GNU Linux-libre 4.9.333-gnu1
[releases.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                 }
75                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
77         }
78
79         return csum;
80 }
81
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83                                   struct ext4_inode_info *ei)
84 {
85         __u32 provided, calculated;
86
87         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88             cpu_to_le32(EXT4_OS_LINUX) ||
89             !ext4_has_metadata_csum(inode->i_sb))
90                 return 1;
91
92         provided = le16_to_cpu(raw->i_checksum_lo);
93         calculated = ext4_inode_csum(inode, raw, ei);
94         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97         else
98                 calculated &= 0xFFFF;
99
100         return provided == calculated;
101 }
102
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104                                 struct ext4_inode_info *ei)
105 {
106         __u32 csum;
107
108         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109             cpu_to_le32(EXT4_OS_LINUX) ||
110             !ext4_has_metadata_csum(inode->i_sb))
111                 return;
112
113         csum = ext4_inode_csum(inode, raw, ei);
114         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121                                               loff_t new_size)
122 {
123         trace_ext4_begin_ordered_truncate(inode, new_size);
124         /*
125          * If jinode is zero, then we never opened the file for
126          * writing, so there's no need to call
127          * jbd2_journal_begin_ordered_truncate() since there's no
128          * outstanding writes we need to flush.
129          */
130         if (!EXT4_I(inode)->jinode)
131                 return 0;
132         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133                                                    EXT4_I(inode)->jinode,
134                                                    new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138                                 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142                                   int pextents);
143
144 /*
145  * Test whether an inode is a fast symlink.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152         if (ext4_has_inline_data(inode))
153                 return 0;
154
155         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 }
157
158 /*
159  * Restart the transaction associated with *handle.  This does a commit,
160  * so before we call here everything must be consistently dirtied against
161  * this transaction.
162  */
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164                                  int nblocks)
165 {
166         int ret;
167
168         /*
169          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
170          * moment, get_block can be called only for blocks inside i_size since
171          * page cache has been already dropped and writes are blocked by
172          * i_mutex. So we can safely drop the i_data_sem here.
173          */
174         BUG_ON(EXT4_JOURNAL(inode) == NULL);
175         jbd_debug(2, "restarting handle %p\n", handle);
176         up_write(&EXT4_I(inode)->i_data_sem);
177         ret = ext4_journal_restart(handle, nblocks);
178         down_write(&EXT4_I(inode)->i_data_sem);
179         ext4_discard_preallocations(inode);
180
181         return ret;
182 }
183
184 /*
185  * Called at the last iput() if i_nlink is zero.
186  */
187 void ext4_evict_inode(struct inode *inode)
188 {
189         handle_t *handle;
190         int err;
191
192         trace_ext4_evict_inode(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (inode->i_ino != EXT4_JOURNAL_INO &&
214                     ext4_should_journal_data(inode) &&
215                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219                         jbd2_complete_transaction(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages_final(&inode->i_data);
223
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (ext4_has_feature_journal(inode->i_sb) &&
378             (inode->i_ino ==
379              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
380                 return 0;
381         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock %llu "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_pblk, map->m_len);
386                 return -EFSCORRUPTED;
387         }
388         return 0;
389 }
390
391 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
392                        ext4_lblk_t len)
393 {
394         int ret;
395
396         if (ext4_encrypted_inode(inode))
397                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
398
399         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
400         if (ret > 0)
401                 ret = 0;
402
403         return ret;
404 }
405
406 #define check_block_validity(inode, map)        \
407         __check_block_validity((inode), __func__, __LINE__, (map))
408
409 #ifdef ES_AGGRESSIVE_TEST
410 static void ext4_map_blocks_es_recheck(handle_t *handle,
411                                        struct inode *inode,
412                                        struct ext4_map_blocks *es_map,
413                                        struct ext4_map_blocks *map,
414                                        int flags)
415 {
416         int retval;
417
418         map->m_flags = 0;
419         /*
420          * There is a race window that the result is not the same.
421          * e.g. xfstests #223 when dioread_nolock enables.  The reason
422          * is that we lookup a block mapping in extent status tree with
423          * out taking i_data_sem.  So at the time the unwritten extent
424          * could be converted.
425          */
426         down_read(&EXT4_I(inode)->i_data_sem);
427         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
428                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
429                                              EXT4_GET_BLOCKS_KEEP_SIZE);
430         } else {
431                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
432                                              EXT4_GET_BLOCKS_KEEP_SIZE);
433         }
434         up_read((&EXT4_I(inode)->i_data_sem));
435
436         /*
437          * We don't check m_len because extent will be collpased in status
438          * tree.  So the m_len might not equal.
439          */
440         if (es_map->m_lblk != map->m_lblk ||
441             es_map->m_flags != map->m_flags ||
442             es_map->m_pblk != map->m_pblk) {
443                 printk("ES cache assertion failed for inode: %lu "
444                        "es_cached ex [%d/%d/%llu/%x] != "
445                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
446                        inode->i_ino, es_map->m_lblk, es_map->m_len,
447                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
448                        map->m_len, map->m_pblk, map->m_flags,
449                        retval, flags);
450         }
451 }
452 #endif /* ES_AGGRESSIVE_TEST */
453
454 /*
455  * The ext4_map_blocks() function tries to look up the requested blocks,
456  * and returns if the blocks are already mapped.
457  *
458  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
459  * and store the allocated blocks in the result buffer head and mark it
460  * mapped.
461  *
462  * If file type is extents based, it will call ext4_ext_map_blocks(),
463  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
464  * based files
465  *
466  * On success, it returns the number of blocks being mapped or allocated.  if
467  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
468  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
469  *
470  * It returns 0 if plain look up failed (blocks have not been allocated), in
471  * that case, @map is returned as unmapped but we still do fill map->m_len to
472  * indicate the length of a hole starting at map->m_lblk.
473  *
474  * It returns the error in case of allocation failure.
475  */
476 int ext4_map_blocks(handle_t *handle, struct inode *inode,
477                     struct ext4_map_blocks *map, int flags)
478 {
479         struct extent_status es;
480         int retval;
481         int ret = 0;
482 #ifdef ES_AGGRESSIVE_TEST
483         struct ext4_map_blocks orig_map;
484
485         memcpy(&orig_map, map, sizeof(*map));
486 #endif
487
488         map->m_flags = 0;
489         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
490                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
491                   (unsigned long) map->m_lblk);
492
493         /*
494          * ext4_map_blocks returns an int, and m_len is an unsigned int
495          */
496         if (unlikely(map->m_len > INT_MAX))
497                 map->m_len = INT_MAX;
498
499         /* We can handle the block number less than EXT_MAX_BLOCKS */
500         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
501                 return -EFSCORRUPTED;
502
503         /* Lookup extent status tree firstly */
504         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
505                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
506                         map->m_pblk = ext4_es_pblock(&es) +
507                                         map->m_lblk - es.es_lblk;
508                         map->m_flags |= ext4_es_is_written(&es) ?
509                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
510                         retval = es.es_len - (map->m_lblk - es.es_lblk);
511                         if (retval > map->m_len)
512                                 retval = map->m_len;
513                         map->m_len = retval;
514                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
515                         map->m_pblk = 0;
516                         retval = es.es_len - (map->m_lblk - es.es_lblk);
517                         if (retval > map->m_len)
518                                 retval = map->m_len;
519                         map->m_len = retval;
520                         retval = 0;
521                 } else {
522                         BUG_ON(1);
523                 }
524 #ifdef ES_AGGRESSIVE_TEST
525                 ext4_map_blocks_es_recheck(handle, inode, map,
526                                            &orig_map, flags);
527 #endif
528                 goto found;
529         }
530
531         /*
532          * Try to see if we can get the block without requesting a new
533          * file system block.
534          */
535         down_read(&EXT4_I(inode)->i_data_sem);
536         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
537                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
538                                              EXT4_GET_BLOCKS_KEEP_SIZE);
539         } else {
540                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
541                                              EXT4_GET_BLOCKS_KEEP_SIZE);
542         }
543         if (retval > 0) {
544                 unsigned int status;
545
546                 if (unlikely(retval != map->m_len)) {
547                         ext4_warning(inode->i_sb,
548                                      "ES len assertion failed for inode "
549                                      "%lu: retval %d != map->m_len %d",
550                                      inode->i_ino, retval, map->m_len);
551                         WARN_ON(1);
552                 }
553
554                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557                     !(status & EXTENT_STATUS_WRITTEN) &&
558                     ext4_find_delalloc_range(inode, map->m_lblk,
559                                              map->m_lblk + map->m_len - 1))
560                         status |= EXTENT_STATUS_DELAYED;
561                 ret = ext4_es_insert_extent(inode, map->m_lblk,
562                                             map->m_len, map->m_pblk, status);
563                 if (ret < 0)
564                         retval = ret;
565         }
566         up_read((&EXT4_I(inode)->i_data_sem));
567
568 found:
569         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570                 ret = check_block_validity(inode, map);
571                 if (ret != 0)
572                         return ret;
573         }
574
575         /* If it is only a block(s) look up */
576         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577                 return retval;
578
579         /*
580          * Returns if the blocks have already allocated
581          *
582          * Note that if blocks have been preallocated
583          * ext4_ext_get_block() returns the create = 0
584          * with buffer head unmapped.
585          */
586         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587                 /*
588                  * If we need to convert extent to unwritten
589                  * we continue and do the actual work in
590                  * ext4_ext_map_blocks()
591                  */
592                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
593                         return retval;
594
595         /*
596          * Here we clear m_flags because after allocating an new extent,
597          * it will be set again.
598          */
599         map->m_flags &= ~EXT4_MAP_FLAGS;
600
601         /*
602          * New blocks allocate and/or writing to unwritten extent
603          * will possibly result in updating i_data, so we take
604          * the write lock of i_data_sem, and call get_block()
605          * with create == 1 flag.
606          */
607         down_write(&EXT4_I(inode)->i_data_sem);
608
609         /*
610          * We need to check for EXT4 here because migrate
611          * could have changed the inode type in between
612          */
613         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
614                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
615         } else {
616                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
617
618                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
619                         /*
620                          * We allocated new blocks which will result in
621                          * i_data's format changing.  Force the migrate
622                          * to fail by clearing migrate flags
623                          */
624                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
625                 }
626
627                 /*
628                  * Update reserved blocks/metadata blocks after successful
629                  * block allocation which had been deferred till now. We don't
630                  * support fallocate for non extent files. So we can update
631                  * reserve space here.
632                  */
633                 if ((retval > 0) &&
634                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
635                         ext4_da_update_reserve_space(inode, retval, 1);
636         }
637
638         if (retval > 0) {
639                 unsigned int status;
640
641                 if (unlikely(retval != map->m_len)) {
642                         ext4_warning(inode->i_sb,
643                                      "ES len assertion failed for inode "
644                                      "%lu: retval %d != map->m_len %d",
645                                      inode->i_ino, retval, map->m_len);
646                         WARN_ON(1);
647                 }
648
649                 /*
650                  * We have to zeroout blocks before inserting them into extent
651                  * status tree. Otherwise someone could look them up there and
652                  * use them before they are really zeroed. We also have to
653                  * unmap metadata before zeroing as otherwise writeback can
654                  * overwrite zeros with stale data from block device.
655                  */
656                 if (flags & EXT4_GET_BLOCKS_ZERO &&
657                     map->m_flags & EXT4_MAP_MAPPED &&
658                     map->m_flags & EXT4_MAP_NEW) {
659                         ext4_lblk_t i;
660
661                         for (i = 0; i < map->m_len; i++) {
662                                 unmap_underlying_metadata(inode->i_sb->s_bdev,
663                                                           map->m_pblk + i);
664                         }
665                         ret = ext4_issue_zeroout(inode, map->m_lblk,
666                                                  map->m_pblk, map->m_len);
667                         if (ret) {
668                                 retval = ret;
669                                 goto out_sem;
670                         }
671                 }
672
673                 /*
674                  * If the extent has been zeroed out, we don't need to update
675                  * extent status tree.
676                  */
677                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
678                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
679                         if (ext4_es_is_written(&es))
680                                 goto out_sem;
681                 }
682                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
683                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
684                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
685                     !(status & EXTENT_STATUS_WRITTEN) &&
686                     ext4_find_delalloc_range(inode, map->m_lblk,
687                                              map->m_lblk + map->m_len - 1))
688                         status |= EXTENT_STATUS_DELAYED;
689                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
690                                             map->m_pblk, status);
691                 if (ret < 0) {
692                         retval = ret;
693                         goto out_sem;
694                 }
695         }
696
697 out_sem:
698         up_write((&EXT4_I(inode)->i_data_sem));
699         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
700                 ret = check_block_validity(inode, map);
701                 if (ret != 0)
702                         return ret;
703
704                 /*
705                  * Inodes with freshly allocated blocks where contents will be
706                  * visible after transaction commit must be on transaction's
707                  * ordered data list.
708                  */
709                 if (map->m_flags & EXT4_MAP_NEW &&
710                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
711                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
712                     !IS_NOQUOTA(inode) &&
713                     ext4_should_order_data(inode)) {
714                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
715                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
716                         else
717                                 ret = ext4_jbd2_inode_add_write(handle, inode);
718                         if (ret)
719                                 return ret;
720                 }
721         }
722         return retval;
723 }
724
725 /*
726  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
727  * we have to be careful as someone else may be manipulating b_state as well.
728  */
729 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
730 {
731         unsigned long old_state;
732         unsigned long new_state;
733
734         flags &= EXT4_MAP_FLAGS;
735
736         /* Dummy buffer_head? Set non-atomically. */
737         if (!bh->b_page) {
738                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
739                 return;
740         }
741         /*
742          * Someone else may be modifying b_state. Be careful! This is ugly but
743          * once we get rid of using bh as a container for mapping information
744          * to pass to / from get_block functions, this can go away.
745          */
746         do {
747                 old_state = READ_ONCE(bh->b_state);
748                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
749         } while (unlikely(
750                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
751 }
752
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754                            struct buffer_head *bh, int flags)
755 {
756         struct ext4_map_blocks map;
757         int ret = 0;
758
759         if (ext4_has_inline_data(inode))
760                 return -ERANGE;
761
762         map.m_lblk = iblock;
763         map.m_len = bh->b_size >> inode->i_blkbits;
764
765         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766                               flags);
767         if (ret > 0) {
768                 map_bh(bh, inode->i_sb, map.m_pblk);
769                 ext4_update_bh_state(bh, map.m_flags);
770                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771                 ret = 0;
772         }
773         return ret;
774 }
775
776 int ext4_get_block(struct inode *inode, sector_t iblock,
777                    struct buffer_head *bh, int create)
778 {
779         return _ext4_get_block(inode, iblock, bh,
780                                create ? EXT4_GET_BLOCKS_CREATE : 0);
781 }
782
783 /*
784  * Get block function used when preparing for buffered write if we require
785  * creating an unwritten extent if blocks haven't been allocated.  The extent
786  * will be converted to written after the IO is complete.
787  */
788 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
789                              struct buffer_head *bh_result, int create)
790 {
791         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
792                    inode->i_ino, create);
793         return _ext4_get_block(inode, iblock, bh_result,
794                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
795 }
796
797 /* Maximum number of blocks we map for direct IO at once. */
798 #define DIO_MAX_BLOCKS 4096
799
800 /*
801  * Get blocks function for the cases that need to start a transaction -
802  * generally difference cases of direct IO and DAX IO. It also handles retries
803  * in case of ENOSPC.
804  */
805 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
806                                 struct buffer_head *bh_result, int flags)
807 {
808         int dio_credits;
809         handle_t *handle;
810         int retries = 0;
811         int ret;
812
813         /* Trim mapping request to maximum we can map at once for DIO */
814         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
815                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
816         dio_credits = ext4_chunk_trans_blocks(inode,
817                                       bh_result->b_size >> inode->i_blkbits);
818 retry:
819         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
820         if (IS_ERR(handle))
821                 return PTR_ERR(handle);
822
823         ret = _ext4_get_block(inode, iblock, bh_result, flags);
824         ext4_journal_stop(handle);
825
826         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
827                 goto retry;
828         return ret;
829 }
830
831 /* Get block function for DIO reads and writes to inodes without extents */
832 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
833                        struct buffer_head *bh, int create)
834 {
835         /* We don't expect handle for direct IO */
836         WARN_ON_ONCE(ext4_journal_current_handle());
837
838         if (!create)
839                 return _ext4_get_block(inode, iblock, bh, 0);
840         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
841 }
842
843 /*
844  * Get block function for AIO DIO writes when we create unwritten extent if
845  * blocks are not allocated yet. The extent will be converted to written
846  * after IO is complete.
847  */
848 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
849                 sector_t iblock, struct buffer_head *bh_result, int create)
850 {
851         int ret;
852
853         /* We don't expect handle for direct IO */
854         WARN_ON_ONCE(ext4_journal_current_handle());
855
856         ret = ext4_get_block_trans(inode, iblock, bh_result,
857                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
858
859         /*
860          * When doing DIO using unwritten extents, we need io_end to convert
861          * unwritten extents to written on IO completion. We allocate io_end
862          * once we spot unwritten extent and store it in b_private. Generic
863          * DIO code keeps b_private set and furthermore passes the value to
864          * our completion callback in 'private' argument.
865          */
866         if (!ret && buffer_unwritten(bh_result)) {
867                 if (!bh_result->b_private) {
868                         ext4_io_end_t *io_end;
869
870                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
871                         if (!io_end)
872                                 return -ENOMEM;
873                         bh_result->b_private = io_end;
874                         ext4_set_io_unwritten_flag(inode, io_end);
875                 }
876                 set_buffer_defer_completion(bh_result);
877         }
878
879         return ret;
880 }
881
882 /*
883  * Get block function for non-AIO DIO writes when we create unwritten extent if
884  * blocks are not allocated yet. The extent will be converted to written
885  * after IO is complete from ext4_ext_direct_IO() function.
886  */
887 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
888                 sector_t iblock, struct buffer_head *bh_result, int create)
889 {
890         int ret;
891
892         /* We don't expect handle for direct IO */
893         WARN_ON_ONCE(ext4_journal_current_handle());
894
895         ret = ext4_get_block_trans(inode, iblock, bh_result,
896                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
897
898         /*
899          * Mark inode as having pending DIO writes to unwritten extents.
900          * ext4_ext_direct_IO() checks this flag and converts extents to
901          * written.
902          */
903         if (!ret && buffer_unwritten(bh_result))
904                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
905
906         return ret;
907 }
908
909 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
910                    struct buffer_head *bh_result, int create)
911 {
912         int ret;
913
914         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
915                    inode->i_ino, create);
916         /* We don't expect handle for direct IO */
917         WARN_ON_ONCE(ext4_journal_current_handle());
918
919         ret = _ext4_get_block(inode, iblock, bh_result, 0);
920         /*
921          * Blocks should have been preallocated! ext4_file_write_iter() checks
922          * that.
923          */
924         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
925
926         return ret;
927 }
928
929
930 /*
931  * `handle' can be NULL if create is zero
932  */
933 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
934                                 ext4_lblk_t block, int map_flags)
935 {
936         struct ext4_map_blocks map;
937         struct buffer_head *bh;
938         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
939         int err;
940
941         J_ASSERT(handle != NULL || create == 0);
942
943         map.m_lblk = block;
944         map.m_len = 1;
945         err = ext4_map_blocks(handle, inode, &map, map_flags);
946
947         if (err == 0)
948                 return create ? ERR_PTR(-ENOSPC) : NULL;
949         if (err < 0)
950                 return ERR_PTR(err);
951
952         bh = sb_getblk(inode->i_sb, map.m_pblk);
953         if (unlikely(!bh))
954                 return ERR_PTR(-ENOMEM);
955         if (map.m_flags & EXT4_MAP_NEW) {
956                 J_ASSERT(create != 0);
957                 J_ASSERT(handle != NULL);
958
959                 /*
960                  * Now that we do not always journal data, we should
961                  * keep in mind whether this should always journal the
962                  * new buffer as metadata.  For now, regular file
963                  * writes use ext4_get_block instead, so it's not a
964                  * problem.
965                  */
966                 lock_buffer(bh);
967                 BUFFER_TRACE(bh, "call get_create_access");
968                 err = ext4_journal_get_create_access(handle, bh);
969                 if (unlikely(err)) {
970                         unlock_buffer(bh);
971                         goto errout;
972                 }
973                 if (!buffer_uptodate(bh)) {
974                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
975                         set_buffer_uptodate(bh);
976                 }
977                 unlock_buffer(bh);
978                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
979                 err = ext4_handle_dirty_metadata(handle, inode, bh);
980                 if (unlikely(err))
981                         goto errout;
982         } else
983                 BUFFER_TRACE(bh, "not a new buffer");
984         return bh;
985 errout:
986         brelse(bh);
987         return ERR_PTR(err);
988 }
989
990 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
991                                ext4_lblk_t block, int map_flags)
992 {
993         struct buffer_head *bh;
994
995         bh = ext4_getblk(handle, inode, block, map_flags);
996         if (IS_ERR(bh))
997                 return bh;
998         if (!bh || buffer_uptodate(bh))
999                 return bh;
1000         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1001         wait_on_buffer(bh);
1002         if (buffer_uptodate(bh))
1003                 return bh;
1004         put_bh(bh);
1005         return ERR_PTR(-EIO);
1006 }
1007
1008 int ext4_walk_page_buffers(handle_t *handle,
1009                            struct buffer_head *head,
1010                            unsigned from,
1011                            unsigned to,
1012                            int *partial,
1013                            int (*fn)(handle_t *handle,
1014                                      struct buffer_head *bh))
1015 {
1016         struct buffer_head *bh;
1017         unsigned block_start, block_end;
1018         unsigned blocksize = head->b_size;
1019         int err, ret = 0;
1020         struct buffer_head *next;
1021
1022         for (bh = head, block_start = 0;
1023              ret == 0 && (bh != head || !block_start);
1024              block_start = block_end, bh = next) {
1025                 next = bh->b_this_page;
1026                 block_end = block_start + blocksize;
1027                 if (block_end <= from || block_start >= to) {
1028                         if (partial && !buffer_uptodate(bh))
1029                                 *partial = 1;
1030                         continue;
1031                 }
1032                 err = (*fn)(handle, bh);
1033                 if (!ret)
1034                         ret = err;
1035         }
1036         return ret;
1037 }
1038
1039 /*
1040  * To preserve ordering, it is essential that the hole instantiation and
1041  * the data write be encapsulated in a single transaction.  We cannot
1042  * close off a transaction and start a new one between the ext4_get_block()
1043  * and the commit_write().  So doing the jbd2_journal_start at the start of
1044  * prepare_write() is the right place.
1045  *
1046  * Also, this function can nest inside ext4_writepage().  In that case, we
1047  * *know* that ext4_writepage() has generated enough buffer credits to do the
1048  * whole page.  So we won't block on the journal in that case, which is good,
1049  * because the caller may be PF_MEMALLOC.
