1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
38 * - reservation for superuser
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> length for this prealloc space (in clusters)
73 * pa_free -> free space available in this prealloc space (in clusters)
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This makes sure that
78 * we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list represented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) within the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
129 * dependent on the cluster size; for non-bigalloc file systems, it is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * so, now we're building a concurrency table:
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
240 * i_data_sem serializes them
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
249 * i_data_sem or another mutex should serializes them
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
276 * mark bits in on-disk bitmap
279 * - use preallocation:
280 * find proper PA (per-inode or group)
282 * mark bits in on-disk bitmap
288 * mark bits in on-disk bitmap
291 * - discard preallocations in group:
293 * move them onto local list
294 * load on-disk bitmap
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
318 * - release consumed pa:
323 * - generate in-core bitmap:
327 * - discard all for given object (inode, locality group):
332 * - discard all for given group:
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
369 #error "how many bits you are?!"
374 static inline int mb_test_bit(int bit, void *addr)
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
384 static inline void mb_set_bit(int bit, void *addr)
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
390 static inline void mb_clear_bit(int bit, void *addr)
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
396 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 return ext4_test_and_clear_bit(bit, addr);
402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 int fix = 0, ret, tmpmax;
405 addr = mb_correct_addr_and_bit(&fix, addr);
409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
415 static inline int mb_find_next_bit(void *addr, int max, int start)
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
435 if (order > e4b->bd_blkbits + 1) {
440 /* at order 0 we see each particular block */
442 *max = 1 << (e4b->bd_blkbits + 3);
443 return e4b->bd_bitmap;
446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 int first, int count)
457 struct super_block *sb = e4b->bd_sb;
459 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 for (i = 0; i < count; i++) {
463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 ext4_fsblk_t blocknr;
466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 ext4_grp_locked_error(sb, e4b->bd_group,
469 inode ? inode->i_ino : 0,
471 "freeing block already freed "
474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
485 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 for (i = 0; i < count; i++) {
489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 unsigned char *b1, *b2;
499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 b2 = (unsigned char *) bitmap;
501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 if (b1[i] != b2[i]) {
503 ext4_msg(e4b->bd_sb, KERN_ERR,
504 "corruption in group %u "
505 "at byte %u(%u): %x in copy != %x "
507 e4b->bd_group, i, i * 8, b1[i], b2[i]);
515 static inline void mb_free_blocks_double(struct inode *inode,
516 struct ext4_buddy *e4b, int first, int count)
520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 int first, int count)
525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
531 #ifdef AGGRESSIVE_CHECK
533 #define MB_CHECK_ASSERT(assert) \
537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
538 function, file, line, # assert); \
543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 const char *function, int line)
546 struct super_block *sb = e4b->bd_sb;
547 int order = e4b->bd_blkbits + 1;
554 struct ext4_group_info *grp;
557 struct list_head *cur;
562 static int mb_check_counter;
563 if (mb_check_counter++ % 100 != 0)
568 buddy = mb_find_buddy(e4b, order, &max);
569 MB_CHECK_ASSERT(buddy);
570 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 MB_CHECK_ASSERT(buddy2);
572 MB_CHECK_ASSERT(buddy != buddy2);
573 MB_CHECK_ASSERT(max * 2 == max2);
576 for (i = 0; i < max; i++) {
578 if (mb_test_bit(i, buddy)) {
579 /* only single bit in buddy2 may be 1 */
580 if (!mb_test_bit(i << 1, buddy2)) {
582 mb_test_bit((i<<1)+1, buddy2));
583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
585 mb_test_bit(i << 1, buddy2));
590 /* both bits in buddy2 must be 1 */
591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594 for (j = 0; j < (1 << order); j++) {
595 k = (i * (1 << order)) + j;
597 !mb_test_bit(k, e4b->bd_bitmap));
601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
606 buddy = mb_find_buddy(e4b, 0, &max);
607 for (i = 0; i < max; i++) {
608 if (!mb_test_bit(i, buddy)) {
609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
617 /* check used bits only */
618 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 buddy2 = mb_find_buddy(e4b, j, &max2);
621 MB_CHECK_ASSERT(k < max2);
622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628 grp = ext4_get_group_info(sb, e4b->bd_group);
629 list_for_each(cur, &grp->bb_prealloc_list) {
630 ext4_group_t groupnr;
631 struct ext4_prealloc_space *pa;
632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 for (i = 0; i < pa->pa_len; i++)
636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
642 __FILE__, __func__, __LINE__)
644 #define mb_check_buddy(e4b)
648 * Divide blocks started from @first with length @len into
649 * smaller chunks with power of 2 blocks.
650 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651 * then increase bb_counters[] for corresponded chunk size.
653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 struct ext4_group_info *grp)
657 struct ext4_sb_info *sbi = EXT4_SB(sb);
663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665 border = 2 << sb->s_blocksize_bits;
668 /* find how many blocks can be covered since this position */
669 max = ffs(first | border) - 1;
671 /* find how many blocks of power 2 we need to mark */
678 /* mark multiblock chunks only */
679 grp->bb_counters[min]++;
681 mb_clear_bit(first >> min,
682 buddy + sbi->s_mb_offsets[min]);
690 * Cache the order of the largest free extent we have available in this block
694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
699 grp->bb_largest_free_order = -1; /* uninit */
701 bits = sb->s_blocksize_bits + 1;
702 for (i = bits; i >= 0; i--) {
703 if (grp->bb_counters[i] > 0) {
704 grp->bb_largest_free_order = i;
710 static noinline_for_stack
711 void ext4_mb_generate_buddy(struct super_block *sb,
712 void *buddy, void *bitmap, ext4_group_t group)
714 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
721 unsigned fragments = 0;
722 unsigned long long period = get_cycles();
724 /* initialize buddy from bitmap which is aggregation
725 * of on-disk bitmap and preallocations */
726 i = mb_find_next_zero_bit(bitmap, max, 0);
727 grp->bb_first_free = i;
731 i = mb_find_next_bit(bitmap, max, i);
735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
737 grp->bb_counters[0]++;
739 i = mb_find_next_zero_bit(bitmap, max, i);
741 grp->bb_fragments = fragments;
743 if (free != grp->bb_free) {
744 ext4_grp_locked_error(sb, group, 0, 0,
745 "block bitmap and bg descriptor "
746 "inconsistent: %u vs %u free clusters",
749 * If we intend to continue, we consider group descriptor
750 * corrupt and update bb_free using bitmap value
753 ext4_mark_group_bitmap_corrupted(sb, group,
754 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 mb_set_largest_free_order(sb, grp);
758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760 period = get_cycles() - period;
761 spin_lock(&sbi->s_bal_lock);
762 sbi->s_mb_buddies_generated++;
763 sbi->s_mb_generation_time += period;
764 spin_unlock(&sbi->s_bal_lock);
767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
773 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 ext4_set_bits(buddy, 0, count);
776 e4b->bd_info->bb_fragments = 0;
777 memset(e4b->bd_info->bb_counters, 0,
778 sizeof(*e4b->bd_info->bb_counters) *
779 (e4b->bd_sb->s_blocksize_bits + 2));
781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 e4b->bd_bitmap, e4b->bd_group);
785 /* The buddy information is attached the buddy cache inode
786 * for convenience. The information regarding each group
787 * is loaded via ext4_mb_load_buddy. The information involve
788 * block bitmap and buddy information. The information are
789 * stored in the inode as
792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
795 * one block each for bitmap and buddy information.
796 * So for each group we take up 2 blocks. A page can
797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
798 * So it can have information regarding groups_per_page which
799 * is blocks_per_page/2
801 * Locking note: This routine takes the block group lock of all groups
802 * for this page; do not hold this lock when calling this routine!
805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 ext4_group_t ngroups;
813 ext4_group_t first_group, group;
815 struct super_block *sb;
816 struct buffer_head *bhs;
817 struct buffer_head **bh = NULL;
821 struct ext4_group_info *grinfo;
823 mb_debug(1, "init page %lu\n", page->index);
825 inode = page->mapping->host;
827 ngroups = ext4_get_groups_count(sb);
828 blocksize = i_blocksize(inode);
829 blocks_per_page = PAGE_SIZE / blocksize;
831 groups_per_page = blocks_per_page >> 1;
832 if (groups_per_page == 0)
835 /* allocate buffer_heads to read bitmaps */
836 if (groups_per_page > 1) {
837 i = sizeof(struct buffer_head *) * groups_per_page;
838 bh = kzalloc(i, gfp);
846 first_group = page->index * blocks_per_page / 2;
848 /* read all groups the page covers into the cache */
849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 if (group >= ngroups)
853 grinfo = ext4_get_group_info(sb, group);
855 * If page is uptodate then we came here after online resize
856 * which added some new uninitialized group info structs, so
857 * we must skip all initialized uptodate buddies on the page,
858 * which may be currently in use by an allocating task.
860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
864 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
866 err = PTR_ERR(bh[i]);
870 mb_debug(1, "read bitmap for group %u\n", group);
873 /* wait for I/O completion */
874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
884 first_block = page->index * blocks_per_page;
885 for (i = 0; i < blocks_per_page; i++) {
886 group = (first_block + i) >> 1;
887 if (group >= ngroups)
890 if (!bh[group - first_group])
891 /* skip initialized uptodate buddy */
894 if (!buffer_verified(bh[group - first_group]))
895 /* Skip faulty bitmaps */
900 * data carry information regarding this
901 * particular group in the format specified
905 data = page_address(page) + (i * blocksize);
906 bitmap = bh[group - first_group]->b_data;
909 * We place the buddy block and bitmap block
912 if ((first_block + i) & 1) {
913 /* this is block of buddy */
914 BUG_ON(incore == NULL);
915 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 group, page->index, i * blocksize);
917 trace_ext4_mb_buddy_bitmap_load(sb, group);
918 grinfo = ext4_get_group_info(sb, group);
919 grinfo->bb_fragments = 0;
920 memset(grinfo->bb_counters, 0,
921 sizeof(*grinfo->bb_counters) *
922 (sb->s_blocksize_bits+2));
924 * incore got set to the group block bitmap below
926 ext4_lock_group(sb, group);
928 memset(data, 0xff, blocksize);
929 ext4_mb_generate_buddy(sb, data, incore, group);
930 ext4_unlock_group(sb, group);
933 /* this is block of bitmap */
934 BUG_ON(incore != NULL);
935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 group, page->index, i * blocksize);
937 trace_ext4_mb_bitmap_load(sb, group);
939 /* see comments in ext4_mb_put_pa() */
940 ext4_lock_group(sb, group);
941 memcpy(data, bitmap, blocksize);
943 /* mark all preallocated blks used in in-core bitmap */
944 ext4_mb_generate_from_pa(sb, data, group);
945 ext4_mb_generate_from_freelist(sb, data, group);
946 ext4_unlock_group(sb, group);
948 /* set incore so that the buddy information can be
949 * generated using this
954 SetPageUptodate(page);
958 for (i = 0; i < groups_per_page; i++)
967 * Lock the buddy and bitmap pages. This make sure other parallel init_group
968 * on the same buddy page doesn't happen whild holding the buddy page lock.
969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 int block, pnum, poff;
980 e4b->bd_buddy_page = NULL;
981 e4b->bd_bitmap_page = NULL;
983 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 * the buddy cache inode stores the block bitmap
986 * and buddy information in consecutive blocks.
987 * So for each group we need two blocks.
990 pnum = block / blocks_per_page;
991 poff = block % blocks_per_page;
992 page = find_or_create_page(inode->i_mapping, pnum, gfp);
995 BUG_ON(page->mapping != inode->i_mapping);
996 e4b->bd_bitmap_page = page;
997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 if (blocks_per_page >= 2) {
1000 /* buddy and bitmap are on the same page */
1005 pnum = block / blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_buddy_page = page;
1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 if (e4b->bd_bitmap_page) {
1017 unlock_page(e4b->bd_bitmap_page);
1018 put_page(e4b->bd_bitmap_page);
1020 if (e4b->bd_buddy_page) {
1021 unlock_page(e4b->bd_buddy_page);
1022 put_page(e4b->bd_buddy_page);
1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1028 * block group lock of all groups for this page; do not hold the BG lock when
1029 * calling this routine!
1031 static noinline_for_stack
1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1035 struct ext4_group_info *this_grp;
1036 struct ext4_buddy e4b;
1041 mb_debug(1, "init group %u\n", group);
1042 this_grp = ext4_get_group_info(sb, group);
1044 * This ensures that we don't reinit the buddy cache
1045 * page which map to the group from which we are already
1046 * allocating. If we are looking at the buddy cache we would
1047 * have taken a reference using ext4_mb_load_buddy and that
1048 * would have pinned buddy page to page cache.
1049 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 * somebody initialized the group
1056 * return without doing anything
1061 page = e4b.bd_bitmap_page;
1062 ret = ext4_mb_init_cache(page, NULL, gfp);
1065 if (!PageUptodate(page)) {
1070 if (e4b.bd_buddy_page == NULL) {
1072 * If both the bitmap and buddy are in
1073 * the same page we don't need to force
1079 /* init buddy cache */
1080 page = e4b.bd_buddy_page;
1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1084 if (!PageUptodate(page)) {
1089 ext4_mb_put_buddy_page_lock(&e4b);
1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1095 * block group lock of all groups for this page; do not hold the BG lock when
1096 * calling this routine!
