GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         /*
200          * Credits for final inode cleanup and freeing:
201          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
202          * (xattr block freeing), bitmap, group descriptor (inode freeing)
203          */
204         int extra_credits = 6;
205         struct ext4_xattr_inode_array *ea_inode_array = NULL;
206         bool freeze_protected = false;
207
208         trace_ext4_evict_inode(inode);
209
210         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
211                 ext4_evict_ea_inode(inode);
212         if (inode->i_nlink) {
213                 /*
214                  * When journalling data dirty buffers are tracked only in the
215                  * journal. So although mm thinks everything is clean and
216                  * ready for reaping the inode might still have some pages to
217                  * write in the running transaction or waiting to be
218                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
219                  * (via truncate_inode_pages()) to discard these buffers can
220                  * cause data loss. Also even if we did not discard these
221                  * buffers, we would have no way to find them after the inode
222                  * is reaped and thus user could see stale data if he tries to
223                  * read them before the transaction is checkpointed. So be
224                  * careful and force everything to disk here... We use
225                  * ei->i_datasync_tid to store the newest transaction
226                  * containing inode's data.
227                  *
228                  * Note that directories do not have this problem because they
229                  * don't use page cache.
230                  */
231                 if (inode->i_ino != EXT4_JOURNAL_INO &&
232                     ext4_should_journal_data(inode) &&
233                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
234                     inode->i_data.nrpages) {
235                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
236                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
237
238                         jbd2_complete_transaction(journal, commit_tid);
239                         filemap_write_and_wait(&inode->i_data);
240                 }
241                 truncate_inode_pages_final(&inode->i_data);
242
243                 goto no_delete;
244         }
245
246         if (is_bad_inode(inode))
247                 goto no_delete;
248         dquot_initialize(inode);
249
250         if (ext4_should_order_data(inode))
251                 ext4_begin_ordered_truncate(inode, 0);
252         truncate_inode_pages_final(&inode->i_data);
253
254         /*
255          * Protect us against freezing - iput() caller didn't have to have any
256          * protection against it. When we are in a running transaction though,
257          * we are already protected against freezing and we cannot grab further
258          * protection due to lock ordering constraints.
259          */
260         if (!ext4_journal_current_handle()) {
261                 sb_start_intwrite(inode->i_sb);
262                 freeze_protected = true;
263         }
264
265         if (!IS_NOQUOTA(inode))
266                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
267
268         /*
269          * Block bitmap, group descriptor, and inode are accounted in both
270          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
271          */
272         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
273                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
274         if (IS_ERR(handle)) {
275                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
276                 /*
277                  * If we're going to skip the normal cleanup, we still need to
278                  * make sure that the in-core orphan linked list is properly
279                  * cleaned up.
280                  */
281                 ext4_orphan_del(NULL, inode);
282                 if (freeze_protected)
283                         sb_end_intwrite(inode->i_sb);
284                 goto no_delete;
285         }
286
287         if (IS_SYNC(inode))
288                 ext4_handle_sync(handle);
289
290         /*
291          * Set inode->i_size to 0 before calling ext4_truncate(). We need
292          * special handling of symlinks here because i_size is used to
293          * determine whether ext4_inode_info->i_data contains symlink data or
294          * block mappings. Setting i_size to 0 will remove its fast symlink
295          * status. Erase i_data so that it becomes a valid empty block map.
296          */
297         if (ext4_inode_is_fast_symlink(inode))
298                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
299         inode->i_size = 0;
300         err = ext4_mark_inode_dirty(handle, inode);
301         if (err) {
302                 ext4_warning(inode->i_sb,
303                              "couldn't mark inode dirty (err %d)", err);
304                 goto stop_handle;
305         }
306         if (inode->i_blocks) {
307                 err = ext4_truncate(inode);
308                 if (err) {
309                         ext4_error(inode->i_sb,
310                                    "couldn't truncate inode %lu (err %d)",
311                                    inode->i_ino, err);
312                         goto stop_handle;
313                 }
314         }
315
316         /* Remove xattr references. */
317         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
318                                       extra_credits);
319         if (err) {
320                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
321 stop_handle:
322                 ext4_journal_stop(handle);
323                 ext4_orphan_del(NULL, inode);
324                 if (freeze_protected)
325                         sb_end_intwrite(inode->i_sb);
326                 ext4_xattr_inode_array_free(ea_inode_array);
327                 goto no_delete;
328         }
329
330         /*
331          * Kill off the orphan record which ext4_truncate created.
332          * AKPM: I think this can be inside the above `if'.
333          * Note that ext4_orphan_del() has to be able to cope with the
334          * deletion of a non-existent orphan - this is because we don't
335          * know if ext4_truncate() actually created an orphan record.
336          * (Well, we could do this if we need to, but heck - it works)
337          */
338         ext4_orphan_del(handle, inode);
339         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
340
341         /*
342          * One subtle ordering requirement: if anything has gone wrong
343          * (transaction abort, IO errors, whatever), then we can still
344          * do these next steps (the fs will already have been marked as
345          * having errors), but we can't free the inode if the mark_dirty
346          * fails.
347          */
348         if (ext4_mark_inode_dirty(handle, inode))
349                 /* If that failed, just do the required in-core inode clear. */
350                 ext4_clear_inode(inode);
351         else
352                 ext4_free_inode(handle, inode);
353         ext4_journal_stop(handle);
354         if (freeze_protected)
355                 sb_end_intwrite(inode->i_sb);
356         ext4_xattr_inode_array_free(ea_inode_array);
357         return;
358 no_delete:
359         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
360 }
361
362 #ifdef CONFIG_QUOTA
363 qsize_t *ext4_get_reserved_space(struct inode *inode)
364 {
365         return &EXT4_I(inode)->i_reserved_quota;
366 }
367 #endif
368
369 /*
370  * Called with i_data_sem down, which is important since we can call
371  * ext4_discard_preallocations() from here.
372  */
373 void ext4_da_update_reserve_space(struct inode *inode,
374                                         int used, int quota_claim)
375 {
376         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
377         struct ext4_inode_info *ei = EXT4_I(inode);
378
379         spin_lock(&ei->i_block_reservation_lock);
380         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
381         if (unlikely(used > ei->i_reserved_data_blocks)) {
382                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
383                          "with only %d reserved data blocks",
384                          __func__, inode->i_ino, used,
385                          ei->i_reserved_data_blocks);
386                 WARN_ON(1);
387                 used = ei->i_reserved_data_blocks;
388         }
389
390         /* Update per-inode reservations */
391         ei->i_reserved_data_blocks -= used;
392         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
393
394         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
395
396         /* Update quota subsystem for data blocks */
397         if (quota_claim)
398                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
399         else {
400                 /*
401                  * We did fallocate with an offset that is already delayed
402                  * allocated. So on delayed allocated writeback we should
403                  * not re-claim the quota for fallocated blocks.
404                  */
405                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
406         }
407
408         /*
409          * If we have done all the pending block allocations and if
410          * there aren't any writers on the inode, we can discard the
411          * inode's preallocations.
412          */
413         if ((ei->i_reserved_data_blocks == 0) &&
414             !inode_is_open_for_write(inode))
415                 ext4_discard_preallocations(inode);
416 }
417
418 static int __check_block_validity(struct inode *inode, const char *func,
419                                 unsigned int line,
420                                 struct ext4_map_blocks *map)
421 {
422         if (ext4_has_feature_journal(inode->i_sb) &&
423             (inode->i_ino ==
424              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
425                 return 0;
426         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
427                                    map->m_len)) {
428                 ext4_error_inode(inode, func, line, map->m_pblk,
429                                  "lblock %lu mapped to illegal pblock %llu "
430                                  "(length %d)", (unsigned long) map->m_lblk,
431                                  map->m_pblk, map->m_len);
432                 return -EFSCORRUPTED;
433         }
434         return 0;
435 }
436
437 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
438                        ext4_lblk_t len)
439 {
440         int ret;
441
442         if (IS_ENCRYPTED(inode))
443                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
444
445         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
446         if (ret > 0)
447                 ret = 0;
448
449         return ret;
450 }
451
452 #define check_block_validity(inode, map)        \
453         __check_block_validity((inode), __func__, __LINE__, (map))
454
455 #ifdef ES_AGGRESSIVE_TEST
456 static void ext4_map_blocks_es_recheck(handle_t *handle,
457                                        struct inode *inode,
458                                        struct ext4_map_blocks *es_map,
459                                        struct ext4_map_blocks *map,
460                                        int flags)
461 {
462         int retval;
463
464         map->m_flags = 0;
465         /*
466          * There is a race window that the result is not the same.
467          * e.g. xfstests #223 when dioread_nolock enables.  The reason
468          * is that we lookup a block mapping in extent status tree with
469          * out taking i_data_sem.  So at the time the unwritten extent
470          * could be converted.
471          */
472         down_read(&EXT4_I(inode)->i_data_sem);
473         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
474                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
475                                              EXT4_GET_BLOCKS_KEEP_SIZE);
476         } else {
477                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
478                                              EXT4_GET_BLOCKS_KEEP_SIZE);
479         }
480         up_read((&EXT4_I(inode)->i_data_sem));
481
482         /*
483          * We don't check m_len because extent will be collpased in status
484          * tree.  So the m_len might not equal.
485          */
486         if (es_map->m_lblk != map->m_lblk ||
487             es_map->m_flags != map->m_flags ||
488             es_map->m_pblk != map->m_pblk) {
489                 printk("ES cache assertion failed for inode: %lu "
490                        "es_cached ex [%d/%d/%llu/%x] != "
491                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
492                        inode->i_ino, es_map->m_lblk, es_map->m_len,
493                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
494                        map->m_len, map->m_pblk, map->m_flags,
495                        retval, flags);
496         }
497 }
498 #endif /* ES_AGGRESSIVE_TEST */
499
500 /*
501  * The ext4_map_blocks() function tries to look up the requested blocks,
502  * and returns if the blocks are already mapped.
503  *
504  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
505  * and store the allocated blocks in the result buffer head and mark it
506  * mapped.
507  *
508  * If file type is extents based, it will call ext4_ext_map_blocks(),
509  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
510  * based files
511  *
512  * On success, it returns the number of blocks being mapped or allocated.  if
513  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
514  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
515  *
516  * It returns 0 if plain look up failed (blocks have not been allocated), in
517  * that case, @map is returned as unmapped but we still do fill map->m_len to
518  * indicate the length of a hole starting at map->m_lblk.
519  *
520  * It returns the error in case of allocation failure.
521  */
522 int ext4_map_blocks(handle_t *handle, struct inode *inode,
523                     struct ext4_map_blocks *map, int flags)
524 {
525         struct extent_status es;
526         int retval;
527         int ret = 0;
528 #ifdef ES_AGGRESSIVE_TEST
529         struct ext4_map_blocks orig_map;
530
531         memcpy(&orig_map, map, sizeof(*map));
532 #endif
533
534         map->m_flags = 0;
535         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
536                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
537                   (unsigned long) map->m_lblk);
538
539         /*
540          * ext4_map_blocks returns an int, and m_len is an unsigned int
541          */
542         if (unlikely(map->m_len > INT_MAX))
543                 map->m_len = INT_MAX;
544
545         /* We can handle the block number less than EXT_MAX_BLOCKS */
546         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
547                 return -EFSCORRUPTED;
548
549         /* Lookup extent status tree firstly */
550         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
551                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
552                         map->m_pblk = ext4_es_pblock(&es) +
553                                         map->m_lblk - es.es_lblk;
554                         map->m_flags |= ext4_es_is_written(&es) ?
555                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
556                         retval = es.es_len - (map->m_lblk - es.es_lblk);
557                         if (retval > map->m_len)
558                                 retval = map->m_len;
559                         map->m_len = retval;
560                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
561                         map->m_pblk = 0;
562                         retval = es.es_len - (map->m_lblk - es.es_lblk);
563                         if (retval > map->m_len)
564                                 retval = map->m_len;
565                         map->m_len = retval;
566                         retval = 0;
567                 } else {
568                         BUG();
569                 }
570 #ifdef ES_AGGRESSIVE_TEST
571                 ext4_map_blocks_es_recheck(handle, inode, map,
572                                            &orig_map, flags);
573 #endif
574                 goto found;
575         }
576
577         /*
578          * Try to see if we can get the block without requesting a new
579          * file system block.
580          */
581         down_read(&EXT4_I(inode)->i_data_sem);
582         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
583                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
584                                              EXT4_GET_BLOCKS_KEEP_SIZE);
585         } else {
586                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
587                                              EXT4_GET_BLOCKS_KEEP_SIZE);
588         }
589         if (retval > 0) {
590                 unsigned int status;
591
592                 if (unlikely(retval != map->m_len)) {
593                         ext4_warning(inode->i_sb,
594                                      "ES len assertion failed for inode "
595                                      "%lu: retval %d != map->m_len %d",
596                                      inode->i_ino, retval, map->m_len);
597                         WARN_ON(1);
598                 }
599
600                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
601                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
602                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
603                     !(status & EXTENT_STATUS_WRITTEN) &&
604                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
605                                        map->m_lblk + map->m_len - 1))
606                         status |= EXTENT_STATUS_DELAYED;
607                 ret = ext4_es_insert_extent(inode, map->m_lblk,
608                                             map->m_len, map->m_pblk, status);
609                 if (ret < 0)
610                         retval = ret;
611         }
612         up_read((&EXT4_I(inode)->i_data_sem));
613
614 found:
615         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
616                 ret = check_block_validity(inode, map);
617                 if (ret != 0)
618                         return ret;
619         }
620
621         /* If it is only a block(s) look up */
622         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
623                 return retval;
624
625         /*
626          * Returns if the blocks have already allocated
627          *
628          * Note that if blocks have been preallocated
629          * ext4_ext_get_block() returns the create = 0
630          * with buffer head unmapped.
631          */
632         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
633                 /*
634                  * If we need to convert extent to unwritten
635                  * we continue and do the actual work in
636                  * ext4_ext_map_blocks()
637                  */
638                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
639                         return retval;
640
641         /*
642          * Here we clear m_flags because after allocating an new extent,
643          * it will be set again.
644          */
645         map->m_flags &= ~EXT4_MAP_FLAGS;
646
647         /*
648          * New blocks allocate and/or writing to unwritten extent
649          * will possibly result in updating i_data, so we take
650          * the write lock of i_data_sem, and call get_block()
651          * with create == 1 flag.
652          */
653         down_write(&EXT4_I(inode)->i_data_sem);
654
655         /*
656          * We need to check for EXT4 here because migrate
657          * could have changed the inode type in between
658          */
659         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
660                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
661         } else {
662                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
663
664                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
665                         /*
666                          * We allocated new blocks which will result in
667                          * i_data's format changing.  Force the migrate
668                          * to fail by clearing migrate flags
669                          */
670                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
671                 }
672         }
673
674         if (retval > 0) {
675                 unsigned int status;
676
677                 if (unlikely(retval != map->m_len)) {
678                         ext4_warning(inode->i_sb,
679                                      "ES len assertion failed for inode "
680                                      "%lu: retval %d != map->m_len %d",
681                                      inode->i_ino, retval, map->m_len);
682                         WARN_ON(1);
683                 }
684
685                 /*
686                  * We have to zeroout blocks before inserting them into extent
687                  * status tree. Otherwise someone could look them up there and
688                  * use them before they are really zeroed. We also have to
689                  * unmap metadata before zeroing as otherwise writeback can
690                  * overwrite zeros with stale data from block device.
691                  */
692                 if (flags & EXT4_GET_BLOCKS_ZERO &&
693                     map->m_flags & EXT4_MAP_MAPPED &&
694                     map->m_flags & EXT4_MAP_NEW) {
695                         ret = ext4_issue_zeroout(inode, map->m_lblk,
696                                                  map->m_pblk, map->m_len);
697                         if (ret) {
698                                 retval = ret;
699                                 goto out_sem;
700                         }
701                 }
702
703                 /*
704                  * If the extent has been zeroed out, we don't need to update
705                  * extent status tree.
706                  */
707                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
708                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
709                         if (ext4_es_is_written(&es))
710                                 goto out_sem;
711                 }
712                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
713                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
714                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
715                     !(status & EXTENT_STATUS_WRITTEN) &&
716                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
717                                        map->m_lblk + map->m_len - 1))
718                         status |= EXTENT_STATUS_DELAYED;
719                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
720                                             map->m_pblk, status);
721                 if (ret < 0) {
722                         retval = ret;
723                         goto out_sem;
724                 }
725         }
726
727 out_sem:
728         up_write((&EXT4_I(inode)->i_data_sem));
729         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
730                 ret = check_block_validity(inode, map);
731                 if (ret != 0)
732                         return ret;
733
734                 /*
735                  * Inodes with freshly allocated blocks where contents will be
736                  * visible after transaction commit must be on transaction's
737                  * ordered data list.
738                  */
739                 if (map->m_flags & EXT4_MAP_NEW &&
740                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
741                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
742                     !ext4_is_quota_file(inode) &&
743                     ext4_should_order_data(inode)) {
744                         loff_t start_byte =
745                                 (loff_t)map->m_lblk << inode->i_blkbits;
746                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
747
748                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
749                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
750                                                 start_byte, length);
751                         else
752                                 ret = ext4_jbd2_inode_add_write(handle, inode,
753                                                 start_byte, length);
754                         if (ret)
755                                 return ret;
756                 }
757         }
758         return retval;
759 }
760
761 /*
762  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
763  * we have to be careful as someone else may be manipulating b_state as well.
764  */
765 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
766 {
767         unsigned long old_state;
768         unsigned long new_state;
769
770         flags &= EXT4_MAP_FLAGS;
771
772         /* Dummy buffer_head? Set non-atomically. */
773         if (!bh->b_page) {
774                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
775                 return;
776         }
777         /*
778          * Someone else may be modifying b_state. Be careful! This is ugly but
779          * once we get rid of using bh as a container for mapping information
780          * to pass to / from get_block functions, this can go away.
781          */
782         do {
783                 old_state = READ_ONCE(bh->b_state);
784                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
785         } while (unlikely(
786                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
787 }
788
789 static int _ext4_get_block(struct inode *inode, sector_t iblock,
790                            struct buffer_head *bh, int flags)
791 {
792         struct ext4_map_blocks map;
793         int ret = 0;
794
795         if (ext4_has_inline_data(inode))
796                 return -ERANGE;
797
798         map.m_lblk = iblock;
799         map.m_len = bh->b_size >> inode->i_blkbits;
800
801         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
802                               flags);
803         if (ret > 0) {
804                 map_bh(bh, inode->i_sb, map.m_pblk);
805                 ext4_update_bh_state(bh, map.m_flags);
806                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807                 ret = 0;
808         } else if (ret == 0) {
809                 /* hole case, need to fill in bh->b_size */
810                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
811         }
812         return ret;
813 }
814
815 int ext4_get_block(struct inode *inode, sector_t iblock,
816                    struct buffer_head *bh, int create)
817 {
818         return _ext4_get_block(inode, iblock, bh,
819                                create ? EXT4_GET_BLOCKS_CREATE : 0);
820 }
821
822 /*
823  * Get block function used when preparing for buffered write if we require
824  * creating an unwritten extent if blocks haven't been allocated.  The extent
825  * will be converted to written after the IO is complete.
826  */
827 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
828                              struct buffer_head *bh_result, int create)
829 {
830         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
831                    inode->i_ino, create);
832         return _ext4_get_block(inode, iblock, bh_result,
833                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
834 }
835
836 /* Maximum number of blocks we map for direct IO at once. */
837 #define DIO_MAX_BLOCKS 4096
838
839 /*
840  * Get blocks function for the cases that need to start a transaction -
841  * generally difference cases of direct IO and DAX IO. It also handles retries
842  * in case of ENOSPC.
843  */
844 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
845                                 struct buffer_head *bh_result, int flags)
846 {
847         int dio_credits;
848         handle_t *handle;
849         int retries = 0;
850         int ret;
851
852         /* Trim mapping request to maximum we can map at once for DIO */
853         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
854                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
855         dio_credits = ext4_chunk_trans_blocks(inode,
856                                       bh_result->b_size >> inode->i_blkbits);
857 retry:
858         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
859         if (IS_ERR(handle))
860                 return PTR_ERR(handle);
861
862         ret = _ext4_get_block(inode, iblock, bh_result, flags);
863         ext4_journal_stop(handle);
864
865         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
866                 goto retry;
867         return ret;
868 }
869
870 /* Get block function for DIO reads and writes to inodes without extents */
871 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
872                        struct buffer_head *bh, int create)
873 {
874         /* We don't expect handle for direct IO */
875         WARN_ON_ONCE(ext4_journal_current_handle());
876
877         if (!create)
878                 return _ext4_get_block(inode, iblock, bh, 0);
879         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
880 }
881
882 /*
883  * Get block function for AIO DIO writes when we create unwritten extent if
884  * blocks are not allocated yet. The extent will be converted to written
885  * after IO is complete.
886  */
887 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
888                 sector_t iblock, struct buffer_head *bh_result, int create)
889 {
890         int ret;
891
892         /* We don't expect handle for direct IO */
893         WARN_ON_ONCE(ext4_journal_current_handle());
894
895         ret = ext4_get_block_trans(inode, iblock, bh_result,
896                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
897
898         /*
899          * When doing DIO using unwritten extents, we need io_end to convert
900          * unwritten extents to written on IO completion. We allocate io_end
901          * once we spot unwritten extent and store it in b_private. Generic
902          * DIO code keeps b_private set and furthermore passes the value to
903          * our completion callback in 'private' argument.
904          */
905         if (!ret && buffer_unwritten(bh_result)) {
906                 if (!bh_result->b_private) {
907                         ext4_io_end_t *io_end;
908
909                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
910                         if (!io_end)
911                                 return -ENOMEM;
912                         bh_result->b_private = io_end;
913                         ext4_set_io_unwritten_flag(inode, io_end);
914                 }
915                 set_buffer_defer_completion(bh_result);
916         }
917
918         return ret;
919 }
920
921 /*
922  * Get block function for non-AIO DIO writes when we create unwritten extent if
923  * blocks are not allocated yet. The extent will be converted to written
924  * after IO is complete by ext4_direct_IO_write().
925  */
926 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
927                 sector_t iblock, struct buffer_head *bh_result, int create)
928 {
929         int ret;
930
931         /* We don't expect handle for direct IO */
932         WARN_ON_ONCE(ext4_journal_current_handle());
933
934         ret = ext4_get_block_trans(inode, iblock, bh_result,
935                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
936
937         /*
938          * Mark inode as having pending DIO writes to unwritten extents.
939          * ext4_direct_IO_write() checks this flag and converts extents to
940          * written.
941          */
942         if (!ret && buffer_unwritten(bh_result))
943                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
944
945         return ret;
946 }
947
948 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
949                    struct buffer_head *bh_result, int create)
950 {
951         int ret;
952
953         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
954                    inode->i_ino, create);
955         /* We don't expect handle for direct IO */
956         WARN_ON_ONCE(ext4_journal_current_handle());
957
958         ret = _ext4_get_block(inode, iblock, bh_result, 0);
959         /*
960          * Blocks should have been preallocated! ext4_file_write_iter() checks
961          * that.
962          */
963         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
964
965         return ret;
966 }
967
968
969 /*
970  * `handle' can be NULL if create is zero
971  */
972 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
973                                 ext4_lblk_t block, int map_flags)
974 {
975         struct ext4_map_blocks map;
976         struct buffer_head *bh;
977         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
978         int err;
979
980         J_ASSERT(handle != NULL || create == 0);
981
982         map.m_lblk = block;
983         map.m_len = 1;
984         err = ext4_map_blocks(handle, inode, &map, map_flags);
985
986         if (err == 0)
987                 return create ? ERR_PTR(-ENOSPC) : NULL;
988         if (err < 0)
989                 return ERR_PTR(err);
990
991         bh = sb_getblk(inode->i_sb, map.m_pblk);
992         if (unlikely(!bh))
993                 return ERR_PTR(-ENOMEM);
994         if (map.m_flags & EXT4_MAP_NEW) {
995                 J_ASSERT(create != 0);
996                 J_ASSERT(handle != NULL);
997
998                 /*
999                  * Now that we do not always journal data, we should
1000                  * keep in mind whether this should always journal the
1001                  * new buffer as metadata.  For now, regular file
1002                  * writes use ext4_get_block instead, so it's not a
1003                  * problem.
