;
544                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
545                         f2fs_bug_on(sbi, 1);
546
547                 memset(e, 0, sizeof(struct ino_entry));
548                 e->ino = ino;
549
550                 list_add_tail(&e->list, &im->ino_list);
551                 if (type != ORPHAN_INO)
552                         im->ino_num++;
553         }
554
555         if (type == FLUSH_INO)
556                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
557
558         spin_unlock(&im->ino_lock);
559         radix_tree_preload_end();
560
561         if (new && e != new)
562                 kmem_cache_free(ino_entry_slab, new);
563 }
564
565 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
566 {
567         struct inode_management *im = &sbi->im[type];
568         struct ino_entry *e;
569
570         spin_lock(&im->ino_lock);
571         e = radix_tree_lookup(&im->ino_root, ino);
572         if (e) {
573                 list_del(&e->list);
574                 radix_tree_delete(&im->ino_root, ino);
575                 im->ino_num--;
576                 spin_unlock(&im->ino_lock);
577                 kmem_cache_free(ino_entry_slab, e);
578                 return;
579         }
580         spin_unlock(&im->ino_lock);
581 }
582
583 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
584 {
585         /* add new dirty ino entry into list */
586         __add_ino_entry(sbi, ino, 0, type);
587 }
588
589 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
590 {
591         /* remove dirty ino entry from list */
592         __remove_ino_entry(sbi, ino, type);
593 }
594
595 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
596 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
597 {
598         struct inode_management *im = &sbi->im[mode];
599         struct ino_entry *e;
600
601         spin_lock(&im->ino_lock);
602         e = radix_tree_lookup(&im->ino_root, ino);
603         spin_unlock(&im->ino_lock);
604         return e ? true : false;
605 }
606
607 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
608 {
609         struct ino_entry *e, *tmp;
610         int i;
611
612         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
613                 struct inode_management *im = &sbi->im[i];
614
615                 spin_lock(&im->ino_lock);
616                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
617                         list_del(&e->list);
618                         radix_tree_delete(&im->ino_root, e->ino);
619                         kmem_cache_free(ino_entry_slab, e);
620                         im->ino_num--;
621                 }
622                 spin_unlock(&im->ino_lock);
623         }
624 }
625
626 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
627                                         unsigned int devidx, int type)
628 {
629         __add_ino_entry(sbi, ino, devidx, type);
630 }
631
632 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
633                                         unsigned int devidx, int type)
634 {
635         struct inode_management *im = &sbi->im[type];
636         struct ino_entry *e;
637         bool is_dirty = false;
638
639         spin_lock(&im->ino_lock);
640         e = radix_tree_lookup(&im->ino_root, ino);
641         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
642                 is_dirty = true;
643         spin_unlock(&im->ino_lock);
644         return is_dirty;
645 }
646
647 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
648 {
649         struct inode_management *im = &sbi->im[ORPHAN_INO];
650         int err = 0;
651
652         spin_lock(&im->ino_lock);
653
654         if (time_to_inject(sbi, FAULT_ORPHAN)) {
655                 spin_unlock(&im->ino_lock);
656                 return -ENOSPC;
657         }
658
659         if (unlikely(im->ino_num >= sbi->max_orphans))
660                 err = -ENOSPC;
661         else
662                 im->ino_num++;
663         spin_unlock(&im->ino_lock);
664
665         return err;
666 }
667
668 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
669 {
670         struct inode_management *im = &sbi->im[ORPHAN_INO];
671
672         spin_lock(&im->ino_lock);
673         f2fs_bug_on(sbi, im->ino_num == 0);
674         im->ino_num--;
675         spin_unlock(&im->ino_lock);
676 }
677
678 void f2fs_add_orphan_inode(struct inode *inode)
679 {
680         /* add new orphan ino entry into list */
681         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
682         f2fs_update_inode_page(inode);
683 }
684
685 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
686 {
687         /* remove orphan entry from orphan list */
688         __remove_ino_entry(sbi, ino, ORPHAN_INO);
689 }
690
691 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
692 {
693         struct inode *inode;
694         struct node_info ni;
695         int err;
696
697         inode = f2fs_iget_retry(sbi->sb, ino);
698         if (IS_ERR(inode)) {
699                 /*
700                  * there should be a bug that we can't find the entry
701                  * to orphan inode.