1050  *
1051  * By accident, ext4 can be reentered when a transaction is open via
1052  * quota file writes.  If we were to commit the transaction while thus
1053  * reentered, there can be a deadlock - we would be holding a quota
1054  * lock, and the commit would never complete if another thread had a
1055  * transaction open and was blocking on the quota lock - a ranking
1056  * violation.
1057  *
1058  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1059  * will _not_ run commit under these circumstances because handle->h_ref
1060  * is elevated.  We'll still have enough credits for the tiny quotafile
1061  * write.
1062  */
1063 int do_journal_get_write_access(handle_t *handle,
1064                                 struct buffer_head *bh)
1065 {
1066         int dirty = buffer_dirty(bh);
1067         int ret;
1068
1069         if (!buffer_mapped(bh) || buffer_freed(bh))
1070                 return 0;
1071         /*
1072          * __block_write_begin() could have dirtied some buffers. Clean
1073          * the dirty bit as jbd2_journal_get_write_access() could complain
1074          * otherwise about fs integrity issues. Setting of the dirty bit
1075          * by __block_write_begin() isn't a real problem here as we clear
1076          * the bit before releasing a page lock and thus writeback cannot
1077          * ever write the buffer.
1078          */
1079         if (dirty)
1080                 clear_buffer_dirty(bh);
1081         BUFFER_TRACE(bh, "get write access");
1082         ret = ext4_journal_get_write_access(handle, bh);
1083         if (!ret && dirty)
1084                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1085         return ret;
1086 }
1087
1088 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1089 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1090                                   get_block_t *get_block)
1091 {
1092         unsigned from = pos & (PAGE_SIZE - 1);
1093         unsigned to = from + len;
1094         struct inode *inode = page->mapping->host;
1095         unsigned block_start, block_end;
1096         sector_t block;
1097         int err = 0;
1098         unsigned blocksize = inode->i_sb->s_blocksize;
1099         unsigned bbits;
1100         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1101         bool decrypt = false;
1102
1103         BUG_ON(!PageLocked(page));
1104         BUG_ON(from > PAGE_SIZE);
1105         BUG_ON(to > PAGE_SIZE);
1106         BUG_ON(from > to);
1107
1108         if (!page_has_buffers(page))
1109                 create_empty_buffers(page, blocksize, 0);
1110         head = page_buffers(page);
1111         bbits = ilog2(blocksize);
1112         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1113
1114         for (bh = head, block_start = 0; bh != head || !block_start;
1115             block++, block_start = block_end, bh = bh->b_this_page) {
1116                 block_end = block_start + blocksize;
1117                 if (block_end <= from || block_start >= to) {
1118                         if (PageUptodate(page)) {
1119                                 if (!buffer_uptodate(bh))
1120                                         set_buffer_uptodate(bh);
1121                         }
1122                         continue;
1123                 }
1124                 if (buffer_new(bh))
1125                         clear_buffer_new(bh);
1126                 if (!buffer_mapped(bh)) {
1127                         WARN_ON(bh->b_size != blocksize);
1128                         err = get_block(inode, block, bh, 1);
1129                         if (err)
1130                                 break;
1131                         if (buffer_new(bh)) {
1132                                 unmap_underlying_metadata(bh->b_bdev,
1133                                                           bh->b_blocknr);
1134                                 if (PageUptodate(page)) {
1135                                         clear_buffer_new(bh);
1136                                         set_buffer_uptodate(bh);
1137                                         mark_buffer_dirty(bh);
1138                                         continue;
1139                                 }
1140                                 if (block_end > to || block_start < from)
1141                                         zero_user_segments(page, to, block_end,
1142                                                            block_start, from);
1143                                 continue;
1144                         }
1145                 }
1146                 if (PageUptodate(page)) {
1147                         if (!buffer_uptodate(bh))
1148                                 set_buffer_uptodate(bh);
1149                         continue;
1150                 }
1151                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1152                     !buffer_unwritten(bh) &&
1153                     (block_start < from || block_end > to)) {
1154                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1155                         *wait_bh++ = bh;
1156                         decrypt = ext4_encrypted_inode(inode) &&
1157                                 S_ISREG(inode->i_mode);
1158                 }
1159         }
1160         /*
1161          * If we issued read requests, let them complete.
1162          */
1163         while (wait_bh > wait) {
1164                 wait_on_buffer(*--wait_bh);
1165                 if (!buffer_uptodate(*wait_bh))
1166                         err = -EIO;
1167         }
1168         if (unlikely(err))
1169                 page_zero_new_buffers(page, from, to);
1170         else if (decrypt)
1171                 err = fscrypt_decrypt_page(page);
1172         return err;
1173 }
1174 #endif
1175
1176 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1177                             loff_t pos, unsigned len, unsigned flags,
1178                             struct page **pagep, void **fsdata)
1179 {
1180         struct inode *inode = mapping->host;
1181         int ret, needed_blocks;
1182         handle_t *handle;
1183         int retries = 0;
1184         struct page *page;
1185         pgoff_t index;
1186         unsigned from, to;
1187
1188         trace_ext4_write_begin(inode, pos, len, flags);
1189         /*
1190          * Reserve one block more for addition to orphan list in case
1191          * we allocate blocks but write fails for some reason
1192          */
1193         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1194         index = pos >> PAGE_SHIFT;
1195         from = pos & (PAGE_SIZE - 1);
1196         to = from + len;
1197
1198         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1199                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1200                                                     flags, pagep);
1201                 if (ret < 0)
1202                         return ret;
1203                 if (ret == 1)
1204                         return 0;
1205         }
1206
1207         /*
1208          * grab_cache_page_write_begin() can take a long time if the
1209          * system is thrashing due to memory pressure, or if the page
1210          * is being written back.  So grab it first before we start
1211          * the transaction handle.  This also allows us to allocate
1212          * the page (if needed) without using GFP_NOFS.
1213          */
1214 retry_grab:
1215         page = grab_cache_page_write_begin(mapping, index, flags);
1216         if (!page)
1217                 return -ENOMEM;
1218         /*
1219          * The same as page allocation, we prealloc buffer heads before
1220          * starting the handle.
1221          */
1222         if (!page_has_buffers(page))
1223                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1224
1225         unlock_page(page);
1226
1227 retry_journal:
1228         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229         if (IS_ERR(handle)) {
1230                 put_page(page);
1231                 return PTR_ERR(handle);
1232         }
1233
1234         lock_page(page);
1235         if (page->mapping != mapping) {
1236                 /* The page got truncated from under us */
1237                 unlock_page(page);
1238                 put_page(page);
1239                 ext4_journal_stop(handle);
1240                 goto retry_grab;
1241         }
1242         /* In case writeback began while the page was unlocked */
1243         wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246         if (ext4_should_dioread_nolock(inode))
1247                 ret = ext4_block_write_begin(page, pos, len,
1248                                              ext4_get_block_unwritten);
1249         else
1250                 ret = ext4_block_write_begin(page, pos, len,
1251                                              ext4_get_block);
1252 #else
1253         if (ext4_should_dioread_nolock(inode))
1254                 ret = __block_write_begin(page, pos, len,
1255                                           ext4_get_block_unwritten);
1256         else
1257                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259         if (!ret && ext4_should_journal_data(inode)) {
1260                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261                                              from, to, NULL,
1262                                              do_journal_get_write_access);
1263         }
1264
1265         if (ret) {
1266                 unlock_page(page);
1267                 /*
1268                  * __block_write_begin may have instantiated a few blocks
1269                  * outside i_size.  Trim these off again. Don't need
1270                  * i_size_read because we hold i_mutex.
1271                  *
1272                  * Add inode to orphan list in case we crash before
1273                  * truncate finishes
1274                  */
1275                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276                         ext4_orphan_add(handle, inode);
1277
1278                 ext4_journal_stop(handle);
1279                 if (pos + len > inode->i_size) {
1280                         ext4_truncate_failed_write(inode);
1281                         /*
1282                          * If truncate failed early the inode might
1283                          * still be on the orphan list; we need to
1284                          * make sure the inode is removed from the
1285                          * orphan list in that case.
1286                          */
1287                         if (inode->i_nlink)
1288                                 ext4_orphan_del(NULL, inode);
1289                 }
1290
1291                 if (ret == -ENOSPC &&
1292                     ext4_should_retry_alloc(inode->i_sb, &retries))
1293                         goto retry_journal;
1294                 put_page(page);
1295                 return ret;
1296         }
1297         *pagep = page;
1298         return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304         int ret;
1305         if (!buffer_mapped(bh) || buffer_freed(bh))
1306                 return 0;
1307         set_buffer_uptodate(bh);
1308         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309         clear_buffer_meta(bh);
1310         clear_buffer_prio(bh);
1311         return ret;
1312 }
1313
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322                           struct address_space *mapping,
1323                           loff_t pos, unsigned len, unsigned copied,
1324                           struct page *page, void *fsdata)
1325 {
1326         handle_t *handle = ext4_journal_current_handle();
1327         struct inode *inode = mapping->host;
1328         loff_t old_size = inode->i_size;
1329         int ret = 0, ret2;
1330         int i_size_changed = 0;
1331         int inline_data = ext4_has_inline_data(inode);
1332
1333         trace_ext4_write_end(inode, pos, len, copied);
1334         if (inline_data) {
1335                 ret = ext4_write_inline_data_end(inode, pos, len,
1336                                                  copied, page);
1337                 if (ret < 0) {
1338                         unlock_page(page);
1339                         put_page(page);
1340                         goto errout;
1341                 }
1342                 copied = ret;
1343         } else
1344                 copied = block_write_end(file, mapping, pos,
1345                                          len, copied, page, fsdata);
1346         /*
1347          * it's important to update i_size while still holding page lock:
1348          * page writeout could otherwise come in and zero beyond i_size.
1349          */
1350         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1351         unlock_page(page);
1352         put_page(page);
1353
1354         if (old_size < pos)
1355                 pagecache_isize_extended(inode, old_size, pos);
1356         /*
1357          * Don't mark the inode dirty under page lock. First, it unnecessarily
1358          * makes the holding time of page lock longer. Second, it forces lock
1359          * ordering of page lock and transaction start for journaling
1360          * filesystems.
1361          */
1362         if (i_size_changed || inline_data)
1363                 ext4_mark_inode_dirty(handle, inode);
1364
1365         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1366                 /* if we have allocated more blocks and copied
1367                  * less. We will have blocks allocated outside
1368                  * inode->i_size. So truncate them
1369                  */
1370                 ext4_orphan_add(handle, inode);
1371 errout:
1372         ret2 = ext4_journal_stop(handle);
1373         if (!ret)
1374                 ret = ret2;
1375
1376         if (pos + len > inode->i_size) {
1377                 ext4_truncate_failed_write(inode);
1378                 /*
1379                  * If truncate failed early the inode might still be
1380                  * on the orphan list; we need to make sure the inode
1381                  * is removed from the orphan list in that case.
1382                  */
1383                 if (inode->i_nlink)
1384                         ext4_orphan_del(NULL, inode);
1385         }
1386
1387         return ret ? ret : copied;
1388 }
1389
1390 /*
1391  * This is a private version of page_zero_new_buffers() which doesn't
1392  * set the buffer to be dirty, since in data=journalled mode we need
1393  * to call ext4_handle_dirty_metadata() instead.
1394  */
1395 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1396                                             struct page *page,
1397                                             unsigned from, unsigned to)
1398 {
1399         unsigned int block_start = 0, block_end;
1400         struct buffer_head *head, *bh;
1401
1402         bh = head = page_buffers(page);
1403         do {
1404                 block_end = block_start + bh->b_size;
1405                 if (buffer_new(bh)) {
1406                         if (block_end > from && block_start < to) {
1407                                 if (!PageUptodate(page)) {
1408                                         unsigned start, size;
1409
1410                                         start = max(from, block_start);
1411                                         size = min(to, block_end) - start;
1412
1413                                         zero_user(page, start, size);
1414                                         write_end_fn(handle, bh);
1415                                 }
1416                                 clear_buffer_new(bh);
1417                         }
1418                 }
1419                 block_start = block_end;
1420                 bh = bh->b_this_page;
1421         } while (bh != head);
1422 }
1423
1424 static int ext4_journalled_write_end(struct file *file,
1425                                      struct address_space *mapping,
1426                                      loff_t pos, unsigned len, unsigned copied,
1427                                      struct page *page, void *fsdata)
1428 {
1429         handle_t *handle = ext4_journal_current_handle();
1430         struct inode *inode = mapping->host;
1431         loff_t old_size = inode->i_size;
1432         int ret = 0, ret2;
1433         int partial = 0;
1434         unsigned from, to;
1435         int size_changed = 0;
1436         int inline_data = ext4_has_inline_data(inode);
1437
1438         trace_ext4_journalled_write_end(inode, pos, len, copied);
1439         from = pos & (PAGE_SIZE - 1);
1440         to = from + len;
1441
1442         BUG_ON(!ext4_handle_valid(handle));
1443
1444         if (inline_data) {
1445                 ret = ext4_write_inline_data_end(inode, pos, len,
1446                                                  copied, page);
1447                 if (ret < 0) {
1448                         unlock_page(page);
1449                         put_page(page);
1450                         goto errout;
1451                 }
1452                 copied = ret;
1453         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1454                 copied = 0;
1455                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1456         } else {
1457                 if (unlikely(copied < len))
1458                         ext4_journalled_zero_new_buffers(handle, page,
1459                                                          from + copied, to);
1460                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1461                                              from + copied, &partial,
1462                                              write_end_fn);
1463                 if (!partial)
1464                         SetPageUptodate(page);
1465         }
1466         size_changed = ext4_update_inode_size(inode, pos + copied);
1467         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1468         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1469         unlock_page(page);
1470         put_page(page);
1471
1472         if (old_size < pos)
1473                 pagecache_isize_extended(inode, old_size, pos);
1474
1475         if (size_changed || inline_data) {
1476                 ret2 = ext4_mark_inode_dirty(handle, inode);
1477                 if (!ret)
1478                         ret = ret2;
1479         }
1480
1481         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1482                 /* if we have allocated more blocks and copied
1483                  * less. We will have blocks allocated outside
1484                  * inode->i_size. So truncate them
1485                  */
1486                 ext4_orphan_add(handle, inode);
1487
1488 errout:
1489         ret2 = ext4_journal_stop(handle);
1490         if (!ret)
1491                 ret = ret2;
1492         if (pos + len > inode->i_size) {
1493                 ext4_truncate_failed_write(inode);
1494                 /*
1495                  * If truncate failed early the inode might still be
1496                  * on the orphan list; we need to make sure the inode
1497                  * is removed from the orphan list in that case.
1498                  */
1499                 if (inode->i_nlink)
1500                         ext4_orphan_del(NULL, inode);
1501         }
1502
1503         return ret ? ret : copied;
1504 }
1505
1506 /*
1507  * Reserve space for a single cluster
1508  */
1509 static int ext4_da_reserve_space(struct inode *inode)
1510 {
1511         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1512         struct ext4_inode_info *ei = EXT4_I(inode);
1513         int ret;
1514
1515         /*
1516          * We will charge metadata quota at writeout time; this saves
1517          * us from metadata over-estimation, though we may go over by
1518          * a small amount in the end.  Here we just reserve for data.
1519          */
1520         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1521         if (ret)
1522                 return ret;
1523
1524         spin_lock(&ei->i_block_reservation_lock);
1525         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1526                 spin_unlock(&ei->i_block_reservation_lock);
1527                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1528                 return -ENOSPC;
1529         }
1530         ei->i_reserved_data_blocks++;
1531         trace_ext4_da_reserve_space(inode);
1532         spin_unlock(&ei->i_block_reservation_lock);
1533
1534         return 0;       /* success */
1535 }
1536
1537 static void ext4_da_release_space(struct inode *inode, int to_free)
1538 {
1539         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1540         struct ext4_inode_info *ei = EXT4_I(inode);
1541
1542         if (!to_free)
1543                 return;         /* Nothing to release, exit */
1544
1545         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1546
1547         trace_ext4_da_release_space(inode, to_free);
1548         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1549                 /*
1550                  * if there aren't enough reserved blocks, then the
1551                  * counter is messed up somewhere.  Since this
1552                  * function is called from invalidate page, it's
1553                  * harmless to return without any action.
1554                  */
1555                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1556                          "ino %lu, to_free %d with only %d reserved "
1557                          "data blocks", inode->i_ino, to_free,
1558                          ei->i_reserved_data_blocks);
1559                 WARN_ON(1);
1560                 to_free = ei->i_reserved_data_blocks;
1561         }
1562         ei->i_reserved_data_blocks -= to_free;
1563
1564         /* update fs dirty data blocks counter */
1565         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1566
1567         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1568
1569         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1570 }
1571
1572 static void ext4_da_page_release_reservation(struct page *page,
1573                                              unsigned int offset,
1574                                              unsigned int length)
1575 {
1576         int to_release = 0, contiguous_blks = 0;
1577         struct buffer_head *head, *bh;
1578         unsigned int curr_off = 0;
1579         struct inode *inode = page->mapping->host;
1580         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1581         unsigned int stop = offset + length;
1582         int num_clusters;
1583         ext4_fsblk_t lblk;
1584
1585         BUG_ON(stop > PAGE_SIZE || stop < length);
1586
1587         head = page_buffers(page);
1588         bh = head;
1589         do {
1590                 unsigned int next_off = curr_off + bh->b_size;
1591
1592                 if (next_off > stop)
1593                         break;
1594
1595                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1596                         to_release++;
1597                         contiguous_blks++;
1598                         clear_buffer_delay(bh);
1599                 } else if (contiguous_blks) {
1600                         lblk = page->index <<
1601                                (PAGE_SHIFT - inode->i_blkbits);
1602                         lblk += (curr_off >> inode->i_blkbits) -
1603                                 contiguous_blks;
1604                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1605                         contiguous_blks = 0;
1606                 }
1607                 curr_off = next_off;
1608         } while ((bh = bh->b_this_page) != head);
1609
1610         if (contiguous_blks) {
1611                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1612                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1613                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1614         }
1615
1616         /* If we have released all the blocks belonging to a cluster, then we
1617          * need to release the reserved space for that cluster. */
1618         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1619         while (num_clusters > 0) {
1620                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1621                         ((num_clusters - 1) << sbi->s_cluster_bits);
1622                 if (sbi->s_cluster_ratio == 1 ||
1623                     !ext4_find_delalloc_cluster(inode, lblk))
1624                         ext4_da_release_space(inode, 1);
1625
1626                 num_clusters--;
1627         }
1628 }
1629
1630 /*
1631  * Delayed allocation stuff
1632  */
1633
1634 struct mpage_da_data {
1635         struct inode *inode;
1636         struct writeback_control *wbc;
1637
1638         pgoff_t first_page;     /* The first page to write */
1639         pgoff_t next_page;      /* Current page to examine */
1640         pgoff_t last_page;      /* Last page to examine */
1641         /*
1642          * Extent to map - this can be after first_page because that can be
1643          * fully mapped. We somewhat abuse m_flags to store whether the extent
1644          * is delalloc or unwritten.
1645          */
1646         struct ext4_map_blocks map;
1647         struct ext4_io_submit io_submit;        /* IO submission data */
1648 };
1649
1650 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1651                                        bool invalidate)
1652 {
1653         int nr_pages, i;
1654         pgoff_t index, end;
1655         struct pagevec pvec;
1656         struct inode *inode = mpd->inode;
1657         struct address_space *mapping = inode->i_mapping;
1658
1659         /* This is necessary when next_page == 0. */
1660         if (mpd->first_page >= mpd->next_page)
1661                 return;
1662
1663         index = mpd->first_page;
1664         end   = mpd->next_page - 1;
1665         if (invalidate) {
1666                 ext4_lblk_t start, last;
1667                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1668                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1669
1670                 /*
1671                  * avoid racing with extent status tree scans made by
1672                  * ext4_insert_delayed_block()
1673                  */
1674                 down_write(&EXT4_I(inode)->i_data_sem);
1675                 ext4_es_remove_extent(inode, start, last - start + 1);
1676                 up_write(&EXT4_I(inode)->i_data_sem);
1677         }
1678
1679         pagevec_init(&pvec, 0);
1680         while (index <= end) {
1681                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1682                 if (nr_pages == 0)
1683                         break;
1684                 for (i = 0; i < nr_pages; i++) {
1685                         struct page *page = pvec.pages[i];
1686                         if (page->index > end)
1687                                 break;
1688                         BUG_ON(!PageLocked(page));
1689                         BUG_ON(PageWriteback(page));
1690                         if (invalidate) {
1691                                 if (page_mapped(page))
1692                                         clear_page_dirty_for_io(page);
1693                                 block_invalidatepage(page, 0, PAGE_SIZE);
1694                                 ClearPageUptodate(page);
1695                         }
1696                         unlock_page(page);
1697                 }
1698                 index = pvec.pages[nr_pages - 1]->index + 1;
1699                 pagevec_release(&pvec);
1700         }
1701 }
1702
1703 static void ext4_print_free_blocks(struct inode *inode)
1704 {
1705         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1706         struct super_block *sb = inode->i_sb;
1707         struct ext4_inode_info *ei = EXT4_I(inode);
1708
1709         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1710                EXT4_C2B(EXT4_SB(inode->i_sb),
1711                         ext4_count_free_clusters(sb)));
1712         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1713         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1714                (long long) EXT4_C2B(EXT4_SB(sb),
1715                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1716         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1717                (long long) EXT4_C2B(EXT4_SB(sb),
1718                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1719         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1720         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1721                  ei->i_reserved_data_blocks);
1722         return;
1723 }
1724
1725 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1726 {
1727         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1728 }
1729
1730 /*
1731  * This function is grabs code from the very beginning of
1732  * ext4_map_blocks, but assumes that the caller is from delayed write
1733  * time. This function looks up the requested blocks and sets the
1734  * buffer delay bit under the protection of i_data_sem.
1735  */
1736 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1737                               struct ext4_map_blocks *map,
1738                               struct buffer_head *bh)
1739 {
1740         struct extent_status es;
1741         int retval;
1742         sector_t invalid_block = ~((sector_t) 0xffff);
1743 #ifdef ES_AGGRESSIVE_TEST
1744         struct ext4_map_blocks orig_map;
1745
1746         memcpy(&orig_map, map, sizeof(*map));
1747 #endif
1748
1749         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1750                 invalid_block = ~0;
1751
1752         map->m_flags = 0;
1753         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1754                   "logical block %lu\n", inode->i_ino, map->m_len,
1755                   (unsigned long) map->m_lblk);
1756
1757         /* Lookup extent status tree firstly */
1758         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1759                 if (ext4_es_is_hole(&es)) {
1760                         retval = 0;
1761                         down_read(&EXT4_I(inode)->i_data_sem);
1762                         goto add_delayed;
1763                 }
1764
1765                 /*
1766                  * Delayed extent could be allocated by fallocate.
1767                  * So we need to check it.