1004                  */
1005                 lock_buffer(bh);
1006                 BUFFER_TRACE(bh, "call get_create_access");
1007                 err = ext4_journal_get_create_access(handle, bh);
1008                 if (unlikely(err)) {
1009                         unlock_buffer(bh);
1010                         goto errout;
1011                 }
1012                 if (!buffer_uptodate(bh)) {
1013                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1014                         set_buffer_uptodate(bh);
1015                 }
1016                 unlock_buffer(bh);
1017                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1018                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1019                 if (unlikely(err))
1020                         goto errout;
1021         } else
1022                 BUFFER_TRACE(bh, "not a new buffer");
1023         return bh;
1024 errout:
1025         brelse(bh);
1026         return ERR_PTR(err);
1027 }
1028
1029 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1030                                ext4_lblk_t block, int map_flags)
1031 {
1032         struct buffer_head *bh;
1033
1034         bh = ext4_getblk(handle, inode, block, map_flags);
1035         if (IS_ERR(bh))
1036                 return bh;
1037         if (!bh || ext4_buffer_uptodate(bh))
1038                 return bh;
1039         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1040         wait_on_buffer(bh);
1041         if (buffer_uptodate(bh))
1042                 return bh;
1043         put_bh(bh);
1044         return ERR_PTR(-EIO);
1045 }
1046
1047 /* Read a contiguous batch of blocks. */
1048 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1049                      bool wait, struct buffer_head **bhs)
1050 {
1051         int i, err;
1052
1053         for (i = 0; i < bh_count; i++) {
1054                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1055                 if (IS_ERR(bhs[i])) {
1056                         err = PTR_ERR(bhs[i]);
1057                         bh_count = i;
1058                         goto out_brelse;
1059                 }
1060         }
1061
1062         for (i = 0; i < bh_count; i++)
1063                 /* Note that NULL bhs[i] is valid because of holes. */
1064                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1065                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1066                                     &bhs[i]);
1067
1068         if (!wait)
1069                 return 0;
1070
1071         for (i = 0; i < bh_count; i++)
1072                 if (bhs[i])
1073                         wait_on_buffer(bhs[i]);
1074
1075         for (i = 0; i < bh_count; i++) {
1076                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1077                         err = -EIO;
1078                         goto out_brelse;
1079                 }
1080         }
1081         return 0;
1082
1083 out_brelse:
1084         for (i = 0; i < bh_count; i++) {
1085                 brelse(bhs[i]);
1086                 bhs[i] = NULL;
1087         }
1088         return err;
1089 }
1090
1091 int ext4_walk_page_buffers(handle_t *handle,
1092                            struct buffer_head *head,
1093                            unsigned from,
1094                            unsigned to,
1095                            int *partial,
1096                            int (*fn)(handle_t *handle,
1097                                      struct buffer_head *bh))
1098 {
1099         struct buffer_head *bh;
1100         unsigned block_start, block_end;
1101         unsigned blocksize = head->b_size;
1102         int err, ret = 0;
1103         struct buffer_head *next;
1104
1105         for (bh = head, block_start = 0;
1106              ret == 0 && (bh != head || !block_start);
1107              block_start = block_end, bh = next) {
1108                 next = bh->b_this_page;
1109                 block_end = block_start + blocksize;
1110                 if (block_end <= from || block_start >= to) {
1111                         if (partial && !buffer_uptodate(bh))
1112                                 *partial = 1;
1113                         continue;
1114                 }
1115                 err = (*fn)(handle, bh);
1116                 if (!ret)
1117                         ret = err;
1118         }
1119         return ret;
1120 }
1121
1122 /*
1123  * To preserve ordering, it is essential that the hole instantiation and
1124  * the data write be encapsulated in a single transaction.  We cannot
1125  * close off a transaction and start a new one between the ext4_get_block()
1126  * and the commit_write().  So doing the jbd2_journal_start at the start of
1127  * prepare_write() is the right place.
1128  *
1129  * Also, this function can nest inside ext4_writepage().  In that case, we
1130  * *know* that ext4_writepage() has generated enough buffer credits to do the
1131  * whole page.  So we won't block on the journal in that case, which is good,
1132  * because the caller may be PF_MEMALLOC.
1133  *
1134  * By accident, ext4 can be reentered when a transaction is open via
1135  * quota file writes.  If we were to commit the transaction while thus
1136  * reentered, there can be a deadlock - we would be holding a quota
1137  * lock, and the commit would never complete if another thread had a
1138  * transaction open and was blocking on the quota lock - a ranking
1139  * violation.
1140  *
1141  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1142  * will _not_ run commit under these circumstances because handle->h_ref
1143  * is elevated.  We'll still have enough credits for the tiny quotafile
1144  * write.
1145  */
1146 int do_journal_get_write_access(handle_t *handle,
1147                                 struct buffer_head *bh)
1148 {
1149         int dirty = buffer_dirty(bh);
1150         int ret;
1151
1152         if (!buffer_mapped(bh) || buffer_freed(bh))
1153                 return 0;
1154         /*
1155          * __block_write_begin() could have dirtied some buffers. Clean
1156          * the dirty bit as jbd2_journal_get_write_access() could complain
1157          * otherwise about fs integrity issues. Setting of the dirty bit
1158          * by __block_write_begin() isn't a real problem here as we clear
1159          * the bit before releasing a page lock and thus writeback cannot
1160          * ever write the buffer.
1161          */
1162         if (dirty)
1163                 clear_buffer_dirty(bh);
1164         BUFFER_TRACE(bh, "get write access");
1165         ret = ext4_journal_get_write_access(handle, bh);
1166         if (!ret && dirty)
1167                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1168         return ret;
1169 }
1170
1171 #ifdef CONFIG_FS_ENCRYPTION
1172 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1173                                   get_block_t *get_block)
1174 {
1175         unsigned from = pos & (PAGE_SIZE - 1);
1176         unsigned to = from + len;
1177         struct inode *inode = page->mapping->host;
1178         unsigned block_start, block_end;
1179         sector_t block;
1180         int err = 0;
1181         unsigned blocksize = inode->i_sb->s_blocksize;
1182         unsigned bbits;
1183         struct buffer_head *bh, *head, *wait[2];
1184         int nr_wait = 0;
1185         int i;
1186
1187         BUG_ON(!PageLocked(page));
1188         BUG_ON(from > PAGE_SIZE);
1189         BUG_ON(to > PAGE_SIZE);
1190         BUG_ON(from > to);
1191
1192         if (!page_has_buffers(page))
1193                 create_empty_buffers(page, blocksize, 0);
1194         head = page_buffers(page);
1195         bbits = ilog2(blocksize);
1196         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1197
1198         for (bh = head, block_start = 0; bh != head || !block_start;
1199             block++, block_start = block_end, bh = bh->b_this_page) {
1200                 block_end = block_start + blocksize;
1201                 if (block_end <= from || block_start >= to) {
1202                         if (PageUptodate(page)) {
1203                                 if (!buffer_uptodate(bh))
1204                                         set_buffer_uptodate(bh);
1205                         }
1206                         continue;
1207                 }
1208                 if (buffer_new(bh))
1209                         clear_buffer_new(bh);
1210                 if (!buffer_mapped(bh)) {
1211                         WARN_ON(bh->b_size != blocksize);
1212                         err = get_block(inode, block, bh, 1);
1213                         if (err)
1214                                 break;
1215                         if (buffer_new(bh)) {
1216                                 if (PageUptodate(page)) {
1217                                         clear_buffer_new(bh);
1218                                         set_buffer_uptodate(bh);
1219                                         mark_buffer_dirty(bh);
1220                                         continue;
1221                                 }
1222                                 if (block_end > to || block_start < from)
1223                                         zero_user_segments(page, to, block_end,
1224                                                            block_start, from);
1225                                 continue;
1226                         }
1227                 }
1228                 if (PageUptodate(page)) {
1229                         if (!buffer_uptodate(bh))
1230                                 set_buffer_uptodate(bh);
1231                         continue;
1232                 }
1233                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1234                     !buffer_unwritten(bh) &&
1235                     (block_start < from || block_end > to)) {
1236                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1237                         wait[nr_wait++] = bh;
1238                 }
1239         }
1240         /*
1241          * If we issued read requests, let them complete.
1242          */
1243         for (i = 0; i < nr_wait; i++) {
1244                 wait_on_buffer(wait[i]);
1245                 if (!buffer_uptodate(wait[i]))
1246                         err = -EIO;
1247         }
1248         if (unlikely(err)) {
1249                 page_zero_new_buffers(page, from, to);
1250         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1251                 for (i = 0; i < nr_wait; i++) {
1252                         int err2;
1253
1254                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1255                                                                 bh_offset(wait[i]));
1256                         if (err2) {
1257                                 clear_buffer_uptodate(wait[i]);
1258                                 err = err2;
1259                         }
1260                 }
1261         }
1262
1263         return err;
1264 }
1265 #endif
1266
1267 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1268                             loff_t pos, unsigned len, unsigned flags,
1269                             struct page **pagep, void **fsdata)
1270 {
1271         struct inode *inode = mapping->host;
1272         int ret, needed_blocks;
1273         handle_t *handle;
1274         int retries = 0;
1275         struct page *page;
1276         pgoff_t index;
1277         unsigned from, to;
1278
1279         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1280                 return -EIO;
1281
1282         trace_ext4_write_begin(inode, pos, len, flags);
1283         /*
1284          * Reserve one block more for addition to orphan list in case
1285          * we allocate blocks but write fails for some reason
1286          */
1287         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1288         index = pos >> PAGE_SHIFT;
1289         from = pos & (PAGE_SIZE - 1);
1290         to = from + len;
1291
1292         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1293                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1294                                                     flags, pagep);
1295                 if (ret < 0)
1296                         return ret;
1297                 if (ret == 1)
1298                         return 0;
1299         }
1300
1301         /*
1302          * grab_cache_page_write_begin() can take a long time if the
1303          * system is thrashing due to memory pressure, or if the page
1304          * is being written back.  So grab it first before we start
1305          * the transaction handle.  This also allows us to allocate
1306          * the page (if needed) without using GFP_NOFS.
1307          */
1308 retry_grab:
1309         page = grab_cache_page_write_begin(mapping, index, flags);
1310         if (!page)
1311                 return -ENOMEM;
1312         /*
1313          * The same as page allocation, we prealloc buffer heads before
1314          * starting the handle.
1315          */
1316         if (!page_has_buffers(page))
1317                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1318
1319         unlock_page(page);
1320
1321 retry_journal:
1322         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1323         if (IS_ERR(handle)) {
1324                 put_page(page);
1325                 return PTR_ERR(handle);
1326         }
1327
1328         lock_page(page);
1329         if (page->mapping != mapping) {
1330                 /* The page got truncated from under us */
1331                 unlock_page(page);
1332                 put_page(page);
1333                 ext4_journal_stop(handle);
1334                 goto retry_grab;
1335         }
1336         /* In case writeback began while the page was unlocked */
1337         wait_for_stable_page(page);
1338
1339 #ifdef CONFIG_FS_ENCRYPTION
1340         if (ext4_should_dioread_nolock(inode))
1341                 ret = ext4_block_write_begin(page, pos, len,
1342                                              ext4_get_block_unwritten);
1343         else
1344                 ret = ext4_block_write_begin(page, pos, len,
1345                                              ext4_get_block);
1346 #else
1347         if (ext4_should_dioread_nolock(inode))
1348                 ret = __block_write_begin(page, pos, len,
1349                                           ext4_get_block_unwritten);
1350         else
1351                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1352 #endif
1353         if (!ret && ext4_should_journal_data(inode)) {
1354                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1355                                              from, to, NULL,
1356                                              do_journal_get_write_access);
1357         }
1358
1359         if (ret) {
1360                 bool extended = (pos + len > inode->i_size) &&
1361                                 !ext4_verity_in_progress(inode);
1362
1363                 unlock_page(page);
1364                 /*
1365                  * __block_write_begin may have instantiated a few blocks
1366                  * outside i_size.  Trim these off again. Don't need
1367                  * i_size_read because we hold i_mutex.
1368                  *
1369                  * Add inode to orphan list in case we crash before
1370                  * truncate finishes
1371                  */
1372                 if (extended && ext4_can_truncate(inode))
1373                         ext4_orphan_add(handle, inode);
1374
1375                 ext4_journal_stop(handle);
1376                 if (extended) {
1377                         ext4_truncate_failed_write(inode);
1378                         /*
1379                          * If truncate failed early the inode might
1380                          * still be on the orphan list; we need to
1381                          * make sure the inode is removed from the
1382                          * orphan list in that case.
1383                          */
1384                         if (inode->i_nlink)
1385                                 ext4_orphan_del(NULL, inode);
1386                 }
1387
1388                 if (ret == -ENOSPC &&
1389                     ext4_should_retry_alloc(inode->i_sb, &retries))
1390                         goto retry_journal;
1391                 put_page(page);
1392                 return ret;
1393         }
1394         *pagep = page;
1395         return ret;
1396 }
1397
1398 /* For write_end() in data=journal mode */
1399 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1400 {
1401         int ret;
1402         if (!buffer_mapped(bh) || buffer_freed(bh))
1403                 return 0;
1404         set_buffer_uptodate(bh);
1405         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1406         clear_buffer_meta(bh);
1407         clear_buffer_prio(bh);
1408         return ret;
1409 }
1410
1411 /*
1412  * We need to pick up the new inode size which generic_commit_write gave us
1413  * `file' can be NULL - eg, when called from page_symlink().
1414  *
1415  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1416  * buffers are managed internally.
1417  */
1418 static int ext4_write_end(struct file *file,
1419                           struct address_space *mapping,
1420                           loff_t pos, unsigned len, unsigned copied,
1421                           struct page *page, void *fsdata)
1422 {
1423         handle_t *handle = ext4_journal_current_handle();
1424         struct inode *inode = mapping->host;
1425         loff_t old_size = inode->i_size;
1426         int ret = 0, ret2;
1427         int i_size_changed = 0;
1428         int inline_data = ext4_has_inline_data(inode);
1429         bool verity = ext4_verity_in_progress(inode);
1430
1431         trace_ext4_write_end(inode, pos, len, copied);
1432         if (inline_data &&
1433             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1434                 ret = ext4_write_inline_data_end(inode, pos, len,
1435                                                  copied, page);
1436                 if (ret < 0) {
1437                         unlock_page(page);
1438                         put_page(page);
1439                         goto errout;
1440                 }
1441                 copied = ret;
1442                 ret = 0;
1443         } else
1444                 copied = block_write_end(file, mapping, pos,
1445                                          len, copied, page, fsdata);
1446         /*
1447          * it's important to update i_size while still holding page lock:
1448          * page writeout could otherwise come in and zero beyond i_size.
1449          *
1450          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1451          * blocks are being written past EOF, so skip the i_size update.
1452          */
1453         if (!verity)
1454                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1455         unlock_page(page);
1456         put_page(page);
1457
1458         if (old_size < pos && !verity)
1459                 pagecache_isize_extended(inode, old_size, pos);
1460         /*
1461          * Don't mark the inode dirty under page lock. First, it unnecessarily
1462          * makes the holding time of page lock longer. Second, it forces lock
1463          * ordering of page lock and transaction start for journaling
1464          * filesystems.
1465          */
1466         if (i_size_changed || inline_data)
1467                 ext4_mark_inode_dirty(handle, inode);
1468
1469 errout:
1470         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1471                 /* if we have allocated more blocks and copied
1472                  * less. We will have blocks allocated outside
1473                  * inode->i_size. So truncate them
1474                  */
1475                 ext4_orphan_add(handle, inode);
1476
1477         ret2 = ext4_journal_stop(handle);
1478         if (!ret)
1479                 ret = ret2;
1480
1481         if (pos + len > inode->i_size && !verity) {
1482                 ext4_truncate_failed_write(inode);
1483                 /*
1484                  * If truncate failed early the inode might still be
1485                  * on the orphan list; we need to make sure the inode
1486                  * is removed from the orphan list in that case.
1487                  */
1488                 if (inode->i_nlink)
1489                         ext4_orphan_del(NULL, inode);
1490         }
1491
1492         return ret ? ret : copied;
1493 }
1494
1495 /*
1496  * This is a private version of page_zero_new_buffers() which doesn't
1497  * set the buffer to be dirty, since in data=journalled mode we need
1498  * to call ext4_handle_dirty_metadata() instead.
1499  */
1500 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1501                                             struct page *page,
1502                                             unsigned from, unsigned to)
1503 {
1504         unsigned int block_start = 0, block_end;
1505         struct buffer_head *head, *bh;
1506
1507         bh = head = page_buffers(page);
1508         do {
1509                 block_end = block_start + bh->b_size;
1510                 if (buffer_new(bh)) {
1511                         if (block_end > from && block_start < to) {
1512                                 if (!PageUptodate(page)) {
1513                                         unsigned start, size;
1514
1515                                         start = max(from, block_start);
1516                                         size = min(to, block_end) - start;
1517
1518                                         zero_user(page, start, size);
1519                                         write_end_fn(handle, bh);
1520                                 }
1521                                 clear_buffer_new(bh);
1522                         }
1523                 }
1524                 block_start = block_end;
1525                 bh = bh->b_this_page;
1526         } while (bh != head);
1527 }
1528
1529 static int ext4_journalled_write_end(struct file *file,
1530                                      struct address_space *mapping,
1531                                      loff_t pos, unsigned len, unsigned copied,
1532                                      struct page *page, void *fsdata)
1533 {
1534         handle_t *handle = ext4_journal_current_handle();
1535         struct inode *inode = mapping->host;
1536         loff_t old_size = inode->i_size;
1537         int ret = 0, ret2;
1538         int partial = 0;
1539         unsigned from, to;
1540         int size_changed = 0;
1541         int inline_data = ext4_has_inline_data(inode);
1542         bool verity = ext4_verity_in_progress(inode);
1543
1544         trace_ext4_journalled_write_end(inode, pos, len, copied);
1545         from = pos & (PAGE_SIZE - 1);
1546         to = from + len;
1547
1548         BUG_ON(!ext4_handle_valid(handle));
1549
1550         if (inline_data) {
1551                 ret = ext4_write_inline_data_end(inode, pos, len,
1552                                                  copied, page);
1553                 if (ret < 0) {
1554                         unlock_page(page);
1555                         put_page(page);
1556                         goto errout;
1557                 }
1558                 copied = ret;
1559                 ret = 0;
1560         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1561                 copied = 0;
1562                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1563         } else {
1564                 if (unlikely(copied < len))
1565                         ext4_journalled_zero_new_buffers(handle, page,
1566                                                          from + copied, to);
1567                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1568                                              from + copied, &partial,
1569                                              write_end_fn);
1570                 if (!partial)
1571                         SetPageUptodate(page);
1572         }
1573         if (!verity)
1574                 size_changed = ext4_update_inode_size(inode, pos + copied);
1575         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1576         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1577         unlock_page(page);
1578         put_page(page);
1579
1580         if (old_size < pos && !verity)
1581                 pagecache_isize_extended(inode, old_size, pos);
1582
1583         if (size_changed || inline_data) {
1584                 ret2 = ext4_mark_inode_dirty(handle, inode);
1585                 if (!ret)
1586                         ret = ret2;
1587         }
1588
1589 errout:
1590         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1591                 /* if we have allocated more blocks and copied
1592                  * less. We will have blocks allocated outside
1593                  * inode->i_size. So truncate them
1594                  */
1595                 ext4_orphan_add(handle, inode);
1596
1597         ret2 = ext4_journal_stop(handle);
1598         if (!ret)
1599                 ret = ret2;
1600         if (pos + len > inode->i_size && !verity) {
1601                 ext4_truncate_failed_write(inode);
1602                 /*
1603                  * If truncate failed early the inode might still be
1604                  * on the orphan list; we need to make sure the inode
1605                  * is removed from the orphan list in that case.
1606                  */
1607                 if (inode->i_nlink)
1608                         ext4_orphan_del(NULL, inode);
1609         }
1610
1611         return ret ? ret : copied;
1612 }
1613
1614 /*
1615  * Reserve space for a single cluster
1616  */
1617 static int ext4_da_reserve_space(struct inode *inode)
1618 {
1619         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1620         struct ext4_inode_info *ei = EXT4_I(inode);
1621         int ret;
1622
1623         /*
1624          * We will charge metadata quota at writeout time; this saves
1625          * us from metadata over-estimation, though we may go over by
1626          * a small amount in the end.  Here we just reserve for data.
1627          */
1628         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1629         if (ret)
1630                 return ret;
1631
1632         spin_lock(&ei->i_block_reservation_lock);
1633         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1634                 spin_unlock(&ei->i_block_reservation_lock);
1635                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1636                 return -ENOSPC;
1637         }
1638         ei->i_reserved_data_blocks++;
1639         trace_ext4_da_reserve_space(inode);
1640         spin_unlock(&ei->i_block_reservation_lock);
1641
1642         return 0;       /* success */
1643 }
1644
1645 void ext4_da_release_space(struct inode *inode, int to_free)
1646 {
1647         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1648         struct ext4_inode_info *ei = EXT4_I(inode);
1649
1650         if (!to_free)
1651                 return;         /* Nothing to release, exit */
1652
1653         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1654
1655         trace_ext4_da_release_space(inode, to_free);
1656         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1657                 /*
1658                  * if there aren't enough reserved blocks, then the
1659                  * counter is messed up somewhere.  Since this
1660                  * function is called from invalidate page, it's
1661                  * harmless to return without any action.
1662                  */
1663                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1664                          "ino %lu, to_free %d with only %d reserved "
1665                          "data blocks", inode->i_ino, to_free,
1666                          ei->i_reserved_data_blocks);
1667                 WARN_ON(1);
1668                 to_free = ei->i_reserved_data_blocks;
1669         }
1670         ei->i_reserved_data_blocks -= to_free;
1671
1672         /* update fs dirty data blocks counter */
1673         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1674
1675         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676
1677         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1678 }
1679
1680 /*
1681  * Delayed allocation stuff
1682  */
1683
1684 struct mpage_da_data {
1685         struct inode *inode;
1686         struct writeback_control *wbc;
1687
1688         pgoff_t first_page;     /* The first page to write */
1689         pgoff_t next_page;      /* Current page to examine */
1690         pgoff_t last_page;      /* Last page to examine */
1691         /*
1692          * Extent to map - this can be after first_page because that can be
1693          * fully mapped. We somewhat abuse m_flags to store whether the extent
1694          * is delalloc or unwritten.
1695          */
1696         struct ext4_map_blocks map;
1697         struct ext4_io_submit io_submit;        /* IO submission data */
1698         unsigned int do_map:1;
1699 };
1700
1701 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1702                                        bool invalidate)
1703 {
1704         int nr_pages, i;
1705         pgoff_t index, end;
1706         struct pagevec pvec;
1707         struct inode *inode = mpd->inode;
1708         struct address_space *mapping = inode->i_mapping;
1709
1710         /* This is necessary when next_page == 0. */
1711         if (mpd->first_page >= mpd->next_page)
1712                 return;
1713
1714         index = mpd->first_page;
1715         end   = mpd->next_page - 1;
1716         if (invalidate) {
1717                 ext4_lblk_t start, last;
1718                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1719                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1720
1721                 /*
1722                  * avoid racing with extent status tree scans made by
1723                  * ext4_insert_delayed_block()
1724                  */
1725                 down_write(&EXT4_I(inode)->i_data_sem);
1726                 ext4_es_remove_extent(inode, start, last - start + 1);
1727                 up_write(&EXT4_I(inode)->i_data_sem);
1728         }
1729
1730         pagevec_init(&pvec);
1731         while (index <= end) {
1732                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1733                 if (nr_pages == 0)
1734                         break;
1735                 for (i = 0; i < nr_pages; i++) {
1736                         struct page *page = pvec.pages[i];
1737
1738                         BUG_ON(!PageLocked(page));
1739                         BUG_ON(PageWriteback(page));
1740                         if (invalidate) {
1741                                 if (page_mapped(page))
1742                                         clear_page_dirty_for_io(page);
1743                                 block_invalidatepage(page, 0, PAGE_SIZE);
1744                                 ClearPageUptodate(page);
1745                         }
1746                         unlock_page(page);
1747                 }
1748                 pagevec_release(&pvec);
1749         }
1750 }
1751
1752 static void ext4_print_free_blocks(struct inode *inode)
1753 {
1754         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1755         struct super_block *sb = inode->i_sb;
1756         struct ext4_inode_info *ei = EXT4_I(inode);
1757
1758         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1759                EXT4_C2B(EXT4_SB(inode->i_sb),
1760                         ext4_count_free_clusters(sb)));
1761         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1762         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1763                (long long) EXT4_C2B(EXT4_SB(sb),
1764                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1765         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1766                (long long) EXT4_C2B(EXT4_SB(sb),
1767                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1768         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1769         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1770                  ei->i_reserved_data_blocks);
1771         return;
1772 }
1773
1774 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1775 {
1776         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1777 }
1778
1779 /*
1780  * ext4_insert_delayed_block - adds a delayed block to the extents status
1781  *                             tree, incrementing the reserved cluster/block
1782  *                             count or making a pending reservation
1783  *                             where needed
1784  *
1785  * @inode - file containing the newly added block
1786  * @lblk - logical block to be added
1787  *
1788  * Returns 0 on success, negative error code on failure.
1789  */
1790 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1791 {
1792         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1793         int ret;
1794         bool allocated = false;
1795         bool reserved = false;
1796
1797         /*
1798          * If the cluster containing lblk is shared with a delayed,
1799          * written, or unwritten extent in a bigalloc file system, it's
1800          * already been accounted for and does not need to be reserved.
1801          * A pending reservation must be made for the cluster if it's
1802          * shared with a written or unwritten extent and doesn't already
1803          * have one.  Written and unwritten extents can be purged from the
1804          * extents status tree if the system is under memory pressure, so
1805          * it's necessary to examine the extent tree if a search of the
1806          * extents status tree doesn't get a match.
