GNU Linux-libre 4.14.303-gnu1
[releases.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                                 struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156                 if (ext4_has_inline_data(inode))
157                         return 0;
158
159                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160         }
161         return S_ISLNK(inode->i_mode) && inode->i_size &&
162                (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166  * Restart the transaction associated with *handle.  This does a commit,
167  * so before we call here everything must be consistently dirtied against
168  * this transaction.
169  */
170 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
171                                  int nblocks)
172 {
173         int ret;
174
175         /*
176          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
177          * moment, get_block can be called only for blocks inside i_size since
178          * page cache has been already dropped and writes are blocked by
179          * i_mutex. So we can safely drop the i_data_sem here.
180          */
181         BUG_ON(EXT4_JOURNAL(inode) == NULL);
182         jbd_debug(2, "restarting handle %p\n", handle);
183         up_write(&EXT4_I(inode)->i_data_sem);
184         ret = ext4_journal_restart(handle, nblocks);
185         down_write(&EXT4_I(inode)->i_data_sem);
186         ext4_discard_preallocations(inode);
187
188         return ret;
189 }
190
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_evict_inode(struct inode *inode)
195 {
196         handle_t *handle;
197         int err;
198         /*
199          * Credits for final inode cleanup and freeing:
200          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
201          * (xattr block freeing), bitmap, group descriptor (inode freeing)
202          */
203         int extra_credits = 6;
204         struct ext4_xattr_inode_array *ea_inode_array = NULL;
205         bool freeze_protected = false;
206
207         trace_ext4_evict_inode(inode);
208
209         if (inode->i_nlink) {
210                 /*
211                  * When journalling data dirty buffers are tracked only in the
212                  * journal. So although mm thinks everything is clean and
213                  * ready for reaping the inode might still have some pages to
214                  * write in the running transaction or waiting to be
215                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
216                  * (via truncate_inode_pages()) to discard these buffers can
217                  * cause data loss. Also even if we did not discard these
218                  * buffers, we would have no way to find them after the inode
219                  * is reaped and thus user could see stale data if he tries to
220                  * read them before the transaction is checkpointed. So be
221                  * careful and force everything to disk here... We use
222                  * ei->i_datasync_tid to store the newest transaction
223                  * containing inode's data.
224                  *
225                  * Note that directories do not have this problem because they
226                  * don't use page cache.
227                  */
228                 if (inode->i_ino != EXT4_JOURNAL_INO &&
229                     ext4_should_journal_data(inode) &&
230                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
231                     inode->i_data.nrpages) {
232                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
233                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
234
235                         jbd2_complete_transaction(journal, commit_tid);
236                         filemap_write_and_wait(&inode->i_data);
237                 }
238                 truncate_inode_pages_final(&inode->i_data);
239
240                 goto no_delete;
241         }
242
243         if (is_bad_inode(inode))
244                 goto no_delete;
245         dquot_initialize(inode);
246
247         if (ext4_should_order_data(inode))
248                 ext4_begin_ordered_truncate(inode, 0);
249         truncate_inode_pages_final(&inode->i_data);
250
251         /*
252          * Protect us against freezing - iput() caller didn't have to have any
253          * protection against it. When we are in a running transaction though,
254          * we are already protected against freezing and we cannot grab further
255          * protection due to lock ordering constraints.
256          */
257         if (!ext4_journal_current_handle()) {
258                 sb_start_intwrite(inode->i_sb);
259                 freeze_protected = true;
260         }
261
262         if (!IS_NOQUOTA(inode))
263                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
264
265         /*
266          * Block bitmap, group descriptor, and inode are accounted in both
267          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
268          */
269         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
270                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
271         if (IS_ERR(handle)) {
272                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
273                 /*
274                  * If we're going to skip the normal cleanup, we still need to
275                  * make sure that the in-core orphan linked list is properly
276                  * cleaned up.
277                  */
278                 ext4_orphan_del(NULL, inode);
279                 if (freeze_protected)
280                         sb_end_intwrite(inode->i_sb);
281                 goto no_delete;
282         }
283
284         if (IS_SYNC(inode))
285                 ext4_handle_sync(handle);
286
287         /*
288          * Set inode->i_size to 0 before calling ext4_truncate(). We need
289          * special handling of symlinks here because i_size is used to
290          * determine whether ext4_inode_info->i_data contains symlink data or
291          * block mappings. Setting i_size to 0 will remove its fast symlink
292          * status. Erase i_data so that it becomes a valid empty block map.
293          */
294         if (ext4_inode_is_fast_symlink(inode))
295                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
296         inode->i_size = 0;
297         err = ext4_mark_inode_dirty(handle, inode);
298         if (err) {
299                 ext4_warning(inode->i_sb,
300                              "couldn't mark inode dirty (err %d)", err);
301                 goto stop_handle;
302         }
303         if (inode->i_blocks) {
304                 err = ext4_truncate(inode);
305                 if (err) {
306                         ext4_error(inode->i_sb,
307                                    "couldn't truncate inode %lu (err %d)",
308                                    inode->i_ino, err);
309                         goto stop_handle;
310                 }
311         }
312
313         /* Remove xattr references. */
314         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
315                                       extra_credits);
316         if (err) {
317                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
318 stop_handle:
319                 ext4_journal_stop(handle);
320                 ext4_orphan_del(NULL, inode);
321                 if (freeze_protected)
322                         sb_end_intwrite(inode->i_sb);
323                 ext4_xattr_inode_array_free(ea_inode_array);
324                 goto no_delete;
325         }
326
327         /*
328          * Kill off the orphan record which ext4_truncate created.
329          * AKPM: I think this can be inside the above `if'.
330          * Note that ext4_orphan_del() has to be able to cope with the
331          * deletion of a non-existent orphan - this is because we don't
332          * know if ext4_truncate() actually created an orphan record.
333          * (Well, we could do this if we need to, but heck - it works)
334          */
335         ext4_orphan_del(handle, inode);
336         EXT4_I(inode)->i_dtime  = get_seconds();
337
338         /*
339          * One subtle ordering requirement: if anything has gone wrong
340          * (transaction abort, IO errors, whatever), then we can still
341          * do these next steps (the fs will already have been marked as
342          * having errors), but we can't free the inode if the mark_dirty
343          * fails.
344          */
345         if (ext4_mark_inode_dirty(handle, inode))
346                 /* If that failed, just do the required in-core inode clear. */
347                 ext4_clear_inode(inode);
348         else
349                 ext4_free_inode(handle, inode);
350         ext4_journal_stop(handle);
351         if (freeze_protected)
352                 sb_end_intwrite(inode->i_sb);
353         ext4_xattr_inode_array_free(ea_inode_array);
354         return;
355 no_delete:
356         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
357 }
358
359 #ifdef CONFIG_QUOTA
360 qsize_t *ext4_get_reserved_space(struct inode *inode)
361 {
362         return &EXT4_I(inode)->i_reserved_quota;
363 }
364 #endif
365
366 /*
367  * Called with i_data_sem down, which is important since we can call
368  * ext4_discard_preallocations() from here.
369  */
370 void ext4_da_update_reserve_space(struct inode *inode,
371                                         int used, int quota_claim)
372 {
373         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
374         struct ext4_inode_info *ei = EXT4_I(inode);
375
376         spin_lock(&ei->i_block_reservation_lock);
377         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
378         if (unlikely(used > ei->i_reserved_data_blocks)) {
379                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
380                          "with only %d reserved data blocks",
381                          __func__, inode->i_ino, used,
382                          ei->i_reserved_data_blocks);
383                 WARN_ON(1);
384                 used = ei->i_reserved_data_blocks;
385         }
386
387         /* Update per-inode reservations */
388         ei->i_reserved_data_blocks -= used;
389         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
390
391         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
392
393         /* Update quota subsystem for data blocks */
394         if (quota_claim)
395                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
396         else {
397                 /*
398                  * We did fallocate with an offset that is already delayed
399                  * allocated. So on delayed allocated writeback we should
400                  * not re-claim the quota for fallocated blocks.
401                  */
402                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
403         }
404
405         /*
406          * If we have done all the pending block allocations and if
407          * there aren't any writers on the inode, we can discard the
408          * inode's preallocations.
409          */
410         if ((ei->i_reserved_data_blocks == 0) &&
411             (atomic_read(&inode->i_writecount) == 0))
412                 ext4_discard_preallocations(inode);
413 }
414
415 static int __check_block_validity(struct inode *inode, const char *func,
416                                 unsigned int line,
417                                 struct ext4_map_blocks *map)
418 {
419         if (ext4_has_feature_journal(inode->i_sb) &&
420             (inode->i_ino ==
421              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
422                 return 0;
423         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
424                 ext4_error_inode(inode, func, line, map->m_pblk,
425                                  "lblock %lu mapped to illegal pblock %llu "
426                                  "(length %d)", (unsigned long) map->m_lblk,
427                                  map->m_pblk, map->m_len);
428                 return -EFSCORRUPTED;
429         }
430         return 0;
431 }
432
433 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
434                        ext4_lblk_t len)
435 {
436         int ret;
437
438         if (ext4_encrypted_inode(inode))
439                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
440
441         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
442         if (ret > 0)
443                 ret = 0;
444
445         return ret;
446 }
447
448 #define check_block_validity(inode, map)        \
449         __check_block_validity((inode), __func__, __LINE__, (map))
450
451 #ifdef ES_AGGRESSIVE_TEST
452 static void ext4_map_blocks_es_recheck(handle_t *handle,
453                                        struct inode *inode,
454                                        struct ext4_map_blocks *es_map,
455                                        struct ext4_map_blocks *map,
456                                        int flags)
457 {
458         int retval;
459
460         map->m_flags = 0;
461         /*
462          * There is a race window that the result is not the same.
463          * e.g. xfstests #223 when dioread_nolock enables.  The reason
464          * is that we lookup a block mapping in extent status tree with
465          * out taking i_data_sem.  So at the time the unwritten extent
466          * could be converted.
467          */
468         down_read(&EXT4_I(inode)->i_data_sem);
469         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
470                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
471                                              EXT4_GET_BLOCKS_KEEP_SIZE);
472         } else {
473                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
474                                              EXT4_GET_BLOCKS_KEEP_SIZE);
475         }
476         up_read((&EXT4_I(inode)->i_data_sem));
477
478         /*
479          * We don't check m_len because extent will be collpased in status
480          * tree.  So the m_len might not equal.
481          */
482         if (es_map->m_lblk != map->m_lblk ||
483             es_map->m_flags != map->m_flags ||
484             es_map->m_pblk != map->m_pblk) {
485                 printk("ES cache assertion failed for inode: %lu "
486                        "es_cached ex [%d/%d/%llu/%x] != "
487                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
488                        inode->i_ino, es_map->m_lblk, es_map->m_len,
489                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
490                        map->m_len, map->m_pblk, map->m_flags,
491                        retval, flags);
492         }
493 }
494 #endif /* ES_AGGRESSIVE_TEST */
495
496 /*
497  * The ext4_map_blocks() function tries to look up the requested blocks,
498  * and returns if the blocks are already mapped.
499  *
500  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
501  * and store the allocated blocks in the result buffer head and mark it
502  * mapped.
503  *
504  * If file type is extents based, it will call ext4_ext_map_blocks(),
505  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
506  * based files
507  *
508  * On success, it returns the number of blocks being mapped or allocated.  if
509  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
510  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
511  *
512  * It returns 0 if plain look up failed (blocks have not been allocated), in
513  * that case, @map is returned as unmapped but we still do fill map->m_len to
514  * indicate the length of a hole starting at map->m_lblk.
515  *
516  * It returns the error in case of allocation failure.
517  */
518 int ext4_map_blocks(handle_t *handle, struct inode *inode,
519                     struct ext4_map_blocks *map, int flags)
520 {
521         struct extent_status es;
522         int retval;
523         int ret = 0;
524 #ifdef ES_AGGRESSIVE_TEST
525         struct ext4_map_blocks orig_map;
526
527         memcpy(&orig_map, map, sizeof(*map));
528 #endif
529
530         map->m_flags = 0;
531         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
532                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
533                   (unsigned long) map->m_lblk);
534
535         /*
536          * ext4_map_blocks returns an int, and m_len is an unsigned int
537          */
538         if (unlikely(map->m_len > INT_MAX))
539                 map->m_len = INT_MAX;
540
541         /* We can handle the block number less than EXT_MAX_BLOCKS */
542         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
543                 return -EFSCORRUPTED;
544
545         /* Lookup extent status tree firstly */
546         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
547                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
548                         map->m_pblk = ext4_es_pblock(&es) +
549                                         map->m_lblk - es.es_lblk;
550                         map->m_flags |= ext4_es_is_written(&es) ?
551                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
552                         retval = es.es_len - (map->m_lblk - es.es_lblk);
553                         if (retval > map->m_len)
554                                 retval = map->m_len;
555                         map->m_len = retval;
556                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
557                         map->m_pblk = 0;
558                         retval = es.es_len - (map->m_lblk - es.es_lblk);
559                         if (retval > map->m_len)
560                                 retval = map->m_len;
561                         map->m_len = retval;
562                         retval = 0;
563                 } else {
564                         BUG_ON(1);
565                 }
566 #ifdef ES_AGGRESSIVE_TEST
567                 ext4_map_blocks_es_recheck(handle, inode, map,
568                                            &orig_map, flags);
569 #endif
570                 goto found;
571         }
572
573         /*
574          * Try to see if we can get the block without requesting a new
575          * file system block.
576          */
577         down_read(&EXT4_I(inode)->i_data_sem);
578         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
579                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
580                                              EXT4_GET_BLOCKS_KEEP_SIZE);
581         } else {
582                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
583                                              EXT4_GET_BLOCKS_KEEP_SIZE);
584         }
585         if (retval > 0) {
586                 unsigned int status;
587
588                 if (unlikely(retval != map->m_len)) {
589                         ext4_warning(inode->i_sb,
590                                      "ES len assertion failed for inode "
591                                      "%lu: retval %d != map->m_len %d",
592                                      inode->i_ino, retval, map->m_len);
593                         WARN_ON(1);
594                 }
595
596                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
597                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
598                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
599                     !(status & EXTENT_STATUS_WRITTEN) &&
600                     ext4_find_delalloc_range(inode, map->m_lblk,
601                                              map->m_lblk + map->m_len - 1))
602                         status |= EXTENT_STATUS_DELAYED;
603                 ret = ext4_es_insert_extent(inode, map->m_lblk,
604                                             map->m_len, map->m_pblk, status);
605                 if (ret < 0)
606                         retval = ret;
607         }
608         up_read((&EXT4_I(inode)->i_data_sem));
609
610 found:
611         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
612                 ret = check_block_validity(inode, map);
613                 if (ret != 0)
614                         return ret;
615         }
616
617         /* If it is only a block(s) look up */
618         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
619                 return retval;
620
621         /*
622          * Returns if the blocks have already allocated
623          *
624          * Note that if blocks have been preallocated
625          * ext4_ext_get_block() returns the create = 0
626          * with buffer head unmapped.
627          */
628         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
629                 /*
630                  * If we need to convert extent to unwritten
631                  * we continue and do the actual work in
632                  * ext4_ext_map_blocks()
633                  */
634                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
635                         return retval;
636
637         /*
638          * Here we clear m_flags because after allocating an new extent,
639          * it will be set again.
640          */
641         map->m_flags &= ~EXT4_MAP_FLAGS;
642
643         /*
644          * New blocks allocate and/or writing to unwritten extent
645          * will possibly result in updating i_data, so we take
646          * the write lock of i_data_sem, and call get_block()
647          * with create == 1 flag.
648          */
649         down_write(&EXT4_I(inode)->i_data_sem);
650
651         /*
652          * We need to check for EXT4 here because migrate
653          * could have changed the inode type in between
654          */
655         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
656                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
657         } else {
658                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
659
660                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
661                         /*
662                          * We allocated new blocks which will result in
663                          * i_data's format changing.  Force the migrate
664                          * to fail by clearing migrate flags
665                          */
666                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
667                 }
668
669                 /*
670                  * Update reserved blocks/metadata blocks after successful
671                  * block allocation which had been deferred till now. We don't
672                  * support fallocate for non extent files. So we can update
673                  * reserve space here.
674                  */
675                 if ((retval > 0) &&
676                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
677                         ext4_da_update_reserve_space(inode, retval, 1);
678         }
679
680         if (retval > 0) {
681                 unsigned int status;
682
683                 if (unlikely(retval != map->m_len)) {
684                         ext4_warning(inode->i_sb,
685                                      "ES len assertion failed for inode "
686                                      "%lu: retval %d != map->m_len %d",
687                                      inode->i_ino, retval, map->m_len);
688                         WARN_ON(1);
689                 }
690
691                 /*
692                  * We have to zeroout blocks before inserting them into extent
693                  * status tree. Otherwise someone could look them up there and
694                  * use them before they are really zeroed. We also have to
695                  * unmap metadata before zeroing as otherwise writeback can
696                  * overwrite zeros with stale data from block device.
697                  */
698                 if (flags & EXT4_GET_BLOCKS_ZERO &&
699                     map->m_flags & EXT4_MAP_MAPPED &&
700                     map->m_flags & EXT4_MAP_NEW) {
701                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
702                                            map->m_len);
703                         ret = ext4_issue_zeroout(inode, map->m_lblk,
704                                                  map->m_pblk, map->m_len);
705                         if (ret) {
706                                 retval = ret;
707                                 goto out_sem;
708                         }
709                 }
710
711                 /*
712                  * If the extent has been zeroed out, we don't need to update
713                  * extent status tree.
714                  */
715                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
716                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
717                         if (ext4_es_is_written(&es))
718                                 goto out_sem;
719                 }
720                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
721                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
722                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
723                     !(status & EXTENT_STATUS_WRITTEN) &&
724                     ext4_find_delalloc_range(inode, map->m_lblk,
725                                              map->m_lblk + map->m_len - 1))
726                         status |= EXTENT_STATUS_DELAYED;
727                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
728                                             map->m_pblk, status);
729                 if (ret < 0) {
730                         retval = ret;
731                         goto out_sem;
732                 }
733         }
734
735 out_sem:
736         up_write((&EXT4_I(inode)->i_data_sem));
737         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
738                 ret = check_block_validity(inode, map);
739                 if (ret != 0)
740                         return ret;
741
742                 /*
743                  * Inodes with freshly allocated blocks where contents will be
744                  * visible after transaction commit must be on transaction's
745                  * ordered data list.
746                  */
747                 if (map->m_flags & EXT4_MAP_NEW &&
748                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
749                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
750                     !ext4_is_quota_file(inode) &&
751                     ext4_should_order_data(inode)) {
752                         loff_t start_byte =
753                                 (loff_t)map->m_lblk << inode->i_blkbits;
754                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
755
756                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
757                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
758                                                 start_byte, length);
759                         else
760                                 ret = ext4_jbd2_inode_add_write(handle, inode,
761                                                 start_byte, length);
762                         if (ret)
763                                 return ret;
764                 }
765         }
766         return retval;
767 }
768
769 /*
770  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
771  * we have to be careful as someone else may be manipulating b_state as well.
772  */
773 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
774 {
775         unsigned long old_state;
776         unsigned long new_state;
777
778         flags &= EXT4_MAP_FLAGS;
779
780         /* Dummy buffer_head? Set non-atomically. */
781         if (!bh->b_page) {
782                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
783                 return;
784         }
785         /*
786          * Someone else may be modifying b_state. Be careful! This is ugly but
787          * once we get rid of using bh as a container for mapping information
788          * to pass to / from get_block functions, this can go away.
789          */
790         do {
791                 old_state = READ_ONCE(bh->b_state);
792                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
793         } while (unlikely(
794                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
795 }
796
797 static int _ext4_get_block(struct inode *inode, sector_t iblock,
798                            struct buffer_head *bh, int flags)
799 {
800         struct ext4_map_blocks map;
801         int ret = 0;
802
803         if (ext4_has_inline_data(inode))
804                 return -ERANGE;
805
806         map.m_lblk = iblock;
807         map.m_len = bh->b_size >> inode->i_blkbits;
808
809         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
810                               flags);
811         if (ret > 0) {
812                 map_bh(bh, inode->i_sb, map.m_pblk);
813                 ext4_update_bh_state(bh, map.m_flags);
814                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
815                 ret = 0;
816         } else if (ret == 0) {
817                 /* hole case, need to fill in bh->b_size */
818                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
819         }
820         return ret;
821 }
822
823 int ext4_get_block(struct inode *inode, sector_t iblock,
824                    struct buffer_head *bh, int create)
825 {
826         return _ext4_get_block(inode, iblock, bh,
827                                create ? EXT4_GET_BLOCKS_CREATE : 0);
828 }
829
830 /*
831  * Get block function used when preparing for buffered write if we require
832  * creating an unwritten extent if blocks haven't been allocated.  The extent
833  * will be converted to written after the IO is complete.
834  */
835 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
836                              struct buffer_head *bh_result, int create)
837 {
838         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
839                    inode->i_ino, create);
840         return _ext4_get_block(inode, iblock, bh_result,
841                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
842 }
843
844 /* Maximum number of blocks we map for direct IO at once. */
845 #define DIO_MAX_BLOCKS 4096
846
847 /*
848  * Get blocks function for the cases that need to start a transaction -
849  * generally difference cases of direct IO and DAX IO. It also handles retries
850  * in case of ENOSPC.
851  */
852 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
853                                 struct buffer_head *bh_result, int flags)
854 {
855         int dio_credits;
856         handle_t *handle;
857         int retries = 0;
858         int ret;
859
860         /* Trim mapping request to maximum we can map at once for DIO */
861         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
862                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
863         dio_credits = ext4_chunk_trans_blocks(inode,
864                                       bh_result->b_size >> inode->i_blkbits);
865 retry:
866         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
867         if (IS_ERR(handle))
868                 return PTR_ERR(handle);
869
870         ret = _ext4_get_block(inode, iblock, bh_result, flags);
871         ext4_journal_stop(handle);
872
873         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
874                 goto retry;
875         return ret;
876 }
877
878 /* Get block function for DIO reads and writes to inodes without extents */
879 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
880                        struct buffer_head *bh, int create)
881 {
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         if (!create)
886                 return _ext4_get_block(inode, iblock, bh, 0);
887         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
888 }
889
890 /*
891  * Get block function for AIO DIO writes when we create unwritten extent if
892  * blocks are not allocated yet. The extent will be converted to written
893  * after IO is complete.
894  */
895 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
896                 sector_t iblock, struct buffer_head *bh_result, int create)
897 {
898         int ret;
899
900         /* We don't expect handle for direct IO */
901         WARN_ON_ONCE(ext4_journal_current_handle());
902
903         ret = ext4_get_block_trans(inode, iblock, bh_result,
904                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
905
906         /*
907          * When doing DIO using unwritten extents, we need io_end to convert
908          * unwritten extents to written on IO completion. We allocate io_end
909          * once we spot unwritten extent and store it in b_private. Generic
910          * DIO code keeps b_private set and furthermore passes the value to
911          * our completion callback in 'private' argument.
912          */
913         if (!ret && buffer_unwritten(bh_result)) {
914                 if (!bh_result->b_private) {
915                         ext4_io_end_t *io_end;
916
917                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
918                         if (!io_end)
919                                 return -ENOMEM;
920                         bh_result->b_private = io_end;
921                         ext4_set_io_unwritten_flag(inode, io_end);
922                 }
923                 set_buffer_defer_completion(bh_result);
924         }
925
926         return ret;
927 }
928
929 /*
930  * Get block function for non-AIO DIO writes when we create unwritten extent if
931  * blocks are not allocated yet. The extent will be converted to written
932  * after IO is complete by ext4_direct_IO_write().
933  */
934 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
935                 sector_t iblock, struct buffer_head *bh_result, int create)
936 {
937         int ret;
938
939         /* We don't expect handle for direct IO */
940         WARN_ON_ONCE(ext4_journal_current_handle());
941
942         ret = ext4_get_block_trans(inode, iblock, bh_result,
943                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
944
945         /*
946          * Mark inode as having pending DIO writes to unwritten extents.
947          * ext4_direct_IO_write() checks this flag and converts extents to
948          * written.
949          */
950         if (!ret && buffer_unwritten(bh_result))
951                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
952
953         return ret;
954 }
955
956 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
957                    struct buffer_head *bh_result, int create)
958 {
959         int ret;
960
961         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
962                    inode->i_ino, create);
963         /* We don't expect handle for direct IO */
964         WARN_ON_ONCE(ext4_journal_current_handle());
965
966         ret = _ext4_get_block(inode, iblock, bh_result, 0);
967         /*
968          * Blocks should have been preallocated! ext4_file_write_iter() checks
969          * that.
