GNU Linux-libre 4.19.207-gnu1
[releases.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         /*
200          * Credits for final inode cleanup and freeing:
201          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
202          * (xattr block freeing), bitmap, group descriptor (inode freeing)
203          */
204         int extra_credits = 6;
205         struct ext4_xattr_inode_array *ea_inode_array = NULL;
206         bool freeze_protected = false;
207
208         trace_ext4_evict_inode(inode);
209
210         if (inode->i_nlink) {
211                 /*
212                  * When journalling data dirty buffers are tracked only in the
213                  * journal. So although mm thinks everything is clean and
214                  * ready for reaping the inode might still have some pages to
215                  * write in the running transaction or waiting to be
216                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
217                  * (via truncate_inode_pages()) to discard these buffers can
218                  * cause data loss. Also even if we did not discard these
219                  * buffers, we would have no way to find them after the inode
220                  * is reaped and thus user could see stale data if he tries to
221                  * read them before the transaction is checkpointed. So be
222                  * careful and force everything to disk here... We use
223                  * ei->i_datasync_tid to store the newest transaction
224                  * containing inode's data.
225                  *
226                  * Note that directories do not have this problem because they
227                  * don't use page cache.
228                  */
229                 if (inode->i_ino != EXT4_JOURNAL_INO &&
230                     ext4_should_journal_data(inode) &&
231                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
232                     inode->i_data.nrpages) {
233                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
234                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
235
236                         jbd2_complete_transaction(journal, commit_tid);
237                         filemap_write_and_wait(&inode->i_data);
238                 }
239                 truncate_inode_pages_final(&inode->i_data);
240
241                 goto no_delete;
242         }
243
244         if (is_bad_inode(inode))
245                 goto no_delete;
246         dquot_initialize(inode);
247
248         if (ext4_should_order_data(inode))
249                 ext4_begin_ordered_truncate(inode, 0);
250         truncate_inode_pages_final(&inode->i_data);
251
252         /*
253          * Protect us against freezing - iput() caller didn't have to have any
254          * protection against it. When we are in a running transaction though,
255          * we are already protected against freezing and we cannot grab further
256          * protection due to lock ordering constraints.
257          */
258         if (!ext4_journal_current_handle()) {
259                 sb_start_intwrite(inode->i_sb);
260                 freeze_protected = true;
261         }
262
263         if (!IS_NOQUOTA(inode))
264                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
265
266         /*
267          * Block bitmap, group descriptor, and inode are accounted in both
268          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
269          */
270         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
271                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
272         if (IS_ERR(handle)) {
273                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
274                 /*
275                  * If we're going to skip the normal cleanup, we still need to
276                  * make sure that the in-core orphan linked list is properly
277                  * cleaned up.
278                  */
279                 ext4_orphan_del(NULL, inode);
280                 if (freeze_protected)
281                         sb_end_intwrite(inode->i_sb);
282                 goto no_delete;
283         }
284
285         if (IS_SYNC(inode))
286                 ext4_handle_sync(handle);
287
288         /*
289          * Set inode->i_size to 0 before calling ext4_truncate(). We need
290          * special handling of symlinks here because i_size is used to
291          * determine whether ext4_inode_info->i_data contains symlink data or
292          * block mappings. Setting i_size to 0 will remove its fast symlink
293          * status. Erase i_data so that it becomes a valid empty block map.
294          */
295         if (ext4_inode_is_fast_symlink(inode))
296                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
297         inode->i_size = 0;
298         err = ext4_mark_inode_dirty(handle, inode);
299         if (err) {
300                 ext4_warning(inode->i_sb,
301                              "couldn't mark inode dirty (err %d)", err);
302                 goto stop_handle;
303         }
304         if (inode->i_blocks) {
305                 err = ext4_truncate(inode);
306                 if (err) {
307                         ext4_error(inode->i_sb,
308                                    "couldn't truncate inode %lu (err %d)",
309                                    inode->i_ino, err);
310                         goto stop_handle;
311                 }
312         }
313
314         /* Remove xattr references. */
315         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
316                                       extra_credits);
317         if (err) {
318                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
319 stop_handle:
320                 ext4_journal_stop(handle);
321                 ext4_orphan_del(NULL, inode);
322                 if (freeze_protected)
323                         sb_end_intwrite(inode->i_sb);
324                 ext4_xattr_inode_array_free(ea_inode_array);
325                 goto no_delete;
326         }
327
328         /*
329          * Kill off the orphan record which ext4_truncate created.
330          * AKPM: I think this can be inside the above `if'.
331          * Note that ext4_orphan_del() has to be able to cope with the
332          * deletion of a non-existent orphan - this is because we don't
333          * know if ext4_truncate() actually created an orphan record.
334          * (Well, we could do this if we need to, but heck - it works)
335          */
336         ext4_orphan_del(handle, inode);
337         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
338
339         /*
340          * One subtle ordering requirement: if anything has gone wrong
341          * (transaction abort, IO errors, whatever), then we can still
342          * do these next steps (the fs will already have been marked as
343          * having errors), but we can't free the inode if the mark_dirty
344          * fails.
345          */
346         if (ext4_mark_inode_dirty(handle, inode))
347                 /* If that failed, just do the required in-core inode clear. */
348                 ext4_clear_inode(inode);
349         else
350                 ext4_free_inode(handle, inode);
351         ext4_journal_stop(handle);
352         if (freeze_protected)
353                 sb_end_intwrite(inode->i_sb);
354         ext4_xattr_inode_array_free(ea_inode_array);
355         return;
356 no_delete:
357         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
358 }
359
360 #ifdef CONFIG_QUOTA
361 qsize_t *ext4_get_reserved_space(struct inode *inode)
362 {
363         return &EXT4_I(inode)->i_reserved_quota;
364 }
365 #endif
366
367 /*
368  * Called with i_data_sem down, which is important since we can call
369  * ext4_discard_preallocations() from here.
370  */
371 void ext4_da_update_reserve_space(struct inode *inode,
372                                         int used, int quota_claim)
373 {
374         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
375         struct ext4_inode_info *ei = EXT4_I(inode);
376
377         spin_lock(&ei->i_block_reservation_lock);
378         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
379         if (unlikely(used > ei->i_reserved_data_blocks)) {
380                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
381                          "with only %d reserved data blocks",
382                          __func__, inode->i_ino, used,
383                          ei->i_reserved_data_blocks);
384                 WARN_ON(1);
385                 used = ei->i_reserved_data_blocks;
386         }
387
388         /* Update per-inode reservations */
389         ei->i_reserved_data_blocks -= used;
390         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
391
392         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
393
394         /* Update quota subsystem for data blocks */
395         if (quota_claim)
396                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
397         else {
398                 /*
399                  * We did fallocate with an offset that is already delayed
400                  * allocated. So on delayed allocated writeback we should
401                  * not re-claim the quota for fallocated blocks.
402                  */
403                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
404         }
405
406         /*
407          * If we have done all the pending block allocations and if
408          * there aren't any writers on the inode, we can discard the
409          * inode's preallocations.
410          */
411         if ((ei->i_reserved_data_blocks == 0) &&
412             (atomic_read(&inode->i_writecount) == 0))
413                 ext4_discard_preallocations(inode);
414 }
415
416 static int __check_block_validity(struct inode *inode, const char *func,
417                                 unsigned int line,
418                                 struct ext4_map_blocks *map)
419 {
420         if (ext4_has_feature_journal(inode->i_sb) &&
421             (inode->i_ino ==
422              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
423                 return 0;
424         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
425                 ext4_error_inode(inode, func, line, map->m_pblk,
426                                  "lblock %lu mapped to illegal pblock %llu "
427                                  "(length %d)", (unsigned long) map->m_lblk,
428                                  map->m_pblk, map->m_len);
429                 return -EFSCORRUPTED;
430         }
431         return 0;
432 }
433
434 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
435                        ext4_lblk_t len)
436 {
437         int ret;
438
439         if (ext4_encrypted_inode(inode))
440                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
441
442         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
443         if (ret > 0)
444                 ret = 0;
445
446         return ret;
447 }
448
449 #define check_block_validity(inode, map)        \
450         __check_block_validity((inode), __func__, __LINE__, (map))
451
452 #ifdef ES_AGGRESSIVE_TEST
453 static void ext4_map_blocks_es_recheck(handle_t *handle,
454                                        struct inode *inode,
455                                        struct ext4_map_blocks *es_map,
456                                        struct ext4_map_blocks *map,
457                                        int flags)
458 {
459         int retval;
460
461         map->m_flags = 0;
462         /*
463          * There is a race window that the result is not the same.