1807          */
1808         if (sbi->s_cluster_ratio == 1) {
1809                 ret = ext4_da_reserve_space(inode);
1810                 if (ret != 0)   /* ENOSPC */
1811                         goto errout;
1812                 reserved = true;
1813         } else {   /* bigalloc */
1814                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1815                         if (!ext4_es_scan_clu(inode,
1816                                               &ext4_es_is_mapped, lblk)) {
1817                                 ret = ext4_clu_mapped(inode,
1818                                                       EXT4_B2C(sbi, lblk));
1819                                 if (ret < 0)
1820                                         goto errout;
1821                                 if (ret == 0) {
1822                                         ret = ext4_da_reserve_space(inode);
1823                                         if (ret != 0)   /* ENOSPC */
1824                                                 goto errout;
1825                                         reserved = true;
1826                                 } else {
1827                                         allocated = true;
1828                                 }
1829                         } else {
1830                                 allocated = true;
1831                         }
1832                 }
1833         }
1834
1835         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1836         if (ret && reserved)
1837                 ext4_da_release_space(inode, 1);
1838
1839 errout:
1840         return ret;
1841 }
1842
1843 /*
1844  * This function is grabs code from the very beginning of
1845  * ext4_map_blocks, but assumes that the caller is from delayed write
1846  * time. This function looks up the requested blocks and sets the
1847  * buffer delay bit under the protection of i_data_sem.
1848  */
1849 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1850                               struct ext4_map_blocks *map,
1851                               struct buffer_head *bh)
1852 {
1853         struct extent_status es;
1854         int retval;
1855         sector_t invalid_block = ~((sector_t) 0xffff);
1856 #ifdef ES_AGGRESSIVE_TEST
1857         struct ext4_map_blocks orig_map;
1858
1859         memcpy(&orig_map, map, sizeof(*map));
1860 #endif
1861
1862         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863                 invalid_block = ~0;
1864
1865         map->m_flags = 0;
1866         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1867                   "logical block %lu\n", inode->i_ino, map->m_len,
1868                   (unsigned long) map->m_lblk);
1869
1870         /* Lookup extent status tree firstly */
1871         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1872                 if (ext4_es_is_hole(&es)) {
1873                         retval = 0;
1874                         down_read(&EXT4_I(inode)->i_data_sem);
1875                         goto add_delayed;
1876                 }
1877
1878                 /*
1879                  * Delayed extent could be allocated by fallocate.
1880                  * So we need to check it.
1881                  */
1882                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1883                         map_bh(bh, inode->i_sb, invalid_block);
1884                         set_buffer_new(bh);
1885                         set_buffer_delay(bh);
1886                         return 0;
1887                 }
1888
1889                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1890                 retval = es.es_len - (iblock - es.es_lblk);
1891                 if (retval > map->m_len)
1892                         retval = map->m_len;
1893                 map->m_len = retval;
1894                 if (ext4_es_is_written(&es))
1895                         map->m_flags |= EXT4_MAP_MAPPED;
1896                 else if (ext4_es_is_unwritten(&es))
1897                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1898                 else
1899                         BUG();
1900
1901 #ifdef ES_AGGRESSIVE_TEST
1902                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1903 #endif
1904                 return retval;
1905         }
1906
1907         /*
1908          * Try to see if we can get the block without requesting a new
1909          * file system block.
1910          */
1911         down_read(&EXT4_I(inode)->i_data_sem);
1912         if (ext4_has_inline_data(inode))
1913                 retval = 0;
1914         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1915                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1916         else
1917                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1918
1919 add_delayed:
1920         if (retval == 0) {
1921                 int ret;
1922
1923                 /*
1924                  * XXX: __block_prepare_write() unmaps passed block,
1925                  * is it OK?
1926                  */
1927
1928                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1929                 if (ret != 0) {
1930                         retval = ret;
1931                         goto out_unlock;
1932                 }
1933
1934                 map_bh(bh, inode->i_sb, invalid_block);
1935                 set_buffer_new(bh);
1936                 set_buffer_delay(bh);
1937         } else if (retval > 0) {
1938                 int ret;
1939                 unsigned int status;
1940
1941                 if (unlikely(retval != map->m_len)) {
1942                         ext4_warning(inode->i_sb,
1943                                      "ES len assertion failed for inode "
1944                                      "%lu: retval %d != map->m_len %d",
1945                                      inode->i_ino, retval, map->m_len);
1946                         WARN_ON(1);
1947                 }
1948
1949                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1950                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1951                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1952                                             map->m_pblk, status);
1953                 if (ret != 0)
1954                         retval = ret;
1955         }
1956
1957 out_unlock:
1958         up_read((&EXT4_I(inode)->i_data_sem));
1959
1960         return retval;
1961 }
1962
1963 /*
1964  * This is a special get_block_t callback which is used by
1965  * ext4_da_write_begin().  It will either return mapped block or
1966  * reserve space for a single block.
1967  *
1968  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1969  * We also have b_blocknr = -1 and b_bdev initialized properly
1970  *
1971  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1972  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1973  * initialized properly.
1974  */
1975 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1976                            struct buffer_head *bh, int create)
1977 {
1978         struct ext4_map_blocks map;
1979         int ret = 0;
1980
1981         BUG_ON(create == 0);
1982         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1983
1984         map.m_lblk = iblock;
1985         map.m_len = 1;
1986
1987         /*
1988          * first, we need to know whether the block is allocated already
1989          * preallocated blocks are unmapped but should treated
1990          * the same as allocated blocks.
1991          */
1992         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1993         if (ret <= 0)
1994                 return ret;
1995
1996         map_bh(bh, inode->i_sb, map.m_pblk);
1997         ext4_update_bh_state(bh, map.m_flags);
1998
1999         if (buffer_unwritten(bh)) {
2000                 /* A delayed write to unwritten bh should be marked
2001                  * new and mapped.  Mapped ensures that we don't do
2002                  * get_block multiple times when we write to the same
2003                  * offset and new ensures that we do proper zero out
2004                  * for partial write.
2005                  */
2006                 set_buffer_new(bh);
2007                 set_buffer_mapped(bh);
2008         }
2009         return 0;
2010 }
2011
2012 static int bget_one(handle_t *handle, struct buffer_head *bh)
2013 {
2014         get_bh(bh);
2015         return 0;
2016 }
2017
2018 static int bput_one(handle_t *handle, struct buffer_head *bh)
2019 {
2020         put_bh(bh);
2021         return 0;
2022 }
2023
2024 static int __ext4_journalled_writepage(struct page *page,
2025                                        unsigned int len)
2026 {
2027         struct address_space *mapping = page->mapping;
2028         struct inode *inode = mapping->host;
2029         struct buffer_head *page_bufs = NULL;
2030         handle_t *handle = NULL;
2031         int ret = 0, err = 0;
2032         int inline_data = ext4_has_inline_data(inode);
2033         struct buffer_head *inode_bh = NULL;
2034
2035         ClearPageChecked(page);
2036
2037         if (inline_data) {
2038                 BUG_ON(page->index != 0);
2039                 BUG_ON(len > ext4_get_max_inline_size(inode));
2040                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2041                 if (inode_bh == NULL)
2042                         goto out;
2043         } else {
2044                 page_bufs = page_buffers(page);
2045                 if (!page_bufs) {
2046                         BUG();
2047                         goto out;
2048                 }
2049                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2050                                        NULL, bget_one);
2051         }
2052         /*
2053          * We need to release the page lock before we start the
2054          * journal, so grab a reference so the page won't disappear
2055          * out from under us.
2056          */
2057         get_page(page);
2058         unlock_page(page);
2059
2060         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2061                                     ext4_writepage_trans_blocks(inode));
2062         if (IS_ERR(handle)) {
2063                 ret = PTR_ERR(handle);
2064                 put_page(page);
2065                 goto out_no_pagelock;
2066         }
2067         BUG_ON(!ext4_handle_valid(handle));
2068
2069         lock_page(page);
2070         put_page(page);
2071         if (page->mapping != mapping) {
2072                 /* The page got truncated from under us */
2073                 ext4_journal_stop(handle);
2074                 ret = 0;
2075                 goto out;
2076         }
2077
2078         if (inline_data) {
2079                 ret = ext4_mark_inode_dirty(handle, inode);
2080         } else {
2081                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2082                                              do_journal_get_write_access);
2083
2084                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2085                                              write_end_fn);
2086         }
2087         if (ret == 0)
2088                 ret = err;
2089         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2090         err = ext4_journal_stop(handle);
2091         if (!ret)
2092                 ret = err;
2093
2094         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2095 out:
2096         unlock_page(page);
2097 out_no_pagelock:
2098         if (!inline_data && page_bufs)
2099                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2100                                        NULL, bput_one);
2101         brelse(inode_bh);
2102         return ret;
2103 }
2104
2105 /*
2106  * Note that we don't need to start a transaction unless we're journaling data
2107  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2108  * need to file the inode to the transaction's list in ordered mode because if
2109  * we are writing back data added by write(), the inode is already there and if
2110  * we are writing back data modified via mmap(), no one guarantees in which
2111  * transaction the data will hit the disk. In case we are journaling data, we
2112  * cannot start transaction directly because transaction start ranks above page
2113  * lock so we have to do some magic.
2114  *
2115  * This function can get called via...
2116  *   - ext4_writepages after taking page lock (have journal handle)
2117  *   - journal_submit_inode_data_buffers (no journal handle)
2118  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2119  *   - grab_page_cache when doing write_begin (have journal handle)
2120  *
2121  * We don't do any block allocation in this function. If we have page with
2122  * multiple blocks we need to write those buffer_heads that are mapped. This
2123  * is important for mmaped based write. So if we do with blocksize 1K
2124  * truncate(f, 1024);
2125  * a = mmap(f, 0, 4096);
2126  * a[0] = 'a';
2127  * truncate(f, 4096);
2128  * we have in the page first buffer_head mapped via page_mkwrite call back
2129  * but other buffer_heads would be unmapped but dirty (dirty done via the
2130  * do_wp_page). So writepage should write the first block. If we modify
2131  * the mmap area beyond 1024 we will again get a page_fault and the
2132  * page_mkwrite callback will do the block allocation and mark the
2133  * buffer_heads mapped.
2134  *
2135  * We redirty the page if we have any buffer_heads that is either delay or
2136  * unwritten in the page.
2137  *
2138  * We can get recursively called as show below.
2139  *
2140  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2141  *              ext4_writepage()
2142  *
2143  * But since we don't do any block allocation we should not deadlock.
2144  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2145  */
2146 static int ext4_writepage(struct page *page,
2147                           struct writeback_control *wbc)
2148 {
2149         int ret = 0;
2150         loff_t size;
2151         unsigned int len;
2152         struct buffer_head *page_bufs = NULL;
2153         struct inode *inode = page->mapping->host;
2154         struct ext4_io_submit io_submit;
2155         bool keep_towrite = false;
2156
2157         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2158                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2159                 unlock_page(page);
2160                 return -EIO;
2161         }
2162
2163         trace_ext4_writepage(page);
2164         size = i_size_read(inode);
2165         if (page->index == size >> PAGE_SHIFT &&
2166             !ext4_verity_in_progress(inode))
2167                 len = size & ~PAGE_MASK;
2168         else
2169                 len = PAGE_SIZE;
2170
2171         /* Should never happen but for bugs in other kernel subsystems */
2172         if (!page_has_buffers(page)) {
2173                 ext4_warning_inode(inode,
2174                    "page %lu does not have buffers attached", page->index);
2175                 ClearPageDirty(page);
2176                 unlock_page(page);
2177                 return 0;
2178         }
2179
2180         page_bufs = page_buffers(page);
2181         /*
2182          * We cannot do block allocation or other extent handling in this
2183          * function. If there are buffers needing that, we have to redirty
2184          * the page. But we may reach here when we do a journal commit via
2185          * journal_submit_inode_data_buffers() and in that case we must write
2186          * allocated buffers to achieve data=ordered mode guarantees.
2187          *
2188          * Also, if there is only one buffer per page (the fs block
2189          * size == the page size), if one buffer needs block
2190          * allocation or needs to modify the extent tree to clear the
2191          * unwritten flag, we know that the page can't be written at
2192          * all, so we might as well refuse the write immediately.
2193          * Unfortunately if the block size != page size, we can't as
2194          * easily detect this case using ext4_walk_page_buffers(), but
2195          * for the extremely common case, this is an optimization that
2196          * skips a useless round trip through ext4_bio_write_page().
2197          */
2198         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2199                                    ext4_bh_delay_or_unwritten)) {
2200                 redirty_page_for_writepage(wbc, page);
2201                 if ((current->flags & PF_MEMALLOC) ||
2202                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2203                         /*
2204                          * For memory cleaning there's no point in writing only
2205                          * some buffers. So just bail out. Warn if we came here
2206                          * from direct reclaim.
2207                          */
2208                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2209                                                         == PF_MEMALLOC);
2210                         unlock_page(page);
2211                         return 0;
2212                 }
2213                 keep_towrite = true;
2214         }
2215
2216         if (PageChecked(page) && ext4_should_journal_data(inode))
2217                 /*
2218                  * It's mmapped pagecache.  Add buffers and journal it.  There
2219                  * doesn't seem much point in redirtying the page here.
2220                  */
2221                 return __ext4_journalled_writepage(page, len);
2222
2223         ext4_io_submit_init(&io_submit, wbc);
2224         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2225         if (!io_submit.io_end) {
2226                 redirty_page_for_writepage(wbc, page);
2227                 unlock_page(page);
2228                 return -ENOMEM;
2229         }
2230         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2231         ext4_io_submit(&io_submit);
2232         /* Drop io_end reference we got from init */
2233         ext4_put_io_end_defer(io_submit.io_end);
2234         return ret;
2235 }
2236
2237 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2238 {
2239         int len;
2240         loff_t size;
2241         int err;
2242
2243         BUG_ON(page->index != mpd->first_page);
2244         clear_page_dirty_for_io(page);
2245         /*
2246          * We have to be very careful here!  Nothing protects writeback path
2247          * against i_size changes and the page can be writeably mapped into
2248          * page tables. So an application can be growing i_size and writing
2249          * data through mmap while writeback runs. clear_page_dirty_for_io()
2250          * write-protects our page in page tables and the page cannot get
2251          * written to again until we release page lock. So only after
2252          * clear_page_dirty_for_io() we are safe to sample i_size for
2253          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2254          * on the barrier provided by TestClearPageDirty in
2255          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2256          * after page tables are updated.
2257          */
2258         size = i_size_read(mpd->inode);
2259         if (page->index == size >> PAGE_SHIFT &&
2260             !ext4_verity_in_progress(mpd->inode))
2261                 len = size & ~PAGE_MASK;
2262         else
2263                 len = PAGE_SIZE;
2264         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2265         if (!err)
2266                 mpd->wbc->nr_to_write--;
2267         mpd->first_page++;
2268
2269         return err;
2270 }
2271
2272 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2273
2274 /*
2275  * mballoc gives us at most this number of blocks...
2276  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2277  * The rest of mballoc seems to handle chunks up to full group size.
2278  */
2279 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2280
2281 /*
2282  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2283  *
2284  * @mpd - extent of blocks
2285  * @lblk - logical number of the block in the file
2286  * @bh - buffer head we want to add to the extent
2287  *
2288  * The function is used to collect contig. blocks in the same state. If the
2289  * buffer doesn't require mapping for writeback and we haven't started the
2290  * extent of buffers to map yet, the function returns 'true' immediately - the
2291  * caller can write the buffer right away. Otherwise the function returns true
2292  * if the block has been added to the extent, false if the block couldn't be
2293  * added.
2294  */
2295 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2296                                    struct buffer_head *bh)
2297 {
2298         struct ext4_map_blocks *map = &mpd->map;
2299
2300         /* Buffer that doesn't need mapping for writeback? */
2301         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2302             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2303                 /* So far no extent to map => we write the buffer right away */
2304                 if (map->m_len == 0)
2305                         return true;
2306                 return false;
2307         }
2308
2309         /* First block in the extent? */
2310         if (map->m_len == 0) {
2311                 /* We cannot map unless handle is started... */
2312                 if (!mpd->do_map)
2313                         return false;
2314                 map->m_lblk = lblk;
2315                 map->m_len = 1;
2316                 map->m_flags = bh->b_state & BH_FLAGS;
2317                 return true;
2318         }
2319
2320         /* Don't go larger than mballoc is willing to allocate */
2321         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2322                 return false;
2323
2324         /* Can we merge the block to our big extent? */
2325         if (lblk == map->m_lblk + map->m_len &&
2326             (bh->b_state & BH_FLAGS) == map->m_flags) {
2327                 map->m_len++;
2328                 return true;
2329         }
2330         return false;
2331 }
2332
2333 /*
2334  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2335  *
2336  * @mpd - extent of blocks for mapping
2337  * @head - the first buffer in the page
2338  * @bh - buffer we should start processing from
2339  * @lblk - logical number of the block in the file corresponding to @bh
2340  *
2341  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2342  * the page for IO if all buffers in this page were mapped and there's no
2343  * accumulated extent of buffers to map or add buffers in the page to the
2344  * extent of buffers to map. The function returns 1 if the caller can continue
2345  * by processing the next page, 0 if it should stop adding buffers to the
2346  * extent to map because we cannot extend it anymore. It can also return value
2347  * < 0 in case of error during IO submission.
2348  */
2349 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2350                                    struct buffer_head *head,
2351                                    struct buffer_head *bh,
2352                                    ext4_lblk_t lblk)
2353 {
2354         struct inode *inode = mpd->inode;
2355         int err;
2356         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2357                                                         >> inode->i_blkbits;
2358
2359         if (ext4_verity_in_progress(inode))
2360                 blocks = EXT_MAX_BLOCKS;
2361
2362         do {
2363                 BUG_ON(buffer_locked(bh));
2364
2365                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2366                         /* Found extent to map? */
2367                         if (mpd->map.m_len)
2368                                 return 0;
2369                         /* Buffer needs mapping and handle is not started? */
2370                         if (!mpd->do_map)
2371                                 return 0;
2372                         /* Everything mapped so far and we hit EOF */
2373                         break;
2374                 }
2375         } while (lblk++, (bh = bh->b_this_page) != head);
2376         /* So far everything mapped? Submit the page for IO. */
2377         if (mpd->map.m_len == 0) {
2378                 err = mpage_submit_page(mpd, head->b_page);
2379                 if (err < 0)
2380                         return err;
2381         }
2382         return lblk < blocks;
2383 }
2384
2385 /*
2386  * mpage_map_buffers - update buffers corresponding to changed extent and
2387  *                     submit fully mapped pages for IO
2388  *
2389  * @mpd - description of extent to map, on return next extent to map
2390  *
2391  * Scan buffers corresponding to changed extent (we expect corresponding pages
2392  * to be already locked) and update buffer state according to new extent state.
2393  * We map delalloc buffers to their physical location, clear unwritten bits,
2394  * and mark buffers as uninit when we perform writes to unwritten extents
2395  * and do extent conversion after IO is finished. If the last page is not fully
2396  * mapped, we update @map to the next extent in the last page that needs
2397  * mapping. Otherwise we submit the page for IO.
2398  */
2399 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2400 {
2401         struct pagevec pvec;
2402         int nr_pages, i;
2403         struct inode *inode = mpd->inode;
2404         struct buffer_head *head, *bh;
2405         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2406         pgoff_t start, end;
2407         ext4_lblk_t lblk;
2408         sector_t pblock;
2409         int err;
2410
2411         start = mpd->map.m_lblk >> bpp_bits;
2412         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2413         lblk = start << bpp_bits;
2414         pblock = mpd->map.m_pblk;
2415
2416         pagevec_init(&pvec);
2417         while (start <= end) {
2418                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2419                                                 &start, end);
2420                 if (nr_pages == 0)
2421                         break;
2422                 for (i = 0; i < nr_pages; i++) {
2423                         struct page *page = pvec.pages[i];
2424
2425                         bh = head = page_buffers(page);
2426                         do {
2427                                 if (lblk < mpd->map.m_lblk)
2428                                         continue;
2429                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2430                                         /*
2431                                          * Buffer after end of mapped extent.
2432                                          * Find next buffer in the page to map.
2433                                          */
2434                                         mpd->map.m_len = 0;
2435                                         mpd->map.m_flags = 0;
2436                                         /*
2437                                          * FIXME: If dioread_nolock supports
2438                                          * blocksize < pagesize, we need to make
2439                                          * sure we add size mapped so far to
2440                                          * io_end->size as the following call
2441                                          * can submit the page for IO.
2442                                          */
2443                                         err = mpage_process_page_bufs(mpd, head,
2444                                                                       bh, lblk);
2445                                         pagevec_release(&pvec);
2446                                         if (err > 0)
2447                                                 err = 0;
2448                                         return err;
2449                                 }
2450                                 if (buffer_delay(bh)) {
2451                                         clear_buffer_delay(bh);
2452                                         bh->b_blocknr = pblock++;
2453                                 }
2454                                 clear_buffer_unwritten(bh);
2455                         } while (lblk++, (bh = bh->b_this_page) != head);
2456
2457                         /*
2458                          * FIXME: This is going to break if dioread_nolock
2459                          * supports blocksize < pagesize as we will try to
2460                          * convert potentially unmapped parts of inode.
2461                          */
2462                         mpd->io_submit.io_end->size += PAGE_SIZE;
2463                         /* Page fully mapped - let IO run! */
2464                         err = mpage_submit_page(mpd, page);
2465                         if (err < 0) {
2466                                 pagevec_release(&pvec);
2467                                 return err;
2468                         }
2469                 }
2470                 pagevec_release(&pvec);
2471         }
2472         /* Extent fully mapped and matches with page boundary. We are done. */
2473         mpd->map.m_len = 0;
2474         mpd->map.m_flags = 0;
2475         return 0;
2476 }
2477
2478 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2479 {
2480         struct inode *inode = mpd->inode;
2481         struct ext4_map_blocks *map = &mpd->map;
2482         int get_blocks_flags;
2483         int err, dioread_nolock;
2484
2485         trace_ext4_da_write_pages_extent(inode, map);
2486         /*
2487          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2488          * to convert an unwritten extent to be initialized (in the case
2489          * where we have written into one or more preallocated blocks).  It is
2490          * possible that we're going to need more metadata blocks than
2491          * previously reserved. However we must not fail because we're in
2492          * writeback and there is nothing we can do about it so it might result
2493          * in data loss.  So use reserved blocks to allocate metadata if
2494          * possible.
2495          *
2496          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2497          * the blocks in question are delalloc blocks.  This indicates
2498          * that the blocks and quotas has already been checked when
2499          * the data was copied into the page cache.
2500          */
2501         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2502                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2503                            EXT4_GET_BLOCKS_IO_SUBMIT;
2504         dioread_nolock = ext4_should_dioread_nolock(inode);
2505         if (dioread_nolock)
2506                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2507         if (map->m_flags & (1 << BH_Delay))
2508                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2509
2510         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2511         if (err < 0)
2512                 return err;
2513         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2514                 if (!mpd->io_submit.io_end->handle &&
2515                     ext4_handle_valid(handle)) {
2516                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2517                         handle->h_rsv_handle = NULL;
2518                 }
2519                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2520         }
2521
2522         BUG_ON(map->m_len == 0);
2523         return 0;
2524 }
2525
2526 /*
2527  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2528  *                               mpd->len and submit pages underlying it for IO
2529  *
2530  * @handle - handle for journal operations
2531  * @mpd - extent to map
2532  * @give_up_on_write - we set this to true iff there is a fatal error and there
2533  *                     is no hope of writing the data. The caller should discard
2534  *                     dirty pages to avoid infinite loops.
2535  *
2536  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2537  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2538  * them to initialized or split the described range from larger unwritten
2539  * extent. Note that we need not map all the described range since allocation
2540  * can return less blocks or the range is covered by more unwritten extents. We
2541  * cannot map more because we are limited by reserved transaction credits. On
2542  * the other hand we always make sure that the last touched page is fully
2543  * mapped so that it can be written out (and thus forward progress is
2544  * guaranteed). After mapping we submit all mapped pages for IO.
2545  */
2546 static int mpage_map_and_submit_extent(handle_t *handle,
2547                                        struct mpage_da_data *mpd,
2548                                        bool *give_up_on_write)
2549 {
2550         struct inode *inode = mpd->inode;
2551         struct ext4_map_blocks *map = &mpd->map;
2552         int err;
2553         loff_t disksize;
2554         int progress = 0;
2555
2556         mpd->io_submit.io_end->offset =
2557                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2558         do {
2559                 err = mpage_map_one_extent(handle, mpd);
2560                 if (err < 0) {
2561                         struct super_block *sb = inode->i_sb;
2562
2563                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2564                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2565                                 goto invalidate_dirty_pages;
2566                         /*
2567                          * Let the uper layers retry transient errors.
2568                          * In the case of ENOSPC, if ext4_count_free_blocks()
2569                          * is non-zero, a commit should free up blocks.