970          */
971         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
972
973         return ret;
974 }
975
976
977 /*
978  * `handle' can be NULL if create is zero
979  */
980 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
981                                 ext4_lblk_t block, int map_flags)
982 {
983         struct ext4_map_blocks map;
984         struct buffer_head *bh;
985         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
986         int err;
987
988         J_ASSERT(handle != NULL || create == 0);
989
990         map.m_lblk = block;
991         map.m_len = 1;
992         err = ext4_map_blocks(handle, inode, &map, map_flags);
993
994         if (err == 0)
995                 return create ? ERR_PTR(-ENOSPC) : NULL;
996         if (err < 0)
997                 return ERR_PTR(err);
998
999         bh = sb_getblk(inode->i_sb, map.m_pblk);
1000         if (unlikely(!bh))
1001                 return ERR_PTR(-ENOMEM);
1002         if (map.m_flags & EXT4_MAP_NEW) {
1003                 J_ASSERT(create != 0);
1004                 J_ASSERT(handle != NULL);
1005
1006                 /*
1007                  * Now that we do not always journal data, we should
1008                  * keep in mind whether this should always journal the
1009                  * new buffer as metadata.  For now, regular file
1010                  * writes use ext4_get_block instead, so it's not a
1011                  * problem.
1012                  */
1013                 lock_buffer(bh);
1014                 BUFFER_TRACE(bh, "call get_create_access");
1015                 err = ext4_journal_get_create_access(handle, bh);
1016                 if (unlikely(err)) {
1017                         unlock_buffer(bh);
1018                         goto errout;
1019                 }
1020                 if (!buffer_uptodate(bh)) {
1021                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1022                         set_buffer_uptodate(bh);
1023                 }
1024                 unlock_buffer(bh);
1025                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1026                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1027                 if (unlikely(err))
1028                         goto errout;
1029         } else
1030                 BUFFER_TRACE(bh, "not a new buffer");
1031         return bh;
1032 errout:
1033         brelse(bh);
1034         return ERR_PTR(err);
1035 }
1036
1037 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1038                                ext4_lblk_t block, int map_flags)
1039 {
1040         struct buffer_head *bh;
1041
1042         bh = ext4_getblk(handle, inode, block, map_flags);
1043         if (IS_ERR(bh))
1044                 return bh;
1045         if (!bh || buffer_uptodate(bh))
1046                 return bh;
1047         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1048         wait_on_buffer(bh);
1049         if (buffer_uptodate(bh))
1050                 return bh;
1051         put_bh(bh);
1052         return ERR_PTR(-EIO);
1053 }
1054
1055 /* Read a contiguous batch of blocks. */
1056 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1057                      bool wait, struct buffer_head **bhs)
1058 {
1059         int i, err;
1060
1061         for (i = 0; i < bh_count; i++) {
1062                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1063                 if (IS_ERR(bhs[i])) {
1064                         err = PTR_ERR(bhs[i]);
1065                         bh_count = i;
1066                         goto out_brelse;
1067                 }
1068         }
1069
1070         for (i = 0; i < bh_count; i++)
1071                 /* Note that NULL bhs[i] is valid because of holes. */
1072                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1073                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1074                                     &bhs[i]);
1075
1076         if (!wait)
1077                 return 0;
1078
1079         for (i = 0; i < bh_count; i++)
1080                 if (bhs[i])
1081                         wait_on_buffer(bhs[i]);
1082
1083         for (i = 0; i < bh_count; i++) {
1084                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1085                         err = -EIO;
1086                         goto out_brelse;
1087                 }
1088         }
1089         return 0;
1090
1091 out_brelse:
1092         for (i = 0; i < bh_count; i++) {
1093                 brelse(bhs[i]);
1094                 bhs[i] = NULL;
1095         }
1096         return err;
1097 }
1098
1099 int ext4_walk_page_buffers(handle_t *handle,
1100                            struct buffer_head *head,
1101                            unsigned from,
1102                            unsigned to,
1103                            int *partial,
1104                            int (*fn)(handle_t *handle,
1105                                      struct buffer_head *bh))
1106 {
1107         struct buffer_head *bh;
1108         unsigned block_start, block_end;
1109         unsigned blocksize = head->b_size;
1110         int err, ret = 0;
1111         struct buffer_head *next;
1112
1113         for (bh = head, block_start = 0;
1114              ret == 0 && (bh != head || !block_start);
1115              block_start = block_end, bh = next) {
1116                 next = bh->b_this_page;
1117                 block_end = block_start + blocksize;
1118                 if (block_end <= from || block_start >= to) {
1119                         if (partial && !buffer_uptodate(bh))
1120                                 *partial = 1;
1121                         continue;
1122                 }
1123                 err = (*fn)(handle, bh);
1124                 if (!ret)
1125                         ret = err;
1126         }
1127         return ret;
1128 }
1129
1130 /*
1131  * To preserve ordering, it is essential that the hole instantiation and
1132  * the data write be encapsulated in a single transaction.  We cannot
1133  * close off a transaction and start a new one between the ext4_get_block()
1134  * and the commit_write().  So doing the jbd2_journal_start at the start of
1135  * prepare_write() is the right place.
1136  *
1137  * Also, this function can nest inside ext4_writepage().  In that case, we
1138  * *know* that ext4_writepage() has generated enough buffer credits to do the
1139  * whole page.  So we won't block on the journal in that case, which is good,
1140  * because the caller may be PF_MEMALLOC.
1141  *
1142  * By accident, ext4 can be reentered when a transaction is open via
1143  * quota file writes.  If we were to commit the transaction while thus
1144  * reentered, there can be a deadlock - we would be holding a quota
1145  * lock, and the commit would never complete if another thread had a
1146  * transaction open and was blocking on the quota lock - a ranking
1147  * violation.
1148  *
1149  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1150  * will _not_ run commit under these circumstances because handle->h_ref
1151  * is elevated.  We'll still have enough credits for the tiny quotafile
1152  * write.
1153  */
1154 int do_journal_get_write_access(handle_t *handle,
1155                                 struct buffer_head *bh)
1156 {
1157         int dirty = buffer_dirty(bh);
1158         int ret;
1159
1160         if (!buffer_mapped(bh) || buffer_freed(bh))
1161                 return 0;
1162         /*
1163          * __block_write_begin() could have dirtied some buffers. Clean
1164          * the dirty bit as jbd2_journal_get_write_access() could complain
1165          * otherwise about fs integrity issues. Setting of the dirty bit
1166          * by __block_write_begin() isn't a real problem here as we clear
1167          * the bit before releasing a page lock and thus writeback cannot
1168          * ever write the buffer.
1169          */
1170         if (dirty)
1171                 clear_buffer_dirty(bh);
1172         BUFFER_TRACE(bh, "get write access");
1173         ret = ext4_journal_get_write_access(handle, bh);
1174         if (!ret && dirty)
1175                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1176         return ret;
1177 }
1178
1179 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1180 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1181                                   get_block_t *get_block)
1182 {
1183         unsigned from = pos & (PAGE_SIZE - 1);
1184         unsigned to = from + len;
1185         struct inode *inode = page->mapping->host;
1186         unsigned block_start, block_end;
1187         sector_t block;
1188         int err = 0;
1189         unsigned blocksize = inode->i_sb->s_blocksize;
1190         unsigned bbits;
1191         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1192         bool decrypt = false;
1193
1194         BUG_ON(!PageLocked(page));
1195         BUG_ON(from > PAGE_SIZE);
1196         BUG_ON(to > PAGE_SIZE);
1197         BUG_ON(from > to);
1198
1199         if (!page_has_buffers(page))
1200                 create_empty_buffers(page, blocksize, 0);
1201         head = page_buffers(page);
1202         bbits = ilog2(blocksize);
1203         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1204
1205         for (bh = head, block_start = 0; bh != head || !block_start;
1206             block++, block_start = block_end, bh = bh->b_this_page) {
1207                 block_end = block_start + blocksize;
1208                 if (block_end <= from || block_start >= to) {
1209                         if (PageUptodate(page)) {
1210                                 if (!buffer_uptodate(bh))
1211                                         set_buffer_uptodate(bh);
1212                         }
1213                         continue;
1214                 }
1215                 if (buffer_new(bh))
1216                         clear_buffer_new(bh);
1217                 if (!buffer_mapped(bh)) {
1218                         WARN_ON(bh->b_size != blocksize);
1219                         err = get_block(inode, block, bh, 1);
1220                         if (err)
1221                                 break;
1222                         if (buffer_new(bh)) {
1223                                 clean_bdev_bh_alias(bh);
1224                                 if (PageUptodate(page)) {
1225                                         clear_buffer_new(bh);
1226                                         set_buffer_uptodate(bh);
1227                                         mark_buffer_dirty(bh);
1228                                         continue;
1229                                 }
1230                                 if (block_end > to || block_start < from)
1231                                         zero_user_segments(page, to, block_end,
1232                                                            block_start, from);
1233                                 continue;
1234                         }
1235                 }
1236                 if (PageUptodate(page)) {
1237                         if (!buffer_uptodate(bh))
1238                                 set_buffer_uptodate(bh);
1239                         continue;
1240                 }
1241                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1242                     !buffer_unwritten(bh) &&
1243                     (block_start < from || block_end > to)) {
1244                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1245                         *wait_bh++ = bh;
1246                         decrypt = ext4_encrypted_inode(inode) &&
1247                                 S_ISREG(inode->i_mode);
1248                 }
1249         }
1250         /*
1251          * If we issued read requests, let them complete.
1252          */
1253         while (wait_bh > wait) {
1254                 wait_on_buffer(*--wait_bh);
1255                 if (!buffer_uptodate(*wait_bh))
1256                         err = -EIO;
1257         }
1258         if (unlikely(err))
1259                 page_zero_new_buffers(page, from, to);
1260         else if (decrypt)
1261                 err = fscrypt_decrypt_page(page->mapping->host, page,
1262                                 PAGE_SIZE, 0, page->index);
1263         return err;
1264 }
1265 #endif
1266
1267 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1268                             loff_t pos, unsigned len, unsigned flags,
1269                             struct page **pagep, void **fsdata)
1270 {
1271         struct inode *inode = mapping->host;
1272         int ret, needed_blocks;
1273         handle_t *handle;
1274         int retries = 0;
1275         struct page *page;
1276         pgoff_t index;
1277         unsigned from, to;
1278
1279         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1280                 return -EIO;
1281
1282         trace_ext4_write_begin(inode, pos, len, flags);
1283         /*
1284          * Reserve one block more for addition to orphan list in case
1285          * we allocate blocks but write fails for some reason
1286          */
1287         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1288         index = pos >> PAGE_SHIFT;
1289         from = pos & (PAGE_SIZE - 1);
1290         to = from + len;
1291
1292         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1293                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1294                                                     flags, pagep);
1295                 if (ret < 0)
1296                         return ret;
1297                 if (ret == 1)
1298                         return 0;
1299         }
1300
1301         /*
1302          * grab_cache_page_write_begin() can take a long time if the
1303          * system is thrashing due to memory pressure, or if the page
1304          * is being written back.  So grab it first before we start
1305          * the transaction handle.  This also allows us to allocate
1306          * the page (if needed) without using GFP_NOFS.
1307          */
1308 retry_grab:
1309         page = grab_cache_page_write_begin(mapping, index, flags);
1310         if (!page)
1311                 return -ENOMEM;
1312         /*
1313          * The same as page allocation, we prealloc buffer heads before
1314          * starting the handle.
1315          */
1316         if (!page_has_buffers(page))
1317                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1318
1319         unlock_page(page);
1320
1321 retry_journal:
1322         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1323         if (IS_ERR(handle)) {
1324                 put_page(page);
1325                 return PTR_ERR(handle);
1326         }
1327
1328         lock_page(page);
1329         if (page->mapping != mapping) {
1330                 /* The page got truncated from under us */
1331                 unlock_page(page);
1332                 put_page(page);
1333                 ext4_journal_stop(handle);
1334                 goto retry_grab;
1335         }
1336         /* In case writeback began while the page was unlocked */
1337         wait_for_stable_page(page);
1338
1339 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1340         if (ext4_should_dioread_nolock(inode))
1341                 ret = ext4_block_write_begin(page, pos, len,
1342                                              ext4_get_block_unwritten);
1343         else
1344                 ret = ext4_block_write_begin(page, pos, len,
1345                                              ext4_get_block);
1346 #else
1347         if (ext4_should_dioread_nolock(inode))
1348                 ret = __block_write_begin(page, pos, len,
1349                                           ext4_get_block_unwritten);
1350         else
1351                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1352 #endif
1353         if (!ret && ext4_should_journal_data(inode)) {
1354                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1355                                              from, to, NULL,
1356                                              do_journal_get_write_access);
1357         }
1358
1359         if (ret) {
1360                 unlock_page(page);
1361                 /*
1362                  * __block_write_begin may have instantiated a few blocks
1363                  * outside i_size.  Trim these off again. Don't need
1364                  * i_size_read because we hold i_mutex.
1365                  *
1366                  * Add inode to orphan list in case we crash before
1367                  * truncate finishes
1368                  */
1369                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1370                         ext4_orphan_add(handle, inode);
1371
1372                 ext4_journal_stop(handle);
1373                 if (pos + len > inode->i_size) {
1374                         ext4_truncate_failed_write(inode);
1375                         /*
1376                          * If truncate failed early the inode might
1377                          * still be on the orphan list; we need to
1378                          * make sure the inode is removed from the
1379                          * orphan list in that case.
1380                          */
1381                         if (inode->i_nlink)
1382                                 ext4_orphan_del(NULL, inode);
1383                 }
1384
1385                 if (ret == -ENOSPC &&
1386                     ext4_should_retry_alloc(inode->i_sb, &retries))
1387                         goto retry_journal;
1388                 put_page(page);
1389                 return ret;
1390         }
1391         *pagep = page;
1392         return ret;
1393 }
1394
1395 /* For write_end() in data=journal mode */
1396 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1397 {
1398         int ret;
1399         if (!buffer_mapped(bh) || buffer_freed(bh))
1400                 return 0;
1401         set_buffer_uptodate(bh);
1402         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1403         clear_buffer_meta(bh);
1404         clear_buffer_prio(bh);
1405         return ret;
1406 }
1407
1408 /*
1409  * We need to pick up the new inode size which generic_commit_write gave us
1410  * `file' can be NULL - eg, when called from page_symlink().
1411  *
1412  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1413  * buffers are managed internally.
1414  */
1415 static int ext4_write_end(struct file *file,
1416                           struct address_space *mapping,
1417                           loff_t pos, unsigned len, unsigned copied,
1418                           struct page *page, void *fsdata)
1419 {
1420         handle_t *handle = ext4_journal_current_handle();
1421         struct inode *inode = mapping->host;
1422         loff_t old_size = inode->i_size;
1423         int ret = 0, ret2;
1424         int i_size_changed = 0;
1425         int inline_data = ext4_has_inline_data(inode);
1426
1427         trace_ext4_write_end(inode, pos, len, copied);
1428         if (inline_data) {
1429                 ret = ext4_write_inline_data_end(inode, pos, len,
1430                                                  copied, page);
1431                 if (ret < 0) {
1432                         unlock_page(page);
1433                         put_page(page);
1434                         goto errout;
1435                 }
1436                 copied = ret;
1437         } else
1438                 copied = block_write_end(file, mapping, pos,
1439                                          len, copied, page, fsdata);
1440         /*
1441          * it's important to update i_size while still holding page lock:
1442          * page writeout could otherwise come in and zero beyond i_size.
1443          */
1444         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1445         unlock_page(page);
1446         put_page(page);
1447
1448         if (old_size < pos)
1449                 pagecache_isize_extended(inode, old_size, pos);
1450         /*
1451          * Don't mark the inode dirty under page lock. First, it unnecessarily
1452          * makes the holding time of page lock longer. Second, it forces lock
1453          * ordering of page lock and transaction start for journaling
1454          * filesystems.
1455          */
1456         if (i_size_changed || inline_data)
1457                 ext4_mark_inode_dirty(handle, inode);
1458
1459         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1460                 /* if we have allocated more blocks and copied
1461                  * less. We will have blocks allocated outside
1462                  * inode->i_size. So truncate them
1463                  */
1464                 ext4_orphan_add(handle, inode);
1465 errout:
1466         ret2 = ext4_journal_stop(handle);
1467         if (!ret)
1468                 ret = ret2;
1469
1470         if (pos + len > inode->i_size) {
1471                 ext4_truncate_failed_write(inode);
1472                 /*
1473                  * If truncate failed early the inode might still be
1474                  * on the orphan list; we need to make sure the inode
1475                  * is removed from the orphan list in that case.
1476                  */
1477                 if (inode->i_nlink)
1478                         ext4_orphan_del(NULL, inode);
1479         }
1480
1481         return ret ? ret : copied;
1482 }
1483
1484 /*
1485  * This is a private version of page_zero_new_buffers() which doesn't
1486  * set the buffer to be dirty, since in data=journalled mode we need
1487  * to call ext4_handle_dirty_metadata() instead.
1488  */
1489 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1490                                             struct page *page,
1491                                             unsigned from, unsigned to)
1492 {
1493         unsigned int block_start = 0, block_end;
1494         struct buffer_head *head, *bh;
1495
1496         bh = head = page_buffers(page);
1497         do {
1498                 block_end = block_start + bh->b_size;
1499                 if (buffer_new(bh)) {
1500                         if (block_end > from && block_start < to) {
1501                                 if (!PageUptodate(page)) {
1502                                         unsigned start, size;
1503
1504                                         start = max(from, block_start);
1505                                         size = min(to, block_end) - start;
1506
1507                                         zero_user(page, start, size);
1508                                         write_end_fn(handle, bh);
1509                                 }
1510                                 clear_buffer_new(bh);
1511                         }
1512                 }
1513                 block_start = block_end;
1514                 bh = bh->b_this_page;
1515         } while (bh != head);
1516 }
1517
1518 static int ext4_journalled_write_end(struct file *file,
1519                                      struct address_space *mapping,
1520                                      loff_t pos, unsigned len, unsigned copied,
1521                                      struct page *page, void *fsdata)
1522 {
1523         handle_t *handle = ext4_journal_current_handle();
1524         struct inode *inode = mapping->host;
1525         loff_t old_size = inode->i_size;
1526         int ret = 0, ret2;
1527         int partial = 0;
1528         unsigned from, to;
1529         int size_changed = 0;
1530         int inline_data = ext4_has_inline_data(inode);
1531
1532         trace_ext4_journalled_write_end(inode, pos, len, copied);
1533         from = pos & (PAGE_SIZE - 1);
1534         to = from + len;
1535
1536         BUG_ON(!ext4_handle_valid(handle));
1537
1538         if (inline_data) {
1539                 ret = ext4_write_inline_data_end(inode, pos, len,
1540                                                  copied, page);
1541                 if (ret < 0) {
1542                         unlock_page(page);
1543                         put_page(page);
1544                         goto errout;
1545                 }
1546                 copied = ret;
1547         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1548                 copied = 0;
1549                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1550         } else {
1551                 if (unlikely(copied < len))
1552                         ext4_journalled_zero_new_buffers(handle, page,
1553                                                          from + copied, to);
1554                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1555                                              from + copied, &partial,
1556                                              write_end_fn);
1557                 if (!partial)
1558                         SetPageUptodate(page);
1559         }
1560         size_changed = ext4_update_inode_size(inode, pos + copied);
1561         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1562         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1563         unlock_page(page);
1564         put_page(page);
1565
1566         if (old_size < pos)
1567                 pagecache_isize_extended(inode, old_size, pos);
1568
1569         if (size_changed || inline_data) {
1570                 ret2 = ext4_mark_inode_dirty(handle, inode);
1571                 if (!ret)
1572                         ret = ret2;
1573         }
1574
1575         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1576                 /* if we have allocated more blocks and copied
1577                  * less. We will have blocks allocated outside
1578                  * inode->i_size. So truncate them
1579                  */
1580                 ext4_orphan_add(handle, inode);
1581
1582 errout:
1583         ret2 = ext4_journal_stop(handle);
1584         if (!ret)
1585                 ret = ret2;
1586         if (pos + len > inode->i_size) {
1587                 ext4_truncate_failed_write(inode);
1588                 /*
1589                  * If truncate failed early the inode might still be
1590                  * on the orphan list; we need to make sure the inode
1591                  * is removed from the orphan list in that case.
1592                  */
1593                 if (inode->i_nlink)
1594                         ext4_orphan_del(NULL, inode);
1595         }
1596
1597         return ret ? ret : copied;
1598 }
1599
1600 /*
1601  * Reserve space for a single cluster
1602  */
1603 static int ext4_da_reserve_space(struct inode *inode)
1604 {
1605         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606         struct ext4_inode_info *ei = EXT4_I(inode);
1607         int ret;
1608
1609         /*
1610          * We will charge metadata quota at writeout time; this saves
1611          * us from metadata over-estimation, though we may go over by
1612          * a small amount in the end.  Here we just reserve for data.
1613          */
1614         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1615         if (ret)
1616                 return ret;
1617
1618         spin_lock(&ei->i_block_reservation_lock);
1619         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1620                 spin_unlock(&ei->i_block_reservation_lock);
1621                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1622                 return -ENOSPC;
1623         }
1624         ei->i_reserved_data_blocks++;
1625         trace_ext4_da_reserve_space(inode);
1626         spin_unlock(&ei->i_block_reservation_lock);
1627
1628         return 0;       /* success */
1629 }
1630
1631 static void ext4_da_release_space(struct inode *inode, int to_free)
1632 {
1633         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1634         struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636         if (!to_free)
1637                 return;         /* Nothing to release, exit */
1638
1639         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1640
1641         trace_ext4_da_release_space(inode, to_free);
1642         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1643                 /*
1644                  * if there aren't enough reserved blocks, then the
1645                  * counter is messed up somewhere.  Since this
1646                  * function is called from invalidate page, it's
1647                  * harmless to return without any action.
1648                  */
1649                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1650                          "ino %lu, to_free %d with only %d reserved "
1651                          "data blocks", inode->i_ino, to_free,
1652                          ei->i_reserved_data_blocks);
1653                 WARN_ON(1);
1654                 to_free = ei->i_reserved_data_blocks;
1655         }
1656         ei->i_reserved_data_blocks -= to_free;
1657
1658         /* update fs dirty data blocks counter */
1659         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1660
1661         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1662
1663         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1664 }
1665
1666 static void ext4_da_page_release_reservation(struct page *page,
1667                                              unsigned int offset,
1668                                              unsigned int length)
1669 {
1670         int to_release = 0, contiguous_blks = 0;
1671         struct buffer_head *head, *bh;
1672         unsigned int curr_off = 0;
1673         struct inode *inode = page->mapping->host;
1674         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675         unsigned int stop = offset + length;
1676         int num_clusters;
1677         ext4_fsblk_t lblk;
1678
1679         BUG_ON(stop > PAGE_SIZE || stop < length);
1680
1681         head = page_buffers(page);
1682         bh = head;
1683         do {
1684                 unsigned int next_off = curr_off + bh->b_size;
1685
1686                 if (next_off > stop)
1687                         break;
1688
1689                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1690                         to_release++;
1691                         contiguous_blks++;
1692                         clear_buffer_delay(bh);
1693                 } else if (contiguous_blks) {
1694                         lblk = page->index <<
1695                                (PAGE_SHIFT - inode->i_blkbits);
1696                         lblk += (curr_off >> inode->i_blkbits) -
1697                                 contiguous_blks;
1698                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1699                         contiguous_blks = 0;
1700                 }
1701                 curr_off = next_off;
1702         } while ((bh = bh->b_this_page) != head);
1703
1704         if (contiguous_blks) {
1705                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1706                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1707                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1708         }
1709
1710         /* If we have released all the blocks belonging to a cluster, then we
1711          * need to release the reserved space for that cluster. */
1712         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1713         while (num_clusters > 0) {
1714                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1715                         ((num_clusters - 1) << sbi->s_cluster_bits);
1716                 if (sbi->s_cluster_ratio == 1 ||
1717                     !ext4_find_delalloc_cluster(inode, lblk))
1718                         ext4_da_release_space(inode, 1);
1719
1720                 num_clusters--;
1721         }
1722 }
1723
1724 /*
1725  * Delayed allocation stuff
1726  */
1727
1728 struct mpage_da_data {
1729         struct inode *inode;
1730         struct writeback_control *wbc;
1731
1732         pgoff_t first_page;     /* The first page to write */
1733         pgoff_t next_page;      /* Current page to examine */
1734         pgoff_t last_page;      /* Last page to examine */
1735         /*
1736          * Extent to map - this can be after first_page because that can be
1737          * fully mapped. We somewhat abuse m_flags to store whether the extent
1738          * is delalloc or unwritten.