464          * e.g. xfstests #223 when dioread_nolock enables.  The reason
465          * is that we lookup a block mapping in extent status tree with
466          * out taking i_data_sem.  So at the time the unwritten extent
467          * could be converted.
468          */
469         down_read(&EXT4_I(inode)->i_data_sem);
470         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
471                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
472                                              EXT4_GET_BLOCKS_KEEP_SIZE);
473         } else {
474                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
475                                              EXT4_GET_BLOCKS_KEEP_SIZE);
476         }
477         up_read((&EXT4_I(inode)->i_data_sem));
478
479         /*
480          * We don't check m_len because extent will be collpased in status
481          * tree.  So the m_len might not equal.
482          */
483         if (es_map->m_lblk != map->m_lblk ||
484             es_map->m_flags != map->m_flags ||
485             es_map->m_pblk != map->m_pblk) {
486                 printk("ES cache assertion failed for inode: %lu "
487                        "es_cached ex [%d/%d/%llu/%x] != "
488                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
489                        inode->i_ino, es_map->m_lblk, es_map->m_len,
490                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
491                        map->m_len, map->m_pblk, map->m_flags,
492                        retval, flags);
493         }
494 }
495 #endif /* ES_AGGRESSIVE_TEST */
496
497 /*
498  * The ext4_map_blocks() function tries to look up the requested blocks,
499  * and returns if the blocks are already mapped.
500  *
501  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
502  * and store the allocated blocks in the result buffer head and mark it
503  * mapped.
504  *
505  * If file type is extents based, it will call ext4_ext_map_blocks(),
506  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
507  * based files
508  *
509  * On success, it returns the number of blocks being mapped or allocated.  if
510  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
511  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
512  *
513  * It returns 0 if plain look up failed (blocks have not been allocated), in
514  * that case, @map is returned as unmapped but we still do fill map->m_len to
515  * indicate the length of a hole starting at map->m_lblk.
516  *
517  * It returns the error in case of allocation failure.
518  */
519 int ext4_map_blocks(handle_t *handle, struct inode *inode,
520                     struct ext4_map_blocks *map, int flags)
521 {
522         struct extent_status es;
523         int retval;
524         int ret = 0;
525 #ifdef ES_AGGRESSIVE_TEST
526         struct ext4_map_blocks orig_map;
527
528         memcpy(&orig_map, map, sizeof(*map));
529 #endif
530
531         map->m_flags = 0;
532         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
533                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
534                   (unsigned long) map->m_lblk);
535
536         /*
537          * ext4_map_blocks returns an int, and m_len is an unsigned int
538          */
539         if (unlikely(map->m_len > INT_MAX))
540                 map->m_len = INT_MAX;
541
542         /* We can handle the block number less than EXT_MAX_BLOCKS */
543         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
544                 return -EFSCORRUPTED;
545
546         /* Lookup extent status tree firstly */
547         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
548                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
549                         map->m_pblk = ext4_es_pblock(&es) +
550                                         map->m_lblk - es.es_lblk;
551                         map->m_flags |= ext4_es_is_written(&es) ?
552                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
553                         retval = es.es_len - (map->m_lblk - es.es_lblk);
554                         if (retval > map->m_len)
555                                 retval = map->m_len;
556                         map->m_len = retval;
557                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
558                         map->m_pblk = 0;
559                         retval = es.es_len - (map->m_lblk - es.es_lblk);
560                         if (retval > map->m_len)
561                                 retval = map->m_len;
562                         map->m_len = retval;
563                         retval = 0;
564                 } else {
565                         BUG_ON(1);
566                 }
567 #ifdef ES_AGGRESSIVE_TEST
568                 ext4_map_blocks_es_recheck(handle, inode, map,
569                                            &orig_map, flags);
570 #endif
571                 goto found;
572         }
573
574         /*
575          * Try to see if we can get the block without requesting a new
576          * file system block.
577          */
578         down_read(&EXT4_I(inode)->i_data_sem);
579         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
580                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
581                                              EXT4_GET_BLOCKS_KEEP_SIZE);
582         } else {
583                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
584                                              EXT4_GET_BLOCKS_KEEP_SIZE);
585         }
586         if (retval > 0) {
587                 unsigned int status;
588
589                 if (unlikely(retval != map->m_len)) {
590                         ext4_warning(inode->i_sb,
591                                      "ES len assertion failed for inode "
592                                      "%lu: retval %d != map->m_len %d",
593                                      inode->i_ino, retval, map->m_len);
594                         WARN_ON(1);
595                 }
596
597                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
598                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
599                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
600                     !(status & EXTENT_STATUS_WRITTEN) &&
601                     ext4_find_delalloc_range(inode, map->m_lblk,
602                                              map->m_lblk + map->m_len - 1))
603                         status |= EXTENT_STATUS_DELAYED;
604                 ret = ext4_es_insert_extent(inode, map->m_lblk,
605                                             map->m_len, map->m_pblk, status);
606                 if (ret < 0)
607                         retval = ret;
608         }
609         up_read((&EXT4_I(inode)->i_data_sem));
610
611 found:
612         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
613                 ret = check_block_validity(inode, map);
614                 if (ret != 0)
615                         return ret;
616         }
617
618         /* If it is only a block(s) look up */
619         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
620                 return retval;
621
622         /*
623          * Returns if the blocks have already allocated
624          *
625          * Note that if blocks have been preallocated
626          * ext4_ext_get_block() returns the create = 0
627          * with buffer head unmapped.
628          */
629         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
630                 /*
631                  * If we need to convert extent to unwritten
632                  * we continue and do the actual work in
633                  * ext4_ext_map_blocks()
634                  */
635                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
636                         return retval;
637
638         /*
639          * Here we clear m_flags because after allocating an new extent,
640          * it will be set again.
641          */
642         map->m_flags &= ~EXT4_MAP_FLAGS;
643
644         /*
645          * New blocks allocate and/or writing to unwritten extent
646          * will possibly result in updating i_data, so we take
647          * the write lock of i_data_sem, and call get_block()
648          * with create == 1 flag.
649          */
650         down_write(&EXT4_I(inode)->i_data_sem);
651
652         /*
653          * We need to check for EXT4 here because migrate
654          * could have changed the inode type in between
655          */
656         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
657                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
658         } else {
659                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
660
661                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
662                         /*
663                          * We allocated new blocks which will result in
664                          * i_data's format changing.  Force the migrate
665                          * to fail by clearing migrate flags
666                          */
667                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
668                 }
669
670                 /*
671                  * Update reserved blocks/metadata blocks after successful
672                  * block allocation which had been deferred till now. We don't
673                  * support fallocate for non extent files. So we can update
674                  * reserve space here.
675                  */
676                 if ((retval > 0) &&
677                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
678                         ext4_da_update_reserve_space(inode, retval, 1);
679         }
680
681         if (retval > 0) {
682                 unsigned int status;
683
684                 if (unlikely(retval != map->m_len)) {
685                         ext4_warning(inode->i_sb,
686                                      "ES len assertion failed for inode "
687                                      "%lu: retval %d != map->m_len %d",
688                                      inode->i_ino, retval, map->m_len);
689                         WARN_ON(1);
690                 }
691
692                 /*
693                  * We have to zeroout blocks before inserting them into extent
694                  * status tree. Otherwise someone could look them up there and
695                  * use them before they are really zeroed. We also have to
696                  * unmap metadata before zeroing as otherwise writeback can
697                  * overwrite zeros with stale data from block device.