1768                  */
1769                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1770                         map_bh(bh, inode->i_sb, invalid_block);
1771                         set_buffer_new(bh);
1772                         set_buffer_delay(bh);
1773                         return 0;
1774                 }
1775
1776                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1777                 retval = es.es_len - (iblock - es.es_lblk);
1778                 if (retval > map->m_len)
1779                         retval = map->m_len;
1780                 map->m_len = retval;
1781                 if (ext4_es_is_written(&es))
1782                         map->m_flags |= EXT4_MAP_MAPPED;
1783                 else if (ext4_es_is_unwritten(&es))
1784                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1785                 else
1786                         BUG_ON(1);
1787
1788 #ifdef ES_AGGRESSIVE_TEST
1789                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1790 #endif
1791                 return retval;
1792         }
1793
1794         /*
1795          * Try to see if we can get the block without requesting a new
1796          * file system block.
1797          */
1798         down_read(&EXT4_I(inode)->i_data_sem);
1799         if (ext4_has_inline_data(inode))
1800                 retval = 0;
1801         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1802                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1803         else
1804                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1805
1806 add_delayed:
1807         if (retval == 0) {
1808                 int ret;
1809                 /*
1810                  * XXX: __block_prepare_write() unmaps passed block,
1811                  * is it OK?
1812                  */
1813                 /*
1814                  * If the block was allocated from previously allocated cluster,
1815                  * then we don't need to reserve it again. However we still need
1816                  * to reserve metadata for every block we're going to write.
1817                  */
1818                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1819                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1820                         ret = ext4_da_reserve_space(inode);
1821                         if (ret) {
1822                                 /* not enough space to reserve */
1823                                 retval = ret;
1824                                 goto out_unlock;
1825                         }
1826                 }
1827
1828                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1829                                             ~0, EXTENT_STATUS_DELAYED);
1830                 if (ret) {
1831                         retval = ret;
1832                         goto out_unlock;
1833                 }
1834
1835                 map_bh(bh, inode->i_sb, invalid_block);
1836                 set_buffer_new(bh);
1837                 set_buffer_delay(bh);
1838         } else if (retval > 0) {
1839                 int ret;
1840                 unsigned int status;
1841
1842                 if (unlikely(retval != map->m_len)) {
1843                         ext4_warning(inode->i_sb,
1844                                      "ES len assertion failed for inode "
1845                                      "%lu: retval %d != map->m_len %d",
1846                                      inode->i_ino, retval, map->m_len);
1847                         WARN_ON(1);
1848                 }
1849
1850                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1851                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1852                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1853                                             map->m_pblk, status);
1854                 if (ret != 0)
1855                         retval = ret;
1856         }
1857
1858 out_unlock:
1859         up_read((&EXT4_I(inode)->i_data_sem));
1860
1861         return retval;
1862 }
1863
1864 /*
1865  * This is a special get_block_t callback which is used by
1866  * ext4_da_write_begin().  It will either return mapped block or
1867  * reserve space for a single block.
1868  *
1869  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1870  * We also have b_blocknr = -1 and b_bdev initialized properly
1871  *
1872  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1873  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1874  * initialized properly.
1875  */
1876 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1877                            struct buffer_head *bh, int create)
1878 {
1879         struct ext4_map_blocks map;
1880         int ret = 0;
1881
1882         BUG_ON(create == 0);
1883         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1884
1885         map.m_lblk = iblock;
1886         map.m_len = 1;
1887
1888         /*
1889          * first, we need to know whether the block is allocated already
1890          * preallocated blocks are unmapped but should treated
1891          * the same as allocated blocks.
1892          */
1893         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1894         if (ret <= 0)
1895                 return ret;
1896
1897         map_bh(bh, inode->i_sb, map.m_pblk);
1898         ext4_update_bh_state(bh, map.m_flags);
1899
1900         if (buffer_unwritten(bh)) {
1901                 /* A delayed write to unwritten bh should be marked
1902                  * new and mapped.  Mapped ensures that we don't do
1903                  * get_block multiple times when we write to the same
1904                  * offset and new ensures that we do proper zero out
1905                  * for partial write.
1906                  */
1907                 set_buffer_new(bh);
1908                 set_buffer_mapped(bh);
1909         }
1910         return 0;
1911 }
1912
1913 static int bget_one(handle_t *handle, struct buffer_head *bh)
1914 {
1915         get_bh(bh);
1916         return 0;
1917 }
1918
1919 static int bput_one(handle_t *handle, struct buffer_head *bh)
1920 {
1921         put_bh(bh);
1922         return 0;
1923 }
1924
1925 static int __ext4_journalled_writepage(struct page *page,
1926                                        unsigned int len)
1927 {
1928         struct address_space *mapping = page->mapping;
1929         struct inode *inode = mapping->host;
1930         struct buffer_head *page_bufs = NULL;
1931         handle_t *handle = NULL;
1932         int ret = 0, err = 0;
1933         int inline_data = ext4_has_inline_data(inode);
1934         struct buffer_head *inode_bh = NULL;
1935
1936         ClearPageChecked(page);
1937
1938         if (inline_data) {
1939                 BUG_ON(page->index != 0);
1940                 BUG_ON(len > ext4_get_max_inline_size(inode));
1941                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1942                 if (inode_bh == NULL)
1943                         goto out;
1944         } else {
1945                 page_bufs = page_buffers(page);
1946                 if (!page_bufs) {
1947                         BUG();
1948                         goto out;
1949                 }
1950                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1951                                        NULL, bget_one);
1952         }
1953         /*
1954          * We need to release the page lock before we start the
1955          * journal, so grab a reference so the page won't disappear
1956          * out from under us.
1957          */
1958         get_page(page);
1959         unlock_page(page);
1960
1961         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1962                                     ext4_writepage_trans_blocks(inode));
1963         if (IS_ERR(handle)) {
1964                 ret = PTR_ERR(handle);
1965                 put_page(page);
1966                 goto out_no_pagelock;
1967         }
1968         BUG_ON(!ext4_handle_valid(handle));
1969
1970         lock_page(page);
1971         put_page(page);
1972         if (page->mapping != mapping) {
1973                 /* The page got truncated from under us */
1974                 ext4_journal_stop(handle);
1975                 ret = 0;
1976                 goto out;
1977         }
1978
1979         if (inline_data) {
1980                 ret = ext4_mark_inode_dirty(handle, inode);
1981         } else {
1982                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1983                                              do_journal_get_write_access);
1984
1985                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1986                                              write_end_fn);
1987         }
1988         if (ret == 0)
1989                 ret = err;
1990         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1991         err = ext4_journal_stop(handle);
1992         if (!ret)
1993                 ret = err;
1994
1995         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1996 out:
1997         unlock_page(page);
1998 out_no_pagelock:
1999         if (!inline_data && page_bufs)
2000                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2001                                        NULL, bput_one);
2002         brelse(inode_bh);
2003         return ret;
2004 }
2005
2006 /*
2007  * Note that we don't need to start a transaction unless we're journaling data
2008  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2009  * need to file the inode to the transaction's list in ordered mode because if
2010  * we are writing back data added by write(), the inode is already there and if
2011  * we are writing back data modified via mmap(), no one guarantees in which
2012  * transaction the data will hit the disk. In case we are journaling data, we
2013  * cannot start transaction directly because transaction start ranks above page
2014  * lock so we have to do some magic.
2015  *
2016  * This function can get called via...
2017  *   - ext4_writepages after taking page lock (have journal handle)
2018  *   - journal_submit_inode_data_buffers (no journal handle)
2019  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2020  *   - grab_page_cache when doing write_begin (have journal handle)
2021  *
2022  * We don't do any block allocation in this function. If we have page with
2023  * multiple blocks we need to write those buffer_heads that are mapped. This
2024  * is important for mmaped based write. So if we do with blocksize 1K
2025  * truncate(f, 1024);
2026  * a = mmap(f, 0, 4096);
2027  * a[0] = 'a';
2028  * truncate(f, 4096);
2029  * we have in the page first buffer_head mapped via page_mkwrite call back
2030  * but other buffer_heads would be unmapped but dirty (dirty done via the
2031  * do_wp_page). So writepage should write the first block. If we modify
2032  * the mmap area beyond 1024 we will again get a page_fault and the
2033  * page_mkwrite callback will do the block allocation and mark the
2034  * buffer_heads mapped.
2035  *
2036  * We redirty the page if we have any buffer_heads that is either delay or
2037  * unwritten in the page.
2038  *
2039  * We can get recursively called as show below.
2040  *
2041  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2042  *              ext4_writepage()
2043  *
2044  * But since we don't do any block allocation we should not deadlock.
2045  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2046  */
2047 static int ext4_writepage(struct page *page,
2048                           struct writeback_control *wbc)
2049 {
2050         int ret = 0;
2051         loff_t size;
2052         unsigned int len;
2053         struct buffer_head *page_bufs = NULL;
2054         struct inode *inode = page->mapping->host;
2055         struct ext4_io_submit io_submit;
2056         bool keep_towrite = false;
2057
2058         trace_ext4_writepage(page);
2059         size = i_size_read(inode);
2060         if (page->index == size >> PAGE_SHIFT)
2061                 len = size & ~PAGE_MASK;
2062         else
2063                 len = PAGE_SIZE;
2064
2065         /* Should never happen but for bugs in other kernel subsystems */
2066         if (!page_has_buffers(page)) {
2067                 ext4_warning_inode(inode,
2068                    "page %lu does not have buffers attached", page->index);
2069                 ClearPageDirty(page);
2070                 unlock_page(page);
2071                 return 0;
2072         }
2073
2074         page_bufs = page_buffers(page);
2075         /*
2076          * We cannot do block allocation or other extent handling in this
2077          * function. If there are buffers needing that, we have to redirty
2078          * the page. But we may reach here when we do a journal commit via
2079          * journal_submit_inode_data_buffers() and in that case we must write
2080          * allocated buffers to achieve data=ordered mode guarantees.
2081          *
2082          * Also, if there is only one buffer per page (the fs block
2083          * size == the page size), if one buffer needs block
2084          * allocation or needs to modify the extent tree to clear the
2085          * unwritten flag, we know that the page can't be written at
2086          * all, so we might as well refuse the write immediately.
2087          * Unfortunately if the block size != page size, we can't as
2088          * easily detect this case using ext4_walk_page_buffers(), but
2089          * for the extremely common case, this is an optimization that
2090          * skips a useless round trip through ext4_bio_write_page().
2091          */
2092         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2093                                    ext4_bh_delay_or_unwritten)) {
2094                 redirty_page_for_writepage(wbc, page);
2095                 if ((current->flags & PF_MEMALLOC) ||
2096                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2097                         /*
2098                          * For memory cleaning there's no point in writing only
2099                          * some buffers. So just bail out. Warn if we came here
2100                          * from direct reclaim.
2101                          */
2102                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2103                                                         == PF_MEMALLOC);
2104                         unlock_page(page);
2105                         return 0;
2106                 }
2107                 keep_towrite = true;
2108         }
2109
2110         if (PageChecked(page) && ext4_should_journal_data(inode))
2111                 /*
2112                  * It's mmapped pagecache.  Add buffers and journal it.  There
2113                  * doesn't seem much point in redirtying the page here.
2114                  */
2115                 return __ext4_journalled_writepage(page, len);
2116
2117         ext4_io_submit_init(&io_submit, wbc);
2118         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2119         if (!io_submit.io_end) {
2120                 redirty_page_for_writepage(wbc, page);
2121                 unlock_page(page);
2122                 return -ENOMEM;
2123         }
2124         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2125         ext4_io_submit(&io_submit);
2126         /* Drop io_end reference we got from init */
2127         ext4_put_io_end_defer(io_submit.io_end);
2128         return ret;
2129 }
2130
2131 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2132 {
2133         int len;
2134         loff_t size;
2135         int err;
2136
2137         BUG_ON(page->index != mpd->first_page);
2138         clear_page_dirty_for_io(page);
2139         /*
2140          * We have to be very careful here!  Nothing protects writeback path
2141          * against i_size changes and the page can be writeably mapped into
2142          * page tables. So an application can be growing i_size and writing
2143          * data through mmap while writeback runs. clear_page_dirty_for_io()
2144          * write-protects our page in page tables and the page cannot get
2145          * written to again until we release page lock. So only after
2146          * clear_page_dirty_for_io() we are safe to sample i_size for
2147          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2148          * on the barrier provided by TestClearPageDirty in
2149          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2150          * after page tables are updated.
2151          */
2152         size = i_size_read(mpd->inode);
2153         if (page->index == size >> PAGE_SHIFT)
2154                 len = size & ~PAGE_MASK;
2155         else
2156                 len = PAGE_SIZE;
2157         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2158         if (!err)
2159                 mpd->wbc->nr_to_write--;
2160         mpd->first_page++;
2161
2162         return err;
2163 }
2164
2165 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2166
2167 /*
2168  * mballoc gives us at most this number of blocks...
2169  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2170  * The rest of mballoc seems to handle chunks up to full group size.
2171  */
2172 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2173
2174 /*
2175  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2176  *
2177  * @mpd - extent of blocks
2178  * @lblk - logical number of the block in the file
2179  * @bh - buffer head we want to add to the extent
2180  *
2181  * The function is used to collect contig. blocks in the same state. If the
2182  * buffer doesn't require mapping for writeback and we haven't started the
2183  * extent of buffers to map yet, the function returns 'true' immediately - the
2184  * caller can write the buffer right away. Otherwise the function returns true
2185  * if the block has been added to the extent, false if the block couldn't be
2186  * added.
2187  */
2188 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2189                                    struct buffer_head *bh)
2190 {
2191         struct ext4_map_blocks *map = &mpd->map;
2192
2193         /* Buffer that doesn't need mapping for writeback? */
2194         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2195             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2196                 /* So far no extent to map => we write the buffer right away */
2197                 if (map->m_len == 0)
2198                         return true;
2199                 return false;
2200         }
2201
2202         /* First block in the extent? */
2203         if (map->m_len == 0) {
2204                 map->m_lblk = lblk;
2205                 map->m_len = 1;
2206                 map->m_flags = bh->b_state & BH_FLAGS;
2207                 return true;
2208         }
2209
2210         /* Don't go larger than mballoc is willing to allocate */
2211         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2212                 return false;
2213
2214         /* Can we merge the block to our big extent? */
2215         if (lblk == map->m_lblk + map->m_len &&
2216             (bh->b_state & BH_FLAGS) == map->m_flags) {
2217                 map->m_len++;
2218                 return true;
2219         }
2220         return false;
2221 }
2222
2223 /*
2224  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2225  *
2226  * @mpd - extent of blocks for mapping
2227  * @head - the first buffer in the page
2228  * @bh - buffer we should start processing from
2229  * @lblk - logical number of the block in the file corresponding to @bh
2230  *
2231  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2232  * the page for IO if all buffers in this page were mapped and there's no
2233  * accumulated extent of buffers to map or add buffers in the page to the
2234  * extent of buffers to map. The function returns 1 if the caller can continue
2235  * by processing the next page, 0 if it should stop adding buffers to the
2236  * extent to map because we cannot extend it anymore. It can also return value
2237  * < 0 in case of error during IO submission.
2238  */
2239 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2240                                    struct buffer_head *head,
2241                                    struct buffer_head *bh,
2242                                    ext4_lblk_t lblk)
2243 {
2244         struct inode *inode = mpd->inode;
2245         int err;
2246         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2247                                                         >> inode->i_blkbits;
2248
2249         do {
2250                 BUG_ON(buffer_locked(bh));
2251
2252                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2253                         /* Found extent to map? */
2254                         if (mpd->map.m_len)
2255                                 return 0;
2256                         /* Everything mapped so far and we hit EOF */
2257                         break;
2258                 }
2259         } while (lblk++, (bh = bh->b_this_page) != head);
2260         /* So far everything mapped? Submit the page for IO. */
2261         if (mpd->map.m_len == 0) {
2262                 err = mpage_submit_page(mpd, head->b_page);
2263                 if (err < 0)
2264                         return err;
2265         }
2266         return lblk < blocks;
2267 }
2268
2269 /*
2270  * mpage_map_buffers - update buffers corresponding to changed extent and
2271  *                     submit fully mapped pages for IO
2272  *
2273  * @mpd - description of extent to map, on return next extent to map
2274  *
2275  * Scan buffers corresponding to changed extent (we expect corresponding pages
2276  * to be already locked) and update buffer state according to new extent state.
2277  * We map delalloc buffers to their physical location, clear unwritten bits,
2278  * and mark buffers as uninit when we perform writes to unwritten extents
2279  * and do extent conversion after IO is finished. If the last page is not fully
2280  * mapped, we update @map to the next extent in the last page that needs
2281  * mapping. Otherwise we submit the page for IO.
2282  */
2283 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2284 {
2285         struct pagevec pvec;
2286         int nr_pages, i;
2287         struct inode *inode = mpd->inode;
2288         struct buffer_head *head, *bh;
2289         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2290         pgoff_t start, end;
2291         ext4_lblk_t lblk;
2292         sector_t pblock;
2293         int err;
2294
2295         start = mpd->map.m_lblk >> bpp_bits;
2296         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2297         lblk = start << bpp_bits;
2298         pblock = mpd->map.m_pblk;
2299
2300         pagevec_init(&pvec, 0);
2301         while (start <= end) {
2302                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2303                                           PAGEVEC_SIZE);
2304                 if (nr_pages == 0)
2305                         break;
2306                 for (i = 0; i < nr_pages; i++) {
2307                         struct page *page = pvec.pages[i];
2308
2309                         if (page->index > end)
2310                                 break;
2311                         /* Up to 'end' pages must be contiguous */
2312                         BUG_ON(page->index != start);
2313                         bh = head = page_buffers(page);
2314                         do {
2315                                 if (lblk < mpd->map.m_lblk)
2316                                         continue;
2317                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2318                                         /*
2319                                          * Buffer after end of mapped extent.
2320                                          * Find next buffer in the page to map.
2321                                          */
2322                                         mpd->map.m_len = 0;
2323                                         mpd->map.m_flags = 0;
2324                                         /*
2325                                          * FIXME: If dioread_nolock supports
2326                                          * blocksize < pagesize, we need to make
2327                                          * sure we add size mapped so far to
2328                                          * io_end->size as the following call
2329                                          * can submit the page for IO.
2330                                          */
2331                                         err = mpage_process_page_bufs(mpd, head,
2332                                                                       bh, lblk);
2333                                         pagevec_release(&pvec);
2334                                         if (err > 0)
2335                                                 err = 0;
2336                                         return err;
2337                                 }
2338                                 if (buffer_delay(bh)) {
2339                                         clear_buffer_delay(bh);
2340                                         bh->b_blocknr = pblock++;
2341                                 }
2342                                 clear_buffer_unwritten(bh);
2343                         } while (lblk++, (bh = bh->b_this_page) != head);
2344
2345                         /*
2346                          * FIXME: This is going to break if dioread_nolock
2347                          * supports blocksize < pagesize as we will try to
2348                          * convert potentially unmapped parts of inode.
2349                          */
2350                         mpd->io_submit.io_end->size += PAGE_SIZE;
2351                         /* Page fully mapped - let IO run! */
2352                         err = mpage_submit_page(mpd, page);
2353                         if (err < 0) {
2354                                 pagevec_release(&pvec);
2355                                 return err;
2356                         }
2357                         start++;
2358                 }
2359                 pagevec_release(&pvec);
2360         }
2361         /* Extent fully mapped and matches with page boundary. We are done. */
2362         mpd->map.m_len = 0;
2363         mpd->map.m_flags = 0;
2364         return 0;
2365 }
2366
2367 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2368 {
2369         struct inode *inode = mpd->inode;
2370         struct ext4_map_blocks *map = &mpd->map;
2371         int get_blocks_flags;
2372         int err, dioread_nolock;
2373
2374         trace_ext4_da_write_pages_extent(inode, map);
2375         /*
2376          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2377          * to convert an unwritten extent to be initialized (in the case
2378          * where we have written into one or more preallocated blocks).  It is
2379          * possible that we're going to need more metadata blocks than
2380          * previously reserved. However we must not fail because we're in
2381          * writeback and there is nothing we can do about it so it might result
2382          * in data loss.  So use reserved blocks to allocate metadata if
2383          * possible.
2384          *
2385          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2386          * the blocks in question are delalloc blocks.  This indicates
2387          * that the blocks and quotas has already been checked when
2388          * the data was copied into the page cache.
2389          */
2390         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2391                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2392                            EXT4_GET_BLOCKS_IO_SUBMIT;
2393         dioread_nolock = ext4_should_dioread_nolock(inode);
2394         if (dioread_nolock)
2395                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2396         if (map->m_flags & (1 << BH_Delay))
2397                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2398
2399         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2400         if (err < 0)
2401                 return err;
2402         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2403                 if (!mpd->io_submit.io_end->handle &&
2404                     ext4_handle_valid(handle)) {
2405                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2406                         handle->h_rsv_handle = NULL;
2407                 }
2408                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2409         }
2410
2411         BUG_ON(map->m_len == 0);
2412         if (map->m_flags & EXT4_MAP_NEW) {
2413                 struct block_device *bdev = inode->i_sb->s_bdev;
2414                 int i;
2415
2416                 for (i = 0; i < map->m_len; i++)
2417                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2418         }
2419         return 0;
2420 }
2421
2422 /*
2423  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2424  *                               mpd->len and submit pages underlying it for IO
2425  *
2426  * @handle - handle for journal operations
2427  * @mpd - extent to map
2428  * @give_up_on_write - we set this to true iff there is a fatal error and there
2429  *                     is no hope of writing the data. The caller should discard
2430  *                     dirty pages to avoid infinite loops.
2431  *
2432  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2433  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2434  * them to initialized or split the described range from larger unwritten
2435  * extent. Note that we need not map all the described range since allocation
2436  * can return less blocks or the range is covered by more unwritten extents. We
2437  * cannot map more because we are limited by reserved transaction credits. On
2438  * the other hand we always make sure that the last touched page is fully
2439  * mapped so that it can be written out (and thus forward progress is
2440  * guaranteed). After mapping we submit all mapped pages for IO.
2441  */
2442 static int mpage_map_and_submit_extent(handle_t *handle,
2443                                        struct mpage_da_data *mpd,
2444                                        bool *give_up_on_write)
2445 {
2446         struct inode *inode = mpd->inode;
2447         struct ext4_map_blocks *map = &mpd->map;
2448         int err;
2449         loff_t disksize;
2450         int progress = 0;
2451
2452         mpd->io_submit.io_end->offset =
2453                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2454         do {
2455                 err = mpage_map_one_extent(handle, mpd);
2456                 if (err < 0) {
2457                         struct super_block *sb = inode->i_sb;
2458
2459                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2460                                 goto invalidate_dirty_pages;
2461                         /*
2462                          * Let the uper layers retry transient errors.
2463                          * In the case of ENOSPC, if ext4_count_free_blocks()
2464                          * is non-zero, a commit should free up blocks.