1739          */
1740         struct ext4_map_blocks map;
1741         struct ext4_io_submit io_submit;        /* IO submission data */
1742         unsigned int do_map:1;
1743 };
1744
1745 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1746                                        bool invalidate)
1747 {
1748         int nr_pages, i;
1749         pgoff_t index, end;
1750         struct pagevec pvec;
1751         struct inode *inode = mpd->inode;
1752         struct address_space *mapping = inode->i_mapping;
1753
1754         /* This is necessary when next_page == 0. */
1755         if (mpd->first_page >= mpd->next_page)
1756                 return;
1757
1758         index = mpd->first_page;
1759         end   = mpd->next_page - 1;
1760         if (invalidate) {
1761                 ext4_lblk_t start, last;
1762                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1763                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1764
1765                 /*
1766                  * avoid racing with extent status tree scans made by
1767                  * ext4_insert_delayed_block()
1768                  */
1769                 down_write(&EXT4_I(inode)->i_data_sem);
1770                 ext4_es_remove_extent(inode, start, last - start + 1);
1771                 up_write(&EXT4_I(inode)->i_data_sem);
1772         }
1773
1774         pagevec_init(&pvec, 0);
1775         while (index <= end) {
1776                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1777                 if (nr_pages == 0)
1778                         break;
1779                 for (i = 0; i < nr_pages; i++) {
1780                         struct page *page = pvec.pages[i];
1781
1782                         BUG_ON(!PageLocked(page));
1783                         BUG_ON(PageWriteback(page));
1784                         if (invalidate) {
1785                                 if (page_mapped(page))
1786                                         clear_page_dirty_for_io(page);
1787                                 block_invalidatepage(page, 0, PAGE_SIZE);
1788                                 ClearPageUptodate(page);
1789                         }
1790                         unlock_page(page);
1791                 }
1792                 pagevec_release(&pvec);
1793         }
1794 }
1795
1796 static void ext4_print_free_blocks(struct inode *inode)
1797 {
1798         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1799         struct super_block *sb = inode->i_sb;
1800         struct ext4_inode_info *ei = EXT4_I(inode);
1801
1802         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1803                EXT4_C2B(EXT4_SB(inode->i_sb),
1804                         ext4_count_free_clusters(sb)));
1805         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1806         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1807                (long long) EXT4_C2B(EXT4_SB(sb),
1808                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1809         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1810                (long long) EXT4_C2B(EXT4_SB(sb),
1811                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1812         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1813         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1814                  ei->i_reserved_data_blocks);
1815         return;
1816 }
1817
1818 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1819 {
1820         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1821 }
1822
1823 /*
1824  * This function is grabs code from the very beginning of
1825  * ext4_map_blocks, but assumes that the caller is from delayed write
1826  * time. This function looks up the requested blocks and sets the
1827  * buffer delay bit under the protection of i_data_sem.
1828  */
1829 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1830                               struct ext4_map_blocks *map,
1831                               struct buffer_head *bh)
1832 {
1833         struct extent_status es;
1834         int retval;
1835         sector_t invalid_block = ~((sector_t) 0xffff);
1836 #ifdef ES_AGGRESSIVE_TEST
1837         struct ext4_map_blocks orig_map;
1838
1839         memcpy(&orig_map, map, sizeof(*map));
1840 #endif
1841
1842         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1843                 invalid_block = ~0;
1844
1845         map->m_flags = 0;
1846         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1847                   "logical block %lu\n", inode->i_ino, map->m_len,
1848                   (unsigned long) map->m_lblk);
1849
1850         /* Lookup extent status tree firstly */
1851         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1852                 if (ext4_es_is_hole(&es)) {
1853                         retval = 0;
1854                         down_read(&EXT4_I(inode)->i_data_sem);
1855                         goto add_delayed;
1856                 }
1857
1858                 /*
1859                  * Delayed extent could be allocated by fallocate.
1860                  * So we need to check it.
1861                  */
1862                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1863                         map_bh(bh, inode->i_sb, invalid_block);
1864                         set_buffer_new(bh);
1865                         set_buffer_delay(bh);
1866                         return 0;
1867                 }
1868
1869                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1870                 retval = es.es_len - (iblock - es.es_lblk);
1871                 if (retval > map->m_len)
1872                         retval = map->m_len;
1873                 map->m_len = retval;
1874                 if (ext4_es_is_written(&es))
1875                         map->m_flags |= EXT4_MAP_MAPPED;
1876                 else if (ext4_es_is_unwritten(&es))
1877                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1878                 else
1879                         BUG_ON(1);
1880
1881 #ifdef ES_AGGRESSIVE_TEST
1882                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1883 #endif
1884                 return retval;
1885         }
1886
1887         /*
1888          * Try to see if we can get the block without requesting a new
1889          * file system block.
1890          */
1891         down_read(&EXT4_I(inode)->i_data_sem);
1892         if (ext4_has_inline_data(inode))
1893                 retval = 0;
1894         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1895                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1896         else
1897                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1898
1899 add_delayed:
1900         if (retval == 0) {
1901                 int ret;
1902                 /*
1903                  * XXX: __block_prepare_write() unmaps passed block,
1904                  * is it OK?
1905                  */
1906                 /*
1907                  * If the block was allocated from previously allocated cluster,
1908                  * then we don't need to reserve it again. However we still need
1909                  * to reserve metadata for every block we're going to write.
1910                  */
1911                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1912                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1913                         ret = ext4_da_reserve_space(inode);
1914                         if (ret) {
1915                                 /* not enough space to reserve */
1916                                 retval = ret;
1917                                 goto out_unlock;
1918                         }
1919                 }
1920
1921                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1922                                             ~0, EXTENT_STATUS_DELAYED);
1923                 if (ret) {
1924                         retval = ret;
1925                         goto out_unlock;
1926                 }
1927
1928                 map_bh(bh, inode->i_sb, invalid_block);
1929                 set_buffer_new(bh);
1930                 set_buffer_delay(bh);
1931         } else if (retval > 0) {
1932                 int ret;
1933                 unsigned int status;
1934
1935                 if (unlikely(retval != map->m_len)) {
1936                         ext4_warning(inode->i_sb,
1937                                      "ES len assertion failed for inode "
1938                                      "%lu: retval %d != map->m_len %d",
1939                                      inode->i_ino, retval, map->m_len);
1940                         WARN_ON(1);
1941                 }
1942
1943                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1944                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1945                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1946                                             map->m_pblk, status);
1947                 if (ret != 0)
1948                         retval = ret;
1949         }
1950
1951 out_unlock:
1952         up_read((&EXT4_I(inode)->i_data_sem));
1953
1954         return retval;
1955 }
1956
1957 /*
1958  * This is a special get_block_t callback which is used by
1959  * ext4_da_write_begin().  It will either return mapped block or
1960  * reserve space for a single block.
1961  *
1962  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1963  * We also have b_blocknr = -1 and b_bdev initialized properly
1964  *
1965  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1966  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1967  * initialized properly.
1968  */
1969 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1970                            struct buffer_head *bh, int create)
1971 {
1972         struct ext4_map_blocks map;
1973         int ret = 0;
1974
1975         BUG_ON(create == 0);
1976         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1977
1978         map.m_lblk = iblock;
1979         map.m_len = 1;
1980
1981         /*
1982          * first, we need to know whether the block is allocated already
1983          * preallocated blocks are unmapped but should treated
1984          * the same as allocated blocks.
1985          */
1986         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1987         if (ret <= 0)
1988                 return ret;
1989
1990         map_bh(bh, inode->i_sb, map.m_pblk);
1991         ext4_update_bh_state(bh, map.m_flags);
1992
1993         if (buffer_unwritten(bh)) {
1994                 /* A delayed write to unwritten bh should be marked
1995                  * new and mapped.  Mapped ensures that we don't do
1996                  * get_block multiple times when we write to the same
1997                  * offset and new ensures that we do proper zero out
1998                  * for partial write.
1999                  */
2000                 set_buffer_new(bh);
2001                 set_buffer_mapped(bh);
2002         }
2003         return 0;
2004 }
2005
2006 static int bget_one(handle_t *handle, struct buffer_head *bh)
2007 {
2008         get_bh(bh);
2009         return 0;
2010 }
2011
2012 static int bput_one(handle_t *handle, struct buffer_head *bh)
2013 {
2014         put_bh(bh);
2015         return 0;
2016 }
2017
2018 static int __ext4_journalled_writepage(struct page *page,
2019                                        unsigned int len)
2020 {
2021         struct address_space *mapping = page->mapping;
2022         struct inode *inode = mapping->host;
2023         struct buffer_head *page_bufs = NULL;
2024         handle_t *handle = NULL;
2025         int ret = 0, err = 0;
2026         int inline_data = ext4_has_inline_data(inode);
2027         struct buffer_head *inode_bh = NULL;
2028
2029         ClearPageChecked(page);
2030
2031         if (inline_data) {
2032                 BUG_ON(page->index != 0);
2033                 BUG_ON(len > ext4_get_max_inline_size(inode));
2034                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2035                 if (inode_bh == NULL)
2036                         goto out;
2037         } else {
2038                 page_bufs = page_buffers(page);
2039                 if (!page_bufs) {
2040                         BUG();
2041                         goto out;
2042                 }
2043                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2044                                        NULL, bget_one);
2045         }
2046         /*
2047          * We need to release the page lock before we start the
2048          * journal, so grab a reference so the page won't disappear
2049          * out from under us.
2050          */
2051         get_page(page);
2052         unlock_page(page);
2053
2054         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2055                                     ext4_writepage_trans_blocks(inode));
2056         if (IS_ERR(handle)) {
2057                 ret = PTR_ERR(handle);
2058                 put_page(page);
2059                 goto out_no_pagelock;
2060         }
2061         BUG_ON(!ext4_handle_valid(handle));
2062
2063         lock_page(page);
2064         put_page(page);
2065         if (page->mapping != mapping) {
2066                 /* The page got truncated from under us */
2067                 ext4_journal_stop(handle);
2068                 ret = 0;
2069                 goto out;
2070         }
2071
2072         if (inline_data) {
2073                 ret = ext4_mark_inode_dirty(handle, inode);
2074         } else {
2075                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2076                                              do_journal_get_write_access);
2077
2078                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2079                                              write_end_fn);
2080         }
2081         if (ret == 0)
2082                 ret = err;
2083         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2084         err = ext4_journal_stop(handle);
2085         if (!ret)
2086                 ret = err;
2087
2088         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2089 out:
2090         unlock_page(page);
2091 out_no_pagelock:
2092         if (!inline_data && page_bufs)
2093                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2094                                        NULL, bput_one);
2095         brelse(inode_bh);
2096         return ret;
2097 }
2098
2099 /*
2100  * Note that we don't need to start a transaction unless we're journaling data
2101  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2102  * need to file the inode to the transaction's list in ordered mode because if
2103  * we are writing back data added by write(), the inode is already there and if
2104  * we are writing back data modified via mmap(), no one guarantees in which
2105  * transaction the data will hit the disk. In case we are journaling data, we
2106  * cannot start transaction directly because transaction start ranks above page
2107  * lock so we have to do some magic.
2108  *
2109  * This function can get called via...
2110  *   - ext4_writepages after taking page lock (have journal handle)
2111  *   - journal_submit_inode_data_buffers (no journal handle)
2112  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2113  *   - grab_page_cache when doing write_begin (have journal handle)
2114  *
2115  * We don't do any block allocation in this function. If we have page with
2116  * multiple blocks we need to write those buffer_heads that are mapped. This
2117  * is important for mmaped based write. So if we do with blocksize 1K
2118  * truncate(f, 1024);
2119  * a = mmap(f, 0, 4096);
2120  * a[0] = 'a';
2121  * truncate(f, 4096);
2122  * we have in the page first buffer_head mapped via page_mkwrite call back
2123  * but other buffer_heads would be unmapped but dirty (dirty done via the
2124  * do_wp_page). So writepage should write the first block. If we modify
2125  * the mmap area beyond 1024 we will again get a page_fault and the
2126  * page_mkwrite callback will do the block allocation and mark the
2127  * buffer_heads mapped.
2128  *
2129  * We redirty the page if we have any buffer_heads that is either delay or
2130  * unwritten in the page.
2131  *
2132  * We can get recursively called as show below.
2133  *
2134  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2135  *              ext4_writepage()
2136  *
2137  * But since we don't do any block allocation we should not deadlock.
2138  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2139  */
2140 static int ext4_writepage(struct page *page,
2141                           struct writeback_control *wbc)
2142 {
2143         int ret = 0;
2144         loff_t size;
2145         unsigned int len;
2146         struct buffer_head *page_bufs = NULL;
2147         struct inode *inode = page->mapping->host;
2148         struct ext4_io_submit io_submit;
2149         bool keep_towrite = false;
2150
2151         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2152                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2153                 unlock_page(page);
2154                 return -EIO;
2155         }
2156
2157         trace_ext4_writepage(page);
2158         size = i_size_read(inode);
2159         if (page->index == size >> PAGE_SHIFT)
2160                 len = size & ~PAGE_MASK;
2161         else
2162                 len = PAGE_SIZE;
2163
2164         /* Should never happen but for bugs in other kernel subsystems */
2165         if (!page_has_buffers(page)) {
2166                 ext4_warning_inode(inode,
2167                    "page %lu does not have buffers attached", page->index);
2168                 ClearPageDirty(page);
2169                 unlock_page(page);
2170                 return 0;
2171         }
2172
2173         page_bufs = page_buffers(page);
2174         /*
2175          * We cannot do block allocation or other extent handling in this
2176          * function. If there are buffers needing that, we have to redirty
2177          * the page. But we may reach here when we do a journal commit via
2178          * journal_submit_inode_data_buffers() and in that case we must write
2179          * allocated buffers to achieve data=ordered mode guarantees.
2180          *
2181          * Also, if there is only one buffer per page (the fs block
2182          * size == the page size), if one buffer needs block
2183          * allocation or needs to modify the extent tree to clear the
2184          * unwritten flag, we know that the page can't be written at
2185          * all, so we might as well refuse the write immediately.
2186          * Unfortunately if the block size != page size, we can't as
2187          * easily detect this case using ext4_walk_page_buffers(), but
2188          * for the extremely common case, this is an optimization that
2189          * skips a useless round trip through ext4_bio_write_page().
2190          */
2191         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2192                                    ext4_bh_delay_or_unwritten)) {
2193                 redirty_page_for_writepage(wbc, page);
2194                 if ((current->flags & PF_MEMALLOC) ||
2195                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2196                         /*
2197                          * For memory cleaning there's no point in writing only
2198                          * some buffers. So just bail out. Warn if we came here
2199                          * from direct reclaim.
2200                          */
2201                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2202                                                         == PF_MEMALLOC);
2203                         unlock_page(page);
2204                         return 0;
2205                 }
2206                 keep_towrite = true;
2207         }
2208
2209         if (PageChecked(page) && ext4_should_journal_data(inode))
2210                 /*
2211                  * It's mmapped pagecache.  Add buffers and journal it.  There
2212                  * doesn't seem much point in redirtying the page here.
2213                  */
2214                 return __ext4_journalled_writepage(page, len);
2215
2216         ext4_io_submit_init(&io_submit, wbc);
2217         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2218         if (!io_submit.io_end) {
2219                 redirty_page_for_writepage(wbc, page);
2220                 unlock_page(page);
2221                 return -ENOMEM;
2222         }
2223         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2224         ext4_io_submit(&io_submit);
2225         /* Drop io_end reference we got from init */
2226         ext4_put_io_end_defer(io_submit.io_end);
2227         return ret;
2228 }
2229
2230 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2231 {
2232         int len;
2233         loff_t size;
2234         int err;
2235
2236         BUG_ON(page->index != mpd->first_page);
2237         clear_page_dirty_for_io(page);
2238         /*
2239          * We have to be very careful here!  Nothing protects writeback path
2240          * against i_size changes and the page can be writeably mapped into
2241          * page tables. So an application can be growing i_size and writing
2242          * data through mmap while writeback runs. clear_page_dirty_for_io()
2243          * write-protects our page in page tables and the page cannot get
2244          * written to again until we release page lock. So only after
2245          * clear_page_dirty_for_io() we are safe to sample i_size for
2246          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2247          * on the barrier provided by TestClearPageDirty in
2248          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2249          * after page tables are updated.
2250          */
2251         size = i_size_read(mpd->inode);
2252         if (page->index == size >> PAGE_SHIFT)
2253                 len = size & ~PAGE_MASK;
2254         else
2255                 len = PAGE_SIZE;
2256         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2257         if (!err)
2258                 mpd->wbc->nr_to_write--;
2259         mpd->first_page++;
2260
2261         return err;
2262 }
2263
2264 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2265
2266 /*
2267  * mballoc gives us at most this number of blocks...
2268  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2269  * The rest of mballoc seems to handle chunks up to full group size.
2270  */
2271 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2272
2273 /*
2274  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2275  *
2276  * @mpd - extent of blocks
2277  * @lblk - logical number of the block in the file
2278  * @bh - buffer head we want to add to the extent
2279  *
2280  * The function is used to collect contig. blocks in the same state. If the
2281  * buffer doesn't require mapping for writeback and we haven't started the
2282  * extent of buffers to map yet, the function returns 'true' immediately - the
2283  * caller can write the buffer right away. Otherwise the function returns true
2284  * if the block has been added to the extent, false if the block couldn't be
2285  * added.
2286  */
2287 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2288                                    struct buffer_head *bh)
2289 {
2290         struct ext4_map_blocks *map = &mpd->map;
2291
2292         /* Buffer that doesn't need mapping for writeback? */
2293         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2294             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2295                 /* So far no extent to map => we write the buffer right away */
2296                 if (map->m_len == 0)
2297                         return true;
2298                 return false;
2299         }
2300
2301         /* First block in the extent? */
2302         if (map->m_len == 0) {
2303                 /* We cannot map unless handle is started... */
2304                 if (!mpd->do_map)
2305                         return false;
2306                 map->m_lblk = lblk;
2307                 map->m_len = 1;
2308                 map->m_flags = bh->b_state & BH_FLAGS;
2309                 return true;
2310         }
2311
2312         /* Don't go larger than mballoc is willing to allocate */
2313         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2314                 return false;
2315
2316         /* Can we merge the block to our big extent? */
2317         if (lblk == map->m_lblk + map->m_len &&
2318             (bh->b_state & BH_FLAGS) == map->m_flags) {
2319                 map->m_len++;
2320                 return true;
2321         }
2322         return false;
2323 }
2324
2325 /*
2326  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2327  *
2328  * @mpd - extent of blocks for mapping
2329  * @head - the first buffer in the page
2330  * @bh - buffer we should start processing from
2331  * @lblk - logical number of the block in the file corresponding to @bh
2332  *
2333  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2334  * the page for IO if all buffers in this page were mapped and there's no
2335  * accumulated extent of buffers to map or add buffers in the page to the
2336  * extent of buffers to map. The function returns 1 if the caller can continue
2337  * by processing the next page, 0 if it should stop adding buffers to the
2338  * extent to map because we cannot extend it anymore. It can also return value
2339  * < 0 in case of error during IO submission.
2340  */
2341 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2342                                    struct buffer_head *head,
2343                                    struct buffer_head *bh,
2344                                    ext4_lblk_t lblk)
2345 {
2346         struct inode *inode = mpd->inode;
2347         int err;
2348         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2349                                                         >> inode->i_blkbits;
2350
2351         do {
2352                 BUG_ON(buffer_locked(bh));
2353
2354                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2355                         /* Found extent to map? */
2356                         if (mpd->map.m_len)
2357                                 return 0;
2358                         /* Buffer needs mapping and handle is not started? */
2359                         if (!mpd->do_map)
2360                                 return 0;
2361                         /* Everything mapped so far and we hit EOF */
2362                         break;
2363                 }
2364         } while (lblk++, (bh = bh->b_this_page) != head);
2365         /* So far everything mapped? Submit the page for IO. */
2366         if (mpd->map.m_len == 0) {
2367                 err = mpage_submit_page(mpd, head->b_page);
2368                 if (err < 0)
2369                         return err;
2370         }
2371         return lblk < blocks;
2372 }
2373
2374 /*
2375  * mpage_map_buffers - update buffers corresponding to changed extent and
2376  *                     submit fully mapped pages for IO
2377  *
2378  * @mpd - description of extent to map, on return next extent to map
2379  *
2380  * Scan buffers corresponding to changed extent (we expect corresponding pages
2381  * to be already locked) and update buffer state according to new extent state.
2382  * We map delalloc buffers to their physical location, clear unwritten bits,
2383  * and mark buffers as uninit when we perform writes to unwritten extents
2384  * and do extent conversion after IO is finished. If the last page is not fully
2385  * mapped, we update @map to the next extent in the last page that needs
2386  * mapping. Otherwise we submit the page for IO.
2387  */
2388 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2389 {
2390         struct pagevec pvec;
2391         int nr_pages, i;
2392         struct inode *inode = mpd->inode;
2393         struct buffer_head *head, *bh;
2394         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2395         pgoff_t start, end;
2396         ext4_lblk_t lblk;
2397         sector_t pblock;
2398         int err;
2399
2400         start = mpd->map.m_lblk >> bpp_bits;
2401         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2402         lblk = start << bpp_bits;
2403         pblock = mpd->map.m_pblk;
2404
2405         pagevec_init(&pvec, 0);
2406         while (start <= end) {
2407                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2408                                                 &start, end);
2409                 if (nr_pages == 0)
2410                         break;
2411                 for (i = 0; i < nr_pages; i++) {
2412                         struct page *page = pvec.pages[i];
2413
2414                         bh = head = page_buffers(page);
2415                         do {
2416                                 if (lblk < mpd->map.m_lblk)
2417                                         continue;
2418                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2419                                         /*
2420                                          * Buffer after end of mapped extent.
2421                                          * Find next buffer in the page to map.
2422                                          */
2423                                         mpd->map.m_len = 0;
2424                                         mpd->map.m_flags = 0;
2425                                         /*
2426                                          * FIXME: If dioread_nolock supports
2427                                          * blocksize < pagesize, we need to make
2428                                          * sure we add size mapped so far to
2429                                          * io_end->size as the following call
2430                                          * can submit the page for IO.
2431                                          */
2432                                         err = mpage_process_page_bufs(mpd, head,
2433                                                                       bh, lblk);
2434                                         pagevec_release(&pvec);
2435                                         if (err > 0)
2436                                                 err = 0;
2437                                         return err;
2438                                 }
2439                                 if (buffer_delay(bh)) {
2440                                         clear_buffer_delay(bh);
2441                                         bh->b_blocknr = pblock++;
2442                                 }
2443                                 clear_buffer_unwritten(bh);
2444                         } while (lblk++, (bh = bh->b_this_page) != head);
2445
2446                         /*
2447                          * FIXME: This is going to break if dioread_nolock
2448                          * supports blocksize < pagesize as we will try to
2449                          * convert potentially unmapped parts of inode.
2450                          */
2451                         mpd->io_submit.io_end->size += PAGE_SIZE;
2452                         /* Page fully mapped - let IO run! */
2453                         err = mpage_submit_page(mpd, page);
2454                         if (err < 0) {
2455                                 pagevec_release(&pvec);
2456                                 return err;
2457                         }
2458                 }
2459                 pagevec_release(&pvec);
2460         }
2461         /* Extent fully mapped and matches with page boundary. We are done. */
2462         mpd->map.m_len = 0;
2463         mpd->map.m_flags = 0;
2464         return 0;
2465 }
2466
2467 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2468 {
2469         struct inode *inode = mpd->inode;
2470         struct ext4_map_blocks *map = &mpd->map;
2471         int get_blocks_flags;
2472         int err, dioread_nolock;
2473
2474         trace_ext4_da_write_pages_extent(inode, map);
2475         /*
2476          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2477          * to convert an unwritten extent to be initialized (in the case
2478          * where we have written into one or more preallocated blocks).  It is
2479          * possible that we're going to need more metadata blocks than
2480          * previously reserved. However we must not fail because we're in
2481          * writeback and there is nothing we can do about it so it might result
2482          * in data loss.  So use reserved blocks to allocate metadata if
2483          * possible.
2484          *
2485          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2486          * the blocks in question are delalloc blocks.  This indicates
2487          * that the blocks and quotas has already been checked when
2488          * the data was copied into the page cache.
2489          */
2490         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2491                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2492                            EXT4_GET_BLOCKS_IO_SUBMIT;
2493         dioread_nolock = ext4_should_dioread_nolock(inode);
2494         if (dioread_nolock)
2495                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2496         if (map->m_flags & (1 << BH_Delay))
2497                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2498
2499         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2500         if (err < 0)
2501                 return err;
2502         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2503                 if (!mpd->io_submit.io_end->handle &&
2504                     ext4_handle_valid(handle)) {
2505                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2506                         handle->h_rsv_handle = NULL;
2507                 }
2508                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2509         }
2510
2511         BUG_ON(map->m_len == 0);
2512         if (map->m_flags & EXT4_MAP_NEW) {
2513                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2514                                    map->m_len);
2515         }
2516         return 0;
2517 }
2518
2519 /*
2520  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2521  *                               mpd->len and submit pages underlying it for IO
2522  *
2523  * @handle - handle for journal operations
2524  * @mpd - extent to map
2525  * @give_up_on_write - we set this to true iff there is a fatal error and there
2526  *                     is no hope of writing the data. The caller should discard
2527  *                     dirty pages to avoid infinite loops.
2528  *
2529  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2530  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2531  * them to initialized or split the described range from larger unwritten
2532  * extent. Note that we need not map all the described range since allocation
2533  * can return less blocks or the range is covered by more unwritten extents. We
2534  * cannot map more because we are limited by reserved transaction credits. On
2535  * the other hand we always make sure that the last touched page is fully
2536  * mapped so that it can be written out (and thus forward progress is
2537  * guaranteed). After mapping we submit all mapped pages for IO.