2570                          */
2571                         if ((err == -ENOMEM) ||
2572                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2573                                 if (progress)
2574                                         goto update_disksize;
2575                                 return err;
2576                         }
2577                         ext4_msg(sb, KERN_CRIT,
2578                                  "Delayed block allocation failed for "
2579                                  "inode %lu at logical offset %llu with"
2580                                  " max blocks %u with error %d",
2581                                  inode->i_ino,
2582                                  (unsigned long long)map->m_lblk,
2583                                  (unsigned)map->m_len, -err);
2584                         ext4_msg(sb, KERN_CRIT,
2585                                  "This should not happen!! Data will "
2586                                  "be lost\n");
2587                         if (err == -ENOSPC)
2588                                 ext4_print_free_blocks(inode);
2589                 invalidate_dirty_pages:
2590                         *give_up_on_write = true;
2591                         return err;
2592                 }
2593                 progress = 1;
2594                 /*
2595                  * Update buffer state, submit mapped pages, and get us new
2596                  * extent to map
2597                  */
2598                 err = mpage_map_and_submit_buffers(mpd);
2599                 if (err < 0)
2600                         goto update_disksize;
2601         } while (map->m_len);
2602
2603 update_disksize:
2604         /*
2605          * Update on-disk size after IO is submitted.  Races with
2606          * truncate are avoided by checking i_size under i_data_sem.
2607          */
2608         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2609         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2610                 int err2;
2611                 loff_t i_size;
2612
2613                 down_write(&EXT4_I(inode)->i_data_sem);
2614                 i_size = i_size_read(inode);
2615                 if (disksize > i_size)
2616                         disksize = i_size;
2617                 if (disksize > EXT4_I(inode)->i_disksize)
2618                         EXT4_I(inode)->i_disksize = disksize;
2619                 up_write(&EXT4_I(inode)->i_data_sem);
2620                 err2 = ext4_mark_inode_dirty(handle, inode);
2621                 if (err2)
2622                         ext4_error(inode->i_sb,
2623                                    "Failed to mark inode %lu dirty",
2624                                    inode->i_ino);
2625                 if (!err)
2626                         err = err2;
2627         }
2628         return err;
2629 }
2630
2631 /*
2632  * Calculate the total number of credits to reserve for one writepages
2633  * iteration. This is called from ext4_writepages(). We map an extent of
2634  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2635  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2636  * bpp - 1 blocks in bpp different extents.
2637  */
2638 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2639 {
2640         int bpp = ext4_journal_blocks_per_page(inode);
2641
2642         return ext4_meta_trans_blocks(inode,
2643                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2644 }
2645
2646 /*
2647  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2648  *                               and underlying extent to map
2649  *
2650  * @mpd - where to look for pages
2651  *
2652  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2653  * IO immediately. When we find a page which isn't mapped we start accumulating
2654  * extent of buffers underlying these pages that needs mapping (formed by
2655  * either delayed or unwritten buffers). We also lock the pages containing
2656  * these buffers. The extent found is returned in @mpd structure (starting at
2657  * mpd->lblk with length mpd->len blocks).
2658  *
2659  * Note that this function can attach bios to one io_end structure which are
2660  * neither logically nor physically contiguous. Although it may seem as an
2661  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2662  * case as we need to track IO to all buffers underlying a page in one io_end.
2663  */
2664 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2665 {
2666         struct address_space *mapping = mpd->inode->i_mapping;
2667         struct pagevec pvec;
2668         unsigned int nr_pages;
2669         long left = mpd->wbc->nr_to_write;
2670         pgoff_t index = mpd->first_page;
2671         pgoff_t end = mpd->last_page;
2672         xa_mark_t tag;
2673         int i, err = 0;
2674         int blkbits = mpd->inode->i_blkbits;
2675         ext4_lblk_t lblk;
2676         struct buffer_head *head;
2677
2678         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2679                 tag = PAGECACHE_TAG_TOWRITE;
2680         else
2681                 tag = PAGECACHE_TAG_DIRTY;
2682
2683         pagevec_init(&pvec);
2684         mpd->map.m_len = 0;
2685         mpd->next_page = index;
2686         while (index <= end) {
2687                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2688                                 tag);
2689                 if (nr_pages == 0)
2690                         goto out;
2691
2692                 for (i = 0; i < nr_pages; i++) {
2693                         struct page *page = pvec.pages[i];
2694
2695                         /*
2696                          * Accumulated enough dirty pages? This doesn't apply
2697                          * to WB_SYNC_ALL mode. For integrity sync we have to
2698                          * keep going because someone may be concurrently
2699                          * dirtying pages, and we might have synced a lot of
2700                          * newly appeared dirty pages, but have not synced all
2701                          * of the old dirty pages.
2702                          */
2703                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2704                                 goto out;
2705
2706                         /* If we can't merge this page, we are done. */
2707                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2708                                 goto out;
2709
2710                         lock_page(page);
2711                         /*
2712                          * If the page is no longer dirty, or its mapping no
2713                          * longer corresponds to inode we are writing (which
2714                          * means it has been truncated or invalidated), or the
2715                          * page is already under writeback and we are not doing
2716                          * a data integrity writeback, skip the page
2717                          */
2718                         if (!PageDirty(page) ||
2719                             (PageWriteback(page) &&
2720                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2721                             unlikely(page->mapping != mapping)) {
2722                                 unlock_page(page);
2723                                 continue;
2724                         }
2725
2726                         wait_on_page_writeback(page);
2727                         BUG_ON(PageWriteback(page));
2728
2729                         /*
2730                          * Should never happen but for buggy code in
2731                          * other subsystems that call
2732                          * set_page_dirty() without properly warning
2733                          * the file system first.  See [1] for more
2734                          * information.
2735                          *
2736                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2737                          */
2738                         if (!page_has_buffers(page)) {
2739                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2740                                 ClearPageDirty(page);
2741                                 unlock_page(page);
2742                                 continue;
2743                         }
2744
2745                         if (mpd->map.m_len == 0)
2746                                 mpd->first_page = page->index;
2747                         mpd->next_page = page->index + 1;
2748                         /* Add all dirty buffers to mpd */
2749                         lblk = ((ext4_lblk_t)page->index) <<
2750                                 (PAGE_SHIFT - blkbits);
2751                         head = page_buffers(page);
2752                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2753                         if (err <= 0)
2754                                 goto out;
2755                         err = 0;
2756                         left--;
2757                 }
2758                 pagevec_release(&pvec);
2759                 cond_resched();
2760         }
2761         return 0;
2762 out:
2763         pagevec_release(&pvec);
2764         return err;
2765 }
2766
2767 static int ext4_writepages(struct address_space *mapping,
2768                            struct writeback_control *wbc)
2769 {
2770         pgoff_t writeback_index = 0;
2771         long nr_to_write = wbc->nr_to_write;
2772         int range_whole = 0;
2773         int cycled = 1;
2774         handle_t *handle = NULL;
2775         struct mpage_da_data mpd;
2776         struct inode *inode = mapping->host;
2777         int needed_blocks, rsv_blocks = 0, ret = 0;
2778         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2779         bool done;
2780         struct blk_plug plug;
2781         bool give_up_on_write = false;
2782
2783         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2784                 return -EIO;
2785
2786         percpu_down_read(&sbi->s_writepages_rwsem);
2787         trace_ext4_writepages(inode, wbc);
2788
2789         /*
2790          * No pages to write? This is mainly a kludge to avoid starting
2791          * a transaction for special inodes like journal inode on last iput()
2792          * because that could violate lock ordering on umount
2793          */
2794         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2795                 goto out_writepages;
2796
2797         if (ext4_should_journal_data(inode)) {
2798                 ret = generic_writepages(mapping, wbc);
2799                 goto out_writepages;
2800         }
2801
2802         /*
2803          * If the filesystem has aborted, it is read-only, so return
2804          * right away instead of dumping stack traces later on that
2805          * will obscure the real source of the problem.  We test
2806          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2807          * the latter could be true if the filesystem is mounted
2808          * read-only, and in that case, ext4_writepages should
2809          * *never* be called, so if that ever happens, we would want
2810          * the stack trace.
2811          */
2812         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2813                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2814                 ret = -EROFS;
2815                 goto out_writepages;
2816         }
2817
2818         /*
2819          * If we have inline data and arrive here, it means that
2820          * we will soon create the block for the 1st page, so
2821          * we'd better clear the inline data here.
2822          */
2823         if (ext4_has_inline_data(inode)) {
2824                 /* Just inode will be modified... */
2825                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2826                 if (IS_ERR(handle)) {
2827                         ret = PTR_ERR(handle);
2828                         goto out_writepages;
2829                 }
2830                 BUG_ON(ext4_test_inode_state(inode,
2831                                 EXT4_STATE_MAY_INLINE_DATA));
2832                 ext4_destroy_inline_data(handle, inode);
2833                 ext4_journal_stop(handle);
2834         }
2835
2836         if (ext4_should_dioread_nolock(inode)) {
2837                 /*
2838                  * We may need to convert up to one extent per block in
2839                  * the page and we may dirty the inode.
2840                  */
2841                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2842                                                 PAGE_SIZE >> inode->i_blkbits);
2843         }
2844
2845         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2846                 range_whole = 1;
2847
2848         if (wbc->range_cyclic) {
2849                 writeback_index = mapping->writeback_index;
2850                 if (writeback_index)
2851                         cycled = 0;
2852                 mpd.first_page = writeback_index;
2853                 mpd.last_page = -1;
2854         } else {
2855                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2856                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2857         }
2858
2859         mpd.inode = inode;
2860         mpd.wbc = wbc;
2861         ext4_io_submit_init(&mpd.io_submit, wbc);
2862 retry:
2863         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2864                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2865         done = false;
2866         blk_start_plug(&plug);
2867
2868         /*
2869          * First writeback pages that don't need mapping - we can avoid
2870          * starting a transaction unnecessarily and also avoid being blocked
2871          * in the block layer on device congestion while having transaction
2872          * started.
2873          */
2874         mpd.do_map = 0;
2875         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2876         if (!mpd.io_submit.io_end) {
2877                 ret = -ENOMEM;
2878                 goto unplug;
2879         }
2880         ret = mpage_prepare_extent_to_map(&mpd);
2881         /* Unlock pages we didn't use */
2882         mpage_release_unused_pages(&mpd, false);
2883         /* Submit prepared bio */
2884         ext4_io_submit(&mpd.io_submit);
2885         ext4_put_io_end_defer(mpd.io_submit.io_end);
2886         mpd.io_submit.io_end = NULL;
2887         if (ret < 0)
2888                 goto unplug;
2889
2890         while (!done && mpd.first_page <= mpd.last_page) {
2891                 /* For each extent of pages we use new io_end */
2892                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2893                 if (!mpd.io_submit.io_end) {
2894                         ret = -ENOMEM;
2895                         break;
2896                 }
2897
2898                 /*
2899                  * We have two constraints: We find one extent to map and we
2900                  * must always write out whole page (makes a difference when
2901                  * blocksize < pagesize) so that we don't block on IO when we
2902                  * try to write out the rest of the page. Journalled mode is
2903                  * not supported by delalloc.
2904                  */
2905                 BUG_ON(ext4_should_journal_data(inode));
2906                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2907
2908                 /* start a new transaction */
2909                 handle = ext4_journal_start_with_reserve(inode,
2910                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2911                 if (IS_ERR(handle)) {
2912                         ret = PTR_ERR(handle);
2913                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2914                                "%ld pages, ino %lu; err %d", __func__,
2915                                 wbc->nr_to_write, inode->i_ino, ret);
2916                         /* Release allocated io_end */
2917                         ext4_put_io_end(mpd.io_submit.io_end);
2918                         mpd.io_submit.io_end = NULL;
2919                         break;
2920                 }
2921                 mpd.do_map = 1;
2922
2923                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2924                 ret = mpage_prepare_extent_to_map(&mpd);
2925                 if (!ret) {
2926                         if (mpd.map.m_len)
2927                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2928                                         &give_up_on_write);
2929                         else {
2930                                 /*
2931                                  * We scanned the whole range (or exhausted
2932                                  * nr_to_write), submitted what was mapped and
2933                                  * didn't find anything needing mapping. We are
2934                                  * done.
2935                                  */
2936                                 done = true;
2937                         }
2938                 }
2939                 /*
2940                  * Caution: If the handle is synchronous,
2941                  * ext4_journal_stop() can wait for transaction commit
2942                  * to finish which may depend on writeback of pages to
2943                  * complete or on page lock to be released.  In that
2944                  * case, we have to wait until after after we have
2945                  * submitted all the IO, released page locks we hold,
2946                  * and dropped io_end reference (for extent conversion
2947                  * to be able to complete) before stopping the handle.
2948                  */
2949                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2950                         ext4_journal_stop(handle);
2951                         handle = NULL;
2952                         mpd.do_map = 0;
2953                 }
2954                 /* Unlock pages we didn't use */
2955                 mpage_release_unused_pages(&mpd, give_up_on_write);
2956                 /* Submit prepared bio */
2957                 ext4_io_submit(&mpd.io_submit);
2958
2959                 /*
2960                  * Drop our io_end reference we got from init. We have
2961                  * to be careful and use deferred io_end finishing if
2962                  * we are still holding the transaction as we can
2963                  * release the last reference to io_end which may end
2964                  * up doing unwritten extent conversion.
2965                  */
2966                 if (handle) {
2967                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2968                         ext4_journal_stop(handle);
2969                 } else
2970                         ext4_put_io_end(mpd.io_submit.io_end);
2971                 mpd.io_submit.io_end = NULL;
2972
2973                 if (ret == -ENOSPC && sbi->s_journal) {
2974                         /*
2975                          * Commit the transaction which would
2976                          * free blocks released in the transaction
2977                          * and try again
2978                          */
2979                         jbd2_journal_force_commit_nested(sbi->s_journal);
2980                         ret = 0;
2981                         continue;
2982                 }
2983                 /* Fatal error - ENOMEM, EIO... */
2984                 if (ret)
2985                         break;
2986         }
2987 unplug:
2988         blk_finish_plug(&plug);
2989         if (!ret && !cycled && wbc->nr_to_write > 0) {
2990                 cycled = 1;
2991                 mpd.last_page = writeback_index - 1;
2992                 mpd.first_page = 0;
2993                 goto retry;
2994         }
2995
2996         /* Update index */
2997         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2998                 /*
2999                  * Set the writeback_index so that range_cyclic
3000                  * mode will write it back later
3001                  */
3002                 mapping->writeback_index = mpd.first_page;
3003
3004 out_writepages:
3005         trace_ext4_writepages_result(inode, wbc, ret,
3006                                      nr_to_write - wbc->nr_to_write);
3007         percpu_up_read(&sbi->s_writepages_rwsem);
3008         return ret;
3009 }
3010
3011 static int ext4_dax_writepages(struct address_space *mapping,
3012                                struct writeback_control *wbc)
3013 {
3014         int ret;
3015         long nr_to_write = wbc->nr_to_write;
3016         struct inode *inode = mapping->host;
3017         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3018
3019         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3020                 return -EIO;
3021
3022         percpu_down_read(&sbi->s_writepages_rwsem);
3023         trace_ext4_writepages(inode, wbc);
3024
3025         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3026         trace_ext4_writepages_result(inode, wbc, ret,
3027                                      nr_to_write - wbc->nr_to_write);
3028         percpu_up_read(&sbi->s_writepages_rwsem);
3029         return ret;
3030 }
3031
3032 static int ext4_nonda_switch(struct super_block *sb)
3033 {
3034         s64 free_clusters, dirty_clusters;
3035         struct ext4_sb_info *sbi = EXT4_SB(sb);
3036
3037         /*
3038          * switch to non delalloc mode if we are running low
3039          * on free block. The free block accounting via percpu
3040          * counters can get slightly wrong with percpu_counter_batch getting
3041          * accumulated on each CPU without updating global counters
3042          * Delalloc need an accurate free block accounting. So switch
3043          * to non delalloc when we are near to error range.
3044          */
3045         free_clusters =
3046                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3047         dirty_clusters =
3048                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3049         /*
3050          * Start pushing delalloc when 1/2 of free blocks are dirty.
3051          */
3052         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3053                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3054
3055         if (2 * free_clusters < 3 * dirty_clusters ||
3056             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3057                 /*
3058                  * free block count is less than 150% of dirty blocks
3059                  * or free blocks is less than watermark
3060                  */
3061                 return 1;
3062         }
3063         return 0;
3064 }
3065
3066 /* We always reserve for an inode update; the superblock could be there too */
3067 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3068 {
3069         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3070                 return 1;
3071
3072         if (pos + len <= 0x7fffffffULL)
3073                 return 1;
3074
3075         /* We might need to update the superblock to set LARGE_FILE */
3076         return 2;
3077 }
3078
3079 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3080                                loff_t pos, unsigned len, unsigned flags,
3081                                struct page **pagep, void **fsdata)
3082 {
3083         int ret, retries = 0;
3084         struct page *page;
3085         pgoff_t index;
3086         struct inode *inode = mapping->host;
3087         handle_t *handle;
3088
3089         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3090                 return -EIO;
3091
3092         index = pos >> PAGE_SHIFT;
3093
3094         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3095             ext4_verity_in_progress(inode)) {
3096                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3097                 return ext4_write_begin(file, mapping, pos,
3098                                         len, flags, pagep, fsdata);
3099         }
3100         *fsdata = (void *)0;
3101         trace_ext4_da_write_begin(inode, pos, len, flags);
3102
3103         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3104                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3105                                                       pos, len, flags,
3106                                                       pagep, fsdata);
3107                 if (ret < 0)
3108                         return ret;
3109                 if (ret == 1)
3110                         return 0;
3111         }
3112
3113         /*
3114          * grab_cache_page_write_begin() can take a long time if the
3115          * system is thrashing due to memory pressure, or if the page
3116          * is being written back.  So grab it first before we start
3117          * the transaction handle.  This also allows us to allocate
3118          * the page (if needed) without using GFP_NOFS.
3119          */
3120 retry_grab:
3121         page = grab_cache_page_write_begin(mapping, index, flags);
3122         if (!page)
3123                 return -ENOMEM;
3124         unlock_page(page);
3125
3126         /*
3127          * With delayed allocation, we don't log the i_disksize update
3128          * if there is delayed block allocation. But we still need
3129          * to journalling the i_disksize update if writes to the end
3130          * of file which has an already mapped buffer.
3131          */
3132 retry_journal:
3133         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3134                                 ext4_da_write_credits(inode, pos, len));
3135         if (IS_ERR(handle)) {
3136                 put_page(page);
3137                 return PTR_ERR(handle);
3138         }
3139
3140         lock_page(page);
3141         if (page->mapping != mapping) {
3142                 /* The page got truncated from under us */
3143                 unlock_page(page);
3144                 put_page(page);
3145                 ext4_journal_stop(handle);
3146                 goto retry_grab;
3147         }
3148         /* In case writeback began while the page was unlocked */
3149         wait_for_stable_page(page);
3150
3151 #ifdef CONFIG_FS_ENCRYPTION
3152         ret = ext4_block_write_begin(page, pos, len,
3153                                      ext4_da_get_block_prep);
3154 #else
3155         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3156 #endif
3157         if (ret < 0) {
3158                 unlock_page(page);
3159                 ext4_journal_stop(handle);
3160                 /*
3161                  * block_write_begin may have instantiated a few blocks
3162                  * outside i_size.  Trim these off again. Don't need
3163                  * i_size_read because we hold i_mutex.
3164                  */
3165                 if (pos + len > inode->i_size)
3166                         ext4_truncate_failed_write(inode);
3167
3168                 if (ret == -ENOSPC &&
3169                     ext4_should_retry_alloc(inode->i_sb, &retries))
3170                         goto retry_journal;
3171
3172                 put_page(page);
3173                 return ret;
3174         }
3175
3176         *pagep = page;
3177         return ret;
3178 }
3179
3180 /*
3181  * Check if we should update i_disksize
3182  * when write to the end of file but not require block allocation
3183  */
3184 static int ext4_da_should_update_i_disksize(struct page *page,
3185                                             unsigned long offset)
3186 {
3187         struct buffer_head *bh;
3188         struct inode *inode = page->mapping->host;
3189         unsigned int idx;
3190         int i;
3191
3192         bh = page_buffers(page);
3193         idx = offset >> inode->i_blkbits;
3194
3195         for (i = 0; i < idx; i++)
3196                 bh = bh->b_this_page;
3197
3198         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3199                 return 0;
3200         return 1;
3201 }
3202
3203 static int ext4_da_write_end(struct file *file,
3204                              struct address_space *mapping,
3205                              loff_t pos, unsigned len, unsigned copied,
3206                              struct page *page, void *fsdata)
3207 {
3208         struct inode *inode = mapping->host;
3209         int ret = 0, ret2;
3210         handle_t *handle = ext4_journal_current_handle();
3211         loff_t new_i_size;
3212         unsigned long start, end;
3213         int write_mode = (int)(unsigned long)fsdata;
3214
3215         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3216                 return ext4_write_end(file, mapping, pos,
3217                                       len, copied, page, fsdata);
3218
3219         trace_ext4_da_write_end(inode, pos, len, copied);
3220         start = pos & (PAGE_SIZE - 1);
3221         end = start + copied - 1;
3222
3223         /*
3224          * generic_write_end() will run mark_inode_dirty() if i_size
3225          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3226          * into that.
3227          */
3228         new_i_size = pos + copied;
3229         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3230                 if (ext4_has_inline_data(inode) ||
3231                     ext4_da_should_update_i_disksize(page, end)) {
3232                         ext4_update_i_disksize(inode, new_i_size);
3233                         /* We need to mark inode dirty even if
3234                          * new_i_size is less that inode->i_size
3235                          * bu greater than i_disksize.(hint delalloc)
3236                          */
3237                         ext4_mark_inode_dirty(handle, inode);
3238                 }
3239         }
3240
3241         if (write_mode != CONVERT_INLINE_DATA &&
3242             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3243             ext4_has_inline_data(inode))
3244                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3245                                                      page);
3246         else
3247                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3248                                                         page, fsdata);
3249
3250         copied = ret2;
3251         if (ret2 < 0)
3252                 ret = ret2;
3253         ret2 = ext4_journal_stop(handle);
3254         if (!ret)
3255                 ret = ret2;
3256
3257         return ret ? ret : copied;
3258 }
3259
3260 /*
3261  * Force all delayed allocation blocks to be allocated for a given inode.
3262  */
3263 int ext4_alloc_da_blocks(struct inode *inode)
3264 {
3265         trace_ext4_alloc_da_blocks(inode);
3266
3267         if (!EXT4_I(inode)->i_reserved_data_blocks)
3268                 return 0;
3269
3270         /*
3271          * We do something simple for now.  The filemap_flush() will
3272          * also start triggering a write of the data blocks, which is
3273          * not strictly speaking necessary (and for users of
3274          * laptop_mode, not even desirable).  However, to do otherwise
3275          * would require replicating code paths in:
3276          *
3277          * ext4_writepages() ->
3278          *    write_cache_pages() ---> (via passed in callback function)
3279          *        __mpage_da_writepage() -->
3280          *           mpage_add_bh_to_extent()
3281          *           mpage_da_map_blocks()
3282          *
3283          * The problem is that write_cache_pages(), located in
3284          * mm/page-writeback.c, marks pages clean in preparation for
3285          * doing I/O, which is not desirable if we're not planning on
3286          * doing I/O at all.
3287          *
3288          * We could call write_cache_pages(), and then redirty all of
3289          * the pages by calling redirty_page_for_writepage() but that
3290          * would be ugly in the extreme.  So instead we would need to
3291          * replicate parts of the code in the above functions,
3292          * simplifying them because we wouldn't actually intend to
3293          * write out the pages, but rather only collect contiguous
3294          * logical block extents, call the multi-block allocator, and
3295          * then update the buffer heads with the block allocations.
3296          *
3297          * For now, though, we'll cheat by calling filemap_flush(),
3298          * which will map the blocks, and start the I/O, but not
3299          * actually wait for the I/O to complete.
3300          */
3301         return filemap_flush(inode->i_mapping);
3302 }
3303
3304 /*
3305  * bmap() is special.  It gets used by applications such as lilo and by
3306  * the swapper to find the on-disk block of a specific piece of data.
3307  *
3308  * Naturally, this is dangerous if the block concerned is still in the
3309  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3310  * filesystem and enables swap, then they may get a nasty shock when the
3311  * data getting swapped to that swapfile suddenly gets overwritten by
3312  * the original zero's written out previously to the journal and
3313  * awaiting writeback in the kernel's buffer cache.
3314  *
3315  * So, if we see any bmap calls here on a modified, data-journaled file,
3316  * take extra steps to flush any blocks which might be in the cache.
3317  */
3318 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3319 {
3320         struct inode *inode = mapping->host;
3321         journal_t *journal;
3322         int err;
3323
3324         /*
3325          * We can get here for an inline file via the FIBMAP ioctl
3326          */
3327         if (ext4_has_inline_data(inode))
3328                 return 0;
3329
3330         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3331                         test_opt(inode->i_sb, DELALLOC)) {
3332                 /*
3333                  * With delalloc we want to sync the file
3334                  * so that we can make sure we allocate
3335                  * blocks for file
3336                  */
3337                 filemap_write_and_wait(mapping);
3338         }
3339
3340         if (EXT4_JOURNAL(inode) &&
3341             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3342                 /*
3343                  * This is a REALLY heavyweight approach, but the use of
3344                  * bmap on dirty files is expected to be extremely rare:
3345                  * only if we run lilo or swapon on a freshly made file
3346                  * do we expect this to happen.
3347                  *
3348                  * (bmap requires CAP_SYS_RAWIO so this does not
3349                  * represent an unprivileged user DOS attack --- we'd be
3350                  * in trouble if mortal users could trigger this path at
3351                  * will.)
