GNU Linux-libre 6.9-gnu
[releases.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:                       buddy = on-disk + PAs
262  *  - new PA:                           buddy += N; PA = N
263  *  - use inode PA:                     on-disk += N; PA -= N
264  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA             on-disk += N; PA -= N
266  *  - discard locality group PA         buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group        (group)
366  *  - object (inode/locality)   (object)
367  *  - per-pa lock               (pa)
368  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420                                         ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424                                ext4_group_t group, enum criteria cr);
425
426 static int ext4_try_to_trim_range(struct super_block *sb,
427                 struct ext4_buddy *e4b, ext4_grpblk_t start,
428                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451         int __cpu;
452         u64 __seq = 0;
453
454         for_each_possible_cpu(__cpu)
455                 __seq += per_cpu(discard_pa_seq, __cpu);
456         return __seq;
457 }
458
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462         *bit += ((unsigned long) addr & 7UL) << 3;
463         addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465         *bit += ((unsigned long) addr & 3UL) << 3;
466         addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470         return addr;
471 }
472
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475         /*
476          * ext4_test_bit on architecture like powerpc
477          * needs unsigned long aligned address
478          */
479         addr = mb_correct_addr_and_bit(&bit, addr);
480         return ext4_test_bit(bit, addr);
481 }
482
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485         addr = mb_correct_addr_and_bit(&bit, addr);
486         ext4_set_bit(bit, addr);
487 }
488
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491         addr = mb_correct_addr_and_bit(&bit, addr);
492         ext4_clear_bit(bit, addr);
493 }
494
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497         addr = mb_correct_addr_and_bit(&bit, addr);
498         return ext4_test_and_clear_bit(bit, addr);
499 }
500
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503         int fix = 0, ret, tmpmax;
504         addr = mb_correct_addr_and_bit(&fix, addr);
505         tmpmax = max + fix;
506         start += fix;
507
508         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509         if (ret > max)
510                 return max;
511         return ret;
512 }
513
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516         int fix = 0, ret, tmpmax;
517         addr = mb_correct_addr_and_bit(&fix, addr);
518         tmpmax = max + fix;
519         start += fix;
520
521         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522         if (ret > max)
523                 return max;
524         return ret;
525 }
526
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529         char *bb;
530
531         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532         BUG_ON(max == NULL);
533
534         if (order > e4b->bd_blkbits + 1) {
535                 *max = 0;
536                 return NULL;
537         }
538
539         /* at order 0 we see each particular block */
540         if (order == 0) {
541                 *max = 1 << (e4b->bd_blkbits + 3);
542                 return e4b->bd_bitmap;
543         }
544
545         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548         return bb;
549 }
550
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553                            int first, int count)
554 {
555         int i;
556         struct super_block *sb = e4b->bd_sb;
557
558         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559                 return;
560         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561         for (i = 0; i < count; i++) {
562                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563                         ext4_fsblk_t blocknr;
564
565                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569                         ext4_grp_locked_error(sb, e4b->bd_group,
570                                               inode ? inode->i_ino : 0,
571                                               blocknr,
572                                               "freeing block already freed "
573                                               "(bit %u)",
574                                               first + i);
575                 }
576                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577         }
578 }
579
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582         int i;
583
584         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585                 return;
586         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587         for (i = 0; i < count; i++) {
588                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590         }
591 }
592
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596                 return;
597         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598                 unsigned char *b1, *b2;
599                 int i;
600                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601                 b2 = (unsigned char *) bitmap;
602                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603                         if (b1[i] != b2[i]) {
604                                 ext4_msg(e4b->bd_sb, KERN_ERR,
605                                          "corruption in group %u "
606                                          "at byte %u(%u): %x in copy != %x "
607                                          "on disk/prealloc",
608                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
609                                 BUG();
610                         }
611                 }
612         }
613 }
614
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616                         struct ext4_group_info *grp, ext4_group_t group)
617 {
618         struct buffer_head *bh;
619
620         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621         if (!grp->bb_bitmap)
622                 return;
623
624         bh = ext4_read_block_bitmap(sb, group);
625         if (IS_ERR_OR_NULL(bh)) {
626                 kfree(grp->bb_bitmap);
627                 grp->bb_bitmap = NULL;
628                 return;
629         }
630
631         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632         put_bh(bh);
633 }
634
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637         kfree(grp->bb_bitmap);
638 }
639
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642                                 struct ext4_buddy *e4b, int first, int count)
643 {
644         return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647                                                 int first, int count)
648 {
649         return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653         return;
654 }
655
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657                         struct ext4_group_info *grp, ext4_group_t group)
658 {
659         return;
660 }
661
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664         return;
665 }
666 #endif
667
668 #ifdef AGGRESSIVE_CHECK
669
670 #define MB_CHECK_ASSERT(assert)                                         \
671 do {                                                                    \
672         if (!(assert)) {                                                \
673                 printk(KERN_EMERG                                       \
674                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675                         function, file, line, # assert);                \
676                 BUG();                                                  \
677         }                                                               \
678 } while (0)
679
680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681                                 const char *function, int line)
682 {
683         struct super_block *sb = e4b->bd_sb;
684         int order = e4b->bd_blkbits + 1;
685         int max;
686         int max2;
687         int i;
688         int j;
689         int k;
690         int count;
691         struct ext4_group_info *grp;
692         int fragments = 0;
693         int fstart;
694         struct list_head *cur;
695         void *buddy;
696         void *buddy2;
697
698         if (e4b->bd_info->bb_check_counter++ % 10)
699                 return;
700
701         while (order > 1) {
702                 buddy = mb_find_buddy(e4b, order, &max);
703                 MB_CHECK_ASSERT(buddy);
704                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705                 MB_CHECK_ASSERT(buddy2);
706                 MB_CHECK_ASSERT(buddy != buddy2);
707                 MB_CHECK_ASSERT(max * 2 == max2);
708
709                 count = 0;
710                 for (i = 0; i < max; i++) {
711
712                         if (mb_test_bit(i, buddy)) {
713                                 /* only single bit in buddy2 may be 0 */
714                                 if (!mb_test_bit(i << 1, buddy2)) {
715                                         MB_CHECK_ASSERT(
716                                                 mb_test_bit((i<<1)+1, buddy2));
717                                 }
718                                 continue;
719                         }
720
721                         /* both bits in buddy2 must be 1 */
722                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725                         for (j = 0; j < (1 << order); j++) {
726                                 k = (i * (1 << order)) + j;
727                                 MB_CHECK_ASSERT(
728                                         !mb_test_bit(k, e4b->bd_bitmap));
729                         }
730                         count++;
731                 }
732                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733                 order--;
734         }
735
736         fstart = -1;
737         buddy = mb_find_buddy(e4b, 0, &max);
738         for (i = 0; i < max; i++) {
739                 if (!mb_test_bit(i, buddy)) {
740                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741                         if (fstart == -1) {
742                                 fragments++;
743                                 fstart = i;
744                         }
745                         continue;
746                 }
747                 fstart = -1;
748                 /* check used bits only */
749                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750                         buddy2 = mb_find_buddy(e4b, j, &max2);
751                         k = i >> j;
752                         MB_CHECK_ASSERT(k < max2);
753                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754                 }
755         }
756         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759         grp = ext4_get_group_info(sb, e4b->bd_group);
760         if (!grp)
761                 return;
762         list_for_each(cur, &grp->bb_prealloc_list) {
763                 ext4_group_t groupnr;
764                 struct ext4_prealloc_space *pa;
765                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768                 for (i = 0; i < pa->pa_len; i++)
769                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770         }
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
774                                         __FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787                                         struct ext4_group_info *grp)
788 {
789         struct ext4_sb_info *sbi = EXT4_SB(sb);
790         ext4_grpblk_t min;
791         ext4_grpblk_t max;
792         ext4_grpblk_t chunk;
793         unsigned int border;
794
795         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797         border = 2 << sb->s_blocksize_bits;
798
799         while (len > 0) {
800                 /* find how many blocks can be covered since this position */
801                 max = ffs(first | border) - 1;
802
803                 /* find how many blocks of power 2 we need to mark */
804                 min = fls(len) - 1;
805
806                 if (max < min)
807                         min = max;
808                 chunk = 1 << min;
809
810                 /* mark multiblock chunks only */
811                 grp->bb_counters[min]++;
812                 if (min > 0)
813                         mb_clear_bit(first >> min,
814                                      buddy + sbi->s_mb_offsets[min]);
815
816                 len -= chunk;
817                 first += chunk;
818         }
819 }
820
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823         int order;
824
825         /*
826          * We don't bother with a special lists groups with only 1 block free
827          * extents and for completely empty groups.
828          */
829         order = fls(len) - 2;
830         if (order < 0)
831                 return 0;
832         if (order == MB_NUM_ORDERS(sb))
833                 order--;
834         return order;
835 }
836
837 /* Move group to appropriate avg_fragment_size list */
838 static void
839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840 {
841         struct ext4_sb_info *sbi = EXT4_SB(sb);
842         int new_order;
843
844         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845                 return;
846
847         new_order = mb_avg_fragment_size_order(sb,
848                                         grp->bb_free / grp->bb_fragments);
849         if (new_order == grp->bb_avg_fragment_size_order)
850                 return;
851
852         if (grp->bb_avg_fragment_size_order != -1) {
853                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
854                                         grp->bb_avg_fragment_size_order]);
855                 list_del(&grp->bb_avg_fragment_size_node);
856                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857                                         grp->bb_avg_fragment_size_order]);
858         }
859         grp->bb_avg_fragment_size_order = new_order;
860         write_lock(&sbi->s_mb_avg_fragment_size_locks[
861                                         grp->bb_avg_fragment_size_order]);
862         list_add_tail(&grp->bb_avg_fragment_size_node,
863                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865                                         grp->bb_avg_fragment_size_order]);
866 }
867
868 /*
869  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870  * cr level needs an update.
871  */
872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873                         enum criteria *new_cr, ext4_group_t *group)
874 {
875         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876         struct ext4_group_info *iter;
877         int i;
878
879         if (ac->ac_status == AC_STATUS_FOUND)
880                 return;
881
882         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884
885         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887                         continue;
888                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891                         continue;
892                 }
893                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894                                     bb_largest_free_order_node) {
895                         if (sbi->s_mb_stats)
896                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898                                 *group = iter->bb_group;
899                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901                                 return;
902                         }
903                 }
904                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905         }
906
907         /* Increment cr and search again if no group is found */
908         *new_cr = CR_GOAL_LEN_FAST;
909 }
910
911 /*
912  * Find a suitable group of given order from the average fragments list.
913  */
914 static struct ext4_group_info *
915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916 {
917         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920         struct ext4_group_info *grp = NULL, *iter;
921         enum criteria cr = ac->ac_criteria;
922
923         if (list_empty(frag_list))
924                 return NULL;
925         read_lock(frag_list_lock);
926         if (list_empty(frag_list)) {
927                 read_unlock(frag_list_lock);
928                 return NULL;
929         }
930         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931                 if (sbi->s_mb_stats)
932                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934                         grp = iter;
935                         break;
936                 }
937         }
938         read_unlock(frag_list_lock);
939         return grp;
940 }
941
942 /*
943  * Choose next group by traversing average fragment size list of suitable
944  * order. Updates *new_cr if cr level needs an update.
945  */
946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947                 enum criteria *new_cr, ext4_group_t *group)
948 {
949         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950         struct ext4_group_info *grp = NULL;
951         int i;
952
953         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954                 if (sbi->s_mb_stats)
955                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956         }
957
958         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961                 if (grp) {
962                         *group = grp->bb_group;
963                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964                         return;
965                 }
966         }
967
968         /*
969          * CR_BEST_AVAIL_LEN works based on the concept that we have
970          * a larger normalized goal len request which can be trimmed to
971          * a smaller goal len such that it can still satisfy original
972          * request len. However, allocation request for non-regular
973          * files never gets normalized.
974          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975          */
976         if (ac->ac_flags & EXT4_MB_HINT_DATA)
977                 *new_cr = CR_BEST_AVAIL_LEN;
978         else
979                 *new_cr = CR_GOAL_LEN_SLOW;
980 }
981
982 /*
983  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984  * order we have and proactively trim the goal request length to that order to
985  * find a suitable group faster.
986  *
987  * This optimizes allocation speed at the cost of slightly reduced
988  * preallocations. However, we make sure that we don't trim the request too
989  * much and fall to CR_GOAL_LEN_SLOW in that case.
990  */
991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992                 enum criteria *new_cr, ext4_group_t *group)
993 {
994         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995         struct ext4_group_info *grp = NULL;
996         int i, order, min_order;
997         unsigned long num_stripe_clusters = 0;
998
999         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000                 if (sbi->s_mb_stats)
1001                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002         }
1003
1004         /*
1005          * mb_avg_fragment_size_order() returns order in a way that makes
1006          * retrieving back the length using (1 << order) inaccurate. Hence, use
1007          * fls() instead since we need to know the actual length while modifying
1008          * goal length.
1009          */
1010         order = fls(ac->ac_g_ex.fe_len) - 1;
1011         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012         if (min_order < 0)
1013                 min_order = 0;
1014
1015         if (sbi->s_stripe > 0) {
1016                 /*
1017                  * We are assuming that stripe size is always a multiple of
1018                  * cluster ratio otherwise __ext4_fill_super exists early.
1019                  */
1020                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021                 if (1 << min_order < num_stripe_clusters)
1022                         /*
1023                          * We consider 1 order less because later we round
1024                          * up the goal len to num_stripe_clusters
1025                          */
1026                         min_order = fls(num_stripe_clusters) - 1;
1027         }
1028
1029         if (1 << min_order < ac->ac_o_ex.fe_len)
1030                 min_order = fls(ac->ac_o_ex.fe_len);
1031
1032         for (i = order; i >= min_order; i--) {
1033                 int frag_order;
1034                 /*
1035                  * Scale down goal len to make sure we find something
1036                  * in the free fragments list. Basically, reduce
1037                  * preallocations.
1038                  */
1039                 ac->ac_g_ex.fe_len = 1 << i;
1040
1041                 if (num_stripe_clusters > 0) {
1042                         /*
1043                          * Try to round up the adjusted goal length to
1044                          * stripe size (in cluster units) multiple for
1045                          * efficiency.
1046                          */
1047                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048                                                      num_stripe_clusters);
1049                 }
1050
1051                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052                                                         ac->ac_g_ex.fe_len);
1053
1054                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055                 if (grp) {
1056                         *group = grp->bb_group;
1057                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058                         return;
1059                 }
1060         }
1061
1062         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064         *new_cr = CR_GOAL_LEN_SLOW;
1065 }
1066
1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068 {
1069         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070                 return 0;
1071         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072                 return 0;
1073         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074                 return 0;
1075         return 1;
1076 }
1077
1078 /*
1079  * Return next linear group for allocation. If linear traversal should not be
1080  * performed, this function just returns the same group
1081  */
1082 static ext4_group_t
1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084                   ext4_group_t ngroups)
1085 {
1086         if (!should_optimize_scan(ac))
1087                 goto inc_and_return;
1088
1089         if (ac->ac_groups_linear_remaining) {
1090                 ac->ac_groups_linear_remaining--;
1091                 goto inc_and_return;
1092         }
1093
1094         return group;
1095 inc_and_return:
1096         /*
1097          * Artificially restricted ngroups for non-extent
1098          * files makes group > ngroups possible on first loop.
1099          */
1100         return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119         *new_cr = ac->ac_criteria;
1120
1121         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122                 *group = next_linear_group(ac, *group, ngroups);
1123                 return;
1124         }
1125
1126         if (*new_cr == CR_POWER2_ALIGNED) {
1127                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1128         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1129                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1130         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1132         } else {
1133                 /*
1134                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135                  * bb_free. But until that happens, we should never come here.
1136                  */
1137                 WARN_ON(1);
1138         }
1139 }
1140
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148         struct ext4_sb_info *sbi = EXT4_SB(sb);
1149         int i;
1150
1151         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152                 if (grp->bb_counters[i] > 0)
1153                         break;
1154         /* No need to move between order lists? */
1155         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156             i == grp->bb_largest_free_order) {
1157                 grp->bb_largest_free_order = i;
1158                 return;
1159         }
1160
1161         if (grp->bb_largest_free_order >= 0) {
1162                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1163                                               grp->bb_largest_free_order]);
1164                 list_del_init(&grp->bb_largest_free_order_node);
1165                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166                                               grp->bb_largest_free_order]);
1167         }
1168         grp->bb_largest_free_order = i;
1169         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1171                                               grp->bb_largest_free_order]);
1172                 list_add_tail(&grp->bb_largest_free_order_node,
1173                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175                                               grp->bb_largest_free_order]);
1176         }
1177 }
1178
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181                             void *buddy, void *bitmap, ext4_group_t group,
1182                             struct ext4_group_info *grp)
1183 {
1184         struct ext4_sb_info *sbi = EXT4_SB(sb);
1185         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186         ext4_grpblk_t i = 0;
1187         ext4_grpblk_t first;
1188         ext4_grpblk_t len;
1189         unsigned free = 0;
1190         unsigned fragments = 0;
1191         unsigned long long period = get_cycles();
1192
1193         /* initialize buddy from bitmap which is aggregation
1194          * of on-disk bitmap and preallocations */
1195         i = mb_find_next_zero_bit(bitmap, max, 0);
1196         grp->bb_first_free = i;
1197         while (i < max) {
1198                 fragments++;
1199                 first = i;
1200                 i = mb_find_next_bit(bitmap, max, i);
1201                 len = i - first;
1202                 free += len;
1203                 if (len > 1)
1204                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205                 else
1206                         grp->bb_counters[0]++;
1207                 if (i < max)
1208                         i = mb_find_next_zero_bit(bitmap, max, i);
1209         }
1210         grp->bb_fragments = fragments;
1211
1212         if (free != grp->bb_free) {
1213                 ext4_grp_locked_error(sb, group, 0, 0,
1214                                       "block bitmap and bg descriptor "
1215                                       "inconsistent: %u vs %u free clusters",
1216                                       free, grp->bb_free);
1217                 /*
1218                  * If we intend to continue, we consider group descriptor
1219                  * corrupt and update bb_free using bitmap value
1220                  */
1221                 grp->bb_free = free;
1222                 ext4_mark_group_bitmap_corrupted(sb, group,
1223                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224         }
1225         mb_set_largest_free_order(sb, grp);
1226         mb_update_avg_fragment_size(sb, grp);
1227
1228         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230         period = get_cycles() - period;
1231         atomic_inc(&sbi->s_mb_buddies_generated);
1232         atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234
1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236 {
1237         int count;
1238         int order = 1;
1239         void *buddy;
1240
1241         while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242                 mb_set_bits(buddy, 0, count);
1243
1244         e4b->bd_info->bb_fragments = 0;
1245         memset(e4b->bd_info->bb_counters, 0,
1246                 sizeof(*e4b->bd_info->bb_counters) *
1247                 (e4b->bd_sb->s_blocksize_bits + 2));
1248
1249         ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250                 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251 }
1252
1253 /* The buddy information is attached the buddy cache inode
1254  * for convenience. The information regarding each group
1255  * is loaded via ext4_mb_load_buddy. The information involve
1256  * block bitmap and buddy information. The information are
1257  * stored in the inode as
1258  *
1259  * {                        page                        }
1260  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261  *
1262  *
1263  * one block each for bitmap and buddy information.
1264  * So for each group we take up 2 blocks. A page can
1265  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1266  * So it can have information regarding groups_per_page which
1267  * is blocks_per_page/2
1268  *
1269  * Locking note:  This routine takes the block group lock of all groups
1270  * for this page; do not hold this lock when calling this routine!
1271  */
1272
1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274 {
1275         ext4_group_t ngroups;
1276         unsigned int blocksize;
1277         int blocks_per_page;
1278         int groups_per_page;
1279         int err = 0;
1280         int i;
1281         ext4_group_t first_group, group;
1282         int first_block;
1283         struct super_block *sb;
1284         struct buffer_head *bhs;
1285         struct buffer_head **bh = NULL;
1286         struct inode *inode;
1287         char *data;
1288         char *bitmap;
1289         struct ext4_group_info *grinfo;
1290
1291         inode = page->mapping->host;
1292         sb = inode->i_sb;
1293         ngroups = ext4_get_groups_count(sb);
1294         blocksize = i_blocksize(inode);
1295         blocks_per_page = PAGE_SIZE / blocksize;
1296
1297         mb_debug(sb, "init page %lu\n", page->index);
1298
1299         groups_per_page = blocks_per_page >> 1;
1300         if (groups_per_page == 0)
1301                 groups_per_page = 1;
1302
1303         /* allocate buffer_heads to read bitmaps */
1304         if (groups_per_page > 1) {
1305                 i = sizeof(struct buffer_head *) * groups_per_page;
1306                 bh = kzalloc(i, gfp);
1307                 if (bh == NULL)
1308                         return -ENOMEM;
1309         } else
1310                 bh = &bhs;
1311
1312         first_group = page->index * blocks_per_page / 2;
1313
1314         /* read all groups the page covers into the cache */
1315         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316                 if (group >= ngroups)
1317                         break;
1318
1319                 grinfo = ext4_get_group_info(sb, group);
1320                 if (!grinfo)
1321                         continue;
1322                 /*
1323                  * If page is uptodate then we came here after online resize
1324                  * which added some new uninitialized group info structs, so
1325                  * we must skip all initialized uptodate buddies on the page,
1326                  * which may be currently in use by an allocating task.
1327                  */
1328                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329                         bh[i] = NULL;
1330                         continue;
1331                 }
1332                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333                 if (IS_ERR(bh[i])) {
1334                         err = PTR_ERR(bh[i]);
1335                         bh[i] = NULL;
1336                         goto out;
1337                 }
1338                 mb_debug(sb, "read bitmap for group %u\n", group);
1339         }
1340
1341         /* wait for I/O completion */
1342         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343                 int err2;
1344
1345                 if (!bh[i])
1346                         continue;
1347                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348                 if (!err)
1349                         err = err2;
1350         }
1351
1352         first_block = page->index * blocks_per_page;
1353         for (i = 0; i < blocks_per_page; i++) {
1354                 group = (first_block + i) >> 1;
1355                 if (group >= ngroups)
1356                         break;
1357
1358                 if (!bh[group - first_group])
1359                         /* skip initialized uptodate buddy */
1360                         continue;
1361
1362                 if (!buffer_verified(bh[group - first_group]))
1363                         /* Skip faulty bitmaps */
1364                         continue;
1365                 err = 0;
1366
1367                 /*
1368                  * data carry information regarding this
1369                  * particular group in the format specified
1370                  * above
1371                  *
1372                  */
1373                 data = page_address(page) + (i * blocksize);
1374                 bitmap = bh[group - first_group]->b_data;
1375
1376                 /*
1377                  * We place the buddy block and bitmap block
1378                  * close together
1379                  */
1380                 grinfo = ext4_get_group_info(sb, group);
1381                 if (!grinfo) {
1382                         err = -EFSCORRUPTED;
1383                         goto out;
1384                 }
1385                 if ((first_block + i) & 1) {
1386                         /* this is block of buddy */
1387                         BUG_ON(incore == NULL);
1388                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389                                 group, page->index, i * blocksize);
1390                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1391                         grinfo->bb_fragments = 0;
1392                         memset(grinfo->bb_counters, 0,
1393                                sizeof(*grinfo->bb_counters) *
1394                                (MB_NUM_ORDERS(sb)));
1395                         /*
1396                          * incore got set to the group block bitmap below
1397                          */
1398                         ext4_lock_group(sb, group);
1399                         /* init the buddy */
1400                         memset(data, 0xff, blocksize);
1401                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402                         ext4_unlock_group(sb, group);
1403                         incore = NULL;
1404                 } else {
1405                         /* this is block of bitmap */
1406                         BUG_ON(incore != NULL);
1407                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408                                 group, page->index, i * blocksize);
1409                         trace_ext4_mb_bitmap_load(sb, group);
1410
1411                         /* see comments in ext4_mb_put_pa() */
1412                         ext4_lock_group(sb, group);
1413                         memcpy(data, bitmap, blocksize);
1414
1415                         /* mark all preallocated blks used in in-core bitmap */
1416                         ext4_mb_generate_from_pa(sb, data, group);
1417                         WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418                         ext4_unlock_group(sb, group);
1419
1420                         /* set incore so that the buddy information can be
1421                          * generated using this
1422                          */
1423                         incore = data;
1424                 }
1425         }
1426         SetPageUptodate(page);
1427
1428 out:
1429         if (bh) {
1430                 for (i = 0; i < groups_per_page; i++)
1431                         brelse(bh[i]);
1432                 if (bh != &bhs)
1433                         kfree(bh);
1434         }
1435         return err;
1436 }
1437
1438 /*
1439  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440  * on the same buddy page doesn't happen whild holding the buddy page lock.