2538  */
2539 static int mpage_map_and_submit_extent(handle_t *handle,
2540                                        struct mpage_da_data *mpd,
2541                                        bool *give_up_on_write)
2542 {
2543         struct inode *inode = mpd->inode;
2544         struct ext4_map_blocks *map = &mpd->map;
2545         int err;
2546         loff_t disksize;
2547         int progress = 0;
2548
2549         mpd->io_submit.io_end->offset =
2550                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2551         do {
2552                 err = mpage_map_one_extent(handle, mpd);
2553                 if (err < 0) {
2554                         struct super_block *sb = inode->i_sb;
2555
2556                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2557                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2558                                 goto invalidate_dirty_pages;
2559                         /*
2560                          * Let the uper layers retry transient errors.
2561                          * In the case of ENOSPC, if ext4_count_free_blocks()
2562                          * is non-zero, a commit should free up blocks.
2563                          */
2564                         if ((err == -ENOMEM) ||
2565                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2566                                 if (progress)
2567                                         goto update_disksize;
2568                                 return err;
2569                         }
2570                         ext4_msg(sb, KERN_CRIT,
2571                                  "Delayed block allocation failed for "
2572                                  "inode %lu at logical offset %llu with"
2573                                  " max blocks %u with error %d",
2574                                  inode->i_ino,
2575                                  (unsigned long long)map->m_lblk,
2576                                  (unsigned)map->m_len, -err);
2577                         ext4_msg(sb, KERN_CRIT,
2578                                  "This should not happen!! Data will "
2579                                  "be lost\n");
2580                         if (err == -ENOSPC)
2581                                 ext4_print_free_blocks(inode);
2582                 invalidate_dirty_pages:
2583                         *give_up_on_write = true;
2584                         return err;
2585                 }
2586                 progress = 1;
2587                 /*
2588                  * Update buffer state, submit mapped pages, and get us new
2589                  * extent to map
2590                  */
2591                 err = mpage_map_and_submit_buffers(mpd);
2592                 if (err < 0)
2593                         goto update_disksize;
2594         } while (map->m_len);
2595
2596 update_disksize:
2597         /*
2598          * Update on-disk size after IO is submitted.  Races with
2599          * truncate are avoided by checking i_size under i_data_sem.
2600          */
2601         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2602         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2603                 int err2;
2604                 loff_t i_size;
2605
2606                 down_write(&EXT4_I(inode)->i_data_sem);
2607                 i_size = i_size_read(inode);
2608                 if (disksize > i_size)
2609                         disksize = i_size;
2610                 if (disksize > EXT4_I(inode)->i_disksize)
2611                         EXT4_I(inode)->i_disksize = disksize;
2612                 up_write(&EXT4_I(inode)->i_data_sem);
2613                 err2 = ext4_mark_inode_dirty(handle, inode);
2614                 if (err2)
2615                         ext4_error(inode->i_sb,
2616                                    "Failed to mark inode %lu dirty",
2617                                    inode->i_ino);
2618                 if (!err)
2619                         err = err2;
2620         }
2621         return err;
2622 }
2623
2624 /*
2625  * Calculate the total number of credits to reserve for one writepages
2626  * iteration. This is called from ext4_writepages(). We map an extent of
2627  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2628  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2629  * bpp - 1 blocks in bpp different extents.
2630  */
2631 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2632 {
2633         int bpp = ext4_journal_blocks_per_page(inode);
2634
2635         return ext4_meta_trans_blocks(inode,
2636                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2637 }
2638
2639 /*
2640  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2641  *                               and underlying extent to map
2642  *
2643  * @mpd - where to look for pages
2644  *
2645  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2646  * IO immediately. When we find a page which isn't mapped we start accumulating
2647  * extent of buffers underlying these pages that needs mapping (formed by
2648  * either delayed or unwritten buffers). We also lock the pages containing
2649  * these buffers. The extent found is returned in @mpd structure (starting at
2650  * mpd->lblk with length mpd->len blocks).
2651  *
2652  * Note that this function can attach bios to one io_end structure which are
2653  * neither logically nor physically contiguous. Although it may seem as an
2654  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2655  * case as we need to track IO to all buffers underlying a page in one io_end.
2656  */
2657 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2658 {
2659         struct address_space *mapping = mpd->inode->i_mapping;
2660         struct pagevec pvec;
2661         unsigned int nr_pages;
2662         long left = mpd->wbc->nr_to_write;
2663         pgoff_t index = mpd->first_page;
2664         pgoff_t end = mpd->last_page;
2665         int tag;
2666         int i, err = 0;
2667         int blkbits = mpd->inode->i_blkbits;
2668         ext4_lblk_t lblk;
2669         struct buffer_head *head;
2670
2671         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2672                 tag = PAGECACHE_TAG_TOWRITE;
2673         else
2674                 tag = PAGECACHE_TAG_DIRTY;
2675
2676         pagevec_init(&pvec, 0);
2677         mpd->map.m_len = 0;
2678         mpd->next_page = index;
2679         while (index <= end) {
2680                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2681                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2682                 if (nr_pages == 0)
2683                         goto out;
2684
2685                 for (i = 0; i < nr_pages; i++) {
2686                         struct page *page = pvec.pages[i];
2687
2688                         /*
2689                          * At this point, the page may be truncated or
2690                          * invalidated (changing page->mapping to NULL), or
2691                          * even swizzled back from swapper_space to tmpfs file
2692                          * mapping. However, page->index will not change
2693                          * because we have a reference on the page.
2694                          */
2695                         if (page->index > end)
2696                                 goto out;
2697
2698                         /*
2699                          * Accumulated enough dirty pages? This doesn't apply
2700                          * to WB_SYNC_ALL mode. For integrity sync we have to
2701                          * keep going because someone may be concurrently
2702                          * dirtying pages, and we might have synced a lot of
2703                          * newly appeared dirty pages, but have not synced all
2704                          * of the old dirty pages.
2705                          */
2706                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2707                                 goto out;
2708
2709                         /* If we can't merge this page, we are done. */
2710                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2711                                 goto out;
2712
2713                         lock_page(page);
2714                         /*
2715                          * If the page is no longer dirty, or its mapping no
2716                          * longer corresponds to inode we are writing (which
2717                          * means it has been truncated or invalidated), or the
2718                          * page is already under writeback and we are not doing
2719                          * a data integrity writeback, skip the page
2720                          */
2721                         if (!PageDirty(page) ||
2722                             (PageWriteback(page) &&
2723                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2724                             unlikely(page->mapping != mapping)) {
2725                                 unlock_page(page);
2726                                 continue;
2727                         }
2728
2729                         wait_on_page_writeback(page);
2730                         BUG_ON(PageWriteback(page));
2731
2732                         /*
2733                          * Should never happen but for buggy code in
2734                          * other subsystems that call
2735                          * set_page_dirty() without properly warning
2736                          * the file system first.  See [1] for more
2737                          * information.
2738                          *
2739                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2740                          */
2741                         if (!page_has_buffers(page)) {
2742                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2743                                 ClearPageDirty(page);
2744                                 unlock_page(page);
2745                                 continue;
2746                         }
2747
2748                         if (mpd->map.m_len == 0)
2749                                 mpd->first_page = page->index;
2750                         mpd->next_page = page->index + 1;
2751                         /* Add all dirty buffers to mpd */
2752                         lblk = ((ext4_lblk_t)page->index) <<
2753                                 (PAGE_SHIFT - blkbits);
2754                         head = page_buffers(page);
2755                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2756                         if (err <= 0)
2757                                 goto out;
2758                         err = 0;
2759                         left--;
2760                 }
2761                 pagevec_release(&pvec);
2762                 cond_resched();
2763         }
2764         return 0;
2765 out:
2766         pagevec_release(&pvec);
2767         return err;
2768 }
2769
2770 static int __writepage(struct page *page, struct writeback_control *wbc,
2771                        void *data)
2772 {
2773         struct address_space *mapping = data;
2774         int ret = ext4_writepage(page, wbc);
2775         mapping_set_error(mapping, ret);
2776         return ret;
2777 }
2778
2779 static int ext4_writepages(struct address_space *mapping,
2780                            struct writeback_control *wbc)
2781 {
2782         pgoff_t writeback_index = 0;
2783         long nr_to_write = wbc->nr_to_write;
2784         int range_whole = 0;
2785         int cycled = 1;
2786         handle_t *handle = NULL;
2787         struct mpage_da_data mpd;
2788         struct inode *inode = mapping->host;
2789         int needed_blocks, rsv_blocks = 0, ret = 0;
2790         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2791         bool done;
2792         struct blk_plug plug;
2793         bool give_up_on_write = false;
2794
2795         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2796                 return -EIO;
2797
2798         percpu_down_read(&sbi->s_writepages_rwsem);
2799         trace_ext4_writepages(inode, wbc);
2800
2801         if (dax_mapping(mapping)) {
2802                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2803                                                   wbc);
2804                 goto out_writepages;
2805         }
2806
2807         /*
2808          * No pages to write? This is mainly a kludge to avoid starting
2809          * a transaction for special inodes like journal inode on last iput()
2810          * because that could violate lock ordering on umount
2811          */
2812         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2813                 goto out_writepages;
2814
2815         if (ext4_should_journal_data(inode)) {
2816                 struct blk_plug plug;
2817
2818                 blk_start_plug(&plug);
2819                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2820                 blk_finish_plug(&plug);
2821                 goto out_writepages;
2822         }
2823
2824         /*
2825          * If the filesystem has aborted, it is read-only, so return
2826          * right away instead of dumping stack traces later on that
2827          * will obscure the real source of the problem.  We test
2828          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2829          * the latter could be true if the filesystem is mounted
2830          * read-only, and in that case, ext4_writepages should
2831          * *never* be called, so if that ever happens, we would want
2832          * the stack trace.
2833          */
2834         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2835                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2836                 ret = -EROFS;
2837                 goto out_writepages;
2838         }
2839
2840         if (ext4_should_dioread_nolock(inode)) {
2841                 /*
2842                  * We may need to convert up to one extent per block in
2843                  * the page and we may dirty the inode.
2844                  */
2845                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2846                                                 PAGE_SIZE >> inode->i_blkbits);
2847         }
2848
2849         /*
2850          * If we have inline data and arrive here, it means that
2851          * we will soon create the block for the 1st page, so
2852          * we'd better clear the inline data here.
2853          */
2854         if (ext4_has_inline_data(inode)) {
2855                 /* Just inode will be modified... */
2856                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2857                 if (IS_ERR(handle)) {
2858                         ret = PTR_ERR(handle);
2859                         goto out_writepages;
2860                 }
2861                 BUG_ON(ext4_test_inode_state(inode,
2862                                 EXT4_STATE_MAY_INLINE_DATA));
2863                 ext4_destroy_inline_data(handle, inode);
2864                 ext4_journal_stop(handle);
2865         }
2866
2867         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2868                 range_whole = 1;
2869
2870         if (wbc->range_cyclic) {
2871                 writeback_index = mapping->writeback_index;
2872                 if (writeback_index)
2873                         cycled = 0;
2874                 mpd.first_page = writeback_index;
2875                 mpd.last_page = -1;
2876         } else {
2877                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2878                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2879         }
2880
2881         mpd.inode = inode;
2882         mpd.wbc = wbc;
2883         ext4_io_submit_init(&mpd.io_submit, wbc);
2884 retry:
2885         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2886                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2887         done = false;
2888         blk_start_plug(&plug);
2889
2890         /*
2891          * First writeback pages that don't need mapping - we can avoid
2892          * starting a transaction unnecessarily and also avoid being blocked
2893          * in the block layer on device congestion while having transaction
2894          * started.
2895          */
2896         mpd.do_map = 0;
2897         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2898         if (!mpd.io_submit.io_end) {
2899                 ret = -ENOMEM;
2900                 goto unplug;
2901         }
2902         ret = mpage_prepare_extent_to_map(&mpd);
2903         /* Submit prepared bio */
2904         ext4_io_submit(&mpd.io_submit);
2905         ext4_put_io_end_defer(mpd.io_submit.io_end);
2906         mpd.io_submit.io_end = NULL;
2907         /* Unlock pages we didn't use */
2908         mpage_release_unused_pages(&mpd, false);
2909         if (ret < 0)
2910                 goto unplug;
2911
2912         while (!done && mpd.first_page <= mpd.last_page) {
2913                 /* For each extent of pages we use new io_end */
2914                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2915                 if (!mpd.io_submit.io_end) {
2916                         ret = -ENOMEM;
2917                         break;
2918                 }
2919
2920                 /*
2921                  * We have two constraints: We find one extent to map and we
2922                  * must always write out whole page (makes a difference when
2923                  * blocksize < pagesize) so that we don't block on IO when we
2924                  * try to write out the rest of the page. Journalled mode is
2925                  * not supported by delalloc.
2926                  */
2927                 BUG_ON(ext4_should_journal_data(inode));
2928                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2929
2930                 /* start a new transaction */
2931                 handle = ext4_journal_start_with_reserve(inode,
2932                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2933                 if (IS_ERR(handle)) {
2934                         ret = PTR_ERR(handle);
2935                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2936                                "%ld pages, ino %lu; err %d", __func__,
2937                                 wbc->nr_to_write, inode->i_ino, ret);
2938                         /* Release allocated io_end */
2939                         ext4_put_io_end(mpd.io_submit.io_end);
2940                         mpd.io_submit.io_end = NULL;
2941                         break;
2942                 }
2943                 mpd.do_map = 1;
2944
2945                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2946                 ret = mpage_prepare_extent_to_map(&mpd);
2947                 if (!ret) {
2948                         if (mpd.map.m_len)
2949                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2950                                         &give_up_on_write);
2951                         else {
2952                                 /*
2953                                  * We scanned the whole range (or exhausted
2954                                  * nr_to_write), submitted what was mapped and
2955                                  * didn't find anything needing mapping. We are
2956                                  * done.
2957                                  */
2958                                 done = true;
2959                         }
2960                 }
2961                 /*
2962                  * Caution: If the handle is synchronous,
2963                  * ext4_journal_stop() can wait for transaction commit
2964                  * to finish which may depend on writeback of pages to
2965                  * complete or on page lock to be released.  In that
2966                  * case, we have to wait until after after we have
2967                  * submitted all the IO, released page locks we hold,
2968                  * and dropped io_end reference (for extent conversion
2969                  * to be able to complete) before stopping the handle.
2970                  */
2971                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2972                         ext4_journal_stop(handle);
2973                         handle = NULL;
2974                         mpd.do_map = 0;
2975                 }
2976                 /* Submit prepared bio */
2977                 ext4_io_submit(&mpd.io_submit);
2978                 /* Unlock pages we didn't use */
2979                 mpage_release_unused_pages(&mpd, give_up_on_write);
2980                 /*
2981                  * Drop our io_end reference we got from init. We have
2982                  * to be careful and use deferred io_end finishing if
2983                  * we are still holding the transaction as we can
2984                  * release the last reference to io_end which may end
2985                  * up doing unwritten extent conversion.
2986                  */
2987                 if (handle) {
2988                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2989                         ext4_journal_stop(handle);
2990                 } else
2991                         ext4_put_io_end(mpd.io_submit.io_end);
2992                 mpd.io_submit.io_end = NULL;
2993
2994                 if (ret == -ENOSPC && sbi->s_journal) {
2995                         /*
2996                          * Commit the transaction which would
2997                          * free blocks released in the transaction
2998                          * and try again
2999                          */
3000                         jbd2_journal_force_commit_nested(sbi->s_journal);
3001                         ret = 0;
3002                         continue;
3003                 }
3004                 /* Fatal error - ENOMEM, EIO... */
3005                 if (ret)
3006                         break;
3007         }
3008 unplug:
3009         blk_finish_plug(&plug);
3010         if (!ret && !cycled && wbc->nr_to_write > 0) {
3011                 cycled = 1;
3012                 mpd.last_page = writeback_index - 1;
3013                 mpd.first_page = 0;
3014                 goto retry;
3015         }
3016
3017         /* Update index */
3018         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3019                 /*
3020                  * Set the writeback_index so that range_cyclic
3021                  * mode will write it back later
3022                  */
3023                 mapping->writeback_index = mpd.first_page;
3024
3025 out_writepages:
3026         trace_ext4_writepages_result(inode, wbc, ret,
3027                                      nr_to_write - wbc->nr_to_write);
3028         percpu_up_read(&sbi->s_writepages_rwsem);
3029         return ret;
3030 }
3031
3032 static int ext4_nonda_switch(struct super_block *sb)
3033 {
3034         s64 free_clusters, dirty_clusters;
3035         struct ext4_sb_info *sbi = EXT4_SB(sb);
3036
3037         /*
3038          * switch to non delalloc mode if we are running low
3039          * on free block. The free block accounting via percpu
3040          * counters can get slightly wrong with percpu_counter_batch getting
3041          * accumulated on each CPU without updating global counters
3042          * Delalloc need an accurate free block accounting. So switch
3043          * to non delalloc when we are near to error range.
3044          */
3045         free_clusters =
3046                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3047         dirty_clusters =
3048                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3049         /*
3050          * Start pushing delalloc when 1/2 of free blocks are dirty.
3051          */
3052         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3053                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3054
3055         if (2 * free_clusters < 3 * dirty_clusters ||
3056             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3057                 /*
3058                  * free block count is less than 150% of dirty blocks
3059                  * or free blocks is less than watermark
3060                  */
3061                 return 1;
3062         }
3063         return 0;
3064 }
3065
3066 /* We always reserve for an inode update; the superblock could be there too */
3067 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3068 {
3069         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3070                 return 1;
3071
3072         if (pos + len <= 0x7fffffffULL)
3073                 return 1;
3074
3075         /* We might need to update the superblock to set LARGE_FILE */
3076         return 2;
3077 }
3078
3079 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3080                                loff_t pos, unsigned len, unsigned flags,
3081                                struct page **pagep, void **fsdata)
3082 {
3083         int ret, retries = 0;
3084         struct page *page;
3085         pgoff_t index;
3086         struct inode *inode = mapping->host;
3087         handle_t *handle;
3088
3089         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3090                 return -EIO;
3091
3092         index = pos >> PAGE_SHIFT;
3093
3094         if (ext4_nonda_switch(inode->i_sb) ||
3095             S_ISLNK(inode->i_mode)) {
3096                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3097                 return ext4_write_begin(file, mapping, pos,
3098                                         len, flags, pagep, fsdata);
3099         }
3100         *fsdata = (void *)0;
3101         trace_ext4_da_write_begin(inode, pos, len, flags);
3102
3103         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3104                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3105                                                       pos, len, flags,
3106                                                       pagep, fsdata);
3107                 if (ret < 0)
3108                         return ret;
3109                 if (ret == 1)
3110                         return 0;
3111         }
3112
3113         /*
3114          * grab_cache_page_write_begin() can take a long time if the
3115          * system is thrashing due to memory pressure, or if the page
3116          * is being written back.  So grab it first before we start
3117          * the transaction handle.  This also allows us to allocate
3118          * the page (if needed) without using GFP_NOFS.
3119          */
3120 retry_grab:
3121         page = grab_cache_page_write_begin(mapping, index, flags);
3122         if (!page)
3123                 return -ENOMEM;
3124         unlock_page(page);
3125
3126         /*
3127          * With delayed allocation, we don't log the i_disksize update
3128          * if there is delayed block allocation. But we still need
3129          * to journalling the i_disksize update if writes to the end
3130          * of file which has an already mapped buffer.
3131          */
3132 retry_journal:
3133         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3134                                 ext4_da_write_credits(inode, pos, len));
3135         if (IS_ERR(handle)) {
3136                 put_page(page);
3137                 return PTR_ERR(handle);
3138         }
3139
3140         lock_page(page);
3141         if (page->mapping != mapping) {
3142                 /* The page got truncated from under us */
3143                 unlock_page(page);
3144                 put_page(page);
3145                 ext4_journal_stop(handle);
3146                 goto retry_grab;
3147         }
3148         /* In case writeback began while the page was unlocked */
3149         wait_for_stable_page(page);
3150
3151 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3152         ret = ext4_block_write_begin(page, pos, len,
3153                                      ext4_da_get_block_prep);
3154 #else
3155         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3156 #endif
3157         if (ret < 0) {
3158                 unlock_page(page);
3159                 ext4_journal_stop(handle);
3160                 /*
3161                  * block_write_begin may have instantiated a few blocks
3162                  * outside i_size.  Trim these off again. Don't need
3163                  * i_size_read because we hold i_mutex.
3164                  */
3165                 if (pos + len > inode->i_size)
3166                         ext4_truncate_failed_write(inode);
3167
3168                 if (ret == -ENOSPC &&
3169                     ext4_should_retry_alloc(inode->i_sb, &retries))
3170                         goto retry_journal;
3171
3172                 put_page(page);
3173                 return ret;
3174         }
3175
3176         *pagep = page;
3177         return ret;
3178 }
3179
3180 /*
3181  * Check if we should update i_disksize
3182  * when write to the end of file but not require block allocation
3183  */
3184 static int ext4_da_should_update_i_disksize(struct page *page,
3185                                             unsigned long offset)
3186 {
3187         struct buffer_head *bh;
3188         struct inode *inode = page->mapping->host;
3189         unsigned int idx;
3190         int i;
3191
3192         bh = page_buffers(page);
3193         idx = offset >> inode->i_blkbits;
3194
3195         for (i = 0; i < idx; i++)
3196                 bh = bh->b_this_page;
3197
3198         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3199                 return 0;
3200         return 1;
3201 }
3202
3203 static int ext4_da_write_end(struct file *file,
3204                              struct address_space *mapping,
3205                              loff_t pos, unsigned len, unsigned copied,
3206                              struct page *page, void *fsdata)
3207 {
3208         struct inode *inode = mapping->host;
3209         int ret = 0, ret2;
3210         handle_t *handle = ext4_journal_current_handle();
3211         loff_t new_i_size;
3212         unsigned long start, end;
3213         int write_mode = (int)(unsigned long)fsdata;
3214
3215         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3216                 return ext4_write_end(file, mapping, pos,
3217                                       len, copied, page, fsdata);
3218
3219         trace_ext4_da_write_end(inode, pos, len, copied);
3220         start = pos & (PAGE_SIZE - 1);
3221         end = start + copied - 1;
3222
3223         /*
3224          * generic_write_end() will run mark_inode_dirty() if i_size
3225          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3226          * into that.
3227          */
3228         new_i_size = pos + copied;
3229         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3230                 if (ext4_has_inline_data(inode) ||
3231                     ext4_da_should_update_i_disksize(page, end)) {
3232                         ext4_update_i_disksize(inode, new_i_size);
3233                         /* We need to mark inode dirty even if
3234                          * new_i_size is less that inode->i_size
3235                          * bu greater than i_disksize.(hint delalloc)
3236                          */
3237                         ext4_mark_inode_dirty(handle, inode);
3238                 }
3239         }
3240
3241         if (write_mode != CONVERT_INLINE_DATA &&
3242             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3243             ext4_has_inline_data(inode))
3244                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3245                                                      page);
3246         else
3247                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3248                                                         page, fsdata);
3249
3250         copied = ret2;
3251         if (ret2 < 0)
3252                 ret = ret2;
3253         ret2 = ext4_journal_stop(handle);
3254         if (!ret)
3255                 ret = ret2;
3256
3257         return ret ? ret : copied;
3258 }
3259
3260 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3261                                    unsigned int length)
3262 {
3263         /*
3264          * Drop reserved blocks
3265          */
3266         BUG_ON(!PageLocked(page));
3267         if (!page_has_buffers(page))
3268                 goto out;
3269
3270         ext4_da_page_release_reservation(page, offset, length);
3271
3272 out:
3273         ext4_invalidatepage(page, offset, length);
3274
3275         return;
3276 }
3277
3278 /*
3279  * Force all delayed allocation blocks to be allocated for a given inode.
3280  */
3281 int ext4_alloc_da_blocks(struct inode *inode)
3282 {
3283         trace_ext4_alloc_da_blocks(inode);
3284
3285         if (!EXT4_I(inode)->i_reserved_data_blocks)
3286                 return 0;
3287
3288         /*
3289          * We do something simple for now.  The filemap_flush() will
3290          * also start triggering a write of the data blocks, which is
3291          * not strictly speaking necessary (and for users of
3292          * laptop_mode, not even desirable).  However, to do otherwise
3293          * would require replicating code paths in:
3294          *
3295          * ext4_writepages() ->
3296          *    write_cache_pages() ---> (via passed in callback function)
3297          *        __mpage_da_writepage() -->
3298          *           mpage_add_bh_to_extent()
3299          *           mpage_da_map_blocks()
3300          *
3301          * The problem is that write_cache_pages(), located in
3302          * mm/page-writeback.c, marks pages clean in preparation for
3303          * doing I/O, which is not desirable if we're not planning on
3304          * doing I/O at all.
3305          *
3306          * We could call write_cache_pages(), and then redirty all of
3307          * the pages by calling redirty_page_for_writepage() but that
3308          * would be ugly in the extreme.  So instead we would need to
3309          * replicate parts of the code in the above functions,
3310          * simplifying them because we wouldn't actually intend to
3311          * write out the pages, but rather only collect contiguous
3312          * logical block extents, call the multi-block allocator, and
3313          * then update the buffer heads with the block allocations.
3314          *
3315          * For now, though, we'll cheat by calling filemap_flush(),
3316          * which will map the blocks, and start the I/O, but not
3317          * actually wait for the I/O to complete.
