GNU Linux-libre 4.19.263-gnu1
[releases.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         f2fs_build_fault_attr(sbi, 0, 0);
32         set_ckpt_flags(sbi, CP_ERROR_FLAG);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72                 .is_meta = is_meta,
73         };
74         int err;
75
76         if (unlikely(!is_meta))
77                 fio.op_flags &= ~REQ_META;
78 repeat:
79         page = f2fs_grab_cache_page(mapping, index, false);
80         if (!page) {
81                 cond_resched();
82                 goto repeat;
83         }
84         if (PageUptodate(page))
85                 goto out;
86
87         fio.page = page;
88
89         err = f2fs_submit_page_bio(&fio);
90         if (err) {
91                 f2fs_put_page(page, 1);
92                 return ERR_PTR(err);
93         }
94
95         lock_page(page);
96         if (unlikely(page->mapping != mapping)) {
97                 f2fs_put_page(page, 1);
98                 goto repeat;
99         }
100
101         if (unlikely(!PageUptodate(page))) {
102                 f2fs_put_page(page, 1);
103                 return ERR_PTR(-EIO);
104         }
105 out:
106         return page;
107 }
108
109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116         struct page *page;
117         int count = 0;
118
119 retry:
120         page = __get_meta_page(sbi, index, true);
121         if (IS_ERR(page)) {
122                 if (PTR_ERR(page) == -EIO &&
123                                 ++count <= DEFAULT_RETRY_IO_COUNT)
124                         goto retry;
125
126                 f2fs_stop_checkpoint(sbi, false);
127                 f2fs_bug_on(sbi, 1);
128         }
129
130         return page;
131 }
132
133 /* for POR only */
134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
135 {
136         return __get_meta_page(sbi, index, false);
137 }
138
139 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
140                                         block_t blkaddr, int type)
141 {
142         switch (type) {
143         case META_NAT:
144                 break;
145         case META_SIT:
146                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
147                         return false;
148                 break;
149         case META_SSA:
150                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
151                         blkaddr < SM_I(sbi)->ssa_blkaddr))
152                         return false;
153                 break;
154         case META_CP:
155                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
156                         blkaddr < __start_cp_addr(sbi)))
157                         return false;
158                 break;
159         case META_POR:
160         case DATA_GENERIC:
161                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
162                         blkaddr < MAIN_BLKADDR(sbi))) {
163                         if (type == DATA_GENERIC) {
164                                 f2fs_msg(sbi->sb, KERN_WARNING,
165                                         "access invalid blkaddr:%u", blkaddr);
166                                 WARN_ON(1);
167                         }
168                         return false;
169                 }
170                 break;
171         case META_GENERIC:
172                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
173                         blkaddr >= MAIN_BLKADDR(sbi)))
174                         return false;
175                 break;
176         default:
177                 BUG();
178         }
179
180         return true;
181 }
182
183 /*
184  * Readahead CP/NAT/SIT/SSA pages
185  */
186 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
187                                                         int type, bool sync)
188 {
189         struct page *page;
190         block_t blkno = start;
191         struct f2fs_io_info fio = {
192                 .sbi = sbi,
193                 .type = META,
194                 .op = REQ_OP_READ,
195                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
196                 .encrypted_page = NULL,
197                 .in_list = false,
198                 .is_meta = (type != META_POR),
199         };
200         struct blk_plug plug;
201
202         if (unlikely(type == META_POR))
203                 fio.op_flags &= ~REQ_META;
204
205         blk_start_plug(&plug);
206         for (; nrpages-- > 0; blkno++) {
207
208                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
209                         goto out;
210
211                 switch (type) {
212                 case META_NAT:
213                         if (unlikely(blkno >=
214                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
215                                 blkno = 0;
216                         /* get nat block addr */
217                         fio.new_blkaddr = current_nat_addr(sbi,
218                                         blkno * NAT_ENTRY_PER_BLOCK);
219                         break;
220                 case META_SIT:
221                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
222                                 goto out;
223                         /* get sit block addr */
224                         fio.new_blkaddr = current_sit_addr(sbi,
225                                         blkno * SIT_ENTRY_PER_BLOCK);
226                         break;
227                 case META_SSA:
228                 case META_CP:
229                 case META_POR:
230                         fio.new_blkaddr = blkno;
231                         break;
232                 default:
233                         BUG();
234                 }
235
236                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
237                                                 fio.new_blkaddr, false);
238                 if (!page)
239                         continue;
240                 if (PageUptodate(page)) {
241                         f2fs_put_page(page, 1);
242                         continue;
243                 }
244
245                 fio.page = page;
246                 f2fs_submit_page_bio(&fio);
247                 f2fs_put_page(page, 0);
248         }
249 out:
250         blk_finish_plug(&plug);
251         return blkno - start;
252 }
253
254 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
255 {
256         struct page *page;
257         bool readahead = false;
258
259         page = find_get_page(META_MAPPING(sbi), index);
260         if (!page || !PageUptodate(page))
261                 readahead = true;
262         f2fs_put_page(page, 0);
263
264         if (readahead)
265                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
266 }
267
268 static int __f2fs_write_meta_page(struct page *page,