702                  */
703                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
704                 return PTR_ERR(inode);
705         }
706
707         err = f2fs_dquot_initialize(inode);
708         if (err) {
709                 iput(inode);
710                 goto err_out;
711         }
712
713         clear_nlink(inode);
714
715         /* truncate all the data during iput */
716         iput(inode);
717
718         err = f2fs_get_node_info(sbi, ino, &ni, false);
719         if (err)
720                 goto err_out;
721
722         /* ENOMEM was fully retried in f2fs_evict_inode. */
723         if (ni.blk_addr != NULL_ADDR) {
724                 err = -EIO;
725                 goto err_out;
726         }
727         return 0;
728
729 err_out:
730         set_sbi_flag(sbi, SBI_NEED_FSCK);
731         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
732                   __func__, ino);
733         return err;
734 }
735
736 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
737 {
738         block_t start_blk, orphan_blocks, i, j;
739         int err = 0;
740
741         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
742                 return 0;
743
744         if (f2fs_hw_is_readonly(sbi)) {
745                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
746                 return 0;
747         }
748
749         if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
750                 f2fs_info(sbi, "orphan cleanup on readonly fs");
751
752         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
753         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
754
755         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
756
757         for (i = 0; i < orphan_blocks; i++) {
758                 struct page *page;
759                 struct f2fs_orphan_block *orphan_blk;
760
761                 page = f2fs_get_meta_page(sbi, start_blk + i);
762                 if (IS_ERR(page)) {
763                         err = PTR_ERR(page);
764                         goto out;
765                 }
766
767                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
768                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
769                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
770
771                         err = recover_orphan_inode(sbi, ino);
772                         if (err) {
773                                 f2fs_put_page(page, 1);
774                                 goto out;
775                         }
776                 }
777                 f2fs_put_page(page, 1);
778         }
779         /* clear Orphan Flag */
780         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
781 out:
782         set_sbi_flag(sbi, SBI_IS_RECOVERED);
783
784         return err;
785 }
786
787 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
788 {
789         struct list_head *head;
790         struct f2fs_orphan_block *orphan_blk = NULL;
791         unsigned int nentries = 0;
792         unsigned short index = 1;
793         unsigned short orphan_blocks;
794         struct page *page = NULL;
795         struct ino_entry *orphan = NULL;
796         struct inode_management *im = &sbi->im[ORPHAN_INO];
797
798         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
799
800         /*
801          * we don't need to do spin_lock(&im->ino_lock) here, since all the
802          * orphan inode operations are covered under f2fs_lock_op().
803          * And, spin_lock should be avoided due to page operations below.
804          */
805         head = &im->ino_list;
806
807         /* loop for each orphan inode entry and write them in journal block */
808         list_for_each_entry(orphan, head, list) {
809                 if (!page) {
810                         page = f2fs_grab_meta_page(sbi, start_blk++);
811                         orphan_blk =
812                                 (struct f2fs_orphan_block *)page_address(page);
813                         memset(orphan_blk, 0, sizeof(*orphan_blk));
814                 }
815
816                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
817
818                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
819                         /*
820                          * an orphan block is full of 1020 entries,
821                          * then we need to flush current orphan blocks
822                          * and bring another one in memory
823                          */
824                         orphan_blk->blk_addr = cpu_to_le16(index);
825                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
826                         orphan_blk->entry_count = cpu_to_le32(nentries);
827                         set_page_dirty(page);
828                         f2fs_put_page(page, 1);
829                         index++;
830                         nentries = 0;
831                         page = NULL;
832                 }
833         }
834
835         if (page) {
836                 orphan_blk->blk_addr = cpu_to_le16(index);
837                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
838                 orphan_blk->entry_count = cpu_to_le32(nentries);
839                 set_page_dirty(page);
840                 f2fs_put_page(page, 1);
841         }
842 }
843
844 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
845                                                 struct f2fs_checkpoint *ckpt)
846 {
847         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
848         __u32 chksum;
849
850         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
851         if (chksum_ofs < CP_CHKSUM_OFFSET) {
852                 chksum_ofs += sizeof(chksum);
853                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
854                                                 F2FS_BLKSIZE - chksum_ofs);
855         }
856         return chksum;
857 }
858
859 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
860                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
861                 unsigned long long *version)
862 {
863         size_t crc_offset = 0;
864         __u32 crc;
865
866         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
867         if (IS_ERR(*cp_page))
868                 return PTR_ERR(*cp_page);
869
870         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
871
872         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
873         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
874                         crc_offset > CP_CHKSUM_OFFSET) {
875                 f2fs_put_page(*cp_page, 1);
876                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
877                 return -EINVAL;
878         }
879
880         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
881         if (crc != cur_cp_crc(*cp_block)) {
882                 f2fs_put_page(*cp_page, 1);
883                 f2fs_warn(sbi, "invalid crc value");
884                 return -EINVAL;
885         }
886
887         *version = cur_cp_version(*cp_block);
888         return 0;
889 }
890
891 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
892                                 block_t cp_addr, unsigned long long *version)
893 {
894         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
895         struct f2fs_checkpoint *cp_block = NULL;
896         unsigned long long cur_version = 0, pre_version = 0;