1441  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443  */
1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446 {
1447         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448         int block, pnum, poff;
1449         int blocks_per_page;
1450         struct page *page;
1451
1452         e4b->bd_buddy_page = NULL;
1453         e4b->bd_bitmap_page = NULL;
1454
1455         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456         /*
1457          * the buddy cache inode stores the block bitmap
1458          * and buddy information in consecutive blocks.
1459          * So for each group we need two blocks.
1460          */
1461         block = group * 2;
1462         pnum = block / blocks_per_page;
1463         poff = block % blocks_per_page;
1464         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465         if (!page)
1466                 return -ENOMEM;
1467         BUG_ON(page->mapping != inode->i_mapping);
1468         e4b->bd_bitmap_page = page;
1469         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470
1471         if (blocks_per_page >= 2) {
1472                 /* buddy and bitmap are on the same page */
1473                 return 0;
1474         }
1475
1476         /* blocks_per_page == 1, hence we need another page for the buddy */
1477         page = find_or_create_page(inode->i_mapping, block + 1, gfp);
1478         if (!page)
1479                 return -ENOMEM;
1480         BUG_ON(page->mapping != inode->i_mapping);
1481         e4b->bd_buddy_page = page;
1482         return 0;
1483 }
1484
1485 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1486 {
1487         if (e4b->bd_bitmap_page) {
1488                 unlock_page(e4b->bd_bitmap_page);
1489                 put_page(e4b->bd_bitmap_page);
1490         }
1491         if (e4b->bd_buddy_page) {
1492                 unlock_page(e4b->bd_buddy_page);
1493                 put_page(e4b->bd_buddy_page);
1494         }
1495 }
1496
1497 /*
1498  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1499  * block group lock of all groups for this page; do not hold the BG lock when
1500  * calling this routine!
1501  */
1502 static noinline_for_stack
1503 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1504 {
1505
1506         struct ext4_group_info *this_grp;
1507         struct ext4_buddy e4b;
1508         struct page *page;
1509         int ret = 0;
1510
1511         might_sleep();
1512         mb_debug(sb, "init group %u\n", group);
1513         this_grp = ext4_get_group_info(sb, group);
1514         if (!this_grp)
1515                 return -EFSCORRUPTED;
1516
1517         /*
1518          * This ensures that we don't reinit the buddy cache
1519          * page which map to the group from which we are already
1520          * allocating. If we are looking at the buddy cache we would
1521          * have taken a reference using ext4_mb_load_buddy and that
1522          * would have pinned buddy page to page cache.
1523          * The call to ext4_mb_get_buddy_page_lock will mark the
1524          * page accessed.
1525          */
1526         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1527         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1528                 /*
1529                  * somebody initialized the group
1530                  * return without doing anything
1531                  */
1532                 goto err;
1533         }
1534
1535         page = e4b.bd_bitmap_page;
1536         ret = ext4_mb_init_cache(page, NULL, gfp);
1537         if (ret)
1538                 goto err;
1539         if (!PageUptodate(page)) {
1540                 ret = -EIO;
1541                 goto err;
1542         }
1543
1544         if (e4b.bd_buddy_page == NULL) {
1545                 /*
1546                  * If both the bitmap and buddy are in
1547                  * the same page we don't need to force
1548                  * init the buddy
1549                  */
1550                 ret = 0;
1551                 goto err;
1552         }
1553         /* init buddy cache */
1554         page = e4b.bd_buddy_page;
1555         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1556         if (ret)
1557                 goto err;
1558         if (!PageUptodate(page)) {
1559                 ret = -EIO;
1560                 goto err;
1561         }
1562 err:
1563         ext4_mb_put_buddy_page_lock(&e4b);
1564         return ret;
1565 }
1566
1567 /*
1568  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1569  * block group lock of all groups for this page; do not hold the BG lock when
1570  * calling this routine!
1571  */
1572 static noinline_for_stack int
1573 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1574                        struct ext4_buddy *e4b, gfp_t gfp)
1575 {
1576         int blocks_per_page;
1577         int block;
1578         int pnum;
1579         int poff;
1580         struct page *page;
1581         int ret;
1582         struct ext4_group_info *grp;
1583         struct ext4_sb_info *sbi = EXT4_SB(sb);
1584         struct inode *inode = sbi->s_buddy_cache;
1585
1586         might_sleep();
1587         mb_debug(sb, "load group %u\n", group);
1588
1589         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1590         grp = ext4_get_group_info(sb, group);
1591         if (!grp)
1592                 return -EFSCORRUPTED;
1593
1594         e4b->bd_blkbits = sb->s_blocksize_bits;
1595         e4b->bd_info = grp;
1596         e4b->bd_sb = sb;
1597         e4b->bd_group = group;
1598         e4b->bd_buddy_page = NULL;
1599         e4b->bd_bitmap_page = NULL;
1600
1601         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1602                 /*
1603                  * we need full data about the group
1604                  * to make a good selection
1605                  */
1606                 ret = ext4_mb_init_group(sb, group, gfp);
1607                 if (ret)
1608                         return ret;
1609         }
1610
1611         /*
1612          * the buddy cache inode stores the block bitmap
1613          * and buddy information in consecutive blocks.
1614          * So for each group we need two blocks.
1615          */
1616         block = group * 2;
1617         pnum = block / blocks_per_page;
1618         poff = block % blocks_per_page;
1619
1620         /* we could use find_or_create_page(), but it locks page
1621          * what we'd like to avoid in fast path ... */
1622         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1623         if (page == NULL || !PageUptodate(page)) {
1624                 if (page)
1625                         /*
1626                          * drop the page reference and try
1627                          * to get the page with lock. If we
1628                          * are not uptodate that implies
1629                          * somebody just created the page but
1630                          * is yet to initialize the same. So
1631                          * wait for it to initialize.
1632                          */
1633                         put_page(page);
1634                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1635                 if (page) {
1636                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1637         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1638                                 /* should never happen */
1639                                 unlock_page(page);
1640                                 ret = -EINVAL;
1641                                 goto err;
1642                         }
1643                         if (!PageUptodate(page)) {
1644                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1645                                 if (ret) {
1646                                         unlock_page(page);
1647                                         goto err;
1648                                 }
1649                                 mb_cmp_bitmaps(e4b, page_address(page) +
1650                                                (poff * sb->s_blocksize));
1651                         }
1652                         unlock_page(page);
1653                 }
1654         }
1655         if (page == NULL) {
1656                 ret = -ENOMEM;
1657                 goto err;
1658         }
1659         if (!PageUptodate(page)) {
1660                 ret = -EIO;
1661                 goto err;
1662         }
1663
1664         /* Pages marked accessed already */
1665         e4b->bd_bitmap_page = page;
1666         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1667
1668         block++;
1669         pnum = block / blocks_per_page;
1670         poff = block % blocks_per_page;
1671
1672         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1673         if (page == NULL || !PageUptodate(page)) {
1674                 if (page)
1675                         put_page(page);
1676                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1677                 if (page) {
1678                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1679         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1680                                 /* should never happen */
1681                                 unlock_page(page);
1682                                 ret = -EINVAL;
1683                                 goto err;
1684                         }
1685                         if (!PageUptodate(page)) {
1686                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1687                                                          gfp);
1688                                 if (ret) {
1689                                         unlock_page(page);
1690                                         goto err;
1691                                 }
1692                         }
1693                         unlock_page(page);
1694                 }
1695         }
1696         if (page == NULL) {
1697                 ret = -ENOMEM;
1698                 goto err;
1699         }
1700         if (!PageUptodate(page)) {
1701                 ret = -EIO;
1702                 goto err;
1703         }
1704
1705         /* Pages marked accessed already */
1706         e4b->bd_buddy_page = page;
1707         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1708
1709         return 0;
1710
1711 err:
1712         if (page)
1713                 put_page(page);
1714         if (e4b->bd_bitmap_page)
1715                 put_page(e4b->bd_bitmap_page);
1716
1717         e4b->bd_buddy = NULL;
1718         e4b->bd_bitmap = NULL;
1719         return ret;
1720 }
1721
1722 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1723                               struct ext4_buddy *e4b)
1724 {
1725         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1726 }
1727
1728 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1729 {
1730         if (e4b->bd_bitmap_page)
1731                 put_page(e4b->bd_bitmap_page);
1732         if (e4b->bd_buddy_page)
1733                 put_page(e4b->bd_buddy_page);
1734 }
1735
1736
1737 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1738 {
1739         int order = 1, max;
1740         void *bb;
1741
1742         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1743         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1744
1745         while (order <= e4b->bd_blkbits + 1) {
1746                 bb = mb_find_buddy(e4b, order, &max);
1747                 if (!mb_test_bit(block >> order, bb)) {
1748                         /* this block is part of buddy of order 'order' */
1749                         return order;
1750                 }
1751                 order++;
1752         }
1753         return 0;
1754 }
1755
1756 static void mb_clear_bits(void *bm, int cur, int len)
1757 {
1758         __u32 *addr;
1759
1760         len = cur + len;
1761         while (cur < len) {
1762                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1763                         /* fast path: clear whole word at once */
1764                         addr = bm + (cur >> 3);
1765                         *addr = 0;
1766                         cur += 32;
1767                         continue;
1768                 }
1769                 mb_clear_bit(cur, bm);
1770                 cur++;
1771         }
1772 }
1773
1774 /* clear bits in given range
1775  * will return first found zero bit if any, -1 otherwise
1776  */
1777 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1778 {
1779         __u32 *addr;
1780         int zero_bit = -1;
1781
1782         len = cur + len;
1783         while (cur < len) {
1784                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1785                         /* fast path: clear whole word at once */
1786                         addr = bm + (cur >> 3);
1787                         if (*addr != (__u32)(-1) && zero_bit == -1)
1788                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1789                         *addr = 0;
1790                         cur += 32;
1791                         continue;
1792                 }
1793                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1794                         zero_bit = cur;
1795                 cur++;
1796         }
1797
1798         return zero_bit;
1799 }
1800
1801 void mb_set_bits(void *bm, int cur, int len)
1802 {
1803         __u32 *addr;
1804
1805         len = cur + len;
1806         while (cur < len) {
1807                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1808                         /* fast path: set whole word at once */
1809                         addr = bm + (cur >> 3);
1810                         *addr = 0xffffffff;
1811                         cur += 32;
1812                         continue;
1813                 }
1814                 mb_set_bit(cur, bm);
1815                 cur++;
1816         }
1817 }
1818
1819 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1820 {
1821         if (mb_test_bit(*bit + side, bitmap)) {
1822                 mb_clear_bit(*bit, bitmap);
1823                 (*bit) -= side;
1824                 return 1;
1825         }
1826         else {
1827                 (*bit) += side;
1828                 mb_set_bit(*bit, bitmap);
1829                 return -1;
1830         }
1831 }
1832
1833 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1834 {
1835         int max;
1836         int order = 1;
1837         void *buddy = mb_find_buddy(e4b, order, &max);
1838
1839         while (buddy) {
1840                 void *buddy2;
1841
1842                 /* Bits in range [first; last] are known to be set since
1843                  * corresponding blocks were allocated. Bits in range
1844                  * (first; last) will stay set because they form buddies on
1845                  * upper layer. We just deal with borders if they don't
1846                  * align with upper layer and then go up.
1847                  * Releasing entire group is all about clearing
1848                  * single bit of highest order buddy.
1849                  */
1850
1851                 /* Example:
1852                  * ---------------------------------
1853                  * |   1   |   1   |   1   |   1   |
1854                  * ---------------------------------
1855                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1856                  * ---------------------------------
1857                  *   0   1   2   3   4   5   6   7
1858                  *      \_____________________/
1859                  *
1860                  * Neither [1] nor [6] is aligned to above layer.
1861                  * Left neighbour [0] is free, so mark it busy,
1862                  * decrease bb_counters and extend range to
1863                  * [0; 6]
1864                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1865                  * mark [6] free, increase bb_counters and shrink range to
1866                  * [0; 5].
1867                  * Then shift range to [0; 2], go up and do the same.
1868                  */
1869
1870
1871                 if (first & 1)
1872                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1873                 if (!(last & 1))
1874                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1875                 if (first > last)
1876                         break;
1877                 order++;
1878
1879                 buddy2 = mb_find_buddy(e4b, order, &max);
1880                 if (!buddy2) {
1881                         mb_clear_bits(buddy, first, last - first + 1);
1882                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1883                         break;
1884                 }
1885                 first >>= 1;
1886                 last >>= 1;
1887                 buddy = buddy2;
1888         }
1889 }
1890
1891 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1892                            int first, int count)
1893 {
1894         int left_is_free = 0;
1895         int right_is_free = 0;
1896         int block;
1897         int last = first + count - 1;
1898         struct super_block *sb = e4b->bd_sb;
1899
1900         if (WARN_ON(count == 0))
1901                 return;
1902         BUG_ON(last >= (sb->s_blocksize << 3));
1903         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1904         /* Don't bother if the block group is corrupt. */
1905         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1906                 return;
1907
1908         mb_check_buddy(e4b);
1909         mb_free_blocks_double(inode, e4b, first, count);
1910
1911         /* access memory sequentially: check left neighbour,
1912          * clear range and then check right neighbour
1913          */
1914         if (first != 0)
1915                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1916         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1917         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1918                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1919
1920         if (unlikely(block != -1)) {
1921                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1922                 ext4_fsblk_t blocknr;
1923
1924                 /*
1925                  * Fastcommit replay can free already freed blocks which
1926                  * corrupts allocation info. Regenerate it.
1927                  */
1928                 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1929                         mb_regenerate_buddy(e4b);
1930                         goto check;
1931                 }
1932
1933                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1934                 blocknr += EXT4_C2B(sbi, block);
1935                 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1936                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1937                 ext4_grp_locked_error(sb, e4b->bd_group,
1938                                       inode ? inode->i_ino : 0, blocknr,
1939                                       "freeing already freed block (bit %u); block bitmap corrupt.",
1940                                       block);
1941                 return;
1942         }
1943
1944         this_cpu_inc(discard_pa_seq);
1945         e4b->bd_info->bb_free += count;
1946         if (first < e4b->bd_info->bb_first_free)
1947                 e4b->bd_info->bb_first_free = first;
1948
1949         /* let's maintain fragments counter */
1950         if (left_is_free && right_is_free)
1951                 e4b->bd_info->bb_fragments--;
1952         else if (!left_is_free && !right_is_free)
1953                 e4b->bd_info->bb_fragments++;
1954
1955         /* buddy[0] == bd_bitmap is a special case, so handle
1956          * it right away and let mb_buddy_mark_free stay free of
1957          * zero order checks.
1958          * Check if neighbours are to be coaleasced,
1959          * adjust bitmap bb_counters and borders appropriately.
1960          */
1961         if (first & 1) {
1962                 first += !left_is_free;
1963                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1964         }
1965         if (!(last & 1)) {
1966                 last -= !right_is_free;
1967                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1968         }
1969
1970         if (first <= last)
1971                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1972
1973         mb_set_largest_free_order(sb, e4b->bd_info);
1974         mb_update_avg_fragment_size(sb, e4b->bd_info);
1975 check:
1976         mb_check_buddy(e4b);
1977 }
1978
1979 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1980                                 int needed, struct ext4_free_extent *ex)
1981 {
1982         int max, order, next;
1983         void *buddy;
1984
1985         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1986         BUG_ON(ex == NULL);
1987
1988         buddy = mb_find_buddy(e4b, 0, &max);
1989         BUG_ON(buddy == NULL);
1990         BUG_ON(block >= max);
1991         if (mb_test_bit(block, buddy)) {
1992                 ex->fe_len = 0;
1993                 ex->fe_start = 0;
1994                 ex->fe_group = 0;
1995                 return 0;
1996         }
1997
1998         /* find actual order */
1999         order = mb_find_order_for_block(e4b, block);
2000
2001         ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2002         ex->fe_start = block;
2003         ex->fe_group = e4b->bd_group;
2004
2005         block = block >> order;
2006
2007         while (needed > ex->fe_len &&
2008                mb_find_buddy(e4b, order, &max)) {
2009
2010                 if (block + 1 >= max)
2011                         break;
2012
2013                 next = (block + 1) * (1 << order);
2014                 if (mb_test_bit(next, e4b->bd_bitmap))
2015                         break;
2016
2017                 order = mb_find_order_for_block(e4b, next);
2018
2019                 block = next >> order;
2020                 ex->fe_len += 1 << order;
2021         }
2022
2023         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2024                 /* Should never happen! (but apparently sometimes does?!?) */
2025                 WARN_ON(1);
2026                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2027                         "corruption or bug in mb_find_extent "
2028                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2029                         block, order, needed, ex->fe_group, ex->fe_start,
2030                         ex->fe_len, ex->fe_logical);
2031                 ex->fe_len = 0;
2032                 ex->fe_start = 0;
2033                 ex->fe_group = 0;
2034         }
2035         return ex->fe_len;
2036 }
2037
2038 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2039 {
2040         int ord;
2041         int mlen = 0;
2042         int max = 0;
2043         int cur;
2044         int start = ex->fe_start;
2045         int len = ex->fe_len;
2046         unsigned ret = 0;
2047         int len0 = len;
2048         void *buddy;
2049         bool split = false;
2050
2051         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2052         BUG_ON(e4b->bd_group != ex->fe_group);
2053         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2054         mb_check_buddy(e4b);
2055         mb_mark_used_double(e4b, start, len);
2056
2057         this_cpu_inc(discard_pa_seq);
2058         e4b->bd_info->bb_free -= len;
2059         if (e4b->bd_info->bb_first_free == start)
2060                 e4b->bd_info->bb_first_free += len;
2061
2062         /* let's maintain fragments counter */
2063         if (start != 0)
2064                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2065         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2066                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2067         if (mlen && max)
2068                 e4b->bd_info->bb_fragments++;
2069         else if (!mlen && !max)
2070                 e4b->bd_info->bb_fragments--;
2071
2072         /* let's maintain buddy itself */
2073         while (len) {
2074                 if (!split)
2075                         ord = mb_find_order_for_block(e4b, start);
2076
2077                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2078                         /* the whole chunk may be allocated at once! */
2079                         mlen = 1 << ord;
2080                         if (!split)
2081                                 buddy = mb_find_buddy(e4b, ord, &max);
2082                         else
2083                                 split = false;
2084                         BUG_ON((start >> ord) >= max);
2085                         mb_set_bit(start >> ord, buddy);
2086                         e4b->bd_info->bb_counters[ord]--;
2087                         start += mlen;
2088                         len -= mlen;
2089                         BUG_ON(len < 0);
2090                         continue;
2091                 }
2092
2093                 /* store for history */
2094                 if (ret == 0)
2095                         ret = len | (ord << 16);
2096
2097                 /* we have to split large buddy */
2098                 BUG_ON(ord <= 0);
2099                 buddy = mb_find_buddy(e4b, ord, &max);
2100                 mb_set_bit(start >> ord, buddy);
2101                 e4b->bd_info->bb_counters[ord]--;
2102
2103                 ord--;
2104                 cur = (start >> ord) & ~1U;
2105                 buddy = mb_find_buddy(e4b, ord, &max);
2106                 mb_clear_bit(cur, buddy);
2107                 mb_clear_bit(cur + 1, buddy);
2108                 e4b->bd_info->bb_counters[ord]++;
2109                 e4b->bd_info->bb_counters[ord]++;
2110                 split = true;
2111         }
2112         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2113
2114         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2115         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2116         mb_check_buddy(e4b);
2117
2118         return ret;
2119 }
2120
2121 /*
2122  * Must be called under group lock!
2123  */
2124 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2125                                         struct ext4_buddy *e4b)
2126 {
2127         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2128         int ret;
2129
2130         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2131         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2132
2133         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2134         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2135         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2136
2137         /* preallocation can change ac_b_ex, thus we store actually
2138          * allocated blocks for history */
2139         ac->ac_f_ex = ac->ac_b_ex;
2140
2141         ac->ac_status = AC_STATUS_FOUND;
2142         ac->ac_tail = ret & 0xffff;
2143         ac->ac_buddy = ret >> 16;
2144
2145         /*
2146          * take the page reference. We want the page to be pinned
2147          * so that we don't get a ext4_mb_init_cache_call for this
2148          * group until we update the bitmap. That would mean we
2149          * double allocate blocks. The reference is dropped
2150          * in ext4_mb_release_context
2151          */
2152         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2153         get_page(ac->ac_bitmap_page);
2154         ac->ac_buddy_page = e4b->bd_buddy_page;
2155         get_page(ac->ac_buddy_page);
2156         /* store last allocated for subsequent stream allocation */
2157         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2158                 spin_lock(&sbi->s_md_lock);
2159                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2160                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2161                 spin_unlock(&sbi->s_md_lock);
2162         }
2163         /*
2164          * As we've just preallocated more space than
2165          * user requested originally, we store allocated
2166          * space in a special descriptor.
2167          */
2168         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2169                 ext4_mb_new_preallocation(ac);
2170
2171 }
2172
2173 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2174                                         struct ext4_buddy *e4b,
2175                                         int finish_group)
2176 {
2177         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2178         struct ext4_free_extent *bex = &ac->ac_b_ex;
2179         struct ext4_free_extent *gex = &ac->ac_g_ex;
2180
2181         if (ac->ac_status == AC_STATUS_FOUND)
2182                 return;
2183         /*
2184          * We don't want to scan for a whole year
2185          */
2186         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2187                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2188                 ac->ac_status = AC_STATUS_BREAK;
2189                 return;
2190         }
2191
2192         /*
2193          * Haven't found good chunk so far, let's continue
2194          */
2195         if (bex->fe_len < gex->fe_len)
2196                 return;
2197
2198         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2199                 ext4_mb_use_best_found(ac, e4b);
2200 }
2201
2202 /*
2203  * The routine checks whether found extent is good enough. If it is,
2204  * then the extent gets marked used and flag is set to the context
2205  * to stop scanning. Otherwise, the extent is compared with the
2206  * previous found extent and if new one is better, then it's stored
2207  * in the context. Later, the best found extent will be used, if
2208  * mballoc can't find good enough extent.
2209  *
2210  * The algorithm used is roughly as follows:
2211  *
2212  * * If free extent found is exactly as big as goal, then
2213  *   stop the scan and use it immediately
2214  *
2215  * * If free extent found is smaller than goal, then keep retrying
2216  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2217  *   that stop scanning and use whatever we have.
2218  *
2219  * * If free extent found is bigger than goal, then keep retrying
2220  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2221  *   stopping the scan and using the extent.
2222  *
2223  *
2224  * FIXME: real allocation policy is to be designed yet!