3318          */
3319         return filemap_flush(inode->i_mapping);
3320 }
3321
3322 /*
3323  * bmap() is special.  It gets used by applications such as lilo and by
3324  * the swapper to find the on-disk block of a specific piece of data.
3325  *
3326  * Naturally, this is dangerous if the block concerned is still in the
3327  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3328  * filesystem and enables swap, then they may get a nasty shock when the
3329  * data getting swapped to that swapfile suddenly gets overwritten by
3330  * the original zero's written out previously to the journal and
3331  * awaiting writeback in the kernel's buffer cache.
3332  *
3333  * So, if we see any bmap calls here on a modified, data-journaled file,
3334  * take extra steps to flush any blocks which might be in the cache.
3335  */
3336 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3337 {
3338         struct inode *inode = mapping->host;
3339         journal_t *journal;
3340         int err;
3341
3342         /*
3343          * We can get here for an inline file via the FIBMAP ioctl
3344          */
3345         if (ext4_has_inline_data(inode))
3346                 return 0;
3347
3348         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3349                         test_opt(inode->i_sb, DELALLOC)) {
3350                 /*
3351                  * With delalloc we want to sync the file
3352                  * so that we can make sure we allocate
3353                  * blocks for file
3354                  */
3355                 filemap_write_and_wait(mapping);
3356         }
3357
3358         if (EXT4_JOURNAL(inode) &&
3359             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3360                 /*
3361                  * This is a REALLY heavyweight approach, but the use of
3362                  * bmap on dirty files is expected to be extremely rare:
3363                  * only if we run lilo or swapon on a freshly made file
3364                  * do we expect this to happen.
3365                  *
3366                  * (bmap requires CAP_SYS_RAWIO so this does not
3367                  * represent an unprivileged user DOS attack --- we'd be
3368                  * in trouble if mortal users could trigger this path at
3369                  * will.)
3370                  *
3371                  * NB. EXT4_STATE_JDATA is not set on files other than
3372                  * regular files.  If somebody wants to bmap a directory
3373                  * or symlink and gets confused because the buffer
3374                  * hasn't yet been flushed to disk, they deserve
3375                  * everything they get.
3376                  */
3377
3378                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3379                 journal = EXT4_JOURNAL(inode);
3380                 jbd2_journal_lock_updates(journal);
3381                 err = jbd2_journal_flush(journal);
3382                 jbd2_journal_unlock_updates(journal);
3383
3384                 if (err)
3385                         return 0;
3386         }
3387
3388         return generic_block_bmap(mapping, block, ext4_get_block);
3389 }
3390
3391 static int ext4_readpage(struct file *file, struct page *page)
3392 {
3393         int ret = -EAGAIN;
3394         struct inode *inode = page->mapping->host;
3395
3396         trace_ext4_readpage(page);
3397
3398         if (ext4_has_inline_data(inode))
3399                 ret = ext4_readpage_inline(inode, page);
3400
3401         if (ret == -EAGAIN)
3402                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3403
3404         return ret;
3405 }
3406
3407 static int
3408 ext4_readpages(struct file *file, struct address_space *mapping,
3409                 struct list_head *pages, unsigned nr_pages)
3410 {
3411         struct inode *inode = mapping->host;
3412
3413         /* If the file has inline data, no need to do readpages. */
3414         if (ext4_has_inline_data(inode))
3415                 return 0;
3416
3417         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3418 }
3419
3420 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3421                                 unsigned int length)
3422 {
3423         trace_ext4_invalidatepage(page, offset, length);
3424
3425         /* No journalling happens on data buffers when this function is used */
3426         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3427
3428         block_invalidatepage(page, offset, length);
3429 }
3430
3431 static int __ext4_journalled_invalidatepage(struct page *page,
3432                                             unsigned int offset,
3433                                             unsigned int length)
3434 {
3435         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3436
3437         trace_ext4_journalled_invalidatepage(page, offset, length);
3438
3439         /*
3440          * If it's a full truncate we just forget about the pending dirtying
3441          */
3442         if (offset == 0 && length == PAGE_SIZE)
3443                 ClearPageChecked(page);
3444
3445         return jbd2_journal_invalidatepage(journal, page, offset, length);
3446 }
3447
3448 /* Wrapper for aops... */
3449 static void ext4_journalled_invalidatepage(struct page *page,
3450                                            unsigned int offset,
3451                                            unsigned int length)
3452 {
3453         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3454 }
3455
3456 static int ext4_releasepage(struct page *page, gfp_t wait)
3457 {
3458         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3459
3460         trace_ext4_releasepage(page);
3461
3462         /* Page has dirty journalled data -> cannot release */
3463         if (PageChecked(page))
3464                 return 0;
3465         if (journal)
3466                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3467         else
3468                 return try_to_free_buffers(page);
3469 }
3470
3471 #ifdef CONFIG_FS_DAX
3472 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3473                             unsigned flags, struct iomap *iomap)
3474 {
3475         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3476         unsigned int blkbits = inode->i_blkbits;
3477         unsigned long first_block, last_block;
3478         struct ext4_map_blocks map;
3479         int ret;
3480
3481         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3482                 return -EINVAL;
3483         first_block = offset >> blkbits;
3484         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3485                            EXT4_MAX_LOGICAL_BLOCK);
3486
3487         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3488                 return -ERANGE;
3489
3490         map.m_lblk = first_block;
3491         map.m_len = last_block - first_block + 1;
3492
3493         if (!(flags & IOMAP_WRITE)) {
3494                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3495         } else {
3496                 int dio_credits;
3497                 handle_t *handle;
3498                 int retries = 0;
3499
3500                 /* Trim mapping request to maximum we can map at once for DIO */
3501                 if (map.m_len > DIO_MAX_BLOCKS)
3502                         map.m_len = DIO_MAX_BLOCKS;
3503                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3504 retry:
3505                 /*
3506                  * Either we allocate blocks and then we don't get unwritten
3507                  * extent so we have reserved enough credits, or the blocks
3508                  * are already allocated and unwritten and in that case
3509                  * extent conversion fits in the credits as well.
3510                  */
3511                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3512                                             dio_credits);
3513                 if (IS_ERR(handle))
3514                         return PTR_ERR(handle);
3515
3516                 ret = ext4_map_blocks(handle, inode, &map,
3517                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3518                 if (ret < 0) {
3519                         ext4_journal_stop(handle);
3520                         if (ret == -ENOSPC &&
3521                             ext4_should_retry_alloc(inode->i_sb, &retries))
3522                                 goto retry;
3523                         return ret;
3524                 }
3525
3526                 /*
3527                  * If we added blocks beyond i_size, we need to make sure they
3528                  * will get truncated if we crash before updating i_size in
3529                  * ext4_iomap_end(). For faults we don't need to do that (and
3530                  * even cannot because for orphan list operations inode_lock is
3531                  * required) - if we happen to instantiate block beyond i_size,
3532                  * it is because we race with truncate which has already added
3533                  * the inode to the orphan list.
3534                  */
3535                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3536                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3537                         int err;
3538
3539                         err = ext4_orphan_add(handle, inode);
3540                         if (err < 0) {
3541                                 ext4_journal_stop(handle);
3542                                 return err;
3543                         }
3544                 }
3545                 ext4_journal_stop(handle);
3546         }
3547
3548         iomap->flags = 0;
3549         iomap->bdev = inode->i_sb->s_bdev;
3550         iomap->dax_dev = sbi->s_daxdev;
3551         iomap->offset = first_block << blkbits;
3552
3553         if (ret == 0) {
3554                 iomap->type = IOMAP_HOLE;
3555                 iomap->blkno = IOMAP_NULL_BLOCK;
3556                 iomap->length = (u64)map.m_len << blkbits;
3557         } else {
3558                 if (map.m_flags & EXT4_MAP_MAPPED) {
3559                         iomap->type = IOMAP_MAPPED;
3560                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3561                         iomap->type = IOMAP_UNWRITTEN;
3562                 } else {
3563                         WARN_ON_ONCE(1);
3564                         return -EIO;
3565                 }
3566                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3567                 iomap->length = (u64)map.m_len << blkbits;
3568         }
3569
3570         if (map.m_flags & EXT4_MAP_NEW)
3571                 iomap->flags |= IOMAP_F_NEW;
3572         return 0;
3573 }
3574
3575 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3576                           ssize_t written, unsigned flags, struct iomap *iomap)
3577 {
3578         int ret = 0;
3579         handle_t *handle;
3580         int blkbits = inode->i_blkbits;
3581         bool truncate = false;
3582
3583         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3584                 return 0;
3585
3586         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3587         if (IS_ERR(handle)) {
3588                 ret = PTR_ERR(handle);
3589                 goto orphan_del;
3590         }
3591         if (ext4_update_inode_size(inode, offset + written))
3592                 ext4_mark_inode_dirty(handle, inode);
3593         /*
3594          * We may need to truncate allocated but not written blocks beyond EOF.
3595          */
3596         if (iomap->offset + iomap->length > 
3597             ALIGN(inode->i_size, 1 << blkbits)) {
3598                 ext4_lblk_t written_blk, end_blk;
3599
3600                 written_blk = (offset + written) >> blkbits;
3601                 end_blk = (offset + length) >> blkbits;
3602                 if (written_blk < end_blk && ext4_can_truncate(inode))
3603                         truncate = true;
3604         }
3605         /*
3606          * Remove inode from orphan list if we were extending a inode and
3607          * everything went fine.
3608          */
3609         if (!truncate && inode->i_nlink &&
3610             !list_empty(&EXT4_I(inode)->i_orphan))
3611                 ext4_orphan_del(handle, inode);
3612         ext4_journal_stop(handle);
3613         if (truncate) {
3614                 ext4_truncate_failed_write(inode);
3615 orphan_del:
3616                 /*
3617                  * If truncate failed early the inode might still be on the
3618                  * orphan list; we need to make sure the inode is removed from
3619                  * the orphan list in that case.
3620                  */
3621                 if (inode->i_nlink)
3622                         ext4_orphan_del(NULL, inode);
3623         }
3624         return ret;
3625 }
3626
3627 const struct iomap_ops ext4_iomap_ops = {
3628         .iomap_begin            = ext4_iomap_begin,
3629         .iomap_end              = ext4_iomap_end,
3630 };
3631
3632 #endif
3633
3634 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3635                             ssize_t size, void *private)
3636 {
3637         ext4_io_end_t *io_end = private;
3638
3639         /* if not async direct IO just return */
3640         if (!io_end)
3641                 return 0;
3642
3643         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3644                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3645                   io_end, io_end->inode->i_ino, iocb, offset, size);
3646
3647         /*
3648          * Error during AIO DIO. We cannot convert unwritten extents as the
3649          * data was not written. Just clear the unwritten flag and drop io_end.
3650          */
3651         if (size <= 0) {
3652                 ext4_clear_io_unwritten_flag(io_end);
3653                 size = 0;
3654         }
3655         io_end->offset = offset;
3656         io_end->size = size;
3657         ext4_put_io_end(io_end);
3658
3659         return 0;
3660 }
3661
3662 /*
3663  * Handling of direct IO writes.
3664  *
3665  * For ext4 extent files, ext4 will do direct-io write even to holes,
3666  * preallocated extents, and those write extend the file, no need to
3667  * fall back to buffered IO.
3668  *
3669  * For holes, we fallocate those blocks, mark them as unwritten
3670  * If those blocks were preallocated, we mark sure they are split, but
3671  * still keep the range to write as unwritten.
3672  *
3673  * The unwritten extents will be converted to written when DIO is completed.
3674  * For async direct IO, since the IO may still pending when return, we
3675  * set up an end_io call back function, which will do the conversion
3676  * when async direct IO completed.
3677  *
3678  * If the O_DIRECT write will extend the file then add this inode to the
3679  * orphan list.  So recovery will truncate it back to the original size
3680  * if the machine crashes during the write.
3681  *
3682  */
3683 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3684 {
3685         struct file *file = iocb->ki_filp;
3686         struct inode *inode = file->f_mapping->host;
3687         ssize_t ret;
3688         loff_t offset = iocb->ki_pos;
3689         size_t count = iov_iter_count(iter);
3690         int overwrite = 0;
3691         get_block_t *get_block_func = NULL;
3692         int dio_flags = 0;
3693         loff_t final_size = offset + count;
3694         int orphan = 0;
3695         handle_t *handle;
3696
3697         if (final_size > inode->i_size) {
3698                 /* Credits for sb + inode write */
3699                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3700                 if (IS_ERR(handle)) {
3701                         ret = PTR_ERR(handle);
3702                         goto out;
3703                 }
3704                 ret = ext4_orphan_add(handle, inode);
3705                 if (ret) {
3706                         ext4_journal_stop(handle);
3707                         goto out;
3708                 }
3709                 orphan = 1;
3710                 ext4_update_i_disksize(inode, inode->i_size);
3711                 ext4_journal_stop(handle);
3712         }
3713
3714         BUG_ON(iocb->private == NULL);
3715
3716         /*
3717          * Make all waiters for direct IO properly wait also for extent
3718          * conversion. This also disallows race between truncate() and
3719          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3720          */
3721         inode_dio_begin(inode);
3722
3723         /* If we do a overwrite dio, i_mutex locking can be released */
3724         overwrite = *((int *)iocb->private);
3725
3726         if (overwrite)
3727                 inode_unlock(inode);
3728
3729         /*
3730          * For extent mapped files we could direct write to holes and fallocate.
3731          *
3732          * Allocated blocks to fill the hole are marked as unwritten to prevent
3733          * parallel buffered read to expose the stale data before DIO complete
3734          * the data IO.
3735          *
3736          * As to previously fallocated extents, ext4 get_block will just simply
3737          * mark the buffer mapped but still keep the extents unwritten.
3738          *
3739          * For non AIO case, we will convert those unwritten extents to written
3740          * after return back from blockdev_direct_IO. That way we save us from
3741          * allocating io_end structure and also the overhead of offloading
3742          * the extent convertion to a workqueue.
3743          *
3744          * For async DIO, the conversion needs to be deferred when the
3745          * IO is completed. The ext4 end_io callback function will be
3746          * called to take care of the conversion work.  Here for async
3747          * case, we allocate an io_end structure to hook to the iocb.
3748          */
3749         iocb->private = NULL;
3750         if (overwrite)
3751                 get_block_func = ext4_dio_get_block_overwrite;
3752         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3753                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3754                 get_block_func = ext4_dio_get_block;
3755                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3756         } else if (is_sync_kiocb(iocb)) {
3757                 get_block_func = ext4_dio_get_block_unwritten_sync;
3758                 dio_flags = DIO_LOCKING;
3759         } else {
3760                 get_block_func = ext4_dio_get_block_unwritten_async;
3761                 dio_flags = DIO_LOCKING;
3762         }
3763         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3764                                    get_block_func, ext4_end_io_dio, NULL,
3765                                    dio_flags);
3766
3767         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3768                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3769                 int err;
3770                 /*
3771                  * for non AIO case, since the IO is already
3772                  * completed, we could do the conversion right here
3773                  */
3774                 err = ext4_convert_unwritten_extents(NULL, inode,
3775                                                      offset, ret);
3776                 if (err < 0)
3777                         ret = err;
3778                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3779         }
3780
3781         inode_dio_end(inode);
3782         /* take i_mutex locking again if we do a ovewrite dio */
3783         if (overwrite)
3784                 inode_lock(inode);
3785
3786         if (ret < 0 && final_size > inode->i_size)
3787                 ext4_truncate_failed_write(inode);
3788
3789         /* Handle extending of i_size after direct IO write */
3790         if (orphan) {
3791                 int err;
3792
3793                 /* Credits for sb + inode write */
3794                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3795                 if (IS_ERR(handle)) {
3796                         /*
3797                          * We wrote the data but cannot extend
3798                          * i_size. Bail out. In async io case, we do
3799                          * not return error here because we have
3800                          * already submmitted the corresponding
3801                          * bio. Returning error here makes the caller
3802                          * think that this IO is done and failed
3803                          * resulting in race with bio's completion
3804                          * handler.
3805                          */
3806                         if (!ret)
3807                                 ret = PTR_ERR(handle);
3808                         if (inode->i_nlink)
3809                                 ext4_orphan_del(NULL, inode);
3810
3811                         goto out;
3812                 }
3813                 if (inode->i_nlink)
3814                         ext4_orphan_del(handle, inode);
3815                 if (ret > 0) {
3816                         loff_t end = offset + ret;
3817                         if (end > inode->i_size) {
3818                                 ext4_update_i_disksize(inode, end);
3819                                 i_size_write(inode, end);
3820                                 /*
3821                                  * We're going to return a positive `ret'
3822                                  * here due to non-zero-length I/O, so there's
3823                                  * no way of reporting error returns from
3824                                  * ext4_mark_inode_dirty() to userspace.  So
3825                                  * ignore it.
3826                                  */
3827                                 ext4_mark_inode_dirty(handle, inode);
3828                         }
3829                 }
3830                 err = ext4_journal_stop(handle);
3831                 if (ret == 0)
3832                         ret = err;
3833         }
3834 out:
3835         return ret;
3836 }
3837
3838 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3839 {
3840         struct address_space *mapping = iocb->ki_filp->f_mapping;
3841         struct inode *inode = mapping->host;
3842         size_t count = iov_iter_count(iter);
3843         ssize_t ret;
3844         loff_t offset = iocb->ki_pos;
3845         loff_t size = i_size_read(inode);
3846
3847         if (offset >= size)
3848                 return 0;
3849
3850         /*
3851          * Shared inode_lock is enough for us - it protects against concurrent
3852          * writes & truncates and since we take care of writing back page cache,
3853          * we are protected against page writeback as well.
3854          */
3855         if (iocb->ki_flags & IOCB_NOWAIT) {
3856                 if (!inode_trylock_shared(inode))
3857                         return -EAGAIN;
3858         } else {
3859                 inode_lock_shared(inode);
3860         }
3861
3862         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3863                                            iocb->ki_pos + count - 1);
3864         if (ret)
3865                 goto out_unlock;
3866         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3867                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3868 out_unlock:
3869         inode_unlock_shared(inode);
3870         return ret;
3871 }
3872
3873 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3874 {
3875         struct file *file = iocb->ki_filp;
3876         struct inode *inode = file->f_mapping->host;
3877         size_t count = iov_iter_count(iter);
3878         loff_t offset = iocb->ki_pos;
3879         ssize_t ret;
3880
3881 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3882         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3883                 return 0;
3884 #endif
3885
3886         /*
3887          * If we are doing data journalling we don't support O_DIRECT
3888          */
3889         if (ext4_should_journal_data(inode))
3890                 return 0;
3891
3892         /* Let buffer I/O handle the inline data case. */
3893         if (ext4_has_inline_data(inode))
3894                 return 0;
3895
3896         /* DAX uses iomap path now */
3897         if (WARN_ON_ONCE(IS_DAX(inode)))
3898                 return 0;
3899
3900         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3901         if (iov_iter_rw(iter) == READ)
3902                 ret = ext4_direct_IO_read(iocb, iter);
3903         else
3904                 ret = ext4_direct_IO_write(iocb, iter);
3905         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3906         return ret;
3907 }
3908
3909 /*
3910  * Pages can be marked dirty completely asynchronously from ext4's journalling
3911  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3912  * much here because ->set_page_dirty is called under VFS locks.  The page is
3913  * not necessarily locked.
3914  *
3915  * We cannot just dirty the page and leave attached buffers clean, because the
3916  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3917  * or jbddirty because all the journalling code will explode.
3918  *
3919  * So what we do is to mark the page "pending dirty" and next time writepage
3920  * is called, propagate that into the buffers appropriately.
3921  */
3922 static int ext4_journalled_set_page_dirty(struct page *page)
3923 {
3924         SetPageChecked(page);
3925         return __set_page_dirty_nobuffers(page);
3926 }
3927
3928 static int ext4_set_page_dirty(struct page *page)
3929 {
3930         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3931         WARN_ON_ONCE(!page_has_buffers(page));
3932         return __set_page_dirty_buffers(page);
3933 }
3934
3935 static const struct address_space_operations ext4_aops = {
3936         .readpage               = ext4_readpage,
3937         .readpages              = ext4_readpages,
3938         .writepage              = ext4_writepage,
3939         .writepages             = ext4_writepages,
3940         .write_begin            = ext4_write_begin,
3941         .write_end              = ext4_write_end,
3942         .set_page_dirty         = ext4_set_page_dirty,
3943         .bmap                   = ext4_bmap,
3944         .invalidatepage         = ext4_invalidatepage,
3945         .releasepage            = ext4_releasepage,
3946         .direct_IO              = ext4_direct_IO,
3947         .migratepage            = buffer_migrate_page,
3948         .is_partially_uptodate  = block_is_partially_uptodate,
3949         .error_remove_page      = generic_error_remove_page,
3950 };
3951
3952 static const struct address_space_operations ext4_journalled_aops = {
3953         .readpage               = ext4_readpage,
3954         .readpages              = ext4_readpages,
3955         .writepage              = ext4_writepage,
3956         .writepages             = ext4_writepages,
3957         .write_begin            = ext4_write_begin,
3958         .write_end              = ext4_journalled_write_end,
3959         .set_page_dirty         = ext4_journalled_set_page_dirty,
3960         .bmap                   = ext4_bmap,
3961         .invalidatepage         = ext4_journalled_invalidatepage,
3962         .releasepage            = ext4_releasepage,
3963         .direct_IO              = ext4_direct_IO,
3964         .is_partially_uptodate  = block_is_partially_uptodate,
3965         .error_remove_page      = generic_error_remove_page,
3966 };
3967
3968 static const struct address_space_operations ext4_da_aops = {
3969         .readpage               = ext4_readpage,
3970         .readpages              = ext4_readpages,
3971         .writepage              = ext4_writepage,
3972         .writepages             = ext4_writepages,
3973         .write_begin            = ext4_da_write_begin,
3974         .write_end              = ext4_da_write_end,
3975         .set_page_dirty         = ext4_set_page_dirty,
3976         .bmap                   = ext4_bmap,
3977         .invalidatepage         = ext4_da_invalidatepage,
3978         .releasepage            = ext4_releasepage,
3979         .direct_IO              = ext4_direct_IO,
3980         .migratepage            = buffer_migrate_page,
3981         .is_partially_uptodate  = block_is_partially_uptodate,
3982         .error_remove_page      = generic_error_remove_page,
3983 };
3984
3985 void ext4_set_aops(struct inode *inode)
3986 {
3987         switch (ext4_inode_journal_mode(inode)) {
3988         case EXT4_INODE_ORDERED_DATA_MODE:
3989         case EXT4_INODE_WRITEBACK_DATA_MODE:
3990                 break;
3991         case EXT4_INODE_JOURNAL_DATA_MODE:
3992                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3993                 return;
3994         default:
3995                 BUG();
3996         }
3997         if (test_opt(inode->i_sb, DELALLOC))
3998                 inode->i_mapping->a_ops = &ext4_da_aops;
3999         else
4000                 inode->i_mapping->a_ops = &ext4_aops;
4001 }
4002
4003 static int __ext4_block_zero_page_range(handle_t *handle,
4004                 struct address_space *mapping, loff_t from, loff_t length)
4005 {
4006         ext4_fsblk_t index = from >> PAGE_SHIFT;
4007         unsigned offset = from & (PAGE_SIZE-1);
4008         unsigned blocksize, pos;
4009         ext4_lblk_t iblock;
4010         struct inode *inode = mapping->host;
4011         struct buffer_head *bh;
4012         struct page *page;
4013         int err = 0;
4014
4015         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4016                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4017         if (!page)
4018                 return -ENOMEM;
4019
4020         blocksize = inode->i_sb->s_blocksize;
4021
4022         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4023
4024         if (!page_has_buffers(page))
4025                 create_empty_buffers(page, blocksize, 0);
4026
4027         /* Find the buffer that contains "offset" */
4028         bh = page_buffers(page);
4029         pos = blocksize;
4030         while (offset >= pos) {
4031                 bh = bh->b_this_page;
4032                 iblock++;
4033                 pos += blocksize;
4034         }
4035         if (buffer_freed(bh)) {
4036                 BUFFER_TRACE(bh, "freed: skip");
4037                 goto unlock;
4038         }
4039         if (!buffer_mapped(bh)) {
4040                 BUFFER_TRACE(bh, "unmapped");
4041                 ext4_get_block(inode, iblock, bh, 0);
4042                 /* unmapped? It's a hole - nothing to do */
4043                 if (!buffer_mapped(bh)) {
4044                         BUFFER_TRACE(bh, "still unmapped");
4045                         goto unlock;
4046                 }
4047         }
4048
4049         /* Ok, it's mapped. Make sure it's up-to-date */
4050         if (PageUptodate(page))
4051                 set_buffer_uptodate(bh);
4052
4053         if (!buffer_uptodate(bh)) {
4054                 err = -EIO;
4055                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4056                 wait_on_buffer(bh);
4057                 /* Uhhuh. Read error. Complain and punt. */
4058                 if (!buffer_uptodate(bh))
4059                         goto unlock;
4060                 if (S_ISREG(inode->i_mode) &&
4061                     ext4_encrypted_inode(inode)) {
4062                         /* We expect the key to be set. */
4063                         BUG_ON(!fscrypt_has_encryption_key(inode));
4064                         BUG_ON(blocksize != PAGE_SIZE);
4065                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4066                                                 page, PAGE_SIZE, 0, page->index));
4067                 }
4068         }
4069         if (ext4_should_journal_data(inode)) {
4070                 BUFFER_TRACE(bh, "get write access");
4071                 err = ext4_journal_get_write_access(handle, bh);
4072                 if (err)
4073                         goto unlock;
4074         }
4075         zero_user(page, offset, length);
4076         BUFFER_TRACE(bh, "zeroed end of block");
4077
4078         if (ext4_should_journal_data(inode)) {
4079                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4080         } else {
4081                 err = 0;
4082                 mark_buffer_dirty(bh);
4083                 if (ext4_should_order_data(inode))
4084                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4085                                         length);
4086         }
4087
4088 unlock:
4089         unlock_page(page);
4090         put_page(page);
4091         return err;
4092 }
4093
4094 /*
4095  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4096  * starting from file offset 'from'.  The range to be zero'd must
4097  * be contained with in one block.  If the specified range exceeds
4098  * the end of the block it will be shortened to end of the block
4099  * that cooresponds to 'from'
4100  */
4101 static int ext4_block_zero_page_range(handle_t *handle,
4102                 struct address_space *mapping, loff_t from, loff_t length)
4103 {
4104         struct inode *inode = mapping->host;
4105         unsigned offset = from & (PAGE_SIZE-1);
4106         unsigned blocksize = inode->i_sb->s_blocksize;
4107         unsigned max = blocksize - (offset & (blocksize - 1));
4108
4109         /*
4110          * correct length if it does not fall between
4111          * 'from' and the end of the block
4112          */
4113         if (length > max || length < 0)
4114                 length = max;
4115
4116         if (IS_DAX(inode)) {
4117                 return iomap_zero_range(inode, from, length, NULL,
4118                                         &ext4_iomap_ops);
4119         }
4120         return __ext4_block_zero_page_range(handle, mapping, from, length);
4121 }
4122
4123 /*
4124  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4125  * up to the end of the block which corresponds to `from'.