897         unsigned int cp_blocks;
898         int err;
899
900         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
901                                         &cp_page_1, version);
902         if (err)
903                 return NULL;
904
905         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
906
907         if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
908                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
909                           le32_to_cpu(cp_block->cp_pack_total_block_count));
910                 goto invalid_cp;
911         }
912         pre_version = *version;
913
914         cp_addr += cp_blocks - 1;
915         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
916                                         &cp_page_2, version);
917         if (err)
918                 goto invalid_cp;
919         cur_version = *version;
920
921         if (cur_version == pre_version) {
922                 *version = cur_version;
923                 f2fs_put_page(cp_page_2, 1);
924                 return cp_page_1;
925         }
926         f2fs_put_page(cp_page_2, 1);
927 invalid_cp:
928         f2fs_put_page(cp_page_1, 1);
929         return NULL;
930 }
931
932 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
933 {
934         struct f2fs_checkpoint *cp_block;
935         struct f2fs_super_block *fsb = sbi->raw_super;
936         struct page *cp1, *cp2, *cur_page;
937         unsigned long blk_size = sbi->blocksize;
938         unsigned long long cp1_version = 0, cp2_version = 0;
939         unsigned long long cp_start_blk_no;
940         unsigned int cp_blks = 1 + __cp_payload(sbi);
941         block_t cp_blk_no;
942         int i;
943         int err;
944
945         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
946                                   GFP_KERNEL);
947         if (!sbi->ckpt)
948                 return -ENOMEM;
949         /*
950          * Finding out valid cp block involves read both
951          * sets( cp pack 1 and cp pack 2)
952          */
953         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
954         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
955
956         /* The second checkpoint pack should start at the next segment */
957         cp_start_blk_no += ((unsigned long long)1) <<
958                                 le32_to_cpu(fsb->log_blocks_per_seg);
959         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
960
961         if (cp1 && cp2) {
962                 if (ver_after(cp2_version, cp1_version))
963                         cur_page = cp2;
964                 else
965                         cur_page = cp1;
966         } else if (cp1) {
967                 cur_page = cp1;
968         } else if (cp2) {
969                 cur_page = cp2;
970         } else {
971                 err = -EFSCORRUPTED;
972                 goto fail_no_cp;
973         }
974
975         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
976         memcpy(sbi->ckpt, cp_block, blk_size);
977
978         if (cur_page == cp1)
979                 sbi->cur_cp_pack = 1;
980         else
981                 sbi->cur_cp_pack = 2;
982
983         /* Sanity checking of checkpoint */
984         if (f2fs_sanity_check_ckpt(sbi)) {
985                 err = -EFSCORRUPTED;
986                 goto free_fail_no_cp;
987         }
988
989         if (cp_blks <= 1)
990                 goto done;
991
992         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
993         if (cur_page == cp2)
994                 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
995
996         for (i = 1; i < cp_blks; i++) {
997                 void *sit_bitmap_ptr;
998                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
999
1000                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
1001                 if (IS_ERR(cur_page)) {
1002                         err = PTR_ERR(cur_page);
1003                         goto free_fail_no_cp;
1004                 }
1005                 sit_bitmap_ptr = page_address(cur_page);
1006                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1007                 f2fs_put_page(cur_page, 1);
1008         }
1009 done:
1010         f2fs_put_page(cp1, 1);
1011         f2fs_put_page(cp2, 1);
1012         return 0;
1013
1014 free_fail_no_cp:
1015         f2fs_put_page(cp1, 1);
1016         f2fs_put_page(cp2, 1);
1017 fail_no_cp:
1018         kvfree(sbi->ckpt);
1019         return err;
1020 }
1021
1022 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1023 {
1024         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1025         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1026
1027         if (is_inode_flag_set(inode, flag))
1028                 return;
1029
1030         set_inode_flag(inode, flag);
1031         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1032         stat_inc_dirty_inode(sbi, type);
1033 }
1034
1035 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1036 {
1037         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1038
1039         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1040                 return;
1041
1042         list_del_init(&F2FS_I(inode)->dirty_list);
1043         clear_inode_flag(inode, flag);
1044         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1045 }
1046
1047 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1048 {
1049         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1050         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1051
1052         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1053                         !S_ISLNK(inode->i_mode))
1054                 return;
1055
1056         spin_lock(&sbi->inode_lock[type]);
1057         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1058                 __add_dirty_inode(inode, type);
1059         inode_inc_dirty_pages(inode);
1060         spin_unlock(&sbi->inode_lock[type]);
1061
1062         set_page_private_reference(&folio->page);
1063 }
1064
1065 void f2fs_remove_dirty_inode(struct inode *inode)
1066 {
1067         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1068         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1069
1070         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1071                         !S_ISLNK(inode->i_mode))
1072                 return;
1073
1074         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1075                 return;
1076
1077         spin_lock(&sbi->inode_lock[type]);
1078         __remove_dirty_inode(inode, type);
1079         spin_unlock(&sbi->inode_lock[type]);
1080 }
1081
1082 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1083                                                 bool from_cp)
1084 {
1085         struct list_head *head;
1086         struct inode *inode;
1087         struct f2fs_inode_info *fi;
1088         bool is_dir = (type == DIR_INODE);
1089         unsigned long ino = 0;
1090
1091         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1092                                 get_pages(sbi, is_dir ?
1093                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1094 retry:
1095         if (unlikely(f2fs_cp_error(sbi))) {
1096                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1097                                 get_pages(sbi, is_dir ?