2465                          */
2466                         if ((err == -ENOMEM) ||
2467                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2468                                 if (progress)
2469                                         goto update_disksize;
2470                                 return err;
2471                         }
2472                         ext4_msg(sb, KERN_CRIT,
2473                                  "Delayed block allocation failed for "
2474                                  "inode %lu at logical offset %llu with"
2475                                  " max blocks %u with error %d",
2476                                  inode->i_ino,
2477                                  (unsigned long long)map->m_lblk,
2478                                  (unsigned)map->m_len, -err);
2479                         ext4_msg(sb, KERN_CRIT,
2480                                  "This should not happen!! Data will "
2481                                  "be lost\n");
2482                         if (err == -ENOSPC)
2483                                 ext4_print_free_blocks(inode);
2484                 invalidate_dirty_pages:
2485                         *give_up_on_write = true;
2486                         return err;
2487                 }
2488                 progress = 1;
2489                 /*
2490                  * Update buffer state, submit mapped pages, and get us new
2491                  * extent to map
2492                  */
2493                 err = mpage_map_and_submit_buffers(mpd);
2494                 if (err < 0)
2495                         goto update_disksize;
2496         } while (map->m_len);
2497
2498 update_disksize:
2499         /*
2500          * Update on-disk size after IO is submitted.  Races with
2501          * truncate are avoided by checking i_size under i_data_sem.
2502          */
2503         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2504         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2505                 int err2;
2506                 loff_t i_size;
2507
2508                 down_write(&EXT4_I(inode)->i_data_sem);
2509                 i_size = i_size_read(inode);
2510                 if (disksize > i_size)
2511                         disksize = i_size;
2512                 if (disksize > EXT4_I(inode)->i_disksize)
2513                         EXT4_I(inode)->i_disksize = disksize;
2514                 err2 = ext4_mark_inode_dirty(handle, inode);
2515                 up_write(&EXT4_I(inode)->i_data_sem);
2516                 if (err2)
2517                         ext4_error(inode->i_sb,
2518                                    "Failed to mark inode %lu dirty",
2519                                    inode->i_ino);
2520                 if (!err)
2521                         err = err2;
2522         }
2523         return err;
2524 }
2525
2526 /*
2527  * Calculate the total number of credits to reserve for one writepages
2528  * iteration. This is called from ext4_writepages(). We map an extent of
2529  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2530  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2531  * bpp - 1 blocks in bpp different extents.
2532  */
2533 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2534 {
2535         int bpp = ext4_journal_blocks_per_page(inode);
2536
2537         return ext4_meta_trans_blocks(inode,
2538                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2539 }
2540
2541 /*
2542  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2543  *                               and underlying extent to map
2544  *
2545  * @mpd - where to look for pages
2546  *
2547  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2548  * IO immediately. When we find a page which isn't mapped we start accumulating
2549  * extent of buffers underlying these pages that needs mapping (formed by
2550  * either delayed or unwritten buffers). We also lock the pages containing
2551  * these buffers. The extent found is returned in @mpd structure (starting at
2552  * mpd->lblk with length mpd->len blocks).
2553  *
2554  * Note that this function can attach bios to one io_end structure which are
2555  * neither logically nor physically contiguous. Although it may seem as an
2556  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2557  * case as we need to track IO to all buffers underlying a page in one io_end.
2558  */
2559 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2560 {
2561         struct address_space *mapping = mpd->inode->i_mapping;
2562         struct pagevec pvec;
2563         unsigned int nr_pages;
2564         long left = mpd->wbc->nr_to_write;
2565         pgoff_t index = mpd->first_page;
2566         pgoff_t end = mpd->last_page;
2567         int tag;
2568         int i, err = 0;
2569         int blkbits = mpd->inode->i_blkbits;
2570         ext4_lblk_t lblk;
2571         struct buffer_head *head;
2572
2573         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2574                 tag = PAGECACHE_TAG_TOWRITE;
2575         else
2576                 tag = PAGECACHE_TAG_DIRTY;
2577
2578         pagevec_init(&pvec, 0);
2579         mpd->map.m_len = 0;
2580         mpd->next_page = index;
2581         while (index <= end) {
2582                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2583                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2584                 if (nr_pages == 0)
2585                         goto out;
2586
2587                 for (i = 0; i < nr_pages; i++) {
2588                         struct page *page = pvec.pages[i];
2589
2590                         /*
2591                          * At this point, the page may be truncated or
2592                          * invalidated (changing page->mapping to NULL), or
2593                          * even swizzled back from swapper_space to tmpfs file
2594                          * mapping. However, page->index will not change
2595                          * because we have a reference on the page.
2596                          */
2597                         if (page->index > end)
2598                                 goto out;
2599
2600                         /*
2601                          * Accumulated enough dirty pages? This doesn't apply
2602                          * to WB_SYNC_ALL mode. For integrity sync we have to
2603                          * keep going because someone may be concurrently
2604                          * dirtying pages, and we might have synced a lot of
2605                          * newly appeared dirty pages, but have not synced all
2606                          * of the old dirty pages.
2607                          */
2608                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2609                                 goto out;
2610
2611                         /* If we can't merge this page, we are done. */
2612                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2613                                 goto out;
2614
2615                         lock_page(page);
2616                         /*
2617                          * If the page is no longer dirty, or its mapping no
2618                          * longer corresponds to inode we are writing (which
2619                          * means it has been truncated or invalidated), or the
2620                          * page is already under writeback and we are not doing
2621                          * a data integrity writeback, skip the page
2622                          */
2623                         if (!PageDirty(page) ||
2624                             (PageWriteback(page) &&
2625                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2626                             unlikely(page->mapping != mapping)) {
2627                                 unlock_page(page);
2628                                 continue;
2629                         }
2630
2631                         wait_on_page_writeback(page);
2632                         BUG_ON(PageWriteback(page));
2633
2634                         /*
2635                          * Should never happen but for buggy code in
2636                          * other subsystems that call
2637                          * set_page_dirty() without properly warning
2638                          * the file system first.  See [1] for more
2639                          * information.
2640                          *
2641                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2642                          */
2643                         if (!page_has_buffers(page)) {
2644                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2645                                 ClearPageDirty(page);
2646                                 unlock_page(page);
2647                                 continue;
2648                         }
2649
2650                         if (mpd->map.m_len == 0)
2651                                 mpd->first_page = page->index;
2652                         mpd->next_page = page->index + 1;
2653                         /* Add all dirty buffers to mpd */
2654                         lblk = ((ext4_lblk_t)page->index) <<
2655                                 (PAGE_SHIFT - blkbits);
2656                         head = page_buffers(page);
2657                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2658                         if (err <= 0)
2659                                 goto out;
2660                         err = 0;
2661                         left--;
2662                 }
2663                 pagevec_release(&pvec);
2664                 cond_resched();
2665         }
2666         return 0;
2667 out:
2668         pagevec_release(&pvec);
2669         return err;
2670 }
2671
2672 static int __writepage(struct page *page, struct writeback_control *wbc,
2673                        void *data)
2674 {
2675         struct address_space *mapping = data;
2676         int ret = ext4_writepage(page, wbc);
2677         mapping_set_error(mapping, ret);
2678         return ret;
2679 }
2680
2681 static int ext4_writepages(struct address_space *mapping,
2682                            struct writeback_control *wbc)
2683 {
2684         pgoff_t writeback_index = 0;
2685         long nr_to_write = wbc->nr_to_write;
2686         int range_whole = 0;
2687         int cycled = 1;
2688         handle_t *handle = NULL;
2689         struct mpage_da_data mpd;
2690         struct inode *inode = mapping->host;
2691         int needed_blocks, rsv_blocks = 0, ret = 0;
2692         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2693         bool done;
2694         struct blk_plug plug;
2695         bool give_up_on_write = false;
2696
2697         percpu_down_read(&sbi->s_writepages_rwsem);
2698         trace_ext4_writepages(inode, wbc);
2699
2700         if (dax_mapping(mapping)) {
2701                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2702                                                   wbc);
2703                 goto out_writepages;
2704         }
2705
2706         /*
2707          * No pages to write? This is mainly a kludge to avoid starting
2708          * a transaction for special inodes like journal inode on last iput()
2709          * because that could violate lock ordering on umount
2710          */
2711         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2712                 goto out_writepages;
2713
2714         if (ext4_should_journal_data(inode)) {
2715                 struct blk_plug plug;
2716
2717                 blk_start_plug(&plug);
2718                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2719                 blk_finish_plug(&plug);
2720                 goto out_writepages;
2721         }
2722
2723         /*
2724          * If the filesystem has aborted, it is read-only, so return
2725          * right away instead of dumping stack traces later on that
2726          * will obscure the real source of the problem.  We test
2727          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2728          * the latter could be true if the filesystem is mounted
2729          * read-only, and in that case, ext4_writepages should
2730          * *never* be called, so if that ever happens, we would want
2731          * the stack trace.
2732          */
2733         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2734                 ret = -EROFS;
2735                 goto out_writepages;
2736         }
2737
2738         if (ext4_should_dioread_nolock(inode)) {
2739                 /*
2740                  * We may need to convert up to one extent per block in
2741                  * the page and we may dirty the inode.
2742                  */
2743                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2744                                                 PAGE_SIZE >> inode->i_blkbits);
2745         }
2746
2747         /*
2748          * If we have inline data and arrive here, it means that
2749          * we will soon create the block for the 1st page, so
2750          * we'd better clear the inline data here.
2751          */
2752         if (ext4_has_inline_data(inode)) {
2753                 /* Just inode will be modified... */
2754                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2755                 if (IS_ERR(handle)) {
2756                         ret = PTR_ERR(handle);
2757                         goto out_writepages;
2758                 }
2759                 BUG_ON(ext4_test_inode_state(inode,
2760                                 EXT4_STATE_MAY_INLINE_DATA));
2761                 ext4_destroy_inline_data(handle, inode);
2762                 ext4_journal_stop(handle);
2763         }
2764
2765         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2766                 range_whole = 1;
2767
2768         if (wbc->range_cyclic) {
2769                 writeback_index = mapping->writeback_index;
2770                 if (writeback_index)
2771                         cycled = 0;
2772                 mpd.first_page = writeback_index;
2773                 mpd.last_page = -1;
2774         } else {
2775                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2776                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2777         }
2778
2779         mpd.inode = inode;
2780         mpd.wbc = wbc;
2781         ext4_io_submit_init(&mpd.io_submit, wbc);
2782 retry:
2783         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2784                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2785         done = false;
2786         blk_start_plug(&plug);
2787         while (!done && mpd.first_page <= mpd.last_page) {
2788                 /* For each extent of pages we use new io_end */
2789                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2790                 if (!mpd.io_submit.io_end) {
2791                         ret = -ENOMEM;
2792                         break;
2793                 }
2794
2795                 /*
2796                  * We have two constraints: We find one extent to map and we
2797                  * must always write out whole page (makes a difference when
2798                  * blocksize < pagesize) so that we don't block on IO when we
2799                  * try to write out the rest of the page. Journalled mode is
2800                  * not supported by delalloc.
2801                  */
2802                 BUG_ON(ext4_should_journal_data(inode));
2803                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2804
2805                 /* start a new transaction */
2806                 handle = ext4_journal_start_with_reserve(inode,
2807                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2808                 if (IS_ERR(handle)) {
2809                         ret = PTR_ERR(handle);
2810                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2811                                "%ld pages, ino %lu; err %d", __func__,
2812                                 wbc->nr_to_write, inode->i_ino, ret);
2813                         /* Release allocated io_end */
2814                         ext4_put_io_end(mpd.io_submit.io_end);
2815                         break;
2816                 }
2817
2818                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2819                 ret = mpage_prepare_extent_to_map(&mpd);
2820                 if (!ret) {
2821                         if (mpd.map.m_len)
2822                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2823                                         &give_up_on_write);
2824                         else {
2825                                 /*
2826                                  * We scanned the whole range (or exhausted
2827                                  * nr_to_write), submitted what was mapped and
2828                                  * didn't find anything needing mapping. We are
2829                                  * done.
2830                                  */
2831                                 done = true;
2832                         }
2833                 }
2834                 /*
2835                  * Caution: If the handle is synchronous,
2836                  * ext4_journal_stop() can wait for transaction commit
2837                  * to finish which may depend on writeback of pages to
2838                  * complete or on page lock to be released.  In that
2839                  * case, we have to wait until after after we have
2840                  * submitted all the IO, released page locks we hold,
2841                  * and dropped io_end reference (for extent conversion
2842                  * to be able to complete) before stopping the handle.
2843                  */
2844                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2845                         ext4_journal_stop(handle);
2846                         handle = NULL;
2847                 }
2848                 /* Submit prepared bio */
2849                 ext4_io_submit(&mpd.io_submit);
2850                 /* Unlock pages we didn't use */
2851                 mpage_release_unused_pages(&mpd, give_up_on_write);
2852                 /*
2853                  * Drop our io_end reference we got from init. We have
2854                  * to be careful and use deferred io_end finishing if
2855                  * we are still holding the transaction as we can
2856                  * release the last reference to io_end which may end
2857                  * up doing unwritten extent conversion.
2858                  */
2859                 if (handle) {
2860                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2861                         ext4_journal_stop(handle);
2862                 } else
2863                         ext4_put_io_end(mpd.io_submit.io_end);
2864
2865                 if (ret == -ENOSPC && sbi->s_journal) {
2866                         /*
2867                          * Commit the transaction which would
2868                          * free blocks released in the transaction
2869                          * and try again
2870                          */
2871                         jbd2_journal_force_commit_nested(sbi->s_journal);
2872                         ret = 0;
2873                         continue;
2874                 }
2875                 /* Fatal error - ENOMEM, EIO... */
2876                 if (ret)
2877                         break;
2878         }
2879         blk_finish_plug(&plug);
2880         if (!ret && !cycled && wbc->nr_to_write > 0) {
2881                 cycled = 1;
2882                 mpd.last_page = writeback_index - 1;
2883                 mpd.first_page = 0;
2884                 goto retry;
2885         }
2886
2887         /* Update index */
2888         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2889                 /*
2890                  * Set the writeback_index so that range_cyclic
2891                  * mode will write it back later
2892                  */
2893                 mapping->writeback_index = mpd.first_page;
2894
2895 out_writepages:
2896         trace_ext4_writepages_result(inode, wbc, ret,
2897                                      nr_to_write - wbc->nr_to_write);
2898         percpu_up_read(&sbi->s_writepages_rwsem);
2899         return ret;
2900 }
2901
2902 static int ext4_nonda_switch(struct super_block *sb)
2903 {
2904         s64 free_clusters, dirty_clusters;
2905         struct ext4_sb_info *sbi = EXT4_SB(sb);
2906
2907         /*
2908          * switch to non delalloc mode if we are running low
2909          * on free block. The free block accounting via percpu
2910          * counters can get slightly wrong with percpu_counter_batch getting
2911          * accumulated on each CPU without updating global counters
2912          * Delalloc need an accurate free block accounting. So switch
2913          * to non delalloc when we are near to error range.
2914          */
2915         free_clusters =
2916                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2917         dirty_clusters =
2918                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2919         /*
2920          * Start pushing delalloc when 1/2 of free blocks are dirty.
2921          */
2922         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2923                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2924
2925         if (2 * free_clusters < 3 * dirty_clusters ||
2926             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2927                 /*
2928                  * free block count is less than 150% of dirty blocks
2929                  * or free blocks is less than watermark
2930                  */
2931                 return 1;
2932         }
2933         return 0;
2934 }
2935
2936 /* We always reserve for an inode update; the superblock could be there too */
2937 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2938 {
2939         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2940                 return 1;
2941
2942         if (pos + len <= 0x7fffffffULL)
2943                 return 1;
2944
2945         /* We might need to update the superblock to set LARGE_FILE */
2946         return 2;
2947 }
2948
2949 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2950                                loff_t pos, unsigned len, unsigned flags,
2951                                struct page **pagep, void **fsdata)
2952 {
2953         int ret, retries = 0;
2954         struct page *page;
2955         pgoff_t index;
2956         struct inode *inode = mapping->host;
2957         handle_t *handle;
2958
2959         index = pos >> PAGE_SHIFT;
2960
2961         if (ext4_nonda_switch(inode->i_sb)) {
2962                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2963                 return ext4_write_begin(file, mapping, pos,
2964                                         len, flags, pagep, fsdata);
2965         }
2966         *fsdata = (void *)0;
2967         trace_ext4_da_write_begin(inode, pos, len, flags);
2968
2969         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2970                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2971                                                       pos, len, flags,
2972                                                       pagep, fsdata);
2973                 if (ret < 0)
2974                         return ret;
2975                 if (ret == 1)
2976                         return 0;
2977         }
2978
2979         /*
2980          * grab_cache_page_write_begin() can take a long time if the
2981          * system is thrashing due to memory pressure, or if the page
2982          * is being written back.  So grab it first before we start
2983          * the transaction handle.  This also allows us to allocate
2984          * the page (if needed) without using GFP_NOFS.
2985          */
2986 retry_grab:
2987         page = grab_cache_page_write_begin(mapping, index, flags);
2988         if (!page)
2989                 return -ENOMEM;
2990         unlock_page(page);
2991
2992         /*
2993          * With delayed allocation, we don't log the i_disksize update
2994          * if there is delayed block allocation. But we still need
2995          * to journalling the i_disksize update if writes to the end
2996          * of file which has an already mapped buffer.
2997          */
2998 retry_journal:
2999         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3000                                 ext4_da_write_credits(inode, pos, len));
3001         if (IS_ERR(handle)) {
3002                 put_page(page);
3003                 return PTR_ERR(handle);
3004         }
3005
3006         lock_page(page);
3007         if (page->mapping != mapping) {
3008                 /* The page got truncated from under us */
3009                 unlock_page(page);
3010                 put_page(page);
3011                 ext4_journal_stop(handle);
3012                 goto retry_grab;
3013         }
3014         /* In case writeback began while the page was unlocked */
3015         wait_for_stable_page(page);
3016
3017 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3018         ret = ext4_block_write_begin(page, pos, len,
3019                                      ext4_da_get_block_prep);
3020 #else
3021         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3022 #endif
3023         if (ret < 0) {
3024                 unlock_page(page);
3025                 ext4_journal_stop(handle);
3026                 /*
3027                  * block_write_begin may have instantiated a few blocks
3028                  * outside i_size.  Trim these off again. Don't need
3029                  * i_size_read because we hold i_mutex.
3030                  */
3031                 if (pos + len > inode->i_size)
3032                         ext4_truncate_failed_write(inode);
3033
3034                 if (ret == -ENOSPC &&
3035                     ext4_should_retry_alloc(inode->i_sb, &retries))
3036                         goto retry_journal;
3037
3038                 put_page(page);
3039                 return ret;
3040         }
3041
3042         *pagep = page;
3043         return ret;
3044 }
3045
3046 /*
3047  * Check if we should update i_disksize
3048  * when write to the end of file but not require block allocation
3049  */
3050 static int ext4_da_should_update_i_disksize(struct page *page,
3051                                             unsigned long offset)
3052 {
3053         struct buffer_head *bh;
3054         struct inode *inode = page->mapping->host;
3055         unsigned int idx;
3056         int i;
3057
3058         bh = page_buffers(page);
3059         idx = offset >> inode->i_blkbits;
3060
3061         for (i = 0; i < idx; i++)
3062                 bh = bh->b_this_page;
3063
3064         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3065                 return 0;
3066         return 1;
3067 }
3068
3069 static int ext4_da_write_end(struct file *file,
3070                              struct address_space *mapping,
3071                              loff_t pos, unsigned len, unsigned copied,
3072                              struct page *page, void *fsdata)
3073 {
3074         struct inode *inode = mapping->host;
3075         int ret = 0, ret2;
3076         handle_t *handle = ext4_journal_current_handle();
3077         loff_t new_i_size;
3078         unsigned long start, end;
3079         int write_mode = (int)(unsigned long)fsdata;
3080
3081         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3082                 return ext4_write_end(file, mapping, pos,
3083                                       len, copied, page, fsdata);
3084
3085         trace_ext4_da_write_end(inode, pos, len, copied);
3086         start = pos & (PAGE_SIZE - 1);
3087         end = start + copied - 1;
3088
3089         /*
3090          * generic_write_end() will run mark_inode_dirty() if i_size
3091          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3092          * into that.
3093          */
3094         new_i_size = pos + copied;
3095         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3096                 if (ext4_has_inline_data(inode) ||
3097                     ext4_da_should_update_i_disksize(page, end)) {
3098                         ext4_update_i_disksize(inode, new_i_size);
3099                         /* We need to mark inode dirty even if
3100                          * new_i_size is less that inode->i_size
3101                          * bu greater than i_disksize.(hint delalloc)
3102                          */
3103                         ext4_mark_inode_dirty(handle, inode);
3104                 }
3105         }
3106
3107         if (write_mode != CONVERT_INLINE_DATA &&
3108             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3109             ext4_has_inline_data(inode))
3110                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3111                                                      page);
3112         else
3113                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3114                                                         page, fsdata);
3115
3116         copied = ret2;
3117         if (ret2 < 0)
3118                 ret = ret2;
3119         ret2 = ext4_journal_stop(handle);
3120         if (!ret)
3121                 ret = ret2;
3122
3123         return ret ? ret : copied;
3124 }
3125
3126 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3127                                    unsigned int length)
3128 {
3129         /*
3130          * Drop reserved blocks
3131          */
3132         BUG_ON(!PageLocked(page));
3133         if (!page_has_buffers(page))
3134                 goto out;
3135
3136         ext4_da_page_release_reservation(page, offset, length);
3137
3138 out:
3139         ext4_invalidatepage(page, offset, length);
3140
3141         return;
3142 }
3143
3144 /*
3145  * Force all delayed allocation blocks to be allocated for a given inode.
3146  */
3147 int ext4_alloc_da_blocks(struct inode *inode)
3148 {
3149         trace_ext4_alloc_da_blocks(inode);
3150
3151         if (!EXT4_I(inode)->i_reserved_data_blocks)
3152                 return 0;
3153
3154         /*
3155          * We do something simple for now.  The filemap_flush() will
3156          * also start triggering a write of the data blocks, which is
3157          * not strictly speaking necessary (and for users of
3158          * laptop_mode, not even desirable).  However, to do otherwise
3159          * would require replicating code paths in:
3160          *
3161          * ext4_writepages() ->
3162          *    write_cache_pages() ---> (via passed in callback function)
3163          *        __mpage_da_writepage() -->
3164          *           mpage_add_bh_to_extent()
3165          *           mpage_da_map_blocks()
3166          *
3167          * The problem is that write_cache_pages(), located in
3168          * mm/page-writeback.c, marks pages clean in preparation for
3169          * doing I/O, which is not desirable if we're not planning on
3170          * doing I/O at all.
3171          *
3172          * We could call write_cache_pages(), and then redirty all of
3173          * the pages by calling redirty_page_for_writepage() but that
3174          * would be ugly in the extreme.  So instead we would need to
3175          * replicate parts of the code in the above functions,
3176          * simplifying them because we wouldn't actually intend to
3177          * write out the pages, but rather only collect contiguous
3178          * logical block extents, call the multi-block allocator, and
3179          * then update the buffer heads with the block allocations.
3180          *
3181          * For now, though, we'll cheat by calling filemap_flush(),
3182          * which will map the blocks, and start the I/O, but not
3183          * actually wait for the I/O to complete.