1098 static noinline_for_stack int
1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 struct ext4_buddy *e4b, gfp_t gfp)
1102 int blocks_per_page;
1108 struct ext4_group_info *grp;
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct inode *inode = sbi->s_buddy_cache;
1113 mb_debug(1, "load group %u\n", group);
1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 grp = ext4_get_group_info(sb, group);
1118 e4b->bd_blkbits = sb->s_blocksize_bits;
1121 e4b->bd_group = group;
1122 e4b->bd_buddy_page = NULL;
1123 e4b->bd_bitmap_page = NULL;
1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 * we need full data about the group
1128 * to make a good selection
1130 ret = ext4_mb_init_group(sb, group, gfp);
1136 * the buddy cache inode stores the block bitmap
1137 * and buddy information in consecutive blocks.
1138 * So for each group we need two blocks.
1141 pnum = block / blocks_per_page;
1142 poff = block % blocks_per_page;
1144 /* we could use find_or_create_page(), but it locks page
1145 * what we'd like to avoid in fast path ... */
1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 if (page == NULL || !PageUptodate(page)) {
1150 * drop the page reference and try
1151 * to get the page with lock. If we
1152 * are not uptodate that implies
1153 * somebody just created the page but
1154 * is yet to initialize the same. So
1155 * wait for it to initialize.
1158 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1160 BUG_ON(page->mapping != inode->i_mapping);
1161 if (!PageUptodate(page)) {
1162 ret = ext4_mb_init_cache(page, NULL, gfp);
1167 mb_cmp_bitmaps(e4b, page_address(page) +
1168 (poff * sb->s_blocksize));
1177 if (!PageUptodate(page)) {
1182 /* Pages marked accessed already */
1183 e4b->bd_bitmap_page = page;
1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 pnum = block / blocks_per_page;
1188 poff = block % blocks_per_page;
1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 if (page == NULL || !PageUptodate(page)) {
1194 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1196 BUG_ON(page->mapping != inode->i_mapping);
1197 if (!PageUptodate(page)) {
1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 if (!PageUptodate(page)) {
1217 /* Pages marked accessed already */
1218 e4b->bd_buddy_page = page;
1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1229 if (e4b->bd_bitmap_page)
1230 put_page(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 put_page(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 struct ext4_buddy *e4b)
1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 if (e4b->bd_bitmap_page)
1247 put_page(e4b->bd_bitmap_page);
1248 if (e4b->bd_buddy_page)
1249 put_page(e4b->bd_buddy_page);
1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1256 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1263 while (order <= e4b->bd_blkbits + 1) {
1265 if (!mb_test_bit(block, bb)) {
1266 /* this block is part of buddy of order 'order' */
1276 static void mb_clear_bits(void *bm, int cur, int len)
1282 if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 /* fast path: clear whole word at once */
1284 addr = bm + (cur >> 3);
1289 mb_clear_bit(cur, bm);
1294 /* clear bits in given range
1295 * will return first found zero bit if any, -1 otherwise
1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: clear whole word at once */
1306 addr = bm + (cur >> 3);
1307 if (*addr != (__u32)(-1) && zero_bit == -1)
1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1321 void ext4_set_bits(void *bm, int cur, int len)
1327 if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 /* fast path: set whole word at once */
1329 addr = bm + (cur >> 3);
1334 mb_set_bit(cur, bm);
1340 * _________________________________________________________________ */
1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 if (mb_test_bit(*bit + side, bitmap)) {
1345 mb_clear_bit(*bit, bitmap);
1351 mb_set_bit(*bit, bitmap);
1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1360 void *buddy = mb_find_buddy(e4b, order, &max);
1365 /* Bits in range [first; last] are known to be set since
1366 * corresponding blocks were allocated. Bits in range
1367 * (first; last) will stay set because they form buddies on
1368 * upper layer. We just deal with borders if they don't
1369 * align with upper layer and then go up.
1370 * Releasing entire group is all about clearing
1371 * single bit of highest order buddy.
1375 * ---------------------------------
1377 * ---------------------------------
1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 * ---------------------------------
1381 * \_____________________/
1383 * Neither [1] nor [6] is aligned to above layer.
1384 * Left neighbour [0] is free, so mark it busy,
1385 * decrease bb_counters and extend range to
1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 * mark [6] free, increase bb_counters and shrink range to
1390 * Then shift range to [0; 2], go up and do the same.
1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 mb_clear_bits(buddy, first, last - first + 1);
1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 int first, int count)
1416 int left_is_free = 0;
1417 int right_is_free = 0;
1419 int last = first + count - 1;
1420 struct super_block *sb = e4b->bd_sb;
1422 if (WARN_ON(count == 0))
1424 BUG_ON(last >= (sb->s_blocksize << 3));
1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 /* Don't bother if the block group is corrupt. */
1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1430 mb_check_buddy(e4b);
1431 mb_free_blocks_double(inode, e4b, first, count);
1433 e4b->bd_info->bb_free += count;
1434 if (first < e4b->bd_info->bb_first_free)
1435 e4b->bd_info->bb_first_free = first;
1437 /* access memory sequentially: check left neighbour,
1438 * clear range and then check right neighbour
1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446 if (unlikely(block != -1)) {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 ext4_fsblk_t blocknr;
1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 blocknr += EXT4_C2B(sbi, block);
1452 ext4_grp_locked_error(sb, e4b->bd_group,
1453 inode ? inode->i_ino : 0,
1455 "freeing already freed block "
1456 "(bit %u); block bitmap corrupt.",
1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 mb_regenerate_buddy(e4b);
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1524 ex->fe_start += next;
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1529 if (block + 1 >= max)
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1536 order = mb_find_order_for_block(e4b, next);
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1542 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1543 /* Should never happen! (but apparently sometimes does?!?) */
1545 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1546 "corruption or bug in mb_find_extent "
1547 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1548 block, order, needed, ex->fe_group, ex->fe_start,
1549 ex->fe_len, ex->fe_logical);
1557 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1563 int start = ex->fe_start;
1564 int len = ex->fe_len;
1569 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1570 BUG_ON(e4b->bd_group != ex->fe_group);
1571 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1572 mb_check_buddy(e4b);
1573 mb_mark_used_double(e4b, start, len);
1575 e4b->bd_info->bb_free -= len;
1576 if (e4b->bd_info->bb_first_free == start)
1577 e4b->bd_info->bb_first_free += len;
1579 /* let's maintain fragments counter */
1581 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1582 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1583 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1585 e4b->bd_info->bb_fragments++;
1586 else if (!mlen && !max)
1587 e4b->bd_info->bb_fragments--;
1589 /* let's maintain buddy itself */
1591 ord = mb_find_order_for_block(e4b, start);
1593 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1594 /* the whole chunk may be allocated at once! */
1596 buddy = mb_find_buddy(e4b, ord, &max);
1597 BUG_ON((start >> ord) >= max);
1598 mb_set_bit(start >> ord, buddy);
1599 e4b->bd_info->bb_counters[ord]--;
1606 /* store for history */
1608 ret = len | (ord << 16);
1610 /* we have to split large buddy */
1612 buddy = mb_find_buddy(e4b, ord, &max);
1613 mb_set_bit(start >> ord, buddy);
1614 e4b->bd_info->bb_counters[ord]--;
1617 cur = (start >> ord) & ~1U;
1618 buddy = mb_find_buddy(e4b, ord, &max);
1619 mb_clear_bit(cur, buddy);
1620 mb_clear_bit(cur + 1, buddy);
1621 e4b->bd_info->bb_counters[ord]++;
1622 e4b->bd_info->bb_counters[ord]++;
1624 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1626 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1627 mb_check_buddy(e4b);
1633 * Must be called under group lock!
1635 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1636 struct ext4_buddy *e4b)
1638 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1641 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1642 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1644 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1645 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1646 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1648 /* preallocation can change ac_b_ex, thus we store actually
1649 * allocated blocks for history */
1650 ac->ac_f_ex = ac->ac_b_ex;
1652 ac->ac_status = AC_STATUS_FOUND;
1653 ac->ac_tail = ret & 0xffff;
1654 ac->ac_buddy = ret >> 16;
1657 * take the page reference. We want the page to be pinned
1658 * so that we don't get a ext4_mb_init_cache_call for this
1659 * group until we update the bitmap. That would mean we
1660 * double allocate blocks. The reference is dropped
1661 * in ext4_mb_release_context
1663 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1664 get_page(ac->ac_bitmap_page);
1665 ac->ac_buddy_page = e4b->bd_buddy_page;
1666 get_page(ac->ac_buddy_page);
1667 /* store last allocated for subsequent stream allocation */
1668 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1669 spin_lock(&sbi->s_md_lock);
1670 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1671 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1672 spin_unlock(&sbi->s_md_lock);
1677 * regular allocator, for general purposes allocation
1680 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1681 struct ext4_buddy *e4b,
1684 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1685 struct ext4_free_extent *bex = &ac->ac_b_ex;
1686 struct ext4_free_extent *gex = &ac->ac_g_ex;
1687 struct ext4_free_extent ex;
1690 if (ac->ac_status == AC_STATUS_FOUND)
1693 * We don't want to scan for a whole year
1695 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1696 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1697 ac->ac_status = AC_STATUS_BREAK;
1702 * Haven't found good chunk so far, let's continue
1704 if (bex->fe_len < gex->fe_len)
1707 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1708 && bex->fe_group == e4b->bd_group) {
1709 /* recheck chunk's availability - we don't know
1710 * when it was found (within this lock-unlock
1712 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1713 if (max >= gex->fe_len) {
1714 ext4_mb_use_best_found(ac, e4b);
1721 * The routine checks whether found extent is good enough. If it is,
1722 * then the extent gets marked used and flag is set to the context
1723 * to stop scanning. Otherwise, the extent is compared with the
1724 * previous found extent and if new one is better, then it's stored
1725 * in the context. Later, the best found extent will be used, if
1726 * mballoc can't find good enough extent.
1728 * FIXME: real allocation policy is to be designed yet!
1730 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1731 struct ext4_free_extent *ex,
1732 struct ext4_buddy *e4b)
1734 struct ext4_free_extent *bex = &ac->ac_b_ex;
1735 struct ext4_free_extent *gex = &ac->ac_g_ex;
1737 BUG_ON(ex->fe_len <= 0);
1738 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1740 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1745 * The special case - take what you catch first
1747 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1749 ext4_mb_use_best_found(ac, e4b);
1754 * Let's check whether the chuck is good enough
1756 if (ex->fe_len == gex->fe_len) {
1758 ext4_mb_use_best_found(ac, e4b);
1763 * If this is first found extent, just store it in the context
1765 if (bex->fe_len == 0) {
1771 * If new found extent is better, store it in the context
1773 if (bex->fe_len < gex->fe_len) {
1774 /* if the request isn't satisfied, any found extent
1775 * larger than previous best one is better */
1776 if (ex->fe_len > bex->fe_len)
1778 } else if (ex->fe_len > gex->fe_len) {
1779 /* if the request is satisfied, then we try to find
1780 * an extent that still satisfy the request, but is
1781 * smaller than previous one */
1782 if (ex->fe_len < bex->fe_len)
1786 ext4_mb_check_limits(ac, e4b, 0);
1789 static noinline_for_stack
1790 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1791 struct ext4_buddy *e4b)
1793 struct ext4_free_extent ex = ac->ac_b_ex;
1794 ext4_group_t group = ex.fe_group;
1798 BUG_ON(ex.fe_len <= 0);
1799 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1803 ext4_lock_group(ac->ac_sb, group);
1804 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1808 ext4_mb_use_best_found(ac, e4b);
1811 ext4_unlock_group(ac->ac_sb, group);
1812 ext4_mb_unload_buddy(e4b);
1817 static noinline_for_stack
1818 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1819 struct ext4_buddy *e4b)
1821 ext4_group_t group = ac->ac_g_ex.fe_group;
1824 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1825 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1826 struct ext4_free_extent ex;
1828 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1830 if (grp->bb_free == 0)
1833 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1837 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1838 ext4_mb_unload_buddy(e4b);
1842 ext4_lock_group(ac->ac_sb, group);
1843 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1844 ac->ac_g_ex.fe_len, &ex);
1845 ex.fe_logical = 0xDEADFA11; /* debug value */
1847 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1850 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1852 /* use do_div to get remainder (would be 64-bit modulo) */
1853 if (do_div(start, sbi->s_stripe) == 0) {
1856 ext4_mb_use_best_found(ac, e4b);
1858 } else if (max >= ac->ac_g_ex.fe_len) {
1859 BUG_ON(ex.fe_len <= 0);
1860 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1861 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1864 ext4_mb_use_best_found(ac, e4b);
1865 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1866 /* Sometimes, caller may want to merge even small
1867 * number of blocks to an existing extent */
1868 BUG_ON(ex.fe_len <= 0);
1869 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1870 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1873 ext4_mb_use_best_found(ac, e4b);
1875 ext4_unlock_group(ac->ac_sb, group);
1876 ext4_mb_unload_buddy(e4b);
1882 * The routine scans buddy structures (not bitmap!) from given order
1883 * to max order and tries to find big enough chunk to satisfy the req
1885 static noinline_for_stack
1886 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1887 struct ext4_buddy *e4b)
1889 struct super_block *sb = ac->ac_sb;
1890 struct ext4_group_info *grp = e4b->bd_info;
1896 BUG_ON(ac->ac_2order <= 0);
1897 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1898 if (grp->bb_counters[i] == 0)
1901 buddy = mb_find_buddy(e4b, i, &max);
1902 BUG_ON(buddy == NULL);
1904 k = mb_find_next_zero_bit(buddy, max, 0);
1906 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1907 "%d free clusters of order %d. But found 0",
1908 grp->bb_counters[i], i);
1909 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1911 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1916 ac->ac_b_ex.fe_len = 1 << i;
1917 ac->ac_b_ex.fe_start = k << i;
1918 ac->ac_b_ex.fe_group = e4b->bd_group;
1920 ext4_mb_use_best_found(ac, e4b);
1922 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1924 if (EXT4_SB(sb)->s_mb_stats)
1925 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1932 * The routine scans the group and measures all found extents.