1098                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1099                 return -EIO;
1100         }
1101
1102         spin_lock(&sbi->inode_lock[type]);
1103
1104         head = &sbi->inode_list[type];
1105         if (list_empty(head)) {
1106                 spin_unlock(&sbi->inode_lock[type]);
1107                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1108                                 get_pages(sbi, is_dir ?
1109                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1110                 return 0;
1111         }
1112         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1113         inode = igrab(&fi->vfs_inode);
1114         spin_unlock(&sbi->inode_lock[type]);
1115         if (inode) {
1116                 unsigned long cur_ino = inode->i_ino;
1117
1118                 if (from_cp)
1119                         F2FS_I(inode)->cp_task = current;
1120                 F2FS_I(inode)->wb_task = current;
1121
1122                 filemap_fdatawrite(inode->i_mapping);
1123
1124                 F2FS_I(inode)->wb_task = NULL;
1125                 if (from_cp)
1126                         F2FS_I(inode)->cp_task = NULL;
1127
1128                 iput(inode);
1129                 /* We need to give cpu to another writers. */
1130                 if (ino == cur_ino)
1131                         cond_resched();
1132                 else
1133                         ino = cur_ino;
1134         } else {
1135                 /*
1136                  * We should submit bio, since it exists several
1137                  * writebacking dentry pages in the freeing inode.
1138                  */
1139                 f2fs_submit_merged_write(sbi, DATA);
1140                 cond_resched();
1141         }
1142         goto retry;
1143 }
1144
1145 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1146 {
1147         struct list_head *head = &sbi->inode_list[DIRTY_META];
1148         struct inode *inode;
1149         struct f2fs_inode_info *fi;
1150         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1151
1152         while (total--) {
1153                 if (unlikely(f2fs_cp_error(sbi)))
1154                         return -EIO;
1155
1156                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1157                 if (list_empty(head)) {
1158                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1159                         return 0;
1160                 }
1161                 fi = list_first_entry(head, struct f2fs_inode_info,
1162                                                         gdirty_list);
1163                 inode = igrab(&fi->vfs_inode);
1164                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1165                 if (inode) {
1166                         sync_inode_metadata(inode, 0);
1167
1168                         /* it's on eviction */
1169                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1170                                 f2fs_update_inode_page(inode);
1171                         iput(inode);
1172                 }
1173         }
1174         return 0;
1175 }
1176
1177 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1178 {
1179         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1180         struct f2fs_nm_info *nm_i = NM_I(sbi);
1181         nid_t last_nid = nm_i->next_scan_nid;
1182
1183         next_free_nid(sbi, &last_nid);
1184         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1185         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1186         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1187         ckpt->next_free_nid = cpu_to_le32(last_nid);
1188 }
1189
1190 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1191 {
1192         bool ret = false;
1193
1194         if (!is_journalled_quota(sbi))
1195                 return false;
1196
1197         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1198                 return true;
1199         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1200                 ret = false;
1201         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1202                 ret = false;
1203         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1204                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1205                 ret = true;
1206         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1207                 ret = true;
1208         }
1209         f2fs_up_write(&sbi->quota_sem);
1210         return ret;
1211 }
1212
1213 /*
1214  * Freeze all the FS-operations for checkpoint.
1215  */
1216 static int block_operations(struct f2fs_sb_info *sbi)
1217 {
1218         struct writeback_control wbc = {
1219                 .sync_mode = WB_SYNC_ALL,
1220                 .nr_to_write = LONG_MAX,
1221                 .for_reclaim = 0,
1222         };
1223         int err = 0, cnt = 0;
1224
1225         /*
1226          * Let's flush inline_data in dirty node pages.
1227          */
1228         f2fs_flush_inline_data(sbi);
1229
1230 retry_flush_quotas:
1231         f2fs_lock_all(sbi);
1232         if (__need_flush_quota(sbi)) {
1233                 int locked;
1234
1235                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1236                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1237                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1238                         goto retry_flush_dents;
1239                 }
1240                 f2fs_unlock_all(sbi);
1241
1242                 /* only failed during mount/umount/freeze/quotactl */
1243                 locked = down_read_trylock(&sbi->sb->s_umount);
1244                 f2fs_quota_sync(sbi->sb, -1);
1245                 if (locked)
1246                         up_read(&sbi->sb->s_umount);
1247                 cond_resched();
1248                 goto retry_flush_quotas;
1249         }
1250
1251 retry_flush_dents:
1252         /* write all the dirty dentry pages */
1253         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1254                 f2fs_unlock_all(sbi);
1255                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1256                 if (err)
1257                         return err;
1258                 cond_resched();
1259                 goto retry_flush_quotas;
1260         }
1261
1262         /*
1263          * POR: we should ensure that there are no dirty node pages
1264          * until finishing nat/sit flush. inode->i_blocks can be updated.