4126  * This required during truncate. We need to physically zero the tail end
4127  * of that block so it doesn't yield old data if the file is later grown.
4128  */
4129 static int ext4_block_truncate_page(handle_t *handle,
4130                 struct address_space *mapping, loff_t from)
4131 {
4132         unsigned offset = from & (PAGE_SIZE-1);
4133         unsigned length;
4134         unsigned blocksize;
4135         struct inode *inode = mapping->host;
4136
4137         /* If we are processing an encrypted inode during orphan list handling */
4138         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4139                 return 0;
4140
4141         blocksize = inode->i_sb->s_blocksize;
4142         length = blocksize - (offset & (blocksize - 1));
4143
4144         return ext4_block_zero_page_range(handle, mapping, from, length);
4145 }
4146
4147 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4148                              loff_t lstart, loff_t length)
4149 {
4150         struct super_block *sb = inode->i_sb;
4151         struct address_space *mapping = inode->i_mapping;
4152         unsigned partial_start, partial_end;
4153         ext4_fsblk_t start, end;
4154         loff_t byte_end = (lstart + length - 1);
4155         int err = 0;
4156
4157         partial_start = lstart & (sb->s_blocksize - 1);
4158         partial_end = byte_end & (sb->s_blocksize - 1);
4159
4160         start = lstart >> sb->s_blocksize_bits;
4161         end = byte_end >> sb->s_blocksize_bits;
4162
4163         /* Handle partial zero within the single block */
4164         if (start == end &&
4165             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4166                 err = ext4_block_zero_page_range(handle, mapping,
4167                                                  lstart, length);
4168                 return err;
4169         }
4170         /* Handle partial zero out on the start of the range */
4171         if (partial_start) {
4172                 err = ext4_block_zero_page_range(handle, mapping,
4173                                                  lstart, sb->s_blocksize);
4174                 if (err)
4175                         return err;
4176         }
4177         /* Handle partial zero out on the end of the range */
4178         if (partial_end != sb->s_blocksize - 1)
4179                 err = ext4_block_zero_page_range(handle, mapping,
4180                                                  byte_end - partial_end,
4181                                                  partial_end + 1);
4182         return err;
4183 }
4184
4185 int ext4_can_truncate(struct inode *inode)
4186 {
4187         if (S_ISREG(inode->i_mode))
4188                 return 1;
4189         if (S_ISDIR(inode->i_mode))
4190                 return 1;
4191         if (S_ISLNK(inode->i_mode))
4192                 return !ext4_inode_is_fast_symlink(inode);
4193         return 0;
4194 }
4195
4196 /*
4197  * We have to make sure i_disksize gets properly updated before we truncate
4198  * page cache due to hole punching or zero range. Otherwise i_disksize update
4199  * can get lost as it may have been postponed to submission of writeback but
4200  * that will never happen after we truncate page cache.
4201  */
4202 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4203                                       loff_t len)
4204 {
4205         handle_t *handle;
4206         loff_t size = i_size_read(inode);
4207
4208         WARN_ON(!inode_is_locked(inode));
4209         if (offset > size || offset + len < size)
4210                 return 0;
4211
4212         if (EXT4_I(inode)->i_disksize >= size)
4213                 return 0;
4214
4215         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4216         if (IS_ERR(handle))
4217                 return PTR_ERR(handle);
4218         ext4_update_i_disksize(inode, size);
4219         ext4_mark_inode_dirty(handle, inode);
4220         ext4_journal_stop(handle);
4221
4222         return 0;
4223 }
4224
4225 /*
4226  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4227  * associated with the given offset and length
4228  *
4229  * @inode:  File inode
4230  * @offset: The offset where the hole will begin
4231  * @len:    The length of the hole
4232  *
4233  * Returns: 0 on success or negative on failure
4234  */
4235
4236 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4237 {
4238         struct super_block *sb = inode->i_sb;
4239         ext4_lblk_t first_block, stop_block;
4240         struct address_space *mapping = inode->i_mapping;
4241         loff_t first_block_offset, last_block_offset, max_length;
4242         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4243         handle_t *handle;
4244         unsigned int credits;
4245         int ret = 0;
4246
4247         if (!S_ISREG(inode->i_mode))
4248                 return -EOPNOTSUPP;
4249
4250         trace_ext4_punch_hole(inode, offset, length, 0);
4251
4252         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4253         if (ext4_has_inline_data(inode)) {
4254                 down_write(&EXT4_I(inode)->i_mmap_sem);
4255                 ret = ext4_convert_inline_data(inode);
4256                 up_write(&EXT4_I(inode)->i_mmap_sem);
4257                 if (ret)
4258                         return ret;
4259         }
4260
4261         /*
4262          * Write out all dirty pages to avoid race conditions
4263          * Then release them.
4264          */
4265         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4266                 ret = filemap_write_and_wait_range(mapping, offset,
4267                                                    offset + length - 1);
4268                 if (ret)
4269                         return ret;
4270         }
4271
4272         inode_lock(inode);
4273
4274         /* No need to punch hole beyond i_size */
4275         if (offset >= inode->i_size)
4276                 goto out_mutex;
4277
4278         /*
4279          * If the hole extends beyond i_size, set the hole
4280          * to end after the page that contains i_size
4281          */
4282         if (offset + length > inode->i_size) {
4283                 length = inode->i_size +
4284                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4285                    offset;
4286         }
4287
4288         /*
4289          * For punch hole the length + offset needs to be within one block
4290          * before last range. Adjust the length if it goes beyond that limit.
4291          */
4292         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4293         if (offset + length > max_length)
4294                 length = max_length - offset;
4295
4296         if (offset & (sb->s_blocksize - 1) ||
4297             (offset + length) & (sb->s_blocksize - 1)) {
4298                 /*
4299                  * Attach jinode to inode for jbd2 if we do any zeroing of
4300                  * partial block
4301                  */
4302                 ret = ext4_inode_attach_jinode(inode);
4303                 if (ret < 0)
4304                         goto out_mutex;
4305
4306         }
4307
4308         /* Wait all existing dio workers, newcomers will block on i_mutex */
4309         ext4_inode_block_unlocked_dio(inode);
4310         inode_dio_wait(inode);
4311
4312         /*
4313          * Prevent page faults from reinstantiating pages we have released from
4314          * page cache.
4315          */
4316         down_write(&EXT4_I(inode)->i_mmap_sem);
4317         first_block_offset = round_up(offset, sb->s_blocksize);
4318         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4319
4320         /* Now release the pages and zero block aligned part of pages*/
4321         if (last_block_offset > first_block_offset) {
4322                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4323                 if (ret)
4324                         goto out_dio;
4325                 truncate_pagecache_range(inode, first_block_offset,
4326                                          last_block_offset);
4327         }
4328
4329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330                 credits = ext4_writepage_trans_blocks(inode);
4331         else
4332                 credits = ext4_blocks_for_truncate(inode);
4333         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334         if (IS_ERR(handle)) {
4335                 ret = PTR_ERR(handle);
4336                 ext4_std_error(sb, ret);
4337                 goto out_dio;
4338         }
4339
4340         ret = ext4_zero_partial_blocks(handle, inode, offset,
4341                                        length);
4342         if (ret)
4343                 goto out_stop;
4344
4345         first_block = (offset + sb->s_blocksize - 1) >>
4346                 EXT4_BLOCK_SIZE_BITS(sb);
4347         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348
4349         /* If there are blocks to remove, do it */
4350         if (stop_block > first_block) {
4351
4352                 down_write(&EXT4_I(inode)->i_data_sem);
4353                 ext4_discard_preallocations(inode);
4354
4355                 ret = ext4_es_remove_extent(inode, first_block,
4356                                             stop_block - first_block);
4357                 if (ret) {
4358                         up_write(&EXT4_I(inode)->i_data_sem);
4359                         goto out_stop;
4360                 }
4361
4362                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363                         ret = ext4_ext_remove_space(inode, first_block,
4364                                                     stop_block - 1);
4365                 else
4366                         ret = ext4_ind_remove_space(handle, inode, first_block,
4367                                                     stop_block);
4368
4369                 up_write(&EXT4_I(inode)->i_data_sem);
4370         }
4371         if (IS_SYNC(inode))
4372                 ext4_handle_sync(handle);
4373
4374         inode->i_mtime = inode->i_ctime = current_time(inode);
4375         ext4_mark_inode_dirty(handle, inode);
4376         if (ret >= 0)
4377                 ext4_update_inode_fsync_trans(handle, inode, 1);
4378 out_stop:
4379         ext4_journal_stop(handle);
4380 out_dio:
4381         up_write(&EXT4_I(inode)->i_mmap_sem);
4382         ext4_inode_resume_unlocked_dio(inode);
4383 out_mutex:
4384         inode_unlock(inode);
4385         return ret;
4386 }
4387
4388 int ext4_inode_attach_jinode(struct inode *inode)
4389 {
4390         struct ext4_inode_info *ei = EXT4_I(inode);
4391         struct jbd2_inode *jinode;
4392
4393         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4394                 return 0;
4395
4396         jinode = jbd2_alloc_inode(GFP_KERNEL);
4397         spin_lock(&inode->i_lock);
4398         if (!ei->jinode) {
4399                 if (!jinode) {
4400                         spin_unlock(&inode->i_lock);
4401                         return -ENOMEM;
4402                 }
4403                 ei->jinode = jinode;
4404                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4405                 jinode = NULL;
4406         }
4407         spin_unlock(&inode->i_lock);
4408         if (unlikely(jinode != NULL))
4409                 jbd2_free_inode(jinode);
4410         return 0;
4411 }
4412
4413 /*
4414  * ext4_truncate()
4415  *
4416  * We block out ext4_get_block() block instantiations across the entire
4417  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4418  * simultaneously on behalf of the same inode.
4419  *
4420  * As we work through the truncate and commit bits of it to the journal there
4421  * is one core, guiding principle: the file's tree must always be consistent on
4422  * disk.  We must be able to restart the truncate after a crash.
4423  *
4424  * The file's tree may be transiently inconsistent in memory (although it
4425  * probably isn't), but whenever we close off and commit a journal transaction,
4426  * the contents of (the filesystem + the journal) must be consistent and
4427  * restartable.  It's pretty simple, really: bottom up, right to left (although
4428  * left-to-right works OK too).
4429  *
4430  * Note that at recovery time, journal replay occurs *before* the restart of
4431  * truncate against the orphan inode list.
4432  *
4433  * The committed inode has the new, desired i_size (which is the same as
4434  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4435  * that this inode's truncate did not complete and it will again call
4436  * ext4_truncate() to have another go.  So there will be instantiated blocks
4437  * to the right of the truncation point in a crashed ext4 filesystem.  But
4438  * that's fine - as long as they are linked from the inode, the post-crash
4439  * ext4_truncate() run will find them and release them.
4440  */
4441 int ext4_truncate(struct inode *inode)
4442 {
4443         struct ext4_inode_info *ei = EXT4_I(inode);
4444         unsigned int credits;
4445         int err = 0;
4446         handle_t *handle;
4447         struct address_space *mapping = inode->i_mapping;
4448
4449         /*
4450          * There is a possibility that we're either freeing the inode
4451          * or it's a completely new inode. In those cases we might not
4452          * have i_mutex locked because it's not necessary.
4453          */
4454         if (!(inode->i_state & (I_NEW|I_FREEING)))
4455                 WARN_ON(!inode_is_locked(inode));
4456         trace_ext4_truncate_enter(inode);
4457
4458         if (!ext4_can_truncate(inode))
4459                 return 0;
4460
4461         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4462
4463         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4464                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4465
4466         if (ext4_has_inline_data(inode)) {
4467                 int has_inline = 1;
4468
4469                 err = ext4_inline_data_truncate(inode, &has_inline);
4470                 if (err)
4471                         return err;
4472                 if (has_inline)
4473                         return 0;
4474         }
4475
4476         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4477         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4478                 if (ext4_inode_attach_jinode(inode) < 0)
4479                         return 0;
4480         }
4481
4482         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4483                 credits = ext4_writepage_trans_blocks(inode);
4484         else
4485                 credits = ext4_blocks_for_truncate(inode);
4486
4487         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4488         if (IS_ERR(handle))
4489                 return PTR_ERR(handle);
4490
4491         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4492                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4493
4494         /*
4495          * We add the inode to the orphan list, so that if this
4496          * truncate spans multiple transactions, and we crash, we will
4497          * resume the truncate when the filesystem recovers.  It also
4498          * marks the inode dirty, to catch the new size.
4499          *
4500          * Implication: the file must always be in a sane, consistent
4501          * truncatable state while each transaction commits.
4502          */
4503         err = ext4_orphan_add(handle, inode);
4504         if (err)
4505                 goto out_stop;
4506
4507         down_write(&EXT4_I(inode)->i_data_sem);
4508
4509         ext4_discard_preallocations(inode);
4510
4511         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4512                 err = ext4_ext_truncate(handle, inode);
4513         else
4514                 ext4_ind_truncate(handle, inode);
4515
4516         up_write(&ei->i_data_sem);
4517         if (err)
4518                 goto out_stop;
4519
4520         if (IS_SYNC(inode))
4521                 ext4_handle_sync(handle);
4522
4523 out_stop:
4524         /*
4525          * If this was a simple ftruncate() and the file will remain alive,
4526          * then we need to clear up the orphan record which we created above.
4527          * However, if this was a real unlink then we were called by
4528          * ext4_evict_inode(), and we allow that function to clean up the
4529          * orphan info for us.
4530          */
4531         if (inode->i_nlink)
4532                 ext4_orphan_del(handle, inode);
4533
4534         inode->i_mtime = inode->i_ctime = current_time(inode);
4535         ext4_mark_inode_dirty(handle, inode);
4536         ext4_journal_stop(handle);
4537
4538         trace_ext4_truncate_exit(inode);
4539         return err;
4540 }
4541
4542 /*
4543  * ext4_get_inode_loc returns with an extra refcount against the inode's
4544  * underlying buffer_head on success. If 'in_mem' is true, we have all
4545  * data in memory that is needed to recreate the on-disk version of this
4546  * inode.
4547  */
4548 static int __ext4_get_inode_loc(struct inode *inode,
4549                                 struct ext4_iloc *iloc, int in_mem)
4550 {
4551         struct ext4_group_desc  *gdp;
4552         struct buffer_head      *bh;
4553         struct super_block      *sb = inode->i_sb;
4554         ext4_fsblk_t            block;
4555         int                     inodes_per_block, inode_offset;
4556
4557         iloc->bh = NULL;
4558         if (inode->i_ino < EXT4_ROOT_INO ||
4559             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4560                 return -EFSCORRUPTED;
4561
4562         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564         if (!gdp)
4565                 return -EIO;
4566
4567         /*
4568          * Figure out the offset within the block group inode table
4569          */
4570         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4571         inode_offset = ((inode->i_ino - 1) %
4572                         EXT4_INODES_PER_GROUP(sb));
4573         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4574
4575         block = ext4_inode_table(sb, gdp);
4576         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4577             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4578                 ext4_error(sb, "Invalid inode table block %llu in "
4579                            "block_group %u", block, iloc->block_group);
4580                 return -EFSCORRUPTED;
4581         }
4582         block += (inode_offset / inodes_per_block);
4583
4584         bh = sb_getblk(sb, block);
4585         if (unlikely(!bh))
4586                 return -ENOMEM;
4587         if (!buffer_uptodate(bh)) {
4588                 lock_buffer(bh);
4589
4590                 /*
4591                  * If the buffer has the write error flag, we have failed
4592                  * to write out another inode in the same block.  In this
4593                  * case, we don't have to read the block because we may
4594                  * read the old inode data successfully.
4595                  */
4596                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4597                         set_buffer_uptodate(bh);
4598
4599                 if (buffer_uptodate(bh)) {
4600                         /* someone brought it uptodate while we waited */
4601                         unlock_buffer(bh);
4602                         goto has_buffer;
4603                 }
4604
4605                 /*
4606                  * If we have all information of the inode in memory and this
4607                  * is the only valid inode in the block, we need not read the
4608                  * block.
4609                  */
4610                 if (in_mem) {
4611                         struct buffer_head *bitmap_bh;
4612                         int i, start;
4613
4614                         start = inode_offset & ~(inodes_per_block - 1);
4615
4616                         /* Is the inode bitmap in cache? */
4617                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4618                         if (unlikely(!bitmap_bh))
4619                                 goto make_io;
4620
4621                         /*
4622                          * If the inode bitmap isn't in cache then the
4623                          * optimisation may end up performing two reads instead
4624                          * of one, so skip it.
4625                          */
4626                         if (!buffer_uptodate(bitmap_bh)) {
4627                                 brelse(bitmap_bh);
4628                                 goto make_io;
4629                         }
4630                         for (i = start; i < start + inodes_per_block; i++) {
4631                                 if (i == inode_offset)
4632                                         continue;
4633                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4634                                         break;
4635                         }
4636                         brelse(bitmap_bh);
4637                         if (i == start + inodes_per_block) {
4638                                 /* all other inodes are free, so skip I/O */
4639                                 memset(bh->b_data, 0, bh->b_size);
4640                                 set_buffer_uptodate(bh);
4641                                 unlock_buffer(bh);
4642                                 goto has_buffer;
4643                         }
4644                 }
4645
4646 make_io:
4647                 /*
4648                  * If we need to do any I/O, try to pre-readahead extra
4649                  * blocks from the inode table.
4650                  */
4651                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4652                         ext4_fsblk_t b, end, table;
4653                         unsigned num;
4654                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4655
4656                         table = ext4_inode_table(sb, gdp);
4657                         /* s_inode_readahead_blks is always a power of 2 */
4658                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4659                         if (table > b)
4660                                 b = table;
4661                         end = b + ra_blks;
4662                         num = EXT4_INODES_PER_GROUP(sb);
4663                         if (ext4_has_group_desc_csum(sb))
4664                                 num -= ext4_itable_unused_count(sb, gdp);
4665                         table += num / inodes_per_block;
4666                         if (end > table)
4667                                 end = table;
4668                         while (b <= end)
4669                                 sb_breadahead_unmovable(sb, b++);
4670                 }
4671
4672                 /*
4673                  * There are other valid inodes in the buffer, this inode
4674                  * has in-inode xattrs, or we don't have this inode in memory.
4675                  * Read the block from disk.
4676                  */
4677                 trace_ext4_load_inode(inode);
4678                 get_bh(bh);
4679                 bh->b_end_io = end_buffer_read_sync;
4680                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4681                 wait_on_buffer(bh);
4682                 if (!buffer_uptodate(bh)) {
4683                         EXT4_ERROR_INODE_BLOCK(inode, block,
4684                                                "unable to read itable block");
4685                         brelse(bh);
4686                         return -EIO;
4687                 }
4688         }
4689 has_buffer:
4690         iloc->bh = bh;
4691         return 0;
4692 }
4693
4694 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4695 {
4696         /* We have all inode data except xattrs in memory here. */
4697         return __ext4_get_inode_loc(inode, iloc,
4698                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4699 }
4700
4701 void ext4_set_inode_flags(struct inode *inode)
4702 {
4703         unsigned int flags = EXT4_I(inode)->i_flags;
4704         unsigned int new_fl = 0;
4705
4706         if (flags & EXT4_SYNC_FL)
4707                 new_fl |= S_SYNC;
4708         if (flags & EXT4_APPEND_FL)
4709                 new_fl |= S_APPEND;
4710         if (flags & EXT4_IMMUTABLE_FL)
4711                 new_fl |= S_IMMUTABLE;
4712         if (flags & EXT4_NOATIME_FL)
4713                 new_fl |= S_NOATIME;
4714         if (flags & EXT4_DIRSYNC_FL)
4715                 new_fl |= S_DIRSYNC;
4716         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4717             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4718             !ext4_encrypted_inode(inode))
4719                 new_fl |= S_DAX;
4720         inode_set_flags(inode, new_fl,
4721                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4722 }
4723
4724 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4725                                   struct ext4_inode_info *ei)
4726 {
4727         blkcnt_t i_blocks ;
4728         struct inode *inode = &(ei->vfs_inode);
4729         struct super_block *sb = inode->i_sb;
4730
4731         if (ext4_has_feature_huge_file(sb)) {
4732                 /* we are using combined 48 bit field */
4733                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4734                                         le32_to_cpu(raw_inode->i_blocks_lo);
4735                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4736                         /* i_blocks represent file system block size */
4737                         return i_blocks  << (inode->i_blkbits - 9);
4738                 } else {
4739                         return i_blocks;
4740                 }
4741         } else {
4742                 return le32_to_cpu(raw_inode->i_blocks_lo);
4743         }
4744 }
4745
4746 static inline int ext4_iget_extra_inode(struct inode *inode,
4747                                          struct ext4_inode *raw_inode,
4748                                          struct ext4_inode_info *ei)
4749 {
4750         __le32 *magic = (void *)raw_inode +
4751                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4752
4753         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4754             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4755                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4756                 return ext4_find_inline_data_nolock(inode);
4757         } else
4758                 EXT4_I(inode)->i_inline_off = 0;
4759         return 0;
4760 }
4761
4762 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4763 {
4764         if (!ext4_has_feature_project(inode->i_sb))
4765                 return -EOPNOTSUPP;
4766         *projid = EXT4_I(inode)->i_projid;
4767         return 0;
4768 }
4769
4770 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4771                           ext4_iget_flags flags, const char *function,
4772                           unsigned int line)
4773 {
4774         struct ext4_iloc iloc;
4775         struct ext4_inode *raw_inode;
4776         struct ext4_inode_info *ei;
4777         struct inode *inode;
4778         journal_t *journal = EXT4_SB(sb)->s_journal;
4779         long ret;
4780         loff_t size;
4781         int block;
4782         uid_t i_uid;
4783         gid_t i_gid;
4784         projid_t i_projid;
4785
4786         if ((!(flags & EXT4_IGET_SPECIAL) &&
4787              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4788             (ino < EXT4_ROOT_INO) ||
4789             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4790                 if (flags & EXT4_IGET_HANDLE)
4791                         return ERR_PTR(-ESTALE);
4792                 __ext4_error(sb, function, line,
4793                              "inode #%lu: comm %s: iget: illegal inode #",
4794                              ino, current->comm);
4795                 return ERR_PTR(-EFSCORRUPTED);
4796         }
4797
4798         inode = iget_locked(sb, ino);
4799         if (!inode)
4800                 return ERR_PTR(-ENOMEM);
4801         if (!(inode->i_state & I_NEW))
4802                 return inode;
4803
4804         ei = EXT4_I(inode);
4805         iloc.bh = NULL;
4806
4807         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4808         if (ret < 0)
4809                 goto bad_inode;
4810         raw_inode = ext4_raw_inode(&iloc);
4811
4812         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4813                 ext4_error_inode(inode, function, line, 0,
4814                                  "iget: root inode unallocated");
4815                 ret = -EFSCORRUPTED;
4816                 goto bad_inode;
4817         }
4818
4819         if ((flags & EXT4_IGET_HANDLE) &&
4820             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4821                 ret = -ESTALE;
4822                 goto bad_inode;
4823         }
4824
4825         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4826                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4827                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4828                         EXT4_INODE_SIZE(inode->i_sb) ||
4829                     (ei->i_extra_isize & 3)) {
4830                         ext4_error_inode(inode, function, line, 0,
4831                                          "iget: bad extra_isize %u "
4832                                          "(inode size %u)",
4833                                          ei->i_extra_isize,
4834                                          EXT4_INODE_SIZE(inode->i_sb));
4835                         ret = -EFSCORRUPTED;
4836                         goto bad_inode;
4837                 }
4838         } else
4839                 ei->i_extra_isize = 0;
4840
4841         /* Precompute checksum seed for inode metadata */
4842         if (ext4_has_metadata_csum(sb)) {
4843                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4844                 __u32 csum;
4845                 __le32 inum = cpu_to_le32(inode->i_ino);
4846                 __le32 gen = raw_inode->i_generation;
4847                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4848                                    sizeof(inum));
4849                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4850                                               sizeof(gen));
4851         }
4852
4853         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4854                 ext4_error_inode(inode, function, line, 0,
4855                                  "iget: checksum invalid");
4856                 ret = -EFSBADCRC;
4857                 goto bad_inode;
4858         }
4859
4860         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4861         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4862         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4863         if (ext4_has_feature_project(sb) &&
4864             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4865             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4866                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4867         else
4868                 i_projid = EXT4_DEF_PROJID;
4869
4870         if (!(test_opt(inode->i_sb, NO_UID32))) {
4871                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4872                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4873         }
4874         i_uid_write(inode, i_uid);
4875         i_gid_write(inode, i_gid);
4876         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4877         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4878
4879         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4880         ei->i_inline_off = 0;
4881         ei->i_dir_start_lookup = 0;
4882         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4883         /* We now have enough fields to check if the inode was active or not.