1933 * In order to optimize scanning, caller must pass number of
1934 * free blocks in the group, so the routine can know upper limit.
1936 static noinline_for_stack
1937 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1938 struct ext4_buddy *e4b)
1940 struct super_block *sb = ac->ac_sb;
1941 void *bitmap = e4b->bd_bitmap;
1942 struct ext4_free_extent ex;
1946 free = e4b->bd_info->bb_free;
1947 if (WARN_ON(free <= 0))
1950 i = e4b->bd_info->bb_first_free;
1952 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1953 i = mb_find_next_zero_bit(bitmap,
1954 EXT4_CLUSTERS_PER_GROUP(sb), i);
1955 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1957 * IF we have corrupt bitmap, we won't find any
1958 * free blocks even though group info says we
1959 * we have free blocks
1961 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1962 "%d free clusters as per "
1963 "group info. But bitmap says 0",
1965 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1966 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1970 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1971 if (WARN_ON(ex.fe_len <= 0))
1973 if (free < ex.fe_len) {
1974 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1975 "%d free clusters as per "
1976 "group info. But got %d blocks",
1978 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1979 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1981 * The number of free blocks differs. This mostly
1982 * indicate that the bitmap is corrupt. So exit
1983 * without claiming the space.
1987 ex.fe_logical = 0xDEADC0DE; /* debug value */
1988 ext4_mb_measure_extent(ac, &ex, e4b);
1994 ext4_mb_check_limits(ac, e4b, 1);
1998 * This is a special case for storages like raid5
1999 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2001 static noinline_for_stack
2002 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2003 struct ext4_buddy *e4b)
2005 struct super_block *sb = ac->ac_sb;
2006 struct ext4_sb_info *sbi = EXT4_SB(sb);
2007 void *bitmap = e4b->bd_bitmap;
2008 struct ext4_free_extent ex;
2009 ext4_fsblk_t first_group_block;
2014 BUG_ON(sbi->s_stripe == 0);
2016 /* find first stripe-aligned block in group */
2017 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2019 a = first_group_block + sbi->s_stripe - 1;
2020 do_div(a, sbi->s_stripe);
2021 i = (a * sbi->s_stripe) - first_group_block;
2023 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2024 if (!mb_test_bit(i, bitmap)) {
2025 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2026 if (max >= sbi->s_stripe) {
2028 ex.fe_logical = 0xDEADF00D; /* debug value */
2030 ext4_mb_use_best_found(ac, e4b);
2039 * This is now called BEFORE we load the buddy bitmap.
2040 * Returns either 1 or 0 indicating that the group is either suitable
2041 * for the allocation or not. In addition it can also return negative
2042 * error code when something goes wrong.
2044 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2045 ext4_group_t group, int cr)
2047 unsigned free, fragments;
2048 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2049 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2051 BUG_ON(cr < 0 || cr >= 4);
2053 free = grp->bb_free;
2056 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2059 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2062 /* We only do this if the grp has never been initialized */
2063 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2064 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2069 fragments = grp->bb_fragments;
2075 BUG_ON(ac->ac_2order == 0);
2077 /* Avoid using the first bg of a flexgroup for data files */
2078 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2079 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2080 ((group % flex_size) == 0))
2083 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2084 (free / fragments) >= ac->ac_g_ex.fe_len)
2087 if (grp->bb_largest_free_order < ac->ac_2order)
2092 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2096 if (free >= ac->ac_g_ex.fe_len)
2108 static noinline_for_stack int
2109 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2111 ext4_group_t ngroups, group, i;
2113 int err = 0, first_err = 0;
2114 struct ext4_sb_info *sbi;
2115 struct super_block *sb;
2116 struct ext4_buddy e4b;
2120 ngroups = ext4_get_groups_count(sb);
2121 /* non-extent files are limited to low blocks/groups */
2122 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2123 ngroups = sbi->s_blockfile_groups;
2125 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2127 /* first, try the goal */
2128 err = ext4_mb_find_by_goal(ac, &e4b);
2129 if (err || ac->ac_status == AC_STATUS_FOUND)
2132 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2136 * ac->ac2_order is set only if the fe_len is a power of 2
2137 * if ac2_order is set we also set criteria to 0 so that we
2138 * try exact allocation using buddy.
2140 i = fls(ac->ac_g_ex.fe_len);
2143 * We search using buddy data only if the order of the request
2144 * is greater than equal to the sbi_s_mb_order2_reqs
2145 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2146 * We also support searching for power-of-two requests only for
2147 * requests upto maximum buddy size we have constructed.
2149 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2151 * This should tell if fe_len is exactly power of 2
2153 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2154 ac->ac_2order = array_index_nospec(i - 1,
2155 sb->s_blocksize_bits + 2);
2158 /* if stream allocation is enabled, use global goal */
2159 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2160 /* TBD: may be hot point */
2161 spin_lock(&sbi->s_md_lock);
2162 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2163 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2164 spin_unlock(&sbi->s_md_lock);
2167 /* Let's just scan groups to find more-less suitable blocks */
2168 cr = ac->ac_2order ? 0 : 1;
2170 * cr == 0 try to get exact allocation,
2171 * cr == 3 try to get anything
2174 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2175 ac->ac_criteria = cr;
2177 * searching for the right group start
2178 * from the goal value specified
2180 group = ac->ac_g_ex.fe_group;
2182 for (i = 0; i < ngroups; group++, i++) {
2186 * Artificially restricted ngroups for non-extent
2187 * files makes group > ngroups possible on first loop.
2189 if (group >= ngroups)
2192 /* This now checks without needing the buddy page */
2193 ret = ext4_mb_good_group(ac, group, cr);
2200 err = ext4_mb_load_buddy(sb, group, &e4b);
2204 ext4_lock_group(sb, group);
2207 * We need to check again after locking the
2210 ret = ext4_mb_good_group(ac, group, cr);
2212 ext4_unlock_group(sb, group);
2213 ext4_mb_unload_buddy(&e4b);
2219 ac->ac_groups_scanned++;
2221 ext4_mb_simple_scan_group(ac, &e4b);
2222 else if (cr == 1 && sbi->s_stripe &&
2223 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2224 ext4_mb_scan_aligned(ac, &e4b);
2226 ext4_mb_complex_scan_group(ac, &e4b);
2228 ext4_unlock_group(sb, group);
2229 ext4_mb_unload_buddy(&e4b);
2231 if (ac->ac_status != AC_STATUS_CONTINUE)
2236 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2237 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2239 * We've been searching too long. Let's try to allocate
2240 * the best chunk we've found so far
2243 ext4_mb_try_best_found(ac, &e4b);
2244 if (ac->ac_status != AC_STATUS_FOUND) {
2246 * Someone more lucky has already allocated it.
2247 * The only thing we can do is just take first
2249 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2251 ac->ac_b_ex.fe_group = 0;
2252 ac->ac_b_ex.fe_start = 0;
2253 ac->ac_b_ex.fe_len = 0;
2254 ac->ac_status = AC_STATUS_CONTINUE;
2255 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2257 atomic_inc(&sbi->s_mb_lost_chunks);
2262 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2267 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2269 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2272 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 return (void *) ((unsigned long) group);
2278 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2280 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2284 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2287 return (void *) ((unsigned long) group);
2290 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2292 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2293 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2295 int err, buddy_loaded = 0;
2296 struct ext4_buddy e4b;
2297 struct ext4_group_info *grinfo;
2298 unsigned char blocksize_bits = min_t(unsigned char,
2299 sb->s_blocksize_bits,
2300 EXT4_MAX_BLOCK_LOG_SIZE);
2302 struct ext4_group_info info;
2303 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2308 seq_puts(seq, "#group: free frags first ["
2309 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2310 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2312 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2313 sizeof(struct ext4_group_info);
2315 grinfo = ext4_get_group_info(sb, group);
2316 /* Load the group info in memory only if not already loaded. */
2317 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2318 err = ext4_mb_load_buddy(sb, group, &e4b);
2320 seq_printf(seq, "#%-5u: I/O error\n", group);
2326 memcpy(&sg, ext4_get_group_info(sb, group), i);
2329 ext4_mb_unload_buddy(&e4b);
2331 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2332 sg.info.bb_fragments, sg.info.bb_first_free);
2333 for (i = 0; i <= 13; i++)
2334 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2335 sg.info.bb_counters[i] : 0);
2336 seq_printf(seq, " ]\n");
2341 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2345 const struct seq_operations ext4_mb_seq_groups_ops = {
2346 .start = ext4_mb_seq_groups_start,
2347 .next = ext4_mb_seq_groups_next,
2348 .stop = ext4_mb_seq_groups_stop,
2349 .show = ext4_mb_seq_groups_show,
2352 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2354 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2355 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2362 * Allocate the top-level s_group_info array for the specified number
2365 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2367 struct ext4_sb_info *sbi = EXT4_SB(sb);
2369 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2371 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2372 EXT4_DESC_PER_BLOCK_BITS(sb);
2373 if (size <= sbi->s_group_info_size)
2376 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2377 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2378 if (!new_groupinfo) {
2379 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2383 old_groupinfo = rcu_dereference(sbi->s_group_info);
2385 memcpy(new_groupinfo, old_groupinfo,
2386 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2388 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2389 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2391 ext4_kvfree_array_rcu(old_groupinfo);
2392 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2393 sbi->s_group_info_size);
2397 /* Create and initialize ext4_group_info data for the given group. */
2398 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2399 struct ext4_group_desc *desc)
2403 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2404 struct ext4_sb_info *sbi = EXT4_SB(sb);
2405 struct ext4_group_info **meta_group_info;
2406 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2409 * First check if this group is the first of a reserved block.
2410 * If it's true, we have to allocate a new table of pointers
2411 * to ext4_group_info structures
2413 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2414 metalen = sizeof(*meta_group_info) <<
2415 EXT4_DESC_PER_BLOCK_BITS(sb);
2416 meta_group_info = kmalloc(metalen, GFP_NOFS);
2417 if (meta_group_info == NULL) {
2418 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2419 "for a buddy group");
2420 goto exit_meta_group_info;
2423 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2427 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2428 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2430 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2431 if (meta_group_info[i] == NULL) {
2432 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2433 goto exit_group_info;
2435 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2436 &(meta_group_info[i]->bb_state));
2439 * initialize bb_free to be able to skip
2440 * empty groups without initialization
2442 if (ext4_has_group_desc_csum(sb) &&
2443 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2444 meta_group_info[i]->bb_free =
2445 ext4_free_clusters_after_init(sb, group, desc);
2447 meta_group_info[i]->bb_free =
2448 ext4_free_group_clusters(sb, desc);
2451 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2452 init_rwsem(&meta_group_info[i]->alloc_sem);
2453 meta_group_info[i]->bb_free_root = RB_ROOT;
2454 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2458 struct buffer_head *bh;
2459 meta_group_info[i]->bb_bitmap =
2460 kmalloc(sb->s_blocksize, GFP_NOFS);
2461 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2462 bh = ext4_read_block_bitmap(sb, group);
2463 BUG_ON(IS_ERR_OR_NULL(bh));
2464 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2473 /* If a meta_group_info table has been allocated, release it now */
2474 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2475 struct ext4_group_info ***group_info;
2478 group_info = rcu_dereference(sbi->s_group_info);
2479 kfree(group_info[idx]);
2480 group_info[idx] = NULL;
2483 exit_meta_group_info:
2485 } /* ext4_mb_add_groupinfo */
2487 static int ext4_mb_init_backend(struct super_block *sb)
2489 ext4_group_t ngroups = ext4_get_groups_count(sb);
2491 struct ext4_sb_info *sbi = EXT4_SB(sb);
2493 struct ext4_group_desc *desc;
2494 struct ext4_group_info ***group_info;
2495 struct kmem_cache *cachep;
2497 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2501 sbi->s_buddy_cache = new_inode(sb);
2502 if (sbi->s_buddy_cache == NULL) {
2503 ext4_msg(sb, KERN_ERR, "can't get new inode");
2506 /* To avoid potentially colliding with an valid on-disk inode number,
2507 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2508 * not in the inode hash, so it should never be found by iget(), but
2509 * this will avoid confusion if it ever shows up during debugging. */
2510 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2511 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2512 for (i = 0; i < ngroups; i++) {
2513 desc = ext4_get_group_desc(sb, i, NULL);
2515 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2518 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2525 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2527 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2528 i = sbi->s_group_info_size;
2530 group_info = rcu_dereference(sbi->s_group_info);
2532 kfree(group_info[i]);
2534 iput(sbi->s_buddy_cache);
2537 kvfree(rcu_dereference(sbi->s_group_info));
2542 static void ext4_groupinfo_destroy_slabs(void)
2546 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2547 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2548 ext4_groupinfo_caches[i] = NULL;
2552 static int ext4_groupinfo_create_slab(size_t size)
2554 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2556 int blocksize_bits = order_base_2(size);
2557 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2558 struct kmem_cache *cachep;
2560 if (cache_index >= NR_GRPINFO_CACHES)
2563 if (unlikely(cache_index < 0))
2566 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2567 if (ext4_groupinfo_caches[cache_index]) {
2568 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2569 return 0; /* Already created */
2572 slab_size = offsetof(struct ext4_group_info,
2573 bb_counters[blocksize_bits + 2]);
2575 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2576 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2579 ext4_groupinfo_caches[cache_index] = cachep;
2581 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2584 "EXT4-fs: no memory for groupinfo slab cache\n");
2591 int ext4_mb_init(struct super_block *sb)
2593 struct ext4_sb_info *sbi = EXT4_SB(sb);
2595 unsigned offset, offset_incr;
2599 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2601 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2602 if (sbi->s_mb_offsets == NULL) {
2607 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2608 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2609 if (sbi->s_mb_maxs == NULL) {
2614 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2618 /* order 0 is regular bitmap */
2619 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2620 sbi->s_mb_offsets[0] = 0;
2624 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2625 max = sb->s_blocksize << 2;
2627 sbi->s_mb_offsets[i] = offset;
2628 sbi->s_mb_maxs[i] = max;
2629 offset += offset_incr;
2630 offset_incr = offset_incr >> 1;
2633 } while (i <= sb->s_blocksize_bits + 1);
2635 spin_lock_init(&sbi->s_md_lock);
2636 spin_lock_init(&sbi->s_bal_lock);
2637 sbi->s_mb_free_pending = 0;
2638 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2640 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2641 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2642 sbi->s_mb_stats = MB_DEFAULT_STATS;
2643 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2644 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2646 * The default group preallocation is 512, which for 4k block
2647 * sizes translates to 2 megabytes. However for bigalloc file
2648 * systems, this is probably too big (i.e, if the cluster size
2649 * is 1 megabyte, then group preallocation size becomes half a
2650 * gigabyte!). As a default, we will keep a two megabyte
2651 * group pralloc size for cluster sizes up to 64k, and after
2652 * that, we will force a minimum group preallocation size of
2653 * 32 clusters. This translates to 8 megs when the cluster
2654 * size is 256k, and 32 megs when the cluster size is 1 meg,
2655 * which seems reasonable as a default.