269                                 struct writeback_control *wbc,
270                                 enum iostat_type io_type)
271 {
272         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
273
274         trace_f2fs_writepage(page, META);
275
276         if (unlikely(f2fs_cp_error(sbi)))
277                 goto redirty_out;
278         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
279                 goto redirty_out;
280         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
281                 goto redirty_out;
282
283         f2fs_do_write_meta_page(sbi, page, io_type);
284         dec_page_count(sbi, F2FS_DIRTY_META);
285
286         if (wbc->for_reclaim)
287                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
288                                                 0, page->index, META);
289
290         unlock_page(page);
291
292         if (unlikely(f2fs_cp_error(sbi)))
293                 f2fs_submit_merged_write(sbi, META);
294
295         return 0;
296
297 redirty_out:
298         redirty_page_for_writepage(wbc, page);
299         return AOP_WRITEPAGE_ACTIVATE;
300 }
301
302 static int f2fs_write_meta_page(struct page *page,
303                                 struct writeback_control *wbc)
304 {
305         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
306 }
307
308 static int f2fs_write_meta_pages(struct address_space *mapping,
309                                 struct writeback_control *wbc)
310 {
311         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
312         long diff, written;
313
314         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
315                 goto skip_write;
316
317         /* collect a number of dirty meta pages and write together */
318         if (wbc->for_kupdate ||
319                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
320                 goto skip_write;
321
322         /* if locked failed, cp will flush dirty pages instead */
323         if (!mutex_trylock(&sbi->cp_mutex))
324                 goto skip_write;
325
326         trace_f2fs_writepages(mapping->host, wbc, META);
327         diff = nr_pages_to_write(sbi, META, wbc);
328         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
329         mutex_unlock(&sbi->cp_mutex);
330         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
331         return 0;
332
333 skip_write:
334         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
335         trace_f2fs_writepages(mapping->host, wbc, META);
336         return 0;
337 }
338
339 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
340                                 long nr_to_write, enum iostat_type io_type)
341 {
342         struct address_space *mapping = META_MAPPING(sbi);
343         pgoff_t index = 0, prev = ULONG_MAX;
344         struct pagevec pvec;
345         long nwritten = 0;
346         int nr_pages;
347         struct writeback_control wbc = {
348                 .for_reclaim = 0,
349         };
350         struct blk_plug plug;
351
352         pagevec_init(&pvec);
353
354         blk_start_plug(&plug);
355
356         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
357                                 PAGECACHE_TAG_DIRTY))) {
358                 int i;
359
360                 for (i = 0; i < nr_pages; i++) {
361                         struct page *page = pvec.pages[i];
362
363                         if (prev == ULONG_MAX)
364                                 prev = page->index - 1;
365                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
366                                 pagevec_release(&pvec);
367                                 goto stop;
368                         }
369
370                         lock_page(page);
371
372                         if (unlikely(page->mapping != mapping)) {
373 continue_unlock:
374                                 unlock_page(page);
375                                 continue;
376                         }
377                         if (!PageDirty(page)) {
378                                 /* someone wrote it for us */
379                                 goto continue_unlock;
380                         }
381
382                         f2fs_wait_on_page_writeback(page, META, true);
383
384                         BUG_ON(PageWriteback(page));
385                         if (!clear_page_dirty_for_io(page))
386                                 goto continue_unlock;
387
388                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
389                                 unlock_page(page);
390                                 break;
391                         }
392                         nwritten++;
393                         prev = page->index;
394                         if (unlikely(nwritten >= nr_to_write))
395                                 break;
396                 }
397                 pagevec_release(&pvec);
398                 cond_resched();
399         }
400 stop:
401         if (nwritten)
402                 f2fs_submit_merged_write(sbi, type);
403
404         blk_finish_plug(&plug);
405
406         return nwritten;
407 }
408
409 static int f2fs_set_meta_page_dirty(struct page *page)
410 {
411         trace_f2fs_set_page_dirty(page, META);
412
413         if (!PageUptodate(page))
414                 SetPageUptodate(page);
415         if (!PageDirty(page)) {
416                 __set_page_dirty_nobuffers(page);
417                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
418                 SetPagePrivate(page);
419                 f2fs_trace_pid(page);
420                 return 1;
421         }
422         return 0;
423 }
424
425 const struct address_space_operations f2fs_meta_aops = {
426         .writepage      = f2fs_write_meta_page,
427         .writepages     = f2fs_write_meta_pages,
428         .set_page_dirty = f2fs_set_meta_page_dirty,
429         .invalidatepage = f2fs_invalidate_page,
430         .releasepage    = f2fs_release_page,
431 #ifdef CONFIG_MIGRATION
432         .migratepage    = f2fs_migrate_page,
433 #endif
434 };
435
436 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
437                                                 unsigned int devidx, int type)
438 {
439         struct inode_management *im = &sbi->im[type];
440         struct ino_entry *e, *tmp;
441
442         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
443
444         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
445
446         spin_lock(&im->ino_lock);
447         e = radix_tree_lookup(&im->ino_root, ino);
448         if (!e) {
449                 e = tmp;
450                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
451                         f2fs_bug_on(sbi, 1);
452
453                 memset(e, 0, sizeof(struct ino_entry));
454                 e->ino = ino;