3184          */
3185         return filemap_flush(inode->i_mapping);
3186 }
3187
3188 /*
3189  * bmap() is special.  It gets used by applications such as lilo and by
3190  * the swapper to find the on-disk block of a specific piece of data.
3191  *
3192  * Naturally, this is dangerous if the block concerned is still in the
3193  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3194  * filesystem and enables swap, then they may get a nasty shock when the
3195  * data getting swapped to that swapfile suddenly gets overwritten by
3196  * the original zero's written out previously to the journal and
3197  * awaiting writeback in the kernel's buffer cache.
3198  *
3199  * So, if we see any bmap calls here on a modified, data-journaled file,
3200  * take extra steps to flush any blocks which might be in the cache.
3201  */
3202 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3203 {
3204         struct inode *inode = mapping->host;
3205         journal_t *journal;
3206         int err;
3207
3208         /*
3209          * We can get here for an inline file via the FIBMAP ioctl
3210          */
3211         if (ext4_has_inline_data(inode))
3212                 return 0;
3213
3214         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3215                         test_opt(inode->i_sb, DELALLOC)) {
3216                 /*
3217                  * With delalloc we want to sync the file
3218                  * so that we can make sure we allocate
3219                  * blocks for file
3220                  */
3221                 filemap_write_and_wait(mapping);
3222         }
3223
3224         if (EXT4_JOURNAL(inode) &&
3225             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3226                 /*
3227                  * This is a REALLY heavyweight approach, but the use of
3228                  * bmap on dirty files is expected to be extremely rare:
3229                  * only if we run lilo or swapon on a freshly made file
3230                  * do we expect this to happen.
3231                  *
3232                  * (bmap requires CAP_SYS_RAWIO so this does not
3233                  * represent an unprivileged user DOS attack --- we'd be
3234                  * in trouble if mortal users could trigger this path at
3235                  * will.)
3236                  *
3237                  * NB. EXT4_STATE_JDATA is not set on files other than
3238                  * regular files.  If somebody wants to bmap a directory
3239                  * or symlink and gets confused because the buffer
3240                  * hasn't yet been flushed to disk, they deserve
3241                  * everything they get.
3242                  */
3243
3244                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3245                 journal = EXT4_JOURNAL(inode);
3246                 jbd2_journal_lock_updates(journal);
3247                 err = jbd2_journal_flush(journal);
3248                 jbd2_journal_unlock_updates(journal);
3249
3250                 if (err)
3251                         return 0;
3252         }
3253
3254         return generic_block_bmap(mapping, block, ext4_get_block);
3255 }
3256
3257 static int ext4_readpage(struct file *file, struct page *page)
3258 {
3259         int ret = -EAGAIN;
3260         struct inode *inode = page->mapping->host;
3261
3262         trace_ext4_readpage(page);
3263
3264         if (ext4_has_inline_data(inode))
3265                 ret = ext4_readpage_inline(inode, page);
3266
3267         if (ret == -EAGAIN)
3268                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3269
3270         return ret;
3271 }
3272
3273 static int
3274 ext4_readpages(struct file *file, struct address_space *mapping,
3275                 struct list_head *pages, unsigned nr_pages)
3276 {
3277         struct inode *inode = mapping->host;
3278
3279         /* If the file has inline data, no need to do readpages. */
3280         if (ext4_has_inline_data(inode))
3281                 return 0;
3282
3283         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3284 }
3285
3286 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3287                                 unsigned int length)
3288 {
3289         trace_ext4_invalidatepage(page, offset, length);
3290
3291         /* No journalling happens on data buffers when this function is used */
3292         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3293
3294         block_invalidatepage(page, offset, length);
3295 }
3296
3297 static int __ext4_journalled_invalidatepage(struct page *page,
3298                                             unsigned int offset,
3299                                             unsigned int length)
3300 {
3301         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3302
3303         trace_ext4_journalled_invalidatepage(page, offset, length);
3304
3305         /*
3306          * If it's a full truncate we just forget about the pending dirtying
3307          */
3308         if (offset == 0 && length == PAGE_SIZE)
3309                 ClearPageChecked(page);
3310
3311         return jbd2_journal_invalidatepage(journal, page, offset, length);
3312 }
3313
3314 /* Wrapper for aops... */
3315 static void ext4_journalled_invalidatepage(struct page *page,
3316                                            unsigned int offset,
3317                                            unsigned int length)
3318 {
3319         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3320 }
3321
3322 static int ext4_releasepage(struct page *page, gfp_t wait)
3323 {
3324         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3325
3326         trace_ext4_releasepage(page);
3327
3328         /* Page has dirty journalled data -> cannot release */
3329         if (PageChecked(page))
3330                 return 0;
3331         if (journal)
3332                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3333         else
3334                 return try_to_free_buffers(page);
3335 }
3336
3337 #ifdef CONFIG_FS_DAX
3338 /*
3339  * Get block function for DAX IO and mmap faults. It takes care of converting
3340  * unwritten extents to written ones and initializes new / converted blocks
3341  * to zeros.
3342  */
3343 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3344                        struct buffer_head *bh_result, int create)
3345 {
3346         int ret;
3347
3348         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3349         if (!create)
3350                 return _ext4_get_block(inode, iblock, bh_result, 0);
3351
3352         ret = ext4_get_block_trans(inode, iblock, bh_result,
3353                                    EXT4_GET_BLOCKS_PRE_IO |
3354                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3355         if (ret < 0)
3356                 return ret;
3357
3358         if (buffer_unwritten(bh_result)) {
3359                 /*
3360                  * We are protected by i_mmap_sem or i_mutex so we know block
3361                  * cannot go away from under us even though we dropped
3362                  * i_data_sem. Convert extent to written and write zeros there.
3363                  */
3364                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3365                                            EXT4_GET_BLOCKS_CONVERT |
3366                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3367                 if (ret < 0)
3368                         return ret;
3369         }
3370         /*
3371          * At least for now we have to clear BH_New so that DAX code
3372          * doesn't attempt to zero blocks again in a racy way.
3373          */
3374         clear_buffer_new(bh_result);
3375         return 0;
3376 }
3377 #else
3378 /* Just define empty function, it will never get called. */
3379 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3380                        struct buffer_head *bh_result, int create)
3381 {
3382         BUG();
3383         return 0;
3384 }
3385 #endif
3386
3387 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3388                             ssize_t size, void *private)
3389 {
3390         ext4_io_end_t *io_end = private;
3391
3392         /* if not async direct IO just return */
3393         if (!io_end)
3394                 return 0;
3395
3396         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3397                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3398                   io_end, io_end->inode->i_ino, iocb, offset, size);
3399
3400         /*
3401          * Error during AIO DIO. We cannot convert unwritten extents as the
3402          * data was not written. Just clear the unwritten flag and drop io_end.
3403          */
3404         if (size <= 0) {
3405                 ext4_clear_io_unwritten_flag(io_end);
3406                 size = 0;
3407         }
3408         io_end->offset = offset;
3409         io_end->size = size;
3410         ext4_put_io_end(io_end);
3411
3412         return 0;
3413 }
3414
3415 /*
3416  * Handling of direct IO writes.
3417  *
3418  * For ext4 extent files, ext4 will do direct-io write even to holes,
3419  * preallocated extents, and those write extend the file, no need to
3420  * fall back to buffered IO.
3421  *
3422  * For holes, we fallocate those blocks, mark them as unwritten
3423  * If those blocks were preallocated, we mark sure they are split, but
3424  * still keep the range to write as unwritten.
3425  *
3426  * The unwritten extents will be converted to written when DIO is completed.
3427  * For async direct IO, since the IO may still pending when return, we
3428  * set up an end_io call back function, which will do the conversion
3429  * when async direct IO completed.
3430  *
3431  * If the O_DIRECT write will extend the file then add this inode to the
3432  * orphan list.  So recovery will truncate it back to the original size
3433  * if the machine crashes during the write.
3434  *
3435  */
3436 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3437 {
3438         struct file *file = iocb->ki_filp;
3439         struct inode *inode = file->f_mapping->host;
3440         ssize_t ret;
3441         loff_t offset = iocb->ki_pos;
3442         size_t count = iov_iter_count(iter);
3443         int overwrite = 0;
3444         get_block_t *get_block_func = NULL;
3445         int dio_flags = 0;
3446         loff_t final_size = offset + count;
3447         int orphan = 0;
3448         handle_t *handle;
3449
3450         if (final_size > inode->i_size) {
3451                 /* Credits for sb + inode write */
3452                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3453                 if (IS_ERR(handle)) {
3454                         ret = PTR_ERR(handle);
3455                         goto out;
3456                 }
3457                 ret = ext4_orphan_add(handle, inode);
3458                 if (ret) {
3459                         ext4_journal_stop(handle);
3460                         goto out;
3461                 }
3462                 orphan = 1;
3463                 ext4_update_i_disksize(inode, inode->i_size);
3464                 ext4_journal_stop(handle);
3465         }
3466
3467         BUG_ON(iocb->private == NULL);
3468
3469         /*
3470          * Make all waiters for direct IO properly wait also for extent
3471          * conversion. This also disallows race between truncate() and
3472          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3473          */
3474         inode_dio_begin(inode);
3475
3476         /* If we do a overwrite dio, i_mutex locking can be released */
3477         overwrite = *((int *)iocb->private);
3478
3479         if (overwrite)
3480                 inode_unlock(inode);
3481
3482         /*
3483          * For extent mapped files we could direct write to holes and fallocate.
3484          *
3485          * Allocated blocks to fill the hole are marked as unwritten to prevent
3486          * parallel buffered read to expose the stale data before DIO complete
3487          * the data IO.
3488          *
3489          * As to previously fallocated extents, ext4 get_block will just simply
3490          * mark the buffer mapped but still keep the extents unwritten.
3491          *
3492          * For non AIO case, we will convert those unwritten extents to written
3493          * after return back from blockdev_direct_IO. That way we save us from
3494          * allocating io_end structure and also the overhead of offloading
3495          * the extent convertion to a workqueue.
3496          *
3497          * For async DIO, the conversion needs to be deferred when the
3498          * IO is completed. The ext4 end_io callback function will be
3499          * called to take care of the conversion work.  Here for async
3500          * case, we allocate an io_end structure to hook to the iocb.
3501          */
3502         iocb->private = NULL;
3503         if (overwrite)
3504                 get_block_func = ext4_dio_get_block_overwrite;
3505         else if (IS_DAX(inode)) {
3506                 /*
3507                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3508                  * writes need zeroing either because they can race with page
3509                  * faults or because they use partial blocks.
3510                  */
3511                 if (round_down(offset, i_blocksize(inode)) >= inode->i_size &&
3512                     ext4_aligned_io(inode, offset, count))
3513                         get_block_func = ext4_dio_get_block;
3514                 else
3515                         get_block_func = ext4_dax_get_block;
3516                 dio_flags = DIO_LOCKING;
3517         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3518                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3519                 get_block_func = ext4_dio_get_block;
3520                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3521         } else if (is_sync_kiocb(iocb)) {
3522                 get_block_func = ext4_dio_get_block_unwritten_sync;
3523                 dio_flags = DIO_LOCKING;
3524         } else {
3525                 get_block_func = ext4_dio_get_block_unwritten_async;
3526                 dio_flags = DIO_LOCKING;
3527         }
3528 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3529         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3530 #endif
3531         if (IS_DAX(inode)) {
3532                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3533                                 ext4_end_io_dio, dio_flags);
3534         } else
3535                 ret = __blockdev_direct_IO(iocb, inode,
3536                                            inode->i_sb->s_bdev, iter,
3537                                            get_block_func,
3538                                            ext4_end_io_dio, NULL, dio_flags);
3539
3540         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3541                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3542                 int err;
3543                 /*
3544                  * for non AIO case, since the IO is already
3545                  * completed, we could do the conversion right here
3546                  */
3547                 err = ext4_convert_unwritten_extents(NULL, inode,
3548                                                      offset, ret);
3549                 if (err < 0)
3550                         ret = err;
3551                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3552         }
3553
3554         inode_dio_end(inode);
3555         /* take i_mutex locking again if we do a ovewrite dio */
3556         if (overwrite)
3557                 inode_lock(inode);
3558
3559         if (ret < 0 && final_size > inode->i_size)
3560                 ext4_truncate_failed_write(inode);
3561
3562         /* Handle extending of i_size after direct IO write */
3563         if (orphan) {
3564                 int err;
3565
3566                 /* Credits for sb + inode write */
3567                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3568                 if (IS_ERR(handle)) {
3569                         /*
3570                          * We wrote the data but cannot extend
3571                          * i_size. Bail out. In async io case, we do
3572                          * not return error here because we have
3573                          * already submmitted the corresponding
3574                          * bio. Returning error here makes the caller
3575                          * think that this IO is done and failed
3576                          * resulting in race with bio's completion
3577                          * handler.
3578                          */
3579                         if (!ret)
3580                                 ret = PTR_ERR(handle);
3581                         if (inode->i_nlink)
3582                                 ext4_orphan_del(NULL, inode);
3583
3584                         goto out;
3585                 }
3586                 if (inode->i_nlink)
3587                         ext4_orphan_del(handle, inode);
3588                 if (ret > 0) {
3589                         loff_t end = offset + ret;
3590                         if (end > inode->i_size) {
3591                                 ext4_update_i_disksize(inode, end);
3592                                 i_size_write(inode, end);
3593                                 /*
3594                                  * We're going to return a positive `ret'
3595                                  * here due to non-zero-length I/O, so there's
3596                                  * no way of reporting error returns from
3597                                  * ext4_mark_inode_dirty() to userspace.  So
3598                                  * ignore it.
3599                                  */
3600                                 ext4_mark_inode_dirty(handle, inode);
3601                         }
3602                 }
3603                 err = ext4_journal_stop(handle);
3604                 if (ret == 0)
3605                         ret = err;
3606         }
3607 out:
3608         return ret;
3609 }
3610
3611 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3612 {
3613         struct address_space *mapping = iocb->ki_filp->f_mapping;
3614         struct inode *inode = mapping->host;
3615         ssize_t ret;
3616         loff_t offset = iocb->ki_pos;
3617         loff_t size = i_size_read(inode);
3618
3619         if (offset >= size)
3620                 return 0;
3621
3622         /*
3623          * Shared inode_lock is enough for us - it protects against concurrent
3624          * writes & truncates and since we take care of writing back page cache,
3625          * we are protected against page writeback as well.
3626          */
3627         inode_lock_shared(inode);
3628         if (IS_DAX(inode)) {
3629                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3630         } else {
3631                 size_t count = iov_iter_count(iter);
3632
3633                 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3634                                                    iocb->ki_pos + count);
3635                 if (ret)
3636                         goto out_unlock;
3637                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3638                                            iter, ext4_dio_get_block,
3639                                            NULL, NULL, 0);
3640         }
3641 out_unlock:
3642         inode_unlock_shared(inode);
3643         return ret;
3644 }
3645
3646 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3647 {
3648         struct file *file = iocb->ki_filp;
3649         struct inode *inode = file->f_mapping->host;
3650         size_t count = iov_iter_count(iter);
3651         loff_t offset = iocb->ki_pos;
3652         ssize_t ret;
3653
3654 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3655         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3656                 return 0;
3657 #endif
3658
3659         /*
3660          * If we are doing data journalling we don't support O_DIRECT
3661          */
3662         if (ext4_should_journal_data(inode))
3663                 return 0;
3664
3665         /* Let buffer I/O handle the inline data case. */
3666         if (ext4_has_inline_data(inode))
3667                 return 0;
3668
3669         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3670         if (iov_iter_rw(iter) == READ)
3671                 ret = ext4_direct_IO_read(iocb, iter);
3672         else
3673                 ret = ext4_direct_IO_write(iocb, iter);
3674         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3675         return ret;
3676 }
3677
3678 /*
3679  * Pages can be marked dirty completely asynchronously from ext4's journalling
3680  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3681  * much here because ->set_page_dirty is called under VFS locks.  The page is
3682  * not necessarily locked.
3683  *
3684  * We cannot just dirty the page and leave attached buffers clean, because the
3685  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3686  * or jbddirty because all the journalling code will explode.
3687  *
3688  * So what we do is to mark the page "pending dirty" and next time writepage
3689  * is called, propagate that into the buffers appropriately.
3690  */
3691 static int ext4_journalled_set_page_dirty(struct page *page)
3692 {
3693         SetPageChecked(page);
3694         return __set_page_dirty_nobuffers(page);
3695 }
3696
3697 static const struct address_space_operations ext4_aops = {
3698         .readpage               = ext4_readpage,
3699         .readpages              = ext4_readpages,
3700         .writepage              = ext4_writepage,
3701         .writepages             = ext4_writepages,
3702         .write_begin            = ext4_write_begin,
3703         .write_end              = ext4_write_end,
3704         .bmap                   = ext4_bmap,
3705         .invalidatepage         = ext4_invalidatepage,
3706         .releasepage            = ext4_releasepage,
3707         .direct_IO              = ext4_direct_IO,
3708         .migratepage            = buffer_migrate_page,
3709         .is_partially_uptodate  = block_is_partially_uptodate,
3710         .error_remove_page      = generic_error_remove_page,
3711 };
3712
3713 static const struct address_space_operations ext4_journalled_aops = {
3714         .readpage               = ext4_readpage,
3715         .readpages              = ext4_readpages,
3716         .writepage              = ext4_writepage,
3717         .writepages             = ext4_writepages,
3718         .write_begin            = ext4_write_begin,
3719         .write_end              = ext4_journalled_write_end,
3720         .set_page_dirty         = ext4_journalled_set_page_dirty,
3721         .bmap                   = ext4_bmap,
3722         .invalidatepage         = ext4_journalled_invalidatepage,
3723         .releasepage            = ext4_releasepage,
3724         .direct_IO              = ext4_direct_IO,
3725         .is_partially_uptodate  = block_is_partially_uptodate,
3726         .error_remove_page      = generic_error_remove_page,
3727 };
3728
3729 static const struct address_space_operations ext4_da_aops = {
3730         .readpage               = ext4_readpage,
3731         .readpages              = ext4_readpages,
3732         .writepage              = ext4_writepage,
3733         .writepages             = ext4_writepages,
3734         .write_begin            = ext4_da_write_begin,
3735         .write_end              = ext4_da_write_end,
3736         .bmap                   = ext4_bmap,
3737         .invalidatepage         = ext4_da_invalidatepage,
3738         .releasepage            = ext4_releasepage,
3739         .direct_IO              = ext4_direct_IO,
3740         .migratepage            = buffer_migrate_page,
3741         .is_partially_uptodate  = block_is_partially_uptodate,
3742         .error_remove_page      = generic_error_remove_page,
3743 };
3744
3745 void ext4_set_aops(struct inode *inode)
3746 {
3747         switch (ext4_inode_journal_mode(inode)) {
3748         case EXT4_INODE_ORDERED_DATA_MODE:
3749         case EXT4_INODE_WRITEBACK_DATA_MODE:
3750                 break;
3751         case EXT4_INODE_JOURNAL_DATA_MODE:
3752                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3753                 return;
3754         default:
3755                 BUG();
3756         }
3757         if (test_opt(inode->i_sb, DELALLOC))
3758                 inode->i_mapping->a_ops = &ext4_da_aops;
3759         else
3760                 inode->i_mapping->a_ops = &ext4_aops;
3761 }
3762
3763 static int __ext4_block_zero_page_range(handle_t *handle,
3764                 struct address_space *mapping, loff_t from, loff_t length)
3765 {
3766         ext4_fsblk_t index = from >> PAGE_SHIFT;
3767         unsigned offset = from & (PAGE_SIZE-1);
3768         unsigned blocksize, pos;
3769         ext4_lblk_t iblock;
3770         struct inode *inode = mapping->host;
3771         struct buffer_head *bh;
3772         struct page *page;
3773         int err = 0;
3774
3775         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3776                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3777         if (!page)
3778                 return -ENOMEM;
3779
3780         blocksize = inode->i_sb->s_blocksize;
3781
3782         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3783
3784         if (!page_has_buffers(page))
3785                 create_empty_buffers(page, blocksize, 0);
3786
3787         /* Find the buffer that contains "offset" */
3788         bh = page_buffers(page);
3789         pos = blocksize;
3790         while (offset >= pos) {
3791                 bh = bh->b_this_page;
3792                 iblock++;
3793                 pos += blocksize;
3794         }
3795         if (buffer_freed(bh)) {
3796                 BUFFER_TRACE(bh, "freed: skip");
3797                 goto unlock;
3798         }
3799         if (!buffer_mapped(bh)) {
3800                 BUFFER_TRACE(bh, "unmapped");
3801                 ext4_get_block(inode, iblock, bh, 0);
3802                 /* unmapped? It's a hole - nothing to do */
3803                 if (!buffer_mapped(bh)) {
3804                         BUFFER_TRACE(bh, "still unmapped");
3805                         goto unlock;
3806                 }
3807         }
3808
3809         /* Ok, it's mapped. Make sure it's up-to-date */
3810         if (PageUptodate(page))
3811                 set_buffer_uptodate(bh);
3812
3813         if (!buffer_uptodate(bh)) {
3814                 err = -EIO;
3815                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3816                 wait_on_buffer(bh);
3817                 /* Uhhuh. Read error. Complain and punt. */
3818                 if (!buffer_uptodate(bh))
3819                         goto unlock;
3820                 if (S_ISREG(inode->i_mode) &&
3821                     ext4_encrypted_inode(inode)) {
3822                         /* We expect the key to be set. */
3823                         BUG_ON(!fscrypt_has_encryption_key(inode));
3824                         BUG_ON(blocksize != PAGE_SIZE);
3825                         WARN_ON_ONCE(fscrypt_decrypt_page(page));
3826                 }
3827         }
3828         if (ext4_should_journal_data(inode)) {
3829                 BUFFER_TRACE(bh, "get write access");
3830                 err = ext4_journal_get_write_access(handle, bh);
3831                 if (err)
3832                         goto unlock;
3833         }
3834         zero_user(page, offset, length);
3835         BUFFER_TRACE(bh, "zeroed end of block");
3836
3837         if (ext4_should_journal_data(inode)) {
3838                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3839         } else {
3840                 err = 0;
3841                 mark_buffer_dirty(bh);
3842                 if (ext4_should_order_data(inode))
3843                         err = ext4_jbd2_inode_add_write(handle, inode);
3844         }
3845
3846 unlock:
3847         unlock_page(page);
3848         put_page(page);
3849         return err;
3850 }
3851
3852 /*
3853  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3854  * starting from file offset 'from'.  The range to be zero'd must
3855  * be contained with in one block.  If the specified range exceeds
3856  * the end of the block it will be shortened to end of the block
3857  * that cooresponds to 'from'
3858  */
3859 static int ext4_block_zero_page_range(handle_t *handle,
3860                 struct address_space *mapping, loff_t from, loff_t length)
3861 {
3862         struct inode *inode = mapping->host;
3863         unsigned offset = from & (PAGE_SIZE-1);
3864         unsigned blocksize = inode->i_sb->s_blocksize;
3865         unsigned max = blocksize - (offset & (blocksize - 1));
3866
3867         /*
3868          * correct length if it does not fall between
3869          * 'from' and the end of the block
3870          */
3871         if (length > max || length < 0)
3872                 length = max;
3873
3874         if (IS_DAX(inode))
3875                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3876         return __ext4_block_zero_page_range(handle, mapping, from, length);
3877 }
3878
3879 /*
3880  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3881  * up to the end of the block which corresponds to `from'.