2657 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2658 sbi->s_cluster_bits, 32);
2660 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2661 * to the lowest multiple of s_stripe which is bigger than
2662 * the s_mb_group_prealloc as determined above. We want
2663 * the preallocation size to be an exact multiple of the
2664 * RAID stripe size so that preallocations don't fragment
2667 if (sbi->s_stripe > 1) {
2668 sbi->s_mb_group_prealloc = roundup(
2669 sbi->s_mb_group_prealloc, sbi->s_stripe);
2672 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2673 if (sbi->s_locality_groups == NULL) {
2677 for_each_possible_cpu(i) {
2678 struct ext4_locality_group *lg;
2679 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2680 mutex_init(&lg->lg_mutex);
2681 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2682 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2683 spin_lock_init(&lg->lg_prealloc_lock);
2686 /* init file for buddy data */
2687 ret = ext4_mb_init_backend(sb);
2689 goto out_free_locality_groups;
2693 out_free_locality_groups:
2694 free_percpu(sbi->s_locality_groups);
2695 sbi->s_locality_groups = NULL;
2697 kfree(sbi->s_mb_offsets);
2698 sbi->s_mb_offsets = NULL;
2699 kfree(sbi->s_mb_maxs);
2700 sbi->s_mb_maxs = NULL;
2704 /* need to called with the ext4 group lock held */
2705 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2707 struct ext4_prealloc_space *pa;
2708 struct list_head *cur, *tmp;
2711 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2712 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2713 list_del(&pa->pa_group_list);
2715 kmem_cache_free(ext4_pspace_cachep, pa);
2718 mb_debug(1, "mballoc: %u PAs left\n", count);
2722 int ext4_mb_release(struct super_block *sb)
2724 ext4_group_t ngroups = ext4_get_groups_count(sb);
2726 int num_meta_group_infos;
2727 struct ext4_group_info *grinfo, ***group_info;
2728 struct ext4_sb_info *sbi = EXT4_SB(sb);
2729 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2731 if (sbi->s_group_info) {
2732 for (i = 0; i < ngroups; i++) {
2733 grinfo = ext4_get_group_info(sb, i);
2735 kfree(grinfo->bb_bitmap);
2737 ext4_lock_group(sb, i);
2738 ext4_mb_cleanup_pa(grinfo);
2739 ext4_unlock_group(sb, i);
2740 kmem_cache_free(cachep, grinfo);
2742 num_meta_group_infos = (ngroups +
2743 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2744 EXT4_DESC_PER_BLOCK_BITS(sb);
2746 group_info = rcu_dereference(sbi->s_group_info);
2747 for (i = 0; i < num_meta_group_infos; i++)
2748 kfree(group_info[i]);
2752 kfree(sbi->s_mb_offsets);
2753 kfree(sbi->s_mb_maxs);
2754 iput(sbi->s_buddy_cache);
2755 if (sbi->s_mb_stats) {
2756 ext4_msg(sb, KERN_INFO,
2757 "mballoc: %u blocks %u reqs (%u success)",
2758 atomic_read(&sbi->s_bal_allocated),
2759 atomic_read(&sbi->s_bal_reqs),
2760 atomic_read(&sbi->s_bal_success));
2761 ext4_msg(sb, KERN_INFO,
2762 "mballoc: %u extents scanned, %u goal hits, "
2763 "%u 2^N hits, %u breaks, %u lost",
2764 atomic_read(&sbi->s_bal_ex_scanned),
2765 atomic_read(&sbi->s_bal_goals),
2766 atomic_read(&sbi->s_bal_2orders),
2767 atomic_read(&sbi->s_bal_breaks),
2768 atomic_read(&sbi->s_mb_lost_chunks));
2769 ext4_msg(sb, KERN_INFO,
2770 "mballoc: %lu generated and it took %Lu",
2771 sbi->s_mb_buddies_generated,
2772 sbi->s_mb_generation_time);
2773 ext4_msg(sb, KERN_INFO,
2774 "mballoc: %u preallocated, %u discarded",
2775 atomic_read(&sbi->s_mb_preallocated),
2776 atomic_read(&sbi->s_mb_discarded));
2779 free_percpu(sbi->s_locality_groups);
2784 static inline int ext4_issue_discard(struct super_block *sb,
2785 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2788 ext4_fsblk_t discard_block;
2790 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2791 ext4_group_first_block_no(sb, block_group));
2792 count = EXT4_C2B(EXT4_SB(sb), count);
2793 trace_ext4_discard_blocks(sb,
2794 (unsigned long long) discard_block, count);
2796 return __blkdev_issue_discard(sb->s_bdev,
2797 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2798 (sector_t)count << (sb->s_blocksize_bits - 9),
2801 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2804 static void ext4_free_data_in_buddy(struct super_block *sb,
2805 struct ext4_free_data *entry)
2807 struct ext4_buddy e4b;
2808 struct ext4_group_info *db;
2809 int err, count = 0, count2 = 0;
2811 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2812 entry->efd_count, entry->efd_group, entry);
2814 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2815 /* we expect to find existing buddy because it's pinned */
2818 spin_lock(&EXT4_SB(sb)->s_md_lock);
2819 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2820 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2823 /* there are blocks to put in buddy to make them really free */
2824 count += entry->efd_count;
2826 ext4_lock_group(sb, entry->efd_group);
2827 /* Take it out of per group rb tree */
2828 rb_erase(&entry->efd_node, &(db->bb_free_root));
2829 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2832 * Clear the trimmed flag for the group so that the next
2833 * ext4_trim_fs can trim it.
2834 * If the volume is mounted with -o discard, online discard
2835 * is supported and the free blocks will be trimmed online.
2837 if (!test_opt(sb, DISCARD))
2838 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2840 if (!db->bb_free_root.rb_node) {
2841 /* No more items in the per group rb tree
2842 * balance refcounts from ext4_mb_free_metadata()
2844 put_page(e4b.bd_buddy_page);
2845 put_page(e4b.bd_bitmap_page);
2847 ext4_unlock_group(sb, entry->efd_group);
2848 kmem_cache_free(ext4_free_data_cachep, entry);
2849 ext4_mb_unload_buddy(&e4b);
2851 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2855 * This function is called by the jbd2 layer once the commit has finished,
2856 * so we know we can free the blocks that were released with that commit.
2858 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2860 struct ext4_sb_info *sbi = EXT4_SB(sb);
2861 struct ext4_free_data *entry, *tmp;
2862 struct bio *discard_bio = NULL;
2863 struct list_head freed_data_list;
2864 struct list_head *cut_pos = NULL;
2867 INIT_LIST_HEAD(&freed_data_list);
2869 spin_lock(&sbi->s_md_lock);
2870 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2871 if (entry->efd_tid != commit_tid)
2873 cut_pos = &entry->efd_list;
2876 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2878 spin_unlock(&sbi->s_md_lock);
2880 if (test_opt(sb, DISCARD)) {
2881 list_for_each_entry(entry, &freed_data_list, efd_list) {
2882 err = ext4_issue_discard(sb, entry->efd_group,
2883 entry->efd_start_cluster,
2886 if (err && err != -EOPNOTSUPP) {
2887 ext4_msg(sb, KERN_WARNING, "discard request in"
2888 " group:%d block:%d count:%d failed"
2889 " with %d", entry->efd_group,
2890 entry->efd_start_cluster,
2891 entry->efd_count, err);
2892 } else if (err == -EOPNOTSUPP)
2897 submit_bio_wait(discard_bio);
2898 bio_put(discard_bio);
2902 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2903 ext4_free_data_in_buddy(sb, entry);
2906 int __init ext4_init_mballoc(void)
2908 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2909 SLAB_RECLAIM_ACCOUNT);
2910 if (ext4_pspace_cachep == NULL)
2913 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2914 SLAB_RECLAIM_ACCOUNT);
2915 if (ext4_ac_cachep == NULL) {
2916 kmem_cache_destroy(ext4_pspace_cachep);
2920 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2921 SLAB_RECLAIM_ACCOUNT);
2922 if (ext4_free_data_cachep == NULL) {
2923 kmem_cache_destroy(ext4_pspace_cachep);
2924 kmem_cache_destroy(ext4_ac_cachep);
2930 void ext4_exit_mballoc(void)
2933 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2934 * before destroying the slab cache.
2937 kmem_cache_destroy(ext4_pspace_cachep);
2938 kmem_cache_destroy(ext4_ac_cachep);
2939 kmem_cache_destroy(ext4_free_data_cachep);
2940 ext4_groupinfo_destroy_slabs();
2945 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2946 * Returns 0 if success or error code
2948 static noinline_for_stack int
2949 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2950 handle_t *handle, unsigned int reserv_clstrs)
2952 struct buffer_head *bitmap_bh = NULL;
2953 struct ext4_group_desc *gdp;
2954 struct buffer_head *gdp_bh;
2955 struct ext4_sb_info *sbi;
2956 struct super_block *sb;
2960 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2961 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2966 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2967 if (IS_ERR(bitmap_bh)) {
2968 err = PTR_ERR(bitmap_bh);
2973 BUFFER_TRACE(bitmap_bh, "getting write access");
2974 err = ext4_journal_get_write_access(handle, bitmap_bh);
2979 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2983 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2984 ext4_free_group_clusters(sb, gdp));
2986 BUFFER_TRACE(gdp_bh, "get_write_access");
2987 err = ext4_journal_get_write_access(handle, gdp_bh);
2991 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2993 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2994 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
2995 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2996 "fs metadata", block, block+len);
2997 /* File system mounted not to panic on error
2998 * Fix the bitmap and return EFSCORRUPTED
2999 * We leak some of the blocks here.
3001 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3002 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3003 ac->ac_b_ex.fe_len);
3004 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3005 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3007 err = -EFSCORRUPTED;
3011 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3012 #ifdef AGGRESSIVE_CHECK
3015 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3016 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3017 bitmap_bh->b_data));
3021 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3022 ac->ac_b_ex.fe_len);
3023 if (ext4_has_group_desc_csum(sb) &&
3024 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3025 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3026 ext4_free_group_clusters_set(sb, gdp,
3027 ext4_free_clusters_after_init(sb,
3028 ac->ac_b_ex.fe_group, gdp));
3030 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3031 ext4_free_group_clusters_set(sb, gdp, len);
3032 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3033 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3035 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3036 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3038 * Now reduce the dirty block count also. Should not go negative
3040 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3041 /* release all the reserved blocks if non delalloc */
3042 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3045 if (sbi->s_log_groups_per_flex) {
3046 ext4_group_t flex_group = ext4_flex_group(sbi,
3047 ac->ac_b_ex.fe_group);
3048 atomic64_sub(ac->ac_b_ex.fe_len,
3049 &sbi_array_rcu_deref(sbi, s_flex_groups,
3050 flex_group)->free_clusters);
3053 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3056 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3064 * here we normalize request for locality group
3065 * Group request are normalized to s_mb_group_prealloc, which goes to
3066 * s_strip if we set the same via mount option.
3067 * s_mb_group_prealloc can be configured via
3068 * /sys/fs/ext4/<partition>/mb_group_prealloc
3070 * XXX: should we try to preallocate more than the group has now?