4884          * This is needed because nfsd might try to access dead inodes
4885          * the test is that same one that e2fsck uses
4886          * NeilBrown 1999oct15
4887          */
4888         if (inode->i_nlink == 0) {
4889                 if ((inode->i_mode == 0 ||
4890                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4891                     ino != EXT4_BOOT_LOADER_INO) {
4892                         /* this inode is deleted */
4893                         ret = -ESTALE;
4894                         goto bad_inode;
4895                 }
4896                 /* The only unlinked inodes we let through here have
4897                  * valid i_mode and are being read by the orphan
4898                  * recovery code: that's fine, we're about to complete
4899                  * the process of deleting those.
4900                  * OR it is the EXT4_BOOT_LOADER_INO which is
4901                  * not initialized on a new filesystem. */
4902         }
4903         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4904         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4905         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4906         if (ext4_has_feature_64bit(sb))
4907                 ei->i_file_acl |=
4908                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4909         inode->i_size = ext4_isize(sb, raw_inode);
4910         if ((size = i_size_read(inode)) < 0) {
4911                 ext4_error_inode(inode, function, line, 0,
4912                                  "iget: bad i_size value: %lld", size);
4913                 ret = -EFSCORRUPTED;
4914                 goto bad_inode;
4915         }
4916         /*
4917          * If dir_index is not enabled but there's dir with INDEX flag set,
4918          * we'd normally treat htree data as empty space. But with metadata
4919          * checksumming that corrupts checksums so forbid that.
4920          */
4921         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4922             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4923                 EXT4_ERROR_INODE(inode,
4924                                  "iget: Dir with htree data on filesystem without dir_index feature.");
4925                 ret = -EFSCORRUPTED;
4926                 goto bad_inode;
4927         }
4928         ei->i_disksize = inode->i_size;
4929 #ifdef CONFIG_QUOTA
4930         ei->i_reserved_quota = 0;
4931 #endif
4932         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4933         ei->i_block_group = iloc.block_group;
4934         ei->i_last_alloc_group = ~0;
4935         /*
4936          * NOTE! The in-memory inode i_data array is in little-endian order
4937          * even on big-endian machines: we do NOT byteswap the block numbers!
4938          */
4939         for (block = 0; block < EXT4_N_BLOCKS; block++)
4940                 ei->i_data[block] = raw_inode->i_block[block];
4941         INIT_LIST_HEAD(&ei->i_orphan);
4942
4943         /*
4944          * Set transaction id's of transactions that have to be committed
4945          * to finish f[data]sync. We set them to currently running transaction
4946          * as we cannot be sure that the inode or some of its metadata isn't
4947          * part of the transaction - the inode could have been reclaimed and
4948          * now it is reread from disk.
4949          */
4950         if (journal) {
4951                 transaction_t *transaction;
4952                 tid_t tid;
4953
4954                 read_lock(&journal->j_state_lock);
4955                 if (journal->j_running_transaction)
4956                         transaction = journal->j_running_transaction;
4957                 else
4958                         transaction = journal->j_committing_transaction;
4959                 if (transaction)
4960                         tid = transaction->t_tid;
4961                 else
4962                         tid = journal->j_commit_sequence;
4963                 read_unlock(&journal->j_state_lock);
4964                 ei->i_sync_tid = tid;
4965                 ei->i_datasync_tid = tid;
4966         }
4967
4968         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4969                 if (ei->i_extra_isize == 0) {
4970                         /* The extra space is currently unused. Use it. */
4971                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4972                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4973                                             EXT4_GOOD_OLD_INODE_SIZE;
4974                 } else {
4975                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4976                         if (ret)
4977                                 goto bad_inode;
4978                 }
4979         }
4980
4981         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4982         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4983         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4984         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4985
4986         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4987                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4988                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4989                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4990                                 inode->i_version |=
4991                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4992                 }
4993         }
4994
4995         ret = 0;
4996         if (ei->i_file_acl &&
4997             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4998                 ext4_error_inode(inode, function, line, 0,
4999                                  "iget: bad extended attribute block %llu",
5000                                  ei->i_file_acl);
5001                 ret = -EFSCORRUPTED;
5002                 goto bad_inode;
5003         } else if (!ext4_has_inline_data(inode)) {
5004                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5005                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5006                             (S_ISLNK(inode->i_mode) &&
5007                              !ext4_inode_is_fast_symlink(inode))))
5008                                 /* Validate extent which is part of inode */
5009                                 ret = ext4_ext_check_inode(inode);
5010                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5011                            (S_ISLNK(inode->i_mode) &&
5012                             !ext4_inode_is_fast_symlink(inode))) {
5013                         /* Validate block references which are part of inode */
5014                         ret = ext4_ind_check_inode(inode);
5015                 }
5016         }
5017         if (ret)
5018                 goto bad_inode;
5019
5020         if (S_ISREG(inode->i_mode)) {
5021                 inode->i_op = &ext4_file_inode_operations;
5022                 inode->i_fop = &ext4_file_operations;
5023                 ext4_set_aops(inode);
5024         } else if (S_ISDIR(inode->i_mode)) {
5025                 inode->i_op = &ext4_dir_inode_operations;
5026                 inode->i_fop = &ext4_dir_operations;
5027         } else if (S_ISLNK(inode->i_mode)) {
5028                 if (ext4_encrypted_inode(inode)) {
5029                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5030                         ext4_set_aops(inode);
5031                 } else if (ext4_inode_is_fast_symlink(inode)) {
5032                         inode->i_link = (char *)ei->i_data;
5033                         inode->i_op = &ext4_fast_symlink_inode_operations;
5034                         nd_terminate_link(ei->i_data, inode->i_size,
5035                                 sizeof(ei->i_data) - 1);
5036                 } else {
5037                         inode->i_op = &ext4_symlink_inode_operations;
5038                         ext4_set_aops(inode);
5039                 }
5040                 inode_nohighmem(inode);
5041         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5042               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5043                 inode->i_op = &ext4_special_inode_operations;
5044                 if (raw_inode->i_block[0])
5045                         init_special_inode(inode, inode->i_mode,
5046                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5047                 else
5048                         init_special_inode(inode, inode->i_mode,
5049                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5050         } else if (ino == EXT4_BOOT_LOADER_INO) {
5051                 make_bad_inode(inode);
5052         } else {
5053                 ret = -EFSCORRUPTED;
5054                 ext4_error_inode(inode, function, line, 0,
5055                                  "iget: bogus i_mode (%o)", inode->i_mode);
5056                 goto bad_inode;
5057         }
5058         brelse(iloc.bh);
5059         ext4_set_inode_flags(inode);
5060
5061         unlock_new_inode(inode);
5062         return inode;
5063
5064 bad_inode:
5065         brelse(iloc.bh);
5066         iget_failed(inode);
5067         return ERR_PTR(ret);
5068 }
5069
5070 static int ext4_inode_blocks_set(handle_t *handle,
5071                                 struct ext4_inode *raw_inode,
5072                                 struct ext4_inode_info *ei)
5073 {
5074         struct inode *inode = &(ei->vfs_inode);
5075         u64 i_blocks = READ_ONCE(inode->i_blocks);
5076         struct super_block *sb = inode->i_sb;
5077
5078         if (i_blocks <= ~0U) {
5079                 /*
5080                  * i_blocks can be represented in a 32 bit variable
5081                  * as multiple of 512 bytes
5082                  */
5083                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5084                 raw_inode->i_blocks_high = 0;
5085                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5086                 return 0;
5087         }
5088         if (!ext4_has_feature_huge_file(sb))
5089                 return -EFBIG;
5090
5091         if (i_blocks <= 0xffffffffffffULL) {
5092                 /*
5093                  * i_blocks can be represented in a 48 bit variable
5094                  * as multiple of 512 bytes
5095                  */
5096                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5097                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5098                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5099         } else {
5100                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5101                 /* i_block is stored in file system block size */
5102                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5103                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5104                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5105         }
5106         return 0;
5107 }
5108
5109 struct other_inode {
5110         unsigned long           orig_ino;
5111         struct ext4_inode       *raw_inode;
5112 };
5113
5114 static int other_inode_match(struct inode * inode, unsigned long ino,
5115                              void *data)
5116 {
5117         struct other_inode *oi = (struct other_inode *) data;
5118
5119         if ((inode->i_ino != ino) ||
5120             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5121                                I_DIRTY_INODE)) ||
5122             ((inode->i_state & I_DIRTY_TIME) == 0))
5123                 return 0;
5124         spin_lock(&inode->i_lock);
5125         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5126                                 I_DIRTY_INODE)) == 0) &&
5127             (inode->i_state & I_DIRTY_TIME)) {
5128                 struct ext4_inode_info  *ei = EXT4_I(inode);
5129
5130                 inode->i_state &= ~I_DIRTY_TIME;
5131                 spin_unlock(&inode->i_lock);
5132
5133                 spin_lock(&ei->i_raw_lock);
5134                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5135                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5136                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5137                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5138                 spin_unlock(&ei->i_raw_lock);
5139                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5140                 return -1;
5141         }
5142         spin_unlock(&inode->i_lock);
5143         return -1;
5144 }
5145
5146 /*
5147  * Opportunistically update the other time fields for other inodes in
5148  * the same inode table block.
5149  */
5150 static void ext4_update_other_inodes_time(struct super_block *sb,
5151                                           unsigned long orig_ino, char *buf)
5152 {
5153         struct other_inode oi;
5154         unsigned long ino;
5155         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5156         int inode_size = EXT4_INODE_SIZE(sb);
5157
5158         oi.orig_ino = orig_ino;
5159         /*
5160          * Calculate the first inode in the inode table block.  Inode
5161          * numbers are one-based.  That is, the first inode in a block
5162          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5163          */
5164         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5165         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5166                 if (ino == orig_ino)
5167                         continue;
5168                 oi.raw_inode = (struct ext4_inode *) buf;
5169                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5170         }
5171 }
5172
5173 /*
5174  * Post the struct inode info into an on-disk inode location in the
5175  * buffer-cache.  This gobbles the caller's reference to the
5176  * buffer_head in the inode location struct.
5177  *
5178  * The caller must have write access to iloc->bh.
5179  */
5180 static int ext4_do_update_inode(handle_t *handle,
5181                                 struct inode *inode,
5182                                 struct ext4_iloc *iloc)
5183 {
5184         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5185         struct ext4_inode_info *ei = EXT4_I(inode);
5186         struct buffer_head *bh = iloc->bh;
5187         struct super_block *sb = inode->i_sb;
5188         int err = 0, block;
5189         int need_datasync = 0, set_large_file = 0;
5190         uid_t i_uid;
5191         gid_t i_gid;
5192         projid_t i_projid;
5193
5194         spin_lock(&ei->i_raw_lock);
5195
5196         /* For fields not tracked in the in-memory inode,
5197          * initialise them to zero for new inodes. */
5198         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5199                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5200
5201         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5202         if (err) {
5203                 spin_unlock(&ei->i_raw_lock);
5204                 goto out_brelse;
5205         }
5206
5207         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5208         i_uid = i_uid_read(inode);
5209         i_gid = i_gid_read(inode);
5210         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5211         if (!(test_opt(inode->i_sb, NO_UID32))) {
5212                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5213                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5214 /*
5215  * Fix up interoperability with old kernels. Otherwise, old inodes get
5216  * re-used with the upper 16 bits of the uid/gid intact
5217  */
5218                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5219                         raw_inode->i_uid_high = 0;
5220                         raw_inode->i_gid_high = 0;
5221                 } else {
5222                         raw_inode->i_uid_high =
5223                                 cpu_to_le16(high_16_bits(i_uid));
5224                         raw_inode->i_gid_high =
5225                                 cpu_to_le16(high_16_bits(i_gid));
5226                 }
5227         } else {
5228                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5229                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5230                 raw_inode->i_uid_high = 0;
5231                 raw_inode->i_gid_high = 0;
5232         }
5233         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5234
5235         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5236         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5237         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5238         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5239
5240         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5241         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5242         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5243                 raw_inode->i_file_acl_high =
5244                         cpu_to_le16(ei->i_file_acl >> 32);
5245         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5246         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5247                 ext4_isize_set(raw_inode, ei->i_disksize);
5248                 need_datasync = 1;
5249         }
5250         if (ei->i_disksize > 0x7fffffffULL) {
5251                 if (!ext4_has_feature_large_file(sb) ||
5252                                 EXT4_SB(sb)->s_es->s_rev_level ==
5253                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5254                         set_large_file = 1;
5255         }
5256         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5257         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5258                 if (old_valid_dev(inode->i_rdev)) {
5259                         raw_inode->i_block[0] =
5260                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5261                         raw_inode->i_block[1] = 0;
5262                 } else {
5263                         raw_inode->i_block[0] = 0;
5264                         raw_inode->i_block[1] =
5265                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5266                         raw_inode->i_block[2] = 0;
5267                 }
5268         } else if (!ext4_has_inline_data(inode)) {
5269                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5270                         raw_inode->i_block[block] = ei->i_data[block];
5271         }
5272
5273         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5274                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5275                 if (ei->i_extra_isize) {
5276                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5277                                 raw_inode->i_version_hi =
5278                                         cpu_to_le32(inode->i_version >> 32);
5279                         raw_inode->i_extra_isize =
5280                                 cpu_to_le16(ei->i_extra_isize);
5281                 }
5282         }
5283
5284         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5285                i_projid != EXT4_DEF_PROJID);
5286
5287         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5288             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5289                 raw_inode->i_projid = cpu_to_le32(i_projid);
5290
5291         ext4_inode_csum_set(inode, raw_inode, ei);
5292         spin_unlock(&ei->i_raw_lock);
5293         if (inode->i_sb->s_flags & MS_LAZYTIME)
5294                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5295                                               bh->b_data);
5296
5297         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5298         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5299         if (err)
5300                 goto out_brelse;
5301         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5302         if (set_large_file) {
5303                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5304                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5305                 if (err)
5306                         goto out_brelse;
5307                 ext4_update_dynamic_rev(sb);
5308                 ext4_set_feature_large_file(sb);
5309                 ext4_handle_sync(handle);
5310                 err = ext4_handle_dirty_super(handle, sb);
5311         }
5312         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5313 out_brelse:
5314         brelse(bh);
5315         ext4_std_error(inode->i_sb, err);
5316         return err;
5317 }
5318
5319 /*
5320  * ext4_write_inode()
5321  *
5322  * We are called from a few places:
5323  *
5324  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5325  *   Here, there will be no transaction running. We wait for any running
5326  *   transaction to commit.
5327  *
5328  * - Within flush work (sys_sync(), kupdate and such).
5329  *   We wait on commit, if told to.
5330  *
5331  * - Within iput_final() -> write_inode_now()
5332  *   We wait on commit, if told to.
5333  *
5334  * In all cases it is actually safe for us to return without doing anything,
5335  * because the inode has been copied into a raw inode buffer in
5336  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5337  * writeback.
5338  *
5339  * Note that we are absolutely dependent upon all inode dirtiers doing the
5340  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5341  * which we are interested.
5342  *
5343  * It would be a bug for them to not do this.  The code:
5344  *
5345  *      mark_inode_dirty(inode)
5346  *      stuff();
5347  *      inode->i_size = expr;
5348  *
5349  * is in error because write_inode() could occur while `stuff()' is running,
5350  * and the new i_size will be lost.  Plus the inode will no longer be on the
5351  * superblock's dirty inode list.
5352  */
5353 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5354 {
5355         int err;
5356
5357         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5358             sb_rdonly(inode->i_sb))
5359                 return 0;
5360
5361         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5362                 return -EIO;
5363
5364         if (EXT4_SB(inode->i_sb)->s_journal) {
5365                 if (ext4_journal_current_handle()) {
5366                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5367                         dump_stack();
5368                         return -EIO;
5369                 }
5370
5371                 /*
5372                  * No need to force transaction in WB_SYNC_NONE mode. Also
5373                  * ext4_sync_fs() will force the commit after everything is
5374                  * written.
5375                  */
5376                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5377                         return 0;
5378
5379                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5380                                                 EXT4_I(inode)->i_sync_tid);
5381         } else {
5382                 struct ext4_iloc iloc;
5383
5384                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5385                 if (err)
5386                         return err;
5387                 /*
5388                  * sync(2) will flush the whole buffer cache. No need to do
5389                  * it here separately for each inode.
5390                  */
5391                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5392                         sync_dirty_buffer(iloc.bh);
5393                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5394                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5395                                          "IO error syncing inode");
5396                         err = -EIO;
5397                 }
5398                 brelse(iloc.bh);
5399         }
5400         return err;
5401 }
5402
5403 /*
5404  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5405  * buffers that are attached to a page stradding i_size and are undergoing
5406  * commit. In that case we have to wait for commit to finish and try again.
5407  */
5408 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5409 {
5410         struct page *page;
5411         unsigned offset;
5412         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5413         tid_t commit_tid = 0;
5414         int ret;
5415
5416         offset = inode->i_size & (PAGE_SIZE - 1);
5417         /*
5418          * If the page is fully truncated, we don't need to wait for any commit
5419          * (and we even should not as __ext4_journalled_invalidatepage() may
5420          * strip all buffers from the page but keep the page dirty which can then
5421          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5422          * buffers). Also we don't need to wait for any commit if all buffers in
5423          * the page remain valid. This is most beneficial for the common case of
5424          * blocksize == PAGESIZE.
5425          */
5426         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5427                 return;
5428         while (1) {
5429                 page = find_lock_page(inode->i_mapping,
5430                                       inode->i_size >> PAGE_SHIFT);
5431                 if (!page)
5432                         return;
5433                 ret = __ext4_journalled_invalidatepage(page, offset,
5434                                                 PAGE_SIZE - offset);
5435                 unlock_page(page);
5436                 put_page(page);
5437                 if (ret != -EBUSY)
5438                         return;
5439                 commit_tid = 0;
5440                 read_lock(&journal->j_state_lock);
5441                 if (journal->j_committing_transaction)
5442                         commit_tid = journal->j_committing_transaction->t_tid;
5443                 read_unlock(&journal->j_state_lock);
5444                 if (commit_tid)
5445                         jbd2_log_wait_commit(journal, commit_tid);
5446         }
5447 }
5448
5449 /*
5450  * ext4_setattr()
5451  *
5452  * Called from notify_change.
5453  *
5454  * We want to trap VFS attempts to truncate the file as soon as
5455  * possible.  In particular, we want to make sure that when the VFS
5456  * shrinks i_size, we put the inode on the orphan list and modify
5457  * i_disksize immediately, so that during the subsequent flushing of
5458  * dirty pages and freeing of disk blocks, we can guarantee that any
5459  * commit will leave the blocks being flushed in an unused state on
5460  * disk.  (On recovery, the inode will get truncated and the blocks will
5461  * be freed, so we have a strong guarantee that no future commit will
5462  * leave these blocks visible to the user.)
5463  *
5464  * Another thing we have to assure is that if we are in ordered mode
5465  * and inode is still attached to the committing transaction, we must
5466  * we start writeout of all the dirty pages which are being truncated.
5467  * This way we are sure that all the data written in the previous
5468  * transaction are already on disk (truncate waits for pages under
5469  * writeback).
5470  *
5471  * Called with inode->i_mutex down.
5472  */
5473 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5474 {
5475         struct inode *inode = d_inode(dentry);
5476         int error, rc = 0;
5477         int orphan = 0;
5478         const unsigned int ia_valid = attr->ia_valid;
5479
5480         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5481                 return -EIO;
5482
5483         if (unlikely(IS_IMMUTABLE(inode)))
5484                 return -EPERM;
5485
5486         if (unlikely(IS_APPEND(inode) &&
5487                      (ia_valid & (ATTR_MODE | ATTR_UID |
5488                                   ATTR_GID | ATTR_TIMES_SET))))
5489                 return -EPERM;
5490
5491         error = setattr_prepare(dentry, attr);
5492         if (error)
5493                 return error;
5494
5495         if (is_quota_modification(inode, attr)) {
5496                 error = dquot_initialize(inode);
5497                 if (error)
5498                         return error;
5499         }
5500         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5501             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5502                 handle_t *handle;
5503
5504                 /* (user+group)*(old+new) structure, inode write (sb,
5505                  * inode block, ? - but truncate inode update has it) */
5506                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5507                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5508                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5509                 if (IS_ERR(handle)) {
5510                         error = PTR_ERR(handle);
5511                         goto err_out;
5512                 }
5513
5514                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5515                  * counts xattr inode references.
5516                  */
5517                 down_read(&EXT4_I(inode)->xattr_sem);
5518                 error = dquot_transfer(inode, attr);
5519                 up_read(&EXT4_I(inode)->xattr_sem);
5520
5521                 if (error) {
5522                         ext4_journal_stop(handle);
5523                         return error;
5524                 }
5525                 /* Update corresponding info in inode so that everything is in
5526                  * one transaction */
5527                 if (attr->ia_valid & ATTR_UID)
5528                         inode->i_uid = attr->ia_uid;
5529                 if (attr->ia_valid & ATTR_GID)
5530                         inode->i_gid = attr->ia_gid;
5531                 error = ext4_mark_inode_dirty(handle, inode);
5532                 ext4_journal_stop(handle);
5533         }
5534
5535         if (attr->ia_valid & ATTR_SIZE) {
5536                 handle_t *handle;
5537                 loff_t oldsize = inode->i_size;
5538                 int shrink = (attr->ia_size <= inode->i_size);
5539
5540                 if (ext4_encrypted_inode(inode)) {
5541                         error = fscrypt_get_encryption_info(inode);
5542                         if (error)
5543                                 return error;
5544                         if (!fscrypt_has_encryption_key(inode))
5545                                 return -ENOKEY;
5546                 }
5547
5548                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5549                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5550
5551                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5552                                 return -EFBIG;
5553                 }
5554                 if (!S_ISREG(inode->i_mode))
5555                         return -EINVAL;
5556
5557                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5558                         inode_inc_iversion(inode);
5559
5560                 if (ext4_should_order_data(inode) &&
5561                     (attr->ia_size < inode->i_size)) {
5562                         error = ext4_begin_ordered_truncate(inode,
5563                                                             attr->ia_size);
5564                         if (error)
5565                                 goto err_out;
5566                 }
5567                 if (attr->ia_size != inode->i_size) {
5568                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5569                         if (IS_ERR(handle)) {
5570                                 error = PTR_ERR(handle);
5571                                 goto err_out;
5572                         }
5573                         if (ext4_handle_valid(handle) && shrink) {
5574                                 error = ext4_orphan_add(handle, inode);
5575                                 orphan = 1;
5576                         }
5577                         /*
5578                          * Update c/mtime on truncate up, ext4_truncate() will
5579                          * update c/mtime in shrink case below
5580                          */
5581                         if (!shrink) {
5582                                 inode->i_mtime = current_time(inode);
5583                                 inode->i_ctime = inode->i_mtime;
5584                         }
5585                         down_write(&EXT4_I(inode)->i_data_sem);
5586                         EXT4_I(inode)->i_disksize = attr->ia_size;
5587                         rc = ext4_mark_inode_dirty(handle, inode);
5588                         if (!error)
5589                                 error = rc;
5590                         /*
5591                          * We have to update i_size under i_data_sem together
5592                          * with i_disksize to avoid races with writeback code
5593                          * running ext4_wb_update_i_disksize().