455
456                 list_add_tail(&e->list, &im->ino_list);
457                 if (type != ORPHAN_INO)
458                         im->ino_num++;
459         }
460
461         if (type == FLUSH_INO)
462                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
463
464         spin_unlock(&im->ino_lock);
465         radix_tree_preload_end();
466
467         if (e != tmp)
468                 kmem_cache_free(ino_entry_slab, tmp);
469 }
470
471 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
472 {
473         struct inode_management *im = &sbi->im[type];
474         struct ino_entry *e;
475
476         spin_lock(&im->ino_lock);
477         e = radix_tree_lookup(&im->ino_root, ino);
478         if (e) {
479                 list_del(&e->list);
480                 radix_tree_delete(&im->ino_root, ino);
481                 im->ino_num--;
482                 spin_unlock(&im->ino_lock);
483                 kmem_cache_free(ino_entry_slab, e);
484                 return;
485         }
486         spin_unlock(&im->ino_lock);
487 }
488
489 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
490 {
491         /* add new dirty ino entry into list */
492         __add_ino_entry(sbi, ino, 0, type);
493 }
494
495 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
496 {
497         /* remove dirty ino entry from list */
498         __remove_ino_entry(sbi, ino, type);
499 }
500
501 /* mode should be APPEND_INO or UPDATE_INO */
502 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
503 {
504         struct inode_management *im = &sbi->im[mode];
505         struct ino_entry *e;
506
507         spin_lock(&im->ino_lock);
508         e = radix_tree_lookup(&im->ino_root, ino);
509         spin_unlock(&im->ino_lock);
510         return e ? true : false;
511 }
512
513 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
514 {
515         struct ino_entry *e, *tmp;
516         int i;
517
518         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
519                 struct inode_management *im = &sbi->im[i];
520
521                 spin_lock(&im->ino_lock);
522                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
523                         list_del(&e->list);
524                         radix_tree_delete(&im->ino_root, e->ino);
525                         kmem_cache_free(ino_entry_slab, e);
526                         im->ino_num--;
527                 }
528                 spin_unlock(&im->ino_lock);
529         }
530 }
531
532 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
533                                         unsigned int devidx, int type)
534 {
535         __add_ino_entry(sbi, ino, devidx, type);
536 }
537
538 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
539                                         unsigned int devidx, int type)
540 {
541         struct inode_management *im = &sbi->im[type];
542         struct ino_entry *e;
543         bool is_dirty = false;
544
545         spin_lock(&im->ino_lock);
546         e = radix_tree_lookup(&im->ino_root, ino);
547         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
548                 is_dirty = true;
549         spin_unlock(&im->ino_lock);
550         return is_dirty;
551 }
552
553 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
554 {
555         struct inode_management *im = &sbi->im[ORPHAN_INO];
556         int err = 0;
557
558         spin_lock(&im->ino_lock);
559
560         if (time_to_inject(sbi, FAULT_ORPHAN)) {
561                 spin_unlock(&im->ino_lock);
562                 f2fs_show_injection_info(FAULT_ORPHAN);
563                 return -ENOSPC;
564         }
565
566         if (unlikely(im->ino_num >= sbi->max_orphans))
567                 err = -ENOSPC;
568         else
569                 im->ino_num++;
570         spin_unlock(&im->ino_lock);
571
572         return err;
573 }
574
575 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
576 {
577         struct inode_management *im = &sbi->im[ORPHAN_INO];
578
579         spin_lock(&im->ino_lock);
580         f2fs_bug_on(sbi, im->ino_num == 0);
581         im->ino_num--;
582         spin_unlock(&im->ino_lock);
583 }
584
585 void f2fs_add_orphan_inode(struct inode *inode)
586 {
587         /* add new orphan ino entry into list */
588         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
589         f2fs_update_inode_page(inode);
590 }
591
592 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
593 {
594         /* remove orphan entry from orphan list */
595         __remove_ino_entry(sbi, ino, ORPHAN_INO);
596 }
597
598 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
599 {
600         struct inode *inode;
601         struct node_info ni;
602         int err;
603
604         inode = f2fs_iget_retry(sbi->sb, ino);
605         if (IS_ERR(inode)) {
606                 /*
607                  * there should be a bug that we can't find the entry
608                  * to orphan inode.
609                  */
610                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
611                 return PTR_ERR(inode);
612         }
613
614         err = dquot_initialize(inode);
615         if (err) {
616                 iput(inode);
617                 goto err_out;
618         }
619
620         clear_nlink(inode);
621
622         /* truncate all the data during iput */
623         iput(inode);
624
625         err = f2fs_get_node_info(sbi, ino, &ni);
626         if (err)
627                 goto err_out;
628
629         /* ENOMEM was fully retried in f2fs_evict_inode. */
630         if (ni.blk_addr != NULL_ADDR) {
631                 err = -EIO;
632                 goto err_out;
633         }
634         return 0;
635
636 err_out:
637         set_sbi_flag(sbi, SBI_NEED_FSCK);
638         f2fs_msg(sbi->sb, KERN_WARNING,
639                         "%s: orphan failed (ino=%x), run fsck to fix.",
640                         __func__, ino);
641         return err;
642 }
643
644 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
645 {
646         block_t start_blk, orphan_blocks, i, j;
647         unsigned int s_flags = sbi->sb->s_flags;
648         int err = 0;
649 #ifdef CONFIG_QUOTA
650         int quota_enabled;
651 #endif
652
653         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
654                 return 0;
655
656         if (s_flags & SB_RDONLY) {
657                 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
658                 sbi->sb->s_flags &= ~SB_RDONLY;
659         }
660
661 #ifdef CONFIG_QUOTA
662         /* Needed for iput() to work correctly and not trash data */
663         sbi->sb->s_flags |= SB_ACTIVE;
664
665         /*
666          * Turn on quotas which were not enabled for read-only mounts if
667          * filesystem has quota feature, so that they are updated correctly.