3072 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3074 struct super_block *sb = ac->ac_sb;
3075 struct ext4_locality_group *lg = ac->ac_lg;
3078 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3079 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3080 current->pid, ac->ac_g_ex.fe_len);
3084 * Normalization means making request better in terms of
3085 * size and alignment
3087 static noinline_for_stack void
3088 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3089 struct ext4_allocation_request *ar)
3091 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3094 loff_t size, start_off;
3095 loff_t orig_size __maybe_unused;
3097 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3098 struct ext4_prealloc_space *pa;
3100 /* do normalize only data requests, metadata requests
3101 do not need preallocation */
3102 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3105 /* sometime caller may want exact blocks */
3106 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3109 /* caller may indicate that preallocation isn't
3110 * required (it's a tail, for example) */
3111 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3114 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3115 ext4_mb_normalize_group_request(ac);
3119 bsbits = ac->ac_sb->s_blocksize_bits;
3121 /* first, let's learn actual file size
3122 * given current request is allocated */
3123 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3124 size = size << bsbits;
3125 if (size < i_size_read(ac->ac_inode))
3126 size = i_size_read(ac->ac_inode);
3129 /* max size of free chunks */
3132 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3133 (req <= (size) || max <= (chunk_size))
3135 /* first, try to predict filesize */
3136 /* XXX: should this table be tunable? */
3138 if (size <= 16 * 1024) {
3140 } else if (size <= 32 * 1024) {
3142 } else if (size <= 64 * 1024) {
3144 } else if (size <= 128 * 1024) {
3146 } else if (size <= 256 * 1024) {
3148 } else if (size <= 512 * 1024) {
3150 } else if (size <= 1024 * 1024) {
3152 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3153 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3154 (21 - bsbits)) << 21;
3155 size = 2 * 1024 * 1024;
3156 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3157 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3158 (22 - bsbits)) << 22;
3159 size = 4 * 1024 * 1024;
3160 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3161 (8<<20)>>bsbits, max, 8 * 1024)) {
3162 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3163 (23 - bsbits)) << 23;
3164 size = 8 * 1024 * 1024;
3166 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3167 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3168 ac->ac_o_ex.fe_len) << bsbits;
3170 size = size >> bsbits;
3171 start = start_off >> bsbits;
3173 /* don't cover already allocated blocks in selected range */
3174 if (ar->pleft && start <= ar->lleft) {
3175 size -= ar->lleft + 1 - start;
3176 start = ar->lleft + 1;
3178 if (ar->pright && start + size - 1 >= ar->lright)
3179 size -= start + size - ar->lright;
3182 * Trim allocation request for filesystems with artificially small
3185 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3186 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3190 /* check we don't cross already preallocated blocks */
3192 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3197 spin_lock(&pa->pa_lock);
3198 if (pa->pa_deleted) {
3199 spin_unlock(&pa->pa_lock);
3203 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3206 /* PA must not overlap original request */
3207 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3208 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3210 /* skip PAs this normalized request doesn't overlap with */
3211 if (pa->pa_lstart >= end || pa_end <= start) {
3212 spin_unlock(&pa->pa_lock);
3215 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3217 /* adjust start or end to be adjacent to this pa */
3218 if (pa_end <= ac->ac_o_ex.fe_logical) {
3219 BUG_ON(pa_end < start);
3221 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3222 BUG_ON(pa->pa_lstart > end);
3223 end = pa->pa_lstart;
3225 spin_unlock(&pa->pa_lock);
3230 /* XXX: extra loop to check we really don't overlap preallocations */
3232 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3235 spin_lock(&pa->pa_lock);
3236 if (pa->pa_deleted == 0) {
3237 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3239 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3241 spin_unlock(&pa->pa_lock);
3245 if (start + size <= ac->ac_o_ex.fe_logical &&
3246 start > ac->ac_o_ex.fe_logical) {
3247 ext4_msg(ac->ac_sb, KERN_ERR,
3248 "start %lu, size %lu, fe_logical %lu",
3249 (unsigned long) start, (unsigned long) size,
3250 (unsigned long) ac->ac_o_ex.fe_logical);
3253 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3255 /* now prepare goal request */
3257 /* XXX: is it better to align blocks WRT to logical
3258 * placement or satisfy big request as is */
3259 ac->ac_g_ex.fe_logical = start;
3260 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3262 /* define goal start in order to merge */
3263 if (ar->pright && (ar->lright == (start + size))) {
3264 /* merge to the right */
3265 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3266 &ac->ac_f_ex.fe_group,
3267 &ac->ac_f_ex.fe_start);
3268 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3270 if (ar->pleft && (ar->lleft + 1 == start)) {
3271 /* merge to the left */
3272 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3273 &ac->ac_f_ex.fe_group,
3274 &ac->ac_f_ex.fe_start);
3275 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3278 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3279 (unsigned) orig_size, (unsigned) start);
3282 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3284 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3286 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3287 atomic_inc(&sbi->s_bal_reqs);
3288 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3289 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3290 atomic_inc(&sbi->s_bal_success);
3291 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3292 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3293 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3294 atomic_inc(&sbi->s_bal_goals);
3295 if (ac->ac_found > sbi->s_mb_max_to_scan)
3296 atomic_inc(&sbi->s_bal_breaks);
3299 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3300 trace_ext4_mballoc_alloc(ac);
3302 trace_ext4_mballoc_prealloc(ac);
3306 * Called on failure; free up any blocks from the inode PA for this
3307 * context. We don't need this for MB_GROUP_PA because we only change
3308 * pa_free in ext4_mb_release_context(), but on failure, we've already
3309 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3311 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3313 struct ext4_prealloc_space *pa = ac->ac_pa;
3314 struct ext4_buddy e4b;
3318 if (ac->ac_f_ex.fe_len == 0)
3320 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3323 * This should never happen since we pin the
3324 * pages in the ext4_allocation_context so
3325 * ext4_mb_load_buddy() should never fail.
3327 WARN(1, "mb_load_buddy failed (%d)", err);
3330 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3331 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3332 ac->ac_f_ex.fe_len);
3333 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3334 ext4_mb_unload_buddy(&e4b);
3337 if (pa->pa_type == MB_INODE_PA)
3338 pa->pa_free += ac->ac_b_ex.fe_len;
3342 * use blocks preallocated to inode
3344 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3345 struct ext4_prealloc_space *pa)
3347 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3352 /* found preallocated blocks, use them */
3353 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3354 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3355 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3356 len = EXT4_NUM_B2C(sbi, end - start);
3357 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3358 &ac->ac_b_ex.fe_start);
3359 ac->ac_b_ex.fe_len = len;
3360 ac->ac_status = AC_STATUS_FOUND;
3363 BUG_ON(start < pa->pa_pstart);
3364 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3365 BUG_ON(pa->pa_free < len);
3368 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3372 * use blocks preallocated to locality group
3374 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3375 struct ext4_prealloc_space *pa)
3377 unsigned int len = ac->ac_o_ex.fe_len;
3379 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3380 &ac->ac_b_ex.fe_group,
3381 &ac->ac_b_ex.fe_start);
3382 ac->ac_b_ex.fe_len = len;
3383 ac->ac_status = AC_STATUS_FOUND;
3386 /* we don't correct pa_pstart or pa_plen here to avoid
3387 * possible race when the group is being loaded concurrently
3388 * instead we correct pa later, after blocks are marked
3389 * in on-disk bitmap -- see ext4_mb_release_context()
3390 * Other CPUs are prevented from allocating from this pa by lg_mutex
3392 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3396 * Return the prealloc space that have minimal distance
3397 * from the goal block. @cpa is the prealloc
3398 * space that is having currently known minimal distance
3399 * from the goal block.
3401 static struct ext4_prealloc_space *
3402 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3403 struct ext4_prealloc_space *pa,
3404 struct ext4_prealloc_space *cpa)
3406 ext4_fsblk_t cur_distance, new_distance;
3409 atomic_inc(&pa->pa_count);
3412 cur_distance = abs(goal_block - cpa->pa_pstart);
3413 new_distance = abs(goal_block - pa->pa_pstart);
3415 if (cur_distance <= new_distance)
3418 /* drop the previous reference */
3419 atomic_dec(&cpa->pa_count);
3420 atomic_inc(&pa->pa_count);
3425 * search goal blocks in preallocated space
3427 static noinline_for_stack int
3428 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3430 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3432 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3433 struct ext4_locality_group *lg;
3434 struct ext4_prealloc_space *pa, *cpa = NULL;
3435 ext4_fsblk_t goal_block;
3437 /* only data can be preallocated */
3438 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3441 /* first, try per-file preallocation */
3443 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3445 /* all fields in this condition don't change,
3446 * so we can skip locking for them */
3447 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3448 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3449 EXT4_C2B(sbi, pa->pa_len)))
3452 /* non-extent files can't have physical blocks past 2^32 */
3453 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3454 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3455 EXT4_MAX_BLOCK_FILE_PHYS))
3458 /* found preallocated blocks, use them */
3459 spin_lock(&pa->pa_lock);
3460 if (pa->pa_deleted == 0 && pa->pa_free) {
3461 atomic_inc(&pa->pa_count);
3462 ext4_mb_use_inode_pa(ac, pa);
3463 spin_unlock(&pa->pa_lock);
3464 ac->ac_criteria = 10;
3468 spin_unlock(&pa->pa_lock);
3472 /* can we use group allocation? */
3473 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3476 /* inode may have no locality group for some reason */
3480 order = fls(ac->ac_o_ex.fe_len) - 1;
3481 if (order > PREALLOC_TB_SIZE - 1)
3482 /* The max size of hash table is PREALLOC_TB_SIZE */
3483 order = PREALLOC_TB_SIZE - 1;
3485 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3487 * search for the prealloc space that is having
3488 * minimal distance from the goal block.
3490 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3492 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3494 spin_lock(&pa->pa_lock);
3495 if (pa->pa_deleted == 0 &&
3496 pa->pa_free >= ac->ac_o_ex.fe_len) {
3498 cpa = ext4_mb_check_group_pa(goal_block,
3501 spin_unlock(&pa->pa_lock);
3506 ext4_mb_use_group_pa(ac, cpa);
3507 ac->ac_criteria = 20;
3514 * the function goes through all block freed in the group
3515 * but not yet committed and marks them used in in-core bitmap.
3516 * buddy must be generated from this bitmap
3517 * Need to be called with the ext4 group lock held
3519 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3523 struct ext4_group_info *grp;
3524 struct ext4_free_data *entry;
3526 grp = ext4_get_group_info(sb, group);
3527 n = rb_first(&(grp->bb_free_root));
3530 entry = rb_entry(n, struct ext4_free_data, efd_node);
3531 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3538 * the function goes through all preallocation in this group and marks them
3539 * used in in-core bitmap. buddy must be generated from this bitmap
3540 * Need to be called with ext4 group lock held
3542 static noinline_for_stack
3543 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3546 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3547 struct ext4_prealloc_space *pa;
3548 struct list_head *cur;
3549 ext4_group_t groupnr;
3550 ext4_grpblk_t start;
3551 int preallocated = 0;
3554 /* all form of preallocation discards first load group,
3555 * so the only competing code is preallocation use.
3556 * we don't need any locking here
3557 * notice we do NOT ignore preallocations with pa_deleted
3558 * otherwise we could leave used blocks available for
3559 * allocation in buddy when concurrent ext4_mb_put_pa()
3560 * is dropping preallocation
3562 list_for_each(cur, &grp->bb_prealloc_list) {
3563 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3564 spin_lock(&pa->pa_lock);
3565 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3568 spin_unlock(&pa->pa_lock);
3569 if (unlikely(len == 0))
3571 BUG_ON(groupnr != group);
3572 ext4_set_bits(bitmap, start, len);
3573 preallocated += len;
3575 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3578 static void ext4_mb_pa_callback(struct rcu_head *head)
3580 struct ext4_prealloc_space *pa;
3581 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3583 BUG_ON(atomic_read(&pa->pa_count));
3584 BUG_ON(pa->pa_deleted == 0);
3585 kmem_cache_free(ext4_pspace_cachep, pa);
3589 * drops a reference to preallocated space descriptor
3590 * if this was the last reference and the space is consumed
3592 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3593 struct super_block *sb, struct ext4_prealloc_space *pa)
3596 ext4_fsblk_t grp_blk;
3598 /* in this short window concurrent discard can set pa_deleted */
3599 spin_lock(&pa->pa_lock);
3600 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3601 spin_unlock(&pa->pa_lock);
3605 if (pa->pa_deleted == 1) {
3606 spin_unlock(&pa->pa_lock);
3611 spin_unlock(&pa->pa_lock);
3613 grp_blk = pa->pa_pstart;
3615 * If doing group-based preallocation, pa_pstart may be in the
3616 * next group when pa is used up
3618 if (pa->pa_type == MB_GROUP_PA)
3621 grp = ext4_get_group_number(sb, grp_blk);
3626 * P1 (buddy init) P2 (regular allocation)
3627 * find block B in PA
3628 * copy on-disk bitmap to buddy
3629 * mark B in on-disk bitmap
3630 * drop PA from group
3631 * mark all PAs in buddy
3633 * thus, P1 initializes buddy with B available. to prevent this
3634 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3637 ext4_lock_group(sb, grp);
3638 list_del(&pa->pa_group_list);
3639 ext4_unlock_group(sb, grp);
3641 spin_lock(pa->pa_obj_lock);
3642 list_del_rcu(&pa->pa_inode_list);
3643 spin_unlock(pa->pa_obj_lock);
3645 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3649 * creates new preallocated space for given inode
3651 static noinline_for_stack int
3652 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3654 struct super_block *sb = ac->ac_sb;
3655 struct ext4_sb_info *sbi = EXT4_SB(sb);
3656 struct ext4_prealloc_space *pa;
3657 struct ext4_group_info *grp;
3658 struct ext4_inode_info *ei;
3660 /* preallocate only when found space is larger then requested */
3661 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3662 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3663 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3665 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3669 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3675 /* we can't allocate as much as normalizer wants.