698                  */
699                 if (flags & EXT4_GET_BLOCKS_ZERO &&
700                     map->m_flags & EXT4_MAP_MAPPED &&
701                     map->m_flags & EXT4_MAP_NEW) {
702                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
703                                            map->m_len);
704                         ret = ext4_issue_zeroout(inode, map->m_lblk,
705                                                  map->m_pblk, map->m_len);
706                         if (ret) {
707                                 retval = ret;
708                                 goto out_sem;
709                         }
710                 }
711
712                 /*
713                  * If the extent has been zeroed out, we don't need to update
714                  * extent status tree.
715                  */
716                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
717                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
718                         if (ext4_es_is_written(&es))
719                                 goto out_sem;
720                 }
721                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
722                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
723                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
724                     !(status & EXTENT_STATUS_WRITTEN) &&
725                     ext4_find_delalloc_range(inode, map->m_lblk,
726                                              map->m_lblk + map->m_len - 1))
727                         status |= EXTENT_STATUS_DELAYED;
728                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
729                                             map->m_pblk, status);
730                 if (ret < 0) {
731                         retval = ret;
732                         goto out_sem;
733                 }
734         }
735
736 out_sem:
737         up_write((&EXT4_I(inode)->i_data_sem));
738         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
739                 ret = check_block_validity(inode, map);
740                 if (ret != 0)
741                         return ret;
742
743                 /*
744                  * Inodes with freshly allocated blocks where contents will be
745                  * visible after transaction commit must be on transaction's
746                  * ordered data list.
747                  */
748                 if (map->m_flags & EXT4_MAP_NEW &&
749                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
750                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
751                     !ext4_is_quota_file(inode) &&
752                     ext4_should_order_data(inode)) {
753                         loff_t start_byte =
754                                 (loff_t)map->m_lblk << inode->i_blkbits;
755                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
756
757                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
758                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
759                                                 start_byte, length);
760                         else
761                                 ret = ext4_jbd2_inode_add_write(handle, inode,
762                                                 start_byte, length);
763                         if (ret)
764                                 return ret;
765                 }
766         }
767         return retval;
768 }
769
770 /*
771  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
772  * we have to be careful as someone else may be manipulating b_state as well.
773  */
774 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
775 {
776         unsigned long old_state;
777         unsigned long new_state;
778
779         flags &= EXT4_MAP_FLAGS;
780
781         /* Dummy buffer_head? Set non-atomically. */
782         if (!bh->b_page) {
783                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
784                 return;
785         }
786         /*
787          * Someone else may be modifying b_state. Be careful! This is ugly but
788          * once we get rid of using bh as a container for mapping information
789          * to pass to / from get_block functions, this can go away.
790          */
791         do {
792                 old_state = READ_ONCE(bh->b_state);
793                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
794         } while (unlikely(
795                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
796 }
797
798 static int _ext4_get_block(struct inode *inode, sector_t iblock,
799                            struct buffer_head *bh, int flags)
800 {
801         struct ext4_map_blocks map;
802         int ret = 0;
803
804         if (ext4_has_inline_data(inode))
805                 return -ERANGE;
806
807         map.m_lblk = iblock;
808         map.m_len = bh->b_size >> inode->i_blkbits;
809
810         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
811                               flags);
812         if (ret > 0) {
813                 map_bh(bh, inode->i_sb, map.m_pblk);
814                 ext4_update_bh_state(bh, map.m_flags);
815                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
816                 ret = 0;
817         } else if (ret == 0) {
818                 /* hole case, need to fill in bh->b_size */
819                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
820         }
821         return ret;
822 }
823
824 int ext4_get_block(struct inode *inode, sector_t iblock,
825                    struct buffer_head *bh, int create)
826 {
827         return _ext4_get_block(inode, iblock, bh,
828                                create ? EXT4_GET_BLOCKS_CREATE : 0);
829 }
830
831 /*
832  * Get block function used when preparing for buffered write if we require
833  * creating an unwritten extent if blocks haven't been allocated.  The extent
834  * will be converted to written after the IO is complete.
835  */
836 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
837                              struct buffer_head *bh_result, int create)
838 {
839         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
840                    inode->i_ino, create);
841         return _ext4_get_block(inode, iblock, bh_result,
842                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
843 }
844
845 /* Maximum number of blocks we map for direct IO at once. */
846 #define DIO_MAX_BLOCKS 4096
847
848 /*
849  * Get blocks function for the cases that need to start a transaction -
850  * generally difference cases of direct IO and DAX IO. It also handles retries
851  * in case of ENOSPC.
852  */
853 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
854                                 struct buffer_head *bh_result, int flags)
855 {
856         int dio_credits;
857         handle_t *handle;
858         int retries = 0;
859         int ret;
860
861         /* Trim mapping request to maximum we can map at once for DIO */
862         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
863                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
864         dio_credits = ext4_chunk_trans_blocks(inode,
865                                       bh_result->b_size >> inode->i_blkbits);
866 retry:
867         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
868         if (IS_ERR(handle))
869                 return PTR_ERR(handle);
870
871         ret = _ext4_get_block(inode, iblock, bh_result, flags);
872         ext4_journal_stop(handle);
873
874         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875                 goto retry;
876         return ret;
877 }
878
879 /* Get block function for DIO reads and writes to inodes without extents */
880 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
881                        struct buffer_head *bh, int create)
882 {
883         /* We don't expect handle for direct IO */
884         WARN_ON_ONCE(ext4_journal_current_handle());
885
886         if (!create)
887                 return _ext4_get_block(inode, iblock, bh, 0);
888         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
889 }
890
891 /*
892  * Get block function for AIO DIO writes when we create unwritten extent if
893  * blocks are not allocated yet. The extent will be converted to written
894  * after IO is complete.
895  */
896 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
897                 sector_t iblock, struct buffer_head *bh_result, int create)
898 {
899         int ret;
900
901         /* We don't expect handle for direct IO */
902         WARN_ON_ONCE(ext4_journal_current_handle());
903
904         ret = ext4_get_block_trans(inode, iblock, bh_result,
905                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
906
907         /*
908          * When doing DIO using unwritten extents, we need io_end to convert
909          * unwritten extents to written on IO completion. We allocate io_end
910          * once we spot unwritten extent and store it in b_private. Generic
911          * DIO code keeps b_private set and furthermore passes the value to
912          * our completion callback in 'private' argument.
913          */
914         if (!ret && buffer_unwritten(bh_result)) {
915                 if (!bh_result->b_private) {
916                         ext4_io_end_t *io_end;
917
918                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
919                         if (!io_end)
920                                 return -ENOMEM;
921                         bh_result->b_private = io_end;
922                         ext4_set_io_unwritten_flag(inode, io_end);
923                 }
924                 set_buffer_defer_completion(bh_result);
925         }
926
927         return ret;
928 }
929
930 /*
931  * Get block function for non-AIO DIO writes when we create unwritten extent if
932  * blocks are not allocated yet. The extent will be converted to written
933  * after IO is complete by ext4_direct_IO_write().
934  */
935 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
936                 sector_t iblock, struct buffer_head *bh_result, int create)
937 {
938         int ret;
939
940         /* We don't expect handle for direct IO */
941         WARN_ON_ONCE(ext4_journal_current_handle());
942
943         ret = ext4_get_block_trans(inode, iblock, bh_result,
944                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
945
946         /*
947          * Mark inode as having pending DIO writes to unwritten extents.
948          * ext4_direct_IO_write() checks this flag and converts extents to
949          * written.
950          */
951         if (!ret && buffer_unwritten(bh_result))
952                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
953
954         return ret;
955 }
956
957 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
958                    struct buffer_head *bh_result, int create)
959 {
960         int ret;
961
962         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
963                    inode->i_ino, create);
964         /* We don't expect handle for direct IO */
965         WARN_ON_ONCE(ext4_journal_current_handle());
966
967         ret = _ext4_get_block(inode, iblock, bh_result, 0);
968         /*
969          * Blocks should have been preallocated! ext4_file_write_iter() checks
970          * that.