3352                  *
3353                  * NB. EXT4_STATE_JDATA is not set on files other than
3354                  * regular files.  If somebody wants to bmap a directory
3355                  * or symlink and gets confused because the buffer
3356                  * hasn't yet been flushed to disk, they deserve
3357                  * everything they get.
3358                  */
3359
3360                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3361                 journal = EXT4_JOURNAL(inode);
3362                 jbd2_journal_lock_updates(journal);
3363                 err = jbd2_journal_flush(journal);
3364                 jbd2_journal_unlock_updates(journal);
3365
3366                 if (err)
3367                         return 0;
3368         }
3369
3370         return generic_block_bmap(mapping, block, ext4_get_block);
3371 }
3372
3373 static int ext4_readpage(struct file *file, struct page *page)
3374 {
3375         int ret = -EAGAIN;
3376         struct inode *inode = page->mapping->host;
3377
3378         trace_ext4_readpage(page);
3379
3380         if (ext4_has_inline_data(inode))
3381                 ret = ext4_readpage_inline(inode, page);
3382
3383         if (ret == -EAGAIN)
3384                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3385                                                 false);
3386
3387         return ret;
3388 }
3389
3390 static int
3391 ext4_readpages(struct file *file, struct address_space *mapping,
3392                 struct list_head *pages, unsigned nr_pages)
3393 {
3394         struct inode *inode = mapping->host;
3395
3396         /* If the file has inline data, no need to do readpages. */
3397         if (ext4_has_inline_data(inode))
3398                 return 0;
3399
3400         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3401 }
3402
3403 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3404                                 unsigned int length)
3405 {
3406         trace_ext4_invalidatepage(page, offset, length);
3407
3408         /* No journalling happens on data buffers when this function is used */
3409         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3410
3411         block_invalidatepage(page, offset, length);
3412 }
3413
3414 static int __ext4_journalled_invalidatepage(struct page *page,
3415                                             unsigned int offset,
3416                                             unsigned int length)
3417 {
3418         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3419
3420         trace_ext4_journalled_invalidatepage(page, offset, length);
3421
3422         /*
3423          * If it's a full truncate we just forget about the pending dirtying
3424          */
3425         if (offset == 0 && length == PAGE_SIZE)
3426                 ClearPageChecked(page);
3427
3428         return jbd2_journal_invalidatepage(journal, page, offset, length);
3429 }
3430
3431 /* Wrapper for aops... */
3432 static void ext4_journalled_invalidatepage(struct page *page,
3433                                            unsigned int offset,
3434                                            unsigned int length)
3435 {
3436         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3437 }
3438
3439 static int ext4_releasepage(struct page *page, gfp_t wait)
3440 {
3441         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3442
3443         trace_ext4_releasepage(page);
3444
3445         /* Page has dirty journalled data -> cannot release */
3446         if (PageChecked(page))
3447                 return 0;
3448         if (journal)
3449                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3450         else
3451                 return try_to_free_buffers(page);
3452 }
3453
3454 static bool ext4_inode_datasync_dirty(struct inode *inode)
3455 {
3456         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3457
3458         if (journal)
3459                 return !jbd2_transaction_committed(journal,
3460                                         EXT4_I(inode)->i_datasync_tid);
3461         /* Any metadata buffers to write? */
3462         if (!list_empty(&inode->i_mapping->private_list))
3463                 return true;
3464         return inode->i_state & I_DIRTY_DATASYNC;
3465 }
3466
3467 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3468                             unsigned flags, struct iomap *iomap)
3469 {
3470         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3471         unsigned int blkbits = inode->i_blkbits;
3472         unsigned long first_block, last_block;
3473         struct ext4_map_blocks map;
3474         bool delalloc = false;
3475         int ret;
3476
3477         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3478                 return -EINVAL;
3479         first_block = offset >> blkbits;
3480         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3481                            EXT4_MAX_LOGICAL_BLOCK);
3482
3483         if (flags & IOMAP_REPORT) {
3484                 if (ext4_has_inline_data(inode)) {
3485                         ret = ext4_inline_data_iomap(inode, iomap);
3486                         if (ret != -EAGAIN) {
3487                                 if (ret == 0 && offset >= iomap->length)
3488                                         ret = -ENOENT;
3489                                 return ret;
3490                         }
3491                 }
3492         } else {
3493                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3494                         return -ERANGE;
3495         }
3496
3497         map.m_lblk = first_block;
3498         map.m_len = last_block - first_block + 1;
3499
3500         if (flags & IOMAP_REPORT) {
3501                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3502                 if (ret < 0)
3503                         return ret;
3504
3505                 if (ret == 0) {
3506                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3507                         struct extent_status es;
3508
3509                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3510                                                   map.m_lblk, end, &es);
3511
3512                         if (!es.es_len || es.es_lblk > end) {
3513                                 /* entire range is a hole */
3514                         } else if (es.es_lblk > map.m_lblk) {
3515                                 /* range starts with a hole */
3516                                 map.m_len = es.es_lblk - map.m_lblk;
3517                         } else {
3518                                 ext4_lblk_t offs = 0;
3519
3520                                 if (es.es_lblk < map.m_lblk)
3521                                         offs = map.m_lblk - es.es_lblk;
3522                                 map.m_lblk = es.es_lblk + offs;
3523                                 map.m_len = es.es_len - offs;
3524                                 delalloc = true;
3525                         }
3526                 }
3527         } else if (flags & IOMAP_WRITE) {
3528                 int dio_credits;
3529                 handle_t *handle;
3530                 int retries = 0;
3531
3532                 /* Trim mapping request to maximum we can map at once for DIO */
3533                 if (map.m_len > DIO_MAX_BLOCKS)
3534                         map.m_len = DIO_MAX_BLOCKS;
3535                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3536 retry:
3537                 /*
3538                  * Either we allocate blocks and then we don't get unwritten
3539                  * extent so we have reserved enough credits, or the blocks
3540                  * are already allocated and unwritten and in that case
3541                  * extent conversion fits in the credits as well.
3542                  */
3543                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3544                                             dio_credits);
3545                 if (IS_ERR(handle))
3546                         return PTR_ERR(handle);
3547
3548                 ret = ext4_map_blocks(handle, inode, &map,
3549                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3550                 if (ret < 0) {
3551                         ext4_journal_stop(handle);
3552                         if (ret == -ENOSPC &&
3553                             ext4_should_retry_alloc(inode->i_sb, &retries))
3554                                 goto retry;
3555                         return ret;
3556                 }
3557
3558                 /*
3559                  * If we added blocks beyond i_size, we need to make sure they
3560                  * will get truncated if we crash before updating i_size in
3561                  * ext4_iomap_end(). For faults we don't need to do that (and
3562                  * even cannot because for orphan list operations inode_lock is
3563                  * required) - if we happen to instantiate block beyond i_size,
3564                  * it is because we race with truncate which has already added
3565                  * the inode to the orphan list.
3566                  */
3567                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3568                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3569                         int err;
3570
3571                         err = ext4_orphan_add(handle, inode);
3572                         if (err < 0) {
3573                                 ext4_journal_stop(handle);
3574                                 return err;
3575                         }
3576                 }
3577                 ext4_journal_stop(handle);
3578         } else {
3579                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3580                 if (ret < 0)
3581                         return ret;
3582         }
3583
3584         /*
3585          * Writes that span EOF might trigger an I/O size update on completion,
3586          * so consider them to be dirty for the purposes of O_DSYNC, even if
3587          * there is no other metadata changes being made or are pending here.
3588          */
3589         iomap->flags = 0;
3590         if (ext4_inode_datasync_dirty(inode) ||
3591             offset + length > i_size_read(inode))
3592                 iomap->flags |= IOMAP_F_DIRTY;
3593         iomap->bdev = inode->i_sb->s_bdev;
3594         iomap->dax_dev = sbi->s_daxdev;
3595         iomap->offset = (u64)first_block << blkbits;
3596         iomap->length = (u64)map.m_len << blkbits;
3597
3598         if (ret == 0) {
3599                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3600                 iomap->addr = IOMAP_NULL_ADDR;
3601         } else {
3602                 if (map.m_flags & EXT4_MAP_MAPPED) {
3603                         iomap->type = IOMAP_MAPPED;
3604                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3605                         iomap->type = IOMAP_UNWRITTEN;
3606                 } else {
3607                         WARN_ON_ONCE(1);
3608                         return -EIO;
3609                 }
3610                 iomap->addr = (u64)map.m_pblk << blkbits;
3611         }
3612
3613         if (map.m_flags & EXT4_MAP_NEW)
3614                 iomap->flags |= IOMAP_F_NEW;
3615
3616         return 0;
3617 }
3618
3619 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3620                           ssize_t written, unsigned flags, struct iomap *iomap)
3621 {
3622         int ret = 0;
3623         handle_t *handle;
3624         int blkbits = inode->i_blkbits;
3625         bool truncate = false;
3626
3627         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3628                 return 0;
3629
3630         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3631         if (IS_ERR(handle)) {
3632                 ret = PTR_ERR(handle);
3633                 goto orphan_del;
3634         }
3635         if (ext4_update_inode_size(inode, offset + written))
3636                 ext4_mark_inode_dirty(handle, inode);
3637         /*
3638          * We may need to truncate allocated but not written blocks beyond EOF.
3639          */
3640         if (iomap->offset + iomap->length > 
3641             ALIGN(inode->i_size, 1 << blkbits)) {
3642                 ext4_lblk_t written_blk, end_blk;
3643
3644                 written_blk = (offset + written) >> blkbits;
3645                 end_blk = (offset + length) >> blkbits;
3646                 if (written_blk < end_blk && ext4_can_truncate(inode))
3647                         truncate = true;
3648         }
3649         /*
3650          * Remove inode from orphan list if we were extending a inode and
3651          * everything went fine.
3652          */
3653         if (!truncate && inode->i_nlink &&
3654             !list_empty(&EXT4_I(inode)->i_orphan))
3655                 ext4_orphan_del(handle, inode);
3656         ext4_journal_stop(handle);
3657         if (truncate) {
3658                 ext4_truncate_failed_write(inode);
3659 orphan_del:
3660                 /*
3661                  * If truncate failed early the inode might still be on the
3662                  * orphan list; we need to make sure the inode is removed from
3663                  * the orphan list in that case.
3664                  */
3665                 if (inode->i_nlink)
3666                         ext4_orphan_del(NULL, inode);
3667         }
3668         return ret;
3669 }
3670
3671 const struct iomap_ops ext4_iomap_ops = {
3672         .iomap_begin            = ext4_iomap_begin,
3673         .iomap_end              = ext4_iomap_end,
3674 };
3675
3676 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3677                             ssize_t size, void *private)
3678 {
3679         ext4_io_end_t *io_end = private;
3680
3681         /* if not async direct IO just return */
3682         if (!io_end)
3683                 return 0;
3684
3685         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3686                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3687                   io_end, io_end->inode->i_ino, iocb, offset, size);
3688
3689         /*
3690          * Error during AIO DIO. We cannot convert unwritten extents as the
3691          * data was not written. Just clear the unwritten flag and drop io_end.
3692          */
3693         if (size <= 0) {
3694                 ext4_clear_io_unwritten_flag(io_end);
3695                 size = 0;
3696         }
3697         io_end->offset = offset;
3698         io_end->size = size;
3699         ext4_put_io_end(io_end);
3700
3701         return 0;
3702 }
3703
3704 /*
3705  * Handling of direct IO writes.
3706  *
3707  * For ext4 extent files, ext4 will do direct-io write even to holes,
3708  * preallocated extents, and those write extend the file, no need to
3709  * fall back to buffered IO.
3710  *
3711  * For holes, we fallocate those blocks, mark them as unwritten
3712  * If those blocks were preallocated, we mark sure they are split, but
3713  * still keep the range to write as unwritten.
3714  *
3715  * The unwritten extents will be converted to written when DIO is completed.
3716  * For async direct IO, since the IO may still pending when return, we
3717  * set up an end_io call back function, which will do the conversion
3718  * when async direct IO completed.
3719  *
3720  * If the O_DIRECT write will extend the file then add this inode to the
3721  * orphan list.  So recovery will truncate it back to the original size
3722  * if the machine crashes during the write.
3723  *
3724  */
3725 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3726 {
3727         struct file *file = iocb->ki_filp;
3728         struct inode *inode = file->f_mapping->host;
3729         struct ext4_inode_info *ei = EXT4_I(inode);
3730         ssize_t ret;
3731         loff_t offset = iocb->ki_pos;
3732         size_t count = iov_iter_count(iter);
3733         int overwrite = 0;
3734         get_block_t *get_block_func = NULL;
3735         int dio_flags = 0;
3736         loff_t final_size = offset + count;
3737         int orphan = 0;
3738         handle_t *handle;
3739
3740         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3741                 /* Credits for sb + inode write */
3742                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3743                 if (IS_ERR(handle)) {
3744                         ret = PTR_ERR(handle);
3745                         goto out;
3746                 }
3747                 ret = ext4_orphan_add(handle, inode);
3748                 if (ret) {
3749                         ext4_journal_stop(handle);
3750                         goto out;
3751                 }
3752                 orphan = 1;
3753                 ext4_update_i_disksize(inode, inode->i_size);
3754                 ext4_journal_stop(handle);
3755         }
3756
3757         BUG_ON(iocb->private == NULL);
3758
3759         /*
3760          * Make all waiters for direct IO properly wait also for extent
3761          * conversion. This also disallows race between truncate() and
3762          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3763          */
3764         inode_dio_begin(inode);
3765
3766         /* If we do a overwrite dio, i_mutex locking can be released */
3767         overwrite = *((int *)iocb->private);
3768
3769         if (overwrite)
3770                 inode_unlock(inode);
3771
3772         /*
3773          * For extent mapped files we could direct write to holes and fallocate.
3774          *
3775          * Allocated blocks to fill the hole are marked as unwritten to prevent
3776          * parallel buffered read to expose the stale data before DIO complete
3777          * the data IO.
3778          *
3779          * As to previously fallocated extents, ext4 get_block will just simply
3780          * mark the buffer mapped but still keep the extents unwritten.
3781          *
3782          * For non AIO case, we will convert those unwritten extents to written
3783          * after return back from blockdev_direct_IO. That way we save us from
3784          * allocating io_end structure and also the overhead of offloading
3785          * the extent convertion to a workqueue.
3786          *
3787          * For async DIO, the conversion needs to be deferred when the
3788          * IO is completed. The ext4 end_io callback function will be
3789          * called to take care of the conversion work.  Here for async
3790          * case, we allocate an io_end structure to hook to the iocb.
3791          */
3792         iocb->private = NULL;
3793         if (overwrite)
3794                 get_block_func = ext4_dio_get_block_overwrite;
3795         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3796                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3797                 get_block_func = ext4_dio_get_block;
3798                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3799         } else if (is_sync_kiocb(iocb)) {
3800                 get_block_func = ext4_dio_get_block_unwritten_sync;
3801                 dio_flags = DIO_LOCKING;
3802         } else {
3803                 get_block_func = ext4_dio_get_block_unwritten_async;
3804                 dio_flags = DIO_LOCKING;
3805         }
3806         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3807                                    get_block_func, ext4_end_io_dio, NULL,
3808                                    dio_flags);
3809
3810         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3811                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3812                 int err;
3813                 /*
3814                  * for non AIO case, since the IO is already
3815                  * completed, we could do the conversion right here
3816                  */
3817                 err = ext4_convert_unwritten_extents(NULL, inode,
3818                                                      offset, ret);
3819                 if (err < 0)
3820                         ret = err;
3821                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3822         }
3823
3824         inode_dio_end(inode);
3825         /* take i_mutex locking again if we do a ovewrite dio */
3826         if (overwrite)
3827                 inode_lock(inode);
3828
3829         if (ret < 0 && final_size > inode->i_size)
3830                 ext4_truncate_failed_write(inode);
3831
3832         /* Handle extending of i_size after direct IO write */
3833         if (orphan) {
3834                 int err;
3835
3836                 /* Credits for sb + inode write */
3837                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3838                 if (IS_ERR(handle)) {
3839                         /*
3840                          * We wrote the data but cannot extend
3841                          * i_size. Bail out. In async io case, we do
3842                          * not return error here because we have
3843                          * already submmitted the corresponding
3844                          * bio. Returning error here makes the caller
3845                          * think that this IO is done and failed
3846                          * resulting in race with bio's completion
3847                          * handler.
3848                          */
3849                         if (!ret)
3850                                 ret = PTR_ERR(handle);
3851                         if (inode->i_nlink)
3852                                 ext4_orphan_del(NULL, inode);
3853
3854                         goto out;
3855                 }
3856                 if (inode->i_nlink)
3857                         ext4_orphan_del(handle, inode);
3858                 if (ret > 0) {
3859                         loff_t end = offset + ret;
3860                         if (end > inode->i_size || end > ei->i_disksize) {
3861                                 ext4_update_i_disksize(inode, end);
3862                                 if (end > inode->i_size)
3863                                         i_size_write(inode, end);
3864                                 /*
3865                                  * We're going to return a positive `ret'
3866                                  * here due to non-zero-length I/O, so there's
3867                                  * no way of reporting error returns from
3868                                  * ext4_mark_inode_dirty() to userspace.  So
3869                                  * ignore it.
3870                                  */
3871                                 ext4_mark_inode_dirty(handle, inode);
3872                         }
3873                 }
3874                 err = ext4_journal_stop(handle);
3875                 if (ret == 0)
3876                         ret = err;
3877         }
3878 out:
3879         return ret;
3880 }
3881
3882 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3883 {
3884         struct address_space *mapping = iocb->ki_filp->f_mapping;
3885         struct inode *inode = mapping->host;
3886         size_t count = iov_iter_count(iter);
3887         ssize_t ret;
3888         loff_t offset = iocb->ki_pos;
3889         loff_t size = i_size_read(inode);
3890
3891         if (offset >= size)
3892                 return 0;
3893
3894         /*
3895          * Shared inode_lock is enough for us - it protects against concurrent
3896          * writes & truncates and since we take care of writing back page cache,
3897          * we are protected against page writeback as well.
3898          */
3899         if (iocb->ki_flags & IOCB_NOWAIT) {
3900                 if (!inode_trylock_shared(inode))
3901                         return -EAGAIN;
3902         } else {
3903                 inode_lock_shared(inode);
3904         }
3905
3906         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3907                                            iocb->ki_pos + count - 1);
3908         if (ret)
3909                 goto out_unlock;
3910         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3911                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3912 out_unlock:
3913         inode_unlock_shared(inode);
3914         return ret;
3915 }
3916
3917 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3918 {
3919         struct file *file = iocb->ki_filp;
3920         struct inode *inode = file->f_mapping->host;
3921         size_t count = iov_iter_count(iter);
3922         loff_t offset = iocb->ki_pos;
3923         ssize_t ret;
3924
3925 #ifdef CONFIG_FS_ENCRYPTION
3926         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3927                 return 0;
3928 #endif
3929         if (fsverity_active(inode))
3930                 return 0;
3931
3932         /*
3933          * If we are doing data journalling we don't support O_DIRECT
3934          */
3935         if (ext4_should_journal_data(inode))
3936                 return 0;
3937
3938         /* Let buffer I/O handle the inline data case. */
3939         if (ext4_has_inline_data(inode))
3940                 return 0;
3941
3942         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3943         if (iov_iter_rw(iter) == READ)
3944                 ret = ext4_direct_IO_read(iocb, iter);
3945         else
3946                 ret = ext4_direct_IO_write(iocb, iter);
3947         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3948         return ret;
3949 }
3950
3951 /*
3952  * Pages can be marked dirty completely asynchronously from ext4's journalling
3953  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3954  * much here because ->set_page_dirty is called under VFS locks.  The page is
3955  * not necessarily locked.
3956  *
3957  * We cannot just dirty the page and leave attached buffers clean, because the
3958  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3959  * or jbddirty because all the journalling code will explode.
3960  *
3961  * So what we do is to mark the page "pending dirty" and next time writepage
3962  * is called, propagate that into the buffers appropriately.
3963  */
3964 static int ext4_journalled_set_page_dirty(struct page *page)
3965 {
3966         SetPageChecked(page);
3967         return __set_page_dirty_nobuffers(page);
3968 }
3969
3970 static int ext4_set_page_dirty(struct page *page)
3971 {
3972         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3973         WARN_ON_ONCE(!page_has_buffers(page));
3974         return __set_page_dirty_buffers(page);
3975 }
3976
3977 static const struct address_space_operations ext4_aops = {
3978         .readpage               = ext4_readpage,
3979         .readpages              = ext4_readpages,
3980         .writepage              = ext4_writepage,
3981         .writepages             = ext4_writepages,
3982         .write_begin            = ext4_write_begin,
3983         .write_end              = ext4_write_end,
3984         .set_page_dirty         = ext4_set_page_dirty,
3985         .bmap                   = ext4_bmap,
3986         .invalidatepage         = ext4_invalidatepage,
3987         .releasepage            = ext4_releasepage,
3988         .direct_IO              = ext4_direct_IO,
3989         .migratepage            = buffer_migrate_page,
3990         .is_partially_uptodate  = block_is_partially_uptodate,
3991         .error_remove_page      = generic_error_remove_page,
3992 };
3993
3994 static const struct address_space_operations ext4_journalled_aops = {
3995         .readpage               = ext4_readpage,
3996         .readpages              = ext4_readpages,
3997         .writepage              = ext4_writepage,
3998         .writepages             = ext4_writepages,
3999         .write_begin            = ext4_write_begin,
4000         .write_end              = ext4_journalled_write_end,
4001         .set_page_dirty         = ext4_journalled_set_page_dirty,
4002         .bmap                   = ext4_bmap,
4003         .invalidatepage         = ext4_journalled_invalidatepage,
4004         .releasepage            = ext4_releasepage,
4005         .direct_IO              = ext4_direct_IO,
4006         .is_partially_uptodate  = block_is_partially_uptodate,
4007         .error_remove_page      = generic_error_remove_page,
4008 };
4009
4010 static const struct address_space_operations ext4_da_aops = {
4011         .readpage               = ext4_readpage,
4012         .readpages              = ext4_readpages,
4013         .writepage              = ext4_writepage,
4014         .writepages             = ext4_writepages,
4015         .write_begin            = ext4_da_write_begin,
4016         .write_end              = ext4_da_write_end,
4017         .set_page_dirty         = ext4_set_page_dirty,
4018         .bmap                   = ext4_bmap,
4019         .invalidatepage         = ext4_invalidatepage,
4020         .releasepage            = ext4_releasepage,
4021         .direct_IO              = ext4_direct_IO,
4022         .migratepage            = buffer_migrate_page,
4023         .is_partially_uptodate  = block_is_partially_uptodate,
4024         .error_remove_page      = generic_error_remove_page,
4025 };
4026
4027 static const struct address_space_operations ext4_dax_aops = {
4028         .writepages             = ext4_dax_writepages,
4029         .direct_IO              = noop_direct_IO,
4030         .set_page_dirty         = noop_set_page_dirty,
4031         .bmap                   = ext4_bmap,
4032         .invalidatepage         = noop_invalidatepage,
4033 };
4034
4035 void ext4_set_aops(struct inode *inode)
4036 {
4037         switch (ext4_inode_journal_mode(inode)) {
4038         case EXT4_INODE_ORDERED_DATA_MODE:
4039         case EXT4_INODE_WRITEBACK_DATA_MODE:
4040                 break;
4041         case EXT4_INODE_JOURNAL_DATA_MODE:
4042                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4043                 return;
4044         default:
4045                 BUG();
4046         }
4047         if (IS_DAX(inode))
4048                 inode->i_mapping->a_ops = &ext4_dax_aops;
4049         else if (test_opt(inode->i_sb, DELALLOC))
4050                 inode->i_mapping->a_ops = &ext4_da_aops;
4051         else
4052                 inode->i_mapping->a_ops = &ext4_aops;
4053 }
4054
4055 static int __ext4_block_zero_page_range(handle_t *handle,
4056                 struct address_space *mapping, loff_t from, loff_t length)
4057 {
4058         ext4_fsblk_t index = from >> PAGE_SHIFT;
4059         unsigned offset = from & (PAGE_SIZE-1);
4060         unsigned blocksize, pos;
4061         ext4_lblk_t iblock;
4062         struct inode *inode = mapping->host;
4063         struct buffer_head *bh;
4064         struct page *page;
4065         int err = 0;
4066
4067         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4068                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4069         if (!page)
4070                 return -ENOMEM;
4071
4072         blocksize = inode->i_sb->s_blocksize;
4073
4074         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4075
4076         if (!page_has_buffers(page))
4077                 create_empty_buffers(page, blocksize, 0);
4078
4079         /* Find the buffer that contains "offset" */
4080         bh = page_buffers(page);
4081         pos = blocksize;
4082         while (offset >= pos) {
4083                 bh = bh->b_this_page;
4084                 iblock++;
4085                 pos += blocksize;
4086         }
4087         if (buffer_freed(bh)) {
4088                 BUFFER_TRACE(bh, "freed: skip");
4089                 goto unlock;
4090         }
4091         if (!buffer_mapped(bh)) {
4092                 BUFFER_TRACE(bh, "unmapped");
4093                 ext4_get_block(inode, iblock, bh, 0);
4094                 /* unmapped? It's a hole - nothing to do */
4095                 if (!buffer_mapped(bh)) {
4096                         BUFFER_TRACE(bh, "still unmapped");
4097                         goto unlock;
4098                 }
4099         }
4100
4101         /* Ok, it's mapped. Make sure it's up-to-date */
4102         if (PageUptodate(page))
4103                 set_buffer_uptodate(bh);
4104
4105         if (!buffer_uptodate(bh)) {
4106                 err = -EIO;
4107                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4108                 wait_on_buffer(bh);
4109                 /* Uhhuh. Read error. Complain and punt. */
4110                 if (!buffer_uptodate(bh))
4111                         goto unlock;
4112                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4113                         /* We expect the key to be set. */
4114                         BUG_ON(!fscrypt_has_encryption_key(inode));
4115                         WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4116                                         page, blocksize, bh_offset(bh)));
4117                 }
4118         }
4119         if (ext4_should_journal_data(inode)) {
4120                 BUFFER_TRACE(bh, "get write access");
4121                 err = ext4_journal_get_write_access(handle, bh);
4122                 if (err)
4123                         goto unlock;
4124         }
4125         zero_user(page, offset, length);
4126         BUFFER_TRACE(bh, "zeroed end of block");
4127
4128         if (ext4_should_journal_data(inode)) {
4129                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4130         } else {
4131                 err = 0;
4132                 mark_buffer_dirty(bh);
4133                 if (ext4_should_order_data(inode))
4134                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4135                                         length);
4136         }
4137
4138 unlock:
4139         unlock_page(page);
4140         put_page(page);
4141         return err;
4142 }
4143
4144 /*
4145  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4146  * starting from file offset 'from'.  The range to be zero'd must
4147  * be contained with in one block.  If the specified range exceeds
4148  * the end of the block it will be shortened to end of the block
4149  * that cooresponds to 'from'
4150  */
4151 static int ext4_block_zero_page_range(handle_t *handle,
4152                 struct address_space *mapping, loff_t from, loff_t length)
4153 {
4154         struct inode *inode = mapping->host;
4155         unsigned offset = from & (PAGE_SIZE-1);
4156         unsigned blocksize = inode->i_sb->s_blocksize;
4157         unsigned max = blocksize - (offset & (blocksize - 1));
4158
4159         /*
4160          * correct length if it does not fall between
4161          * 'from' and the end of the block
4162          */
4163         if (length > max || length < 0)
4164                 length = max;
4165
4166         if (IS_DAX(inode)) {
4167                 return iomap_zero_range(inode, from, length, NULL,
4168                                         &ext4_iomap_ops);
4169         }
4170         return __ext4_block_zero_page_range(handle, mapping, from, length);
4171 }
4172
4173 /*
4174  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4175  * up to the end of the block which corresponds to `from'.