3676 * so, found space must get proper lstart
3677 * to cover original request */
3678 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3679 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3681 /* we're limited by original request in that
3682 * logical block must be covered any way
3683 * winl is window we can move our chunk within */
3684 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3686 /* also, we should cover whole original request */
3687 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3689 /* the smallest one defines real window */
3690 win = min(winl, wins);
3692 offs = ac->ac_o_ex.fe_logical %
3693 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3694 if (offs && offs < win)
3697 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3698 EXT4_NUM_B2C(sbi, win);
3699 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3700 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3703 /* preallocation can change ac_b_ex, thus we store actually
3704 * allocated blocks for history */
3705 ac->ac_f_ex = ac->ac_b_ex;
3707 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3708 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3709 pa->pa_len = ac->ac_b_ex.fe_len;
3710 pa->pa_free = pa->pa_len;
3711 atomic_set(&pa->pa_count, 1);
3712 spin_lock_init(&pa->pa_lock);
3713 INIT_LIST_HEAD(&pa->pa_inode_list);
3714 INIT_LIST_HEAD(&pa->pa_group_list);
3716 pa->pa_type = MB_INODE_PA;
3718 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3719 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3720 trace_ext4_mb_new_inode_pa(ac, pa);
3722 ext4_mb_use_inode_pa(ac, pa);
3723 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3725 ei = EXT4_I(ac->ac_inode);
3726 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3728 pa->pa_obj_lock = &ei->i_prealloc_lock;
3729 pa->pa_inode = ac->ac_inode;
3731 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3732 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3733 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3735 spin_lock(pa->pa_obj_lock);
3736 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3737 spin_unlock(pa->pa_obj_lock);
3743 * creates new preallocated space for locality group inodes belongs to
3745 static noinline_for_stack int
3746 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3748 struct super_block *sb = ac->ac_sb;
3749 struct ext4_locality_group *lg;
3750 struct ext4_prealloc_space *pa;
3751 struct ext4_group_info *grp;
3753 /* preallocate only when found space is larger then requested */
3754 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3755 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3756 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3758 BUG_ON(ext4_pspace_cachep == NULL);
3759 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3763 /* preallocation can change ac_b_ex, thus we store actually
3764 * allocated blocks for history */
3765 ac->ac_f_ex = ac->ac_b_ex;
3767 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3768 pa->pa_lstart = pa->pa_pstart;
3769 pa->pa_len = ac->ac_b_ex.fe_len;
3770 pa->pa_free = pa->pa_len;
3771 atomic_set(&pa->pa_count, 1);
3772 spin_lock_init(&pa->pa_lock);
3773 INIT_LIST_HEAD(&pa->pa_inode_list);
3774 INIT_LIST_HEAD(&pa->pa_group_list);
3776 pa->pa_type = MB_GROUP_PA;
3778 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3779 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3780 trace_ext4_mb_new_group_pa(ac, pa);
3782 ext4_mb_use_group_pa(ac, pa);
3783 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3785 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3789 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3790 pa->pa_inode = NULL;
3792 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3793 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3794 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3797 * We will later add the new pa to the right bucket
3798 * after updating the pa_free in ext4_mb_release_context
3803 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3807 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3808 err = ext4_mb_new_group_pa(ac);
3810 err = ext4_mb_new_inode_pa(ac);
3815 * finds all unused blocks in on-disk bitmap, frees them in
3816 * in-core bitmap and buddy.
3817 * @pa must be unlinked from inode and group lists, so that
3818 * nobody else can find/use it.
3819 * the caller MUST hold group/inode locks.
3820 * TODO: optimize the case when there are no in-core structures yet
3822 static noinline_for_stack int
3823 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3824 struct ext4_prealloc_space *pa)
3826 struct super_block *sb = e4b->bd_sb;
3827 struct ext4_sb_info *sbi = EXT4_SB(sb);
3832 unsigned long long grp_blk_start;
3835 BUG_ON(pa->pa_deleted == 0);
3836 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3837 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3838 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3839 end = bit + pa->pa_len;
3842 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3845 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3846 mb_debug(1, " free preallocated %u/%u in group %u\n",
3847 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3848 (unsigned) next - bit, (unsigned) group);
3851 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3852 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3853 EXT4_C2B(sbi, bit)),
3855 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3858 if (free != pa->pa_free) {
3859 ext4_msg(e4b->bd_sb, KERN_CRIT,
3860 "pa %p: logic %lu, phys. %lu, len %lu",
3861 pa, (unsigned long) pa->pa_lstart,
3862 (unsigned long) pa->pa_pstart,
3863 (unsigned long) pa->pa_len);
3864 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3867 * pa is already deleted so we use the value obtained
3868 * from the bitmap and continue.
3871 atomic_add(free, &sbi->s_mb_discarded);
3876 static noinline_for_stack int
3877 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3878 struct ext4_prealloc_space *pa)
3880 struct super_block *sb = e4b->bd_sb;
3884 trace_ext4_mb_release_group_pa(sb, pa);
3885 BUG_ON(pa->pa_deleted == 0);
3886 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3887 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3888 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3889 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3890 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3896 * releases all preallocations in given group
3898 * first, we need to decide discard policy:
3899 * - when do we discard
3901 * - how many do we discard
3902 * 1) how many requested
3904 static noinline_for_stack int
3905 ext4_mb_discard_group_preallocations(struct super_block *sb,
3906 ext4_group_t group, int needed)
3908 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3909 struct buffer_head *bitmap_bh = NULL;
3910 struct ext4_prealloc_space *pa, *tmp;
3911 struct list_head list;
3912 struct ext4_buddy e4b;
3917 mb_debug(1, "discard preallocation for group %u\n", group);
3919 if (list_empty(&grp->bb_prealloc_list))
3922 bitmap_bh = ext4_read_block_bitmap(sb, group);
3923 if (IS_ERR(bitmap_bh)) {
3924 err = PTR_ERR(bitmap_bh);
3925 ext4_error(sb, "Error %d reading block bitmap for %u",
3930 err = ext4_mb_load_buddy(sb, group, &e4b);
3932 ext4_warning(sb, "Error %d loading buddy information for %u",
3939 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3941 INIT_LIST_HEAD(&list);
3943 ext4_lock_group(sb, group);
3944 list_for_each_entry_safe(pa, tmp,
3945 &grp->bb_prealloc_list, pa_group_list) {
3946 spin_lock(&pa->pa_lock);
3947 if (atomic_read(&pa->pa_count)) {
3948 spin_unlock(&pa->pa_lock);
3952 if (pa->pa_deleted) {
3953 spin_unlock(&pa->pa_lock);
3957 /* seems this one can be freed ... */
3960 /* we can trust pa_free ... */
3961 free += pa->pa_free;
3963 spin_unlock(&pa->pa_lock);
3965 list_del(&pa->pa_group_list);
3966 list_add(&pa->u.pa_tmp_list, &list);
3969 /* if we still need more blocks and some PAs were used, try again */
3970 if (free < needed && busy) {
3972 ext4_unlock_group(sb, group);
3977 /* found anything to free? */
3978 if (list_empty(&list)) {
3983 /* now free all selected PAs */
3984 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3986 /* remove from object (inode or locality group) */
3987 spin_lock(pa->pa_obj_lock);
3988 list_del_rcu(&pa->pa_inode_list);
3989 spin_unlock(pa->pa_obj_lock);
3991 if (pa->pa_type == MB_GROUP_PA)
3992 ext4_mb_release_group_pa(&e4b, pa);
3994 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3996 list_del(&pa->u.pa_tmp_list);
3997 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4001 ext4_unlock_group(sb, group);
4002 ext4_mb_unload_buddy(&e4b);
4008 * releases all non-used preallocated blocks for given inode
4010 * It's important to discard preallocations under i_data_sem
4011 * We don't want another block to be served from the prealloc
4012 * space when we are discarding the inode prealloc space.
4014 * FIXME!! Make sure it is valid at all the call sites
4016 void ext4_discard_preallocations(struct inode *inode)
4018 struct ext4_inode_info *ei = EXT4_I(inode);
4019 struct super_block *sb = inode->i_sb;
4020 struct buffer_head *bitmap_bh = NULL;
4021 struct ext4_prealloc_space *pa, *tmp;
4022 ext4_group_t group = 0;
4023 struct list_head list;
4024 struct ext4_buddy e4b;
4027 if (!S_ISREG(inode->i_mode)) {
4028 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4032 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4033 trace_ext4_discard_preallocations(inode);
4035 INIT_LIST_HEAD(&list);
4038 /* first, collect all pa's in the inode */
4039 spin_lock(&ei->i_prealloc_lock);
4040 while (!list_empty(&ei->i_prealloc_list)) {
4041 pa = list_entry(ei->i_prealloc_list.next,
4042 struct ext4_prealloc_space, pa_inode_list);
4043 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4044 spin_lock(&pa->pa_lock);
4045 if (atomic_read(&pa->pa_count)) {
4046 /* this shouldn't happen often - nobody should
4047 * use preallocation while we're discarding it */
4048 spin_unlock(&pa->pa_lock);
4049 spin_unlock(&ei->i_prealloc_lock);
4050 ext4_msg(sb, KERN_ERR,
4051 "uh-oh! used pa while discarding");
4053 schedule_timeout_uninterruptible(HZ);
4057 if (pa->pa_deleted == 0) {
4059 spin_unlock(&pa->pa_lock);
4060 list_del_rcu(&pa->pa_inode_list);
4061 list_add(&pa->u.pa_tmp_list, &list);
4065 /* someone is deleting pa right now */
4066 spin_unlock(&pa->pa_lock);
4067 spin_unlock(&ei->i_prealloc_lock);
4069 /* we have to wait here because pa_deleted
4070 * doesn't mean pa is already unlinked from
4071 * the list. as we might be called from
4072 * ->clear_inode() the inode will get freed
4073 * and concurrent thread which is unlinking
4074 * pa from inode's list may access already
4075 * freed memory, bad-bad-bad */
4077 /* XXX: if this happens too often, we can
4078 * add a flag to force wait only in case
4079 * of ->clear_inode(), but not in case of
4080 * regular truncate */
4081 schedule_timeout_uninterruptible(HZ);
4084 spin_unlock(&ei->i_prealloc_lock);
4086 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4087 BUG_ON(pa->pa_type != MB_INODE_PA);
4088 group = ext4_get_group_number(sb, pa->pa_pstart);
4090 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4091 GFP_NOFS|__GFP_NOFAIL);
4093 ext4_error(sb, "Error %d loading buddy information for %u",
4098 bitmap_bh = ext4_read_block_bitmap(sb, group);
4099 if (IS_ERR(bitmap_bh)) {
4100 err = PTR_ERR(bitmap_bh);
4101 ext4_error(sb, "Error %d reading block bitmap for %u",
4103 ext4_mb_unload_buddy(&e4b);
4107 ext4_lock_group(sb, group);
4108 list_del(&pa->pa_group_list);
4109 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4110 ext4_unlock_group(sb, group);
4112 ext4_mb_unload_buddy(&e4b);
4115 list_del(&pa->u.pa_tmp_list);
4116 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4120 #ifdef CONFIG_EXT4_DEBUG
4121 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4123 struct super_block *sb = ac->ac_sb;
4124 ext4_group_t ngroups, i;
4126 if (!ext4_mballoc_debug ||
4127 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4130 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4131 " Allocation context details:");
4132 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4133 ac->ac_status, ac->ac_flags);
4134 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4135 "goal %lu/%lu/%lu@%lu, "
4136 "best %lu/%lu/%lu@%lu cr %d",
4137 (unsigned long)ac->ac_o_ex.fe_group,
4138 (unsigned long)ac->ac_o_ex.fe_start,
4139 (unsigned long)ac->ac_o_ex.fe_len,
4140 (unsigned long)ac->ac_o_ex.fe_logical,
4141 (unsigned long)ac->ac_g_ex.fe_group,
4142 (unsigned long)ac->ac_g_ex.fe_start,
4143 (unsigned long)ac->ac_g_ex.fe_len,
4144 (unsigned long)ac->ac_g_ex.fe_logical,
4145 (unsigned long)ac->ac_b_ex.fe_group,
4146 (unsigned long)ac->ac_b_ex.fe_start,
4147 (unsigned long)ac->ac_b_ex.fe_len,
4148 (unsigned long)ac->ac_b_ex.fe_logical,
4149 (int)ac->ac_criteria);
4150 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4151 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4152 ngroups = ext4_get_groups_count(sb);
4153 for (i = 0; i < ngroups; i++) {
4154 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4155 struct ext4_prealloc_space *pa;
4156 ext4_grpblk_t start;
4157 struct list_head *cur;
4158 ext4_lock_group(sb, i);
4159 list_for_each(cur, &grp->bb_prealloc_list) {
4160 pa = list_entry(cur, struct ext4_prealloc_space,
4162 spin_lock(&pa->pa_lock);
4163 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4165 spin_unlock(&pa->pa_lock);
4166 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4169 ext4_unlock_group(sb, i);
4171 if (grp->bb_free == 0)
4173 printk(KERN_ERR "%u: %d/%d \n",
4174 i, grp->bb_free, grp->bb_fragments);
4176 printk(KERN_ERR "\n");
4179 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4186 * We use locality group preallocation for small size file. The size of the
4187 * file is determined by the current size or the resulting size after
4188 * allocation which ever is larger
4190 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4192 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4194 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4195 int bsbits = ac->ac_sb->s_blocksize_bits;
4198 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4201 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4204 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4205 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4208 if ((size == isize) &&
4209 !ext4_fs_is_busy(sbi) &&
4210 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4211 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4215 if (sbi->s_mb_group_prealloc <= 0) {
4216 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4220 /* don't use group allocation for large files */
4221 size = max(size, isize);
4222 if (size > sbi->s_mb_stream_request) {
4223 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4227 BUG_ON(ac->ac_lg != NULL);
4229 * locality group prealloc space are per cpu. The reason for having
4230 * per cpu locality group is to reduce the contention between block
4231 * request from multiple CPUs.