971          */
972         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
973
974         return ret;
975 }
976
977
978 /*
979  * `handle' can be NULL if create is zero
980  */
981 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
982                                 ext4_lblk_t block, int map_flags)
983 {
984         struct ext4_map_blocks map;
985         struct buffer_head *bh;
986         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
987         int err;
988
989         J_ASSERT(handle != NULL || create == 0);
990
991         map.m_lblk = block;
992         map.m_len = 1;
993         err = ext4_map_blocks(handle, inode, &map, map_flags);
994
995         if (err == 0)
996                 return create ? ERR_PTR(-ENOSPC) : NULL;
997         if (err < 0)
998                 return ERR_PTR(err);
999
1000         bh = sb_getblk(inode->i_sb, map.m_pblk);
1001         if (unlikely(!bh))
1002                 return ERR_PTR(-ENOMEM);
1003         if (map.m_flags & EXT4_MAP_NEW) {
1004                 J_ASSERT(create != 0);
1005                 J_ASSERT(handle != NULL);
1006
1007                 /*
1008                  * Now that we do not always journal data, we should
1009                  * keep in mind whether this should always journal the
1010                  * new buffer as metadata.  For now, regular file
1011                  * writes use ext4_get_block instead, so it's not a
1012                  * problem.
1013                  */
1014                 lock_buffer(bh);
1015                 BUFFER_TRACE(bh, "call get_create_access");
1016                 err = ext4_journal_get_create_access(handle, bh);
1017                 if (unlikely(err)) {
1018                         unlock_buffer(bh);
1019                         goto errout;
1020                 }
1021                 if (!buffer_uptodate(bh)) {
1022                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1023                         set_buffer_uptodate(bh);
1024                 }
1025                 unlock_buffer(bh);
1026                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1027                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1028                 if (unlikely(err))
1029                         goto errout;
1030         } else
1031                 BUFFER_TRACE(bh, "not a new buffer");
1032         return bh;
1033 errout:
1034         brelse(bh);
1035         return ERR_PTR(err);
1036 }
1037
1038 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1039                                ext4_lblk_t block, int map_flags)
1040 {
1041         struct buffer_head *bh;
1042
1043         bh = ext4_getblk(handle, inode, block, map_flags);
1044         if (IS_ERR(bh))
1045                 return bh;
1046         if (!bh || buffer_uptodate(bh))
1047                 return bh;
1048         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1049         wait_on_buffer(bh);
1050         if (buffer_uptodate(bh))
1051                 return bh;
1052         put_bh(bh);
1053         return ERR_PTR(-EIO);
1054 }
1055
1056 /* Read a contiguous batch of blocks. */
1057 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1058                      bool wait, struct buffer_head **bhs)
1059 {
1060         int i, err;
1061
1062         for (i = 0; i < bh_count; i++) {
1063                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1064                 if (IS_ERR(bhs[i])) {
1065                         err = PTR_ERR(bhs[i]);
1066                         bh_count = i;
1067                         goto out_brelse;
1068                 }
1069         }
1070
1071         for (i = 0; i < bh_count; i++)
1072                 /* Note that NULL bhs[i] is valid because of holes. */
1073                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1074                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1075                                     &bhs[i]);
1076
1077         if (!wait)
1078                 return 0;
1079
1080         for (i = 0; i < bh_count; i++)
1081                 if (bhs[i])
1082                         wait_on_buffer(bhs[i]);
1083
1084         for (i = 0; i < bh_count; i++) {
1085                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1086                         err = -EIO;
1087                         goto out_brelse;
1088                 }
1089         }
1090         return 0;
1091
1092 out_brelse:
1093         for (i = 0; i < bh_count; i++) {
1094                 brelse(bhs[i]);
1095                 bhs[i] = NULL;
1096         }
1097         return err;
1098 }
1099
1100 int ext4_walk_page_buffers(handle_t *handle,
1101                            struct buffer_head *head,
1102                            unsigned from,
1103                            unsigned to,
1104                            int *partial,
1105                            int (*fn)(handle_t *handle,
1106                                      struct buffer_head *bh))
1107 {
1108         struct buffer_head *bh;
1109         unsigned block_start, block_end;
1110         unsigned blocksize = head->b_size;
1111         int err, ret = 0;
1112         struct buffer_head *next;
1113
1114         for (bh = head, block_start = 0;
1115              ret == 0 && (bh != head || !block_start);
1116              block_start = block_end, bh = next) {
1117                 next = bh->b_this_page;
1118                 block_end = block_start + blocksize;
1119                 if (block_end <= from || block_start >= to) {
1120                         if (partial && !buffer_uptodate(bh))
1121                                 *partial = 1;
1122                         continue;
1123                 }
1124                 err = (*fn)(handle, bh);
1125                 if (!ret)
1126                         ret = err;
1127         }
1128         return ret;
1129 }
1130
1131 /*
1132  * To preserve ordering, it is essential that the hole instantiation and
1133  * the data write be encapsulated in a single transaction.  We cannot
1134  * close off a transaction and start a new one between the ext4_get_block()
1135  * and the commit_write().  So doing the jbd2_journal_start at the start of
1136  * prepare_write() is the right place.
1137  *
1138  * Also, this function can nest inside ext4_writepage().  In that case, we
1139  * *know* that ext4_writepage() has generated enough buffer credits to do the
1140  * whole page.  So we won't block on the journal in that case, which is good,
1141  * because the caller may be PF_MEMALLOC.
1142  *
1143  * By accident, ext4 can be reentered when a transaction is open via
1144  * quota file writes.  If we were to commit the transaction while thus
1145  * reentered, there can be a deadlock - we would be holding a quota
1146  * lock, and the commit would never complete if another thread had a
1147  * transaction open and was blocking on the quota lock - a ranking
1148  * violation.
1149  *
1150  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1151  * will _not_ run commit under these circumstances because handle->h_ref
1152  * is elevated.  We'll still have enough credits for the tiny quotafile
1153  * write.
1154  */
1155 int do_journal_get_write_access(handle_t *handle,
1156                                 struct buffer_head *bh)
1157 {
1158         int dirty = buffer_dirty(bh);
1159         int ret;
1160
1161         if (!buffer_mapped(bh) || buffer_freed(bh))
1162                 return 0;
1163         /*
1164          * __block_write_begin() could have dirtied some buffers. Clean
1165          * the dirty bit as jbd2_journal_get_write_access() could complain
1166          * otherwise about fs integrity issues. Setting of the dirty bit
1167          * by __block_write_begin() isn't a real problem here as we clear
1168          * the bit before releasing a page lock and thus writeback cannot
1169          * ever write the buffer.
1170          */
1171         if (dirty)
1172                 clear_buffer_dirty(bh);
1173         BUFFER_TRACE(bh, "get write access");
1174         ret = ext4_journal_get_write_access(handle, bh);
1175         if (!ret && dirty)
1176                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1177         return ret;
1178 }
1179
1180 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1181 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1182                                   get_block_t *get_block)
1183 {
1184         unsigned from = pos & (PAGE_SIZE - 1);
1185         unsigned to = from + len;
1186         struct inode *inode = page->mapping->host;
1187         unsigned block_start, block_end;
1188         sector_t block;
1189         int err = 0;
1190         unsigned blocksize = inode->i_sb->s_blocksize;
1191         unsigned bbits;
1192         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1193         bool decrypt = false;
1194
1195         BUG_ON(!PageLocked(page));
1196         BUG_ON(from > PAGE_SIZE);
1197         BUG_ON(to > PAGE_SIZE);
1198         BUG_ON(from > to);
1199
1200         if (!page_has_buffers(page))
1201                 create_empty_buffers(page, blocksize, 0);
1202         head = page_buffers(page);
1203         bbits = ilog2(blocksize);
1204         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1205
1206         for (bh = head, block_start = 0; bh != head || !block_start;
1207             block++, block_start = block_end, bh = bh->b_this_page) {
1208                 block_end = block_start + blocksize;
1209                 if (block_end <= from || block_start >= to) {
1210                         if (PageUptodate(page)) {
1211                                 if (!buffer_uptodate(bh))
1212                                         set_buffer_uptodate(bh);
1213                         }
1214                         continue;
1215                 }
1216                 if (buffer_new(bh))
1217                         clear_buffer_new(bh);
1218                 if (!buffer_mapped(bh)) {
1219                         WARN_ON(bh->b_size != blocksize);
1220                         err = get_block(inode, block, bh, 1);
1221                         if (err)
1222                                 break;
1223                         if (buffer_new(bh)) {
1224                                 clean_bdev_bh_alias(bh);
1225                                 if (PageUptodate(page)) {
1226                                         clear_buffer_new(bh);
1227                                         set_buffer_uptodate(bh);
1228                                         mark_buffer_dirty(bh);
1229                                         continue;
1230                                 }
1231                                 if (block_end > to || block_start < from)
1232                                         zero_user_segments(page, to, block_end,
1233                                                            block_start, from);
1234                                 continue;
1235                         }
1236                 }
1237                 if (PageUptodate(page)) {
1238                         if (!buffer_uptodate(bh))
1239                                 set_buffer_uptodate(bh);
1240                         continue;
1241                 }
1242                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1243                     !buffer_unwritten(bh) &&
1244                     (block_start < from || block_end > to)) {
1245                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1246                         *wait_bh++ = bh;
1247                         decrypt = ext4_encrypted_inode(inode) &&
1248                                 S_ISREG(inode->i_mode);
1249                 }
1250         }
1251         /*
1252          * If we issued read requests, let them complete.