668          */
669         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
670 #endif
671
672         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
673         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
674
675         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
676
677         for (i = 0; i < orphan_blocks; i++) {
678                 struct page *page;
679                 struct f2fs_orphan_block *orphan_blk;
680
681                 page = f2fs_get_meta_page(sbi, start_blk + i);
682                 if (IS_ERR(page)) {
683                         err = PTR_ERR(page);
684                         goto out;
685                 }
686
687                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
688                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
689                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
690                         err = recover_orphan_inode(sbi, ino);
691                         if (err) {
692                                 f2fs_put_page(page, 1);
693                                 goto out;
694                         }
695                 }
696                 f2fs_put_page(page, 1);
697         }
698         /* clear Orphan Flag */
699         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
700 out:
701         set_sbi_flag(sbi, SBI_IS_RECOVERED);
702
703 #ifdef CONFIG_QUOTA
704         /* Turn quotas off */
705         if (quota_enabled)
706                 f2fs_quota_off_umount(sbi->sb);
707 #endif
708         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
709
710         return err;
711 }
712
713 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
714 {
715         struct list_head *head;
716         struct f2fs_orphan_block *orphan_blk = NULL;
717         unsigned int nentries = 0;
718         unsigned short index = 1;
719         unsigned short orphan_blocks;
720         struct page *page = NULL;
721         struct ino_entry *orphan = NULL;
722         struct inode_management *im = &sbi->im[ORPHAN_INO];
723
724         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
725
726         /*
727          * we don't need to do spin_lock(&im->ino_lock) here, since all the
728          * orphan inode operations are covered under f2fs_lock_op().
729          * And, spin_lock should be avoided due to page operations below.
730          */
731         head = &im->ino_list;
732
733         /* loop for each orphan inode entry and write them in Jornal block */
734         list_for_each_entry(orphan, head, list) {
735                 if (!page) {
736                         page = f2fs_grab_meta_page(sbi, start_blk++);
737                         orphan_blk =
738                                 (struct f2fs_orphan_block *)page_address(page);
739                         memset(orphan_blk, 0, sizeof(*orphan_blk));
740                 }
741
742                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
743
744                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
745                         /*
746                          * an orphan block is full of 1020 entries,
747                          * then we need to flush current orphan blocks
748                          * and bring another one in memory
749                          */
750                         orphan_blk->blk_addr = cpu_to_le16(index);
751                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
752                         orphan_blk->entry_count = cpu_to_le32(nentries);
753                         set_page_dirty(page);
754                         f2fs_put_page(page, 1);
755                         index++;
756                         nentries = 0;
757                         page = NULL;
758                 }
759         }
760
761         if (page) {
762                 orphan_blk->blk_addr = cpu_to_le16(index);
763                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
764                 orphan_blk->entry_count = cpu_to_le32(nentries);
765                 set_page_dirty(page);
766                 f2fs_put_page(page, 1);
767         }
768 }
769
770 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
771                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
772                 unsigned long long *version)
773 {
774         unsigned long blk_size = sbi->blocksize;
775         size_t crc_offset = 0;
776         __u32 crc = 0;
777
778         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
779         if (IS_ERR(*cp_page))
780                 return PTR_ERR(*cp_page);
781
782         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
783
784         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
785         if (crc_offset > (blk_size - sizeof(__le32))) {
786                 f2fs_put_page(*cp_page, 1);
787                 f2fs_msg(sbi->sb, KERN_WARNING,
788                         "invalid crc_offset: %zu", crc_offset);
789                 return -EINVAL;
790         }
791
792         crc = cur_cp_crc(*cp_block);
793         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
794                 f2fs_put_page(*cp_page, 1);
795                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
796                 return -EINVAL;
797         }
798
799         *version = cur_cp_version(*cp_block);
800         return 0;
801 }
802
803 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
804                                 block_t cp_addr, unsigned long long *version)
805 {
806         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
807         struct f2fs_checkpoint *cp_block = NULL;
808         unsigned long long cur_version = 0, pre_version = 0;
809         int err;
810
811         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
812                                         &cp_page_1, version);
813         if (err)
814                 return NULL;
815
816         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
817                                         sbi->blocks_per_seg) {
818                 f2fs_msg(sbi->sb, KERN_WARNING,
819                         "invalid cp_pack_total_block_count:%u",
820                         le32_to_cpu(cp_block->cp_pack_total_block_count));
821                 goto invalid_cp;
822         }
823         pre_version = *version;
824
825         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
826         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
827                                         &cp_page_2, version);
828         if (err)
829                 goto invalid_cp;
830         cur_version = *version;
831
832         if (cur_version == pre_version) {
833                 *version = cur_version;
834                 f2fs_put_page(cp_page_2, 1);