2225  */
2226 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2227                                         struct ext4_free_extent *ex,
2228                                         struct ext4_buddy *e4b)
2229 {
2230         struct ext4_free_extent *bex = &ac->ac_b_ex;
2231         struct ext4_free_extent *gex = &ac->ac_g_ex;
2232
2233         BUG_ON(ex->fe_len <= 0);
2234         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2235         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2236         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2237
2238         ac->ac_found++;
2239         ac->ac_cX_found[ac->ac_criteria]++;
2240
2241         /*
2242          * The special case - take what you catch first
2243          */
2244         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2245                 *bex = *ex;
2246                 ext4_mb_use_best_found(ac, e4b);
2247                 return;
2248         }
2249
2250         /*
2251          * Let's check whether the chuck is good enough
2252          */
2253         if (ex->fe_len == gex->fe_len) {
2254                 *bex = *ex;
2255                 ext4_mb_use_best_found(ac, e4b);
2256                 return;
2257         }
2258
2259         /*
2260          * If this is first found extent, just store it in the context
2261          */
2262         if (bex->fe_len == 0) {
2263                 *bex = *ex;
2264                 return;
2265         }
2266
2267         /*
2268          * If new found extent is better, store it in the context
2269          */
2270         if (bex->fe_len < gex->fe_len) {
2271                 /* if the request isn't satisfied, any found extent
2272                  * larger than previous best one is better */
2273                 if (ex->fe_len > bex->fe_len)
2274                         *bex = *ex;
2275         } else if (ex->fe_len > gex->fe_len) {
2276                 /* if the request is satisfied, then we try to find
2277                  * an extent that still satisfy the request, but is
2278                  * smaller than previous one */
2279                 if (ex->fe_len < bex->fe_len)
2280                         *bex = *ex;
2281         }
2282
2283         ext4_mb_check_limits(ac, e4b, 0);
2284 }
2285
2286 static noinline_for_stack
2287 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2288                                         struct ext4_buddy *e4b)
2289 {
2290         struct ext4_free_extent ex = ac->ac_b_ex;
2291         ext4_group_t group = ex.fe_group;
2292         int max;
2293         int err;
2294
2295         BUG_ON(ex.fe_len <= 0);
2296         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2297         if (err)
2298                 return;
2299
2300         ext4_lock_group(ac->ac_sb, group);
2301         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2302                 goto out;
2303
2304         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2305
2306         if (max > 0) {
2307                 ac->ac_b_ex = ex;
2308                 ext4_mb_use_best_found(ac, e4b);
2309         }
2310
2311 out:
2312         ext4_unlock_group(ac->ac_sb, group);
2313         ext4_mb_unload_buddy(e4b);
2314 }
2315
2316 static noinline_for_stack
2317 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2318                                 struct ext4_buddy *e4b)
2319 {
2320         ext4_group_t group = ac->ac_g_ex.fe_group;
2321         int max;
2322         int err;
2323         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2324         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2325         struct ext4_free_extent ex;
2326
2327         if (!grp)
2328                 return -EFSCORRUPTED;
2329         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2330                 return 0;
2331         if (grp->bb_free == 0)
2332                 return 0;
2333
2334         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2335         if (err)
2336                 return err;
2337
2338         ext4_lock_group(ac->ac_sb, group);
2339         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2340                 goto out;
2341
2342         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2343                              ac->ac_g_ex.fe_len, &ex);
2344         ex.fe_logical = 0xDEADFA11; /* debug value */
2345
2346         if (max >= ac->ac_g_ex.fe_len &&
2347             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2348                 ext4_fsblk_t start;
2349
2350                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2351                 /* use do_div to get remainder (would be 64-bit modulo) */
2352                 if (do_div(start, sbi->s_stripe) == 0) {
2353                         ac->ac_found++;
2354                         ac->ac_b_ex = ex;
2355                         ext4_mb_use_best_found(ac, e4b);
2356                 }
2357         } else if (max >= ac->ac_g_ex.fe_len) {
2358                 BUG_ON(ex.fe_len <= 0);
2359                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2360                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2361                 ac->ac_found++;
2362                 ac->ac_b_ex = ex;
2363                 ext4_mb_use_best_found(ac, e4b);
2364         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2365                 /* Sometimes, caller may want to merge even small
2366                  * number of blocks to an existing extent */
2367                 BUG_ON(ex.fe_len <= 0);
2368                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2369                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2370                 ac->ac_found++;
2371                 ac->ac_b_ex = ex;
2372                 ext4_mb_use_best_found(ac, e4b);
2373         }
2374 out:
2375         ext4_unlock_group(ac->ac_sb, group);
2376         ext4_mb_unload_buddy(e4b);
2377
2378         return 0;
2379 }
2380
2381 /*
2382  * The routine scans buddy structures (not bitmap!) from given order
2383  * to max order and tries to find big enough chunk to satisfy the req
2384  */
2385 static noinline_for_stack
2386 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2387                                         struct ext4_buddy *e4b)
2388 {
2389         struct super_block *sb = ac->ac_sb;
2390         struct ext4_group_info *grp = e4b->bd_info;
2391         void *buddy;
2392         int i;
2393         int k;
2394         int max;
2395
2396         BUG_ON(ac->ac_2order <= 0);
2397         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2398                 if (grp->bb_counters[i] == 0)
2399                         continue;
2400
2401                 buddy = mb_find_buddy(e4b, i, &max);
2402                 if (WARN_RATELIMIT(buddy == NULL,
2403                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2404                         continue;
2405
2406                 k = mb_find_next_zero_bit(buddy, max, 0);
2407                 if (k >= max) {
2408                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2409                                         e4b->bd_group,
2410                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2411                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2412                                 "%d free clusters of order %d. But found 0",
2413                                 grp->bb_counters[i], i);
2414                         break;
2415                 }
2416                 ac->ac_found++;
2417                 ac->ac_cX_found[ac->ac_criteria]++;
2418
2419                 ac->ac_b_ex.fe_len = 1 << i;
2420                 ac->ac_b_ex.fe_start = k << i;
2421                 ac->ac_b_ex.fe_group = e4b->bd_group;
2422
2423                 ext4_mb_use_best_found(ac, e4b);
2424
2425                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2426
2427                 if (EXT4_SB(sb)->s_mb_stats)
2428                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2429
2430                 break;
2431         }
2432 }
2433
2434 /*
2435  * The routine scans the group and measures all found extents.
2436  * In order to optimize scanning, caller must pass number of
2437  * free blocks in the group, so the routine can know upper limit.
2438  */
2439 static noinline_for_stack
2440 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2441                                         struct ext4_buddy *e4b)
2442 {
2443         struct super_block *sb = ac->ac_sb;
2444         void *bitmap = e4b->bd_bitmap;
2445         struct ext4_free_extent ex;
2446         int i, j, freelen;
2447         int free;
2448
2449         free = e4b->bd_info->bb_free;
2450         if (WARN_ON(free <= 0))
2451                 return;
2452
2453         i = e4b->bd_info->bb_first_free;
2454
2455         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2456                 i = mb_find_next_zero_bit(bitmap,
2457                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2458                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2459                         /*
2460                          * IF we have corrupt bitmap, we won't find any
2461                          * free blocks even though group info says we
2462                          * have free blocks
2463                          */
2464                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2465                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2466                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2467                                         "%d free clusters as per "
2468                                         "group info. But bitmap says 0",
2469                                         free);
2470                         break;
2471                 }
2472
2473                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2474                         /*
2475                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2476                          * sure that this group will have a large enough
2477                          * continuous free extent, so skip over the smaller free
2478                          * extents
2479                          */
2480                         j = mb_find_next_bit(bitmap,
2481                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2482                         freelen = j - i;
2483
2484                         if (freelen < ac->ac_g_ex.fe_len) {
2485                                 i = j;
2486                                 free -= freelen;
2487                                 continue;
2488                         }
2489                 }
2490
2491                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2492                 if (WARN_ON(ex.fe_len <= 0))
2493                         break;
2494                 if (free < ex.fe_len) {
2495                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2496                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2497                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2498                                         "%d free clusters as per "
2499                                         "group info. But got %d blocks",
2500                                         free, ex.fe_len);
2501                         /*
2502                          * The number of free blocks differs. This mostly
2503                          * indicate that the bitmap is corrupt. So exit
2504                          * without claiming the space.
2505                          */
2506                         break;
2507                 }
2508                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2509                 ext4_mb_measure_extent(ac, &ex, e4b);
2510
2511                 i += ex.fe_len;
2512                 free -= ex.fe_len;
2513         }
2514
2515         ext4_mb_check_limits(ac, e4b, 1);
2516 }
2517
2518 /*
2519  * This is a special case for storages like raid5
2520  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2521  */
2522 static noinline_for_stack
2523 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2524                                  struct ext4_buddy *e4b)
2525 {
2526         struct super_block *sb = ac->ac_sb;
2527         struct ext4_sb_info *sbi = EXT4_SB(sb);
2528         void *bitmap = e4b->bd_bitmap;
2529         struct ext4_free_extent ex;
2530         ext4_fsblk_t first_group_block;
2531         ext4_fsblk_t a;
2532         ext4_grpblk_t i, stripe;
2533         int max;
2534
2535         BUG_ON(sbi->s_stripe == 0);
2536
2537         /* find first stripe-aligned block in group */
2538         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2539
2540         a = first_group_block + sbi->s_stripe - 1;
2541         do_div(a, sbi->s_stripe);
2542         i = (a * sbi->s_stripe) - first_group_block;
2543
2544         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2545         i = EXT4_B2C(sbi, i);
2546         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2547                 if (!mb_test_bit(i, bitmap)) {
2548                         max = mb_find_extent(e4b, i, stripe, &ex);
2549                         if (max >= stripe) {
2550                                 ac->ac_found++;
2551                                 ac->ac_cX_found[ac->ac_criteria]++;
2552                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2553                                 ac->ac_b_ex = ex;
2554                                 ext4_mb_use_best_found(ac, e4b);
2555                                 break;
2556                         }
2557                 }
2558                 i += stripe;
2559         }
2560 }
2561
2562 /*
2563  * This is also called BEFORE we load the buddy bitmap.
2564  * Returns either 1 or 0 indicating that the group is either suitable
2565  * for the allocation or not.
2566  */
2567 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2568                                 ext4_group_t group, enum criteria cr)
2569 {
2570         ext4_grpblk_t free, fragments;
2571         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2572         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2573
2574         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2575
2576         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2577                 return false;
2578
2579         free = grp->bb_free;
2580         if (free == 0)
2581                 return false;
2582
2583         fragments = grp->bb_fragments;
2584         if (fragments == 0)
2585                 return false;
2586
2587         switch (cr) {
2588         case CR_POWER2_ALIGNED:
2589                 BUG_ON(ac->ac_2order == 0);
2590
2591                 /* Avoid using the first bg of a flexgroup for data files */
2592                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2593                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2594                     ((group % flex_size) == 0))
2595                         return false;
2596
2597                 if (free < ac->ac_g_ex.fe_len)
2598                         return false;
2599
2600                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2601                         return true;
2602
2603                 if (grp->bb_largest_free_order < ac->ac_2order)
2604                         return false;
2605
2606                 return true;
2607         case CR_GOAL_LEN_FAST:
2608         case CR_BEST_AVAIL_LEN:
2609                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2610                         return true;
2611                 break;
2612         case CR_GOAL_LEN_SLOW:
2613                 if (free >= ac->ac_g_ex.fe_len)
2614                         return true;
2615                 break;
2616         case CR_ANY_FREE:
2617                 return true;
2618         default:
2619                 BUG();
2620         }
2621
2622         return false;
2623 }
2624
2625 /*
2626  * This could return negative error code if something goes wrong
2627  * during ext4_mb_init_group(). This should not be called with
2628  * ext4_lock_group() held.
2629  *
2630  * Note: because we are conditionally operating with the group lock in
2631  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2632  * function using __acquire and __release.  This means we need to be
2633  * super careful before messing with the error path handling via "goto
2634  * out"!
2635  */
2636 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2637                                      ext4_group_t group, enum criteria cr)
2638 {
2639         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2640         struct super_block *sb = ac->ac_sb;
2641         struct ext4_sb_info *sbi = EXT4_SB(sb);
2642         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2643         ext4_grpblk_t free;
2644         int ret = 0;
2645
2646         if (!grp)
2647                 return -EFSCORRUPTED;
2648         if (sbi->s_mb_stats)
2649                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2650         if (should_lock) {
2651                 ext4_lock_group(sb, group);
2652                 __release(ext4_group_lock_ptr(sb, group));
2653         }
2654         free = grp->bb_free;
2655         if (free == 0)
2656                 goto out;
2657         /*
2658          * In all criterias except CR_ANY_FREE we try to avoid groups that
2659          * can't possibly satisfy the full goal request due to insufficient
2660          * free blocks.
2661          */
2662         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2663                 goto out;
2664         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2665                 goto out;
2666         if (should_lock) {
2667                 __acquire(ext4_group_lock_ptr(sb, group));
2668                 ext4_unlock_group(sb, group);
2669         }
2670
2671         /* We only do this if the grp has never been initialized */
2672         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2673                 struct ext4_group_desc *gdp =
2674                         ext4_get_group_desc(sb, group, NULL);
2675                 int ret;
2676
2677                 /*
2678                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2679                  * search to find large good chunks almost for free. If buddy
2680                  * data is not ready, then this optimization makes no sense. But
2681                  * we never skip the first block group in a flex_bg, since this
2682                  * gets used for metadata block allocation, and we want to make
2683                  * sure we locate metadata blocks in the first block group in
2684                  * the flex_bg if possible.
2685                  */
2686                 if (!ext4_mb_cr_expensive(cr) &&
2687                     (!sbi->s_log_groups_per_flex ||
2688                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2689                     !(ext4_has_group_desc_csum(sb) &&
2690                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2691                         return 0;
2692                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2693                 if (ret)
2694                         return ret;
2695         }
2696
2697         if (should_lock) {
2698                 ext4_lock_group(sb, group);
2699                 __release(ext4_group_lock_ptr(sb, group));
2700         }
2701         ret = ext4_mb_good_group(ac, group, cr);
2702 out:
2703         if (should_lock) {
2704                 __acquire(ext4_group_lock_ptr(sb, group));
2705                 ext4_unlock_group(sb, group);
2706         }
2707         return ret;
2708 }
2709
2710 /*
2711  * Start prefetching @nr block bitmaps starting at @group.
2712  * Return the next group which needs to be prefetched.
2713  */
2714 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2715                               unsigned int nr, int *cnt)
2716 {
2717         ext4_group_t ngroups = ext4_get_groups_count(sb);
2718         struct buffer_head *bh;
2719         struct blk_plug plug;
2720
2721         blk_start_plug(&plug);
2722         while (nr-- > 0) {
2723                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2724                                                                   NULL);
2725                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2726
2727                 /*
2728                  * Prefetch block groups with free blocks; but don't
2729                  * bother if it is marked uninitialized on disk, since
2730                  * it won't require I/O to read.  Also only try to
2731                  * prefetch once, so we avoid getblk() call, which can
2732                  * be expensive.
2733                  */
2734                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2735                     EXT4_MB_GRP_NEED_INIT(grp) &&
2736                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2737                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2738                         if (bh && !IS_ERR(bh)) {
2739                                 if (!buffer_uptodate(bh) && cnt)
2740                                         (*cnt)++;
2741                                 brelse(bh);
2742                         }
2743                 }
2744                 if (++group >= ngroups)
2745                         group = 0;
2746         }
2747         blk_finish_plug(&plug);
2748         return group;
2749 }
2750
2751 /*
2752  * Prefetching reads the block bitmap into the buffer cache; but we
2753  * need to make sure that the buddy bitmap in the page cache has been
2754  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2755  * is not yet completed, or indeed if it was not initiated by
2756  * ext4_mb_prefetch did not start the I/O.
2757  *
2758  * TODO: We should actually kick off the buddy bitmap setup in a work
2759  * queue when the buffer I/O is completed, so that we don't block
2760  * waiting for the block allocation bitmap read to finish when
2761  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2762  */
2763 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2764                            unsigned int nr)
2765 {
2766         struct ext4_group_desc *gdp;
2767         struct ext4_group_info *grp;
2768
2769         while (nr-- > 0) {
2770                 if (!group)
2771                         group = ext4_get_groups_count(sb);
2772                 group--;
2773                 gdp = ext4_get_group_desc(sb, group, NULL);
2774                 grp = ext4_get_group_info(sb, group);
2775
2776                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2777                     ext4_free_group_clusters(sb, gdp) > 0) {
2778                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2779                                 break;
2780                 }
2781         }
2782 }
2783
2784 static noinline_for_stack int
2785 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2786 {
2787         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2788         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2789         int err = 0, first_err = 0;
2790         unsigned int nr = 0, prefetch_ios = 0;
2791         struct ext4_sb_info *sbi;
2792         struct super_block *sb;
2793         struct ext4_buddy e4b;
2794         int lost;
2795
2796         sb = ac->ac_sb;
2797         sbi = EXT4_SB(sb);
2798         ngroups = ext4_get_groups_count(sb);
2799         /* non-extent files are limited to low blocks/groups */
2800         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2801                 ngroups = sbi->s_blockfile_groups;
2802
2803         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2804
2805         /* first, try the goal */
2806         err = ext4_mb_find_by_goal(ac, &e4b);
2807         if (err || ac->ac_status == AC_STATUS_FOUND)
2808                 goto out;
2809
2810         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2811                 goto out;
2812
2813         /*
2814          * ac->ac_2order is set only if the fe_len is a power of 2
2815          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2816          * so that we try exact allocation using buddy.
2817          */
2818         i = fls(ac->ac_g_ex.fe_len);
2819         ac->ac_2order = 0;
2820         /*
2821          * We search using buddy data only if the order of the request
2822          * is greater than equal to the sbi_s_mb_order2_reqs
2823          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2824          * We also support searching for power-of-two requests only for
2825          * requests upto maximum buddy size we have constructed.
2826          */
2827         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2828                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2829                         ac->ac_2order = array_index_nospec(i - 1,
2830                                                            MB_NUM_ORDERS(sb));
2831         }
2832
2833         /* if stream allocation is enabled, use global goal */
2834         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2835                 /* TBD: may be hot point */
2836                 spin_lock(&sbi->s_md_lock);
2837                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2838                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2839                 spin_unlock(&sbi->s_md_lock);
2840         }
2841
2842         /*
2843          * Let's just scan groups to find more-less suitable blocks We
2844          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2845          * aligned, in which case let's do that faster approach first.
2846          */
2847         if (ac->ac_2order)
2848                 cr = CR_POWER2_ALIGNED;
2849 repeat:
2850         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2851                 ac->ac_criteria = cr;
2852                 /*
2853                  * searching for the right group start
2854                  * from the goal value specified
2855                  */
2856                 group = ac->ac_g_ex.fe_group;
2857                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2858                 prefetch_grp = group;
2859
2860                 for (i = 0, new_cr = cr; i < ngroups; i++,
2861                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2862                         int ret = 0;
2863
2864                         cond_resched();
2865                         if (new_cr != cr) {
2866                                 cr = new_cr;
2867                                 goto repeat;
2868                         }
2869
2870                         /*
2871                          * Batch reads of the block allocation bitmaps
2872                          * to get multiple READs in flight; limit
2873                          * prefetching at inexpensive CR, otherwise mballoc
2874                          * can spend a lot of time loading imperfect groups
2875                          */
2876                         if ((prefetch_grp == group) &&
2877                             (ext4_mb_cr_expensive(cr) ||
2878                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2879                                 nr = sbi->s_mb_prefetch;
2880                                 if (ext4_has_feature_flex_bg(sb)) {
2881                                         nr = 1 << sbi->s_log_groups_per_flex;
2882                                         nr -= group & (nr - 1);
2883                                         nr = min(nr, sbi->s_mb_prefetch);
2884                                 }
2885                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2886                                                         nr, &prefetch_ios);
2887                         }
2888
2889                         /* This now checks without needing the buddy page */
2890                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2891                         if (ret <= 0) {
2892                                 if (!first_err)
2893                                         first_err = ret;
2894                                 continue;
2895                         }
2896
2897                         err = ext4_mb_load_buddy(sb, group, &e4b);
2898                         if (err)
2899                                 goto out;
2900
2901                         ext4_lock_group(sb, group);
2902
2903                         /*
2904                          * We need to check again after locking the
2905                          * block group
2906                          */
2907                         ret = ext4_mb_good_group(ac, group, cr);
2908                         if (ret == 0) {
2909                                 ext4_unlock_group(sb, group);
2910                                 ext4_mb_unload_buddy(&e4b);
2911                                 continue;
2912                         }
2913
2914                         ac->ac_groups_scanned++;
2915                         if (cr == CR_POWER2_ALIGNED)
2916                                 ext4_mb_simple_scan_group(ac, &e4b);
2917                         else {
2918                                 bool is_stripe_aligned = sbi->s_stripe &&
2919                                         !(ac->ac_g_ex.fe_len %
2920                                           EXT4_B2C(sbi, sbi->s_stripe));
2921
2922                                 if ((cr == CR_GOAL_LEN_FAST ||
2923                                      cr == CR_BEST_AVAIL_LEN) &&
2924                                     is_stripe_aligned)
2925                                         ext4_mb_scan_aligned(ac, &e4b);
2926
2927                                 if (ac->ac_status == AC_STATUS_CONTINUE)
2928                                         ext4_mb_complex_scan_group(ac, &e4b);
2929                         }
2930
2931                         ext4_unlock_group(sb, group);
2932                         ext4_mb_unload_buddy(&e4b);
2933
2934                         if (ac->ac_status != AC_STATUS_CONTINUE)
2935                                 break;
2936                 }
2937                 /* Processed all groups and haven't found blocks */
2938                 if (sbi->s_mb_stats && i == ngroups)
2939                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2940
2941                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2942                         /* Reset goal length to original goal length before
2943                          * falling into CR_GOAL_LEN_SLOW */
2944                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2945         }
2946
2947         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2948             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2949                 /*
2950                  * We've been searching too long. Let's try to allocate
2951                  * the best chunk we've found so far
2952                  */
2953                 ext4_mb_try_best_found(ac, &e4b);
2954                 if (ac->ac_status != AC_STATUS_FOUND) {
2955                         /*
2956                          * Someone more lucky has already allocated it.