4176  * This required during truncate. We need to physically zero the tail end
4177  * of that block so it doesn't yield old data if the file is later grown.
4178  */
4179 static int ext4_block_truncate_page(handle_t *handle,
4180                 struct address_space *mapping, loff_t from)
4181 {
4182         unsigned offset = from & (PAGE_SIZE-1);
4183         unsigned length;
4184         unsigned blocksize;
4185         struct inode *inode = mapping->host;
4186
4187         /* If we are processing an encrypted inode during orphan list handling */
4188         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4189                 return 0;
4190
4191         blocksize = inode->i_sb->s_blocksize;
4192         length = blocksize - (offset & (blocksize - 1));
4193
4194         return ext4_block_zero_page_range(handle, mapping, from, length);
4195 }
4196
4197 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4198                              loff_t lstart, loff_t length)
4199 {
4200         struct super_block *sb = inode->i_sb;
4201         struct address_space *mapping = inode->i_mapping;
4202         unsigned partial_start, partial_end;
4203         ext4_fsblk_t start, end;
4204         loff_t byte_end = (lstart + length - 1);
4205         int err = 0;
4206
4207         partial_start = lstart & (sb->s_blocksize - 1);
4208         partial_end = byte_end & (sb->s_blocksize - 1);
4209
4210         start = lstart >> sb->s_blocksize_bits;
4211         end = byte_end >> sb->s_blocksize_bits;
4212
4213         /* Handle partial zero within the single block */
4214         if (start == end &&
4215             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4216                 err = ext4_block_zero_page_range(handle, mapping,
4217                                                  lstart, length);
4218                 return err;
4219         }
4220         /* Handle partial zero out on the start of the range */
4221         if (partial_start) {
4222                 err = ext4_block_zero_page_range(handle, mapping,
4223                                                  lstart, sb->s_blocksize);
4224                 if (err)
4225                         return err;
4226         }
4227         /* Handle partial zero out on the end of the range */
4228         if (partial_end != sb->s_blocksize - 1)
4229                 err = ext4_block_zero_page_range(handle, mapping,
4230                                                  byte_end - partial_end,
4231                                                  partial_end + 1);
4232         return err;
4233 }
4234
4235 int ext4_can_truncate(struct inode *inode)
4236 {
4237         if (S_ISREG(inode->i_mode))
4238                 return 1;
4239         if (S_ISDIR(inode->i_mode))
4240                 return 1;
4241         if (S_ISLNK(inode->i_mode))
4242                 return !ext4_inode_is_fast_symlink(inode);
4243         return 0;
4244 }
4245
4246 /*
4247  * We have to make sure i_disksize gets properly updated before we truncate
4248  * page cache due to hole punching or zero range. Otherwise i_disksize update
4249  * can get lost as it may have been postponed to submission of writeback but
4250  * that will never happen after we truncate page cache.
4251  */
4252 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4253                                       loff_t len)
4254 {
4255         handle_t *handle;
4256         loff_t size = i_size_read(inode);
4257
4258         WARN_ON(!inode_is_locked(inode));
4259         if (offset > size || offset + len < size)
4260                 return 0;
4261
4262         if (EXT4_I(inode)->i_disksize >= size)
4263                 return 0;
4264
4265         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4266         if (IS_ERR(handle))
4267                 return PTR_ERR(handle);
4268         ext4_update_i_disksize(inode, size);
4269         ext4_mark_inode_dirty(handle, inode);
4270         ext4_journal_stop(handle);
4271
4272         return 0;
4273 }
4274
4275 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4276 {
4277         up_write(&ei->i_mmap_sem);
4278         schedule();
4279         down_write(&ei->i_mmap_sem);
4280 }
4281
4282 int ext4_break_layouts(struct inode *inode)
4283 {
4284         struct ext4_inode_info *ei = EXT4_I(inode);
4285         struct page *page;
4286         int error;
4287
4288         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4289                 return -EINVAL;
4290
4291         do {
4292                 page = dax_layout_busy_page(inode->i_mapping);
4293                 if (!page)
4294                         return 0;
4295
4296                 error = ___wait_var_event(&page->_refcount,
4297                                 atomic_read(&page->_refcount) == 1,
4298                                 TASK_INTERRUPTIBLE, 0, 0,
4299                                 ext4_wait_dax_page(ei));
4300         } while (error == 0);
4301
4302         return error;
4303 }
4304
4305 /*
4306  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4307  * associated with the given offset and length
4308  *
4309  * @inode:  File inode
4310  * @offset: The offset where the hole will begin
4311  * @len:    The length of the hole
4312  *
4313  * Returns: 0 on success or negative on failure
4314  */
4315
4316 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4317 {
4318         struct super_block *sb = inode->i_sb;
4319         ext4_lblk_t first_block, stop_block;
4320         struct address_space *mapping = inode->i_mapping;
4321         loff_t first_block_offset, last_block_offset, max_length;
4322         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4323         handle_t *handle;
4324         unsigned int credits;
4325         int ret = 0;
4326
4327         if (!S_ISREG(inode->i_mode))
4328                 return -EOPNOTSUPP;
4329
4330         trace_ext4_punch_hole(inode, offset, length, 0);
4331
4332         /*
4333          * Write out all dirty pages to avoid race conditions
4334          * Then release them.
4335          */
4336         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4337                 ret = filemap_write_and_wait_range(mapping, offset,
4338                                                    offset + length - 1);
4339                 if (ret)
4340                         return ret;
4341         }
4342
4343         inode_lock(inode);
4344
4345         /* No need to punch hole beyond i_size */
4346         if (offset >= inode->i_size)
4347                 goto out_mutex;
4348
4349         /*
4350          * If the hole extends beyond i_size, set the hole
4351          * to end after the page that contains i_size
4352          */
4353         if (offset + length > inode->i_size) {
4354                 length = inode->i_size +
4355                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4356                    offset;
4357         }
4358
4359         /*
4360          * For punch hole the length + offset needs to be within one block
4361          * before last range. Adjust the length if it goes beyond that limit.
4362          */
4363         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4364         if (offset + length > max_length)
4365                 length = max_length - offset;
4366
4367         if (offset & (sb->s_blocksize - 1) ||
4368             (offset + length) & (sb->s_blocksize - 1)) {
4369                 /*
4370                  * Attach jinode to inode for jbd2 if we do any zeroing of
4371                  * partial block
4372                  */
4373                 ret = ext4_inode_attach_jinode(inode);
4374                 if (ret < 0)
4375                         goto out_mutex;
4376
4377         }
4378
4379         /* Wait all existing dio workers, newcomers will block on i_mutex */
4380         inode_dio_wait(inode);
4381
4382         /*
4383          * Prevent page faults from reinstantiating pages we have released from
4384          * page cache.
4385          */
4386         down_write(&EXT4_I(inode)->i_mmap_sem);
4387
4388         ret = ext4_break_layouts(inode);
4389         if (ret)
4390                 goto out_dio;
4391
4392         first_block_offset = round_up(offset, sb->s_blocksize);
4393         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4394
4395         /* Now release the pages and zero block aligned part of pages*/
4396         if (last_block_offset > first_block_offset) {
4397                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4398                 if (ret)
4399                         goto out_dio;
4400                 truncate_pagecache_range(inode, first_block_offset,
4401                                          last_block_offset);
4402         }
4403
4404         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4405                 credits = ext4_writepage_trans_blocks(inode);
4406         else
4407                 credits = ext4_blocks_for_truncate(inode);
4408         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4409         if (IS_ERR(handle)) {
4410                 ret = PTR_ERR(handle);
4411                 ext4_std_error(sb, ret);
4412                 goto out_dio;
4413         }
4414
4415         ret = ext4_zero_partial_blocks(handle, inode, offset,
4416                                        length);
4417         if (ret)
4418                 goto out_stop;
4419
4420         first_block = (offset + sb->s_blocksize - 1) >>
4421                 EXT4_BLOCK_SIZE_BITS(sb);
4422         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4423
4424         /* If there are blocks to remove, do it */
4425         if (stop_block > first_block) {
4426
4427                 down_write(&EXT4_I(inode)->i_data_sem);
4428                 ext4_discard_preallocations(inode);
4429
4430                 ret = ext4_es_remove_extent(inode, first_block,
4431                                             stop_block - first_block);
4432                 if (ret) {
4433                         up_write(&EXT4_I(inode)->i_data_sem);
4434                         goto out_stop;
4435                 }
4436
4437                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4438                         ret = ext4_ext_remove_space(inode, first_block,
4439                                                     stop_block - 1);
4440                 else
4441                         ret = ext4_ind_remove_space(handle, inode, first_block,
4442                                                     stop_block);
4443
4444                 up_write(&EXT4_I(inode)->i_data_sem);
4445         }
4446         if (IS_SYNC(inode))
4447                 ext4_handle_sync(handle);
4448
4449         inode->i_mtime = inode->i_ctime = current_time(inode);
4450         ext4_mark_inode_dirty(handle, inode);
4451         if (ret >= 0)
4452                 ext4_update_inode_fsync_trans(handle, inode, 1);
4453 out_stop:
4454         ext4_journal_stop(handle);
4455 out_dio:
4456         up_write(&EXT4_I(inode)->i_mmap_sem);
4457 out_mutex:
4458         inode_unlock(inode);
4459         return ret;
4460 }
4461
4462 int ext4_inode_attach_jinode(struct inode *inode)
4463 {
4464         struct ext4_inode_info *ei = EXT4_I(inode);
4465         struct jbd2_inode *jinode;
4466
4467         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4468                 return 0;
4469
4470         jinode = jbd2_alloc_inode(GFP_KERNEL);
4471         spin_lock(&inode->i_lock);
4472         if (!ei->jinode) {
4473                 if (!jinode) {
4474                         spin_unlock(&inode->i_lock);
4475                         return -ENOMEM;
4476                 }
4477                 ei->jinode = jinode;
4478                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4479                 jinode = NULL;
4480         }
4481         spin_unlock(&inode->i_lock);
4482         if (unlikely(jinode != NULL))
4483                 jbd2_free_inode(jinode);
4484         return 0;
4485 }
4486
4487 /*
4488  * ext4_truncate()
4489  *
4490  * We block out ext4_get_block() block instantiations across the entire
4491  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4492  * simultaneously on behalf of the same inode.
4493  *
4494  * As we work through the truncate and commit bits of it to the journal there
4495  * is one core, guiding principle: the file's tree must always be consistent on
4496  * disk.  We must be able to restart the truncate after a crash.
4497  *
4498  * The file's tree may be transiently inconsistent in memory (although it
4499  * probably isn't), but whenever we close off and commit a journal transaction,
4500  * the contents of (the filesystem + the journal) must be consistent and
4501  * restartable.  It's pretty simple, really: bottom up, right to left (although
4502  * left-to-right works OK too).
4503  *
4504  * Note that at recovery time, journal replay occurs *before* the restart of
4505  * truncate against the orphan inode list.
4506  *
4507  * The committed inode has the new, desired i_size (which is the same as
4508  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4509  * that this inode's truncate did not complete and it will again call
4510  * ext4_truncate() to have another go.  So there will be instantiated blocks
4511  * to the right of the truncation point in a crashed ext4 filesystem.  But
4512  * that's fine - as long as they are linked from the inode, the post-crash
4513  * ext4_truncate() run will find them and release them.
4514  */
4515 int ext4_truncate(struct inode *inode)
4516 {
4517         struct ext4_inode_info *ei = EXT4_I(inode);
4518         unsigned int credits;
4519         int err = 0;
4520         handle_t *handle;
4521         struct address_space *mapping = inode->i_mapping;
4522
4523         /*
4524          * There is a possibility that we're either freeing the inode
4525          * or it's a completely new inode. In those cases we might not
4526          * have i_mutex locked because it's not necessary.
4527          */
4528         if (!(inode->i_state & (I_NEW|I_FREEING)))
4529                 WARN_ON(!inode_is_locked(inode));
4530         trace_ext4_truncate_enter(inode);
4531
4532         if (!ext4_can_truncate(inode))
4533                 goto out_trace;
4534
4535         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4536
4537         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4538                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4539
4540         if (ext4_has_inline_data(inode)) {
4541                 int has_inline = 1;
4542
4543                 err = ext4_inline_data_truncate(inode, &has_inline);
4544                 if (err || has_inline)
4545                         goto out_trace;
4546         }
4547
4548         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4549         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4550                 err = ext4_inode_attach_jinode(inode);
4551                 if (err)
4552                         goto out_trace;
4553         }
4554
4555         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4556                 credits = ext4_writepage_trans_blocks(inode);
4557         else
4558                 credits = ext4_blocks_for_truncate(inode);
4559
4560         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4561         if (IS_ERR(handle)) {
4562                 err = PTR_ERR(handle);
4563                 goto out_trace;
4564         }
4565
4566         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4567                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4568
4569         /*
4570          * We add the inode to the orphan list, so that if this
4571          * truncate spans multiple transactions, and we crash, we will
4572          * resume the truncate when the filesystem recovers.  It also
4573          * marks the inode dirty, to catch the new size.
4574          *
4575          * Implication: the file must always be in a sane, consistent
4576          * truncatable state while each transaction commits.
4577          */
4578         err = ext4_orphan_add(handle, inode);
4579         if (err)
4580                 goto out_stop;
4581
4582         down_write(&EXT4_I(inode)->i_data_sem);
4583
4584         ext4_discard_preallocations(inode);
4585
4586         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4587                 err = ext4_ext_truncate(handle, inode);
4588         else
4589                 ext4_ind_truncate(handle, inode);
4590
4591         up_write(&ei->i_data_sem);
4592         if (err)
4593                 goto out_stop;
4594
4595         if (IS_SYNC(inode))
4596                 ext4_handle_sync(handle);
4597
4598 out_stop:
4599         /*
4600          * If this was a simple ftruncate() and the file will remain alive,
4601          * then we need to clear up the orphan record which we created above.
4602          * However, if this was a real unlink then we were called by
4603          * ext4_evict_inode(), and we allow that function to clean up the
4604          * orphan info for us.
4605          */
4606         if (inode->i_nlink)
4607                 ext4_orphan_del(handle, inode);
4608
4609         inode->i_mtime = inode->i_ctime = current_time(inode);
4610         ext4_mark_inode_dirty(handle, inode);
4611         ext4_journal_stop(handle);
4612
4613 out_trace:
4614         trace_ext4_truncate_exit(inode);
4615         return err;
4616 }
4617
4618 /*
4619  * ext4_get_inode_loc returns with an extra refcount against the inode's
4620  * underlying buffer_head on success. If 'in_mem' is true, we have all
4621  * data in memory that is needed to recreate the on-disk version of this
4622  * inode.
4623  */
4624 static int __ext4_get_inode_loc(struct inode *inode,
4625                                 struct ext4_iloc *iloc, int in_mem)
4626 {
4627         struct ext4_group_desc  *gdp;
4628         struct buffer_head      *bh;
4629         struct super_block      *sb = inode->i_sb;
4630         ext4_fsblk_t            block;
4631         struct blk_plug         plug;
4632         int                     inodes_per_block, inode_offset;
4633
4634         iloc->bh = NULL;
4635         if (inode->i_ino < EXT4_ROOT_INO ||
4636             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4637                 return -EFSCORRUPTED;
4638
4639         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4640         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4641         if (!gdp)
4642                 return -EIO;
4643
4644         /*
4645          * Figure out the offset within the block group inode table
4646          */
4647         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4648         inode_offset = ((inode->i_ino - 1) %
4649                         EXT4_INODES_PER_GROUP(sb));
4650         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4651
4652         block = ext4_inode_table(sb, gdp);
4653         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4654             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4655                 ext4_error(sb, "Invalid inode table block %llu in "
4656                            "block_group %u", block, iloc->block_group);
4657                 return -EFSCORRUPTED;
4658         }
4659         block += (inode_offset / inodes_per_block);
4660
4661         bh = sb_getblk(sb, block);
4662         if (unlikely(!bh))
4663                 return -ENOMEM;
4664         if (!buffer_uptodate(bh)) {
4665                 lock_buffer(bh);
4666
4667                 /*
4668                  * If the buffer has the write error flag, we have failed
4669                  * to write out another inode in the same block.  In this
4670                  * case, we don't have to read the block because we may
4671                  * read the old inode data successfully.
4672                  */
4673                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4674                         set_buffer_uptodate(bh);
4675
4676                 if (buffer_uptodate(bh)) {
4677                         /* someone brought it uptodate while we waited */
4678                         unlock_buffer(bh);
4679                         goto has_buffer;
4680                 }
4681
4682                 /*
4683                  * If we have all information of the inode in memory and this
4684                  * is the only valid inode in the block, we need not read the
4685                  * block.
4686                  */
4687                 if (in_mem) {
4688                         struct buffer_head *bitmap_bh;
4689                         int i, start;
4690
4691                         start = inode_offset & ~(inodes_per_block - 1);
4692
4693                         /* Is the inode bitmap in cache? */
4694                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4695                         if (unlikely(!bitmap_bh))
4696                                 goto make_io;
4697
4698                         /*
4699                          * If the inode bitmap isn't in cache then the
4700                          * optimisation may end up performing two reads instead
4701                          * of one, so skip it.
4702                          */
4703                         if (!buffer_uptodate(bitmap_bh)) {
4704                                 brelse(bitmap_bh);
4705                                 goto make_io;
4706                         }
4707                         for (i = start; i < start + inodes_per_block; i++) {
4708                                 if (i == inode_offset)
4709                                         continue;
4710                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4711                                         break;
4712                         }
4713                         brelse(bitmap_bh);
4714                         if (i == start + inodes_per_block) {
4715                                 /* all other inodes are free, so skip I/O */
4716                                 memset(bh->b_data, 0, bh->b_size);
4717                                 set_buffer_uptodate(bh);
4718                                 unlock_buffer(bh);
4719                                 goto has_buffer;
4720                         }
4721                 }
4722
4723 make_io:
4724                 /*
4725                  * If we need to do any I/O, try to pre-readahead extra
4726                  * blocks from the inode table.
4727                  */
4728                 blk_start_plug(&plug);
4729                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4730                         ext4_fsblk_t b, end, table;
4731                         unsigned num;
4732                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4733
4734                         table = ext4_inode_table(sb, gdp);
4735                         /* s_inode_readahead_blks is always a power of 2 */
4736                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4737                         if (table > b)
4738                                 b = table;
4739                         end = b + ra_blks;
4740                         num = EXT4_INODES_PER_GROUP(sb);
4741                         if (ext4_has_group_desc_csum(sb))
4742                                 num -= ext4_itable_unused_count(sb, gdp);
4743                         table += num / inodes_per_block;
4744                         if (end > table)
4745                                 end = table;
4746                         while (b <= end)
4747                                 sb_breadahead_unmovable(sb, b++);
4748                 }
4749
4750                 /*
4751                  * There are other valid inodes in the buffer, this inode
4752                  * has in-inode xattrs, or we don't have this inode in memory.
4753                  * Read the block from disk.
4754                  */
4755                 trace_ext4_load_inode(inode);
4756                 get_bh(bh);
4757                 bh->b_end_io = end_buffer_read_sync;
4758                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4759                 blk_finish_plug(&plug);
4760                 wait_on_buffer(bh);
4761                 if (!buffer_uptodate(bh)) {
4762                         EXT4_ERROR_INODE_BLOCK(inode, block,
4763                                                "unable to read itable block");
4764                         brelse(bh);
4765                         return -EIO;
4766                 }
4767         }
4768 has_buffer:
4769         iloc->bh = bh;
4770         return 0;
4771 }
4772
4773 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4774 {
4775         /* We have all inode data except xattrs in memory here. */
4776         return __ext4_get_inode_loc(inode, iloc,
4777                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4778 }
4779
4780 static bool ext4_should_use_dax(struct inode *inode)
4781 {
4782         if (!test_opt(inode->i_sb, DAX))
4783                 return false;
4784         if (!S_ISREG(inode->i_mode))
4785                 return false;
4786         if (ext4_should_journal_data(inode))
4787                 return false;
4788         if (ext4_has_inline_data(inode))
4789                 return false;
4790         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4791                 return false;
4792         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4793                 return false;
4794         return true;
4795 }
4796
4797 void ext4_set_inode_flags(struct inode *inode)
4798 {
4799         unsigned int flags = EXT4_I(inode)->i_flags;
4800         unsigned int new_fl = 0;
4801
4802         if (flags & EXT4_SYNC_FL)
4803                 new_fl |= S_SYNC;
4804         if (flags & EXT4_APPEND_FL)
4805                 new_fl |= S_APPEND;
4806         if (flags & EXT4_IMMUTABLE_FL)
4807                 new_fl |= S_IMMUTABLE;
4808         if (flags & EXT4_NOATIME_FL)
4809                 new_fl |= S_NOATIME;
4810         if (flags & EXT4_DIRSYNC_FL)
4811                 new_fl |= S_DIRSYNC;
4812         if (ext4_should_use_dax(inode))
4813                 new_fl |= S_DAX;
4814         if (flags & EXT4_ENCRYPT_FL)
4815                 new_fl |= S_ENCRYPTED;
4816         if (flags & EXT4_CASEFOLD_FL)
4817                 new_fl |= S_CASEFOLD;
4818         if (flags & EXT4_VERITY_FL)
4819                 new_fl |= S_VERITY;
4820         inode_set_flags(inode, new_fl,
4821                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4822                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4823 }
4824
4825 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4826                                   struct ext4_inode_info *ei)
4827 {
4828         blkcnt_t i_blocks ;
4829         struct inode *inode = &(ei->vfs_inode);
4830         struct super_block *sb = inode->i_sb;
4831
4832         if (ext4_has_feature_huge_file(sb)) {
4833                 /* we are using combined 48 bit field */
4834                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4835                                         le32_to_cpu(raw_inode->i_blocks_lo);
4836                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4837                         /* i_blocks represent file system block size */
4838                         return i_blocks  << (inode->i_blkbits - 9);
4839                 } else {
4840                         return i_blocks;
4841                 }
4842         } else {
4843                 return le32_to_cpu(raw_inode->i_blocks_lo);
4844         }
4845 }
4846
4847 static inline int ext4_iget_extra_inode(struct inode *inode,
4848                                          struct ext4_inode *raw_inode,
4849                                          struct ext4_inode_info *ei)
4850 {
4851         __le32 *magic = (void *)raw_inode +
4852                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4853
4854         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4855             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4856                 int err;
4857
4858                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4859                 err = ext4_find_inline_data_nolock(inode);
4860                 if (!err && ext4_has_inline_data(inode))
4861                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4862                 return err;
4863         } else
4864                 EXT4_I(inode)->i_inline_off = 0;
4865         return 0;
4866 }
4867
4868 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4869 {
4870         if (!ext4_has_feature_project(inode->i_sb))
4871                 return -EOPNOTSUPP;
4872         *projid = EXT4_I(inode)->i_projid;
4873         return 0;
4874 }
4875
4876 /*
4877  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4878  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4879  * set.