835                 return cp_page_1;
836         }
837         f2fs_put_page(cp_page_2, 1);
838 invalid_cp:
839         f2fs_put_page(cp_page_1, 1);
840         return NULL;
841 }
842
843 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
844 {
845         struct f2fs_checkpoint *cp_block;
846         struct f2fs_super_block *fsb = sbi->raw_super;
847         struct page *cp1, *cp2, *cur_page;
848         unsigned long blk_size = sbi->blocksize;
849         unsigned long long cp1_version = 0, cp2_version = 0;
850         unsigned long long cp_start_blk_no;
851         unsigned int cp_blks = 1 + __cp_payload(sbi);
852         block_t cp_blk_no;
853         int i;
854         int err;
855
856         sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
857                                  GFP_KERNEL);
858         if (!sbi->ckpt)
859                 return -ENOMEM;
860         /*
861          * Finding out valid cp block involves read both
862          * sets( cp pack1 and cp pack 2)
863          */
864         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
865         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
866
867         /* The second checkpoint pack should start at the next segment */
868         cp_start_blk_no += ((unsigned long long)1) <<
869                                 le32_to_cpu(fsb->log_blocks_per_seg);
870         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
871
872         if (cp1 && cp2) {
873                 if (ver_after(cp2_version, cp1_version))
874                         cur_page = cp2;
875                 else
876                         cur_page = cp1;
877         } else if (cp1) {
878                 cur_page = cp1;
879         } else if (cp2) {
880                 cur_page = cp2;
881         } else {
882                 err = -EFSCORRUPTED;
883                 goto fail_no_cp;
884         }
885
886         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
887         memcpy(sbi->ckpt, cp_block, blk_size);
888
889         if (cur_page == cp1)
890                 sbi->cur_cp_pack = 1;
891         else
892                 sbi->cur_cp_pack = 2;
893
894         /* Sanity checking of checkpoint */
895         if (f2fs_sanity_check_ckpt(sbi)) {
896                 err = -EFSCORRUPTED;
897                 goto free_fail_no_cp;
898         }
899
900         if (cp_blks <= 1)
901                 goto done;
902
903         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
904         if (cur_page == cp2)
905                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
906
907         for (i = 1; i < cp_blks; i++) {
908                 void *sit_bitmap_ptr;
909                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
910
911                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
912                 if (IS_ERR(cur_page)) {
913                         err = PTR_ERR(cur_page);
914                         goto free_fail_no_cp;
915                 }
916                 sit_bitmap_ptr = page_address(cur_page);
917                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
918                 f2fs_put_page(cur_page, 1);
919         }
920 done:
921         f2fs_put_page(cp1, 1);
922         f2fs_put_page(cp2, 1);
923         return 0;
924
925 free_fail_no_cp:
926         f2fs_put_page(cp1, 1);
927         f2fs_put_page(cp2, 1);
928 fail_no_cp:
929         kfree(sbi->ckpt);
930         return err;
931 }
932
933 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
934 {
935         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
936         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
937
938         if (is_inode_flag_set(inode, flag))
939                 return;
940
941         set_inode_flag(inode, flag);
942         if (!f2fs_is_volatile_file(inode))
943                 list_add_tail(&F2FS_I(inode)->dirty_list,
944                                                 &sbi->inode_list[type]);
945         stat_inc_dirty_inode(sbi, type);
946 }
947
948 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
949 {
950         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
951
952         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
953                 return;
954
955         list_del_init(&F2FS_I(inode)->dirty_list);
956         clear_inode_flag(inode, flag);
957         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
958 }
959
960 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
961 {
962         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
963         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
964
965         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
966                         !S_ISLNK(inode->i_mode))
967                 return;
968
969         spin_lock(&sbi->inode_lock[type]);
970         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
971                 __add_dirty_inode(inode, type);
972         inode_inc_dirty_pages(inode);
973         spin_unlock(&sbi->inode_lock[type]);
974
975         SetPagePrivate(page);
976         f2fs_trace_pid(page);
977 }
978
979 void f2fs_remove_dirty_inode(struct inode *inode)
980 {
981         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
983
984         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
985                         !S_ISLNK(inode->i_mode))
986                 return;
987
988         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
989                 return;
990
991         spin_lock(&sbi->inode_lock[type]);
992         __remove_dirty_inode(inode, type);
993         spin_unlock(&sbi->inode_lock[type]);
994 }
995
996 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
997 {
998         struct list_head *head;
999         struct inode *inode;
1000         struct f2fs_inode_info *fi;
1001         bool is_dir = (type == DIR_INODE);
1002         unsigned long ino = 0;
1003
1004         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1005                                 get_pages(sbi, is_dir ?
1006                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1007 retry:
1008         if (unlikely(f2fs_cp_error(sbi))) {
1009                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1010                                 get_pages(sbi, is_dir ?
1011                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1012                 return -EIO;
1013         }
1014
1015         spin_lock(&sbi->inode_lock[type]);
1016
1017         head = &sbi->inode_list[type];
1018         if (list_empty(head)) {
1019                 spin_unlock(&sbi->inode_lock[type]);
1020                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1021                                 get_pages(sbi, is_dir ?