2957                          * The only thing we can do is just take first
2958                          * found block(s)
2959                          */
2960                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2961                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2962                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2963                                  ac->ac_b_ex.fe_len, lost);
2964
2965                         ac->ac_b_ex.fe_group = 0;
2966                         ac->ac_b_ex.fe_start = 0;
2967                         ac->ac_b_ex.fe_len = 0;
2968                         ac->ac_status = AC_STATUS_CONTINUE;
2969                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2970                         cr = CR_ANY_FREE;
2971                         goto repeat;
2972                 }
2973         }
2974
2975         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2976                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2977 out:
2978         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2979                 err = first_err;
2980
2981         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2982                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2983                  ac->ac_flags, cr, err);
2984
2985         if (nr)
2986                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2987
2988         return err;
2989 }
2990
2991 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2992 {
2993         struct super_block *sb = pde_data(file_inode(seq->file));
2994         ext4_group_t group;
2995
2996         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2997                 return NULL;
2998         group = *pos + 1;
2999         return (void *) ((unsigned long) group);
3000 }
3001
3002 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3003 {
3004         struct super_block *sb = pde_data(file_inode(seq->file));
3005         ext4_group_t group;
3006
3007         ++*pos;
3008         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3009                 return NULL;
3010         group = *pos + 1;
3011         return (void *) ((unsigned long) group);
3012 }
3013
3014 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3015 {
3016         struct super_block *sb = pde_data(file_inode(seq->file));
3017         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3018         int i, err;
3019         char nbuf[16];
3020         struct ext4_buddy e4b;
3021         struct ext4_group_info *grinfo;
3022         unsigned char blocksize_bits = min_t(unsigned char,
3023                                              sb->s_blocksize_bits,
3024                                              EXT4_MAX_BLOCK_LOG_SIZE);
3025         struct sg {
3026                 struct ext4_group_info info;
3027                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3028         } sg;
3029
3030         group--;
3031         if (group == 0)
3032                 seq_puts(seq, "#group: free  frags first ["
3033                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3034                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3035
3036         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3037                 sizeof(struct ext4_group_info);
3038
3039         grinfo = ext4_get_group_info(sb, group);
3040         if (!grinfo)
3041                 return 0;
3042         /* Load the group info in memory only if not already loaded. */
3043         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3044                 err = ext4_mb_load_buddy(sb, group, &e4b);
3045                 if (err) {
3046                         seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3047                         return 0;
3048                 }
3049                 ext4_mb_unload_buddy(&e4b);
3050         }
3051
3052         /*
3053          * We care only about free space counters in the group info and
3054          * these are safe to access even after the buddy has been unloaded
3055          */
3056         memcpy(&sg, grinfo, i);
3057         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3058                         sg.info.bb_fragments, sg.info.bb_first_free);
3059         for (i = 0; i <= 13; i++)
3060                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3061                                 sg.info.bb_counters[i] : 0);
3062         seq_puts(seq, " ]");
3063         if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3064                 seq_puts(seq, " Block bitmap corrupted!");
3065         seq_puts(seq, "\n");
3066
3067         return 0;
3068 }
3069
3070 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3071 {
3072 }
3073
3074 const struct seq_operations ext4_mb_seq_groups_ops = {
3075         .start  = ext4_mb_seq_groups_start,
3076         .next   = ext4_mb_seq_groups_next,
3077         .stop   = ext4_mb_seq_groups_stop,
3078         .show   = ext4_mb_seq_groups_show,
3079 };
3080
3081 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3082 {
3083         struct super_block *sb = seq->private;
3084         struct ext4_sb_info *sbi = EXT4_SB(sb);
3085
3086         seq_puts(seq, "mballoc:\n");
3087         if (!sbi->s_mb_stats) {
3088                 seq_puts(seq, "\tmb stats collection turned off.\n");
3089                 seq_puts(
3090                         seq,
3091                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3092                 return 0;
3093         }
3094         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3095         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3096
3097         seq_printf(seq, "\tgroups_scanned: %u\n",
3098                    atomic_read(&sbi->s_bal_groups_scanned));
3099
3100         /* CR_POWER2_ALIGNED stats */
3101         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3102         seq_printf(seq, "\t\thits: %llu\n",
3103                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3104         seq_printf(
3105                 seq, "\t\tgroups_considered: %llu\n",
3106                 atomic64_read(
3107                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3108         seq_printf(seq, "\t\textents_scanned: %u\n",
3109                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3110         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3111                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3112         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3113                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3114
3115         /* CR_GOAL_LEN_FAST stats */
3116         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3117         seq_printf(seq, "\t\thits: %llu\n",
3118                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3119         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3120                    atomic64_read(
3121                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3122         seq_printf(seq, "\t\textents_scanned: %u\n",
3123                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3124         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3125                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3126         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3127                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3128
3129         /* CR_BEST_AVAIL_LEN stats */
3130         seq_puts(seq, "\tcr_best_avail_stats:\n");
3131         seq_printf(seq, "\t\thits: %llu\n",
3132                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3133         seq_printf(
3134                 seq, "\t\tgroups_considered: %llu\n",
3135                 atomic64_read(
3136                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3137         seq_printf(seq, "\t\textents_scanned: %u\n",
3138                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3139         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3140                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3141         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3142                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3143
3144         /* CR_GOAL_LEN_SLOW stats */
3145         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3146         seq_printf(seq, "\t\thits: %llu\n",
3147                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3148         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3149                    atomic64_read(
3150                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3151         seq_printf(seq, "\t\textents_scanned: %u\n",
3152                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3153         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3154                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3155
3156         /* CR_ANY_FREE stats */
3157         seq_puts(seq, "\tcr_any_free_stats:\n");
3158         seq_printf(seq, "\t\thits: %llu\n",
3159                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3160         seq_printf(
3161                 seq, "\t\tgroups_considered: %llu\n",
3162                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3163         seq_printf(seq, "\t\textents_scanned: %u\n",
3164                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3165         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3166                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3167
3168         /* Aggregates */
3169         seq_printf(seq, "\textents_scanned: %u\n",
3170                    atomic_read(&sbi->s_bal_ex_scanned));
3171         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3172         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3173                    atomic_read(&sbi->s_bal_len_goals));
3174         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3175         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3176         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3177         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3178                    atomic_read(&sbi->s_mb_buddies_generated),
3179                    ext4_get_groups_count(sb));
3180         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3181                    atomic64_read(&sbi->s_mb_generation_time));
3182         seq_printf(seq, "\tpreallocated: %u\n",
3183                    atomic_read(&sbi->s_mb_preallocated));
3184         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3185         return 0;
3186 }
3187
3188 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3189 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3190 {
3191         struct super_block *sb = pde_data(file_inode(seq->file));
3192         unsigned long position;
3193
3194         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3195                 return NULL;
3196         position = *pos + 1;
3197         return (void *) ((unsigned long) position);
3198 }
3199
3200 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3201 {
3202         struct super_block *sb = pde_data(file_inode(seq->file));
3203         unsigned long position;
3204
3205         ++*pos;
3206         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3207                 return NULL;
3208         position = *pos + 1;
3209         return (void *) ((unsigned long) position);
3210 }
3211
3212 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3213 {
3214         struct super_block *sb = pde_data(file_inode(seq->file));
3215         struct ext4_sb_info *sbi = EXT4_SB(sb);
3216         unsigned long position = ((unsigned long) v);
3217         struct ext4_group_info *grp;
3218         unsigned int count;
3219
3220         position--;
3221         if (position >= MB_NUM_ORDERS(sb)) {
3222                 position -= MB_NUM_ORDERS(sb);
3223                 if (position == 0)
3224                         seq_puts(seq, "avg_fragment_size_lists:\n");
3225
3226                 count = 0;
3227                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3228                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3229                                     bb_avg_fragment_size_node)
3230                         count++;
3231                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3232                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3233                                         (unsigned int)position, count);
3234                 return 0;
3235         }
3236
3237         if (position == 0) {
3238                 seq_printf(seq, "optimize_scan: %d\n",
3239                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3240                 seq_puts(seq, "max_free_order_lists:\n");
3241         }
3242         count = 0;
3243         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3244         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3245                             bb_largest_free_order_node)
3246                 count++;
3247         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3248         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3249                    (unsigned int)position, count);
3250
3251         return 0;
3252 }
3253
3254 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3255 {
3256 }
3257
3258 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3259         .start  = ext4_mb_seq_structs_summary_start,
3260         .next   = ext4_mb_seq_structs_summary_next,
3261         .stop   = ext4_mb_seq_structs_summary_stop,
3262         .show   = ext4_mb_seq_structs_summary_show,
3263 };
3264
3265 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3266 {
3267         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3268         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3269
3270         BUG_ON(!cachep);
3271         return cachep;
3272 }
3273
3274 /*
3275  * Allocate the top-level s_group_info array for the specified number
3276  * of groups
3277  */
3278 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3279 {
3280         struct ext4_sb_info *sbi = EXT4_SB(sb);
3281         unsigned size;
3282         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3283
3284         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3285                 EXT4_DESC_PER_BLOCK_BITS(sb);
3286         if (size <= sbi->s_group_info_size)
3287                 return 0;
3288
3289         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3290         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3291         if (!new_groupinfo) {
3292                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3293                 return -ENOMEM;
3294         }
3295         rcu_read_lock();
3296         old_groupinfo = rcu_dereference(sbi->s_group_info);
3297         if (old_groupinfo)
3298                 memcpy(new_groupinfo, old_groupinfo,
3299                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3300         rcu_read_unlock();
3301         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3302         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3303         if (old_groupinfo)
3304                 ext4_kvfree_array_rcu(old_groupinfo);
3305         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3306                    sbi->s_group_info_size);
3307         return 0;
3308 }
3309
3310 /* Create and initialize ext4_group_info data for the given group. */
3311 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3312                           struct ext4_group_desc *desc)
3313 {
3314         int i;
3315         int metalen = 0;
3316         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3317         struct ext4_sb_info *sbi = EXT4_SB(sb);
3318         struct ext4_group_info **meta_group_info;
3319         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3320
3321         /*
3322          * First check if this group is the first of a reserved block.
3323          * If it's true, we have to allocate a new table of pointers
3324          * to ext4_group_info structures
3325          */
3326         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3327                 metalen = sizeof(*meta_group_info) <<
3328                         EXT4_DESC_PER_BLOCK_BITS(sb);
3329                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3330                 if (meta_group_info == NULL) {
3331                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3332                                  "for a buddy group");
3333                         return -ENOMEM;
3334                 }
3335                 rcu_read_lock();
3336                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3337                 rcu_read_unlock();
3338         }
3339
3340         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3341         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3342
3343         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3344         if (meta_group_info[i] == NULL) {
3345                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3346                 goto exit_group_info;
3347         }
3348         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3349                 &(meta_group_info[i]->bb_state));
3350
3351         /*
3352          * initialize bb_free to be able to skip
3353          * empty groups without initialization
3354          */
3355         if (ext4_has_group_desc_csum(sb) &&
3356             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3357                 meta_group_info[i]->bb_free =
3358                         ext4_free_clusters_after_init(sb, group, desc);
3359         } else {
3360                 meta_group_info[i]->bb_free =
3361                         ext4_free_group_clusters(sb, desc);
3362         }
3363
3364         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3365         init_rwsem(&meta_group_info[i]->alloc_sem);
3366         meta_group_info[i]->bb_free_root = RB_ROOT;
3367         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3368         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3369         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3370         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3371         meta_group_info[i]->bb_group = group;
3372
3373         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3374         return 0;
3375
3376 exit_group_info:
3377         /* If a meta_group_info table has been allocated, release it now */
3378         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3379                 struct ext4_group_info ***group_info;
3380
3381                 rcu_read_lock();
3382                 group_info = rcu_dereference(sbi->s_group_info);
3383                 kfree(group_info[idx]);
3384                 group_info[idx] = NULL;
3385                 rcu_read_unlock();
3386         }
3387         return -ENOMEM;
3388 } /* ext4_mb_add_groupinfo */
3389
3390 static int ext4_mb_init_backend(struct super_block *sb)
3391 {
3392         ext4_group_t ngroups = ext4_get_groups_count(sb);
3393         ext4_group_t i;
3394         struct ext4_sb_info *sbi = EXT4_SB(sb);
3395         int err;
3396         struct ext4_group_desc *desc;
3397         struct ext4_group_info ***group_info;
3398         struct kmem_cache *cachep;
3399
3400         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3401         if (err)
3402                 return err;
3403
3404         sbi->s_buddy_cache = new_inode(sb);
3405         if (sbi->s_buddy_cache == NULL) {
3406                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3407                 goto err_freesgi;
3408         }
3409         /* To avoid potentially colliding with an valid on-disk inode number,
3410          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3411          * not in the inode hash, so it should never be found by iget(), but
3412          * this will avoid confusion if it ever shows up during debugging. */
3413         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3414         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3415         for (i = 0; i < ngroups; i++) {
3416                 cond_resched();
3417                 desc = ext4_get_group_desc(sb, i, NULL);
3418                 if (desc == NULL) {
3419                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3420                         goto err_freebuddy;
3421                 }
3422                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3423                         goto err_freebuddy;
3424         }
3425
3426         if (ext4_has_feature_flex_bg(sb)) {
3427                 /* a single flex group is supposed to be read by a single IO.
3428                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3429                  * unsigned integer, so the maximum shift is 32.
3430                  */
3431                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3432                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3433                         goto err_freebuddy;
3434                 }
3435                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3436                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3437                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3438         } else {
3439                 sbi->s_mb_prefetch = 32;
3440         }
3441         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3442                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3443         /* now many real IOs to prefetch within a single allocation at cr=0
3444          * given cr=0 is an CPU-related optimization we shouldn't try to
3445          * load too many groups, at some point we should start to use what
3446          * we've got in memory.
3447          * with an average random access time 5ms, it'd take a second to get
3448          * 200 groups (* N with flex_bg), so let's make this limit 4
3449          */
3450         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3451         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3452                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3453
3454         return 0;
3455
3456 err_freebuddy:
3457         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3458         while (i-- > 0) {
3459                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3460
3461                 if (grp)
3462                         kmem_cache_free(cachep, grp);
3463         }
3464         i = sbi->s_group_info_size;
3465         rcu_read_lock();
3466         group_info = rcu_dereference(sbi->s_group_info);
3467         while (i-- > 0)
3468                 kfree(group_info[i]);
3469         rcu_read_unlock();
3470         iput(sbi->s_buddy_cache);
3471 err_freesgi:
3472         rcu_read_lock();
3473         kvfree(rcu_dereference(sbi->s_group_info));
3474         rcu_read_unlock();
3475         return -ENOMEM;
3476 }
3477
3478 static void ext4_groupinfo_destroy_slabs(void)
3479 {
3480         int i;
3481
3482         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3483                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3484                 ext4_groupinfo_caches[i] = NULL;
3485         }
3486 }
3487
3488 static int ext4_groupinfo_create_slab(size_t size)
3489 {
3490         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3491         int slab_size;
3492         int blocksize_bits = order_base_2(size);
3493         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3494         struct kmem_cache *cachep;
3495
3496         if (cache_index >= NR_GRPINFO_CACHES)
3497                 return -EINVAL;
3498
3499         if (unlikely(cache_index < 0))
3500                 cache_index = 0;
3501
3502         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3503         if (ext4_groupinfo_caches[cache_index]) {
3504                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3505                 return 0;       /* Already created */
3506         }
3507
3508         slab_size = offsetof(struct ext4_group_info,
3509                                 bb_counters[blocksize_bits + 2]);
3510
3511         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3512                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3513                                         NULL);
3514
3515         ext4_groupinfo_caches[cache_index] = cachep;
3516
3517         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3518         if (!cachep) {
3519                 printk(KERN_EMERG
3520                        "EXT4-fs: no memory for groupinfo slab cache\n");
3521                 return -ENOMEM;
3522         }
3523
3524         return 0;
3525 }
3526
3527 static void ext4_discard_work(struct work_struct *work)
3528 {
3529         struct ext4_sb_info *sbi = container_of(work,
3530                         struct ext4_sb_info, s_discard_work);
3531         struct super_block *sb = sbi->s_sb;
3532         struct ext4_free_data *fd, *nfd;
3533         struct ext4_buddy e4b;
3534         LIST_HEAD(discard_list);
3535         ext4_group_t grp, load_grp;
3536         int err = 0;
3537
3538         spin_lock(&sbi->s_md_lock);
3539         list_splice_init(&sbi->s_discard_list, &discard_list);
3540         spin_unlock(&sbi->s_md_lock);
3541
3542         load_grp = UINT_MAX;
3543         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3544                 /*
3545                  * If filesystem is umounting or no memory or suffering
3546                  * from no space, give up the discard
3547                  */
3548                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3549                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3550                         grp = fd->efd_group;
3551                         if (grp != load_grp) {
3552                                 if (load_grp != UINT_MAX)
3553                                         ext4_mb_unload_buddy(&e4b);
3554
3555                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3556                                 if (err) {
3557                                         kmem_cache_free(ext4_free_data_cachep, fd);
3558                                         load_grp = UINT_MAX;
3559                                         continue;
3560                                 } else {
3561                                         load_grp = grp;
3562                                 }
3563                         }
3564
3565                         ext4_lock_group(sb, grp);
3566                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3567                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3568                         ext4_unlock_group(sb, grp);
3569                 }
3570                 kmem_cache_free(ext4_free_data_cachep, fd);
3571         }
3572
3573         if (load_grp != UINT_MAX)
3574                 ext4_mb_unload_buddy(&e4b);
3575 }
3576
3577 int ext4_mb_init(struct super_block *sb)
3578 {
3579         struct ext4_sb_info *sbi = EXT4_SB(sb);
3580         unsigned i, j;
3581         unsigned offset, offset_incr;
3582         unsigned max;
3583         int ret;
3584
3585         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3586
3587         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3588         if (sbi->s_mb_offsets == NULL) {
3589                 ret = -ENOMEM;
3590                 goto out;
3591         }
3592
3593         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3594         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3595         if (sbi->s_mb_maxs == NULL) {
3596                 ret = -ENOMEM;
3597                 goto out;
3598         }
3599
3600         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3601         if (ret < 0)
3602                 goto out;
3603
3604         /* order 0 is regular bitmap */
3605         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3606         sbi->s_mb_offsets[0] = 0;
3607
3608         i = 1;
3609         offset = 0;
3610         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3611         max = sb->s_blocksize << 2;
3612         do {
3613                 sbi->s_mb_offsets[i] = offset;
3614                 sbi->s_mb_maxs[i] = max;
3615                 offset += offset_incr;
3616                 offset_incr = offset_incr >> 1;
3617                 max = max >> 1;
3618                 i++;
3619         } while (i < MB_NUM_ORDERS(sb));
3620
3621         sbi->s_mb_avg_fragment_size =
3622                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3623                         GFP_KERNEL);
3624         if (!sbi->s_mb_avg_fragment_size) {
3625                 ret = -ENOMEM;
3626                 goto out;
3627         }
3628         sbi->s_mb_avg_fragment_size_locks =
3629                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3630                         GFP_KERNEL);
3631         if (!sbi->s_mb_avg_fragment_size_locks) {
3632                 ret = -ENOMEM;
3633                 goto out;
3634         }
3635         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3636                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3637                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3638         }
3639         sbi->s_mb_largest_free_orders =
3640                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3641                         GFP_KERNEL);
3642         if (!sbi->s_mb_largest_free_orders) {
3643                 ret = -ENOMEM;
3644                 goto out;
3645         }
3646         sbi->s_mb_largest_free_orders_locks =
3647                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3648                         GFP_KERNEL);
3649         if (!sbi->s_mb_largest_free_orders_locks) {
3650                 ret = -ENOMEM;
3651                 goto out;
3652         }
3653         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3654                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3655                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3656         }
3657
3658         spin_lock_init(&sbi->s_md_lock);
3659         sbi->s_mb_free_pending = 0;
3660         INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3661         INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3662         INIT_LIST_HEAD(&sbi->s_discard_list);
3663         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3664         atomic_set(&sbi->s_retry_alloc_pending, 0);
3665
3666         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3667         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3668         sbi->s_mb_stats = MB_DEFAULT_STATS;
3669         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3670         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3671         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3672
3673         /*
3674          * The default group preallocation is 512, which for 4k block
3675          * sizes translates to 2 megabytes.  However for bigalloc file
3676          * systems, this is probably too big (i.e, if the cluster size
3677          * is 1 megabyte, then group preallocation size becomes half a
3678          * gigabyte!).  As a default, we will keep a two megabyte
3679          * group pralloc size for cluster sizes up to 64k, and after
3680          * that, we will force a minimum group preallocation size of
3681          * 32 clusters.  This translates to 8 megs when the cluster
3682          * size is 256k, and 32 megs when the cluster size is 1 meg,
3683          * which seems reasonable as a default.
3684          */
3685         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3686                                        sbi->s_cluster_bits, 32);
3687         /*
3688          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3689          * to the lowest multiple of s_stripe which is bigger than
3690          * the s_mb_group_prealloc as determined above. We want
3691          * the preallocation size to be an exact multiple of the
3692          * RAID stripe size so that preallocations don't fragment
3693          * the stripes.
3694          */
3695         if (sbi->s_stripe > 1) {
3696                 sbi->s_mb_group_prealloc = roundup(
3697                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3698         }
3699
3700         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3701         if (sbi->s_locality_groups == NULL) {
3702                 ret = -ENOMEM;
3703                 goto out;
3704         }
3705         for_each_possible_cpu(i) {
3706                 struct ext4_locality_group *lg;
3707                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3708                 mutex_init(&lg->lg_mutex);
3709                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3710                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3711                 spin_lock_init(&lg->lg_prealloc_lock);
3712         }
3713
3714         if (bdev_nonrot(sb->s_bdev))
3715                 sbi->s_mb_max_linear_groups = 0;
3716         else
3717                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3718         /* init file for buddy data */
3719         ret = ext4_mb_init_backend(sb);
3720         if (ret != 0)
3721                 goto out_free_locality_groups;
3722
3723         return 0;
3724
3725 out_free_locality_groups:
3726         free_percpu(sbi->s_locality_groups);
3727         sbi->s_locality_groups = NULL;
3728 out:
3729         kfree(sbi->s_mb_avg_fragment_size);
3730         kfree(sbi->s_mb_avg_fragment_size_locks);
3731         kfree(sbi->s_mb_largest_free_orders);
3732         kfree(sbi->s_mb_largest_free_orders_locks);
3733         kfree(sbi->s_mb_offsets);
3734         sbi->s_mb_offsets = NULL;
3735         kfree(sbi->s_mb_maxs);
3736         sbi->s_mb_maxs = NULL;
3737         return ret;
3738 }
3739
3740 /* need to called with the ext4 group lock held */
3741 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3742 {
3743         struct ext4_prealloc_space *pa;
3744         struct list_head *cur, *tmp;
3745         int count = 0;
3746
3747         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3748                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3749                 list_del(&pa->pa_group_list);
3750                 count++;
3751                 kmem_cache_free(ext4_pspace_cachep, pa);
3752         }
3753         return count;
3754 }
3755
3756 void ext4_mb_release(struct super_block *sb)
3757 {
3758         ext4_group_t ngroups = ext4_get_groups_count(sb);
3759         ext4_group_t i;
3760         int num_meta_group_infos;
3761         struct ext4_group_info *grinfo, ***group_info;
3762         struct ext4_sb_info *sbi = EXT4_SB(sb);
3763         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3764         int count;
3765
3766         if (test_opt(sb, DISCARD)) {
3767                 /*
3768                  * wait the discard work to drain all of ext4_free_data
3769                  */
3770                 flush_work(&sbi->s_discard_work);
3771                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3772         }
3773
3774         if (sbi->s_group_info) {
3775                 for (i = 0; i < ngroups; i++) {
3776                         cond_resched();
3777                         grinfo = ext4_get_group_info(sb, i);
3778                         if (!grinfo)
3779                                 continue;
3780                         mb_group_bb_bitmap_free(grinfo);
3781                         ext4_lock_group(sb, i);
3782                         count = ext4_mb_cleanup_pa(grinfo);
3783                         if (count)
3784                                 mb_debug(sb, "mballoc: %d PAs left\n",
3785                                          count);
3786                         ext4_unlock_group(sb, i);
3787                         kmem_cache_free(cachep, grinfo);
3788                 }
3789                 num_meta_group_infos = (ngroups +
3790                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3791                         EXT4_DESC_PER_BLOCK_BITS(sb);
3792                 rcu_read_lock();
3793                 group_info = rcu_dereference(sbi->s_group_info);
3794                 for (i = 0; i < num_meta_group_infos; i++)
3795                         kfree(group_info[i]);
3796                 kvfree(group_info);
3797                 rcu_read_unlock();
3798         }
3799         kfree(sbi->s_mb_avg_fragment_size);
3800         kfree(sbi->s_mb_avg_fragment_size_locks);
3801         kfree(sbi->s_mb_largest_free_orders);
3802         kfree(sbi->s_mb_largest_free_orders_locks);
3803         kfree(sbi->s_mb_offsets);
3804         kfree(sbi->s_mb_maxs);
3805         iput(sbi->s_buddy_cache);
3806         if (sbi->s_mb_stats) {
3807                 ext4_msg(sb, KERN_INFO,
3808                        "mballoc: %u blocks %u reqs (%u success)",
3809                                 atomic_read(&sbi->s_bal_allocated),
3810                                 atomic_read(&sbi->s_bal_reqs),
3811                                 atomic_read(&sbi->s_bal_success));
3812                 ext4_msg(sb, KERN_INFO,
3813                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3814                                 "%u 2^N hits, %u breaks, %u lost",
3815                                 atomic_read(&sbi->s_bal_ex_scanned),
3816                                 atomic_read(&sbi->s_bal_groups_scanned),
3817                                 atomic_read(&sbi->s_bal_goals),
3818                                 atomic_read(&sbi->s_bal_2orders),
3819                                 atomic_read(&sbi->s_bal_breaks),
3820                                 atomic_read(&sbi->s_mb_lost_chunks));
3821                 ext4_msg(sb, KERN_INFO,
3822                        "mballoc: %u generated and it took %llu",
3823                                 atomic_read(&sbi->s_mb_buddies_generated),
3824                                 atomic64_read(&sbi->s_mb_generation_time));
3825                 ext4_msg(sb, KERN_INFO,
3826                        "mballoc: %u preallocated, %u discarded",
3827                                 atomic_read(&sbi->s_mb_preallocated),
3828                                 atomic_read(&sbi->s_mb_discarded));
3829         }
3830
3831         free_percpu(sbi->s_locality_groups);
3832 }
3833
3834 static inline int ext4_issue_discard(struct super_block *sb,
3835                 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3836 {
3837         ext4_fsblk_t discard_block;
3838
3839         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3840                          ext4_group_first_block_no(sb, block_group));
3841         count = EXT4_C2B(EXT4_SB(sb), count);
3842         trace_ext4_discard_blocks(sb,
3843                         (unsigned long long) discard_block, count);
3844
3845         return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3846 }
3847
3848 static void ext4_free_data_in_buddy(struct super_block *sb,
3849                                     struct ext4_free_data *entry)
3850 {
3851         struct ext4_buddy e4b;
3852         struct ext4_group_info *db;
3853         int err, count = 0;
3854
3855         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3856                  entry->efd_count, entry->efd_group, entry);
3857
3858         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3859         /* we expect to find existing buddy because it's pinned */
3860         BUG_ON(err != 0);
3861
3862         spin_lock(&EXT4_SB(sb)->s_md_lock);
3863         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3864         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3865
3866         db = e4b.bd_info;
3867         /* there are blocks to put in buddy to make them really free */
3868         count += entry->efd_count;
3869         ext4_lock_group(sb, entry->efd_group);
3870         /* Take it out of per group rb tree */
3871         rb_erase(&entry->efd_node, &(db->bb_free_root));
3872         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3873
3874         /*
3875          * Clear the trimmed flag for the group so that the next
3876          * ext4_trim_fs can trim it.