4880  */
4881 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4882 {
4883         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4884                 inode_set_iversion_raw(inode, val);
4885         else
4886                 inode_set_iversion_queried(inode, val);
4887 }
4888 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4889 {
4890         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4891                 return inode_peek_iversion_raw(inode);
4892         else
4893                 return inode_peek_iversion(inode);
4894 }
4895
4896 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4897
4898 {
4899         if (flags & EXT4_IGET_EA_INODE) {
4900                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4901                         return "missing EA_INODE flag";
4902                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4903                     EXT4_I(inode)->i_file_acl)
4904                         return "ea_inode with extended attributes";
4905         } else {
4906                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4907                         return "unexpected EA_INODE flag";
4908         }
4909         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4910                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4911         return NULL;
4912 }
4913
4914 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4915                           ext4_iget_flags flags, const char *function,
4916                           unsigned int line)
4917 {
4918         struct ext4_iloc iloc;
4919         struct ext4_inode *raw_inode;
4920         struct ext4_inode_info *ei;
4921         struct inode *inode;
4922         const char *err_str;
4923         journal_t *journal = EXT4_SB(sb)->s_journal;
4924         long ret;
4925         loff_t size;
4926         int block;
4927         uid_t i_uid;
4928         gid_t i_gid;
4929         projid_t i_projid;
4930
4931         if ((!(flags & EXT4_IGET_SPECIAL) &&
4932              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4933             (ino < EXT4_ROOT_INO) ||
4934             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4935                 if (flags & EXT4_IGET_HANDLE)
4936                         return ERR_PTR(-ESTALE);
4937                 __ext4_error(sb, function, line,
4938                              "inode #%lu: comm %s: iget: illegal inode #",
4939                              ino, current->comm);
4940                 return ERR_PTR(-EFSCORRUPTED);
4941         }
4942
4943         inode = iget_locked(sb, ino);
4944         if (!inode)
4945                 return ERR_PTR(-ENOMEM);
4946         if (!(inode->i_state & I_NEW)) {
4947                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4948                         ext4_error_inode(inode, function, line, 0, err_str);
4949                         iput(inode);
4950                         return ERR_PTR(-EFSCORRUPTED);
4951                 }
4952                 return inode;
4953         }
4954
4955         ei = EXT4_I(inode);
4956         iloc.bh = NULL;
4957
4958         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4959         if (ret < 0)
4960                 goto bad_inode;
4961         raw_inode = ext4_raw_inode(&iloc);
4962
4963         if ((flags & EXT4_IGET_HANDLE) &&
4964             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4965                 ret = -ESTALE;
4966                 goto bad_inode;
4967         }
4968
4969         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4970                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4971                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4972                         EXT4_INODE_SIZE(inode->i_sb) ||
4973                     (ei->i_extra_isize & 3)) {
4974                         ext4_error_inode(inode, function, line, 0,
4975                                          "iget: bad extra_isize %u "
4976                                          "(inode size %u)",
4977                                          ei->i_extra_isize,
4978                                          EXT4_INODE_SIZE(inode->i_sb));
4979                         ret = -EFSCORRUPTED;
4980                         goto bad_inode;
4981                 }
4982         } else
4983                 ei->i_extra_isize = 0;
4984
4985         /* Precompute checksum seed for inode metadata */
4986         if (ext4_has_metadata_csum(sb)) {
4987                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4988                 __u32 csum;
4989                 __le32 inum = cpu_to_le32(inode->i_ino);
4990                 __le32 gen = raw_inode->i_generation;
4991                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4992                                    sizeof(inum));
4993                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4994                                               sizeof(gen));
4995         }
4996
4997         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4998                 ext4_error_inode(inode, function, line, 0,
4999                                  "iget: checksum invalid");
5000                 ret = -EFSBADCRC;
5001                 goto bad_inode;
5002         }
5003
5004         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5005         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5006         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5007         if (ext4_has_feature_project(sb) &&
5008             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5009             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5010                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5011         else
5012                 i_projid = EXT4_DEF_PROJID;
5013
5014         if (!(test_opt(inode->i_sb, NO_UID32))) {
5015                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5016                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5017         }
5018         i_uid_write(inode, i_uid);
5019         i_gid_write(inode, i_gid);
5020         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5021         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5022
5023         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
5024         ei->i_inline_off = 0;
5025         ei->i_dir_start_lookup = 0;
5026         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5027         /* We now have enough fields to check if the inode was active or not.
5028          * This is needed because nfsd might try to access dead inodes
5029          * the test is that same one that e2fsck uses
5030          * NeilBrown 1999oct15
5031          */
5032         if (inode->i_nlink == 0) {
5033                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5034                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5035                     ino != EXT4_BOOT_LOADER_INO) {
5036                         /* this inode is deleted or unallocated */
5037                         if (flags & EXT4_IGET_SPECIAL) {
5038                                 ext4_error_inode(inode, function, line, 0,
5039                                                  "iget: special inode unallocated");
5040                                 ret = -EFSCORRUPTED;
5041                         } else
5042                                 ret = -ESTALE;
5043                         goto bad_inode;
5044                 }
5045                 /* The only unlinked inodes we let through here have
5046                  * valid i_mode and are being read by the orphan
5047                  * recovery code: that's fine, we're about to complete
5048                  * the process of deleting those.
5049                  * OR it is the EXT4_BOOT_LOADER_INO which is
5050                  * not initialized on a new filesystem. */
5051         }
5052         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5053         ext4_set_inode_flags(inode);
5054         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5055         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5056         if (ext4_has_feature_64bit(sb))
5057                 ei->i_file_acl |=
5058                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5059         inode->i_size = ext4_isize(sb, raw_inode);
5060         if ((size = i_size_read(inode)) < 0) {
5061                 ext4_error_inode(inode, function, line, 0,
5062                                  "iget: bad i_size value: %lld", size);
5063                 ret = -EFSCORRUPTED;
5064                 goto bad_inode;
5065         }
5066         /*
5067          * If dir_index is not enabled but there's dir with INDEX flag set,
5068          * we'd normally treat htree data as empty space. But with metadata
5069          * checksumming that corrupts checksums so forbid that.
5070          */
5071         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
5072             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5073                 ext4_error_inode(inode, function, line, 0,
5074                          "iget: Dir with htree data on filesystem without dir_index feature.");
5075                 ret = -EFSCORRUPTED;
5076                 goto bad_inode;
5077         }
5078         ei->i_disksize = inode->i_size;
5079 #ifdef CONFIG_QUOTA
5080         ei->i_reserved_quota = 0;
5081 #endif
5082         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5083         ei->i_block_group = iloc.block_group;
5084         ei->i_last_alloc_group = ~0;
5085         /*
5086          * NOTE! The in-memory inode i_data array is in little-endian order
5087          * even on big-endian machines: we do NOT byteswap the block numbers!
5088          */
5089         for (block = 0; block < EXT4_N_BLOCKS; block++)
5090                 ei->i_data[block] = raw_inode->i_block[block];
5091         INIT_LIST_HEAD(&ei->i_orphan);
5092
5093         /*
5094          * Set transaction id's of transactions that have to be committed
5095          * to finish f[data]sync. We set them to currently running transaction
5096          * as we cannot be sure that the inode or some of its metadata isn't
5097          * part of the transaction - the inode could have been reclaimed and
5098          * now it is reread from disk.
5099          */
5100         if (journal) {
5101                 transaction_t *transaction;
5102                 tid_t tid;
5103
5104                 read_lock(&journal->j_state_lock);
5105                 if (journal->j_running_transaction)
5106                         transaction = journal->j_running_transaction;
5107                 else
5108                         transaction = journal->j_committing_transaction;
5109                 if (transaction)
5110                         tid = transaction->t_tid;
5111                 else
5112                         tid = journal->j_commit_sequence;
5113                 read_unlock(&journal->j_state_lock);
5114                 ei->i_sync_tid = tid;
5115                 ei->i_datasync_tid = tid;
5116         }
5117
5118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5119                 if (ei->i_extra_isize == 0) {
5120                         /* The extra space is currently unused. Use it. */
5121                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5122                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5123                                             EXT4_GOOD_OLD_INODE_SIZE;
5124                 } else {
5125                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5126                         if (ret)
5127                                 goto bad_inode;
5128                 }
5129         }
5130
5131         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5132         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5133         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5134         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5135
5136         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5137                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5138
5139                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5140                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5141                                 ivers |=
5142                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5143                 }
5144                 ext4_inode_set_iversion_queried(inode, ivers);
5145         }
5146
5147         ret = 0;
5148         if (ei->i_file_acl &&
5149             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5150                 ext4_error_inode(inode, function, line, 0,
5151                                  "iget: bad extended attribute block %llu",
5152                                  ei->i_file_acl);
5153                 ret = -EFSCORRUPTED;
5154                 goto bad_inode;
5155         } else if (!ext4_has_inline_data(inode)) {
5156                 /* validate the block references in the inode */
5157                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5158                    (S_ISLNK(inode->i_mode) &&
5159                     !ext4_inode_is_fast_symlink(inode))) {
5160                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5161                                 ret = ext4_ext_check_inode(inode);
5162                         else
5163                                 ret = ext4_ind_check_inode(inode);
5164                 }
5165         }
5166         if (ret)
5167                 goto bad_inode;
5168
5169         if (S_ISREG(inode->i_mode)) {
5170                 inode->i_op = &ext4_file_inode_operations;
5171                 inode->i_fop = &ext4_file_operations;
5172                 ext4_set_aops(inode);
5173         } else if (S_ISDIR(inode->i_mode)) {
5174                 inode->i_op = &ext4_dir_inode_operations;
5175                 inode->i_fop = &ext4_dir_operations;
5176         } else if (S_ISLNK(inode->i_mode)) {
5177                 /* VFS does not allow setting these so must be corruption */
5178                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5179                         ext4_error_inode(inode, function, line, 0,
5180                                          "iget: immutable or append flags "
5181                                          "not allowed on symlinks");
5182                         ret = -EFSCORRUPTED;
5183                         goto bad_inode;
5184                 }
5185                 if (IS_ENCRYPTED(inode)) {
5186                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5187                         ext4_set_aops(inode);
5188                 } else if (ext4_inode_is_fast_symlink(inode)) {
5189                         inode->i_link = (char *)ei->i_data;
5190                         inode->i_op = &ext4_fast_symlink_inode_operations;
5191                         nd_terminate_link(ei->i_data, inode->i_size,
5192                                 sizeof(ei->i_data) - 1);
5193                 } else {
5194                         inode->i_op = &ext4_symlink_inode_operations;
5195                         ext4_set_aops(inode);
5196                 }
5197                 inode_nohighmem(inode);
5198         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5199               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5200                 inode->i_op = &ext4_special_inode_operations;
5201                 if (raw_inode->i_block[0])
5202                         init_special_inode(inode, inode->i_mode,
5203                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5204                 else
5205                         init_special_inode(inode, inode->i_mode,
5206                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5207         } else if (ino == EXT4_BOOT_LOADER_INO) {
5208                 make_bad_inode(inode);
5209         } else {
5210                 ret = -EFSCORRUPTED;
5211                 ext4_error_inode(inode, function, line, 0,
5212                                  "iget: bogus i_mode (%o)", inode->i_mode);
5213                 goto bad_inode;
5214         }
5215         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5216                 ext4_error_inode(inode, function, line, 0,
5217                                  "casefold flag without casefold feature");
5218         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5219                 ext4_error_inode(inode, function, line, 0, err_str);
5220                 ret = -EFSCORRUPTED;
5221                 goto bad_inode;
5222         }
5223
5224         brelse(iloc.bh);
5225         unlock_new_inode(inode);
5226         return inode;
5227
5228 bad_inode:
5229         brelse(iloc.bh);
5230         iget_failed(inode);
5231         return ERR_PTR(ret);
5232 }
5233
5234 static int ext4_inode_blocks_set(handle_t *handle,
5235                                 struct ext4_inode *raw_inode,
5236                                 struct ext4_inode_info *ei)
5237 {
5238         struct inode *inode = &(ei->vfs_inode);
5239         u64 i_blocks = READ_ONCE(inode->i_blocks);
5240         struct super_block *sb = inode->i_sb;
5241
5242         if (i_blocks <= ~0U) {
5243                 /*
5244                  * i_blocks can be represented in a 32 bit variable
5245                  * as multiple of 512 bytes
5246                  */
5247                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5248                 raw_inode->i_blocks_high = 0;
5249                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5250                 return 0;
5251         }
5252         if (!ext4_has_feature_huge_file(sb))
5253                 return -EFBIG;
5254
5255         if (i_blocks <= 0xffffffffffffULL) {
5256                 /*
5257                  * i_blocks can be represented in a 48 bit variable
5258                  * as multiple of 512 bytes
5259                  */
5260                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5261                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5262                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5263         } else {
5264                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5265                 /* i_block is stored in file system block size */
5266                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5267                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5268                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5269         }
5270         return 0;
5271 }
5272
5273 struct other_inode {
5274         unsigned long           orig_ino;
5275         struct ext4_inode       *raw_inode;
5276 };
5277
5278 static int other_inode_match(struct inode * inode, unsigned long ino,
5279                              void *data)
5280 {
5281         struct other_inode *oi = (struct other_inode *) data;
5282
5283         if ((inode->i_ino != ino) ||
5284             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5285                                I_DIRTY_INODE)) ||
5286             ((inode->i_state & I_DIRTY_TIME) == 0))
5287                 return 0;
5288         spin_lock(&inode->i_lock);
5289         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5290                                 I_DIRTY_INODE)) == 0) &&
5291             (inode->i_state & I_DIRTY_TIME)) {
5292                 struct ext4_inode_info  *ei = EXT4_I(inode);
5293
5294                 inode->i_state &= ~I_DIRTY_TIME;
5295                 spin_unlock(&inode->i_lock);
5296
5297                 spin_lock(&ei->i_raw_lock);
5298                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5299                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5300                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5301                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5302                 spin_unlock(&ei->i_raw_lock);
5303                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5304                 return -1;
5305         }
5306         spin_unlock(&inode->i_lock);
5307         return -1;
5308 }
5309
5310 /*
5311  * Opportunistically update the other time fields for other inodes in
5312  * the same inode table block.
5313  */
5314 static void ext4_update_other_inodes_time(struct super_block *sb,
5315                                           unsigned long orig_ino, char *buf)
5316 {
5317         struct other_inode oi;
5318         unsigned long ino;
5319         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5320         int inode_size = EXT4_INODE_SIZE(sb);
5321
5322         oi.orig_ino = orig_ino;
5323         /*
5324          * Calculate the first inode in the inode table block.  Inode
5325          * numbers are one-based.  That is, the first inode in a block
5326          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5327          */
5328         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5329         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5330                 if (ino == orig_ino)
5331                         continue;
5332                 oi.raw_inode = (struct ext4_inode *) buf;
5333                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5334         }
5335 }
5336
5337 /*
5338  * Post the struct inode info into an on-disk inode location in the
5339  * buffer-cache.  This gobbles the caller's reference to the
5340  * buffer_head in the inode location struct.
5341  *
5342  * The caller must have write access to iloc->bh.
5343  */
5344 static int ext4_do_update_inode(handle_t *handle,
5345                                 struct inode *inode,
5346                                 struct ext4_iloc *iloc)
5347 {
5348         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5349         struct ext4_inode_info *ei = EXT4_I(inode);
5350         struct buffer_head *bh = iloc->bh;
5351         struct super_block *sb = inode->i_sb;
5352         int err = 0, block;
5353         int need_datasync = 0, set_large_file = 0;
5354         uid_t i_uid;
5355         gid_t i_gid;
5356         projid_t i_projid;
5357
5358         spin_lock(&ei->i_raw_lock);
5359
5360         /* For fields not tracked in the in-memory inode,
5361          * initialise them to zero for new inodes. */
5362         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5363                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5364
5365         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5366         if (err) {
5367                 spin_unlock(&ei->i_raw_lock);
5368                 goto out_brelse;
5369         }
5370
5371         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5372         i_uid = i_uid_read(inode);
5373         i_gid = i_gid_read(inode);
5374         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5375         if (!(test_opt(inode->i_sb, NO_UID32))) {
5376                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5377                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5378 /*
5379  * Fix up interoperability with old kernels. Otherwise, old inodes get
5380  * re-used with the upper 16 bits of the uid/gid intact
5381  */
5382                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5383                         raw_inode->i_uid_high = 0;
5384                         raw_inode->i_gid_high = 0;
5385                 } else {
5386                         raw_inode->i_uid_high =
5387                                 cpu_to_le16(high_16_bits(i_uid));
5388                         raw_inode->i_gid_high =
5389                                 cpu_to_le16(high_16_bits(i_gid));
5390                 }
5391         } else {
5392                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5393                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5394                 raw_inode->i_uid_high = 0;
5395                 raw_inode->i_gid_high = 0;
5396         }
5397         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5398
5399         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5400         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5401         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5402         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5403
5404         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5405         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5406         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5407                 raw_inode->i_file_acl_high =
5408                         cpu_to_le16(ei->i_file_acl >> 32);
5409         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5410         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5411                 ext4_isize_set(raw_inode, ei->i_disksize);
5412                 need_datasync = 1;
5413         }
5414         if (ei->i_disksize > 0x7fffffffULL) {
5415                 if (!ext4_has_feature_large_file(sb) ||
5416                                 EXT4_SB(sb)->s_es->s_rev_level ==
5417                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5418                         set_large_file = 1;
5419         }
5420         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5421         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5422                 if (old_valid_dev(inode->i_rdev)) {
5423                         raw_inode->i_block[0] =
5424                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5425                         raw_inode->i_block[1] = 0;
5426                 } else {
5427                         raw_inode->i_block[0] = 0;
5428                         raw_inode->i_block[1] =
5429                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5430                         raw_inode->i_block[2] = 0;
5431                 }
5432         } else if (!ext4_has_inline_data(inode)) {
5433                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5434                         raw_inode->i_block[block] = ei->i_data[block];
5435         }
5436
5437         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5438                 u64 ivers = ext4_inode_peek_iversion(inode);
5439
5440                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5441                 if (ei->i_extra_isize) {
5442                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5443                                 raw_inode->i_version_hi =
5444                                         cpu_to_le32(ivers >> 32);
5445                         raw_inode->i_extra_isize =
5446                                 cpu_to_le16(ei->i_extra_isize);
5447                 }
5448         }
5449
5450         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5451                i_projid != EXT4_DEF_PROJID);
5452
5453         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5454             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5455                 raw_inode->i_projid = cpu_to_le32(i_projid);
5456
5457         ext4_inode_csum_set(inode, raw_inode, ei);
5458         spin_unlock(&ei->i_raw_lock);
5459         if (inode->i_sb->s_flags & SB_LAZYTIME)
5460                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5461                                               bh->b_data);
5462
5463         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5464         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5465         if (err)
5466                 goto out_brelse;
5467         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5468         if (set_large_file) {
5469                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5470                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5471                 if (err)
5472                         goto out_brelse;
5473                 ext4_set_feature_large_file(sb);
5474                 ext4_handle_sync(handle);
5475                 err = ext4_handle_dirty_super(handle, sb);
5476         }
5477         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5478 out_brelse:
5479         brelse(bh);
5480         ext4_std_error(inode->i_sb, err);
5481         return err;
5482 }
5483
5484 /*
5485  * ext4_write_inode()
5486  *
5487  * We are called from a few places:
5488  *
5489  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5490  *   Here, there will be no transaction running. We wait for any running
5491  *   transaction to commit.
5492  *
5493  * - Within flush work (sys_sync(), kupdate and such).
5494  *   We wait on commit, if told to.
5495  *
5496  * - Within iput_final() -> write_inode_now()
5497  *   We wait on commit, if told to.
5498  *
5499  * In all cases it is actually safe for us to return without doing anything,
5500  * because the inode has been copied into a raw inode buffer in
5501  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5502  * writeback.
5503  *
5504  * Note that we are absolutely dependent upon all inode dirtiers doing the
5505  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5506  * which we are interested.
5507  *
5508  * It would be a bug for them to not do this.  The code:
5509  *
5510  *      mark_inode_dirty(inode)
5511  *      stuff();
5512  *      inode->i_size = expr;
5513  *
5514  * is in error because write_inode() could occur while `stuff()' is running,
5515  * and the new i_size will be lost.  Plus the inode will no longer be on the
5516  * superblock's dirty inode list.
5517  */
5518 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5519 {
5520         int err;
5521
5522         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5523             sb_rdonly(inode->i_sb))
5524                 return 0;
5525
5526         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5527                 return -EIO;
5528
5529         if (EXT4_SB(inode->i_sb)->s_journal) {
5530                 if (ext4_journal_current_handle()) {
5531                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5532                         dump_stack();
5533                         return -EIO;
5534                 }
5535
5536                 /*
5537                  * No need to force transaction in WB_SYNC_NONE mode. Also
5538                  * ext4_sync_fs() will force the commit after everything is
5539                  * written.
5540                  */
5541                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5542                         return 0;
5543
5544                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5545                                                 EXT4_I(inode)->i_sync_tid);
5546         } else {
5547                 struct ext4_iloc iloc;
5548
5549                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5550                 if (err)
5551                         return err;
5552                 /*
5553                  * sync(2) will flush the whole buffer cache. No need to do
5554                  * it here separately for each inode.
5555                  */
5556                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5557                         sync_dirty_buffer(iloc.bh);
5558                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5559                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5560                                          "IO error syncing inode");
5561                         err = -EIO;
5562                 }
5563                 brelse(iloc.bh);
5564         }
5565         return err;
5566 }
5567
5568 /*
5569  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5570  * buffers that are attached to a page stradding i_size and are undergoing
5571  * commit. In that case we have to wait for commit to finish and try again.
5572  */
5573 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5574 {
5575         struct page *page;
5576         unsigned offset;
5577         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5578         tid_t commit_tid = 0;
5579         int ret;
5580
5581         offset = inode->i_size & (PAGE_SIZE - 1);
5582         /*
5583          * If the page is fully truncated, we don't need to wait for any commit
5584          * (and we even should not as __ext4_journalled_invalidatepage() may
5585          * strip all buffers from the page but keep the page dirty which can then
5586          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5587          * buffers). Also we don't need to wait for any commit if all buffers in
5588          * the page remain valid. This is most beneficial for the common case of
5589          * blocksize == PAGESIZE.
5590          */
5591         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5592                 return;
5593         while (1) {
5594                 page = find_lock_page(inode->i_mapping,
5595                                       inode->i_size >> PAGE_SHIFT);
5596                 if (!page)
5597                         return;
5598                 ret = __ext4_journalled_invalidatepage(page, offset,
5599                                                 PAGE_SIZE - offset);
5600                 unlock_page(page);
5601                 put_page(page);
5602                 if (ret != -EBUSY)
5603                         return;
5604                 commit_tid = 0;
5605                 read_lock(&journal->j_state_lock);
5606                 if (journal->j_committing_transaction)
5607                         commit_tid = journal->j_committing_transaction->t_tid;
5608                 read_unlock(&journal->j_state_lock);
5609                 if (commit_tid)
5610                         jbd2_log_wait_commit(journal, commit_tid);
5611         }
5612 }
5613
5614 /*
5615  * ext4_setattr()
5616  *
5617  * Called from notify_change.
5618  *
5619  * We want to trap VFS attempts to truncate the file as soon as
5620  * possible.  In particular, we want to make sure that when the VFS
5621  * shrinks i_size, we put the inode on the orphan list and modify
5622  * i_disksize immediately, so that during the subsequent flushing of
5623  * dirty pages and freeing of disk blocks, we can guarantee that any
5624  * commit will leave the blocks being flushed in an unused state on
5625  * disk.  (On recovery, the inode will get truncated and the blocks will
5626  * be freed, so we have a strong guarantee that no future commit will
5627  * leave these blocks visible to the user.)
5628  *
5629  * Another thing we have to assure is that if we are in ordered mode
5630  * and inode is still attached to the committing transaction, we must
5631  * we start writeout of all the dirty pages which are being truncated.
5632  * This way we are sure that all the data written in the previous
5633  * transaction are already on disk (truncate waits for pages under
5634  * writeback).
5635  *
5636  * Called with inode->i_mutex down.
5637  */
5638 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5639 {
5640         struct inode *inode = d_inode(dentry);
5641         int error, rc = 0;
5642         int orphan = 0;
5643         const unsigned int ia_valid = attr->ia_valid;
5644
5645         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5646                 return -EIO;
5647
5648         if (unlikely(IS_IMMUTABLE(inode)))
5649                 return -EPERM;
5650
5651         if (unlikely(IS_APPEND(inode) &&
5652                      (ia_valid & (ATTR_MODE | ATTR_UID |
5653                                   ATTR_GID | ATTR_TIMES_SET))))
5654                 return -EPERM;
5655
5656         error = setattr_prepare(dentry, attr);
5657         if (error)
5658                 return error;
5659
5660         error = fscrypt_prepare_setattr(dentry, attr);
5661         if (error)
5662                 return error;
5663
5664         error = fsverity_prepare_setattr(dentry, attr);
5665         if (error)
5666                 return error;
5667
5668         if (is_quota_modification(inode, attr)) {
5669                 error = dquot_initialize(inode);
5670                 if (error)
5671                         return error;
5672         }
5673         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5674             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5675                 handle_t *handle;
5676
5677                 /* (user+group)*(old+new) structure, inode write (sb,
5678                  * inode block, ? - but truncate inode update has it) */
5679                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5680                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5681                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5682                 if (IS_ERR(handle)) {
5683                         error = PTR_ERR(handle);
5684                         goto err_out;
5685                 }
5686
5687                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5688                  * counts xattr inode references.