1022                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1023                 return 0;
1024         }
1025         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1026         inode = igrab(&fi->vfs_inode);
1027         spin_unlock(&sbi->inode_lock[type]);
1028         if (inode) {
1029                 unsigned long cur_ino = inode->i_ino;
1030
1031                 if (is_dir)
1032                         F2FS_I(inode)->cp_task = current;
1033
1034                 filemap_fdatawrite(inode->i_mapping);
1035
1036                 if (is_dir)
1037                         F2FS_I(inode)->cp_task = NULL;
1038
1039                 iput(inode);
1040                 /* We need to give cpu to another writers. */
1041                 if (ino == cur_ino)
1042                         cond_resched();
1043                 else
1044                         ino = cur_ino;
1045         } else {
1046                 /*
1047                  * We should submit bio, since it exists several
1048                  * wribacking dentry pages in the freeing inode.
1049                  */
1050                 f2fs_submit_merged_write(sbi, DATA);
1051                 cond_resched();
1052         }
1053         goto retry;
1054 }
1055
1056 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1057 {
1058         struct list_head *head = &sbi->inode_list[DIRTY_META];
1059         struct inode *inode;
1060         struct f2fs_inode_info *fi;
1061         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1062
1063         while (total--) {
1064                 if (unlikely(f2fs_cp_error(sbi)))
1065                         return -EIO;
1066
1067                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1068                 if (list_empty(head)) {
1069                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1070                         return 0;
1071                 }
1072                 fi = list_first_entry(head, struct f2fs_inode_info,
1073                                                         gdirty_list);
1074                 inode = igrab(&fi->vfs_inode);
1075                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1076                 if (inode) {
1077                         sync_inode_metadata(inode, 0);
1078
1079                         /* it's on eviction */
1080                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1081                                 f2fs_update_inode_page(inode);
1082                         iput(inode);
1083                 }
1084         }
1085         return 0;
1086 }
1087
1088 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1089 {
1090         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1091         struct f2fs_nm_info *nm_i = NM_I(sbi);
1092         nid_t last_nid = nm_i->next_scan_nid;
1093
1094         next_free_nid(sbi, &last_nid);
1095         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1096         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1097         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1098         ckpt->next_free_nid = cpu_to_le32(last_nid);
1099 }
1100
1101 /*
1102  * Freeze all the FS-operations for checkpoint.
1103  */
1104 static int block_operations(struct f2fs_sb_info *sbi)
1105 {
1106         struct writeback_control wbc = {
1107                 .sync_mode = WB_SYNC_ALL,
1108                 .nr_to_write = LONG_MAX,
1109                 .for_reclaim = 0,
1110         };
1111         struct blk_plug plug;
1112         int err = 0;
1113
1114         blk_start_plug(&plug);
1115
1116 retry_flush_dents:
1117         f2fs_lock_all(sbi);
1118         /* write all the dirty dentry pages */
1119         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1120                 f2fs_unlock_all(sbi);
1121                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1122                 if (err)
1123                         goto out;
1124                 cond_resched();
1125                 goto retry_flush_dents;
1126         }
1127
1128         /*
1129          * POR: we should ensure that there are no dirty node pages
1130          * until finishing nat/sit flush. inode->i_blocks can be updated.
1131          */
1132         down_write(&sbi->node_change);
1133
1134         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1135                 up_write(&sbi->node_change);
1136                 f2fs_unlock_all(sbi);
1137                 err = f2fs_sync_inode_meta(sbi);
1138                 if (err)
1139                         goto out;
1140                 cond_resched();
1141                 goto retry_flush_dents;
1142         }
1143
1144 retry_flush_nodes:
1145         down_write(&sbi->node_write);
1146
1147         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1148                 up_write(&sbi->node_write);
1149                 atomic_inc(&sbi->wb_sync_req[NODE]);
1150                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1151                 atomic_dec(&sbi->wb_sync_req[NODE]);
1152                 if (err) {
1153                         up_write(&sbi->node_change);
1154                         f2fs_unlock_all(sbi);
1155                         goto out;
1156                 }
1157                 cond_resched();
1158                 goto retry_flush_nodes;
1159         }
1160
1161         /*
1162          * sbi->node_change is used only for AIO write_begin path which produces
1163          * dirty node blocks and some checkpoint values by block allocation.
1164          */
1165         __prepare_cp_block(sbi);
1166         up_write(&sbi->node_change);
1167 out:
1168         blk_finish_plug(&plug);
1169         return err;
1170 }
1171
1172 static void unblock_operations(struct f2fs_sb_info *sbi)
1173 {
1174         up_write(&sbi->node_write);
1175         f2fs_unlock_all(sbi);
1176 }
1177
1178 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1179 {
1180         DEFINE_WAIT(wait);
1181
1182         for (;;) {
1183                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1184
1185                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1186                         break;
1187
1188                 if (unlikely(f2fs_cp_error(sbi)))
1189                         break;
1190
1191                 io_schedule_timeout(5*HZ);
1192         }
1193         finish_wait(&sbi->cp_wait, &wait);
1194 }
1195
1196 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1197 {
1198         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1199         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1200         unsigned long flags;
1201
1202         spin_lock_irqsave(&sbi->cp_lock, flags);
1203
1204         if ((cpc->reason & CP_UMOUNT) &&
1205                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1206                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1207                 disable_nat_bits(sbi, false);
1208
1209         if (cpc->reason & CP_TRIMMED)
1210                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1211         else
1212                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1213
1214         if (cpc->reason & CP_UMOUNT)
1215                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1216         else
1217                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1218
1219         if (cpc->reason & CP_FASTBOOT)
1220                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1221         else
1222                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1223
1224         if (orphan_num)
1225                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1226         else
1227                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1228
1229         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1230                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1231
1232         /* set this flag to activate crc|cp_ver for recovery */
1233         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1234         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1235
1236         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1237 }
1238
1239 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1240         void *src, block_t blk_addr)
1241 {
1242         struct writeback_control wbc = {
1243                 .for_reclaim = 0,
1244         };
1245
1246         /*
1247          * pagevec_lookup_tag and lock_page again will take
1248          * some extra time. Therefore, f2fs_update_meta_pages and
1249          * f2fs_sync_meta_pages are combined in this function.