3877          * If the volume is mounted with -o discard, online discard
3878          * is supported and the free blocks will be trimmed online.
3879          */
3880         if (!test_opt(sb, DISCARD))
3881                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3882
3883         if (!db->bb_free_root.rb_node) {
3884                 /* No more items in the per group rb tree
3885                  * balance refcounts from ext4_mb_free_metadata()
3886                  */
3887                 put_page(e4b.bd_buddy_page);
3888                 put_page(e4b.bd_bitmap_page);
3889         }
3890         ext4_unlock_group(sb, entry->efd_group);
3891         ext4_mb_unload_buddy(&e4b);
3892
3893         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3894 }
3895
3896 /*
3897  * This function is called by the jbd2 layer once the commit has finished,
3898  * so we know we can free the blocks that were released with that commit.
3899  */
3900 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3901 {
3902         struct ext4_sb_info *sbi = EXT4_SB(sb);
3903         struct ext4_free_data *entry, *tmp;
3904         LIST_HEAD(freed_data_list);
3905         struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3906         bool wake;
3907
3908         list_replace_init(s_freed_head, &freed_data_list);
3909
3910         list_for_each_entry(entry, &freed_data_list, efd_list)
3911                 ext4_free_data_in_buddy(sb, entry);
3912
3913         if (test_opt(sb, DISCARD)) {
3914                 spin_lock(&sbi->s_md_lock);
3915                 wake = list_empty(&sbi->s_discard_list);
3916                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3917                 spin_unlock(&sbi->s_md_lock);
3918                 if (wake)
3919                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3920         } else {
3921                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3922                         kmem_cache_free(ext4_free_data_cachep, entry);
3923         }
3924 }
3925
3926 int __init ext4_init_mballoc(void)
3927 {
3928         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3929                                         SLAB_RECLAIM_ACCOUNT);
3930         if (ext4_pspace_cachep == NULL)
3931                 goto out;
3932
3933         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3934                                     SLAB_RECLAIM_ACCOUNT);
3935         if (ext4_ac_cachep == NULL)
3936                 goto out_pa_free;
3937
3938         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3939                                            SLAB_RECLAIM_ACCOUNT);
3940         if (ext4_free_data_cachep == NULL)
3941                 goto out_ac_free;
3942
3943         return 0;
3944
3945 out_ac_free:
3946         kmem_cache_destroy(ext4_ac_cachep);
3947 out_pa_free:
3948         kmem_cache_destroy(ext4_pspace_cachep);
3949 out:
3950         return -ENOMEM;
3951 }
3952
3953 void ext4_exit_mballoc(void)
3954 {
3955         /*
3956          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3957          * before destroying the slab cache.
3958          */
3959         rcu_barrier();
3960         kmem_cache_destroy(ext4_pspace_cachep);
3961         kmem_cache_destroy(ext4_ac_cachep);
3962         kmem_cache_destroy(ext4_free_data_cachep);
3963         ext4_groupinfo_destroy_slabs();
3964 }
3965
3966 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3967 #define EXT4_MB_SYNC_UPDATE 0x0002
3968 static int
3969 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3970                      ext4_group_t group, ext4_grpblk_t blkoff,
3971                      ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3972 {
3973         struct ext4_sb_info *sbi = EXT4_SB(sb);
3974         struct buffer_head *bitmap_bh = NULL;
3975         struct ext4_group_desc *gdp;
3976         struct buffer_head *gdp_bh;
3977         int err;
3978         unsigned int i, already, changed = len;
3979
3980         KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3981                                    handle, sb, state, group, blkoff, len,
3982                                    flags, ret_changed);
3983
3984         if (ret_changed)
3985                 *ret_changed = 0;
3986         bitmap_bh = ext4_read_block_bitmap(sb, group);
3987         if (IS_ERR(bitmap_bh))
3988                 return PTR_ERR(bitmap_bh);
3989
3990         if (handle) {
3991                 BUFFER_TRACE(bitmap_bh, "getting write access");
3992                 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3993                                                     EXT4_JTR_NONE);
3994                 if (err)
3995                         goto out_err;
3996         }
3997
3998         err = -EIO;
3999         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4000         if (!gdp)
4001                 goto out_err;
4002
4003         if (handle) {
4004                 BUFFER_TRACE(gdp_bh, "get_write_access");
4005                 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4006                                                     EXT4_JTR_NONE);
4007                 if (err)
4008                         goto out_err;
4009         }
4010
4011         ext4_lock_group(sb, group);
4012         if (ext4_has_group_desc_csum(sb) &&
4013             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4014                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4015                 ext4_free_group_clusters_set(sb, gdp,
4016                         ext4_free_clusters_after_init(sb, group, gdp));
4017         }
4018
4019         if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4020                 already = 0;
4021                 for (i = 0; i < len; i++)
4022                         if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4023                                         state)
4024                                 already++;
4025                 changed = len - already;
4026         }
4027
4028         if (state) {
4029                 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4030                 ext4_free_group_clusters_set(sb, gdp,
4031                         ext4_free_group_clusters(sb, gdp) - changed);
4032         } else {
4033                 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4034                 ext4_free_group_clusters_set(sb, gdp,
4035                         ext4_free_group_clusters(sb, gdp) + changed);
4036         }
4037
4038         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4039         ext4_group_desc_csum_set(sb, group, gdp);
4040         ext4_unlock_group(sb, group);
4041         if (ret_changed)
4042                 *ret_changed = changed;
4043
4044         if (sbi->s_log_groups_per_flex) {
4045                 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4046                 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4047                                            s_flex_groups, flex_group);
4048
4049                 if (state)
4050                         atomic64_sub(changed, &fg->free_clusters);
4051                 else
4052                         atomic64_add(changed, &fg->free_clusters);
4053         }
4054
4055         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4056         if (err)
4057                 goto out_err;
4058         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4059         if (err)
4060                 goto out_err;
4061
4062         if (flags & EXT4_MB_SYNC_UPDATE) {
4063                 sync_dirty_buffer(bitmap_bh);
4064                 sync_dirty_buffer(gdp_bh);
4065         }
4066
4067 out_err:
4068         brelse(bitmap_bh);
4069         return err;
4070 }
4071
4072 /*
4073  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4074  * Returns 0 if success or error code
4075  */
4076 static noinline_for_stack int
4077 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4078                                 handle_t *handle, unsigned int reserv_clstrs)
4079 {
4080         struct ext4_group_desc *gdp;
4081         struct ext4_sb_info *sbi;
4082         struct super_block *sb;
4083         ext4_fsblk_t block;
4084         int err, len;
4085         int flags = 0;
4086         ext4_grpblk_t changed;
4087
4088         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4089         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4090
4091         sb = ac->ac_sb;
4092         sbi = EXT4_SB(sb);
4093
4094         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4095         if (!gdp)
4096                 return -EIO;
4097         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4098                         ext4_free_group_clusters(sb, gdp));
4099
4100         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4101         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4102         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4103                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4104                            "fs metadata", block, block+len);
4105                 /* File system mounted not to panic on error
4106                  * Fix the bitmap and return EFSCORRUPTED
4107                  * We leak some of the blocks here.
4108                  */
4109                 err = ext4_mb_mark_context(handle, sb, true,
4110                                            ac->ac_b_ex.fe_group,
4111                                            ac->ac_b_ex.fe_start,
4112                                            ac->ac_b_ex.fe_len,
4113                                            0, NULL);
4114                 if (!err)
4115                         err = -EFSCORRUPTED;
4116                 return err;
4117         }
4118
4119 #ifdef AGGRESSIVE_CHECK
4120         flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4121 #endif
4122         err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4123                                    ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4124                                    flags, &changed);
4125
4126         if (err && changed == 0)
4127                 return err;
4128
4129 #ifdef AGGRESSIVE_CHECK
4130         BUG_ON(changed != ac->ac_b_ex.fe_len);
4131 #endif
4132         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4133         /*
4134          * Now reduce the dirty block count also. Should not go negative
4135          */
4136         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4137                 /* release all the reserved blocks if non delalloc */
4138                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4139                                    reserv_clstrs);
4140
4141         return err;
4142 }
4143
4144 /*
4145  * Idempotent helper for Ext4 fast commit replay path to set the state of
4146  * blocks in bitmaps and update counters.
4147  */
4148 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4149                      int len, bool state)
4150 {
4151         struct ext4_sb_info *sbi = EXT4_SB(sb);
4152         ext4_group_t group;
4153         ext4_grpblk_t blkoff;
4154         int err = 0;
4155         unsigned int clen, thisgrp_len;
4156
4157         while (len > 0) {
4158                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4159
4160                 /*
4161                  * Check to see if we are freeing blocks across a group
4162                  * boundary.
4163                  * In case of flex_bg, this can happen that (block, len) may
4164                  * span across more than one group. In that case we need to
4165                  * get the corresponding group metadata to work with.
4166                  * For this we have goto again loop.
4167                  */
4168                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4169                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4170                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4171
4172                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4173                         ext4_error(sb, "Marking blocks in system zone - "
4174                                    "Block = %llu, len = %u",
4175                                    block, thisgrp_len);
4176                         break;
4177                 }
4178
4179                 err = ext4_mb_mark_context(NULL, sb, state,
4180                                            group, blkoff, clen,
4181                                            EXT4_MB_BITMAP_MARKED_CHECK |
4182                                            EXT4_MB_SYNC_UPDATE,
4183                                            NULL);
4184                 if (err)
4185                         break;
4186
4187                 block += thisgrp_len;
4188                 len -= thisgrp_len;
4189                 BUG_ON(len < 0);
4190         }
4191 }
4192
4193 /*
4194  * here we normalize request for locality group
4195  * Group request are normalized to s_mb_group_prealloc, which goes to
4196  * s_strip if we set the same via mount option.
4197  * s_mb_group_prealloc can be configured via
4198  * /sys/fs/ext4/<partition>/mb_group_prealloc
4199  *
4200  * XXX: should we try to preallocate more than the group has now?
4201  */
4202 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4203 {
4204         struct super_block *sb = ac->ac_sb;
4205         struct ext4_locality_group *lg = ac->ac_lg;
4206
4207         BUG_ON(lg == NULL);
4208         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4209         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4210 }
4211
4212 /*
4213  * This function returns the next element to look at during inode
4214  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4215  * (ei->i_prealloc_lock)
4216  *
4217  * new_start    The start of the range we want to compare
4218  * cur_start    The existing start that we are comparing against
4219  * node The node of the rb_tree
4220  */
4221 static inline struct rb_node*
4222 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4223 {
4224         if (new_start < cur_start)
4225                 return node->rb_left;
4226         else
4227                 return node->rb_right;
4228 }
4229
4230 static inline void
4231 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4232                           ext4_lblk_t start, loff_t end)
4233 {
4234         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4235         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4236         struct ext4_prealloc_space *tmp_pa;
4237         ext4_lblk_t tmp_pa_start;
4238         loff_t tmp_pa_end;
4239         struct rb_node *iter;
4240
4241         read_lock(&ei->i_prealloc_lock);
4242         for (iter = ei->i_prealloc_node.rb_node; iter;
4243              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4244                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4245                                   pa_node.inode_node);
4246                 tmp_pa_start = tmp_pa->pa_lstart;
4247                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4248
4249                 spin_lock(&tmp_pa->pa_lock);
4250                 if (tmp_pa->pa_deleted == 0)
4251                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4252                 spin_unlock(&tmp_pa->pa_lock);
4253         }
4254         read_unlock(&ei->i_prealloc_lock);
4255 }
4256
4257 /*
4258  * Given an allocation context "ac" and a range "start", "end", check
4259  * and adjust boundaries if the range overlaps with any of the existing
4260  * preallocatoins stored in the corresponding inode of the allocation context.
4261  *
4262  * Parameters:
4263  *      ac                      allocation context
4264  *      start                   start of the new range
4265  *      end                     end of the new range
4266  */
4267 static inline void
4268 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4269                           ext4_lblk_t *start, loff_t *end)
4270 {
4271         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4272         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4273         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4274         struct rb_node *iter;
4275         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4276         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4277
4278         new_start = *start;
4279         new_end = *end;
4280
4281         /*
4282          * Adjust the normalized range so that it doesn't overlap with any
4283          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4284          * so it doesn't change underneath us.
4285          */
4286         read_lock(&ei->i_prealloc_lock);
4287
4288         /* Step 1: find any one immediate neighboring PA of the normalized range */
4289         for (iter = ei->i_prealloc_node.rb_node; iter;
4290              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4291                                             tmp_pa_start, iter)) {
4292                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4293                                   pa_node.inode_node);
4294                 tmp_pa_start = tmp_pa->pa_lstart;
4295                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4296
4297                 /* PA must not overlap original request */
4298                 spin_lock(&tmp_pa->pa_lock);
4299                 if (tmp_pa->pa_deleted == 0)
4300                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4301                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4302                 spin_unlock(&tmp_pa->pa_lock);
4303         }
4304
4305         /*
4306          * Step 2: check if the found PA is left or right neighbor and
4307          * get the other neighbor
4308          */
4309         if (tmp_pa) {
4310                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4311                         struct rb_node *tmp;
4312
4313                         left_pa = tmp_pa;
4314                         tmp = rb_next(&left_pa->pa_node.inode_node);
4315                         if (tmp) {
4316                                 right_pa = rb_entry(tmp,
4317                                                     struct ext4_prealloc_space,
4318                                                     pa_node.inode_node);
4319                         }
4320                 } else {
4321                         struct rb_node *tmp;
4322
4323                         right_pa = tmp_pa;
4324                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4325                         if (tmp) {
4326                                 left_pa = rb_entry(tmp,
4327                                                    struct ext4_prealloc_space,
4328                                                    pa_node.inode_node);
4329                         }
4330                 }
4331         }
4332
4333         /* Step 3: get the non deleted neighbors */
4334         if (left_pa) {
4335                 for (iter = &left_pa->pa_node.inode_node;;
4336                      iter = rb_prev(iter)) {
4337                         if (!iter) {
4338                                 left_pa = NULL;
4339                                 break;
4340                         }
4341
4342                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4343                                           pa_node.inode_node);
4344                         left_pa = tmp_pa;
4345                         spin_lock(&tmp_pa->pa_lock);
4346                         if (tmp_pa->pa_deleted == 0) {
4347                                 spin_unlock(&tmp_pa->pa_lock);
4348                                 break;
4349                         }
4350                         spin_unlock(&tmp_pa->pa_lock);
4351                 }
4352         }
4353
4354         if (right_pa) {
4355                 for (iter = &right_pa->pa_node.inode_node;;
4356                      iter = rb_next(iter)) {
4357                         if (!iter) {
4358                                 right_pa = NULL;
4359                                 break;
4360                         }
4361
4362                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4363                                           pa_node.inode_node);
4364                         right_pa = tmp_pa;
4365                         spin_lock(&tmp_pa->pa_lock);
4366                         if (tmp_pa->pa_deleted == 0) {
4367                                 spin_unlock(&tmp_pa->pa_lock);
4368                                 break;
4369                         }
4370                         spin_unlock(&tmp_pa->pa_lock);
4371                 }
4372         }
4373
4374         if (left_pa) {
4375                 left_pa_end = pa_logical_end(sbi, left_pa);
4376                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4377         }
4378
4379         if (right_pa) {
4380                 right_pa_start = right_pa->pa_lstart;
4381                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4382         }
4383
4384         /* Step 4: trim our normalized range to not overlap with the neighbors */
4385         if (left_pa) {
4386                 if (left_pa_end > new_start)
4387                         new_start = left_pa_end;
4388         }
4389
4390         if (right_pa) {
4391                 if (right_pa_start < new_end)
4392                         new_end = right_pa_start;
4393         }
4394         read_unlock(&ei->i_prealloc_lock);
4395
4396         /* XXX: extra loop to check we really don't overlap preallocations */
4397         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4398
4399         *start = new_start;
4400         *end = new_end;
4401 }
4402
4403 /*
4404  * Normalization means making request better in terms of
4405  * size and alignment
4406  */
4407 static noinline_for_stack void
4408 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4409                                 struct ext4_allocation_request *ar)
4410 {
4411         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4412         struct ext4_super_block *es = sbi->s_es;
4413         int bsbits, max;
4414         loff_t size, start_off, end;
4415         loff_t orig_size __maybe_unused;
4416         ext4_lblk_t start;
4417
4418         /* do normalize only data requests, metadata requests
4419            do not need preallocation */
4420         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4421                 return;
4422
4423         /* sometime caller may want exact blocks */
4424         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4425                 return;
4426
4427         /* caller may indicate that preallocation isn't
4428          * required (it's a tail, for example) */
4429         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4430                 return;
4431
4432         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4433                 ext4_mb_normalize_group_request(ac);
4434                 return ;
4435         }
4436
4437         bsbits = ac->ac_sb->s_blocksize_bits;
4438
4439         /* first, let's learn actual file size
4440          * given current request is allocated */
4441         size = extent_logical_end(sbi, &ac->ac_o_ex);
4442         size = size << bsbits;
4443         if (size < i_size_read(ac->ac_inode))
4444                 size = i_size_read(ac->ac_inode);
4445         orig_size = size;
4446
4447         /* max size of free chunks */
4448         max = 2 << bsbits;
4449
4450 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4451                 (req <= (size) || max <= (chunk_size))
4452
4453         /* first, try to predict filesize */
4454         /* XXX: should this table be tunable? */
4455         start_off = 0;
4456         if (size <= 16 * 1024) {
4457                 size = 16 * 1024;
4458         } else if (size <= 32 * 1024) {
4459                 size = 32 * 1024;
4460         } else if (size <= 64 * 1024) {
4461                 size = 64 * 1024;
4462         } else if (size <= 128 * 1024) {
4463                 size = 128 * 1024;
4464         } else if (size <= 256 * 1024) {
4465                 size = 256 * 1024;
4466         } else if (size <= 512 * 1024) {
4467                 size = 512 * 1024;
4468         } else if (size <= 1024 * 1024) {
4469                 size = 1024 * 1024;
4470         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4471                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4472                                                 (21 - bsbits)) << 21;
4473                 size = 2 * 1024 * 1024;
4474         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4475                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4476                                                         (22 - bsbits)) << 22;
4477                 size = 4 * 1024 * 1024;
4478         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4479                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4480                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4481                                                         (23 - bsbits)) << 23;
4482                 size = 8 * 1024 * 1024;
4483         } else {
4484                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4485                 size      = (loff_t) EXT4_C2B(sbi,
4486                                               ac->ac_o_ex.fe_len) << bsbits;
4487         }
4488         size = size >> bsbits;
4489         start = start_off >> bsbits;
4490
4491         /*
4492          * For tiny groups (smaller than 8MB) the chosen allocation
4493          * alignment may be larger than group size. Make sure the
4494          * alignment does not move allocation to a different group which
4495          * makes mballoc fail assertions later.
4496          */
4497         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4498                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4499
4500         /* avoid unnecessary preallocation that may trigger assertions */
4501         if (start + size > EXT_MAX_BLOCKS)
4502                 size = EXT_MAX_BLOCKS - start;
4503
4504         /* don't cover already allocated blocks in selected range */
4505         if (ar->pleft && start <= ar->lleft) {
4506                 size -= ar->lleft + 1 - start;
4507                 start = ar->lleft + 1;
4508         }
4509         if (ar->pright && start + size - 1 >= ar->lright)
4510                 size -= start + size - ar->lright;
4511
4512         /*
4513          * Trim allocation request for filesystems with artificially small
4514          * groups.
4515          */
4516         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4517                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4518
4519         end = start + size;
4520
4521         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4522
4523         size = end - start;
4524
4525         /*
4526          * In this function "start" and "size" are normalized for better
4527          * alignment and length such that we could preallocate more blocks.
4528          * This normalization is done such that original request of
4529          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4530          * "size" boundaries.
4531          * (Note fe_len can be relaxed since FS block allocation API does not
4532          * provide gurantee on number of contiguous blocks allocation since that
4533          * depends upon free space left, etc).
4534          * In case of inode pa, later we use the allocated blocks
4535          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4536          * range of goal/best blocks [start, size] to put it at the
4537          * ac_o_ex.fe_logical extent of this inode.
4538          * (See ext4_mb_use_inode_pa() for more details)
4539          */
4540         if (start + size <= ac->ac_o_ex.fe_logical ||
4541                         start > ac->ac_o_ex.fe_logical) {
4542                 ext4_msg(ac->ac_sb, KERN_ERR,
4543                          "start %lu, size %lu, fe_logical %lu",
4544                          (unsigned long) start, (unsigned long) size,
4545                          (unsigned long) ac->ac_o_ex.fe_logical);
4546                 BUG();
4547         }
4548         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4549
4550         /* now prepare goal request */
4551
4552         /* XXX: is it better to align blocks WRT to logical
4553          * placement or satisfy big request as is */
4554         ac->ac_g_ex.fe_logical = start;
4555         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4556         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4557
4558         /* define goal start in order to merge */
4559         if (ar->pright && (ar->lright == (start + size)) &&
4560             ar->pright >= size &&
4561             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4562                 /* merge to the right */
4563                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4564                                                 &ac->ac_g_ex.fe_group,
4565                                                 &ac->ac_g_ex.fe_start);
4566                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4567         }
4568         if (ar->pleft && (ar->lleft + 1 == start) &&
4569             ar->pleft + 1 < ext4_blocks_count(es)) {
4570                 /* merge to the left */
4571                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4572                                                 &ac->ac_g_ex.fe_group,
4573                                                 &ac->ac_g_ex.fe_start);
4574                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4575         }
4576
4577         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4578                  orig_size, start);
4579 }
4580
4581 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4582 {
4583         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4584
4585         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4586                 atomic_inc(&sbi->s_bal_reqs);
4587                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4588                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4589                         atomic_inc(&sbi->s_bal_success);
4590
4591                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4592                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4593                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4594                 }
4595
4596                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4597                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4598                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4599                         atomic_inc(&sbi->s_bal_goals);
4600                 /* did we allocate as much as normalizer originally wanted? */
4601                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4602                         atomic_inc(&sbi->s_bal_len_goals);
4603
4604                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4605                         atomic_inc(&sbi->s_bal_breaks);
4606         }
4607
4608         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4609                 trace_ext4_mballoc_alloc(ac);
4610         else
4611                 trace_ext4_mballoc_prealloc(ac);
4612 }
4613
4614 /*
4615  * Called on failure; free up any blocks from the inode PA for this
4616  * context.  We don't need this for MB_GROUP_PA because we only change
4617  * pa_free in ext4_mb_release_context(), but on failure, we've already
4618  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4619  */
4620 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4621 {
4622         struct ext4_prealloc_space *pa = ac->ac_pa;
4623         struct ext4_buddy e4b;
4624         int err;
4625
4626         if (pa == NULL) {
4627                 if (ac->ac_f_ex.fe_len == 0)
4628                         return;
4629                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4630                 if (WARN_RATELIMIT(err,
4631                                    "ext4: mb_load_buddy failed (%d)", err))
4632                         /*
4633                          * This should never happen since we pin the
4634                          * pages in the ext4_allocation_context so
4635                          * ext4_mb_load_buddy() should never fail.
4636                          */
4637                         return;
4638                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4639                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4640                                ac->ac_f_ex.fe_len);
4641                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4642                 ext4_mb_unload_buddy(&e4b);
4643                 return;
4644         }
4645         if (pa->pa_type == MB_INODE_PA) {
4646                 spin_lock(&pa->pa_lock);
4647                 pa->pa_free += ac->ac_b_ex.fe_len;
4648                 spin_unlock(&pa->pa_lock);
4649         }
4650 }
4651
4652 /*
4653  * use blocks preallocated to inode
4654  */
4655 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4656                                 struct ext4_prealloc_space *pa)
4657 {
4658         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4659         ext4_fsblk_t start;
4660         ext4_fsblk_t end;
4661         int len;
4662
4663         /* found preallocated blocks, use them */
4664         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4665         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4666                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4667         len = EXT4_NUM_B2C(sbi, end - start);
4668         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4669                                         &ac->ac_b_ex.fe_start);
4670         ac->ac_b_ex.fe_len = len;
4671         ac->ac_status = AC_STATUS_FOUND;
4672         ac->ac_pa = pa;
4673
4674         BUG_ON(start < pa->pa_pstart);
4675         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4676         BUG_ON(pa->pa_free < len);
4677         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4678         pa->pa_free -= len;
4679
4680         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4681 }
4682
4683 /*
4684  * use blocks preallocated to locality group
4685  */
4686 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4687                                 struct ext4_prealloc_space *pa)
4688 {
4689         unsigned int len = ac->ac_o_ex.fe_len;
4690
4691         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4692                                         &ac->ac_b_ex.fe_group,
4693                                         &ac->ac_b_ex.fe_start);
4694         ac->ac_b_ex.fe_len = len;
4695         ac->ac_status = AC_STATUS_FOUND;
4696         ac->ac_pa = pa;
4697
4698         /* we don't correct pa_pstart or pa_len here to avoid
4699          * possible race when the group is being loaded concurrently
4700          * instead we correct pa later, after blocks are marked
4701          * in on-disk bitmap -- see ext4_mb_release_context()
4702          * Other CPUs are prevented from allocating from this pa by lg_mutex
4703          */
4704         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4705                  pa->pa_lstart, len, pa);
4706 }
4707
4708 /*
4709  * Return the prealloc space that have minimal distance
4710  * from the goal block. @cpa is the prealloc
4711  * space that is having currently known minimal distance
4712  * from the goal block.