1265          */
1266         f2fs_down_write(&sbi->node_change);
1267
1268         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1269                 f2fs_up_write(&sbi->node_change);
1270                 f2fs_unlock_all(sbi);
1271                 err = f2fs_sync_inode_meta(sbi);
1272                 if (err)
1273                         return err;
1274                 cond_resched();
1275                 goto retry_flush_quotas;
1276         }
1277
1278 retry_flush_nodes:
1279         f2fs_down_write(&sbi->node_write);
1280
1281         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1282                 f2fs_up_write(&sbi->node_write);
1283                 atomic_inc(&sbi->wb_sync_req[NODE]);
1284                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1285                 atomic_dec(&sbi->wb_sync_req[NODE]);
1286                 if (err) {
1287                         f2fs_up_write(&sbi->node_change);
1288                         f2fs_unlock_all(sbi);
1289                         return err;
1290                 }
1291                 cond_resched();
1292                 goto retry_flush_nodes;
1293         }
1294
1295         /*
1296          * sbi->node_change is used only for AIO write_begin path which produces
1297          * dirty node blocks and some checkpoint values by block allocation.
1298          */
1299         __prepare_cp_block(sbi);
1300         f2fs_up_write(&sbi->node_change);
1301         return err;
1302 }
1303
1304 static void unblock_operations(struct f2fs_sb_info *sbi)
1305 {
1306         f2fs_up_write(&sbi->node_write);
1307         f2fs_unlock_all(sbi);
1308 }
1309
1310 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1311 {
1312         DEFINE_WAIT(wait);
1313
1314         for (;;) {
1315                 if (!get_pages(sbi, type))
1316                         break;
1317
1318                 if (unlikely(f2fs_cp_error(sbi) &&
1319                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1320                         break;
1321
1322                 if (type == F2FS_DIRTY_META)
1323                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1324                                                         FS_CP_META_IO);
1325                 else if (type == F2FS_WB_CP_DATA)
1326                         f2fs_submit_merged_write(sbi, DATA);
1327
1328                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1329                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1330         }
1331         finish_wait(&sbi->cp_wait, &wait);
1332 }
1333
1334 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1335 {
1336         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1337         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1338         unsigned long flags;
1339
1340         if (cpc->reason & CP_UMOUNT) {
1341                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1342                         NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) {
1343                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1344                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1345                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1346                                                 f2fs_nat_bitmap_enabled(sbi)) {
1347                         f2fs_enable_nat_bits(sbi);
1348                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1349                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1350                 }
1351         }
1352
1353         spin_lock_irqsave(&sbi->cp_lock, flags);
1354
1355         if (cpc->reason & CP_TRIMMED)
1356                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1357         else
1358                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1359
1360         if (cpc->reason & CP_UMOUNT)
1361                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1362         else
1363                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1364
1365         if (cpc->reason & CP_FASTBOOT)
1366                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1367         else
1368                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1369
1370         if (orphan_num)
1371                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1372         else
1373                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1374
1375         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1376                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1377
1378         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1379                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1380         else
1381                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1382
1383         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1384                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1385         else
1386                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1387
1388         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1389                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1390         else
1391                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1392
1393         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1394                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1395         else
1396                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1397
1398         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1399                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1400
1401         /* set this flag to activate crc|cp_ver for recovery */
1402         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1403         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1404
1405         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1406 }
1407
1408 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1409         void *src, block_t blk_addr)
1410 {
1411         struct writeback_control wbc = {
1412                 .for_reclaim = 0,
1413         };
1414
1415         /*
1416          * filemap_get_folios_tag and lock_page again will take
1417          * some extra time. Therefore, f2fs_update_meta_pages and
1418          * f2fs_sync_meta_pages are combined in this function.