5594                          */
5595                         if (!error)
5596                                 i_size_write(inode, attr->ia_size);
5597                         up_write(&EXT4_I(inode)->i_data_sem);
5598                         ext4_journal_stop(handle);
5599                         if (error) {
5600                                 if (orphan && inode->i_nlink)
5601                                         ext4_orphan_del(NULL, inode);
5602                                 goto err_out;
5603                         }
5604                 }
5605                 if (!shrink)
5606                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5607
5608                 /*
5609                  * Blocks are going to be removed from the inode. Wait
5610                  * for dio in flight.  Temporarily disable
5611                  * dioread_nolock to prevent livelock.
5612                  */
5613                 if (orphan) {
5614                         if (!ext4_should_journal_data(inode)) {
5615                                 ext4_inode_block_unlocked_dio(inode);
5616                                 inode_dio_wait(inode);
5617                                 ext4_inode_resume_unlocked_dio(inode);
5618                         } else
5619                                 ext4_wait_for_tail_page_commit(inode);
5620                 }
5621                 down_write(&EXT4_I(inode)->i_mmap_sem);
5622                 /*
5623                  * Truncate pagecache after we've waited for commit
5624                  * in data=journal mode to make pages freeable.
5625                  */
5626                 truncate_pagecache(inode, inode->i_size);
5627                 if (shrink) {
5628                         rc = ext4_truncate(inode);
5629                         if (rc)
5630                                 error = rc;
5631                 }
5632                 up_write(&EXT4_I(inode)->i_mmap_sem);
5633         }
5634
5635         if (!error) {
5636                 setattr_copy(inode, attr);
5637                 mark_inode_dirty(inode);
5638         }
5639
5640         /*
5641          * If the call to ext4_truncate failed to get a transaction handle at
5642          * all, we need to clean up the in-core orphan list manually.
5643          */
5644         if (orphan && inode->i_nlink)
5645                 ext4_orphan_del(NULL, inode);
5646
5647         if (!error && (ia_valid & ATTR_MODE))
5648                 rc = posix_acl_chmod(inode, inode->i_mode);
5649
5650 err_out:
5651         ext4_std_error(inode->i_sb, error);
5652         if (!error)
5653                 error = rc;
5654         return error;
5655 }
5656
5657 int ext4_getattr(const struct path *path, struct kstat *stat,
5658                  u32 request_mask, unsigned int query_flags)
5659 {
5660         struct inode *inode = d_inode(path->dentry);
5661         struct ext4_inode *raw_inode;
5662         struct ext4_inode_info *ei = EXT4_I(inode);
5663         unsigned int flags;
5664
5665         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5666                 stat->result_mask |= STATX_BTIME;
5667                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5668                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5669         }
5670
5671         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5672         if (flags & EXT4_APPEND_FL)
5673                 stat->attributes |= STATX_ATTR_APPEND;
5674         if (flags & EXT4_COMPR_FL)
5675                 stat->attributes |= STATX_ATTR_COMPRESSED;
5676         if (flags & EXT4_ENCRYPT_FL)
5677                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5678         if (flags & EXT4_IMMUTABLE_FL)
5679                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5680         if (flags & EXT4_NODUMP_FL)
5681                 stat->attributes |= STATX_ATTR_NODUMP;
5682
5683         stat->attributes_mask |= (STATX_ATTR_APPEND |
5684                                   STATX_ATTR_COMPRESSED |
5685                                   STATX_ATTR_ENCRYPTED |
5686                                   STATX_ATTR_IMMUTABLE |
5687                                   STATX_ATTR_NODUMP);
5688
5689         generic_fillattr(inode, stat);
5690         return 0;
5691 }
5692
5693 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5694                       u32 request_mask, unsigned int query_flags)
5695 {
5696         struct inode *inode = d_inode(path->dentry);
5697         u64 delalloc_blocks;
5698
5699         ext4_getattr(path, stat, request_mask, query_flags);
5700
5701         /*
5702          * If there is inline data in the inode, the inode will normally not
5703          * have data blocks allocated (it may have an external xattr block).
5704          * Report at least one sector for such files, so tools like tar, rsync,
5705          * others don't incorrectly think the file is completely sparse.
5706          */
5707         if (unlikely(ext4_has_inline_data(inode)))
5708                 stat->blocks += (stat->size + 511) >> 9;
5709
5710         /*
5711          * We can't update i_blocks if the block allocation is delayed
5712          * otherwise in the case of system crash before the real block
5713          * allocation is done, we will have i_blocks inconsistent with
5714          * on-disk file blocks.
5715          * We always keep i_blocks updated together with real
5716          * allocation. But to not confuse with user, stat
5717          * will return the blocks that include the delayed allocation
5718          * blocks for this file.
5719          */
5720         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5721                                    EXT4_I(inode)->i_reserved_data_blocks);
5722         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5723         return 0;
5724 }
5725
5726 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5727                                    int pextents)
5728 {
5729         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5730                 return ext4_ind_trans_blocks(inode, lblocks);
5731         return ext4_ext_index_trans_blocks(inode, pextents);
5732 }
5733
5734 /*
5735  * Account for index blocks, block groups bitmaps and block group
5736  * descriptor blocks if modify datablocks and index blocks
5737  * worse case, the indexs blocks spread over different block groups
5738  *
5739  * If datablocks are discontiguous, they are possible to spread over
5740  * different block groups too. If they are contiguous, with flexbg,
5741  * they could still across block group boundary.
5742  *
5743  * Also account for superblock, inode, quota and xattr blocks
5744  */
5745 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5746                                   int pextents)
5747 {
5748         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5749         int gdpblocks;
5750         int idxblocks;
5751         int ret = 0;
5752
5753         /*
5754          * How many index blocks need to touch to map @lblocks logical blocks
5755          * to @pextents physical extents?
5756          */
5757         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5758
5759         ret = idxblocks;
5760
5761         /*
5762          * Now let's see how many group bitmaps and group descriptors need
5763          * to account
5764          */
5765         groups = idxblocks + pextents;
5766         gdpblocks = groups;
5767         if (groups > ngroups)
5768                 groups = ngroups;
5769         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5770                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5771
5772         /* bitmaps and block group descriptor blocks */
5773         ret += groups + gdpblocks;
5774
5775         /* Blocks for super block, inode, quota and xattr blocks */
5776         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5777
5778         return ret;
5779 }
5780
5781 /*
5782  * Calculate the total number of credits to reserve to fit
5783  * the modification of a single pages into a single transaction,
5784  * which may include multiple chunks of block allocations.
5785  *
5786  * This could be called via ext4_write_begin()
5787  *
5788  * We need to consider the worse case, when
5789  * one new block per extent.
5790  */
5791 int ext4_writepage_trans_blocks(struct inode *inode)
5792 {
5793         int bpp = ext4_journal_blocks_per_page(inode);
5794         int ret;
5795
5796         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5797
5798         /* Account for data blocks for journalled mode */
5799         if (ext4_should_journal_data(inode))
5800                 ret += bpp;
5801         return ret;
5802 }
5803
5804 /*
5805  * Calculate the journal credits for a chunk of data modification.
5806  *
5807  * This is called from DIO, fallocate or whoever calling
5808  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5809  *
5810  * journal buffers for data blocks are not included here, as DIO
5811  * and fallocate do no need to journal data buffers.
5812  */
5813 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5814 {
5815         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5816 }
5817
5818 /*
5819  * The caller must have previously called ext4_reserve_inode_write().
5820  * Give this, we know that the caller already has write access to iloc->bh.
5821  */
5822 int ext4_mark_iloc_dirty(handle_t *handle,
5823                          struct inode *inode, struct ext4_iloc *iloc)
5824 {
5825         int err = 0;
5826
5827         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5828                 put_bh(iloc->bh);
5829                 return -EIO;
5830         }
5831         if (IS_I_VERSION(inode))
5832                 inode_inc_iversion(inode);
5833
5834         /* the do_update_inode consumes one bh->b_count */
5835         get_bh(iloc->bh);
5836
5837         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5838         err = ext4_do_update_inode(handle, inode, iloc);
5839         put_bh(iloc->bh);
5840         return err;
5841 }
5842
5843 /*
5844  * On success, We end up with an outstanding reference count against
5845  * iloc->bh.  This _must_ be cleaned up later.
5846  */
5847
5848 int
5849 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5850                          struct ext4_iloc *iloc)
5851 {
5852         int err;
5853
5854         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5855                 return -EIO;
5856
5857         err = ext4_get_inode_loc(inode, iloc);
5858         if (!err) {
5859                 BUFFER_TRACE(iloc->bh, "get_write_access");
5860                 err = ext4_journal_get_write_access(handle, iloc->bh);
5861                 if (err) {
5862                         brelse(iloc->bh);
5863                         iloc->bh = NULL;
5864                 }
5865         }
5866         ext4_std_error(inode->i_sb, err);
5867         return err;
5868 }
5869
5870 static int __ext4_expand_extra_isize(struct inode *inode,
5871                                      unsigned int new_extra_isize,
5872                                      struct ext4_iloc *iloc,
5873                                      handle_t *handle, int *no_expand)
5874 {
5875         struct ext4_inode *raw_inode;
5876         struct ext4_xattr_ibody_header *header;
5877         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5878         struct ext4_inode_info *ei = EXT4_I(inode);
5879         int error;
5880
5881         /* this was checked at iget time, but double check for good measure */
5882         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5883             (ei->i_extra_isize & 3)) {
5884                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5885                                  ei->i_extra_isize,
5886                                  EXT4_INODE_SIZE(inode->i_sb));
5887                 return -EFSCORRUPTED;
5888         }
5889         if ((new_extra_isize < ei->i_extra_isize) ||
5890             (new_extra_isize < 4) ||
5891             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5892                 return -EINVAL; /* Should never happen */
5893
5894         raw_inode = ext4_raw_inode(iloc);
5895
5896         header = IHDR(inode, raw_inode);
5897
5898         /* No extended attributes present */
5899         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5900             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5901                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5902                        EXT4_I(inode)->i_extra_isize, 0,
5903                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5904                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5905                 return 0;
5906         }
5907
5908         /*
5909          * We may need to allocate external xattr block so we need quotas
5910          * initialized. Here we can be called with various locks held so we
5911          * cannot affort to initialize quotas ourselves. So just bail.
5912          */
5913         if (dquot_initialize_needed(inode))
5914                 return -EAGAIN;
5915
5916         /* try to expand with EAs present */
5917         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5918                                            raw_inode, handle);
5919         if (error) {
5920                 /*
5921                  * Inode size expansion failed; don't try again
5922                  */
5923                 *no_expand = 1;
5924         }
5925
5926         return error;
5927 }
5928
5929 /*
5930  * Expand an inode by new_extra_isize bytes.
5931  * Returns 0 on success or negative error number on failure.
5932  */
5933 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5934                                           unsigned int new_extra_isize,
5935                                           struct ext4_iloc iloc,
5936                                           handle_t *handle)
5937 {
5938         int no_expand;
5939         int error;
5940
5941         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5942                 return -EOVERFLOW;
5943
5944         /*
5945          * In nojournal mode, we can immediately attempt to expand
5946          * the inode.  When journaled, we first need to obtain extra
5947          * buffer credits since we may write into the EA block
5948          * with this same handle. If journal_extend fails, then it will
5949          * only result in a minor loss of functionality for that inode.
5950          * If this is felt to be critical, then e2fsck should be run to
5951          * force a large enough s_min_extra_isize.
5952          */
5953         if (ext4_handle_valid(handle) &&
5954             jbd2_journal_extend(handle,
5955                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5956                 return -ENOSPC;
5957
5958         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5959                 return -EBUSY;
5960
5961         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5962                                           handle, &no_expand);
5963         ext4_write_unlock_xattr(inode, &no_expand);
5964
5965         return error;
5966 }
5967
5968 int ext4_expand_extra_isize(struct inode *inode,
5969                             unsigned int new_extra_isize,
5970                             struct ext4_iloc *iloc)
5971 {
5972         handle_t *handle;
5973         int no_expand;
5974         int error, rc;
5975
5976         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5977                 brelse(iloc->bh);
5978                 return -EOVERFLOW;
5979         }
5980
5981         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5982                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5983         if (IS_ERR(handle)) {
5984                 error = PTR_ERR(handle);
5985                 brelse(iloc->bh);
5986                 return error;
5987         }
5988
5989         ext4_write_lock_xattr(inode, &no_expand);
5990
5991         BUFFER_TRACE(iloc->bh, "get_write_access");
5992         error = ext4_journal_get_write_access(handle, iloc->bh);
5993         if (error) {
5994                 brelse(iloc->bh);
5995                 goto out_unlock;
5996         }
5997
5998         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5999                                           handle, &no_expand);
6000
6001         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6002         if (!error)
6003                 error = rc;
6004
6005 out_unlock:
6006         ext4_write_unlock_xattr(inode, &no_expand);
6007         ext4_journal_stop(handle);
6008         return error;
6009 }
6010
6011 /*
6012  * What we do here is to mark the in-core inode as clean with respect to inode
6013  * dirtiness (it may still be data-dirty).
6014  * This means that the in-core inode may be reaped by prune_icache
6015  * without having to perform any I/O.  This is a very good thing,
6016  * because *any* task may call prune_icache - even ones which
6017  * have a transaction open against a different journal.
6018  *
6019  * Is this cheating?  Not really.  Sure, we haven't written the
6020  * inode out, but prune_icache isn't a user-visible syncing function.
6021  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6022  * we start and wait on commits.
6023  */
6024 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6025 {
6026         struct ext4_iloc iloc;
6027         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6028         int err;
6029
6030         might_sleep();
6031         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6032         err = ext4_reserve_inode_write(handle, inode, &iloc);
6033         if (err)
6034                 return err;
6035
6036         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6037                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6038                                                iloc, handle);
6039
6040         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6041 }
6042
6043 /*
6044  * ext4_dirty_inode() is called from __mark_inode_dirty()
6045  *
6046  * We're really interested in the case where a file is being extended.
6047  * i_size has been changed by generic_commit_write() and we thus need
6048  * to include the updated inode in the current transaction.
6049  *
6050  * Also, dquot_alloc_block() will always dirty the inode when blocks
6051  * are allocated to the file.
6052  *
6053  * If the inode is marked synchronous, we don't honour that here - doing
6054  * so would cause a commit on atime updates, which we don't bother doing.
6055  * We handle synchronous inodes at the highest possible level.
6056  *
6057  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6058  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6059  * to copy into the on-disk inode structure are the timestamp files.
6060  */
6061 void ext4_dirty_inode(struct inode *inode, int flags)
6062 {
6063         handle_t *handle;
6064
6065         if (flags == I_DIRTY_TIME)
6066                 return;
6067         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6068         if (IS_ERR(handle))
6069                 goto out;
6070
6071         ext4_mark_inode_dirty(handle, inode);
6072
6073         ext4_journal_stop(handle);
6074 out:
6075         return;
6076 }
6077
6078 #if 0
6079 /*
6080  * Bind an inode's backing buffer_head into this transaction, to prevent
6081  * it from being flushed to disk early.  Unlike
6082  * ext4_reserve_inode_write, this leaves behind no bh reference and
6083  * returns no iloc structure, so the caller needs to repeat the iloc
6084  * lookup to mark the inode dirty later.
6085  */
6086 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6087 {
6088         struct ext4_iloc iloc;
6089
6090         int err = 0;
6091         if (handle) {
6092                 err = ext4_get_inode_loc(inode, &iloc);
6093                 if (!err) {
6094                         BUFFER_TRACE(iloc.bh, "get_write_access");
6095                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6096                         if (!err)
6097                                 err = ext4_handle_dirty_metadata(handle,
6098                                                                  NULL,
6099                                                                  iloc.bh);
6100                         brelse(iloc.bh);
6101                 }
6102         }
6103         ext4_std_error(inode->i_sb, err);
6104         return err;
6105 }
6106 #endif
6107
6108 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6109 {
6110         journal_t *journal;
6111         handle_t *handle;
6112         int err;
6113         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6114
6115         /*
6116          * We have to be very careful here: changing a data block's
6117          * journaling status dynamically is dangerous.  If we write a
6118          * data block to the journal, change the status and then delete
6119          * that block, we risk forgetting to revoke the old log record
6120          * from the journal and so a subsequent replay can corrupt data.
6121          * So, first we make sure that the journal is empty and that
6122          * nobody is changing anything.
6123          */
6124
6125         journal = EXT4_JOURNAL(inode);
6126         if (!journal)
6127                 return 0;
6128         if (is_journal_aborted(journal))
6129                 return -EROFS;
6130
6131         /* Wait for all existing dio workers */
6132         ext4_inode_block_unlocked_dio(inode);
6133         inode_dio_wait(inode);
6134
6135         /*
6136          * Before flushing the journal and switching inode's aops, we have
6137          * to flush all dirty data the inode has. There can be outstanding
6138          * delayed allocations, there can be unwritten extents created by
6139          * fallocate or buffered writes in dioread_nolock mode covered by
6140          * dirty data which can be converted only after flushing the dirty
6141          * data (and journalled aops don't know how to handle these cases).
6142          */
6143         if (val) {
6144                 down_write(&EXT4_I(inode)->i_mmap_sem);
6145                 err = filemap_write_and_wait(inode->i_mapping);
6146                 if (err < 0) {
6147                         up_write(&EXT4_I(inode)->i_mmap_sem);
6148                         ext4_inode_resume_unlocked_dio(inode);
6149                         return err;
6150                 }
6151         }
6152
6153         percpu_down_write(&sbi->s_writepages_rwsem);
6154         jbd2_journal_lock_updates(journal);
6155
6156         /*
6157          * OK, there are no updates running now, and all cached data is
6158          * synced to disk.  We are now in a completely consistent state
6159          * which doesn't have anything in the journal, and we know that
6160          * no filesystem updates are running, so it is safe to modify
6161          * the inode's in-core data-journaling state flag now.
6162          */
6163
6164         if (val)
6165                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6166         else {
6167                 err = jbd2_journal_flush(journal);
6168                 if (err < 0) {
6169                         jbd2_journal_unlock_updates(journal);
6170                         percpu_up_write(&sbi->s_writepages_rwsem);
6171                         ext4_inode_resume_unlocked_dio(inode);
6172                         return err;
6173                 }
6174                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6175         }
6176         ext4_set_aops(inode);
6177
6178         jbd2_journal_unlock_updates(journal);
6179         percpu_up_write(&sbi->s_writepages_rwsem);
6180
6181         if (val)
6182                 up_write(&EXT4_I(inode)->i_mmap_sem);
6183         ext4_inode_resume_unlocked_dio(inode);
6184
6185         /* Finally we can mark the inode as dirty. */
6186
6187         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6188         if (IS_ERR(handle))
6189                 return PTR_ERR(handle);
6190
6191         err = ext4_mark_inode_dirty(handle, inode);
6192         ext4_handle_sync(handle);
6193         ext4_journal_stop(handle);
6194         ext4_std_error(inode->i_sb, err);
6195
6196         return err;
6197 }
6198
6199 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6200 {
6201         return !buffer_mapped(bh);
6202 }
6203
6204 int ext4_page_mkwrite(struct vm_fault *vmf)
6205 {
6206         struct vm_area_struct *vma = vmf->vma;
6207         struct page *page = vmf->page;
6208         loff_t size;
6209         unsigned long len;
6210         int ret;
6211         struct file *file = vma->vm_file;
6212         struct inode *inode = file_inode(file);
6213         struct address_space *mapping = inode->i_mapping;
6214         handle_t *handle;
6215         get_block_t *get_block;
6216         int retries = 0;
6217
6218         if (unlikely(IS_IMMUTABLE(inode)))
6219                 return VM_FAULT_SIGBUS;
6220
6221         sb_start_pagefault(inode->i_sb);
6222         file_update_time(vma->vm_file);
6223
6224         down_read(&EXT4_I(inode)->i_mmap_sem);
6225
6226         ret = ext4_convert_inline_data(inode);
6227         if (ret)
6228                 goto out_ret;
6229
6230         /* Delalloc case is easy... */
6231         if (test_opt(inode->i_sb, DELALLOC) &&
6232             !ext4_should_journal_data(inode) &&
6233             !ext4_nonda_switch(inode->i_sb)) {
6234                 do {
6235                         ret = block_page_mkwrite(vma, vmf,
6236                                                    ext4_da_get_block_prep);
6237                 } while (ret == -ENOSPC &&
6238                        ext4_should_retry_alloc(inode->i_sb, &retries));
6239                 goto out_ret;
6240         }
6241
6242         lock_page(page);
6243         size = i_size_read(inode);
6244         /* Page got truncated from under us? */
6245         if (page->mapping != mapping || page_offset(page) > size) {
6246                 unlock_page(page);
6247                 ret = VM_FAULT_NOPAGE;
6248                 goto out;
6249         }
6250
6251         if (page->index == size >> PAGE_SHIFT)
6252                 len = size & ~PAGE_MASK;
6253         else
6254                 len = PAGE_SIZE;
6255         /*
6256          * Return if we have all the buffers mapped. This avoids the need to do
6257          * journal_start/journal_stop which can block and take a long time
6258          */
6259         if (page_has_buffers(page)) {
6260                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6261                                             0, len, NULL,
6262                                             ext4_bh_unmapped)) {
6263                         /* Wait so that we don't change page under IO */
6264                         wait_for_stable_page(page);
6265                         ret = VM_FAULT_LOCKED;
6266                         goto out;
6267                 }
6268         }
6269         unlock_page(page);
6270         /* OK, we need to fill the hole... */
6271         if (ext4_should_dioread_nolock(inode))
6272                 get_block = ext4_get_block_unwritten;
6273         else
6274                 get_block = ext4_get_block;
6275 retry_alloc:
6276         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6277                                     ext4_writepage_trans_blocks(inode));
6278         if (IS_ERR(handle)) {
6279                 ret = VM_FAULT_SIGBUS;
6280                 goto out;
6281         }
6282         ret = block_page_mkwrite(vma, vmf, get_block);
6283         if (!ret && ext4_should_journal_data(inode)) {
6284                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6285                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6286                         unlock_page(page);
6287                         ret = VM_FAULT_SIGBUS;
6288                         ext4_journal_stop(handle);
6289                         goto out;
6290                 }
6291                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6292         }
6293         ext4_journal_stop(handle);
6294         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6295                 goto retry_alloc;
6296 out_ret:
6297         ret = block_page_mkwrite_return(ret);
6298 out:
6299         up_read(&EXT4_I(inode)->i_mmap_sem);
6300         sb_end_pagefault(inode->i_sb);
6301         return ret;
6302 }
6303
6304 int ext4_filemap_fault(struct vm_fault *vmf)
6305 {
6306         struct inode *inode = file_inode(vmf->vma->vm_file);
6307         int err;
6308
6309         down_read(&EXT4_I(inode)->i_mmap_sem);
6310         err = filemap_fault(vmf);
6311         up_read(&EXT4_I(inode)->i_mmap_sem);
6312
6313         return err;
6314 }
6315
6316 /*
6317  * Find the first extent at or after @lblk in an inode that is not a hole.
6318  * Search for @map_len blocks at most. The extent is returned in @result.
6319  *
6320  * The function returns 1 if we found an extent. The function returns 0 in
6321  * case there is no extent at or after @lblk and in that case also sets
6322  * @result->es_len to 0. In case of error, the error code is returned.
6323  */
6324 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6325                          unsigned int map_len, struct extent_status *result)
6326 {
6327         struct ext4_map_blocks map;
6328         struct extent_status es = {};
6329         int ret;
6330
6331         map.m_lblk = lblk;
6332         map.m_len = map_len;
6333
6334         /*
6335          * For non-extent based files this loop may iterate several times since
6336          * we do not determine full hole size.
6337          */
6338         while (map.m_len > 0) {
6339                 ret = ext4_map_blocks(NULL, inode, &map, 0);
6340                 if (ret < 0)
6341                         return ret;
6342                 /* There's extent covering m_lblk? Just return it. */
6343                 if (ret > 0) {
6344                         int status;
6345
6346                         ext4_es_store_pblock(result, map.m_pblk);
6347                         result->es_lblk = map.m_lblk;
6348                         result->es_len = map.m_len;
6349                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
6350                                 status = EXTENT_STATUS_UNWRITTEN;
6351                         else
6352                                 status = EXTENT_STATUS_WRITTEN;
6353                         ext4_es_store_status(result, status);
6354                         return 1;
6355                 }
6356                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6357                                                   map.m_lblk + map.m_len - 1,
6358                                                   &es);
6359                 /* Is delalloc data before next block in extent tree? */
6360                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6361                         ext4_lblk_t offset = 0;
6362
6363                         if (es.es_lblk < lblk)
6364                                 offset = lblk - es.es_lblk;
6365                         result->es_lblk = es.es_lblk + offset;
6366                         ext4_es_store_pblock(result,
6367                                              ext4_es_pblock(&es) + offset);
6368                         result->es_len = es.es_len - offset;
6369                         ext4_es_store_status(result, ext4_es_status(&es));
6370
6371                         return 1;
6372                 }
6373                 /* There's a hole at m_lblk, advance us after it */
6374                 map.m_lblk += map.m_len;
6375                 map_len -= map.m_len;
6376                 map.m_len = map_len;
6377                 cond_resched();
6378         }
6379         result->es_len = 0;
6380         return 0;
6381 }