4713  */
4714 static struct ext4_prealloc_space *
4715 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4716                         struct ext4_prealloc_space *pa,
4717                         struct ext4_prealloc_space *cpa)
4718 {
4719         ext4_fsblk_t cur_distance, new_distance;
4720
4721         if (cpa == NULL) {
4722                 atomic_inc(&pa->pa_count);
4723                 return pa;
4724         }
4725         cur_distance = abs(goal_block - cpa->pa_pstart);
4726         new_distance = abs(goal_block - pa->pa_pstart);
4727
4728         if (cur_distance <= new_distance)
4729                 return cpa;
4730
4731         /* drop the previous reference */
4732         atomic_dec(&cpa->pa_count);
4733         atomic_inc(&pa->pa_count);
4734         return pa;
4735 }
4736
4737 /*
4738  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4739  */
4740 static bool
4741 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4742                       struct ext4_prealloc_space *pa)
4743 {
4744         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4745         ext4_fsblk_t start;
4746
4747         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4748                 return true;
4749
4750         /*
4751          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4752          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4753          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4754          * consistent with ext4_mb_find_by_goal.
4755          */
4756         start = pa->pa_pstart +
4757                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4758         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4759                 return false;
4760
4761         if (ac->ac_g_ex.fe_len > pa->pa_len -
4762             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4763                 return false;
4764
4765         return true;
4766 }
4767
4768 /*
4769  * search goal blocks in preallocated space
4770  */
4771 static noinline_for_stack bool
4772 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4773 {
4774         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4775         int order, i;
4776         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4777         struct ext4_locality_group *lg;
4778         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4779         struct rb_node *iter;
4780         ext4_fsblk_t goal_block;
4781
4782         /* only data can be preallocated */
4783         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4784                 return false;
4785
4786         /*
4787          * first, try per-file preallocation by searching the inode pa rbtree.
4788          *
4789          * Here, we can't do a direct traversal of the tree because
4790          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4791          * deleted and that can cause direct traversal to skip some entries.
4792          */
4793         read_lock(&ei->i_prealloc_lock);
4794
4795         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4796                 goto try_group_pa;
4797         }
4798
4799         /*
4800          * Step 1: Find a pa with logical start immediately adjacent to the
4801          * original logical start. This could be on the left or right.
4802          *
4803          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4804          */
4805         for (iter = ei->i_prealloc_node.rb_node; iter;
4806              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4807                                             tmp_pa->pa_lstart, iter)) {
4808                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4809                                   pa_node.inode_node);
4810         }
4811
4812         /*
4813          * Step 2: The adjacent pa might be to the right of logical start, find
4814          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4815          * logical start is towards the left of original request's logical start
4816          */
4817         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4818                 struct rb_node *tmp;
4819                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4820
4821                 if (tmp) {
4822                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4823                                             pa_node.inode_node);
4824                 } else {
4825                         /*
4826                          * If there is no adjacent pa to the left then finding
4827                          * an overlapping pa is not possible hence stop searching
4828                          * inode pa tree
4829                          */
4830                         goto try_group_pa;
4831                 }
4832         }
4833
4834         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4835
4836         /*
4837          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4838          * the first non deleted adjacent pa. After this step we should have a
4839          * valid tmp_pa which is guaranteed to be non deleted.
4840          */
4841         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4842                 if (!iter) {
4843                         /*
4844                          * no non deleted left adjacent pa, so stop searching
4845                          * inode pa tree
4846                          */
4847                         goto try_group_pa;
4848                 }
4849                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4850                                   pa_node.inode_node);
4851                 spin_lock(&tmp_pa->pa_lock);
4852                 if (tmp_pa->pa_deleted == 0) {
4853                         /*
4854                          * We will keep holding the pa_lock from
4855                          * this point on because we don't want group discard
4856                          * to delete this pa underneath us. Since group
4857                          * discard is anyways an ENOSPC operation it
4858                          * should be okay for it to wait a few more cycles.
4859                          */
4860                         break;
4861                 } else {
4862                         spin_unlock(&tmp_pa->pa_lock);
4863                 }
4864         }
4865
4866         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4867         BUG_ON(tmp_pa->pa_deleted == 1);
4868
4869         /*
4870          * Step 4: We now have the non deleted left adjacent pa. Only this
4871          * pa can possibly satisfy the request hence check if it overlaps
4872          * original logical start and stop searching if it doesn't.
4873          */
4874         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4875                 spin_unlock(&tmp_pa->pa_lock);
4876                 goto try_group_pa;
4877         }
4878
4879         /* non-extent files can't have physical blocks past 2^32 */
4880         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4881             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4882              EXT4_MAX_BLOCK_FILE_PHYS)) {
4883                 /*
4884                  * Since PAs don't overlap, we won't find any other PA to
4885                  * satisfy this.
4886                  */
4887                 spin_unlock(&tmp_pa->pa_lock);
4888                 goto try_group_pa;
4889         }
4890
4891         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4892                 atomic_inc(&tmp_pa->pa_count);
4893                 ext4_mb_use_inode_pa(ac, tmp_pa);
4894                 spin_unlock(&tmp_pa->pa_lock);
4895                 read_unlock(&ei->i_prealloc_lock);
4896                 return true;
4897         } else {
4898                 /*
4899                  * We found a valid overlapping pa but couldn't use it because
4900                  * it had no free blocks. This should ideally never happen
4901                  * because:
4902                  *
4903                  * 1. When a new inode pa is added to rbtree it must have
4904                  *    pa_free > 0 since otherwise we won't actually need
4905                  *    preallocation.
4906                  *
4907                  * 2. An inode pa that is in the rbtree can only have it's
4908                  *    pa_free become zero when another thread calls:
4909                  *      ext4_mb_new_blocks
4910                  *       ext4_mb_use_preallocated
4911                  *        ext4_mb_use_inode_pa
4912                  *
4913                  * 3. Further, after the above calls make pa_free == 0, we will
4914                  *    immediately remove it from the rbtree in:
4915                  *      ext4_mb_new_blocks
4916                  *       ext4_mb_release_context
4917                  *        ext4_mb_put_pa
4918                  *
4919                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4920                  * from tree both happen in ext4_mb_new_blocks, which is always
4921                  * called with i_data_sem held for data allocations, we can be
4922                  * sure that another process will never see a pa in rbtree with
4923                  * pa_free == 0.
4924                  */
4925                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4926         }
4927         spin_unlock(&tmp_pa->pa_lock);
4928 try_group_pa:
4929         read_unlock(&ei->i_prealloc_lock);
4930
4931         /* can we use group allocation? */
4932         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4933                 return false;
4934
4935         /* inode may have no locality group for some reason */
4936         lg = ac->ac_lg;
4937         if (lg == NULL)
4938                 return false;
4939         order  = fls(ac->ac_o_ex.fe_len) - 1;
4940         if (order > PREALLOC_TB_SIZE - 1)
4941                 /* The max size of hash table is PREALLOC_TB_SIZE */
4942                 order = PREALLOC_TB_SIZE - 1;
4943
4944         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4945         /*
4946          * search for the prealloc space that is having
4947          * minimal distance from the goal block.
4948          */
4949         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4950                 rcu_read_lock();
4951                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4952                                         pa_node.lg_list) {
4953                         spin_lock(&tmp_pa->pa_lock);
4954                         if (tmp_pa->pa_deleted == 0 &&
4955                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4956
4957                                 cpa = ext4_mb_check_group_pa(goal_block,
4958                                                                 tmp_pa, cpa);
4959                         }
4960                         spin_unlock(&tmp_pa->pa_lock);
4961                 }
4962                 rcu_read_unlock();
4963         }
4964         if (cpa) {
4965                 ext4_mb_use_group_pa(ac, cpa);
4966                 return true;
4967         }
4968         return false;
4969 }
4970
4971 /*
4972  * the function goes through all preallocation in this group and marks them
4973  * used in in-core bitmap. buddy must be generated from this bitmap
4974  * Need to be called with ext4 group lock held
4975  */
4976 static noinline_for_stack
4977 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4978                                         ext4_group_t group)
4979 {
4980         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4981         struct ext4_prealloc_space *pa;
4982         struct list_head *cur;
4983         ext4_group_t groupnr;
4984         ext4_grpblk_t start;
4985         int preallocated = 0;
4986         int len;
4987
4988         if (!grp)
4989                 return;
4990
4991         /* all form of preallocation discards first load group,
4992          * so the only competing code is preallocation use.
4993          * we don't need any locking here
4994          * notice we do NOT ignore preallocations with pa_deleted
4995          * otherwise we could leave used blocks available for
4996          * allocation in buddy when concurrent ext4_mb_put_pa()
4997          * is dropping preallocation
4998          */
4999         list_for_each(cur, &grp->bb_prealloc_list) {
5000                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5001                 spin_lock(&pa->pa_lock);
5002                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5003                                              &groupnr, &start);
5004                 len = pa->pa_len;
5005                 spin_unlock(&pa->pa_lock);
5006                 if (unlikely(len == 0))
5007                         continue;
5008                 BUG_ON(groupnr != group);
5009                 mb_set_bits(bitmap, start, len);
5010                 preallocated += len;
5011         }
5012         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5013 }
5014
5015 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5016                                     struct ext4_prealloc_space *pa)
5017 {
5018         struct ext4_inode_info *ei;
5019
5020         if (pa->pa_deleted) {
5021                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5022                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5023                              pa->pa_len);
5024                 return;
5025         }
5026
5027         pa->pa_deleted = 1;
5028
5029         if (pa->pa_type == MB_INODE_PA) {
5030                 ei = EXT4_I(pa->pa_inode);
5031                 atomic_dec(&ei->i_prealloc_active);
5032         }
5033 }
5034
5035 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5036 {
5037         BUG_ON(!pa);
5038         BUG_ON(atomic_read(&pa->pa_count));
5039         BUG_ON(pa->pa_deleted == 0);
5040         kmem_cache_free(ext4_pspace_cachep, pa);
5041 }
5042
5043 static void ext4_mb_pa_callback(struct rcu_head *head)
5044 {
5045         struct ext4_prealloc_space *pa;
5046
5047         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5048         ext4_mb_pa_free(pa);
5049 }
5050
5051 /*
5052  * drops a reference to preallocated space descriptor
5053  * if this was the last reference and the space is consumed
5054  */
5055 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5056                         struct super_block *sb, struct ext4_prealloc_space *pa)
5057 {
5058         ext4_group_t grp;
5059         ext4_fsblk_t grp_blk;
5060         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5061
5062         /* in this short window concurrent discard can set pa_deleted */
5063         spin_lock(&pa->pa_lock);
5064         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5065                 spin_unlock(&pa->pa_lock);
5066                 return;
5067         }
5068
5069         if (pa->pa_deleted == 1) {
5070                 spin_unlock(&pa->pa_lock);
5071                 return;
5072         }
5073
5074         ext4_mb_mark_pa_deleted(sb, pa);
5075         spin_unlock(&pa->pa_lock);
5076
5077         grp_blk = pa->pa_pstart;
5078         /*
5079          * If doing group-based preallocation, pa_pstart may be in the
5080          * next group when pa is used up
5081          */
5082         if (pa->pa_type == MB_GROUP_PA)
5083                 grp_blk--;
5084
5085         grp = ext4_get_group_number(sb, grp_blk);
5086
5087         /*
5088          * possible race:
5089          *
5090          *  P1 (buddy init)                     P2 (regular allocation)
5091          *                                      find block B in PA
5092          *  copy on-disk bitmap to buddy
5093          *                                      mark B in on-disk bitmap
5094          *                                      drop PA from group
5095          *  mark all PAs in buddy
5096          *
5097          * thus, P1 initializes buddy with B available. to prevent this
5098          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5099          * against that pair
5100          */
5101         ext4_lock_group(sb, grp);
5102         list_del(&pa->pa_group_list);
5103         ext4_unlock_group(sb, grp);
5104
5105         if (pa->pa_type == MB_INODE_PA) {
5106                 write_lock(pa->pa_node_lock.inode_lock);
5107                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5108                 write_unlock(pa->pa_node_lock.inode_lock);
5109                 ext4_mb_pa_free(pa);
5110         } else {
5111                 spin_lock(pa->pa_node_lock.lg_lock);
5112                 list_del_rcu(&pa->pa_node.lg_list);
5113                 spin_unlock(pa->pa_node_lock.lg_lock);
5114                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5115         }
5116 }
5117
5118 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5119 {
5120         struct rb_node **iter = &root->rb_node, *parent = NULL;
5121         struct ext4_prealloc_space *iter_pa, *new_pa;
5122         ext4_lblk_t iter_start, new_start;
5123
5124         while (*iter) {
5125                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5126                                    pa_node.inode_node);
5127                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5128                                    pa_node.inode_node);
5129                 iter_start = iter_pa->pa_lstart;
5130                 new_start = new_pa->pa_lstart;
5131
5132                 parent = *iter;
5133                 if (new_start < iter_start)
5134                         iter = &((*iter)->rb_left);
5135                 else
5136                         iter = &((*iter)->rb_right);
5137         }
5138
5139         rb_link_node(new, parent, iter);
5140         rb_insert_color(new, root);
5141 }
5142
5143 /*
5144  * creates new preallocated space for given inode
5145  */
5146 static noinline_for_stack void
5147 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5148 {
5149         struct super_block *sb = ac->ac_sb;
5150         struct ext4_sb_info *sbi = EXT4_SB(sb);
5151         struct ext4_prealloc_space *pa;
5152         struct ext4_group_info *grp;
5153         struct ext4_inode_info *ei;
5154
5155         /* preallocate only when found space is larger then requested */
5156         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5157         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5158         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5159         BUG_ON(ac->ac_pa == NULL);
5160
5161         pa = ac->ac_pa;
5162
5163         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5164                 struct ext4_free_extent ex = {
5165                         .fe_logical = ac->ac_g_ex.fe_logical,
5166                         .fe_len = ac->ac_orig_goal_len,
5167                 };
5168                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5169                 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5170
5171                 /*
5172                  * We can't allocate as much as normalizer wants, so we try
5173                  * to get proper lstart to cover the original request, except
5174                  * when the goal doesn't cover the original request as below:
5175                  *
5176                  * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5177                  * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5178                  */
5179                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5180                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5181
5182                 /*
5183                  * Use the below logic for adjusting best extent as it keeps
5184                  * fragmentation in check while ensuring logical range of best
5185                  * extent doesn't overflow out of goal extent:
5186                  *
5187                  * 1. Check if best ex can be kept at end of goal (before
5188                  *    cr_best_avail trimmed it) and still cover original start
5189                  * 2. Else, check if best ex can be kept at start of goal and
5190                  *    still cover original end
5191                  * 3. Else, keep the best ex at start of original request.
5192                  */
5193                 ex.fe_len = ac->ac_b_ex.fe_len;
5194
5195                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5196                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5197                         goto adjust_bex;
5198
5199                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5200                 if (o_ex_end <= extent_logical_end(sbi, &ex))
5201                         goto adjust_bex;
5202
5203                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5204 adjust_bex:
5205                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5206
5207                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5208                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5209         }
5210
5211         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5212         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5213         pa->pa_len = ac->ac_b_ex.fe_len;
5214         pa->pa_free = pa->pa_len;
5215         spin_lock_init(&pa->pa_lock);
5216         INIT_LIST_HEAD(&pa->pa_group_list);
5217         pa->pa_deleted = 0;
5218         pa->pa_type = MB_INODE_PA;
5219
5220         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5221                  pa->pa_len, pa->pa_lstart);
5222         trace_ext4_mb_new_inode_pa(ac, pa);
5223
5224         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5225         ext4_mb_use_inode_pa(ac, pa);
5226
5227         ei = EXT4_I(ac->ac_inode);
5228         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5229         if (!grp)
5230                 return;
5231
5232         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5233         pa->pa_inode = ac->ac_inode;
5234
5235         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5236
5237         write_lock(pa->pa_node_lock.inode_lock);
5238         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5239         write_unlock(pa->pa_node_lock.inode_lock);
5240         atomic_inc(&ei->i_prealloc_active);
5241 }
5242
5243 /*
5244  * creates new preallocated space for locality group inodes belongs to
5245  */
5246 static noinline_for_stack void
5247 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5248 {
5249         struct super_block *sb = ac->ac_sb;
5250         struct ext4_locality_group *lg;
5251         struct ext4_prealloc_space *pa;
5252         struct ext4_group_info *grp;
5253
5254         /* preallocate only when found space is larger then requested */
5255         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5256         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5257         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5258         BUG_ON(ac->ac_pa == NULL);
5259
5260         pa = ac->ac_pa;
5261
5262         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5263         pa->pa_lstart = pa->pa_pstart;
5264         pa->pa_len = ac->ac_b_ex.fe_len;
5265         pa->pa_free = pa->pa_len;
5266         spin_lock_init(&pa->pa_lock);
5267         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5268         INIT_LIST_HEAD(&pa->pa_group_list);
5269         pa->pa_deleted = 0;
5270         pa->pa_type = MB_GROUP_PA;
5271
5272         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5273                  pa->pa_len, pa->pa_lstart);
5274         trace_ext4_mb_new_group_pa(ac, pa);
5275
5276         ext4_mb_use_group_pa(ac, pa);
5277         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5278
5279         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5280         if (!grp)
5281                 return;
5282         lg = ac->ac_lg;
5283         BUG_ON(lg == NULL);
5284
5285         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5286         pa->pa_inode = NULL;
5287
5288         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5289
5290         /*
5291          * We will later add the new pa to the right bucket
5292          * after updating the pa_free in ext4_mb_release_context
5293          */
5294 }
5295
5296 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5297 {
5298         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5299                 ext4_mb_new_group_pa(ac);
5300         else
5301                 ext4_mb_new_inode_pa(ac);
5302 }
5303
5304 /*
5305  * finds all unused blocks in on-disk bitmap, frees them in
5306  * in-core bitmap and buddy.
5307  * @pa must be unlinked from inode and group lists, so that
5308  * nobody else can find/use it.
5309  * the caller MUST hold group/inode locks.
5310  * TODO: optimize the case when there are no in-core structures yet
5311  */
5312 static noinline_for_stack void
5313 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5314                         struct ext4_prealloc_space *pa)
5315 {
5316         struct super_block *sb = e4b->bd_sb;
5317         struct ext4_sb_info *sbi = EXT4_SB(sb);
5318         unsigned int end;
5319         unsigned int next;
5320         ext4_group_t group;
5321         ext4_grpblk_t bit;
5322         unsigned long long grp_blk_start;
5323         int free = 0;
5324
5325         BUG_ON(pa->pa_deleted == 0);
5326         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5327         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5328         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5329         end = bit + pa->pa_len;
5330
5331         while (bit < end) {
5332                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5333                 if (bit >= end)
5334                         break;
5335                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5336                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5337                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5338                          (unsigned) next - bit, (unsigned) group);
5339                 free += next - bit;
5340
5341                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5342                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5343                                                     EXT4_C2B(sbi, bit)),
5344                                                next - bit);
5345                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5346                 bit = next + 1;
5347         }
5348         if (free != pa->pa_free) {
5349                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5350                          "pa %p: logic %lu, phys. %lu, len %d",
5351                          pa, (unsigned long) pa->pa_lstart,
5352                          (unsigned long) pa->pa_pstart,
5353                          pa->pa_len);
5354                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5355                                         free, pa->pa_free);
5356                 /*
5357                  * pa is already deleted so we use the value obtained
5358                  * from the bitmap and continue.
5359                  */
5360         }
5361         atomic_add(free, &sbi->s_mb_discarded);
5362 }
5363
5364 static noinline_for_stack void
5365 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5366                                 struct ext4_prealloc_space *pa)
5367 {
5368         struct super_block *sb = e4b->bd_sb;
5369         ext4_group_t group;
5370         ext4_grpblk_t bit;
5371
5372         trace_ext4_mb_release_group_pa(sb, pa);
5373         BUG_ON(pa->pa_deleted == 0);
5374         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5375         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5376                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5377                              e4b->bd_group, group, pa->pa_pstart);
5378                 return;
5379         }
5380         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5381         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5382         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5383 }
5384
5385 /*
5386  * releases all preallocations in given group
5387  *
5388  * first, we need to decide discard policy:
5389  * - when do we discard
5390  *   1) ENOSPC
5391  * - how many do we discard
5392  *   1) how many requested
5393  */
5394 static noinline_for_stack int
5395 ext4_mb_discard_group_preallocations(struct super_block *sb,
5396                                      ext4_group_t group, int *busy)
5397 {
5398         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5399         struct buffer_head *bitmap_bh = NULL;
5400         struct ext4_prealloc_space *pa, *tmp;
5401         LIST_HEAD(list);
5402         struct ext4_buddy e4b;
5403         struct ext4_inode_info *ei;
5404         int err;
5405         int free = 0;
5406
5407         if (!grp)
5408                 return 0;
5409         mb_debug(sb, "discard preallocation for group %u\n", group);
5410         if (list_empty(&grp->bb_prealloc_list))
5411                 goto out_dbg;
5412
5413         bitmap_bh = ext4_read_block_bitmap(sb, group);
5414         if (IS_ERR(bitmap_bh)) {
5415                 err = PTR_ERR(bitmap_bh);
5416                 ext4_error_err(sb, -err,
5417                                "Error %d reading block bitmap for %u",
5418                                err, group);
5419                 goto out_dbg;
5420         }
5421
5422         err = ext4_mb_load_buddy(sb, group, &e4b);
5423         if (err) {
5424                 ext4_warning(sb, "Error %d loading buddy information for %u",
5425                              err, group);
5426                 put_bh(bitmap_bh);
5427                 goto out_dbg;
5428         }
5429
5430         ext4_lock_group(sb, group);
5431         list_for_each_entry_safe(pa, tmp,
5432                                 &grp->bb_prealloc_list, pa_group_list) {
5433                 spin_lock(&pa->pa_lock);
5434                 if (atomic_read(&pa->pa_count)) {
5435                         spin_unlock(&pa->pa_lock);
5436                         *busy = 1;
5437                         continue;
5438                 }
5439                 if (pa->pa_deleted) {
5440                         spin_unlock(&pa->pa_lock);
5441                         continue;
5442                 }
5443
5444                 /* seems this one can be freed ... */
5445                 ext4_mb_mark_pa_deleted(sb, pa);
5446
5447                 if (!free)
5448                         this_cpu_inc(discard_pa_seq);
5449
5450                 /* we can trust pa_free ... */
5451                 free += pa->pa_free;
5452
5453                 spin_unlock(&pa->pa_lock);
5454
5455                 list_del(&pa->pa_group_list);
5456                 list_add(&pa->u.pa_tmp_list, &list);
5457         }
5458
5459         /* now free all selected PAs */
5460         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5461
5462                 /* remove from object (inode or locality group) */
5463                 if (pa->pa_type == MB_GROUP_PA) {
5464                         spin_lock(pa->pa_node_lock.lg_lock);
5465                         list_del_rcu(&pa->pa_node.lg_list);
5466                         spin_unlock(pa->pa_node_lock.lg_lock);
5467                 } else {
5468                         write_lock(pa->pa_node_lock.inode_lock);
5469                         ei = EXT4_I(pa->pa_inode);
5470                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5471                         write_unlock(pa->pa_node_lock.inode_lock);
5472                 }
5473
5474                 list_del(&pa->u.pa_tmp_list);
5475
5476                 if (pa->pa_type == MB_GROUP_PA) {
5477                         ext4_mb_release_group_pa(&e4b, pa);
5478                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5479                 } else {
5480                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5481                         ext4_mb_pa_free(pa);
5482                 }
5483         }
5484
5485         ext4_unlock_group(sb, group);
5486         ext4_mb_unload_buddy(&e4b);
5487         put_bh(bitmap_bh);
5488 out_dbg:
5489         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5490                  free, group, grp->bb_free);
5491         return free;
5492 }
5493
5494 /*
5495  * releases all non-used preallocated blocks for given inode
5496  *
5497  * It's important to discard preallocations under i_data_sem
5498  * We don't want another block to be served from the prealloc
5499  * space when we are discarding the inode prealloc space.