4233 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4235 /* we're going to use group allocation */
4236 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4238 /* serialize all allocations in the group */
4239 mutex_lock(&ac->ac_lg->lg_mutex);
4242 static noinline_for_stack int
4243 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4244 struct ext4_allocation_request *ar)
4246 struct super_block *sb = ar->inode->i_sb;
4247 struct ext4_sb_info *sbi = EXT4_SB(sb);
4248 struct ext4_super_block *es = sbi->s_es;
4252 ext4_grpblk_t block;
4254 /* we can't allocate > group size */
4257 /* just a dirty hack to filter too big requests */
4258 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4259 len = EXT4_CLUSTERS_PER_GROUP(sb);
4261 /* start searching from the goal */
4263 if (goal < le32_to_cpu(es->s_first_data_block) ||
4264 goal >= ext4_blocks_count(es))
4265 goal = le32_to_cpu(es->s_first_data_block);
4266 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4268 /* set up allocation goals */
4269 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4270 ac->ac_status = AC_STATUS_CONTINUE;
4272 ac->ac_inode = ar->inode;
4273 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4274 ac->ac_o_ex.fe_group = group;
4275 ac->ac_o_ex.fe_start = block;
4276 ac->ac_o_ex.fe_len = len;
4277 ac->ac_g_ex = ac->ac_o_ex;
4278 ac->ac_flags = ar->flags;
4280 /* we have to define context: we'll we work with a file or
4281 * locality group. this is a policy, actually */
4282 ext4_mb_group_or_file(ac);
4284 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4285 "left: %u/%u, right %u/%u to %swritable\n",
4286 (unsigned) ar->len, (unsigned) ar->logical,
4287 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4288 (unsigned) ar->lleft, (unsigned) ar->pleft,
4289 (unsigned) ar->lright, (unsigned) ar->pright,
4290 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4295 static noinline_for_stack void
4296 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4297 struct ext4_locality_group *lg,
4298 int order, int total_entries)
4300 ext4_group_t group = 0;
4301 struct ext4_buddy e4b;
4302 struct list_head discard_list;
4303 struct ext4_prealloc_space *pa, *tmp;
4305 mb_debug(1, "discard locality group preallocation\n");
4307 INIT_LIST_HEAD(&discard_list);
4309 spin_lock(&lg->lg_prealloc_lock);
4310 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4312 spin_lock(&pa->pa_lock);
4313 if (atomic_read(&pa->pa_count)) {
4315 * This is the pa that we just used
4316 * for block allocation. So don't
4319 spin_unlock(&pa->pa_lock);
4322 if (pa->pa_deleted) {
4323 spin_unlock(&pa->pa_lock);
4326 /* only lg prealloc space */
4327 BUG_ON(pa->pa_type != MB_GROUP_PA);
4329 /* seems this one can be freed ... */
4331 spin_unlock(&pa->pa_lock);
4333 list_del_rcu(&pa->pa_inode_list);
4334 list_add(&pa->u.pa_tmp_list, &discard_list);
4337 if (total_entries <= 5) {
4339 * we want to keep only 5 entries
4340 * allowing it to grow to 8. This
4341 * mak sure we don't call discard
4342 * soon for this list.
4347 spin_unlock(&lg->lg_prealloc_lock);
4349 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4352 group = ext4_get_group_number(sb, pa->pa_pstart);
4353 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4354 GFP_NOFS|__GFP_NOFAIL);
4356 ext4_error(sb, "Error %d loading buddy information for %u",
4360 ext4_lock_group(sb, group);
4361 list_del(&pa->pa_group_list);
4362 ext4_mb_release_group_pa(&e4b, pa);
4363 ext4_unlock_group(sb, group);
4365 ext4_mb_unload_buddy(&e4b);
4366 list_del(&pa->u.pa_tmp_list);
4367 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4372 * We have incremented pa_count. So it cannot be freed at this
4373 * point. Also we hold lg_mutex. So no parallel allocation is
4374 * possible from this lg. That means pa_free cannot be updated.
4376 * A parallel ext4_mb_discard_group_preallocations is possible.
4377 * which can cause the lg_prealloc_list to be updated.
4380 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4382 int order, added = 0, lg_prealloc_count = 1;
4383 struct super_block *sb = ac->ac_sb;
4384 struct ext4_locality_group *lg = ac->ac_lg;
4385 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4387 order = fls(pa->pa_free) - 1;
4388 if (order > PREALLOC_TB_SIZE - 1)
4389 /* The max size of hash table is PREALLOC_TB_SIZE */
4390 order = PREALLOC_TB_SIZE - 1;
4391 /* Add the prealloc space to lg */
4392 spin_lock(&lg->lg_prealloc_lock);
4393 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4395 spin_lock(&tmp_pa->pa_lock);
4396 if (tmp_pa->pa_deleted) {
4397 spin_unlock(&tmp_pa->pa_lock);
4400 if (!added && pa->pa_free < tmp_pa->pa_free) {
4401 /* Add to the tail of the previous entry */
4402 list_add_tail_rcu(&pa->pa_inode_list,
4403 &tmp_pa->pa_inode_list);
4406 * we want to count the total
4407 * number of entries in the list
4410 spin_unlock(&tmp_pa->pa_lock);
4411 lg_prealloc_count++;
4414 list_add_tail_rcu(&pa->pa_inode_list,
4415 &lg->lg_prealloc_list[order]);
4416 spin_unlock(&lg->lg_prealloc_lock);
4418 /* Now trim the list to be not more than 8 elements */
4419 if (lg_prealloc_count > 8) {
4420 ext4_mb_discard_lg_preallocations(sb, lg,
4421 order, lg_prealloc_count);
4428 * release all resource we used in allocation
4430 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4432 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4433 struct ext4_prealloc_space *pa = ac->ac_pa;
4435 if (pa->pa_type == MB_GROUP_PA) {
4436 /* see comment in ext4_mb_use_group_pa() */
4437 spin_lock(&pa->pa_lock);
4438 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4439 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4440 pa->pa_free -= ac->ac_b_ex.fe_len;
4441 pa->pa_len -= ac->ac_b_ex.fe_len;
4442 spin_unlock(&pa->pa_lock);
4447 * We want to add the pa to the right bucket.
4448 * Remove it from the list and while adding
4449 * make sure the list to which we are adding
4452 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4453 spin_lock(pa->pa_obj_lock);
4454 list_del_rcu(&pa->pa_inode_list);
4455 spin_unlock(pa->pa_obj_lock);
4456 ext4_mb_add_n_trim(ac);
4458 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4460 if (ac->ac_bitmap_page)
4461 put_page(ac->ac_bitmap_page);
4462 if (ac->ac_buddy_page)
4463 put_page(ac->ac_buddy_page);
4464 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4465 mutex_unlock(&ac->ac_lg->lg_mutex);
4466 ext4_mb_collect_stats(ac);
4470 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4472 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4476 trace_ext4_mb_discard_preallocations(sb, needed);
4477 for (i = 0; i < ngroups && needed > 0; i++) {
4478 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4487 * Main entry point into mballoc to allocate blocks
4488 * it tries to use preallocation first, then falls back
4489 * to usual allocation
4491 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4492 struct ext4_allocation_request *ar, int *errp)
4495 struct ext4_allocation_context *ac = NULL;
4496 struct ext4_sb_info *sbi;
4497 struct super_block *sb;
4498 ext4_fsblk_t block = 0;
4499 unsigned int inquota = 0;
4500 unsigned int reserv_clstrs = 0;
4503 sb = ar->inode->i_sb;
4506 trace_ext4_request_blocks(ar);
4508 /* Allow to use superuser reservation for quota file */
4509 if (ext4_is_quota_file(ar->inode))
4510 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4512 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4513 /* Without delayed allocation we need to verify
4514 * there is enough free blocks to do block allocation
4515 * and verify allocation doesn't exceed the quota limits.
4518 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4520 /* let others to free the space */
4522 ar->len = ar->len >> 1;
4528 reserv_clstrs = ar->len;
4529 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4530 dquot_alloc_block_nofail(ar->inode,
4531 EXT4_C2B(sbi, ar->len));
4534 dquot_alloc_block(ar->inode,
4535 EXT4_C2B(sbi, ar->len))) {
4537 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4548 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4555 *errp = ext4_mb_initialize_context(ac, ar);
4561 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4562 if (!ext4_mb_use_preallocated(ac)) {
4563 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4564 ext4_mb_normalize_request(ac, ar);
4566 /* allocate space in core */
4567 *errp = ext4_mb_regular_allocator(ac);
4569 goto discard_and_exit;
4571 /* as we've just preallocated more space than
4572 * user requested originally, we store allocated
4573 * space in a special descriptor */
4574 if (ac->ac_status == AC_STATUS_FOUND &&
4575 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4576 *errp = ext4_mb_new_preallocation(ac);
4579 ext4_discard_allocated_blocks(ac);
4583 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4584 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4586 ext4_discard_allocated_blocks(ac);
4589 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4590 ar->len = ac->ac_b_ex.fe_len;
4593 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4601 ac->ac_b_ex.fe_len = 0;
4603 ext4_mb_show_ac(ac);
4605 ext4_mb_release_context(ac);
4608 kmem_cache_free(ext4_ac_cachep, ac);
4609 if (inquota && ar->len < inquota)
4610 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4612 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4613 /* release all the reserved blocks if non delalloc */
4614 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4618 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4624 * We can merge two free data extents only if the physical blocks
4625 * are contiguous, AND the extents were freed by the same transaction,
4626 * AND the blocks are associated with the same group.
4628 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4629 struct ext4_free_data *entry,
4630 struct ext4_free_data *new_entry,
4631 struct rb_root *entry_rb_root)
4633 if ((entry->efd_tid != new_entry->efd_tid) ||
4634 (entry->efd_group != new_entry->efd_group))
4636 if (entry->efd_start_cluster + entry->efd_count ==
4637 new_entry->efd_start_cluster) {
4638 new_entry->efd_start_cluster = entry->efd_start_cluster;
4639 new_entry->efd_count += entry->efd_count;
4640 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4641 entry->efd_start_cluster) {
4642 new_entry->efd_count += entry->efd_count;
4645 spin_lock(&sbi->s_md_lock);
4646 list_del(&entry->efd_list);
4647 spin_unlock(&sbi->s_md_lock);
4648 rb_erase(&entry->efd_node, entry_rb_root);
4649 kmem_cache_free(ext4_free_data_cachep, entry);
4652 static noinline_for_stack int
4653 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4654 struct ext4_free_data *new_entry)
4656 ext4_group_t group = e4b->bd_group;
4657 ext4_grpblk_t cluster;
4658 ext4_grpblk_t clusters = new_entry->efd_count;
4659 struct ext4_free_data *entry;
4660 struct ext4_group_info *db = e4b->bd_info;
4661 struct super_block *sb = e4b->bd_sb;
4662 struct ext4_sb_info *sbi = EXT4_SB(sb);
4663 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4664 struct rb_node *parent = NULL, *new_node;
4666 BUG_ON(!ext4_handle_valid(handle));
4667 BUG_ON(e4b->bd_bitmap_page == NULL);
4668 BUG_ON(e4b->bd_buddy_page == NULL);
4670 new_node = &new_entry->efd_node;
4671 cluster = new_entry->efd_start_cluster;
4674 /* first free block exent. We need to
4675 protect buddy cache from being freed,
4676 * otherwise we'll refresh it from
4677 * on-disk bitmap and lose not-yet-available
4679 get_page(e4b->bd_buddy_page);
4680 get_page(e4b->bd_bitmap_page);
4684 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4685 if (cluster < entry->efd_start_cluster)
4687 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4688 n = &(*n)->rb_right;
4690 ext4_grp_locked_error(sb, group, 0,
4691 ext4_group_first_block_no(sb, group) +
4692 EXT4_C2B(sbi, cluster),
4693 "Block already on to-be-freed list");
4694 kmem_cache_free(ext4_free_data_cachep, new_entry);
4699 rb_link_node(new_node, parent, n);
4700 rb_insert_color(new_node, &db->bb_free_root);
4702 /* Now try to see the extent can be merged to left and right */
4703 node = rb_prev(new_node);
4705 entry = rb_entry(node, struct ext4_free_data, efd_node);
4706 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4707 &(db->bb_free_root));
4710 node = rb_next(new_node);
4712 entry = rb_entry(node, struct ext4_free_data, efd_node);
4713 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4714 &(db->bb_free_root));
4717 spin_lock(&sbi->s_md_lock);
4718 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4719 sbi->s_mb_free_pending += clusters;
4720 spin_unlock(&sbi->s_md_lock);
4725 * ext4_free_blocks() -- Free given blocks and update quota
4726 * @handle: handle for this transaction
4728 * @block: start physical block to free
4729 * @count: number of blocks to count
4730 * @flags: flags used by ext4_free_blocks
4732 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4733 struct buffer_head *bh, ext4_fsblk_t block,
4734 unsigned long count, int flags)
4736 struct buffer_head *bitmap_bh = NULL;
4737 struct super_block *sb = inode->i_sb;
4738 struct ext4_group_desc *gdp;
4739 unsigned int overflow;
4741 struct buffer_head *gd_bh;
4742 ext4_group_t block_group;
4743 struct ext4_sb_info *sbi;
4744 struct ext4_buddy e4b;
4745 unsigned int count_clusters;
4752 BUG_ON(block != bh->b_blocknr);
4754 block = bh->b_blocknr;
4758 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4759 !ext4_inode_block_valid(inode, block, count)) {
4760 ext4_error(sb, "Freeing blocks not in datazone - "
4761 "block = %llu, count = %lu", block, count);
4765 ext4_debug("freeing block %llu\n", block);
4766 trace_ext4_free_blocks(inode, block, count, flags);
4768 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4771 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4776 * If the extent to be freed does not begin on a cluster
4777 * boundary, we need to deal with partial clusters at the
4778 * beginning and end of the extent. Normally we will free
4779 * blocks at the beginning or the end unless we are explicitly
4780 * requested to avoid doing so.