1253          */
1254         while (wait_bh > wait) {
1255                 wait_on_buffer(*--wait_bh);
1256                 if (!buffer_uptodate(*wait_bh))
1257                         err = -EIO;
1258         }
1259         if (unlikely(err))
1260                 page_zero_new_buffers(page, from, to);
1261         else if (decrypt)
1262                 err = fscrypt_decrypt_page(page->mapping->host, page,
1263                                 PAGE_SIZE, 0, page->index);
1264         return err;
1265 }
1266 #endif
1267
1268 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1269                             loff_t pos, unsigned len, unsigned flags,
1270                             struct page **pagep, void **fsdata)
1271 {
1272         struct inode *inode = mapping->host;
1273         int ret, needed_blocks;
1274         handle_t *handle;
1275         int retries = 0;
1276         struct page *page;
1277         pgoff_t index;
1278         unsigned from, to;
1279
1280         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1281                 return -EIO;
1282
1283         trace_ext4_write_begin(inode, pos, len, flags);
1284         /*
1285          * Reserve one block more for addition to orphan list in case
1286          * we allocate blocks but write fails for some reason
1287          */
1288         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1289         index = pos >> PAGE_SHIFT;
1290         from = pos & (PAGE_SIZE - 1);
1291         to = from + len;
1292
1293         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1294                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1295                                                     flags, pagep);
1296                 if (ret < 0)
1297                         return ret;
1298                 if (ret == 1)
1299                         return 0;
1300         }
1301
1302         /*
1303          * grab_cache_page_write_begin() can take a long time if the
1304          * system is thrashing due to memory pressure, or if the page
1305          * is being written back.  So grab it first before we start
1306          * the transaction handle.  This also allows us to allocate
1307          * the page (if needed) without using GFP_NOFS.
1308          */
1309 retry_grab:
1310         page = grab_cache_page_write_begin(mapping, index, flags);
1311         if (!page)
1312                 return -ENOMEM;
1313         unlock_page(page);
1314
1315 retry_journal:
1316         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1317         if (IS_ERR(handle)) {
1318                 put_page(page);
1319                 return PTR_ERR(handle);
1320         }
1321
1322         lock_page(page);
1323         if (page->mapping != mapping) {
1324                 /* The page got truncated from under us */
1325                 unlock_page(page);
1326                 put_page(page);
1327                 ext4_journal_stop(handle);
1328                 goto retry_grab;
1329         }
1330         /* In case writeback began while the page was unlocked */
1331         wait_for_stable_page(page);
1332
1333 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1334         if (ext4_should_dioread_nolock(inode))
1335                 ret = ext4_block_write_begin(page, pos, len,
1336                                              ext4_get_block_unwritten);
1337         else
1338                 ret = ext4_block_write_begin(page, pos, len,
1339                                              ext4_get_block);
1340 #else
1341         if (ext4_should_dioread_nolock(inode))
1342                 ret = __block_write_begin(page, pos, len,
1343                                           ext4_get_block_unwritten);
1344         else
1345                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1346 #endif
1347         if (!ret && ext4_should_journal_data(inode)) {
1348                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1349                                              from, to, NULL,
1350                                              do_journal_get_write_access);
1351         }
1352
1353         if (ret) {
1354                 unlock_page(page);
1355                 /*
1356                  * __block_write_begin may have instantiated a few blocks
1357                  * outside i_size.  Trim these off again. Don't need
1358                  * i_size_read because we hold i_mutex.
1359                  *
1360                  * Add inode to orphan list in case we crash before
1361                  * truncate finishes
1362                  */
1363                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1364                         ext4_orphan_add(handle, inode);
1365
1366                 ext4_journal_stop(handle);
1367                 if (pos + len > inode->i_size) {
1368                         ext4_truncate_failed_write(inode);
1369                         /*
1370                          * If truncate failed early the inode might
1371                          * still be on the orphan list; we need to
1372                          * make sure the inode is removed from the
1373                          * orphan list in that case.
1374                          */
1375                         if (inode->i_nlink)
1376                                 ext4_orphan_del(NULL, inode);
1377                 }
1378
1379                 if (ret == -ENOSPC &&
1380                     ext4_should_retry_alloc(inode->i_sb, &retries))
1381                         goto retry_journal;
1382                 put_page(page);
1383                 return ret;
1384         }
1385         *pagep = page;
1386         return ret;
1387 }
1388
1389 /* For write_end() in data=journal mode */
1390 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1391 {
1392         int ret;
1393         if (!buffer_mapped(bh) || buffer_freed(bh))
1394                 return 0;
1395         set_buffer_uptodate(bh);
1396         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1397         clear_buffer_meta(bh);
1398         clear_buffer_prio(bh);
1399         return ret;
1400 }
1401
1402 /*
1403  * We need to pick up the new inode size which generic_commit_write gave us
1404  * `file' can be NULL - eg, when called from page_symlink().
1405  *
1406  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1407  * buffers are managed internally.
1408  */
1409 static int ext4_write_end(struct file *file,
1410                           struct address_space *mapping,
1411                           loff_t pos, unsigned len, unsigned copied,
1412                           struct page *page, void *fsdata)
1413 {
1414         handle_t *handle = ext4_journal_current_handle();
1415         struct inode *inode = mapping->host;
1416         loff_t old_size = inode->i_size;
1417         int ret = 0, ret2;
1418         int i_size_changed = 0;
1419         int inline_data = ext4_has_inline_data(inode);
1420
1421         trace_ext4_write_end(inode, pos, len, copied);
1422         if (inline_data) {
1423                 ret = ext4_write_inline_data_end(inode, pos, len,
1424                                                  copied, page);
1425                 if (ret < 0) {
1426                         unlock_page(page);
1427                         put_page(page);
1428                         goto errout;
1429                 }
1430                 copied = ret;
1431         } else
1432                 copied = block_write_end(file, mapping, pos,
1433                                          len, copied, page, fsdata);
1434         /*
1435          * it's important to update i_size while still holding page lock:
1436          * page writeout could otherwise come in and zero beyond i_size.
1437          */
1438         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1439         unlock_page(page);
1440         put_page(page);
1441
1442         if (old_size < pos)
1443                 pagecache_isize_extended(inode, old_size, pos);
1444         /*
1445          * Don't mark the inode dirty under page lock. First, it unnecessarily
1446          * makes the holding time of page lock longer. Second, it forces lock
1447          * ordering of page lock and transaction start for journaling
1448          * filesystems.
1449          */
1450         if (i_size_changed || inline_data)
1451                 ext4_mark_inode_dirty(handle, inode);
1452
1453         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1454                 /* if we have allocated more blocks and copied
1455                  * less. We will have blocks allocated outside
1456                  * inode->i_size. So truncate them
1457                  */
1458                 ext4_orphan_add(handle, inode);
1459 errout:
1460         ret2 = ext4_journal_stop(handle);
1461         if (!ret)
1462                 ret = ret2;
1463
1464         if (pos + len > inode->i_size) {
1465                 ext4_truncate_failed_write(inode);
1466                 /*
1467                  * If truncate failed early the inode might still be
1468                  * on the orphan list; we need to make sure the inode
1469                  * is removed from the orphan list in that case.