5500  *
5501  * FIXME!! Make sure it is valid at all the call sites
5502  */
5503 void ext4_discard_preallocations(struct inode *inode)
5504 {
5505         struct ext4_inode_info *ei = EXT4_I(inode);
5506         struct super_block *sb = inode->i_sb;
5507         struct buffer_head *bitmap_bh = NULL;
5508         struct ext4_prealloc_space *pa, *tmp;
5509         ext4_group_t group = 0;
5510         LIST_HEAD(list);
5511         struct ext4_buddy e4b;
5512         struct rb_node *iter;
5513         int err;
5514
5515         if (!S_ISREG(inode->i_mode))
5516                 return;
5517
5518         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5519                 return;
5520
5521         mb_debug(sb, "discard preallocation for inode %lu\n",
5522                  inode->i_ino);
5523         trace_ext4_discard_preallocations(inode,
5524                         atomic_read(&ei->i_prealloc_active));
5525
5526 repeat:
5527         /* first, collect all pa's in the inode */
5528         write_lock(&ei->i_prealloc_lock);
5529         for (iter = rb_first(&ei->i_prealloc_node); iter;
5530              iter = rb_next(iter)) {
5531                 pa = rb_entry(iter, struct ext4_prealloc_space,
5532                               pa_node.inode_node);
5533                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5534
5535                 spin_lock(&pa->pa_lock);
5536                 if (atomic_read(&pa->pa_count)) {
5537                         /* this shouldn't happen often - nobody should
5538                          * use preallocation while we're discarding it */
5539                         spin_unlock(&pa->pa_lock);
5540                         write_unlock(&ei->i_prealloc_lock);
5541                         ext4_msg(sb, KERN_ERR,
5542                                  "uh-oh! used pa while discarding");
5543                         WARN_ON(1);
5544                         schedule_timeout_uninterruptible(HZ);
5545                         goto repeat;
5546
5547                 }
5548                 if (pa->pa_deleted == 0) {
5549                         ext4_mb_mark_pa_deleted(sb, pa);
5550                         spin_unlock(&pa->pa_lock);
5551                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5552                         list_add(&pa->u.pa_tmp_list, &list);
5553                         continue;
5554                 }
5555
5556                 /* someone is deleting pa right now */
5557                 spin_unlock(&pa->pa_lock);
5558                 write_unlock(&ei->i_prealloc_lock);
5559
5560                 /* we have to wait here because pa_deleted
5561                  * doesn't mean pa is already unlinked from
5562                  * the list. as we might be called from
5563                  * ->clear_inode() the inode will get freed
5564                  * and concurrent thread which is unlinking
5565                  * pa from inode's list may access already
5566                  * freed memory, bad-bad-bad */
5567
5568                 /* XXX: if this happens too often, we can
5569                  * add a flag to force wait only in case
5570                  * of ->clear_inode(), but not in case of
5571                  * regular truncate */
5572                 schedule_timeout_uninterruptible(HZ);
5573                 goto repeat;
5574         }
5575         write_unlock(&ei->i_prealloc_lock);
5576
5577         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5578                 BUG_ON(pa->pa_type != MB_INODE_PA);
5579                 group = ext4_get_group_number(sb, pa->pa_pstart);
5580
5581                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5582                                              GFP_NOFS|__GFP_NOFAIL);
5583                 if (err) {
5584                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5585                                        err, group);
5586                         continue;
5587                 }
5588
5589                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5590                 if (IS_ERR(bitmap_bh)) {
5591                         err = PTR_ERR(bitmap_bh);
5592                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5593                                        err, group);
5594                         ext4_mb_unload_buddy(&e4b);
5595                         continue;
5596                 }
5597
5598                 ext4_lock_group(sb, group);
5599                 list_del(&pa->pa_group_list);
5600                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5601                 ext4_unlock_group(sb, group);
5602
5603                 ext4_mb_unload_buddy(&e4b);
5604                 put_bh(bitmap_bh);
5605
5606                 list_del(&pa->u.pa_tmp_list);
5607                 ext4_mb_pa_free(pa);
5608         }
5609 }
5610
5611 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5612 {
5613         struct ext4_prealloc_space *pa;
5614
5615         BUG_ON(ext4_pspace_cachep == NULL);
5616         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5617         if (!pa)
5618                 return -ENOMEM;
5619         atomic_set(&pa->pa_count, 1);
5620         ac->ac_pa = pa;
5621         return 0;
5622 }
5623
5624 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5625 {
5626         struct ext4_prealloc_space *pa = ac->ac_pa;
5627
5628         BUG_ON(!pa);
5629         ac->ac_pa = NULL;
5630         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5631         /*
5632          * current function is only called due to an error or due to
5633          * len of found blocks < len of requested blocks hence the PA has not
5634          * been added to grp->bb_prealloc_list. So we don't need to lock it
5635          */
5636         pa->pa_deleted = 1;
5637         ext4_mb_pa_free(pa);
5638 }
5639
5640 #ifdef CONFIG_EXT4_DEBUG
5641 static inline void ext4_mb_show_pa(struct super_block *sb)
5642 {
5643         ext4_group_t i, ngroups;
5644
5645         if (ext4_forced_shutdown(sb))
5646                 return;
5647
5648         ngroups = ext4_get_groups_count(sb);
5649         mb_debug(sb, "groups: ");
5650         for (i = 0; i < ngroups; i++) {
5651                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5652                 struct ext4_prealloc_space *pa;
5653                 ext4_grpblk_t start;
5654                 struct list_head *cur;
5655
5656                 if (!grp)
5657                         continue;
5658                 ext4_lock_group(sb, i);
5659                 list_for_each(cur, &grp->bb_prealloc_list) {
5660                         pa = list_entry(cur, struct ext4_prealloc_space,
5661                                         pa_group_list);
5662                         spin_lock(&pa->pa_lock);
5663                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5664                                                      NULL, &start);
5665                         spin_unlock(&pa->pa_lock);
5666                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5667                                  pa->pa_len);
5668                 }
5669                 ext4_unlock_group(sb, i);
5670                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5671                          grp->bb_fragments);
5672         }
5673 }
5674
5675 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5676 {
5677         struct super_block *sb = ac->ac_sb;
5678
5679         if (ext4_forced_shutdown(sb))
5680                 return;
5681
5682         mb_debug(sb, "Can't allocate:"
5683                         " Allocation context details:");
5684         mb_debug(sb, "status %u flags 0x%x",
5685                         ac->ac_status, ac->ac_flags);
5686         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5687                         "goal %lu/%lu/%lu@%lu, "
5688                         "best %lu/%lu/%lu@%lu cr %d",
5689                         (unsigned long)ac->ac_o_ex.fe_group,
5690                         (unsigned long)ac->ac_o_ex.fe_start,
5691                         (unsigned long)ac->ac_o_ex.fe_len,
5692                         (unsigned long)ac->ac_o_ex.fe_logical,
5693                         (unsigned long)ac->ac_g_ex.fe_group,
5694                         (unsigned long)ac->ac_g_ex.fe_start,
5695                         (unsigned long)ac->ac_g_ex.fe_len,
5696                         (unsigned long)ac->ac_g_ex.fe_logical,
5697                         (unsigned long)ac->ac_b_ex.fe_group,
5698                         (unsigned long)ac->ac_b_ex.fe_start,
5699                         (unsigned long)ac->ac_b_ex.fe_len,
5700                         (unsigned long)ac->ac_b_ex.fe_logical,
5701                         (int)ac->ac_criteria);
5702         mb_debug(sb, "%u found", ac->ac_found);
5703         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5704         if (ac->ac_pa)
5705                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5706                          "group pa" : "inode pa");
5707         ext4_mb_show_pa(sb);
5708 }
5709 #else
5710 static inline void ext4_mb_show_pa(struct super_block *sb)
5711 {
5712 }
5713 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5714 {
5715         ext4_mb_show_pa(ac->ac_sb);
5716 }
5717 #endif
5718
5719 /*
5720  * We use locality group preallocation for small size file. The size of the
5721  * file is determined by the current size or the resulting size after
5722  * allocation which ever is larger
5723  *
5724  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5725  */
5726 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5727 {
5728         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5729         int bsbits = ac->ac_sb->s_blocksize_bits;
5730         loff_t size, isize;
5731         bool inode_pa_eligible, group_pa_eligible;
5732
5733         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5734                 return;
5735
5736         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5737                 return;
5738
5739         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5740         inode_pa_eligible = true;
5741         size = extent_logical_end(sbi, &ac->ac_o_ex);
5742         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5743                 >> bsbits;
5744
5745         /* No point in using inode preallocation for closed files */
5746         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5747             !inode_is_open_for_write(ac->ac_inode))
5748                 inode_pa_eligible = false;
5749
5750         size = max(size, isize);
5751         /* Don't use group allocation for large files */
5752         if (size > sbi->s_mb_stream_request)
5753                 group_pa_eligible = false;
5754
5755         if (!group_pa_eligible) {
5756                 if (inode_pa_eligible)
5757                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5758                 else
5759                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5760                 return;
5761         }
5762
5763         BUG_ON(ac->ac_lg != NULL);
5764         /*
5765          * locality group prealloc space are per cpu. The reason for having
5766          * per cpu locality group is to reduce the contention between block
5767          * request from multiple CPUs.
5768          */
5769         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5770
5771         /* we're going to use group allocation */
5772         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5773
5774         /* serialize all allocations in the group */
5775         mutex_lock(&ac->ac_lg->lg_mutex);
5776 }
5777
5778 static noinline_for_stack void
5779 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5780                                 struct ext4_allocation_request *ar)
5781 {
5782         struct super_block *sb = ar->inode->i_sb;
5783         struct ext4_sb_info *sbi = EXT4_SB(sb);
5784         struct ext4_super_block *es = sbi->s_es;
5785         ext4_group_t group;
5786         unsigned int len;
5787         ext4_fsblk_t goal;
5788         ext4_grpblk_t block;
5789
5790         /* we can't allocate > group size */
5791         len = ar->len;
5792
5793         /* just a dirty hack to filter too big requests  */
5794         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5795                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5796
5797         /* start searching from the goal */
5798         goal = ar->goal;
5799         if (goal < le32_to_cpu(es->s_first_data_block) ||
5800                         goal >= ext4_blocks_count(es))
5801                 goal = le32_to_cpu(es->s_first_data_block);
5802         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5803
5804         /* set up allocation goals */
5805         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5806         ac->ac_status = AC_STATUS_CONTINUE;
5807         ac->ac_sb = sb;
5808         ac->ac_inode = ar->inode;
5809         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5810         ac->ac_o_ex.fe_group = group;
5811         ac->ac_o_ex.fe_start = block;
5812         ac->ac_o_ex.fe_len = len;
5813         ac->ac_g_ex = ac->ac_o_ex;
5814         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5815         ac->ac_flags = ar->flags;
5816
5817         /* we have to define context: we'll work with a file or
5818          * locality group. this is a policy, actually */
5819         ext4_mb_group_or_file(ac);
5820
5821         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5822                         "left: %u/%u, right %u/%u to %swritable\n",
5823                         (unsigned) ar->len, (unsigned) ar->logical,
5824                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5825                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5826                         (unsigned) ar->lright, (unsigned) ar->pright,
5827                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5828 }
5829
5830 static noinline_for_stack void
5831 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5832                                         struct ext4_locality_group *lg,
5833                                         int order, int total_entries)
5834 {
5835         ext4_group_t group = 0;
5836         struct ext4_buddy e4b;
5837         LIST_HEAD(discard_list);
5838         struct ext4_prealloc_space *pa, *tmp;
5839
5840         mb_debug(sb, "discard locality group preallocation\n");
5841
5842         spin_lock(&lg->lg_prealloc_lock);
5843         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5844                                 pa_node.lg_list,
5845                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5846                 spin_lock(&pa->pa_lock);
5847                 if (atomic_read(&pa->pa_count)) {
5848                         /*
5849                          * This is the pa that we just used
5850                          * for block allocation. So don't
5851                          * free that
5852                          */
5853                         spin_unlock(&pa->pa_lock);
5854                         continue;
5855                 }
5856                 if (pa->pa_deleted) {
5857                         spin_unlock(&pa->pa_lock);
5858                         continue;
5859                 }
5860                 /* only lg prealloc space */
5861                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5862
5863                 /* seems this one can be freed ... */
5864                 ext4_mb_mark_pa_deleted(sb, pa);
5865                 spin_unlock(&pa->pa_lock);
5866
5867                 list_del_rcu(&pa->pa_node.lg_list);
5868                 list_add(&pa->u.pa_tmp_list, &discard_list);
5869
5870                 total_entries--;
5871                 if (total_entries <= 5) {
5872                         /*
5873                          * we want to keep only 5 entries
5874                          * allowing it to grow to 8. This
5875                          * mak sure we don't call discard
5876                          * soon for this list.
5877                          */
5878                         break;
5879                 }
5880         }
5881         spin_unlock(&lg->lg_prealloc_lock);
5882
5883         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5884                 int err;
5885
5886                 group = ext4_get_group_number(sb, pa->pa_pstart);
5887                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5888                                              GFP_NOFS|__GFP_NOFAIL);
5889                 if (err) {
5890                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5891                                        err, group);
5892                         continue;
5893                 }
5894                 ext4_lock_group(sb, group);
5895                 list_del(&pa->pa_group_list);
5896                 ext4_mb_release_group_pa(&e4b, pa);
5897                 ext4_unlock_group(sb, group);
5898
5899                 ext4_mb_unload_buddy(&e4b);
5900                 list_del(&pa->u.pa_tmp_list);
5901                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5902         }
5903 }
5904
5905 /*
5906  * We have incremented pa_count. So it cannot be freed at this
5907  * point. Also we hold lg_mutex. So no parallel allocation is
5908  * possible from this lg. That means pa_free cannot be updated.
5909  *
5910  * A parallel ext4_mb_discard_group_preallocations is possible.
5911  * which can cause the lg_prealloc_list to be updated.
5912  */
5913
5914 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5915 {
5916         int order, added = 0, lg_prealloc_count = 1;
5917         struct super_block *sb = ac->ac_sb;
5918         struct ext4_locality_group *lg = ac->ac_lg;
5919         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5920
5921         order = fls(pa->pa_free) - 1;
5922         if (order > PREALLOC_TB_SIZE - 1)
5923                 /* The max size of hash table is PREALLOC_TB_SIZE */
5924                 order = PREALLOC_TB_SIZE - 1;
5925         /* Add the prealloc space to lg */
5926         spin_lock(&lg->lg_prealloc_lock);
5927         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5928                                 pa_node.lg_list,
5929                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5930                 spin_lock(&tmp_pa->pa_lock);
5931                 if (tmp_pa->pa_deleted) {
5932                         spin_unlock(&tmp_pa->pa_lock);
5933                         continue;
5934                 }
5935                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5936                         /* Add to the tail of the previous entry */
5937                         list_add_tail_rcu(&pa->pa_node.lg_list,
5938                                                 &tmp_pa->pa_node.lg_list);
5939                         added = 1;
5940                         /*
5941                          * we want to count the total
5942                          * number of entries in the list
5943                          */
5944                 }
5945                 spin_unlock(&tmp_pa->pa_lock);
5946                 lg_prealloc_count++;
5947         }
5948         if (!added)
5949                 list_add_tail_rcu(&pa->pa_node.lg_list,
5950                                         &lg->lg_prealloc_list[order]);
5951         spin_unlock(&lg->lg_prealloc_lock);
5952
5953         /* Now trim the list to be not more than 8 elements */
5954         if (lg_prealloc_count > 8)
5955                 ext4_mb_discard_lg_preallocations(sb, lg,
5956                                                   order, lg_prealloc_count);
5957 }
5958
5959 /*
5960  * release all resource we used in allocation
5961  */
5962 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5963 {
5964         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5965         struct ext4_prealloc_space *pa = ac->ac_pa;
5966         if (pa) {
5967                 if (pa->pa_type == MB_GROUP_PA) {
5968                         /* see comment in ext4_mb_use_group_pa() */
5969                         spin_lock(&pa->pa_lock);
5970                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5971                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5972                         pa->pa_free -= ac->ac_b_ex.fe_len;
5973                         pa->pa_len -= ac->ac_b_ex.fe_len;
5974                         spin_unlock(&pa->pa_lock);
5975
5976                         /*
5977                          * We want to add the pa to the right bucket.
5978                          * Remove it from the list and while adding
5979                          * make sure the list to which we are adding
5980                          * doesn't grow big.
5981                          */
5982                         if (likely(pa->pa_free)) {
5983                                 spin_lock(pa->pa_node_lock.lg_lock);
5984                                 list_del_rcu(&pa->pa_node.lg_list);
5985                                 spin_unlock(pa->pa_node_lock.lg_lock);
5986                                 ext4_mb_add_n_trim(ac);
5987                         }
5988                 }
5989
5990                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5991         }
5992         if (ac->ac_bitmap_page)
5993                 put_page(ac->ac_bitmap_page);
5994         if (ac->ac_buddy_page)
5995                 put_page(ac->ac_buddy_page);
5996         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5997                 mutex_unlock(&ac->ac_lg->lg_mutex);
5998         ext4_mb_collect_stats(ac);
5999 }
6000
6001 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6002 {
6003         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6004         int ret;
6005         int freed = 0, busy = 0;
6006         int retry = 0;
6007
6008         trace_ext4_mb_discard_preallocations(sb, needed);
6009
6010         if (needed == 0)
6011                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6012  repeat:
6013         for (i = 0; i < ngroups && needed > 0; i++) {
6014                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6015                 freed += ret;
6016                 needed -= ret;
6017                 cond_resched();
6018         }
6019
6020         if (needed > 0 && busy && ++retry < 3) {
6021                 busy = 0;
6022                 goto repeat;
6023         }
6024
6025         return freed;
6026 }
6027
6028 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6029                         struct ext4_allocation_context *ac, u64 *seq)
6030 {
6031         int freed;
6032         u64 seq_retry = 0;
6033         bool ret = false;
6034
6035         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6036         if (freed) {
6037                 ret = true;
6038                 goto out_dbg;
6039         }
6040         seq_retry = ext4_get_discard_pa_seq_sum();
6041         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6042                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6043                 *seq = seq_retry;
6044                 ret = true;
6045         }
6046
6047 out_dbg:
6048         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6049         return ret;
6050 }
6051
6052 /*
6053  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6054  * linearly starting at the goal block and also excludes the blocks which
6055  * are going to be in use after fast commit replay.
6056  */
6057 static ext4_fsblk_t
6058 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6059 {
6060         struct buffer_head *bitmap_bh;
6061         struct super_block *sb = ar->inode->i_sb;
6062         struct ext4_sb_info *sbi = EXT4_SB(sb);
6063         ext4_group_t group, nr;
6064         ext4_grpblk_t blkoff;
6065         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6066         ext4_grpblk_t i = 0;
6067         ext4_fsblk_t goal, block;
6068         struct ext4_super_block *es = sbi->s_es;
6069
6070         goal = ar->goal;
6071         if (goal < le32_to_cpu(es->s_first_data_block) ||
6072                         goal >= ext4_blocks_count(es))
6073                 goal = le32_to_cpu(es->s_first_data_block);
6074
6075         ar->len = 0;
6076         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6077         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6078                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6079                 if (IS_ERR(bitmap_bh)) {
6080                         *errp = PTR_ERR(bitmap_bh);
6081                         pr_warn("Failed to read block bitmap\n");
6082                         return 0;
6083                 }
6084
6085                 while (1) {
6086                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6087                                                 blkoff);
6088                         if (i >= max)
6089                                 break;
6090                         if (ext4_fc_replay_check_excluded(sb,
6091                                 ext4_group_first_block_no(sb, group) +
6092                                 EXT4_C2B(sbi, i))) {
6093                                 blkoff = i + 1;
6094                         } else
6095                                 break;
6096                 }
6097                 brelse(bitmap_bh);
6098                 if (i < max)
6099                         break;
6100
6101                 if (++group >= ext4_get_groups_count(sb))
6102                         group = 0;
6103
6104                 blkoff = 0;
6105         }
6106
6107         if (i >= max) {
6108                 *errp = -ENOSPC;
6109                 return 0;
6110         }
6111
6112         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6113         ext4_mb_mark_bb(sb, block, 1, true);
6114         ar->len = 1;
6115
6116         return block;
6117 }
6118
6119 /*
6120  * Main entry point into mballoc to allocate blocks
6121  * it tries to use preallocation first, then falls back
6122  * to usual allocation
6123  */
6124 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6125                                 struct ext4_allocation_request *ar, int *errp)
6126 {
6127         struct ext4_allocation_context *ac = NULL;
6128         struct ext4_sb_info *sbi;
6129         struct super_block *sb;
6130         ext4_fsblk_t block = 0;
6131         unsigned int inquota = 0;
6132         unsigned int reserv_clstrs = 0;
6133         int retries = 0;
6134         u64 seq;
6135
6136         might_sleep();
6137         sb = ar->inode->i_sb;
6138         sbi = EXT4_SB(sb);
6139
6140         trace_ext4_request_blocks(ar);
6141         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6142                 return ext4_mb_new_blocks_simple(ar, errp);
6143
6144         /* Allow to use superuser reservation for quota file */
6145         if (ext4_is_quota_file(ar->inode))
6146                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6147
6148         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6149                 /* Without delayed allocation we need to verify
6150                  * there is enough free blocks to do block allocation
6151                  * and verify allocation doesn't exceed the quota limits.
6152                  */
6153                 while (ar->len &&
6154                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6155
6156                         /* let others to free the space */
6157                         cond_resched();
6158                         ar->len = ar->len >> 1;
6159                 }
6160                 if (!ar->len) {
6161                         ext4_mb_show_pa(sb);
6162                         *errp = -ENOSPC;
6163                         return 0;
6164                 }
6165                 reserv_clstrs = ar->len;
6166                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6167                         dquot_alloc_block_nofail(ar->inode,
6168                                                  EXT4_C2B(sbi, ar->len));
6169                 } else {
6170                         while (ar->len &&
6171                                 dquot_alloc_block(ar->inode,
6172                                                   EXT4_C2B(sbi, ar->len))) {
6173
6174                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6175                                 ar->len--;
6176                         }
6177                 }
6178                 inquota = ar->len;
6179                 if (ar->len == 0) {
6180                         *errp = -EDQUOT;
6181                         goto out;
6182                 }
6183         }
6184
6185         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6186         if (!ac) {
6187                 ar->len = 0;
6188                 *errp = -ENOMEM;
6189                 goto out;
6190         }
6191
6192         ext4_mb_initialize_context(ac, ar);
6193
6194         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6195         seq = this_cpu_read(discard_pa_seq);
6196         if (!ext4_mb_use_preallocated(ac)) {
6197                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6198                 ext4_mb_normalize_request(ac, ar);
6199
6200                 *errp = ext4_mb_pa_alloc(ac);
6201                 if (*errp)
6202                         goto errout;
6203 repeat:
6204                 /* allocate space in core */
6205                 *errp = ext4_mb_regular_allocator(ac);
6206                 /*
6207                  * pa allocated above is added to grp->bb_prealloc_list only
6208                  * when we were able to allocate some block i.e. when
6209                  * ac->ac_status == AC_STATUS_FOUND.
6210                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6211                  * So we have to free this pa here itself.