5689                  */
5690                 down_read(&EXT4_I(inode)->xattr_sem);
5691                 error = dquot_transfer(inode, attr);
5692                 up_read(&EXT4_I(inode)->xattr_sem);
5693
5694                 if (error) {
5695                         ext4_journal_stop(handle);
5696                         return error;
5697                 }
5698                 /* Update corresponding info in inode so that everything is in
5699                  * one transaction */
5700                 if (attr->ia_valid & ATTR_UID)
5701                         inode->i_uid = attr->ia_uid;
5702                 if (attr->ia_valid & ATTR_GID)
5703                         inode->i_gid = attr->ia_gid;
5704                 error = ext4_mark_inode_dirty(handle, inode);
5705                 ext4_journal_stop(handle);
5706         }
5707
5708         if (attr->ia_valid & ATTR_SIZE) {
5709                 handle_t *handle;
5710                 loff_t oldsize = inode->i_size;
5711                 loff_t old_disksize;
5712                 int shrink = (attr->ia_size < inode->i_size);
5713
5714                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5715                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5716
5717                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5718                                 return -EFBIG;
5719                 }
5720                 if (!S_ISREG(inode->i_mode))
5721                         return -EINVAL;
5722
5723                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5724                         inode_inc_iversion(inode);
5725
5726                 if (shrink) {
5727                         if (ext4_should_order_data(inode)) {
5728                                 error = ext4_begin_ordered_truncate(inode,
5729                                                             attr->ia_size);
5730                                 if (error)
5731                                         goto err_out;
5732                         }
5733                         /*
5734                          * Blocks are going to be removed from the inode. Wait
5735                          * for dio in flight.
5736                          */
5737                         inode_dio_wait(inode);
5738                 }
5739
5740                 down_write(&EXT4_I(inode)->i_mmap_sem);
5741
5742                 rc = ext4_break_layouts(inode);
5743                 if (rc) {
5744                         up_write(&EXT4_I(inode)->i_mmap_sem);
5745                         return rc;
5746                 }
5747
5748                 if (attr->ia_size != inode->i_size) {
5749                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5750                         if (IS_ERR(handle)) {
5751                                 error = PTR_ERR(handle);
5752                                 goto out_mmap_sem;
5753                         }
5754                         if (ext4_handle_valid(handle) && shrink) {
5755                                 error = ext4_orphan_add(handle, inode);
5756                                 orphan = 1;
5757                         }
5758                         /*
5759                          * Update c/mtime on truncate up, ext4_truncate() will
5760                          * update c/mtime in shrink case below
5761                          */
5762                         if (!shrink) {
5763                                 inode->i_mtime = current_time(inode);
5764                                 inode->i_ctime = inode->i_mtime;
5765                         }
5766                         down_write(&EXT4_I(inode)->i_data_sem);
5767                         old_disksize = EXT4_I(inode)->i_disksize;
5768                         EXT4_I(inode)->i_disksize = attr->ia_size;
5769                         rc = ext4_mark_inode_dirty(handle, inode);
5770                         if (!error)
5771                                 error = rc;
5772                         /*
5773                          * We have to update i_size under i_data_sem together
5774                          * with i_disksize to avoid races with writeback code
5775                          * running ext4_wb_update_i_disksize().
5776                          */
5777                         if (!error)
5778                                 i_size_write(inode, attr->ia_size);
5779                         else
5780                                 EXT4_I(inode)->i_disksize = old_disksize;
5781                         up_write(&EXT4_I(inode)->i_data_sem);
5782                         ext4_journal_stop(handle);
5783                         if (error)
5784                                 goto out_mmap_sem;
5785                         if (!shrink) {
5786                                 pagecache_isize_extended(inode, oldsize,
5787                                                          inode->i_size);
5788                         } else if (ext4_should_journal_data(inode)) {
5789                                 ext4_wait_for_tail_page_commit(inode);
5790                         }
5791                 }
5792
5793                 /*
5794                  * Truncate pagecache after we've waited for commit
5795                  * in data=journal mode to make pages freeable.
5796                  */
5797                 truncate_pagecache(inode, inode->i_size);
5798                 /*
5799                  * Call ext4_truncate() even if i_size didn't change to
5800                  * truncate possible preallocated blocks.
5801                  */
5802                 if (attr->ia_size <= oldsize) {
5803                         rc = ext4_truncate(inode);
5804                         if (rc)
5805                                 error = rc;
5806                 }
5807 out_mmap_sem:
5808                 up_write(&EXT4_I(inode)->i_mmap_sem);
5809         }
5810
5811         if (!error) {
5812                 setattr_copy(inode, attr);
5813                 mark_inode_dirty(inode);
5814         }
5815
5816         /*
5817          * If the call to ext4_truncate failed to get a transaction handle at
5818          * all, we need to clean up the in-core orphan list manually.
5819          */
5820         if (orphan && inode->i_nlink)
5821                 ext4_orphan_del(NULL, inode);
5822
5823         if (!error && (ia_valid & ATTR_MODE))
5824                 rc = posix_acl_chmod(inode, inode->i_mode);
5825
5826 err_out:
5827         ext4_std_error(inode->i_sb, error);
5828         if (!error)
5829                 error = rc;
5830         return error;
5831 }
5832
5833 int ext4_getattr(const struct path *path, struct kstat *stat,
5834                  u32 request_mask, unsigned int query_flags)
5835 {
5836         struct inode *inode = d_inode(path->dentry);
5837         struct ext4_inode *raw_inode;
5838         struct ext4_inode_info *ei = EXT4_I(inode);
5839         unsigned int flags;
5840
5841         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5842                 stat->result_mask |= STATX_BTIME;
5843                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5844                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5845         }
5846
5847         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5848         if (flags & EXT4_APPEND_FL)
5849                 stat->attributes |= STATX_ATTR_APPEND;
5850         if (flags & EXT4_COMPR_FL)
5851                 stat->attributes |= STATX_ATTR_COMPRESSED;
5852         if (flags & EXT4_ENCRYPT_FL)
5853                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5854         if (flags & EXT4_IMMUTABLE_FL)
5855                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5856         if (flags & EXT4_NODUMP_FL)
5857                 stat->attributes |= STATX_ATTR_NODUMP;
5858
5859         stat->attributes_mask |= (STATX_ATTR_APPEND |
5860                                   STATX_ATTR_COMPRESSED |
5861                                   STATX_ATTR_ENCRYPTED |
5862                                   STATX_ATTR_IMMUTABLE |
5863                                   STATX_ATTR_NODUMP);
5864
5865         generic_fillattr(inode, stat);
5866         return 0;
5867 }
5868
5869 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5870                       u32 request_mask, unsigned int query_flags)
5871 {
5872         struct inode *inode = d_inode(path->dentry);
5873         u64 delalloc_blocks;
5874
5875         ext4_getattr(path, stat, request_mask, query_flags);
5876
5877         /*
5878          * If there is inline data in the inode, the inode will normally not
5879          * have data blocks allocated (it may have an external xattr block).
5880          * Report at least one sector for such files, so tools like tar, rsync,
5881          * others don't incorrectly think the file is completely sparse.
5882          */
5883         if (unlikely(ext4_has_inline_data(inode)))
5884                 stat->blocks += (stat->size + 511) >> 9;
5885
5886         /*
5887          * We can't update i_blocks if the block allocation is delayed
5888          * otherwise in the case of system crash before the real block
5889          * allocation is done, we will have i_blocks inconsistent with
5890          * on-disk file blocks.
5891          * We always keep i_blocks updated together with real
5892          * allocation. But to not confuse with user, stat
5893          * will return the blocks that include the delayed allocation
5894          * blocks for this file.
5895          */
5896         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5897                                    EXT4_I(inode)->i_reserved_data_blocks);
5898         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5899         return 0;
5900 }
5901
5902 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5903                                    int pextents)
5904 {
5905         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5906                 return ext4_ind_trans_blocks(inode, lblocks);
5907         return ext4_ext_index_trans_blocks(inode, pextents);
5908 }
5909
5910 /*
5911  * Account for index blocks, block groups bitmaps and block group
5912  * descriptor blocks if modify datablocks and index blocks
5913  * worse case, the indexs blocks spread over different block groups
5914  *
5915  * If datablocks are discontiguous, they are possible to spread over
5916  * different block groups too. If they are contiguous, with flexbg,
5917  * they could still across block group boundary.
5918  *
5919  * Also account for superblock, inode, quota and xattr blocks
5920  */
5921 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5922                                   int pextents)
5923 {
5924         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5925         int gdpblocks;
5926         int idxblocks;
5927         int ret = 0;
5928
5929         /*
5930          * How many index blocks need to touch to map @lblocks logical blocks
5931          * to @pextents physical extents?
5932          */
5933         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5934
5935         ret = idxblocks;
5936
5937         /*
5938          * Now let's see how many group bitmaps and group descriptors need
5939          * to account
5940          */
5941         groups = idxblocks + pextents;
5942         gdpblocks = groups;
5943         if (groups > ngroups)
5944                 groups = ngroups;
5945         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5946                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5947
5948         /* bitmaps and block group descriptor blocks */
5949         ret += groups + gdpblocks;
5950
5951         /* Blocks for super block, inode, quota and xattr blocks */
5952         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5953
5954         return ret;
5955 }
5956
5957 /*
5958  * Calculate the total number of credits to reserve to fit
5959  * the modification of a single pages into a single transaction,
5960  * which may include multiple chunks of block allocations.
5961  *
5962  * This could be called via ext4_write_begin()
5963  *
5964  * We need to consider the worse case, when
5965  * one new block per extent.
5966  */
5967 int ext4_writepage_trans_blocks(struct inode *inode)
5968 {
5969         int bpp = ext4_journal_blocks_per_page(inode);
5970         int ret;
5971
5972         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5973
5974         /* Account for data blocks for journalled mode */
5975         if (ext4_should_journal_data(inode))
5976                 ret += bpp;
5977         return ret;
5978 }
5979
5980 /*
5981  * Calculate the journal credits for a chunk of data modification.
5982  *
5983  * This is called from DIO, fallocate or whoever calling
5984  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5985  *
5986  * journal buffers for data blocks are not included here, as DIO
5987  * and fallocate do no need to journal data buffers.
5988  */
5989 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5990 {
5991         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5992 }
5993
5994 /*
5995  * The caller must have previously called ext4_reserve_inode_write().
5996  * Give this, we know that the caller already has write access to iloc->bh.
5997  */
5998 int ext4_mark_iloc_dirty(handle_t *handle,
5999                          struct inode *inode, struct ext4_iloc *iloc)
6000 {
6001         int err = 0;
6002
6003         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
6004                 put_bh(iloc->bh);
6005                 return -EIO;
6006         }
6007         if (IS_I_VERSION(inode))
6008                 inode_inc_iversion(inode);
6009
6010         /* the do_update_inode consumes one bh->b_count */
6011         get_bh(iloc->bh);
6012
6013         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6014         err = ext4_do_update_inode(handle, inode, iloc);
6015         put_bh(iloc->bh);
6016         return err;
6017 }
6018
6019 /*
6020  * On success, We end up with an outstanding reference count against
6021  * iloc->bh.  This _must_ be cleaned up later.
6022  */
6023
6024 int
6025 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6026                          struct ext4_iloc *iloc)
6027 {
6028         int err;
6029
6030         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
6031                 return -EIO;
6032
6033         err = ext4_get_inode_loc(inode, iloc);
6034         if (!err) {
6035                 BUFFER_TRACE(iloc->bh, "get_write_access");
6036                 err = ext4_journal_get_write_access(handle, iloc->bh);
6037                 if (err) {
6038                         brelse(iloc->bh);
6039                         iloc->bh = NULL;
6040                 }
6041         }
6042         ext4_std_error(inode->i_sb, err);
6043         return err;
6044 }
6045
6046 static int __ext4_expand_extra_isize(struct inode *inode,
6047                                      unsigned int new_extra_isize,
6048                                      struct ext4_iloc *iloc,
6049                                      handle_t *handle, int *no_expand)
6050 {
6051         struct ext4_inode *raw_inode;
6052         struct ext4_xattr_ibody_header *header;
6053         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6054         struct ext4_inode_info *ei = EXT4_I(inode);
6055         int error;
6056
6057         /* this was checked at iget time, but double check for good measure */
6058         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6059             (ei->i_extra_isize & 3)) {
6060                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6061                                  ei->i_extra_isize,
6062                                  EXT4_INODE_SIZE(inode->i_sb));
6063                 return -EFSCORRUPTED;
6064         }
6065         if ((new_extra_isize < ei->i_extra_isize) ||
6066             (new_extra_isize < 4) ||
6067             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6068                 return -EINVAL; /* Should never happen */
6069
6070         raw_inode = ext4_raw_inode(iloc);
6071
6072         header = IHDR(inode, raw_inode);
6073
6074         /* No extended attributes present */
6075         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6076             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6077                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6078                        EXT4_I(inode)->i_extra_isize, 0,
6079                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
6080                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
6081                 return 0;
6082         }
6083
6084         /*
6085          * We may need to allocate external xattr block so we need quotas
6086          * initialized. Here we can be called with various locks held so we
6087          * cannot affort to initialize quotas ourselves. So just bail.
6088          */
6089         if (dquot_initialize_needed(inode))
6090                 return -EAGAIN;
6091
6092         /* try to expand with EAs present */
6093         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6094                                            raw_inode, handle);
6095         if (error) {
6096                 /*
6097                  * Inode size expansion failed; don't try again
6098                  */
6099                 *no_expand = 1;
6100         }
6101
6102         return error;
6103 }
6104
6105 /*
6106  * Expand an inode by new_extra_isize bytes.
6107  * Returns 0 on success or negative error number on failure.
6108  */
6109 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6110                                           unsigned int new_extra_isize,
6111                                           struct ext4_iloc iloc,
6112                                           handle_t *handle)
6113 {
6114         int no_expand;
6115         int error;
6116
6117         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6118                 return -EOVERFLOW;
6119
6120         /*
6121          * In nojournal mode, we can immediately attempt to expand
6122          * the inode.  When journaled, we first need to obtain extra
6123          * buffer credits since we may write into the EA block
6124          * with this same handle. If journal_extend fails, then it will
6125          * only result in a minor loss of functionality for that inode.
6126          * If this is felt to be critical, then e2fsck should be run to
6127          * force a large enough s_min_extra_isize.
6128          */
6129         if (ext4_handle_valid(handle) &&
6130             jbd2_journal_extend(handle,
6131                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6132                 return -ENOSPC;
6133
6134         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6135                 return -EBUSY;
6136
6137         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6138                                           handle, &no_expand);
6139         ext4_write_unlock_xattr(inode, &no_expand);
6140
6141         return error;
6142 }
6143
6144 int ext4_expand_extra_isize(struct inode *inode,
6145                             unsigned int new_extra_isize,
6146                             struct ext4_iloc *iloc)
6147 {
6148         handle_t *handle;
6149         int no_expand;
6150         int error, rc;
6151
6152         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6153                 brelse(iloc->bh);
6154                 return -EOVERFLOW;
6155         }
6156
6157         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6158                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6159         if (IS_ERR(handle)) {
6160                 error = PTR_ERR(handle);
6161                 brelse(iloc->bh);
6162                 return error;
6163         }
6164
6165         ext4_write_lock_xattr(inode, &no_expand);
6166
6167         BUFFER_TRACE(iloc->bh, "get_write_access");
6168         error = ext4_journal_get_write_access(handle, iloc->bh);
6169         if (error) {
6170                 brelse(iloc->bh);
6171                 goto out_unlock;
6172         }
6173
6174         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6175                                           handle, &no_expand);
6176
6177         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6178         if (!error)
6179                 error = rc;
6180
6181 out_unlock:
6182         ext4_write_unlock_xattr(inode, &no_expand);
6183         ext4_journal_stop(handle);
6184         return error;
6185 }
6186
6187 /*
6188  * What we do here is to mark the in-core inode as clean with respect to inode
6189  * dirtiness (it may still be data-dirty).
6190  * This means that the in-core inode may be reaped by prune_icache
6191  * without having to perform any I/O.  This is a very good thing,
6192  * because *any* task may call prune_icache - even ones which
6193  * have a transaction open against a different journal.
6194  *
6195  * Is this cheating?  Not really.  Sure, we haven't written the
6196  * inode out, but prune_icache isn't a user-visible syncing function.
6197  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6198  * we start and wait on commits.
6199  */
6200 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6201 {
6202         struct ext4_iloc iloc;
6203         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6204         int err;
6205
6206         might_sleep();
6207         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6208         err = ext4_reserve_inode_write(handle, inode, &iloc);
6209         if (err)
6210                 return err;
6211
6212         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6213                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6214                                                iloc, handle);
6215
6216         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6217 }
6218
6219 /*
6220  * ext4_dirty_inode() is called from __mark_inode_dirty()
6221  *
6222  * We're really interested in the case where a file is being extended.
6223  * i_size has been changed by generic_commit_write() and we thus need
6224  * to include the updated inode in the current transaction.
6225  *
6226  * Also, dquot_alloc_block() will always dirty the inode when blocks
6227  * are allocated to the file.
6228  *
6229  * If the inode is marked synchronous, we don't honour that here - doing
6230  * so would cause a commit on atime updates, which we don't bother doing.
6231  * We handle synchronous inodes at the highest possible level.
6232  *
6233  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6234  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6235  * to copy into the on-disk inode structure are the timestamp files.
6236  */
6237 void ext4_dirty_inode(struct inode *inode, int flags)
6238 {
6239         handle_t *handle;
6240
6241         if (flags == I_DIRTY_TIME)
6242                 return;
6243         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6244         if (IS_ERR(handle))
6245                 goto out;
6246
6247         ext4_mark_inode_dirty(handle, inode);
6248
6249         ext4_journal_stop(handle);
6250 out:
6251         return;
6252 }
6253
6254 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6255 {
6256         journal_t *journal;
6257         handle_t *handle;
6258         int err;
6259         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6260
6261         /*
6262          * We have to be very careful here: changing a data block's
6263          * journaling status dynamically is dangerous.  If we write a
6264          * data block to the journal, change the status and then delete
6265          * that block, we risk forgetting to revoke the old log record
6266          * from the journal and so a subsequent replay can corrupt data.
6267          * So, first we make sure that the journal is empty and that
6268          * nobody is changing anything.
6269          */
6270
6271         journal = EXT4_JOURNAL(inode);
6272         if (!journal)
6273                 return 0;
6274         if (is_journal_aborted(journal))
6275                 return -EROFS;
6276
6277         /* Wait for all existing dio workers */
6278         inode_dio_wait(inode);
6279
6280         /*
6281          * Before flushing the journal and switching inode's aops, we have
6282          * to flush all dirty data the inode has. There can be outstanding
6283          * delayed allocations, there can be unwritten extents created by
6284          * fallocate or buffered writes in dioread_nolock mode covered by
6285          * dirty data which can be converted only after flushing the dirty
6286          * data (and journalled aops don't know how to handle these cases).
6287          */
6288         if (val) {
6289                 down_write(&EXT4_I(inode)->i_mmap_sem);
6290                 err = filemap_write_and_wait(inode->i_mapping);
6291                 if (err < 0) {
6292                         up_write(&EXT4_I(inode)->i_mmap_sem);
6293                         return err;
6294                 }
6295         }
6296
6297         percpu_down_write(&sbi->s_writepages_rwsem);
6298         jbd2_journal_lock_updates(journal);
6299
6300         /*
6301          * OK, there are no updates running now, and all cached data is
6302          * synced to disk.  We are now in a completely consistent state
6303          * which doesn't have anything in the journal, and we know that
6304          * no filesystem updates are running, so it is safe to modify
6305          * the inode's in-core data-journaling state flag now.
6306          */
6307
6308         if (val)
6309                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6310         else {
6311                 err = jbd2_journal_flush(journal);
6312                 if (err < 0) {
6313                         jbd2_journal_unlock_updates(journal);
6314                         percpu_up_write(&sbi->s_writepages_rwsem);
6315                         return err;
6316                 }
6317                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6318         }
6319         ext4_set_aops(inode);
6320
6321         jbd2_journal_unlock_updates(journal);
6322         percpu_up_write(&sbi->s_writepages_rwsem);
6323
6324         if (val)
6325                 up_write(&EXT4_I(inode)->i_mmap_sem);
6326
6327         /* Finally we can mark the inode as dirty. */
6328
6329         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6330         if (IS_ERR(handle))
6331                 return PTR_ERR(handle);
6332
6333         err = ext4_mark_inode_dirty(handle, inode);
6334         ext4_handle_sync(handle);
6335         ext4_journal_stop(handle);
6336         ext4_std_error(inode->i_sb, err);
6337
6338         return err;
6339 }
6340
6341 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6342 {
6343         return !buffer_mapped(bh);
6344 }
6345
6346 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6347 {
6348         struct vm_area_struct *vma = vmf->vma;
6349         struct page *page = vmf->page;
6350         loff_t size;
6351         unsigned long len;
6352         int err;
6353         vm_fault_t ret;
6354         struct file *file = vma->vm_file;
6355         struct inode *inode = file_inode(file);
6356         struct address_space *mapping = inode->i_mapping;
6357         handle_t *handle;
6358         get_block_t *get_block;
6359         int retries = 0;
6360
6361         if (unlikely(IS_IMMUTABLE(inode)))
6362                 return VM_FAULT_SIGBUS;
6363
6364         sb_start_pagefault(inode->i_sb);
6365         file_update_time(vma->vm_file);
6366
6367         down_read(&EXT4_I(inode)->i_mmap_sem);
6368
6369         err = ext4_convert_inline_data(inode);
6370         if (err)
6371                 goto out_ret;
6372
6373         /* Delalloc case is easy... */
6374         if (test_opt(inode->i_sb, DELALLOC) &&
6375             !ext4_should_journal_data(inode) &&
6376             !ext4_nonda_switch(inode->i_sb)) {
6377                 do {
6378                         err = block_page_mkwrite(vma, vmf,
6379                                                    ext4_da_get_block_prep);
6380                 } while (err == -ENOSPC &&
6381                        ext4_should_retry_alloc(inode->i_sb, &retries));
6382                 goto out_ret;
6383         }
6384
6385         lock_page(page);
6386         size = i_size_read(inode);
6387         /* Page got truncated from under us? */
6388         if (page->mapping != mapping || page_offset(page) > size) {
6389                 unlock_page(page);
6390                 ret = VM_FAULT_NOPAGE;
6391                 goto out;
6392         }
6393
6394         if (page->index == size >> PAGE_SHIFT)
6395                 len = size & ~PAGE_MASK;
6396         else
6397                 len = PAGE_SIZE;
6398         /*
6399          * Return if we have all the buffers mapped. This avoids the need to do
6400          * journal_start/journal_stop which can block and take a long time
6401          */
6402         if (page_has_buffers(page)) {
6403                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6404                                             0, len, NULL,
6405                                             ext4_bh_unmapped)) {
6406                         /* Wait so that we don't change page under IO */
6407                         wait_for_stable_page(page);
6408                         ret = VM_FAULT_LOCKED;
6409                         goto out;
6410                 }
6411         }
6412         unlock_page(page);
6413         /* OK, we need to fill the hole... */
6414         if (ext4_should_dioread_nolock(inode))
6415                 get_block = ext4_get_block_unwritten;
6416         else
6417                 get_block = ext4_get_block;
6418 retry_alloc:
6419         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6420                                     ext4_writepage_trans_blocks(inode));
6421         if (IS_ERR(handle)) {
6422                 ret = VM_FAULT_SIGBUS;
6423                 goto out;
6424         }
6425         err = block_page_mkwrite(vma, vmf, get_block);
6426         if (!err && ext4_should_journal_data(inode)) {
6427                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6428                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6429                         unlock_page(page);
6430                         ret = VM_FAULT_SIGBUS;
6431                         ext4_journal_stop(handle);
6432                         goto out;
6433                 }
6434                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6435         }
6436         ext4_journal_stop(handle);
6437         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6438                 goto retry_alloc;
6439 out_ret:
6440         ret = block_page_mkwrite_return(err);
6441 out:
6442         up_read(&EXT4_I(inode)->i_mmap_sem);
6443         sb_end_pagefault(inode->i_sb);
6444         return ret;
6445 }
6446
6447 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6448 {
6449         struct inode *inode = file_inode(vmf->vma->vm_file);
6450         vm_fault_t ret;
6451
6452         down_read(&EXT4_I(inode)->i_mmap_sem);
6453         ret = filemap_fault(vmf);
6454         up_read(&EXT4_I(inode)->i_mmap_sem);
6455
6456         return ret;
6457 }