3882  * This required during truncate. We need to physically zero the tail end
3883  * of that block so it doesn't yield old data if the file is later grown.
3884  */
3885 static int ext4_block_truncate_page(handle_t *handle,
3886                 struct address_space *mapping, loff_t from)
3887 {
3888         unsigned offset = from & (PAGE_SIZE-1);
3889         unsigned length;
3890         unsigned blocksize;
3891         struct inode *inode = mapping->host;
3892
3893         /* If we are processing an encrypted inode during orphan list handling */
3894         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3895                 return 0;
3896
3897         blocksize = inode->i_sb->s_blocksize;
3898         length = blocksize - (offset & (blocksize - 1));
3899
3900         return ext4_block_zero_page_range(handle, mapping, from, length);
3901 }
3902
3903 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3904                              loff_t lstart, loff_t length)
3905 {
3906         struct super_block *sb = inode->i_sb;
3907         struct address_space *mapping = inode->i_mapping;
3908         unsigned partial_start, partial_end;
3909         ext4_fsblk_t start, end;
3910         loff_t byte_end = (lstart + length - 1);
3911         int err = 0;
3912
3913         partial_start = lstart & (sb->s_blocksize - 1);
3914         partial_end = byte_end & (sb->s_blocksize - 1);
3915
3916         start = lstart >> sb->s_blocksize_bits;
3917         end = byte_end >> sb->s_blocksize_bits;
3918
3919         /* Handle partial zero within the single block */
3920         if (start == end &&
3921             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3922                 err = ext4_block_zero_page_range(handle, mapping,
3923                                                  lstart, length);
3924                 return err;
3925         }
3926         /* Handle partial zero out on the start of the range */
3927         if (partial_start) {
3928                 err = ext4_block_zero_page_range(handle, mapping,
3929                                                  lstart, sb->s_blocksize);
3930                 if (err)
3931                         return err;
3932         }
3933         /* Handle partial zero out on the end of the range */
3934         if (partial_end != sb->s_blocksize - 1)
3935                 err = ext4_block_zero_page_range(handle, mapping,
3936                                                  byte_end - partial_end,
3937                                                  partial_end + 1);
3938         return err;
3939 }
3940
3941 int ext4_can_truncate(struct inode *inode)
3942 {
3943         if (S_ISREG(inode->i_mode))
3944                 return 1;
3945         if (S_ISDIR(inode->i_mode))
3946                 return 1;
3947         if (S_ISLNK(inode->i_mode))
3948                 return !ext4_inode_is_fast_symlink(inode);
3949         return 0;
3950 }
3951
3952 /*
3953  * We have to make sure i_disksize gets properly updated before we truncate
3954  * page cache due to hole punching or zero range. Otherwise i_disksize update
3955  * can get lost as it may have been postponed to submission of writeback but
3956  * that will never happen after we truncate page cache.
3957  */
3958 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3959                                       loff_t len)
3960 {
3961         handle_t *handle;
3962         loff_t size = i_size_read(inode);
3963
3964         WARN_ON(!inode_is_locked(inode));
3965         if (offset > size || offset + len < size)
3966                 return 0;
3967
3968         if (EXT4_I(inode)->i_disksize >= size)
3969                 return 0;
3970
3971         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3972         if (IS_ERR(handle))
3973                 return PTR_ERR(handle);
3974         ext4_update_i_disksize(inode, size);
3975         ext4_mark_inode_dirty(handle, inode);
3976         ext4_journal_stop(handle);
3977
3978         return 0;
3979 }
3980
3981 /*
3982  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3983  * associated with the given offset and length
3984  *
3985  * @inode:  File inode
3986  * @offset: The offset where the hole will begin
3987  * @len:    The length of the hole
3988  *
3989  * Returns: 0 on success or negative on failure
3990  */
3991
3992 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3993 {
3994         struct super_block *sb = inode->i_sb;
3995         ext4_lblk_t first_block, stop_block;
3996         struct address_space *mapping = inode->i_mapping;
3997         loff_t first_block_offset, last_block_offset, max_length;
3998         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3999         handle_t *handle;
4000         unsigned int credits;
4001         int ret = 0;
4002
4003         if (!S_ISREG(inode->i_mode))
4004                 return -EOPNOTSUPP;
4005
4006         trace_ext4_punch_hole(inode, offset, length, 0);
4007
4008         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4009         if (ext4_has_inline_data(inode)) {
4010                 down_write(&EXT4_I(inode)->i_mmap_sem);
4011                 ret = ext4_convert_inline_data(inode);
4012                 up_write(&EXT4_I(inode)->i_mmap_sem);
4013                 if (ret)
4014                         return ret;
4015         }
4016
4017         /*
4018          * Write out all dirty pages to avoid race conditions
4019          * Then release them.
4020          */
4021         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4022                 ret = filemap_write_and_wait_range(mapping, offset,
4023                                                    offset + length - 1);
4024                 if (ret)
4025                         return ret;
4026         }
4027
4028         inode_lock(inode);
4029
4030         /* No need to punch hole beyond i_size */
4031         if (offset >= inode->i_size)
4032                 goto out_mutex;
4033
4034         /*
4035          * If the hole extends beyond i_size, set the hole
4036          * to end after the page that contains i_size
4037          */
4038         if (offset + length > inode->i_size) {
4039                 length = inode->i_size +
4040                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4041                    offset;
4042         }
4043
4044         /*
4045          * For punch hole the length + offset needs to be within one block
4046          * before last range. Adjust the length if it goes beyond that limit.
4047          */
4048         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4049         if (offset + length > max_length)
4050                 length = max_length - offset;
4051
4052         if (offset & (sb->s_blocksize - 1) ||
4053             (offset + length) & (sb->s_blocksize - 1)) {
4054                 /*
4055                  * Attach jinode to inode for jbd2 if we do any zeroing of
4056                  * partial block
4057                  */
4058                 ret = ext4_inode_attach_jinode(inode);
4059                 if (ret < 0)
4060                         goto out_mutex;
4061
4062         }
4063
4064         /* Wait all existing dio workers, newcomers will block on i_mutex */
4065         ext4_inode_block_unlocked_dio(inode);
4066         inode_dio_wait(inode);
4067
4068         /*
4069          * Prevent page faults from reinstantiating pages we have released from
4070          * page cache.
4071          */
4072         down_write(&EXT4_I(inode)->i_mmap_sem);
4073         first_block_offset = round_up(offset, sb->s_blocksize);
4074         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4075
4076         /* Now release the pages and zero block aligned part of pages*/
4077         if (last_block_offset > first_block_offset) {
4078                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4079                 if (ret)
4080                         goto out_dio;
4081                 truncate_pagecache_range(inode, first_block_offset,
4082                                          last_block_offset);
4083         }
4084
4085         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4086                 credits = ext4_writepage_trans_blocks(inode);
4087         else
4088                 credits = ext4_blocks_for_truncate(inode);
4089         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4090         if (IS_ERR(handle)) {
4091                 ret = PTR_ERR(handle);
4092                 ext4_std_error(sb, ret);
4093                 goto out_dio;
4094         }
4095
4096         ret = ext4_zero_partial_blocks(handle, inode, offset,
4097                                        length);
4098         if (ret)
4099                 goto out_stop;
4100
4101         first_block = (offset + sb->s_blocksize - 1) >>
4102                 EXT4_BLOCK_SIZE_BITS(sb);
4103         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4104
4105         /* If there are blocks to remove, do it */
4106         if (stop_block > first_block) {
4107
4108                 down_write(&EXT4_I(inode)->i_data_sem);
4109                 ext4_discard_preallocations(inode);
4110
4111                 ret = ext4_es_remove_extent(inode, first_block,
4112                                             stop_block - first_block);
4113                 if (ret) {
4114                         up_write(&EXT4_I(inode)->i_data_sem);
4115                         goto out_stop;
4116                 }
4117
4118                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4119                         ret = ext4_ext_remove_space(inode, first_block,
4120                                                     stop_block - 1);
4121                 else
4122                         ret = ext4_ind_remove_space(handle, inode, first_block,
4123                                                     stop_block);
4124
4125                 up_write(&EXT4_I(inode)->i_data_sem);
4126         }
4127         if (IS_SYNC(inode))
4128                 ext4_handle_sync(handle);
4129
4130         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4131         ext4_mark_inode_dirty(handle, inode);
4132         if (ret >= 0)
4133                 ext4_update_inode_fsync_trans(handle, inode, 1);
4134 out_stop:
4135         ext4_journal_stop(handle);
4136 out_dio:
4137         up_write(&EXT4_I(inode)->i_mmap_sem);
4138         ext4_inode_resume_unlocked_dio(inode);
4139 out_mutex:
4140         inode_unlock(inode);
4141         return ret;
4142 }
4143
4144 int ext4_inode_attach_jinode(struct inode *inode)
4145 {
4146         struct ext4_inode_info *ei = EXT4_I(inode);
4147         struct jbd2_inode *jinode;
4148
4149         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4150                 return 0;
4151
4152         jinode = jbd2_alloc_inode(GFP_KERNEL);
4153         spin_lock(&inode->i_lock);
4154         if (!ei->jinode) {
4155                 if (!jinode) {
4156                         spin_unlock(&inode->i_lock);
4157                         return -ENOMEM;
4158                 }
4159                 ei->jinode = jinode;
4160                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4161                 jinode = NULL;
4162         }
4163         spin_unlock(&inode->i_lock);
4164         if (unlikely(jinode != NULL))
4165                 jbd2_free_inode(jinode);
4166         return 0;
4167 }
4168
4169 /*
4170  * ext4_truncate()
4171  *
4172  * We block out ext4_get_block() block instantiations across the entire
4173  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4174  * simultaneously on behalf of the same inode.
4175  *
4176  * As we work through the truncate and commit bits of it to the journal there
4177  * is one core, guiding principle: the file's tree must always be consistent on
4178  * disk.  We must be able to restart the truncate after a crash.
4179  *
4180  * The file's tree may be transiently inconsistent in memory (although it
4181  * probably isn't), but whenever we close off and commit a journal transaction,
4182  * the contents of (the filesystem + the journal) must be consistent and
4183  * restartable.  It's pretty simple, really: bottom up, right to left (although
4184  * left-to-right works OK too).
4185  *
4186  * Note that at recovery time, journal replay occurs *before* the restart of
4187  * truncate against the orphan inode list.
4188  *
4189  * The committed inode has the new, desired i_size (which is the same as
4190  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4191  * that this inode's truncate did not complete and it will again call
4192  * ext4_truncate() to have another go.  So there will be instantiated blocks
4193  * to the right of the truncation point in a crashed ext4 filesystem.  But
4194  * that's fine - as long as they are linked from the inode, the post-crash
4195  * ext4_truncate() run will find them and release them.
4196  */
4197 void ext4_truncate(struct inode *inode)
4198 {
4199         struct ext4_inode_info *ei = EXT4_I(inode);
4200         unsigned int credits;
4201         handle_t *handle;
4202         struct address_space *mapping = inode->i_mapping;
4203
4204         /*
4205          * There is a possibility that we're either freeing the inode
4206          * or it's a completely new inode. In those cases we might not
4207          * have i_mutex locked because it's not necessary.
4208          */
4209         if (!(inode->i_state & (I_NEW|I_FREEING)))
4210                 WARN_ON(!inode_is_locked(inode));
4211         trace_ext4_truncate_enter(inode);
4212
4213         if (!ext4_can_truncate(inode))
4214                 return;
4215
4216         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4217
4218         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4219                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4220
4221         if (ext4_has_inline_data(inode)) {
4222                 int has_inline = 1;
4223
4224                 ext4_inline_data_truncate(inode, &has_inline);
4225                 if (has_inline)
4226                         return;
4227         }
4228
4229         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4230         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4231                 if (ext4_inode_attach_jinode(inode) < 0)
4232                         return;
4233         }
4234
4235         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4236                 credits = ext4_writepage_trans_blocks(inode);
4237         else
4238                 credits = ext4_blocks_for_truncate(inode);
4239
4240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4241         if (IS_ERR(handle)) {
4242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4243                 return;
4244         }
4245
4246         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4247                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4248
4249         /*
4250          * We add the inode to the orphan list, so that if this
4251          * truncate spans multiple transactions, and we crash, we will
4252          * resume the truncate when the filesystem recovers.  It also
4253          * marks the inode dirty, to catch the new size.
4254          *
4255          * Implication: the file must always be in a sane, consistent
4256          * truncatable state while each transaction commits.
4257          */
4258         if (ext4_orphan_add(handle, inode))
4259                 goto out_stop;
4260
4261         down_write(&EXT4_I(inode)->i_data_sem);
4262
4263         ext4_discard_preallocations(inode);
4264
4265         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266                 ext4_ext_truncate(handle, inode);
4267         else
4268                 ext4_ind_truncate(handle, inode);
4269
4270         up_write(&ei->i_data_sem);
4271
4272         if (IS_SYNC(inode))
4273                 ext4_handle_sync(handle);
4274
4275 out_stop:
4276         /*
4277          * If this was a simple ftruncate() and the file will remain alive,
4278          * then we need to clear up the orphan record which we created above.
4279          * However, if this was a real unlink then we were called by
4280          * ext4_evict_inode(), and we allow that function to clean up the
4281          * orphan info for us.
4282          */
4283         if (inode->i_nlink)
4284                 ext4_orphan_del(handle, inode);
4285
4286         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4287         ext4_mark_inode_dirty(handle, inode);
4288         ext4_journal_stop(handle);
4289
4290         trace_ext4_truncate_exit(inode);
4291 }
4292
4293 /*
4294  * ext4_get_inode_loc returns with an extra refcount against the inode's
4295  * underlying buffer_head on success. If 'in_mem' is true, we have all
4296  * data in memory that is needed to recreate the on-disk version of this
4297  * inode.
4298  */
4299 static int __ext4_get_inode_loc(struct inode *inode,
4300                                 struct ext4_iloc *iloc, int in_mem)
4301 {
4302         struct ext4_group_desc  *gdp;
4303         struct buffer_head      *bh;
4304         struct super_block      *sb = inode->i_sb;
4305         ext4_fsblk_t            block;
4306         int                     inodes_per_block, inode_offset;
4307
4308         iloc->bh = NULL;
4309         if (inode->i_ino < EXT4_ROOT_INO ||
4310             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4311                 return -EFSCORRUPTED;
4312
4313         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4314         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4315         if (!gdp)
4316                 return -EIO;
4317
4318         /*
4319          * Figure out the offset within the block group inode table
4320          */
4321         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4322         inode_offset = ((inode->i_ino - 1) %
4323                         EXT4_INODES_PER_GROUP(sb));
4324         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4325         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4326
4327         bh = sb_getblk(sb, block);
4328         if (unlikely(!bh))
4329                 return -ENOMEM;
4330         if (!buffer_uptodate(bh)) {
4331                 lock_buffer(bh);
4332
4333                 /*
4334                  * If the buffer has the write error flag, we have failed
4335                  * to write out another inode in the same block.  In this
4336                  * case, we don't have to read the block because we may
4337                  * read the old inode data successfully.
4338                  */
4339                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4340                         set_buffer_uptodate(bh);
4341
4342                 if (buffer_uptodate(bh)) {
4343                         /* someone brought it uptodate while we waited */
4344                         unlock_buffer(bh);
4345                         goto has_buffer;
4346                 }
4347
4348                 /*
4349                  * If we have all information of the inode in memory and this
4350                  * is the only valid inode in the block, we need not read the
4351                  * block.
4352                  */
4353                 if (in_mem) {
4354                         struct buffer_head *bitmap_bh;
4355                         int i, start;
4356
4357                         start = inode_offset & ~(inodes_per_block - 1);
4358
4359                         /* Is the inode bitmap in cache? */
4360                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4361                         if (unlikely(!bitmap_bh))
4362                                 goto make_io;
4363
4364                         /*
4365                          * If the inode bitmap isn't in cache then the
4366                          * optimisation may end up performing two reads instead
4367                          * of one, so skip it.
4368                          */
4369                         if (!buffer_uptodate(bitmap_bh)) {
4370                                 brelse(bitmap_bh);
4371                                 goto make_io;
4372                         }
4373                         for (i = start; i < start + inodes_per_block; i++) {
4374                                 if (i == inode_offset)
4375                                         continue;
4376                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4377                                         break;
4378                         }
4379                         brelse(bitmap_bh);
4380                         if (i == start + inodes_per_block) {
4381                                 /* all other inodes are free, so skip I/O */
4382                                 memset(bh->b_data, 0, bh->b_size);
4383                                 set_buffer_uptodate(bh);
4384                                 unlock_buffer(bh);
4385                                 goto has_buffer;
4386                         }
4387                 }
4388
4389 make_io:
4390                 /*
4391                  * If we need to do any I/O, try to pre-readahead extra
4392                  * blocks from the inode table.
4393                  */
4394                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4395                         ext4_fsblk_t b, end, table;
4396                         unsigned num;
4397                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4398
4399                         table = ext4_inode_table(sb, gdp);
4400                         /* s_inode_readahead_blks is always a power of 2 */
4401                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4402                         if (table > b)
4403                                 b = table;
4404                         end = b + ra_blks;
4405                         num = EXT4_INODES_PER_GROUP(sb);
4406                         if (ext4_has_group_desc_csum(sb))
4407                                 num -= ext4_itable_unused_count(sb, gdp);
4408                         table += num / inodes_per_block;
4409                         if (end > table)
4410                                 end = table;
4411                         while (b <= end)
4412                                 sb_breadahead(sb, b++);
4413                 }
4414
4415                 /*
4416                  * There are other valid inodes in the buffer, this inode
4417                  * has in-inode xattrs, or we don't have this inode in memory.
4418                  * Read the block from disk.
4419                  */
4420                 trace_ext4_load_inode(inode);
4421                 get_bh(bh);
4422                 bh->b_end_io = end_buffer_read_sync;
4423                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4424                 wait_on_buffer(bh);
4425                 if (!buffer_uptodate(bh)) {
4426                         EXT4_ERROR_INODE_BLOCK(inode, block,
4427                                                "unable to read itable block");
4428                         brelse(bh);
4429                         return -EIO;
4430                 }
4431         }
4432 has_buffer:
4433         iloc->bh = bh;
4434         return 0;
4435 }
4436
4437 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4438 {
4439         /* We have all inode data except xattrs in memory here. */
4440         return __ext4_get_inode_loc(inode, iloc,
4441                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4442 }
4443
4444 void ext4_set_inode_flags(struct inode *inode)
4445 {
4446         unsigned int flags = EXT4_I(inode)->i_flags;
4447         unsigned int new_fl = 0;
4448
4449         if (flags & EXT4_SYNC_FL)
4450                 new_fl |= S_SYNC;
4451         if (flags & EXT4_APPEND_FL)
4452                 new_fl |= S_APPEND;
4453         if (flags & EXT4_IMMUTABLE_FL)
4454                 new_fl |= S_IMMUTABLE;
4455         if (flags & EXT4_NOATIME_FL)
4456                 new_fl |= S_NOATIME;
4457         if (flags & EXT4_DIRSYNC_FL)
4458                 new_fl |= S_DIRSYNC;
4459         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4460                 new_fl |= S_DAX;
4461         inode_set_flags(inode, new_fl,
4462                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4463 }
4464
4465 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4466 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4467 {
4468         unsigned int vfs_fl;
4469         unsigned long old_fl, new_fl;
4470
4471         do {
4472                 vfs_fl = ei->vfs_inode.i_flags;
4473                 old_fl = ei->i_flags;
4474                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4475                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4476                                 EXT4_DIRSYNC_FL);
4477                 if (vfs_fl & S_SYNC)
4478                         new_fl |= EXT4_SYNC_FL;
4479                 if (vfs_fl & S_APPEND)
4480                         new_fl |= EXT4_APPEND_FL;
4481                 if (vfs_fl & S_IMMUTABLE)
4482                         new_fl |= EXT4_IMMUTABLE_FL;
4483                 if (vfs_fl & S_NOATIME)
4484                         new_fl |= EXT4_NOATIME_FL;
4485                 if (vfs_fl & S_DIRSYNC)
4486                         new_fl |= EXT4_DIRSYNC_FL;
4487         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4488 }
4489
4490 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4491                                   struct ext4_inode_info *ei)
4492 {
4493         blkcnt_t i_blocks ;
4494         struct inode *inode = &(ei->vfs_inode);
4495         struct super_block *sb = inode->i_sb;
4496
4497         if (ext4_has_feature_huge_file(sb)) {
4498                 /* we are using combined 48 bit field */
4499                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4500                                         le32_to_cpu(raw_inode->i_blocks_lo);
4501                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4502                         /* i_blocks represent file system block size */
4503                         return i_blocks  << (inode->i_blkbits - 9);
4504                 } else {
4505                         return i_blocks;
4506                 }
4507         } else {
4508                 return le32_to_cpu(raw_inode->i_blocks_lo);
4509         }
4510 }
4511
4512 static inline void ext4_iget_extra_inode(struct inode *inode,
4513                                          struct ext4_inode *raw_inode,
4514                                          struct ext4_inode_info *ei)
4515 {
4516         __le32 *magic = (void *)raw_inode +
4517                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4518         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4519                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4520                 ext4_find_inline_data_nolock(inode);
4521         } else
4522                 EXT4_I(inode)->i_inline_off = 0;
4523 }
4524
4525 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4526 {
4527         if (!ext4_has_feature_project(inode->i_sb))
4528                 return -EOPNOTSUPP;
4529         *projid = EXT4_I(inode)->i_projid;
4530         return 0;
4531 }
4532
4533 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4534                           ext4_iget_flags flags, const char *function,
4535                           unsigned int line)
4536 {
4537         struct ext4_iloc iloc;
4538         struct ext4_inode *raw_inode;
4539         struct ext4_inode_info *ei;
4540         struct inode *inode;
4541         journal_t *journal = EXT4_SB(sb)->s_journal;
4542         long ret;
4543         loff_t size;
4544         int block;
4545         uid_t i_uid;
4546         gid_t i_gid;
4547         projid_t i_projid;
4548
4549         if ((!(flags & EXT4_IGET_SPECIAL) &&
4550              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4551             (ino < EXT4_ROOT_INO) ||
4552             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4553                 if (flags & EXT4_IGET_HANDLE)
4554                         return ERR_PTR(-ESTALE);
4555                 __ext4_error(sb, function, line,
4556                              "inode #%lu: comm %s: iget: illegal inode #",
4557                              ino, current->comm);
4558                 return ERR_PTR(-EFSCORRUPTED);
4559         }
4560
4561         inode = iget_locked(sb, ino);
4562         if (!inode)
4563                 return ERR_PTR(-ENOMEM);
4564         if (!(inode->i_state & I_NEW))
4565                 return inode;
4566
4567         ei = EXT4_I(inode);
4568         iloc.bh = NULL;
4569
4570         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4571         if (ret < 0)
4572                 goto bad_inode;
4573         raw_inode = ext4_raw_inode(&iloc);
4574
4575         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4576                 ext4_error_inode(inode, function, line, 0,
4577                                  "iget: root inode unallocated");
4578                 ret = -EFSCORRUPTED;
4579                 goto bad_inode;
4580         }
4581
4582         if ((flags & EXT4_IGET_HANDLE) &&
4583             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4584                 ret = -ESTALE;
4585                 goto bad_inode;
4586         }
4587
4588         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4589                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4590                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4591                     EXT4_INODE_SIZE(inode->i_sb)) {
4592                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4593                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4594                                 EXT4_INODE_SIZE(inode->i_sb));
4595                         ret = -EFSCORRUPTED;
4596                         goto bad_inode;
4597                 }
4598         } else
4599                 ei->i_extra_isize = 0;
4600
4601         /* Precompute checksum seed for inode metadata */
4602         if (ext4_has_metadata_csum(sb)) {
4603                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4604                 __u32 csum;
4605                 __le32 inum = cpu_to_le32(inode->i_ino);
4606                 __le32 gen = raw_inode->i_generation;
4607                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4608                                    sizeof(inum));
4609                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4610                                               sizeof(gen));
4611         }
4612
4613         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4614                 ext4_error_inode(inode, function, line, 0,
4615                                  "iget: checksum invalid");
4616                 ret = -EFSBADCRC;
4617                 goto bad_inode;
4618         }
4619
4620         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4621         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4622         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4623         if (ext4_has_feature_project(sb) &&
4624             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4625             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4626                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4627         else
4628                 i_projid = EXT4_DEF_PROJID;
4629
4630         if (!(test_opt(inode->i_sb, NO_UID32))) {
4631                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4632                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4633         }
4634         i_uid_write(inode, i_uid);
4635         i_gid_write(inode, i_gid);
4636         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4637         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4638
4639         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4640         ei->i_inline_off = 0;
4641         ei->i_dir_start_lookup = 0;
4642         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4643         /* We now have enough fields to check if the inode was active or not.