6212                  */
6213                 if (*errp) {
6214                         ext4_mb_pa_put_free(ac);
6215                         ext4_discard_allocated_blocks(ac);
6216                         goto errout;
6217                 }
6218                 if (ac->ac_status == AC_STATUS_FOUND &&
6219                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6220                         ext4_mb_pa_put_free(ac);
6221         }
6222         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6223                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6224                 if (*errp) {
6225                         ext4_discard_allocated_blocks(ac);
6226                         goto errout;
6227                 } else {
6228                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6229                         ar->len = ac->ac_b_ex.fe_len;
6230                 }
6231         } else {
6232                 if (++retries < 3 &&
6233                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6234                         goto repeat;
6235                 /*
6236                  * If block allocation fails then the pa allocated above
6237                  * needs to be freed here itself.
6238                  */
6239                 ext4_mb_pa_put_free(ac);
6240                 *errp = -ENOSPC;
6241         }
6242
6243         if (*errp) {
6244 errout:
6245                 ac->ac_b_ex.fe_len = 0;
6246                 ar->len = 0;
6247                 ext4_mb_show_ac(ac);
6248         }
6249         ext4_mb_release_context(ac);
6250         kmem_cache_free(ext4_ac_cachep, ac);
6251 out:
6252         if (inquota && ar->len < inquota)
6253                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6254         if (!ar->len) {
6255                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6256                         /* release all the reserved blocks if non delalloc */
6257                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6258                                                 reserv_clstrs);
6259         }
6260
6261         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6262
6263         return block;
6264 }
6265
6266 /*
6267  * We can merge two free data extents only if the physical blocks
6268  * are contiguous, AND the extents were freed by the same transaction,
6269  * AND the blocks are associated with the same group.
6270  */
6271 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6272                                         struct ext4_free_data *entry,
6273                                         struct ext4_free_data *new_entry,
6274                                         struct rb_root *entry_rb_root)
6275 {
6276         if ((entry->efd_tid != new_entry->efd_tid) ||
6277             (entry->efd_group != new_entry->efd_group))
6278                 return;
6279         if (entry->efd_start_cluster + entry->efd_count ==
6280             new_entry->efd_start_cluster) {
6281                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6282                 new_entry->efd_count += entry->efd_count;
6283         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6284                    entry->efd_start_cluster) {
6285                 new_entry->efd_count += entry->efd_count;
6286         } else
6287                 return;
6288         spin_lock(&sbi->s_md_lock);
6289         list_del(&entry->efd_list);
6290         spin_unlock(&sbi->s_md_lock);
6291         rb_erase(&entry->efd_node, entry_rb_root);
6292         kmem_cache_free(ext4_free_data_cachep, entry);
6293 }
6294
6295 static noinline_for_stack void
6296 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6297                       struct ext4_free_data *new_entry)
6298 {
6299         ext4_group_t group = e4b->bd_group;
6300         ext4_grpblk_t cluster;
6301         ext4_grpblk_t clusters = new_entry->efd_count;
6302         struct ext4_free_data *entry;
6303         struct ext4_group_info *db = e4b->bd_info;
6304         struct super_block *sb = e4b->bd_sb;
6305         struct ext4_sb_info *sbi = EXT4_SB(sb);
6306         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6307         struct rb_node *parent = NULL, *new_node;
6308
6309         BUG_ON(!ext4_handle_valid(handle));
6310         BUG_ON(e4b->bd_bitmap_page == NULL);
6311         BUG_ON(e4b->bd_buddy_page == NULL);
6312
6313         new_node = &new_entry->efd_node;
6314         cluster = new_entry->efd_start_cluster;
6315
6316         if (!*n) {
6317                 /* first free block exent. We need to
6318                    protect buddy cache from being freed,
6319                  * otherwise we'll refresh it from
6320                  * on-disk bitmap and lose not-yet-available
6321                  * blocks */
6322                 get_page(e4b->bd_buddy_page);
6323                 get_page(e4b->bd_bitmap_page);
6324         }
6325         while (*n) {
6326                 parent = *n;
6327                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6328                 if (cluster < entry->efd_start_cluster)
6329                         n = &(*n)->rb_left;
6330                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6331                         n = &(*n)->rb_right;
6332                 else {
6333                         ext4_grp_locked_error(sb, group, 0,
6334                                 ext4_group_first_block_no(sb, group) +
6335                                 EXT4_C2B(sbi, cluster),
6336                                 "Block already on to-be-freed list");
6337                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6338                         return;
6339                 }
6340         }
6341
6342         rb_link_node(new_node, parent, n);
6343         rb_insert_color(new_node, &db->bb_free_root);
6344
6345         /* Now try to see the extent can be merged to left and right */
6346         node = rb_prev(new_node);
6347         if (node) {
6348                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6349                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6350                                             &(db->bb_free_root));
6351         }
6352
6353         node = rb_next(new_node);
6354         if (node) {
6355                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6356                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6357                                             &(db->bb_free_root));
6358         }
6359
6360         spin_lock(&sbi->s_md_lock);
6361         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6362         sbi->s_mb_free_pending += clusters;
6363         spin_unlock(&sbi->s_md_lock);
6364 }
6365
6366 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6367                                         unsigned long count)
6368 {
6369         struct super_block *sb = inode->i_sb;
6370         ext4_group_t group;
6371         ext4_grpblk_t blkoff;
6372
6373         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6374         ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6375                              EXT4_MB_BITMAP_MARKED_CHECK |
6376                              EXT4_MB_SYNC_UPDATE,
6377                              NULL);
6378 }
6379
6380 /**
6381  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6382  *                      Used by ext4_free_blocks()
6383  * @handle:             handle for this transaction
6384  * @inode:              inode
6385  * @block:              starting physical block to be freed
6386  * @count:              number of blocks to be freed
6387  * @flags:              flags used by ext4_free_blocks
6388  */
6389 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6390                                ext4_fsblk_t block, unsigned long count,
6391                                int flags)
6392 {
6393         struct super_block *sb = inode->i_sb;
6394         struct ext4_group_info *grp;
6395         unsigned int overflow;
6396         ext4_grpblk_t bit;
6397         ext4_group_t block_group;
6398         struct ext4_sb_info *sbi;
6399         struct ext4_buddy e4b;
6400         unsigned int count_clusters;
6401         int err = 0;
6402         int mark_flags = 0;
6403         ext4_grpblk_t changed;
6404
6405         sbi = EXT4_SB(sb);
6406
6407         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6408             !ext4_inode_block_valid(inode, block, count)) {
6409                 ext4_error(sb, "Freeing blocks in system zone - "
6410                            "Block = %llu, count = %lu", block, count);
6411                 /* err = 0. ext4_std_error should be a no op */
6412                 goto error_out;
6413         }
6414         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6415
6416 do_more:
6417         overflow = 0;
6418         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6419
6420         grp = ext4_get_group_info(sb, block_group);
6421         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6422                 return;
6423
6424         /*
6425          * Check to see if we are freeing blocks across a group
6426          * boundary.
6427          */
6428         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6429                 overflow = EXT4_C2B(sbi, bit) + count -
6430                         EXT4_BLOCKS_PER_GROUP(sb);
6431                 count -= overflow;
6432                 /* The range changed so it's no longer validated */
6433                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6434         }
6435         count_clusters = EXT4_NUM_B2C(sbi, count);
6436         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6437
6438         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6439         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6440                                      GFP_NOFS|__GFP_NOFAIL);
6441         if (err)
6442                 goto error_out;
6443
6444         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6445             !ext4_inode_block_valid(inode, block, count)) {
6446                 ext4_error(sb, "Freeing blocks in system zone - "
6447                            "Block = %llu, count = %lu", block, count);
6448                 /* err = 0. ext4_std_error should be a no op */
6449                 goto error_clean;
6450         }
6451
6452 #ifdef AGGRESSIVE_CHECK
6453         mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6454 #endif
6455         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6456                                    count_clusters, mark_flags, &changed);
6457
6458
6459         if (err && changed == 0)
6460                 goto error_clean;
6461
6462 #ifdef AGGRESSIVE_CHECK
6463         BUG_ON(changed != count_clusters);
6464 #endif
6465
6466         /*
6467          * We need to make sure we don't reuse the freed block until after the
6468          * transaction is committed. We make an exception if the inode is to be
6469          * written in writeback mode since writeback mode has weak data
6470          * consistency guarantees.
6471          */
6472         if (ext4_handle_valid(handle) &&
6473             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6474              !ext4_should_writeback_data(inode))) {
6475                 struct ext4_free_data *new_entry;
6476                 /*
6477                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6478                  * to fail.
6479                  */
6480                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6481                                 GFP_NOFS|__GFP_NOFAIL);
6482                 new_entry->efd_start_cluster = bit;
6483                 new_entry->efd_group = block_group;
6484                 new_entry->efd_count = count_clusters;
6485                 new_entry->efd_tid = handle->h_transaction->t_tid;
6486
6487                 ext4_lock_group(sb, block_group);
6488                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6489         } else {
6490                 if (test_opt(sb, DISCARD)) {
6491                         err = ext4_issue_discard(sb, block_group, bit,
6492                                                  count_clusters);
6493                         /*
6494                          * Ignore EOPNOTSUPP error. This is consistent with
6495                          * what happens when using journal.
6496                          */
6497                         if (err == -EOPNOTSUPP)
6498                                 err = 0;
6499                         if (err)
6500                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6501                                          " group:%u block:%d count:%lu failed"
6502                                          " with %d", block_group, bit, count,
6503                                          err);
6504                 } else
6505                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6506
6507                 ext4_lock_group(sb, block_group);
6508                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6509         }
6510
6511         ext4_unlock_group(sb, block_group);
6512
6513         /*
6514          * on a bigalloc file system, defer the s_freeclusters_counter
6515          * update to the caller (ext4_remove_space and friends) so they
6516          * can determine if a cluster freed here should be rereserved
6517          */
6518         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6519                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6520                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6521                 percpu_counter_add(&sbi->s_freeclusters_counter,
6522                                    count_clusters);
6523         }
6524
6525         if (overflow && !err) {
6526                 block += count;
6527                 count = overflow;
6528                 ext4_mb_unload_buddy(&e4b);
6529                 /* The range changed so it's no longer validated */
6530                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6531                 goto do_more;
6532         }
6533
6534 error_clean:
6535         ext4_mb_unload_buddy(&e4b);
6536 error_out:
6537         ext4_std_error(sb, err);
6538 }
6539
6540 /**
6541  * ext4_free_blocks() -- Free given blocks and update quota
6542  * @handle:             handle for this transaction
6543  * @inode:              inode
6544  * @bh:                 optional buffer of the block to be freed
6545  * @block:              starting physical block to be freed
6546  * @count:              number of blocks to be freed
6547  * @flags:              flags used by ext4_free_blocks
6548  */
6549 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6550                       struct buffer_head *bh, ext4_fsblk_t block,
6551                       unsigned long count, int flags)
6552 {
6553         struct super_block *sb = inode->i_sb;
6554         unsigned int overflow;
6555         struct ext4_sb_info *sbi;
6556
6557         sbi = EXT4_SB(sb);
6558
6559         if (bh) {
6560                 if (block)
6561                         BUG_ON(block != bh->b_blocknr);
6562                 else
6563                         block = bh->b_blocknr;
6564         }
6565
6566         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6567                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6568                 return;
6569         }
6570
6571         might_sleep();
6572
6573         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6574             !ext4_inode_block_valid(inode, block, count)) {
6575                 ext4_error(sb, "Freeing blocks not in datazone - "
6576                            "block = %llu, count = %lu", block, count);
6577                 return;
6578         }
6579         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6580
6581         ext4_debug("freeing block %llu\n", block);
6582         trace_ext4_free_blocks(inode, block, count, flags);
6583
6584         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6585                 BUG_ON(count > 1);
6586
6587                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6588                             inode, bh, block);
6589         }
6590
6591         /*
6592          * If the extent to be freed does not begin on a cluster
6593          * boundary, we need to deal with partial clusters at the
6594          * beginning and end of the extent.  Normally we will free
6595          * blocks at the beginning or the end unless we are explicitly
6596          * requested to avoid doing so.
6597          */
6598         overflow = EXT4_PBLK_COFF(sbi, block);
6599         if (overflow) {
6600                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6601                         overflow = sbi->s_cluster_ratio - overflow;
6602                         block += overflow;
6603                         if (count > overflow)
6604                                 count -= overflow;
6605                         else
6606                                 return;
6607                 } else {
6608                         block -= overflow;
6609                         count += overflow;
6610                 }
6611                 /* The range changed so it's no longer validated */
6612                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6613         }
6614         overflow = EXT4_LBLK_COFF(sbi, count);
6615         if (overflow) {
6616                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6617                         if (count > overflow)
6618                                 count -= overflow;
6619                         else
6620                                 return;
6621                 } else
6622                         count += sbi->s_cluster_ratio - overflow;
6623                 /* The range changed so it's no longer validated */
6624                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6625         }
6626
6627         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6628                 int i;
6629                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6630
6631                 for (i = 0; i < count; i++) {
6632                         cond_resched();
6633                         if (is_metadata)
6634                                 bh = sb_find_get_block(inode->i_sb, block + i);
6635                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6636                 }
6637         }
6638
6639         ext4_mb_clear_bb(handle, inode, block, count, flags);
6640 }
6641
6642 /**
6643  * ext4_group_add_blocks() -- Add given blocks to an existing group
6644  * @handle:                     handle to this transaction
6645  * @sb:                         super block
6646  * @block:                      start physical block to add to the block group
6647  * @count:                      number of blocks to free
6648  *
6649  * This marks the blocks as free in the bitmap and buddy.
6650  */
6651 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6652                          ext4_fsblk_t block, unsigned long count)
6653 {
6654         ext4_group_t block_group;
6655         ext4_grpblk_t bit;
6656         struct ext4_sb_info *sbi = EXT4_SB(sb);
6657         struct ext4_buddy e4b;
6658         int err = 0;
6659         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6660         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6661         unsigned long cluster_count = last_cluster - first_cluster + 1;
6662         ext4_grpblk_t changed;
6663
6664         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6665
6666         if (cluster_count == 0)
6667                 return 0;
6668
6669         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6670         /*
6671          * Check to see if we are freeing blocks across a group
6672          * boundary.
6673          */
6674         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6675                 ext4_warning(sb, "too many blocks added to group %u",
6676                              block_group);
6677                 err = -EINVAL;
6678                 goto error_out;
6679         }
6680
6681         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6682         if (err)
6683                 goto error_out;
6684
6685         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6686                 ext4_error(sb, "Adding blocks in system zones - "
6687                            "Block = %llu, count = %lu",
6688                            block, count);
6689                 err = -EINVAL;
6690                 goto error_clean;
6691         }
6692
6693         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6694                                    cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6695                                    &changed);
6696         if (err && changed == 0)
6697                 goto error_clean;
6698
6699         if (changed != cluster_count)
6700                 ext4_error(sb, "bit already cleared in group %u", block_group);
6701
6702         ext4_lock_group(sb, block_group);
6703         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6704         ext4_unlock_group(sb, block_group);
6705         percpu_counter_add(&sbi->s_freeclusters_counter,
6706                            changed);
6707
6708 error_clean:
6709         ext4_mb_unload_buddy(&e4b);
6710 error_out:
6711         ext4_std_error(sb, err);
6712         return err;
6713 }
6714
6715 /**
6716  * ext4_trim_extent -- function to TRIM one single free extent in the group
6717  * @sb:         super block for the file system
6718  * @start:      starting block of the free extent in the alloc. group
6719  * @count:      number of blocks to TRIM
6720  * @e4b:        ext4 buddy for the group
6721  *
6722  * Trim "count" blocks starting at "start" in the "group". To assure that no
6723  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6724  * be called with under the group lock.
6725  */
6726 static int ext4_trim_extent(struct super_block *sb,
6727                 int start, int count, struct ext4_buddy *e4b)
6728 __releases(bitlock)
6729 __acquires(bitlock)
6730 {
6731         struct ext4_free_extent ex;
6732         ext4_group_t group = e4b->bd_group;
6733         int ret = 0;
6734
6735         trace_ext4_trim_extent(sb, group, start, count);
6736
6737         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6738
6739         ex.fe_start = start;
6740         ex.fe_group = group;
6741         ex.fe_len = count;
6742
6743         /*
6744          * Mark blocks used, so no one can reuse them while
6745          * being trimmed.
6746          */
6747         mb_mark_used(e4b, &ex);
6748         ext4_unlock_group(sb, group);
6749         ret = ext4_issue_discard(sb, group, start, count);
6750         ext4_lock_group(sb, group);
6751         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6752         return ret;
6753 }
6754
6755 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6756                                            ext4_group_t grp)
6757 {
6758         unsigned long nr_clusters_in_group;
6759
6760         if (grp < (ext4_get_groups_count(sb) - 1))
6761                 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6762         else
6763                 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6764                                         ext4_group_first_block_no(sb, grp))
6765                                        >> EXT4_CLUSTER_BITS(sb);
6766
6767         return nr_clusters_in_group - 1;
6768 }
6769
6770 static bool ext4_trim_interrupted(void)
6771 {
6772         return fatal_signal_pending(current) || freezing(current);
6773 }
6774
6775 static int ext4_try_to_trim_range(struct super_block *sb,
6776                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6777                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6778 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6779 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6780 {
6781         ext4_grpblk_t next, count, free_count, last, origin_start;
6782         bool set_trimmed = false;
6783         void *bitmap;
6784
6785         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6786                 return 0;
6787
6788         last = ext4_last_grp_cluster(sb, e4b->bd_group);
6789         bitmap = e4b->bd_bitmap;
6790         if (start == 0 && max >= last)
6791                 set_trimmed = true;
6792         origin_start = start;
6793         start = max(e4b->bd_info->bb_first_free, start);
6794         count = 0;
6795         free_count = 0;
6796
6797         while (start <= max) {
6798                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6799                 if (start > max)
6800                         break;
6801
6802                 next = mb_find_next_bit(bitmap, last + 1, start);
6803                 if (origin_start == 0 && next >= last)
6804                         set_trimmed = true;
6805
6806                 if ((next - start) >= minblocks) {
6807                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6808
6809                         if (ret && ret != -EOPNOTSUPP)
6810                                 return count;
6811                         count += next - start;
6812                 }
6813                 free_count += next - start;
6814                 start = next + 1;
6815
6816                 if (ext4_trim_interrupted())
6817                         return count;
6818
6819                 if (need_resched()) {
6820                         ext4_unlock_group(sb, e4b->bd_group);
6821                         cond_resched();
6822                         ext4_lock_group(sb, e4b->bd_group);
6823                 }
6824
6825                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6826                         break;
6827         }
6828
6829         if (set_trimmed)
6830                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6831
6832         return count;
6833 }
6834
6835 /**
6836  * ext4_trim_all_free -- function to trim all free space in alloc. group
6837  * @sb:                 super block for file system
6838  * @group:              group to be trimmed
6839  * @start:              first group block to examine
6840  * @max:                last group block to examine
6841  * @minblocks:          minimum extent block count
6842  *
6843  * ext4_trim_all_free walks through group's block bitmap searching for free
6844  * extents. When the free extent is found, mark it as used in group buddy
6845  * bitmap. Then issue a TRIM command on this extent and free the extent in
6846  * the group buddy bitmap.
6847  */
6848 static ext4_grpblk_t
6849 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6850                    ext4_grpblk_t start, ext4_grpblk_t max,
6851                    ext4_grpblk_t minblocks)
6852 {
6853         struct ext4_buddy e4b;
6854         int ret;
6855
6856         trace_ext4_trim_all_free(sb, group, start, max);
6857
6858         ret = ext4_mb_load_buddy(sb, group, &e4b);
6859         if (ret) {
6860                 ext4_warning(sb, "Error %d loading buddy information for %u",
6861                              ret, group);
6862                 return ret;
6863         }
6864
6865         ext4_lock_group(sb, group);
6866
6867         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6868             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6869                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6870         else
6871                 ret = 0;
6872
6873         ext4_unlock_group(sb, group);
6874         ext4_mb_unload_buddy(&e4b);
6875
6876         ext4_debug("trimmed %d blocks in the group %d\n",
6877                 ret, group);
6878
6879         return ret;
6880 }
6881
6882 /**
6883  * ext4_trim_fs() -- trim ioctl handle function
6884  * @sb:                 superblock for filesystem
6885  * @range:              fstrim_range structure
6886  *
6887  * start:       First Byte to trim
6888  * len:         number of Bytes to trim from start
6889  * minlen:      minimum extent length in Bytes
6890  * ext4_trim_fs goes through all allocation groups containing Bytes from
6891  * start to start+len. For each such a group ext4_trim_all_free function
6892  * is invoked to trim all free space.
6893  */
6894 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6895 {
6896         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6897         struct ext4_group_info *grp;
6898         ext4_group_t group, first_group, last_group;
6899         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6900         uint64_t start, end, minlen, trimmed = 0;
6901         ext4_fsblk_t first_data_blk =
6902                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6903         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6904         int ret = 0;
6905
6906         start = range->start >> sb->s_blocksize_bits;
6907         end = start + (range->len >> sb->s_blocksize_bits) - 1;
6908         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6909                               range->minlen >> sb->s_blocksize_bits);
6910
6911         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6912             start >= max_blks ||
6913             range->len < sb->s_blocksize)
6914                 return -EINVAL;
6915         /* No point to try to trim less than discard granularity */
6916         if (range->minlen < discard_granularity) {
6917                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6918                                 discard_granularity >> sb->s_blocksize_bits);
6919                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6920                         goto out;
6921         }
6922         if (end >= max_blks - 1)
6923                 end = max_blks - 1;
6924         if (end <= first_data_blk)
6925                 goto out;
6926         if (start < first_data_blk)
6927                 start = first_data_blk;
6928
6929         /* Determine first and last group to examine based on start and end */
6930         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6931                                      &first_group, &first_cluster);
6932         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6933                                      &last_group, &last_cluster);
6934
6935         /* end now represents the last cluster to discard in this group */
6936         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6937
6938         for (group = first_group; group <= last_group; group++) {
6939                 if (ext4_trim_interrupted())
6940                         break;
6941                 grp = ext4_get_group_info(sb, group);
6942                 if (!grp)
6943                         continue;
6944                 /* We only do this if the grp has never been initialized */
6945                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6946                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6947                         if (ret)
6948                                 break;
6949                 }
6950
6951                 /*
6952                  * For all the groups except the last one, last cluster will
6953                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6954                  * change it for the last group, note that last_cluster is
6955                  * already computed earlier by ext4_get_group_no_and_offset()
6956                  */
6957                 if (group == last_group)
6958                         end = last_cluster;
6959                 if (grp->bb_free >= minlen) {
6960                         cnt = ext4_trim_all_free(sb, group, first_cluster,
6961                                                  end, minlen);
6962                         if (cnt < 0) {
6963                                 ret = cnt;
6964                                 break;
6965                         }
6966                         trimmed += cnt;
6967                 }
6968
6969                 /*
6970                  * For every group except the first one, we are sure
6971                  * that the first cluster to discard will be cluster #0.
6972                  */
6973                 first_cluster = 0;
6974         }
6975
6976         if (!ret)
6977                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6978
6979 out:
6980         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6981         return ret;
6982 }
6983
6984 /* Iterate all the free extents in the group. */
6985 int
6986 ext4_mballoc_query_range(
6987         struct super_block              *sb,
6988         ext4_group_t                    group,
6989         ext4_grpblk_t                   start,
6990         ext4_grpblk_t                   end,
6991         ext4_mballoc_query_range_fn     formatter,
6992         void                            *priv)
6993 {
6994         void                            *bitmap;
6995         ext4_grpblk_t                   next;
6996         struct ext4_buddy               e4b;
6997         int                             error;
6998
6999         error = ext4_mb_load_buddy(sb, group, &e4b);
7000         if (error)
7001                 return error;
7002         bitmap = e4b.bd_bitmap;
7003
7004         ext4_lock_group(sb, group);
7005
7006         start = max(e4b.bd_info->bb_first_free, start);
7007         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7008                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7009
7010         while (start <= end) {
7011                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7012                 if (start > end)
7013                         break;
7014                 next = mb_find_next_bit(bitmap, end + 1, start);
7015
7016                 ext4_unlock_group(sb, group);
7017                 error = formatter(sb, group, start, next - start, priv);
7018                 if (error)
7019                         goto out_unload;
7020                 ext4_lock_group(sb, group);
7021
7022                 start = next + 1;
7023         }
7024
7025         ext4_unlock_group(sb, group);
7026 out_unload:
7027         ext4_mb_unload_buddy(&e4b);
7028
7029         return error;
7030 }
7031
7032 #ifdef CONFIG_EXT4_KUNIT_TESTS
7033 #include "mballoc-test.c"
7034 #endif