1250          */
1251         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1252         int err;
1253
1254         memcpy(page_address(page), src, PAGE_SIZE);
1255         set_page_dirty(page);
1256
1257         f2fs_wait_on_page_writeback(page, META, true);
1258         f2fs_bug_on(sbi, PageWriteback(page));
1259         if (unlikely(!clear_page_dirty_for_io(page)))
1260                 f2fs_bug_on(sbi, 1);
1261
1262         /* writeout cp pack 2 page */
1263         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1264         if (unlikely(err && f2fs_cp_error(sbi))) {
1265                 f2fs_put_page(page, 1);
1266                 return;
1267         }
1268
1269         f2fs_bug_on(sbi, err);
1270         f2fs_put_page(page, 0);
1271
1272         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1273         f2fs_submit_merged_write(sbi, META_FLUSH);
1274 }
1275
1276 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1277 {
1278         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1279         struct f2fs_nm_info *nm_i = NM_I(sbi);
1280         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1281         block_t start_blk;
1282         unsigned int data_sum_blocks, orphan_blocks;
1283         __u32 crc32 = 0;
1284         int i;
1285         int cp_payload_blks = __cp_payload(sbi);
1286         struct super_block *sb = sbi->sb;
1287         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1288         u64 kbytes_written;
1289         int err;
1290
1291         /* Flush all the NAT/SIT pages */
1292         while (get_pages(sbi, F2FS_DIRTY_META)) {
1293                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1294                 if (unlikely(f2fs_cp_error(sbi)))
1295                         break;
1296         }
1297
1298         /*
1299          * modify checkpoint
1300          * version number is already updated
1301          */
1302         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1303         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1304         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1305                 ckpt->cur_node_segno[i] =
1306                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1307                 ckpt->cur_node_blkoff[i] =
1308                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1309                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1310                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1311         }
1312         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1313                 ckpt->cur_data_segno[i] =
1314                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1315                 ckpt->cur_data_blkoff[i] =
1316                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1317                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1318                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1319         }
1320
1321         /* 2 cp  + n data seg summary + orphan inode blocks */
1322         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1323         spin_lock_irqsave(&sbi->cp_lock, flags);
1324         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1325                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1326         else
1327                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1328         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1329
1330         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1331         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1332                         orphan_blocks);
1333
1334         if (__remain_node_summaries(cpc->reason))
1335                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1336                                 cp_payload_blks + data_sum_blocks +
1337                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1338         else
1339                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1340                                 cp_payload_blks + data_sum_blocks +
1341                                 orphan_blocks);
1342
1343         /* update ckpt flag for checkpoint */
1344         update_ckpt_flags(sbi, cpc);
1345
1346         /* update SIT/NAT bitmap */
1347         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1348         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1349
1350         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1351         *((__le32 *)((unsigned char *)ckpt +
1352                                 le32_to_cpu(ckpt->checksum_offset)))
1353                                 = cpu_to_le32(crc32);
1354
1355         start_blk = __start_cp_next_addr(sbi);
1356
1357         /* write nat bits */
1358         if (enabled_nat_bits(sbi, cpc)) {
1359                 __u64 cp_ver = cur_cp_version(ckpt);
1360                 block_t blk;
1361
1362                 cp_ver |= ((__u64)crc32 << 32);
1363                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1364
1365                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1366                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1367                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1368                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1369
1370                 /* Flush all the NAT BITS pages */
1371                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1372                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1373                                                         FS_CP_META_IO);
1374                         if (unlikely(f2fs_cp_error(sbi)))
1375                                 break;
1376                 }
1377         }
1378
1379         /* write out checkpoint buffer at block 0 */
1380         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1381
1382         for (i = 1; i < 1 + cp_payload_blks; i++)
1383                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1384                                                         start_blk++);
1385
1386         if (orphan_num) {
1387                 write_orphan_inodes(sbi, start_blk);
1388                 start_blk += orphan_blocks;
1389         }
1390
1391         f2fs_write_data_summaries(sbi, start_blk);
1392         start_blk += data_sum_blocks;
1393
1394         /* Record write statistics in the hot node summary */
1395         kbytes_written = sbi->kbytes_written;
1396         if (sb->s_bdev->bd_part)
1397                 kbytes_written += BD_PART_WRITTEN(sbi);
1398
1399         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1400
1401         if (__remain_node_summaries(cpc->reason)) {
1402                 f2fs_write_node_summaries(sbi, start_blk);
1403                 start_blk += NR_CURSEG_NODE_TYPE;
1404         }
1405
1406         /* update user_block_counts */
1407         sbi->last_valid_block_count = sbi->total_valid_block_count;
1408         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1409
1410         /* Here, we have one bio having CP pack except cp pack 2 page */
1411         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1412
1413         /* wait for previous submitted meta pages writeback */
1414         f2fs_wait_on_all_pages_writeback(sbi);
1415
1416         /* flush all device cache */
1417         err = f2fs_flush_device_cache(sbi);
1418         if (err)
1419                 return err;
1420
1421         /* barrier and flush checkpoint cp pack 2 page if it can */
1422         commit_checkpoint(sbi, ckpt, start_blk);
1423         f2fs_wait_on_all_pages_writeback(sbi);
1424
1425         /*
1426          * invalidate intermediate page cache borrowed from meta inode
1427          * which are used for migration of encrypted inode's blocks.