1419          */
1420         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1421         int err;
1422
1423         f2fs_wait_on_page_writeback(page, META, true, true);
1424
1425         memcpy(page_address(page), src, PAGE_SIZE);
1426
1427         set_page_dirty(page);
1428         if (unlikely(!clear_page_dirty_for_io(page)))
1429                 f2fs_bug_on(sbi, 1);
1430
1431         /* writeout cp pack 2 page */
1432         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1433         if (unlikely(err && f2fs_cp_error(sbi))) {
1434                 f2fs_put_page(page, 1);
1435                 return;
1436         }
1437
1438         f2fs_bug_on(sbi, err);
1439         f2fs_put_page(page, 0);
1440
1441         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1442         f2fs_submit_merged_write(sbi, META_FLUSH);
1443 }
1444
1445 static inline u64 get_sectors_written(struct block_device *bdev)
1446 {
1447         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1448 }
1449
1450 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1451 {
1452         if (f2fs_is_multi_device(sbi)) {
1453                 u64 sectors = 0;
1454                 int i;
1455
1456                 for (i = 0; i < sbi->s_ndevs; i++)
1457                         sectors += get_sectors_written(FDEV(i).bdev);
1458
1459                 return sectors;
1460         }
1461
1462         return get_sectors_written(sbi->sb->s_bdev);
1463 }
1464
1465 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1466 {
1467         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1468         struct f2fs_nm_info *nm_i = NM_I(sbi);
1469         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1470         block_t start_blk;
1471         unsigned int data_sum_blocks, orphan_blocks;
1472         __u32 crc32 = 0;
1473         int i;
1474         int cp_payload_blks = __cp_payload(sbi);
1475         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1476         u64 kbytes_written;
1477         int err;
1478
1479         /* Flush all the NAT/SIT pages */
1480         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1481
1482         /* start to update checkpoint, cp ver is already updated previously */
1483         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1484         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1485         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1486                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1487
1488                 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1489                 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1490                 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1491         }
1492         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1493                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1494
1495                 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1496                 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1497                 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1498         }
1499
1500         /* 2 cp + n data seg summary + orphan inode blocks */
1501         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1502         spin_lock_irqsave(&sbi->cp_lock, flags);
1503         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1504                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1505         else
1506                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1507         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1508
1509         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1510         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1511                         orphan_blocks);
1512
1513         if (__remain_node_summaries(cpc->reason))
1514                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1515                                 cp_payload_blks + data_sum_blocks +
1516                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1517         else
1518                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1519                                 cp_payload_blks + data_sum_blocks +
1520                                 orphan_blocks);
1521
1522         /* update ckpt flag for checkpoint */
1523         update_ckpt_flags(sbi, cpc);
1524
1525         /* update SIT/NAT bitmap */
1526         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1527         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1528
1529         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1530         *((__le32 *)((unsigned char *)ckpt +
1531                                 le32_to_cpu(ckpt->checksum_offset)))
1532                                 = cpu_to_le32(crc32);
1533
1534         start_blk = __start_cp_next_addr(sbi);
1535
1536         /* write nat bits */
1537         if ((cpc->reason & CP_UMOUNT) &&
1538                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1539                 __u64 cp_ver = cur_cp_version(ckpt);
1540                 block_t blk;
1541
1542                 cp_ver |= ((__u64)crc32 << 32);
1543                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1544
1545                 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1546                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1547                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1548                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1549         }
1550
1551         /* write out checkpoint buffer at block 0 */
1552         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1553
1554         for (i = 1; i < 1 + cp_payload_blks; i++)
1555                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1556                                                         start_blk++);
1557
1558         if (orphan_num) {
1559                 write_orphan_inodes(sbi, start_blk);
1560                 start_blk += orphan_blocks;
1561         }
1562
1563         f2fs_write_data_summaries(sbi, start_blk);
1564         start_blk += data_sum_blocks;
1565
1566         /* Record write statistics in the hot node summary */
1567         kbytes_written = sbi->kbytes_written;
1568         kbytes_written += (f2fs_get_sectors_written(sbi) -
1569                                 sbi->sectors_written_start) >> 1;
1570         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1571
1572         if (__remain_node_summaries(cpc->reason)) {
1573                 f2fs_write_node_summaries(sbi, start_blk);
1574                 start_blk += NR_CURSEG_NODE_TYPE;
1575         }
1576
1577         /* update user_block_counts */
1578         sbi->last_valid_block_count = sbi->total_valid_block_count;
1579         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1580         percpu_counter_set(&sbi->rf_node_block_count, 0);
1581
1582         /* Here, we have one bio having CP pack except cp pack 2 page */
1583         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1584         /* Wait for all dirty meta pages to be submitted for IO */
1585         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1586
1587         /* wait for previous submitted meta pages writeback */
1588         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1589
1590         /* flush all device cache */
1591         err = f2fs_flush_device_cache(sbi);
1592         if (err)
1593                 return err;
1594
1595         /* barrier and flush checkpoint cp pack 2 page if it can */
1596         commit_checkpoint(sbi, ckpt, start_blk);
1597         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1598
1599         /*
1600          * invalidate intermediate page cache borrowed from meta inode which are
1601          * used for migration of encrypted, verity or compressed inode's blocks.
1602          */
1603         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1604                 f2fs_sb_has_compression(sbi))
1605                 f2fs_bug_on(sbi,
1606                         invalidate_inode_pages2_range(META_MAPPING(sbi),
1607                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1608
1609         f2fs_release_ino_entry(sbi, false);
1610
1611         f2fs_reset_fsync_node_info(sbi);
1612
1613         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1614         clear_sbi_flag(sbi, SBI_NEED_CP);
1615         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1616
1617         spin_lock(&sbi->stat_lock);
1618         sbi->unusable_block_count = 0;
1619         spin_unlock(&sbi->stat_lock);
1620
1621         __set_cp_next_pack(sbi);
1622
1623         /*
1624          * redirty superblock if metadata like node page or inode cache is
1625          * updated during writing checkpoint.