4644          * This is needed because nfsd might try to access dead inodes
4645          * the test is that same one that e2fsck uses
4646          * NeilBrown 1999oct15
4647          */
4648         if (inode->i_nlink == 0) {
4649                 if ((inode->i_mode == 0 ||
4650                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4651                     ino != EXT4_BOOT_LOADER_INO) {
4652                         /* this inode is deleted */
4653                         ret = -ESTALE;
4654                         goto bad_inode;
4655                 }
4656                 /* The only unlinked inodes we let through here have
4657                  * valid i_mode and are being read by the orphan
4658                  * recovery code: that's fine, we're about to complete
4659                  * the process of deleting those.
4660                  * OR it is the EXT4_BOOT_LOADER_INO which is
4661                  * not initialized on a new filesystem. */
4662         }
4663         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4664         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4665         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4666         if (ext4_has_feature_64bit(sb))
4667                 ei->i_file_acl |=
4668                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4669         inode->i_size = ext4_isize(raw_inode);
4670         if ((size = i_size_read(inode)) < 0) {
4671                 ext4_error_inode(inode, function, line, 0,
4672                                  "iget: bad i_size value: %lld", size);
4673                 ret = -EFSCORRUPTED;
4674                 goto bad_inode;
4675         }
4676         /*
4677          * If dir_index is not enabled but there's dir with INDEX flag set,
4678          * we'd normally treat htree data as empty space. But with metadata
4679          * checksumming that corrupts checksums so forbid that.
4680          */
4681         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4682             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4683                 EXT4_ERROR_INODE(inode,
4684                                  "iget: Dir with htree data on filesystem without dir_index feature.");
4685                 ret = -EFSCORRUPTED;
4686                 goto bad_inode;
4687         }
4688         ei->i_disksize = inode->i_size;
4689 #ifdef CONFIG_QUOTA
4690         ei->i_reserved_quota = 0;
4691 #endif
4692         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4693         ei->i_block_group = iloc.block_group;
4694         ei->i_last_alloc_group = ~0;
4695         /*
4696          * NOTE! The in-memory inode i_data array is in little-endian order
4697          * even on big-endian machines: we do NOT byteswap the block numbers!
4698          */
4699         for (block = 0; block < EXT4_N_BLOCKS; block++)
4700                 ei->i_data[block] = raw_inode->i_block[block];
4701         INIT_LIST_HEAD(&ei->i_orphan);
4702
4703         /*
4704          * Set transaction id's of transactions that have to be committed
4705          * to finish f[data]sync. We set them to currently running transaction
4706          * as we cannot be sure that the inode or some of its metadata isn't
4707          * part of the transaction - the inode could have been reclaimed and
4708          * now it is reread from disk.
4709          */
4710         if (journal) {
4711                 transaction_t *transaction;
4712                 tid_t tid;
4713
4714                 read_lock(&journal->j_state_lock);
4715                 if (journal->j_running_transaction)
4716                         transaction = journal->j_running_transaction;
4717                 else
4718                         transaction = journal->j_committing_transaction;
4719                 if (transaction)
4720                         tid = transaction->t_tid;
4721                 else
4722                         tid = journal->j_commit_sequence;
4723                 read_unlock(&journal->j_state_lock);
4724                 ei->i_sync_tid = tid;
4725                 ei->i_datasync_tid = tid;
4726         }
4727
4728         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4729                 if (ei->i_extra_isize == 0) {
4730                         /* The extra space is currently unused. Use it. */
4731                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4732                                             EXT4_GOOD_OLD_INODE_SIZE;
4733                 } else {
4734                         ext4_iget_extra_inode(inode, raw_inode, ei);
4735                 }
4736         }
4737
4738         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4739         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4740         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4741         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4742
4743         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4744                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4745                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4746                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4747                                 inode->i_version |=
4748                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4749                 }
4750         }
4751
4752         ret = 0;
4753         if (ei->i_file_acl &&
4754             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4755                 ext4_error_inode(inode, function, line, 0,
4756                                  "iget: bad extended attribute block %llu",
4757                                  ei->i_file_acl);
4758                 ret = -EFSCORRUPTED;
4759                 goto bad_inode;
4760         } else if (!ext4_has_inline_data(inode)) {
4761                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4762                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4763                             (S_ISLNK(inode->i_mode) &&
4764                              !ext4_inode_is_fast_symlink(inode))))
4765                                 /* Validate extent which is part of inode */
4766                                 ret = ext4_ext_check_inode(inode);
4767                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4768                            (S_ISLNK(inode->i_mode) &&
4769                             !ext4_inode_is_fast_symlink(inode))) {
4770                         /* Validate block references which are part of inode */
4771                         ret = ext4_ind_check_inode(inode);
4772                 }
4773         }
4774         if (ret)
4775                 goto bad_inode;
4776
4777         if (S_ISREG(inode->i_mode)) {
4778                 inode->i_op = &ext4_file_inode_operations;
4779                 inode->i_fop = &ext4_file_operations;
4780                 ext4_set_aops(inode);
4781         } else if (S_ISDIR(inode->i_mode)) {
4782                 inode->i_op = &ext4_dir_inode_operations;
4783                 inode->i_fop = &ext4_dir_operations;
4784         } else if (S_ISLNK(inode->i_mode)) {
4785                 if (ext4_encrypted_inode(inode)) {
4786                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4787                         ext4_set_aops(inode);
4788                 } else if (ext4_inode_is_fast_symlink(inode)) {
4789                         inode->i_link = (char *)ei->i_data;
4790                         inode->i_op = &ext4_fast_symlink_inode_operations;
4791                         nd_terminate_link(ei->i_data, inode->i_size,
4792                                 sizeof(ei->i_data) - 1);
4793                 } else {
4794                         inode->i_op = &ext4_symlink_inode_operations;
4795                         ext4_set_aops(inode);
4796                 }
4797                 inode_nohighmem(inode);
4798         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4799               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4800                 inode->i_op = &ext4_special_inode_operations;
4801                 if (raw_inode->i_block[0])
4802                         init_special_inode(inode, inode->i_mode,
4803                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4804                 else
4805                         init_special_inode(inode, inode->i_mode,
4806                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4807         } else if (ino == EXT4_BOOT_LOADER_INO) {
4808                 make_bad_inode(inode);
4809         } else {
4810                 ret = -EFSCORRUPTED;
4811                 ext4_error_inode(inode, function, line, 0,
4812                                  "iget: bogus i_mode (%o)", inode->i_mode);
4813                 goto bad_inode;
4814         }
4815         brelse(iloc.bh);
4816         ext4_set_inode_flags(inode);
4817         unlock_new_inode(inode);
4818         return inode;
4819
4820 bad_inode:
4821         brelse(iloc.bh);
4822         iget_failed(inode);
4823         return ERR_PTR(ret);
4824 }
4825
4826 static int ext4_inode_blocks_set(handle_t *handle,
4827                                 struct ext4_inode *raw_inode,
4828                                 struct ext4_inode_info *ei)
4829 {
4830         struct inode *inode = &(ei->vfs_inode);
4831         u64 i_blocks = READ_ONCE(inode->i_blocks);
4832         struct super_block *sb = inode->i_sb;
4833
4834         if (i_blocks <= ~0U) {
4835                 /*
4836                  * i_blocks can be represented in a 32 bit variable
4837                  * as multiple of 512 bytes
4838                  */
4839                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4840                 raw_inode->i_blocks_high = 0;
4841                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4842                 return 0;
4843         }
4844         if (!ext4_has_feature_huge_file(sb))
4845                 return -EFBIG;
4846
4847         if (i_blocks <= 0xffffffffffffULL) {
4848                 /*
4849                  * i_blocks can be represented in a 48 bit variable
4850                  * as multiple of 512 bytes
4851                  */
4852                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4853                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4854                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4855         } else {
4856                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4857                 /* i_block is stored in file system block size */
4858                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4859                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4860                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4861         }
4862         return 0;
4863 }
4864
4865 struct other_inode {
4866         unsigned long           orig_ino;
4867         struct ext4_inode       *raw_inode;
4868 };
4869
4870 static int other_inode_match(struct inode * inode, unsigned long ino,
4871                              void *data)
4872 {
4873         struct other_inode *oi = (struct other_inode *) data;
4874
4875         if ((inode->i_ino != ino) ||
4876             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4877                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4878             ((inode->i_state & I_DIRTY_TIME) == 0))
4879                 return 0;
4880         spin_lock(&inode->i_lock);
4881         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4882                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4883             (inode->i_state & I_DIRTY_TIME)) {
4884                 struct ext4_inode_info  *ei = EXT4_I(inode);
4885
4886                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4887                 spin_unlock(&inode->i_lock);
4888
4889                 spin_lock(&ei->i_raw_lock);
4890                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4891                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4892                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4893                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4894                 spin_unlock(&ei->i_raw_lock);
4895                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4896                 return -1;
4897         }
4898         spin_unlock(&inode->i_lock);
4899         return -1;
4900 }
4901
4902 /*
4903  * Opportunistically update the other time fields for other inodes in
4904  * the same inode table block.
4905  */
4906 static void ext4_update_other_inodes_time(struct super_block *sb,
4907                                           unsigned long orig_ino, char *buf)
4908 {
4909         struct other_inode oi;
4910         unsigned long ino;
4911         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4912         int inode_size = EXT4_INODE_SIZE(sb);
4913
4914         oi.orig_ino = orig_ino;
4915         /*
4916          * Calculate the first inode in the inode table block.  Inode
4917          * numbers are one-based.  That is, the first inode in a block
4918          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4919          */
4920         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4921         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4922                 if (ino == orig_ino)
4923                         continue;
4924                 oi.raw_inode = (struct ext4_inode *) buf;
4925                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4926         }
4927 }
4928
4929 /*
4930  * Post the struct inode info into an on-disk inode location in the
4931  * buffer-cache.  This gobbles the caller's reference to the
4932  * buffer_head in the inode location struct.
4933  *
4934  * The caller must have write access to iloc->bh.
4935  */
4936 static int ext4_do_update_inode(handle_t *handle,
4937                                 struct inode *inode,
4938                                 struct ext4_iloc *iloc)
4939 {
4940         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4941         struct ext4_inode_info *ei = EXT4_I(inode);
4942         struct buffer_head *bh = iloc->bh;
4943         struct super_block *sb = inode->i_sb;
4944         int err = 0, block;
4945         int need_datasync = 0, set_large_file = 0;
4946         uid_t i_uid;
4947         gid_t i_gid;
4948         projid_t i_projid;
4949
4950         spin_lock(&ei->i_raw_lock);
4951
4952         /* For fields not tracked in the in-memory inode,
4953          * initialise them to zero for new inodes. */
4954         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4955                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4956
4957         ext4_get_inode_flags(ei);
4958         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4959         i_uid = i_uid_read(inode);
4960         i_gid = i_gid_read(inode);
4961         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4962         if (!(test_opt(inode->i_sb, NO_UID32))) {
4963                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4964                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4965 /*
4966  * Fix up interoperability with old kernels. Otherwise, old inodes get
4967  * re-used with the upper 16 bits of the uid/gid intact
4968  */
4969                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4970                         raw_inode->i_uid_high = 0;
4971                         raw_inode->i_gid_high = 0;
4972                 } else {
4973                         raw_inode->i_uid_high =
4974                                 cpu_to_le16(high_16_bits(i_uid));
4975                         raw_inode->i_gid_high =
4976                                 cpu_to_le16(high_16_bits(i_gid));
4977                 }
4978         } else {
4979                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4980                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4981                 raw_inode->i_uid_high = 0;
4982                 raw_inode->i_gid_high = 0;
4983         }
4984         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4985
4986         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4987         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4988         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4989         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4990
4991         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4992         if (err) {
4993                 spin_unlock(&ei->i_raw_lock);
4994                 goto out_brelse;
4995         }
4996         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4997         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4998         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4999                 raw_inode->i_file_acl_high =
5000                         cpu_to_le16(ei->i_file_acl >> 32);
5001         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5002         if (ei->i_disksize != ext4_isize(raw_inode)) {
5003                 ext4_isize_set(raw_inode, ei->i_disksize);
5004                 need_datasync = 1;
5005         }
5006         if (ei->i_disksize > 0x7fffffffULL) {
5007                 if (!ext4_has_feature_large_file(sb) ||
5008                                 EXT4_SB(sb)->s_es->s_rev_level ==
5009                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5010                         set_large_file = 1;
5011         }
5012         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5013         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5014                 if (old_valid_dev(inode->i_rdev)) {
5015                         raw_inode->i_block[0] =
5016                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5017                         raw_inode->i_block[1] = 0;
5018                 } else {
5019                         raw_inode->i_block[0] = 0;
5020                         raw_inode->i_block[1] =
5021                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5022                         raw_inode->i_block[2] = 0;
5023                 }
5024         } else if (!ext4_has_inline_data(inode)) {
5025                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5026                         raw_inode->i_block[block] = ei->i_data[block];
5027         }
5028
5029         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5030                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5031                 if (ei->i_extra_isize) {
5032                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5033                                 raw_inode->i_version_hi =
5034                                         cpu_to_le32(inode->i_version >> 32);
5035                         raw_inode->i_extra_isize =
5036                                 cpu_to_le16(ei->i_extra_isize);
5037                 }
5038         }
5039
5040         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5041                i_projid != EXT4_DEF_PROJID);
5042
5043         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5044             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5045                 raw_inode->i_projid = cpu_to_le32(i_projid);
5046
5047         ext4_inode_csum_set(inode, raw_inode, ei);
5048         spin_unlock(&ei->i_raw_lock);
5049         if (inode->i_sb->s_flags & MS_LAZYTIME)
5050                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5051                                               bh->b_data);
5052
5053         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5054         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5055         if (err)
5056                 goto out_brelse;
5057         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5058         if (set_large_file) {
5059                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5060                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5061                 if (err)
5062                         goto out_brelse;
5063                 ext4_update_dynamic_rev(sb);
5064                 ext4_set_feature_large_file(sb);
5065                 ext4_handle_sync(handle);
5066                 err = ext4_handle_dirty_super(handle, sb);
5067         }
5068         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5069 out_brelse:
5070         brelse(bh);
5071         ext4_std_error(inode->i_sb, err);
5072         return err;
5073 }
5074
5075 /*
5076  * ext4_write_inode()
5077  *
5078  * We are called from a few places:
5079  *
5080  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5081  *   Here, there will be no transaction running. We wait for any running
5082  *   transaction to commit.
5083  *
5084  * - Within flush work (sys_sync(), kupdate and such).
5085  *   We wait on commit, if told to.
5086  *
5087  * - Within iput_final() -> write_inode_now()
5088  *   We wait on commit, if told to.
5089  *
5090  * In all cases it is actually safe for us to return without doing anything,
5091  * because the inode has been copied into a raw inode buffer in
5092  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5093  * writeback.
5094  *
5095  * Note that we are absolutely dependent upon all inode dirtiers doing the
5096  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5097  * which we are interested.
5098  *
5099  * It would be a bug for them to not do this.  The code:
5100  *
5101  *      mark_inode_dirty(inode)
5102  *      stuff();
5103  *      inode->i_size = expr;
5104  *
5105  * is in error because write_inode() could occur while `stuff()' is running,
5106  * and the new i_size will be lost.  Plus the inode will no longer be on the
5107  * superblock's dirty inode list.
5108  */
5109 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5110 {
5111         int err;
5112
5113         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5114                 return 0;
5115
5116         if (EXT4_SB(inode->i_sb)->s_journal) {
5117                 if (ext4_journal_current_handle()) {
5118                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5119                         dump_stack();
5120                         return -EIO;
5121                 }
5122
5123                 /*
5124                  * No need to force transaction in WB_SYNC_NONE mode. Also
5125                  * ext4_sync_fs() will force the commit after everything is
5126                  * written.
5127                  */
5128                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5129                         return 0;
5130
5131                 err = ext4_force_commit(inode->i_sb);
5132         } else {
5133                 struct ext4_iloc iloc;
5134
5135                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5136                 if (err)
5137                         return err;
5138                 /*
5139                  * sync(2) will flush the whole buffer cache. No need to do
5140                  * it here separately for each inode.
5141                  */
5142                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5143                         sync_dirty_buffer(iloc.bh);
5144                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5145                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5146                                          "IO error syncing inode");
5147                         err = -EIO;
5148                 }
5149                 brelse(iloc.bh);
5150         }
5151         return err;
5152 }
5153
5154 /*
5155  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5156  * buffers that are attached to a page stradding i_size and are undergoing
5157  * commit. In that case we have to wait for commit to finish and try again.
5158  */
5159 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5160 {
5161         struct page *page;
5162         unsigned offset;
5163         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5164         tid_t commit_tid = 0;
5165         int ret;
5166
5167         offset = inode->i_size & (PAGE_SIZE - 1);
5168         /*
5169          * If the page is fully truncated, we don't need to wait for any commit
5170          * (and we even should not as __ext4_journalled_invalidatepage() may
5171          * strip all buffers from the page but keep the page dirty which can then
5172          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5173          * buffers). Also we don't need to wait for any commit if all buffers in
5174          * the page remain valid. This is most beneficial for the common case of
5175          * blocksize == PAGESIZE.
5176          */
5177         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5178                 return;
5179         while (1) {
5180                 page = find_lock_page(inode->i_mapping,
5181                                       inode->i_size >> PAGE_SHIFT);
5182                 if (!page)
5183                         return;
5184                 ret = __ext4_journalled_invalidatepage(page, offset,
5185                                                 PAGE_SIZE - offset);
5186                 unlock_page(page);
5187                 put_page(page);
5188                 if (ret != -EBUSY)
5189                         return;
5190                 commit_tid = 0;
5191                 read_lock(&journal->j_state_lock);
5192                 if (journal->j_committing_transaction)
5193                         commit_tid = journal->j_committing_transaction->t_tid;
5194                 read_unlock(&journal->j_state_lock);
5195                 if (commit_tid)
5196                         jbd2_log_wait_commit(journal, commit_tid);
5197         }
5198 }
5199
5200 /*
5201  * ext4_setattr()
5202  *
5203  * Called from notify_change.
5204  *
5205  * We want to trap VFS attempts to truncate the file as soon as
5206  * possible.  In particular, we want to make sure that when the VFS
5207  * shrinks i_size, we put the inode on the orphan list and modify
5208  * i_disksize immediately, so that during the subsequent flushing of
5209  * dirty pages and freeing of disk blocks, we can guarantee that any
5210  * commit will leave the blocks being flushed in an unused state on
5211  * disk.  (On recovery, the inode will get truncated and the blocks will
5212  * be freed, so we have a strong guarantee that no future commit will
5213  * leave these blocks visible to the user.)
5214  *
5215  * Another thing we have to assure is that if we are in ordered mode
5216  * and inode is still attached to the committing transaction, we must
5217  * we start writeout of all the dirty pages which are being truncated.
5218  * This way we are sure that all the data written in the previous
5219  * transaction are already on disk (truncate waits for pages under
5220  * writeback).
5221  *
5222  * Called with inode->i_mutex down.
5223  */
5224 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5225 {
5226         struct inode *inode = d_inode(dentry);
5227         int error, rc = 0;
5228         int orphan = 0;
5229         const unsigned int ia_valid = attr->ia_valid;
5230
5231         error = setattr_prepare(dentry, attr);
5232         if (error)
5233                 return error;
5234
5235         if (is_quota_modification(inode, attr)) {
5236                 error = dquot_initialize(inode);
5237                 if (error)
5238                         return error;
5239         }
5240         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5241             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5242                 handle_t *handle;
5243
5244                 /* (user+group)*(old+new) structure, inode write (sb,
5245                  * inode block, ? - but truncate inode update has it) */
5246                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5247                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5248                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5249                 if (IS_ERR(handle)) {
5250                         error = PTR_ERR(handle);
5251                         goto err_out;
5252                 }
5253                 error = dquot_transfer(inode, attr);
5254                 if (error) {
5255                         ext4_journal_stop(handle);
5256                         return error;
5257                 }
5258                 /* Update corresponding info in inode so that everything is in
5259                  * one transaction */
5260                 if (attr->ia_valid & ATTR_UID)
5261                         inode->i_uid = attr->ia_uid;
5262                 if (attr->ia_valid & ATTR_GID)
5263                         inode->i_gid = attr->ia_gid;
5264                 error = ext4_mark_inode_dirty(handle, inode);
5265                 ext4_journal_stop(handle);
5266         }
5267
5268         if (attr->ia_valid & ATTR_SIZE) {
5269                 handle_t *handle;
5270                 loff_t oldsize = inode->i_size;
5271                 int shrink = (attr->ia_size <= inode->i_size);
5272
5273                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5274                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5275
5276                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5277                                 return -EFBIG;
5278                 }
5279                 if (!S_ISREG(inode->i_mode))
5280                         return -EINVAL;
5281
5282                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5283                         inode_inc_iversion(inode);
5284
5285                 if (ext4_should_order_data(inode) &&
5286                     (attr->ia_size < inode->i_size)) {
5287                         error = ext4_begin_ordered_truncate(inode,
5288                                                             attr->ia_size);
5289                         if (error)
5290                                 goto err_out;
5291                 }
5292                 if (attr->ia_size != inode->i_size) {
5293                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5294                         if (IS_ERR(handle)) {
5295                                 error = PTR_ERR(handle);
5296                                 goto err_out;
5297                         }
5298                         if (ext4_handle_valid(handle) && shrink) {
5299                                 error = ext4_orphan_add(handle, inode);
5300                                 orphan = 1;
5301                         }
5302                         /*
5303                          * Update c/mtime on truncate up, ext4_truncate() will
5304                          * update c/mtime in shrink case below
5305                          */
5306                         if (!shrink) {
5307                                 inode->i_mtime = ext4_current_time(inode);
5308                                 inode->i_ctime = inode->i_mtime;
5309                         }
5310                         down_write(&EXT4_I(inode)->i_data_sem);
5311                         EXT4_I(inode)->i_disksize = attr->ia_size;
5312                         rc = ext4_mark_inode_dirty(handle, inode);
5313                         if (!error)
5314                                 error = rc;
5315                         /*
5316                          * We have to update i_size under i_data_sem together
5317                          * with i_disksize to avoid races with writeback code
5318                          * running ext4_wb_update_i_disksize().