1428          */
1429         if (f2fs_sb_has_encrypt(sbi->sb))
1430                 invalidate_mapping_pages(META_MAPPING(sbi),
1431                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1432
1433         f2fs_release_ino_entry(sbi, false);
1434
1435         f2fs_reset_fsync_node_info(sbi);
1436
1437         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1438         clear_sbi_flag(sbi, SBI_NEED_CP);
1439         __set_cp_next_pack(sbi);
1440
1441         /*
1442          * redirty superblock if metadata like node page or inode cache is
1443          * updated during writing checkpoint.
1444          */
1445         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1446                         get_pages(sbi, F2FS_DIRTY_IMETA))
1447                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1448
1449         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1450
1451         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1452 }
1453
1454 /*
1455  * We guarantee that this checkpoint procedure will not fail.
1456  */
1457 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1458 {
1459         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1460         unsigned long long ckpt_ver;
1461         int err = 0;
1462
1463         mutex_lock(&sbi->cp_mutex);
1464
1465         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1466                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1467                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1468                 goto out;
1469         if (unlikely(f2fs_cp_error(sbi))) {
1470                 err = -EIO;
1471                 goto out;
1472         }
1473         if (f2fs_readonly(sbi->sb)) {
1474                 err = -EROFS;
1475                 goto out;
1476         }
1477
1478         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1479
1480         err = block_operations(sbi);
1481         if (err)
1482                 goto out;
1483
1484         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1485
1486         f2fs_flush_merged_writes(sbi);
1487
1488         /* this is the case of multiple fstrims without any changes */
1489         if (cpc->reason & CP_DISCARD) {
1490                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1491                         unblock_operations(sbi);
1492                         goto out;
1493                 }
1494
1495                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1496                                 SIT_I(sbi)->dirty_sentries == 0 &&
1497                                 prefree_segments(sbi) == 0) {
1498                         f2fs_flush_sit_entries(sbi, cpc);
1499                         f2fs_clear_prefree_segments(sbi, cpc);
1500                         unblock_operations(sbi);
1501                         goto out;
1502                 }
1503         }
1504
1505         /*
1506          * update checkpoint pack index
1507          * Increase the version number so that
1508          * SIT entries and seg summaries are written at correct place
1509          */
1510         ckpt_ver = cur_cp_version(ckpt);
1511         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1512
1513         /* write cached NAT/SIT entries to NAT/SIT area */
1514         f2fs_flush_nat_entries(sbi, cpc);
1515         f2fs_flush_sit_entries(sbi, cpc);
1516
1517         /* unlock all the fs_lock[] in do_checkpoint() */
1518         err = do_checkpoint(sbi, cpc);
1519         if (err)
1520                 f2fs_release_discard_addrs(sbi);
1521         else
1522                 f2fs_clear_prefree_segments(sbi, cpc);
1523
1524         unblock_operations(sbi);
1525         stat_inc_cp_count(sbi->stat_info);
1526
1527         if (cpc->reason & CP_RECOVERY)
1528                 f2fs_msg(sbi->sb, KERN_NOTICE,
1529                         "checkpoint: version = %llx", ckpt_ver);
1530
1531         /* do checkpoint periodically */
1532         f2fs_update_time(sbi, CP_TIME);
1533         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1534 out:
1535         mutex_unlock(&sbi->cp_mutex);
1536         return err;
1537 }
1538
1539 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1540 {
1541         int i;
1542
1543         for (i = 0; i < MAX_INO_ENTRY; i++) {
1544                 struct inode_management *im = &sbi->im[i];
1545
1546                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1547                 spin_lock_init(&im->ino_lock);
1548                 INIT_LIST_HEAD(&im->ino_list);
1549                 im->ino_num = 0;
1550         }
1551
1552         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1553                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1554                                 F2FS_ORPHANS_PER_BLOCK;
1555 }
1556
1557 int __init f2fs_create_checkpoint_caches(void)
1558 {
1559         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1560                         sizeof(struct ino_entry));
1561         if (!ino_entry_slab)
1562                 return -ENOMEM;
1563         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1564                         sizeof(struct inode_entry));
1565         if (!f2fs_inode_entry_slab) {
1566                 kmem_cache_destroy(ino_entry_slab);
1567                 return -ENOMEM;
1568         }
1569         return 0;
1570 }
1571
1572 void f2fs_destroy_checkpoint_caches(void)
1573 {
1574         kmem_cache_destroy(ino_entry_slab);
1575         kmem_cache_destroy(f2fs_inode_entry_slab);
1576 }