1626          */
1627         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1628                         get_pages(sbi, F2FS_DIRTY_IMETA))
1629                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1630
1631         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1632
1633         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1634 }
1635
1636 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1637 {
1638         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1639         unsigned long long ckpt_ver;
1640         int err = 0;
1641
1642         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1643                 return -EROFS;
1644
1645         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1646                 if (cpc->reason != CP_PAUSE)
1647                         return 0;
1648                 f2fs_warn(sbi, "Start checkpoint disabled!");
1649         }
1650         if (cpc->reason != CP_RESIZE)
1651                 f2fs_down_write(&sbi->cp_global_sem);
1652
1653         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1654                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1655                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1656                 goto out;
1657         if (unlikely(f2fs_cp_error(sbi))) {
1658                 err = -EIO;
1659                 goto out;
1660         }
1661
1662         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1663
1664         err = block_operations(sbi);
1665         if (err)
1666                 goto out;
1667
1668         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1669
1670         f2fs_flush_merged_writes(sbi);
1671
1672         /* this is the case of multiple fstrims without any changes */
1673         if (cpc->reason & CP_DISCARD) {
1674                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1675                         unblock_operations(sbi);
1676                         goto out;
1677                 }
1678
1679                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1680                                 SIT_I(sbi)->dirty_sentries == 0 &&
1681                                 prefree_segments(sbi) == 0) {
1682                         f2fs_flush_sit_entries(sbi, cpc);
1683                         f2fs_clear_prefree_segments(sbi, cpc);
1684                         unblock_operations(sbi);
1685                         goto out;
1686                 }
1687         }
1688
1689         /*
1690          * update checkpoint pack index
1691          * Increase the version number so that
1692          * SIT entries and seg summaries are written at correct place
1693          */
1694         ckpt_ver = cur_cp_version(ckpt);
1695         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1696
1697         /* write cached NAT/SIT entries to NAT/SIT area */
1698         err = f2fs_flush_nat_entries(sbi, cpc);
1699         if (err) {
1700                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1701                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1702                 goto stop;
1703         }
1704
1705         f2fs_flush_sit_entries(sbi, cpc);
1706
1707         /* save inmem log status */
1708         f2fs_save_inmem_curseg(sbi);
1709
1710         err = do_checkpoint(sbi, cpc);
1711         if (err) {
1712                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1713                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1714                 f2fs_release_discard_addrs(sbi);
1715         } else {
1716                 f2fs_clear_prefree_segments(sbi, cpc);
1717         }
1718
1719         f2fs_restore_inmem_curseg(sbi);
1720         stat_inc_cp_count(sbi);
1721 stop:
1722         unblock_operations(sbi);
1723
1724         if (cpc->reason & CP_RECOVERY)
1725                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1726
1727         /* update CP_TIME to trigger checkpoint periodically */
1728         f2fs_update_time(sbi, CP_TIME);
1729         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1730 out:
1731         if (cpc->reason != CP_RESIZE)
1732                 f2fs_up_write(&sbi->cp_global_sem);
1733         return err;
1734 }
1735
1736 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1737 {
1738         int i;
1739
1740         for (i = 0; i < MAX_INO_ENTRY; i++) {
1741                 struct inode_management *im = &sbi->im[i];
1742
1743                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1744                 spin_lock_init(&im->ino_lock);
1745                 INIT_LIST_HEAD(&im->ino_list);
1746                 im->ino_num = 0;
1747         }
1748
1749         sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1750                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1751                         F2FS_ORPHANS_PER_BLOCK;
1752 }
1753
1754 int __init f2fs_create_checkpoint_caches(void)
1755 {
1756         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1757                         sizeof(struct ino_entry));
1758         if (!ino_entry_slab)
1759                 return -ENOMEM;
1760         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1761                         sizeof(struct inode_entry));
1762         if (!f2fs_inode_entry_slab) {
1763                 kmem_cache_destroy(ino_entry_slab);
1764                 return -ENOMEM;
1765         }
1766         return 0;
1767 }
1768
1769 void f2fs_destroy_checkpoint_caches(void)
1770 {
1771         kmem_cache_destroy(ino_entry_slab);
1772         kmem_cache_destroy(f2fs_inode_entry_slab);
1773 }
1774
1775 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1776 {
1777         struct cp_control cpc = { .reason = CP_SYNC, };
1778         int err;
1779
1780         f2fs_down_write(&sbi->gc_lock);
1781         err = f2fs_write_checkpoint(sbi, &cpc);
1782         f2fs_up_write(&sbi->gc_lock);
1783
1784         return err;
1785 }
1786
1787 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1788 {