5319                          */
5320                         if (!error)
5321                                 i_size_write(inode, attr->ia_size);
5322                         up_write(&EXT4_I(inode)->i_data_sem);
5323                         ext4_journal_stop(handle);
5324                         if (error) {
5325                                 if (orphan && inode->i_nlink)
5326                                         ext4_orphan_del(NULL, inode);
5327                                 goto err_out;
5328                         }
5329                 }
5330                 if (!shrink)
5331                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5332
5333                 /*
5334                  * Blocks are going to be removed from the inode. Wait
5335                  * for dio in flight.  Temporarily disable
5336                  * dioread_nolock to prevent livelock.
5337                  */
5338                 if (orphan) {
5339                         if (!ext4_should_journal_data(inode)) {
5340                                 ext4_inode_block_unlocked_dio(inode);
5341                                 inode_dio_wait(inode);
5342                                 ext4_inode_resume_unlocked_dio(inode);
5343                         } else
5344                                 ext4_wait_for_tail_page_commit(inode);
5345                 }
5346                 down_write(&EXT4_I(inode)->i_mmap_sem);
5347                 /*
5348                  * Truncate pagecache after we've waited for commit
5349                  * in data=journal mode to make pages freeable.
5350                  */
5351                 truncate_pagecache(inode, inode->i_size);
5352                 if (shrink)
5353                         ext4_truncate(inode);
5354                 up_write(&EXT4_I(inode)->i_mmap_sem);
5355         }
5356
5357         if (!rc) {
5358                 setattr_copy(inode, attr);
5359                 mark_inode_dirty(inode);
5360         }
5361
5362         /*
5363          * If the call to ext4_truncate failed to get a transaction handle at
5364          * all, we need to clean up the in-core orphan list manually.
5365          */
5366         if (orphan && inode->i_nlink)
5367                 ext4_orphan_del(NULL, inode);
5368
5369         if (!rc && (ia_valid & ATTR_MODE))
5370                 rc = posix_acl_chmod(inode, inode->i_mode);
5371
5372 err_out:
5373         ext4_std_error(inode->i_sb, error);
5374         if (!error)
5375                 error = rc;
5376         return error;
5377 }
5378
5379 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5380                  struct kstat *stat)
5381 {
5382         struct inode *inode;
5383         unsigned long long delalloc_blocks;
5384
5385         inode = d_inode(dentry);
5386         generic_fillattr(inode, stat);
5387
5388         /*
5389          * If there is inline data in the inode, the inode will normally not
5390          * have data blocks allocated (it may have an external xattr block).
5391          * Report at least one sector for such files, so tools like tar, rsync,
5392          * others doen't incorrectly think the file is completely sparse.
5393          */
5394         if (unlikely(ext4_has_inline_data(inode)))
5395                 stat->blocks += (stat->size + 511) >> 9;
5396
5397         /*
5398          * We can't update i_blocks if the block allocation is delayed
5399          * otherwise in the case of system crash before the real block
5400          * allocation is done, we will have i_blocks inconsistent with
5401          * on-disk file blocks.
5402          * We always keep i_blocks updated together with real
5403          * allocation. But to not confuse with user, stat
5404          * will return the blocks that include the delayed allocation
5405          * blocks for this file.
5406          */
5407         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5408                                    EXT4_I(inode)->i_reserved_data_blocks);
5409         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5410         return 0;
5411 }
5412
5413 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5414                                    int pextents)
5415 {
5416         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5417                 return ext4_ind_trans_blocks(inode, lblocks);
5418         return ext4_ext_index_trans_blocks(inode, pextents);
5419 }
5420
5421 /*
5422  * Account for index blocks, block groups bitmaps and block group
5423  * descriptor blocks if modify datablocks and index blocks
5424  * worse case, the indexs blocks spread over different block groups
5425  *
5426  * If datablocks are discontiguous, they are possible to spread over
5427  * different block groups too. If they are contiguous, with flexbg,
5428  * they could still across block group boundary.
5429  *
5430  * Also account for superblock, inode, quota and xattr blocks
5431  */
5432 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5433                                   int pextents)
5434 {
5435         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5436         int gdpblocks;
5437         int idxblocks;
5438         int ret = 0;
5439
5440         /*
5441          * How many index blocks need to touch to map @lblocks logical blocks
5442          * to @pextents physical extents?
5443          */
5444         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5445
5446         ret = idxblocks;
5447
5448         /*
5449          * Now let's see how many group bitmaps and group descriptors need
5450          * to account
5451          */
5452         groups = idxblocks + pextents;
5453         gdpblocks = groups;
5454         if (groups > ngroups)
5455                 groups = ngroups;
5456         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5457                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5458
5459         /* bitmaps and block group descriptor blocks */
5460         ret += groups + gdpblocks;
5461
5462         /* Blocks for super block, inode, quota and xattr blocks */
5463         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5464
5465         return ret;
5466 }
5467
5468 /*
5469  * Calculate the total number of credits to reserve to fit
5470  * the modification of a single pages into a single transaction,
5471  * which may include multiple chunks of block allocations.
5472  *
5473  * This could be called via ext4_write_begin()
5474  *
5475  * We need to consider the worse case, when
5476  * one new block per extent.
5477  */
5478 int ext4_writepage_trans_blocks(struct inode *inode)
5479 {
5480         int bpp = ext4_journal_blocks_per_page(inode);
5481         int ret;
5482
5483         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5484
5485         /* Account for data blocks for journalled mode */
5486         if (ext4_should_journal_data(inode))
5487                 ret += bpp;
5488         return ret;
5489 }
5490
5491 /*
5492  * Calculate the journal credits for a chunk of data modification.
5493  *
5494  * This is called from DIO, fallocate or whoever calling
5495  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5496  *
5497  * journal buffers for data blocks are not included here, as DIO
5498  * and fallocate do no need to journal data buffers.
5499  */
5500 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5501 {
5502         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5503 }
5504
5505 /*
5506  * The caller must have previously called ext4_reserve_inode_write().
5507  * Give this, we know that the caller already has write access to iloc->bh.
5508  */
5509 int ext4_mark_iloc_dirty(handle_t *handle,
5510                          struct inode *inode, struct ext4_iloc *iloc)
5511 {
5512         int err = 0;
5513
5514         if (IS_I_VERSION(inode))
5515                 inode_inc_iversion(inode);
5516
5517         /* the do_update_inode consumes one bh->b_count */
5518         get_bh(iloc->bh);
5519
5520         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5521         err = ext4_do_update_inode(handle, inode, iloc);
5522         put_bh(iloc->bh);
5523         return err;
5524 }
5525
5526 /*
5527  * On success, We end up with an outstanding reference count against
5528  * iloc->bh.  This _must_ be cleaned up later.
5529  */
5530
5531 int
5532 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5533                          struct ext4_iloc *iloc)
5534 {
5535         int err;
5536
5537         err = ext4_get_inode_loc(inode, iloc);
5538         if (!err) {
5539                 BUFFER_TRACE(iloc->bh, "get_write_access");
5540                 err = ext4_journal_get_write_access(handle, iloc->bh);
5541                 if (err) {
5542                         brelse(iloc->bh);
5543                         iloc->bh = NULL;
5544                 }
5545         }
5546         ext4_std_error(inode->i_sb, err);
5547         return err;
5548 }
5549
5550 /*
5551  * Expand an inode by new_extra_isize bytes.
5552  * Returns 0 on success or negative error number on failure.
5553  */
5554 static int ext4_expand_extra_isize(struct inode *inode,
5555                                    unsigned int new_extra_isize,
5556                                    struct ext4_iloc iloc,
5557                                    handle_t *handle)
5558 {
5559         struct ext4_inode *raw_inode;
5560         struct ext4_xattr_ibody_header *header;
5561         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5562         struct ext4_inode_info *ei = EXT4_I(inode);
5563
5564         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5565                 return 0;
5566
5567         /* this was checked at iget time, but double check for good measure */
5568         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5569             (ei->i_extra_isize & 3)) {
5570                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5571                                  ei->i_extra_isize,
5572                                  EXT4_INODE_SIZE(inode->i_sb));
5573                 return -EFSCORRUPTED;
5574         }
5575         if ((new_extra_isize < ei->i_extra_isize) ||
5576             (new_extra_isize < 4) ||
5577             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5578                 return -EINVAL; /* Should never happen */
5579
5580         raw_inode = ext4_raw_inode(&iloc);
5581
5582         header = IHDR(inode, raw_inode);
5583
5584         /* No extended attributes present */
5585         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5586             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5587                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5588                        EXT4_I(inode)->i_extra_isize, 0,
5589                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5590                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5591                 return 0;
5592         }
5593
5594         /* try to expand with EAs present */
5595         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5596                                           raw_inode, handle);
5597 }
5598
5599 /*
5600  * What we do here is to mark the in-core inode as clean with respect to inode
5601  * dirtiness (it may still be data-dirty).
5602  * This means that the in-core inode may be reaped by prune_icache
5603  * without having to perform any I/O.  This is a very good thing,
5604  * because *any* task may call prune_icache - even ones which
5605  * have a transaction open against a different journal.
5606  *
5607  * Is this cheating?  Not really.  Sure, we haven't written the
5608  * inode out, but prune_icache isn't a user-visible syncing function.
5609  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5610  * we start and wait on commits.
5611  */
5612 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5613 {
5614         struct ext4_iloc iloc;
5615         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5616         static unsigned int mnt_count;
5617         int err, ret;
5618
5619         might_sleep();
5620         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5621         err = ext4_reserve_inode_write(handle, inode, &iloc);
5622         if (err)
5623                 return err;
5624         if (ext4_handle_valid(handle) &&
5625             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5626             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5627                 /*
5628                  * We need extra buffer credits since we may write into EA block
5629                  * with this same handle. If journal_extend fails, then it will
5630                  * only result in a minor loss of functionality for that inode.
5631                  * If this is felt to be critical, then e2fsck should be run to
5632                  * force a large enough s_min_extra_isize.
5633                  */
5634                 if ((jbd2_journal_extend(handle,
5635                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5636                         ret = ext4_expand_extra_isize(inode,
5637                                                       sbi->s_want_extra_isize,
5638                                                       iloc, handle);
5639                         if (ret) {
5640                                 if (mnt_count !=
5641                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5642                                         ext4_warning(inode->i_sb,
5643                                         "Unable to expand inode %lu. Delete"
5644                                         " some EAs or run e2fsck.",
5645                                         inode->i_ino);
5646                                         mnt_count =
5647                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5648                                 }
5649                         }
5650                 }
5651         }
5652         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5653 }
5654
5655 /*
5656  * ext4_dirty_inode() is called from __mark_inode_dirty()
5657  *
5658  * We're really interested in the case where a file is being extended.
5659  * i_size has been changed by generic_commit_write() and we thus need
5660  * to include the updated inode in the current transaction.
5661  *
5662  * Also, dquot_alloc_block() will always dirty the inode when blocks
5663  * are allocated to the file.
5664  *
5665  * If the inode is marked synchronous, we don't honour that here - doing
5666  * so would cause a commit on atime updates, which we don't bother doing.
5667  * We handle synchronous inodes at the highest possible level.
5668  *
5669  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5670  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5671  * to copy into the on-disk inode structure are the timestamp files.
5672  */
5673 void ext4_dirty_inode(struct inode *inode, int flags)
5674 {
5675         handle_t *handle;
5676
5677         if (flags == I_DIRTY_TIME)
5678                 return;
5679         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5680         if (IS_ERR(handle))
5681                 goto out;
5682
5683         ext4_mark_inode_dirty(handle, inode);
5684
5685         ext4_journal_stop(handle);
5686 out:
5687         return;
5688 }
5689
5690 #if 0
5691 /*
5692  * Bind an inode's backing buffer_head into this transaction, to prevent
5693  * it from being flushed to disk early.  Unlike
5694  * ext4_reserve_inode_write, this leaves behind no bh reference and
5695  * returns no iloc structure, so the caller needs to repeat the iloc
5696  * lookup to mark the inode dirty later.
5697  */
5698 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5699 {
5700         struct ext4_iloc iloc;
5701
5702         int err = 0;
5703         if (handle) {
5704                 err = ext4_get_inode_loc(inode, &iloc);
5705                 if (!err) {
5706                         BUFFER_TRACE(iloc.bh, "get_write_access");
5707                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5708                         if (!err)
5709                                 err = ext4_handle_dirty_metadata(handle,
5710                                                                  NULL,
5711                                                                  iloc.bh);
5712                         brelse(iloc.bh);
5713                 }
5714         }
5715         ext4_std_error(inode->i_sb, err);
5716         return err;
5717 }
5718 #endif
5719
5720 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5721 {
5722         journal_t *journal;
5723         handle_t *handle;
5724         int err;
5725         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5726
5727         /*
5728          * We have to be very careful here: changing a data block's
5729          * journaling status dynamically is dangerous.  If we write a
5730          * data block to the journal, change the status and then delete
5731          * that block, we risk forgetting to revoke the old log record
5732          * from the journal and so a subsequent replay can corrupt data.
5733          * So, first we make sure that the journal is empty and that
5734          * nobody is changing anything.
5735          */
5736
5737         journal = EXT4_JOURNAL(inode);
5738         if (!journal)
5739                 return 0;
5740         if (is_journal_aborted(journal))
5741                 return -EROFS;
5742
5743         /* Wait for all existing dio workers */
5744         ext4_inode_block_unlocked_dio(inode);
5745         inode_dio_wait(inode);
5746
5747         /*
5748          * Before flushing the journal and switching inode's aops, we have
5749          * to flush all dirty data the inode has. There can be outstanding
5750          * delayed allocations, there can be unwritten extents created by
5751          * fallocate or buffered writes in dioread_nolock mode covered by
5752          * dirty data which can be converted only after flushing the dirty
5753          * data (and journalled aops don't know how to handle these cases).
5754          */
5755         if (val) {
5756                 down_write(&EXT4_I(inode)->i_mmap_sem);
5757                 err = filemap_write_and_wait(inode->i_mapping);
5758                 if (err < 0) {
5759                         up_write(&EXT4_I(inode)->i_mmap_sem);
5760                         ext4_inode_resume_unlocked_dio(inode);
5761                         return err;
5762                 }
5763         }
5764
5765         percpu_down_write(&sbi->s_writepages_rwsem);
5766         jbd2_journal_lock_updates(journal);
5767
5768         /*
5769          * OK, there are no updates running now, and all cached data is
5770          * synced to disk.  We are now in a completely consistent state
5771          * which doesn't have anything in the journal, and we know that
5772          * no filesystem updates are running, so it is safe to modify
5773          * the inode's in-core data-journaling state flag now.
5774          */
5775
5776         if (val)
5777                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5778         else {
5779                 err = jbd2_journal_flush(journal);
5780                 if (err < 0) {
5781                         jbd2_journal_unlock_updates(journal);
5782                         percpu_up_write(&sbi->s_writepages_rwsem);
5783                         ext4_inode_resume_unlocked_dio(inode);
5784                         return err;
5785                 }
5786                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5787         }
5788         ext4_set_aops(inode);
5789
5790         jbd2_journal_unlock_updates(journal);
5791         percpu_up_write(&sbi->s_writepages_rwsem);
5792
5793         if (val)
5794                 up_write(&EXT4_I(inode)->i_mmap_sem);
5795         ext4_inode_resume_unlocked_dio(inode);
5796
5797         /* Finally we can mark the inode as dirty. */
5798
5799         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5800         if (IS_ERR(handle))
5801                 return PTR_ERR(handle);
5802
5803         err = ext4_mark_inode_dirty(handle, inode);
5804         ext4_handle_sync(handle);
5805         ext4_journal_stop(handle);
5806         ext4_std_error(inode->i_sb, err);
5807
5808         return err;
5809 }
5810
5811 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5812 {
5813         return !buffer_mapped(bh);
5814 }
5815
5816 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5817 {
5818         struct page *page = vmf->page;
5819         loff_t size;
5820         unsigned long len;
5821         int ret;
5822         struct file *file = vma->vm_file;
5823         struct inode *inode = file_inode(file);
5824         struct address_space *mapping = inode->i_mapping;
5825         handle_t *handle;
5826         get_block_t *get_block;
5827         int retries = 0;
5828
5829         sb_start_pagefault(inode->i_sb);
5830         file_update_time(vma->vm_file);
5831
5832         down_read(&EXT4_I(inode)->i_mmap_sem);
5833
5834         ret = ext4_convert_inline_data(inode);
5835         if (ret)
5836                 goto out_ret;
5837
5838         /* Delalloc case is easy... */
5839         if (test_opt(inode->i_sb, DELALLOC) &&
5840             !ext4_should_journal_data(inode) &&
5841             !ext4_nonda_switch(inode->i_sb)) {
5842                 do {
5843                         ret = block_page_mkwrite(vma, vmf,
5844                                                    ext4_da_get_block_prep);
5845                 } while (ret == -ENOSPC &&
5846                        ext4_should_retry_alloc(inode->i_sb, &retries));
5847                 goto out_ret;
5848         }
5849
5850         lock_page(page);
5851         size = i_size_read(inode);
5852         /* Page got truncated from under us? */
5853         if (page->mapping != mapping || page_offset(page) > size) {
5854                 unlock_page(page);
5855                 ret = VM_FAULT_NOPAGE;
5856                 goto out;
5857         }
5858
5859         if (page->index == size >> PAGE_SHIFT)
5860                 len = size & ~PAGE_MASK;
5861         else
5862                 len = PAGE_SIZE;
5863         /*
5864          * Return if we have all the buffers mapped. This avoids the need to do
5865          * journal_start/journal_stop which can block and take a long time
5866          */
5867         if (page_has_buffers(page)) {
5868                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5869                                             0, len, NULL,
5870                                             ext4_bh_unmapped)) {
5871                         /* Wait so that we don't change page under IO */
5872                         wait_for_stable_page(page);
5873                         ret = VM_FAULT_LOCKED;
5874                         goto out;
5875                 }
5876         }
5877         unlock_page(page);
5878         /* OK, we need to fill the hole... */
5879         if (ext4_should_dioread_nolock(inode))
5880                 get_block = ext4_get_block_unwritten;
5881         else
5882                 get_block = ext4_get_block;
5883 retry_alloc:
5884         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5885                                     ext4_writepage_trans_blocks(inode));
5886         if (IS_ERR(handle)) {
5887                 ret = VM_FAULT_SIGBUS;
5888                 goto out;
5889         }
5890         ret = block_page_mkwrite(vma, vmf, get_block);
5891         if (!ret && ext4_should_journal_data(inode)) {
5892                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5893                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5894                         unlock_page(page);
5895                         ret = VM_FAULT_SIGBUS;
5896                         ext4_journal_stop(handle);
5897                         goto out;
5898                 }
5899                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5900         }
5901         ext4_journal_stop(handle);
5902         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5903                 goto retry_alloc;
5904 out_ret:
5905         ret = block_page_mkwrite_return(ret);
5906 out:
5907         up_read(&EXT4_I(inode)->i_mmap_sem);
5908         sb_end_pagefault(inode->i_sb);
5909         return ret;
5910 }
5911
5912 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5913 {
5914         struct inode *inode = file_inode(vma->vm_file);
5915         int err;
5916
5917         down_read(&EXT4_I(inode)->i_mmap_sem);
5918         err = filemap_fault(vma, vmf);
5919         up_read(&EXT4_I(inode)->i_mmap_sem);
5920
5921         return err;
5922 }
5923
5924 /*
5925  * Find the first extent at or after @lblk in an inode that is not a hole.
5926  * Search for @map_len blocks at most. The extent is returned in @result.
5927  *
5928  * The function returns 1 if we found an extent. The function returns 0 in
5929  * case there is no extent at or after @lblk and in that case also sets
5930  * @result->es_len to 0. In case of error, the error code is returned.
5931  */
5932 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5933                          unsigned int map_len, struct extent_status *result)
5934 {
5935         struct ext4_map_blocks map;
5936         struct extent_status es = {};
5937         int ret;
5938
5939         map.m_lblk = lblk;
5940         map.m_len = map_len;
5941
5942         /*
5943          * For non-extent based files this loop may iterate several times since
5944          * we do not determine full hole size.
5945          */
5946         while (map.m_len > 0) {
5947                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5948                 if (ret < 0)
5949                         return ret;
5950                 /* There's extent covering m_lblk? Just return it. */
5951                 if (ret > 0) {
5952                         int status;
5953
5954                         ext4_es_store_pblock(result, map.m_pblk);
5955                         result->es_lblk = map.m_lblk;
5956                         result->es_len = map.m_len;
5957                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5958                                 status = EXTENT_STATUS_UNWRITTEN;
5959                         else
5960                                 status = EXTENT_STATUS_WRITTEN;
5961                         ext4_es_store_status(result, status);
5962                         return 1;
5963                 }
5964                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5965                                                   map.m_lblk + map.m_len - 1,
5966                                                   &es);
5967                 /* Is delalloc data before next block in extent tree? */
5968                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5969                         ext4_lblk_t offset = 0;
5970
5971                         if (es.es_lblk < lblk)
5972                                 offset = lblk - es.es_lblk;
5973                         result->es_lblk = es.es_lblk + offset;
5974                         ext4_es_store_pblock(result,
5975                                              ext4_es_pblock(&es) + offset);
5976                         result->es_len = es.es_len - offset;
5977                         ext4_es_store_status(result, ext4_es_status(&es));
5978
5979                         return 1;
5980                 }
5981                 /* There's a hole at m_lblk, advance us after it */
5982                 map.m_lblk += map.m_len;
5983                 map_len -= map.m_len;
5984                 map.m_len = map_len;
5985                 cond_resched();
5986         }
5987         result->es_len = 0;
5988         return 0;
5989 }