4782 overflow = EXT4_PBLK_COFF(sbi, block);
4784 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4785 overflow = sbi->s_cluster_ratio - overflow;
4787 if (count > overflow)
4796 overflow = EXT4_LBLK_COFF(sbi, count);
4798 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4799 if (count > overflow)
4804 count += sbi->s_cluster_ratio - overflow;
4807 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4809 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4811 for (i = 0; i < count; i++) {
4814 bh = sb_find_get_block(inode->i_sb, block + i);
4815 ext4_forget(handle, is_metadata, inode, bh, block + i);
4821 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4823 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4824 ext4_get_group_info(sb, block_group))))
4828 * Check to see if we are freeing blocks across a group
4831 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4832 overflow = EXT4_C2B(sbi, bit) + count -
4833 EXT4_BLOCKS_PER_GROUP(sb);
4836 count_clusters = EXT4_NUM_B2C(sbi, count);
4837 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4838 if (IS_ERR(bitmap_bh)) {
4839 err = PTR_ERR(bitmap_bh);
4843 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4849 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4850 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4851 in_range(block, ext4_inode_table(sb, gdp),
4852 sbi->s_itb_per_group) ||
4853 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4854 sbi->s_itb_per_group)) {
4856 ext4_error(sb, "Freeing blocks in system zone - "
4857 "Block = %llu, count = %lu", block, count);
4858 /* err = 0. ext4_std_error should be a no op */
4862 BUFFER_TRACE(bitmap_bh, "getting write access");
4863 err = ext4_journal_get_write_access(handle, bitmap_bh);
4868 * We are about to modify some metadata. Call the journal APIs
4869 * to unshare ->b_data if a currently-committing transaction is
4872 BUFFER_TRACE(gd_bh, "get_write_access");
4873 err = ext4_journal_get_write_access(handle, gd_bh);
4876 #ifdef AGGRESSIVE_CHECK
4879 for (i = 0; i < count_clusters; i++)
4880 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4883 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4885 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4886 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4887 GFP_NOFS|__GFP_NOFAIL);
4892 * We need to make sure we don't reuse the freed block until after the
4893 * transaction is committed. We make an exception if the inode is to be
4894 * written in writeback mode since writeback mode has weak data
4895 * consistency guarantees.
4897 if (ext4_handle_valid(handle) &&
4898 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4899 !ext4_should_writeback_data(inode))) {
4900 struct ext4_free_data *new_entry;
4902 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4905 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4906 GFP_NOFS|__GFP_NOFAIL);
4907 new_entry->efd_start_cluster = bit;
4908 new_entry->efd_group = block_group;
4909 new_entry->efd_count = count_clusters;
4910 new_entry->efd_tid = handle->h_transaction->t_tid;
4912 ext4_lock_group(sb, block_group);
4913 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4914 ext4_mb_free_metadata(handle, &e4b, new_entry);
4916 /* need to update group_info->bb_free and bitmap
4917 * with group lock held. generate_buddy look at
4918 * them with group lock_held
4920 if (test_opt(sb, DISCARD)) {
4921 err = ext4_issue_discard(sb, block_group, bit, count,
4923 if (err && err != -EOPNOTSUPP)
4924 ext4_msg(sb, KERN_WARNING, "discard request in"
4925 " group:%d block:%d count:%lu failed"
4926 " with %d", block_group, bit, count,
4929 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4931 ext4_lock_group(sb, block_group);
4932 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4933 mb_free_blocks(inode, &e4b, bit, count_clusters);
4936 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4937 ext4_free_group_clusters_set(sb, gdp, ret);
4938 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4939 ext4_group_desc_csum_set(sb, block_group, gdp);
4940 ext4_unlock_group(sb, block_group);
4942 if (sbi->s_log_groups_per_flex) {
4943 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4944 atomic64_add(count_clusters,
4945 &sbi_array_rcu_deref(sbi, s_flex_groups,
4946 flex_group)->free_clusters);
4949 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4950 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4951 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4953 ext4_mb_unload_buddy(&e4b);
4955 /* We dirtied the bitmap block */
4956 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4957 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4959 /* And the group descriptor block */
4960 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4961 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4965 if (overflow && !err) {
4973 ext4_std_error(sb, err);
4978 * ext4_group_add_blocks() -- Add given blocks to an existing group
4979 * @handle: handle to this transaction
4981 * @block: start physical block to add to the block group
4982 * @count: number of blocks to free
4984 * This marks the blocks as free in the bitmap and buddy.
4986 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4987 ext4_fsblk_t block, unsigned long count)
4989 struct buffer_head *bitmap_bh = NULL;
4990 struct buffer_head *gd_bh;
4991 ext4_group_t block_group;
4994 struct ext4_group_desc *desc;
4995 struct ext4_sb_info *sbi = EXT4_SB(sb);
4996 struct ext4_buddy e4b;
4997 int err = 0, ret, free_clusters_count;
4998 ext4_grpblk_t clusters_freed;
4999 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5000 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5001 unsigned long cluster_count = last_cluster - first_cluster + 1;
5003 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5008 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5010 * Check to see if we are freeing blocks across a group
5013 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5014 ext4_warning(sb, "too many blocks added to group %u",
5020 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5021 if (IS_ERR(bitmap_bh)) {
5022 err = PTR_ERR(bitmap_bh);
5027 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5033 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5034 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5035 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5036 in_range(block + count - 1, ext4_inode_table(sb, desc),
5037 sbi->s_itb_per_group)) {
5038 ext4_error(sb, "Adding blocks in system zones - "
5039 "Block = %llu, count = %lu",
5045 BUFFER_TRACE(bitmap_bh, "getting write access");
5046 err = ext4_journal_get_write_access(handle, bitmap_bh);
5051 * We are about to modify some metadata. Call the journal APIs
5052 * to unshare ->b_data if a currently-committing transaction is
5055 BUFFER_TRACE(gd_bh, "get_write_access");
5056 err = ext4_journal_get_write_access(handle, gd_bh);
5060 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5061 BUFFER_TRACE(bitmap_bh, "clear bit");
5062 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5063 ext4_error(sb, "bit already cleared for block %llu",
5064 (ext4_fsblk_t)(block + i));
5065 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5071 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5076 * need to update group_info->bb_free and bitmap
5077 * with group lock held. generate_buddy look at
5078 * them with group lock_held
5080 ext4_lock_group(sb, block_group);
5081 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5082 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5083 free_clusters_count = clusters_freed +
5084 ext4_free_group_clusters(sb, desc);
5085 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5086 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5087 ext4_group_desc_csum_set(sb, block_group, desc);
5088 ext4_unlock_group(sb, block_group);
5089 percpu_counter_add(&sbi->s_freeclusters_counter,
5092 if (sbi->s_log_groups_per_flex) {
5093 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5094 atomic64_add(clusters_freed,
5095 &sbi_array_rcu_deref(sbi, s_flex_groups,
5096 flex_group)->free_clusters);
5099 ext4_mb_unload_buddy(&e4b);
5101 /* We dirtied the bitmap block */
5102 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5103 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5105 /* And the group descriptor block */
5106 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5107 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5113 ext4_std_error(sb, err);
5118 * ext4_trim_extent -- function to TRIM one single free extent in the group
5119 * @sb: super block for the file system
5120 * @start: starting block of the free extent in the alloc. group
5121 * @count: number of blocks to TRIM
5122 * @group: alloc. group we are working with
5123 * @e4b: ext4 buddy for the group
5125 * Trim "count" blocks starting at "start" in the "group". To assure that no
5126 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5127 * be called with under the group lock.
5129 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5130 ext4_group_t group, struct ext4_buddy *e4b)
5134 struct ext4_free_extent ex;
5137 trace_ext4_trim_extent(sb, group, start, count);
5139 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5141 ex.fe_start = start;
5142 ex.fe_group = group;
5146 * Mark blocks used, so no one can reuse them while
5149 mb_mark_used(e4b, &ex);
5150 ext4_unlock_group(sb, group);
5151 ret = ext4_issue_discard(sb, group, start, count, NULL);
5152 ext4_lock_group(sb, group);
5153 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5158 * ext4_trim_all_free -- function to trim all free space in alloc. group
5159 * @sb: super block for file system
5160 * @group: group to be trimmed
5161 * @start: first group block to examine
5162 * @max: last group block to examine
5163 * @minblocks: minimum extent block count
5165 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5166 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5170 * ext4_trim_all_free walks through group's block bitmap searching for free
5171 * extents. When the free extent is found, mark it as used in group buddy
5172 * bitmap. Then issue a TRIM command on this extent and free the extent in
5173 * the group buddy bitmap. This is done until whole group is scanned.
5175 static ext4_grpblk_t
5176 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5177 ext4_grpblk_t start, ext4_grpblk_t max,
5178 ext4_grpblk_t minblocks)
5181 ext4_grpblk_t next, count = 0, free_count = 0;
5182 struct ext4_buddy e4b;
5185 trace_ext4_trim_all_free(sb, group, start, max);
5187 ret = ext4_mb_load_buddy(sb, group, &e4b);
5189 ext4_warning(sb, "Error %d loading buddy information for %u",
5193 bitmap = e4b.bd_bitmap;
5195 ext4_lock_group(sb, group);
5196 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5197 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5200 start = (e4b.bd_info->bb_first_free > start) ?
5201 e4b.bd_info->bb_first_free : start;
5203 while (start <= max) {
5204 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5207 next = mb_find_next_bit(bitmap, max + 1, start);
5209 if ((next - start) >= minblocks) {
5210 ret = ext4_trim_extent(sb, start,
5211 next - start, group, &e4b);
5212 if (ret && ret != -EOPNOTSUPP)
5215 count += next - start;
5217 free_count += next - start;
5220 if (fatal_signal_pending(current)) {
5221 count = -ERESTARTSYS;
5225 if (need_resched()) {
5226 ext4_unlock_group(sb, group);
5228 ext4_lock_group(sb, group);
5231 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5237 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5240 ext4_unlock_group(sb, group);
5241 ext4_mb_unload_buddy(&e4b);
5243 ext4_debug("trimmed %d blocks in the group %d\n",
5250 * ext4_trim_fs() -- trim ioctl handle function
5251 * @sb: superblock for filesystem
5252 * @range: fstrim_range structure
5254 * start: First Byte to trim
5255 * len: number of Bytes to trim from start
5256 * minlen: minimum extent length in Bytes
5257 * ext4_trim_fs goes through all allocation groups containing Bytes from
5258 * start to start+len. For each such a group ext4_trim_all_free function
5259 * is invoked to trim all free space.
5261 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5263 struct ext4_group_info *grp;
5264 ext4_group_t group, first_group, last_group;
5265 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5266 uint64_t start, end, minlen, trimmed = 0;
5267 ext4_fsblk_t first_data_blk =
5268 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5269 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5272 start = range->start >> sb->s_blocksize_bits;
5273 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5274 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5275 range->minlen >> sb->s_blocksize_bits);
5277 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5278 start >= max_blks ||
5279 range->len < sb->s_blocksize)
5281 if (end >= max_blks)
5283 if (end <= first_data_blk)
5285 if (start < first_data_blk)
5286 start = first_data_blk;
5288 /* Determine first and last group to examine based on start and end */
5289 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5290 &first_group, &first_cluster);
5291 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5292 &last_group, &last_cluster);
5294 /* end now represents the last cluster to discard in this group */
5295 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5297 for (group = first_group; group <= last_group; group++) {
5298 grp = ext4_get_group_info(sb, group);
5299 /* We only do this if the grp has never been initialized */
5300 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5301 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5307 * For all the groups except the last one, last cluster will
5308 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5309 * change it for the last group, note that last_cluster is
5310 * already computed earlier by ext4_get_group_no_and_offset()
5312 if (group == last_group)
5315 if (grp->bb_free >= minlen) {
5316 cnt = ext4_trim_all_free(sb, group, first_cluster,
5326 * For every group except the first one, we are sure
5327 * that the first cluster to discard will be cluster #0.
5333 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5336 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5340 /* Iterate all the free extents in the group. */
5342 ext4_mballoc_query_range(
5343 struct super_block *sb,
5345 ext4_grpblk_t start,
5347 ext4_mballoc_query_range_fn formatter,
5352 struct ext4_buddy e4b;
5355 error = ext4_mb_load_buddy(sb, group, &e4b);
5358 bitmap = e4b.bd_bitmap;
5360 ext4_lock_group(sb, group);
5362 start = (e4b.bd_info->bb_first_free > start) ?
5363 e4b.bd_info->bb_first_free : start;
5364 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5365 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5367 while (start <= end) {
5368 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5371 next = mb_find_next_bit(bitmap, end + 1, start);
5373 ext4_unlock_group(sb, group);
5374 error = formatter(sb, group, start, next - start, priv);
5377 ext4_lock_group(sb, group);
5382 ext4_unlock_group(sb, group);
5384 ext4_mb_unload_buddy(&e4b);