1470                  */
1471                 if (inode->i_nlink)
1472                         ext4_orphan_del(NULL, inode);
1473         }
1474
1475         return ret ? ret : copied;
1476 }
1477
1478 /*
1479  * This is a private version of page_zero_new_buffers() which doesn't
1480  * set the buffer to be dirty, since in data=journalled mode we need
1481  * to call ext4_handle_dirty_metadata() instead.
1482  */
1483 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1484                                             struct page *page,
1485                                             unsigned from, unsigned to)
1486 {
1487         unsigned int block_start = 0, block_end;
1488         struct buffer_head *head, *bh;
1489
1490         bh = head = page_buffers(page);
1491         do {
1492                 block_end = block_start + bh->b_size;
1493                 if (buffer_new(bh)) {
1494                         if (block_end > from && block_start < to) {
1495                                 if (!PageUptodate(page)) {
1496                                         unsigned start, size;
1497
1498                                         start = max(from, block_start);
1499                                         size = min(to, block_end) - start;
1500
1501                                         zero_user(page, start, size);
1502                                         write_end_fn(handle, bh);
1503                                 }
1504                                 clear_buffer_new(bh);
1505                         }
1506                 }
1507                 block_start = block_end;
1508                 bh = bh->b_this_page;
1509         } while (bh != head);
1510 }
1511
1512 static int ext4_journalled_write_end(struct file *file,
1513                                      struct address_space *mapping,
1514                                      loff_t pos, unsigned len, unsigned copied,
1515                                      struct page *page, void *fsdata)
1516 {
1517         handle_t *handle = ext4_journal_current_handle();
1518         struct inode *inode = mapping->host;
1519         loff_t old_size = inode->i_size;
1520         int ret = 0, ret2;
1521         int partial = 0;
1522         unsigned from, to;
1523         int size_changed = 0;
1524         int inline_data = ext4_has_inline_data(inode);
1525
1526         trace_ext4_journalled_write_end(inode, pos, len, copied);
1527         from = pos & (PAGE_SIZE - 1);
1528         to = from + len;
1529
1530         BUG_ON(!ext4_handle_valid(handle));
1531
1532         if (inline_data) {
1533                 ret = ext4_write_inline_data_end(inode, pos, len,
1534                                                  copied, page);
1535                 if (ret < 0) {
1536                         unlock_page(page);
1537                         put_page(page);
1538                         goto errout;
1539                 }
1540                 copied = ret;
1541         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1542                 copied = 0;
1543                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1544         } else {
1545                 if (unlikely(copied < len))
1546                         ext4_journalled_zero_new_buffers(handle, page,
1547                                                          from + copied, to);
1548                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1549                                              from + copied, &partial,
1550                                              write_end_fn);
1551                 if (!partial)
1552                         SetPageUptodate(page);
1553         }
1554         size_changed = ext4_update_inode_size(inode, pos + copied);
1555         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1556         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1557         unlock_page(page);
1558         put_page(page);
1559
1560         if (old_size < pos)
1561                 pagecache_isize_extended(inode, old_size, pos);
1562
1563         if (size_changed || inline_data) {
1564                 ret2 = ext4_mark_inode_dirty(handle, inode);
1565                 if (!ret)
1566                         ret = ret2;
1567         }
1568
1569         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1570                 /* if we have allocated more blocks and copied
1571                  * less. We will have blocks allocated outside
1572                  * inode->i_size. So truncate them
1573                  */
1574                 ext4_orphan_add(handle, inode);
1575
1576 errout:
1577         ret2 = ext4_journal_stop(handle);
1578         if (!ret)
1579                 ret = ret2;
1580         if (pos + len > inode->i_size) {
1581                 ext4_truncate_failed_write(inode);
1582                 /*
1583                  * If truncate failed early the inode might still be
1584                  * on the orphan list; we need to make sure the inode
1585                  * is removed from the orphan list in that case.
1586                  */
1587                 if (inode->i_nlink)
1588                         ext4_orphan_del(NULL, inode);
1589         }
1590
1591         return ret ? ret : copied;
1592 }
1593
1594 /*
1595  * Reserve space for a single cluster
1596  */
1597 static int ext4_da_reserve_space(struct inode *inode)
1598 {
1599         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1600         struct ext4_inode_info *ei = EXT4_I(inode);
1601         int ret;
1602
1603         /*
1604          * We will charge metadata quota at writeout time; this saves
1605          * us from metadata over-estimation, though we may go over by
1606          * a small amount in the end.  Here we just reserve for data.
1607          */
1608         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1609         if (ret)
1610                 return ret;
1611
1612         spin_lock(&ei->i_block_reservation_lock);
1613         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1614                 spin_unlock(&ei->i_block_reservation_lock);
1615                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1616                 return -ENOSPC;
1617         }
1618         ei->i_reserved_data_blocks++;
1619         trace_ext4_da_reserve_space(inode);
1620         spin_unlock(&ei->i_block_reservation_lock);
1621
1622         return 0;       /* success */
1623 }
1624
1625 static void ext4_da_release_space(struct inode *inode, int to_free)
1626 {
1627         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1628         struct ext4_inode_info *ei = EXT4_I(inode);
1629
1630         if (!to_free)
1631                 return;         /* Nothing to release, exit */
1632
1633         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1634
1635         trace_ext4_da_release_space(inode, to_free);
1636         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1637                 /*
1638                  * if there aren't enough reserved blocks, then the
1639                  * counter is messed up somewhere.  Since this
1640                  * function is called from invalidate page, it's
1641                  * harmless to return without any action.
1642                  */
1643                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1644                          "ino %lu, to_free %d with only %d reserved "
1645                          "data blocks", inode->i_ino, to_free,
1646                          ei->i_reserved_data_blocks);
1647                 WARN_ON(1);
1648                 to_free = ei->i_reserved_data_blocks;
1649         }
1650         ei->i_reserved_data_blocks -= to_free;
1651
1652         /* update fs dirty data blocks counter */
1653         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1654
1655         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1656
1657         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1658 }
1659
1660 static void ext4_da_page_release_reservation(struct page *page,
1661                                              unsigned int offset,
1662                                              unsigned int length)
1663 {
1664         int to_release = 0, contiguous_blks = 0;
1665         struct buffer_head *head, *bh;
1666         unsigned int curr_off = 0;
1667         struct inode *inode = page->mapping->host;
1668         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1669         unsigned int stop = offset + length;
1670         int num_clusters;
1671         ext4_fsblk_t lblk;
1672
1673         BUG_ON(stop > PAGE_SIZE || stop < length);
1674
1675         head = page_buffers(page);
1676         bh = head;
1677         do {
1678                 unsigned int next_off = curr_off + bh->b_size;
1679
1680                 if (next_off > stop)
1681                         break;
1682
1683                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1684                         to_release++;
1685                         contiguous_blks++;
1686                         clear_buffer_delay(bh);
1687                 } else if (contiguous_blks) {
1688                         lblk = page->index <<
1689                                (PAGE_SHIFT - inode->i_blkbits);
1690                         lblk += (curr_off >> inode->i_blkbits) -
1691                                 contiguous_blks;
1692                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1693                         contiguous_blks = 0;
1694                 }
1695                 curr_off = next_off;
1696         } while ((bh = bh->b_this_page) != head);
1697
1698         if (contiguous_blks) {
1699                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1700                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1701                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1702         }
1703
1704         /* If we have released all the blocks belonging to a cluster, then we
1705          * need to release the reserved space for that cluster. */
1706         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1707         while (num_clusters > 0) {
1708                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1709                         ((num_clusters - 1) << sbi->s_cluster_bits);
1710                 if (sbi->s_cluster_ratio == 1 ||
1711                     !ext4_find_delalloc_cluster(inode, lblk))
1712                         ext4_da_release_space(inode, 1);
1713
1714                 num_clusters--;
1715         }
1716 }
1717
1718 /*
1719  * Delayed allocation stuff
1720  */
1721
1722 struct mpage_da_data {
1723         struct inode *inode;
1724         struct writeback_control *wbc;
1725
1726         pgoff_t first_page;     /* The first page to write */
1727         pgoff_t next_page;      /* Current page to examine */
1728         pgoff_t last_page;      /* Last page to examine */
1729         /*
1730          * Extent to map - this can be after first_page because that can be
1731          * fully mapped. We somewhat abuse m_flags to store whether the extent
1732          * is delalloc or unwritten.