1789         struct ckpt_req_control *cprc = &sbi->cprc_info;
1790         struct ckpt_req *req, *next;
1791         struct llist_node *dispatch_list;
1792         u64 sum_diff = 0, diff, count = 0;
1793         int ret;
1794
1795         dispatch_list = llist_del_all(&cprc->issue_list);
1796         if (!dispatch_list)
1797                 return;
1798         dispatch_list = llist_reverse_order(dispatch_list);
1799
1800         ret = __write_checkpoint_sync(sbi);
1801         atomic_inc(&cprc->issued_ckpt);
1802
1803         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1804                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1805                 req->ret = ret;
1806                 complete(&req->wait);
1807
1808                 sum_diff += diff;
1809                 count++;
1810         }
1811         atomic_sub(count, &cprc->queued_ckpt);
1812         atomic_add(count, &cprc->total_ckpt);
1813
1814         spin_lock(&cprc->stat_lock);
1815         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1816         if (cprc->peak_time < cprc->cur_time)
1817                 cprc->peak_time = cprc->cur_time;
1818         spin_unlock(&cprc->stat_lock);
1819 }
1820
1821 static int issue_checkpoint_thread(void *data)
1822 {
1823         struct f2fs_sb_info *sbi = data;
1824         struct ckpt_req_control *cprc = &sbi->cprc_info;
1825         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1826 repeat:
1827         if (kthread_should_stop())
1828                 return 0;
1829
1830         if (!llist_empty(&cprc->issue_list))
1831                 __checkpoint_and_complete_reqs(sbi);
1832
1833         wait_event_interruptible(*q,
1834                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1835         goto repeat;
1836 }
1837
1838 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1839                 struct ckpt_req *wait_req)
1840 {
1841         struct ckpt_req_control *cprc = &sbi->cprc_info;
1842
1843         if (!llist_empty(&cprc->issue_list)) {
1844                 __checkpoint_and_complete_reqs(sbi);
1845         } else {
1846                 /* already dispatched by issue_checkpoint_thread */
1847                 if (wait_req)
1848                         wait_for_completion(&wait_req->wait);
1849         }
1850 }
1851
1852 static void init_ckpt_req(struct ckpt_req *req)
1853 {
1854         memset(req, 0, sizeof(struct ckpt_req));
1855
1856         init_completion(&req->wait);
1857         req->queue_time = ktime_get();
1858 }
1859
1860 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1861 {
1862         struct ckpt_req_control *cprc = &sbi->cprc_info;
1863         struct ckpt_req req;
1864         struct cp_control cpc;
1865
1866         cpc.reason = __get_cp_reason(sbi);
1867         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1868                 int ret;
1869
1870                 f2fs_down_write(&sbi->gc_lock);
1871                 ret = f2fs_write_checkpoint(sbi, &cpc);
1872                 f2fs_up_write(&sbi->gc_lock);
1873
1874                 return ret;
1875         }
1876
1877         if (!cprc->f2fs_issue_ckpt)
1878                 return __write_checkpoint_sync(sbi);
1879
1880         init_ckpt_req(&req);
1881
1882         llist_add(&req.llnode, &cprc->issue_list);
1883         atomic_inc(&cprc->queued_ckpt);
1884
1885         /*
1886          * update issue_list before we wake up issue_checkpoint thread,
1887          * this smp_mb() pairs with another barrier in ___wait_event(),
1888          * see more details in comments of waitqueue_active().
1889          */
1890         smp_mb();
1891
1892         if (waitqueue_active(&cprc->ckpt_wait_queue))
1893                 wake_up(&cprc->ckpt_wait_queue);
1894
1895         if (cprc->f2fs_issue_ckpt)
1896                 wait_for_completion(&req.wait);
1897         else
1898                 flush_remained_ckpt_reqs(sbi, &req);
1899
1900         return req.ret;
1901 }
1902
1903 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1904 {
1905         dev_t dev = sbi->sb->s_bdev->bd_dev;
1906         struct ckpt_req_control *cprc = &sbi->cprc_info;
1907
1908         if (cprc->f2fs_issue_ckpt)
1909                 return 0;
1910
1911         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1912                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1913         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1914                 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1915
1916                 cprc->f2fs_issue_ckpt = NULL;
1917                 return err;
1918         }
1919
1920         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1921
1922         return 0;
1923 }
1924
1925 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1926 {
1927         struct ckpt_req_control *cprc = &sbi->cprc_info;
1928         struct task_struct *ckpt_task;
1929
1930         if (!cprc->f2fs_issue_ckpt)
1931                 return;
1932
1933         ckpt_task = cprc->f2fs_issue_ckpt;
1934         cprc->f2fs_issue_ckpt = NULL;
1935         kthread_stop(ckpt_task);
1936
1937         f2fs_flush_ckpt_thread(sbi);
1938 }
1939
1940 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1941 {
1942         struct ckpt_req_control *cprc = &sbi->cprc_info;
1943
1944         flush_remained_ckpt_reqs(sbi, NULL);
1945
1946         /* Let's wait for the previous dispatched checkpoint. */
1947         while (atomic_read(&cprc->queued_ckpt))
1948                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1949 }
1950
1951 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1952 {
1953         struct ckpt_req_control *cprc = &sbi->cprc_info;
1954
1955         atomic_set(&cprc->issued_ckpt, 0);
1956         atomic_set(&cprc->total_ckpt, 0);
1957         atomic_set(&cprc->queued_ckpt, 0);
1958         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1959         init_waitqueue_head(&cprc->ckpt_wait_queue);
1960         init_llist_head(&cprc->issue_list);
1961         spin_lock_init(&cprc->stat_lock);
1962 }