1733          */
1734         struct ext4_map_blocks map;
1735         struct ext4_io_submit io_submit;        /* IO submission data */
1736         unsigned int do_map:1;
1737 };
1738
1739 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1740                                        bool invalidate)
1741 {
1742         int nr_pages, i;
1743         pgoff_t index, end;
1744         struct pagevec pvec;
1745         struct inode *inode = mpd->inode;
1746         struct address_space *mapping = inode->i_mapping;
1747
1748         /* This is necessary when next_page == 0. */
1749         if (mpd->first_page >= mpd->next_page)
1750                 return;
1751
1752         index = mpd->first_page;
1753         end   = mpd->next_page - 1;
1754         if (invalidate) {
1755                 ext4_lblk_t start, last;
1756                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1757                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1758                 ext4_es_remove_extent(inode, start, last - start + 1);
1759         }
1760
1761         pagevec_init(&pvec);
1762         while (index <= end) {
1763                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1764                 if (nr_pages == 0)
1765                         break;
1766                 for (i = 0; i < nr_pages; i++) {
1767                         struct page *page = pvec.pages[i];
1768
1769                         BUG_ON(!PageLocked(page));
1770                         BUG_ON(PageWriteback(page));
1771                         if (invalidate) {
1772                                 if (page_mapped(page))
1773                                         clear_page_dirty_for_io(page);
1774                                 block_invalidatepage(page, 0, PAGE_SIZE);
1775                                 ClearPageUptodate(page);
1776                         }
1777                         unlock_page(page);
1778                 }
1779                 pagevec_release(&pvec);
1780         }
1781 }
1782
1783 static void ext4_print_free_blocks(struct inode *inode)
1784 {
1785         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1786         struct super_block *sb = inode->i_sb;
1787         struct ext4_inode_info *ei = EXT4_I(inode);
1788
1789         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1790                EXT4_C2B(EXT4_SB(inode->i_sb),
1791                         ext4_count_free_clusters(sb)));
1792         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1793         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1794                (long long) EXT4_C2B(EXT4_SB(sb),
1795                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1796         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1797                (long long) EXT4_C2B(EXT4_SB(sb),
1798                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1799         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1800         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1801                  ei->i_reserved_data_blocks);
1802         return;
1803 }
1804
1805 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1806 {
1807         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1808 }
1809
1810 /*
1811  * This function is grabs code from the very beginning of
1812  * ext4_map_blocks, but assumes that the caller is from delayed write
1813  * time. This function looks up the requested blocks and sets the
1814  * buffer delay bit under the protection of i_data_sem.
1815  */
1816 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817                               struct ext4_map_blocks *map,
1818                               struct buffer_head *bh)
1819 {
1820         struct extent_status es;
1821         int retval;
1822         sector_t invalid_block = ~((sector_t) 0xffff);
1823 #ifdef ES_AGGRESSIVE_TEST
1824         struct ext4_map_blocks orig_map;
1825
1826         memcpy(&orig_map, map, sizeof(*map));
1827 #endif
1828
1829         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830                 invalid_block = ~0;
1831
1832         map->m_flags = 0;
1833         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834                   "logical block %lu\n", inode->i_ino, map->m_len,
1835                   (unsigned long) map->m_lblk);
1836
1837         /* Lookup extent status tree firstly */
1838         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1839                 if (ext4_es_is_hole(&es)) {
1840                         retval = 0;
1841                         down_read(&EXT4_I(inode)->i_data_sem);
1842                         goto add_delayed;
1843                 }
1844
1845                 /*
1846                  * Delayed extent could be allocated by fallocate.
1847                  * So we need to check it.
1848                  */
1849                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850                         map_bh(bh, inode->i_sb, invalid_block);
1851                         set_buffer_new(bh);
1852                         set_buffer_delay(bh);
1853                         return 0;
1854                 }
1855
1856                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857                 retval = es.es_len - (iblock - es.es_lblk);
1858                 if (retval > map->m_len)
1859                         retval = map->m_len;
1860                 map->m_len = retval;
1861                 if (ext4_es_is_written(&es))
1862                         map->m_flags |= EXT4_MAP_MAPPED;
1863                 else if (ext4_es_is_unwritten(&es))
1864                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1865                 else
1866                         BUG_ON(1);
1867
1868 #ifdef ES_AGGRESSIVE_TEST
1869                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870 #endif
1871                 return retval;
1872         }
1873
1874         /*
1875          * Try to see if we can get the block without requesting a new
1876          * file system block.
1877          */
1878         down_read(&EXT4_I(inode)->i_data_sem);
1879         if (ext4_has_inline_data(inode))
1880                 retval = 0;
1881         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883         else
1884                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885
1886 add_delayed:
1887         if (retval == 0) {
1888                 int ret;
1889                 /*
1890                  * XXX: __block_prepare_write() unmaps passed block,
1891                  * is it OK?
1892                  */
1893                 /*
1894                  * If the block was allocated from previously allocated cluster,
1895                  * then we don't need to reserve it again. However we still need
1896                  * to reserve metadata for every block we're going to write.
1897                  */
1898                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1899                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1900                         ret = ext4_da_reserve_space(inode);
1901                         if (ret) {
1902                                 /* not enough space to reserve */
1903                                 retval = ret;
1904                                 goto out_unlock;
1905                         }
1906                 }
1907
1908                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1909                                             ~0, EXTENT_STATUS_DELAYED);
1910                 if (ret) {
1911                         retval = ret;
1912                         goto out_unlock;
1913                 }
1914
1915                 map_bh(bh, inode->i_sb, invalid_block);
1916                 set_buffer_new(bh);
1917                 set_buffer_delay(bh);
1918         } else if (retval > 0) {
1919                 int ret;
1920                 unsigned int status;
1921
1922                 if (unlikely(retval != map->m_len)) {
1923                         ext4_warning(inode->i_sb,
1924                                      "ES len assertion failed for inode "
1925                                      "%lu: retval %d != map->m_len %d",
1926                                      inode->i_ino, retval, map->m_len);
1927                         WARN_ON(1);
1928                 }
1929
1930                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1931                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1932                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1933                                             map->m_pblk, status);
1934                 if (ret != 0)
1935                         retval = ret;
1936         }
1937
1938 out_unlock:
1939         up_read((&EXT4_I(inode)->i_data_sem));
1940
1941         return retval;
1942 }
1943
1944 /*
1945  * This is a special get_block_t callback which is used by
1946  * ext4_da_write_begin().  It will either return mapped block or
1947  * reserve space for a single block.
1948  *
1949  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1950  * We also have b_blocknr = -1 and b_bdev initialized properly
1951  *
1952  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1953  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1954  * initialized properly.
1955  */
1956 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1957                            struct buffer_head *bh, int create)
1958 {
1959         struct ext4_map_blocks map;
1960         int ret = 0;
1961
1962         BUG_ON(create == 0);
1963         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1964
1965         map.m_lblk = iblock;
1966         map.m_len = 1;
1967
1968         /*
1969          * first, we need to know whether the block is allocated already
1970          * preallocated blocks are unmapped but should treated
1971          * the same as allocated blocks.
1972          */
1973         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1974         if (ret <= 0)
1975                 return ret;
1976
1977         map_bh(bh, inode->i_sb, map.m_pblk);
1978         ext4_update_bh_state(bh, map.m_flags);
1979
1980         if (buffer_unwritten(bh)) {
1981                 /* A delayed write to unwritten bh should be marked
1982                  * new and mapped.  Mapped ensures that we don't do
1983                  * get_block multiple times when we write to the same
1984                  * offset and new ensures that we do proper zero out
1985                  * for partial write.
1986                  */
1987                 set_buffer_new(bh);
1988                 set_buffer_mapped(bh);
1989         }
1990         return 0;
1991 }
1992
1993 static int bget_one(handle_t *handle, struct buffer_head *bh)
1994 {
1995         get_bh(bh);
1996         return 0;
1997 }
1998
1999 static int bput_one(handle_t *handle, struct buffer_head *bh)
2000 {
2001         put_bh(bh);
2002         return 0;
2003 }
2004
2005 static int __ext4_journalled_writepage(struct page *page,
2006                                        unsigned int len)
2007 {
2008         struct address_space *mapping = page->mapping;
2009         struct inode *inode = mapping->host;
2010         struct buffer_head *page_bufs = NULL;
2011         handle_t *handle = NULL;
2012         int ret = 0, err = 0;
2013         int inline_data = ext4_has_inline_data(inode);
2014         struct buffer_head *inode_bh = NULL;
2015
2016         ClearPageChecked(page);
2017
2018         if (inline_data) {
2019                 BUG_ON(page->index != 0);
2020                 BUG_ON(len > ext4_get_max_inline_size(inode));
2021                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2022                 if (inode_bh == NULL)
2023                         goto out;
2024         } else {
2025                 page_bufs = page_buffers(page);
2026                 if (!page_bufs) {
2027                         BUG();
2028                         goto out;
2029                 }
2030                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2031                                        NULL, bget_one);
2032         }
2033         /*
2034          * We need to release the page lock before we start the
2035          * journal, so grab a reference so the page won't disappear
2036          * out from under us.
2037          */
2038         get_page(page);
2039         unlock_page(page);
2040
2041         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2042                                     ext4_writepage_trans_blocks(inode));
2043         if (IS_ERR(handle)) {
2044                 ret = PTR_ERR(handle);
2045                 put_page(page);
2046                 goto out_no_pagelock;
2047         }
2048         BUG_ON(!ext4_handle_valid(handle));
2049
2050         lock_page(page);
2051         put_page(page);
2052         if (page->mapping != mapping) {
2053                 /* The page got truncated from under us */
2054                 ext4_journal_stop(handle);
2055                 ret = 0;
2056                 goto out;
2057         }
2058
2059         if (inline_data) {
2060                 ret = ext4_mark_inode_dirty(handle, inode);
2061         } else {
2062                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2063                                              do_journal_get_write_access);
2064
2065                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066                                              write_end_fn);
2067         }
2068         if (ret == 0)
2069                 ret = err;
2070         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2071         err = ext4_journal_stop(handle);
2072         if (!ret)
2073                 ret = err;
2074
2075         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2076 out:
2077         unlock_page(page);
2078 out_no_pagelock:
2079         if (!inline_data && page_bufs)
2080                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2081                                        NULL, bput_one);
2082         brelse(inode_bh);
2083         return ret;
2084 }
2085
2086 /*
2087  * Note that we don't need to start a transaction unless we're journaling data
2088  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2089  * need to file the inode to the transaction's list in ordered mode because if
2090  * we are writing back data added by write(), the inode is already there and if
2091  * we are writing back data modified via mmap(), no one guarantees in which
2092  * transaction the data will hit the disk. In case we are journaling data, we
2093  * cannot start transaction directly because transaction start ranks above page
2094  * lock so we have to do some magic.
2095  *
2096  * This function can get called via...
2097  *   - ext4_writepages after taking page lock (have journal handle)
2098  *   - journal_submit_inode_data_buffers (no journal handle)
2099  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2100  *   - grab_page_cache when doing write_begin (have journal handle)
2101  *
2102  * We don't do any block allocation in this function. If we have page with
2103  * multiple blocks we need to write those buffer_heads that are mapped. This
2104  * is important for mmaped based write. So if we do with blocksize 1K
2105  * truncate(f, 1024);
2106  * a = mmap(f, 0, 4096);
2107  * a[0] = 'a';
2108  * truncate(f, 4096);
2109  * we have in the page first buffer_head mapped via page_mkwrite call back
2110  * but other buffer_heads would be unmapped but dirty (dirty done via the
2111  * do_wp_page). So writepage should write the first block. If we modify
2112  * the mmap area beyond 1024 we will again get a page_fault and the
2113  * page_mkwrite callback will do the block allocation and mark the
2114  * buffer_heads mapped.
2115  *
2116  * We redirty the page if we have any buffer_heads that is either delay or
2117  * unwritten in the page.
2118  *
2119  * We can get recursively called as show below.
2120  *
2121  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2122  *              ext4_writepage()
2123  *
2124  * But since we don't do any block allocation we should not deadlock.
2125  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2126  */
2127 static int ext4_writepage(struct page *page,
2128                           struct writeback_control *wbc)
2129 {
2130         int ret = 0;
2131         loff_t size;
2132         unsigned int len;
2133         struct buffer_head *page_bufs = NULL;
2134         struct inode *inode = page->mapping->host;
2135         struct ext4_io_submit io_submit;
2136         bool keep_towrite = false;
2137
2138         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2139                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2140                 unlock_page(page);
2141                 return -EIO;
2142         }
2143
2144         trace_ext4_writepage(page);
2145         size = i_size_read(inode);
2146         if (page->index == size >> PAGE_SHIFT)
2147                 len = size & ~PAGE_MASK;
2148         else
2149                 len = PAGE_SIZE;
2150
2151         page_bufs = page_buffers(page);
2152         /*
2153          * We cannot do block allocation or other extent handling in this
2154          * function. If there are buffers needing that, we have to redirty
2155          * the page. But we may reach here when we do a journal commit via
2156          * journal_submit_inode_data_buffers() and in that case we must write
2157          * allocated buffers to achieve data=ordered mode guarantees.
2158          *
2159          * Also, if there is only one buffer per page (the fs block
2160          * size == the page size), if one buffer needs block
2161          * allocation or needs to modify the extent tree to clear the
2162          * unwritten flag, we know that the page can't be written at
2163          * all, so we might as well refuse the write immediately.
2164          * Unfortunately if the block size != page size, we can't as
2165          * easily detect this case using ext4_walk_page_buffers(), but
2166          * for the extremely common case, this is an optimization that
2167          * skips a useless round trip through ext4_bio_write_page().
2168          */
2169         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2170                                    ext4_bh_delay_or_unwritten)) {
2171                 redirty_page_for_writepage(wbc, page);
2172                 if ((current->flags & PF_MEMALLOC) ||
2173                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2174                         /*
2175                          * For memory cleaning there's no point in writing only
2176                          * some buffers. So just bail out. Warn if we came here
2177                          * from direct reclaim.
2178                          */
2179                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2180                                                         == PF_MEMALLOC);
2181                         unlock_page(page);
2182                         return 0;
2183                 }
2184                 keep_towrite = true;
2185         }
2186
2187         if (PageChecked(page) && ext4_should_journal_data(inode))
2188                 /*
2189                  * It's mmapped pagecache.  Add buffers and journal it.  There
2190                  * doesn't seem much point in redirtying the page here.
2191                  */
2192                 return __ext4_journalled_writepage(page, len);
2193
2194         ext4_io_submit_init(&io_submit, wbc);
2195         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2196         if (!io_submit.io_end) {
2197                 redirty_page_for_writepage(wbc, page);
2198                 unlock_page(page);
2199                 return -ENOMEM;
2200         }
2201         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2202         ext4_io_submit(&io_submit);
2203         /* Drop io_end reference we got from init */
2204         ext4_put_io_end_defer(io_submit.io_end);
2205         return ret;
2206 }
2207
2208 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2209 {
2210         int len;
2211         loff_t size;
2212         int err;
2213
2214         BUG_ON(page->index != mpd->first_page);
2215         clear_page_dirty_for_io(page);
2216         /*
2217          * We have to be very careful here!  Nothing protects writeback path
2218          * against i_size changes and the page can be writeably mapped into
2219          * page tables. So an application can be growing i_size and writing
2220          * data through mmap while writeback runs. clear_page_dirty_for_io()
2221          * write-protects our page in page tables and the page cannot get
2222          * written to again until we release page lock. So only after
2223          * clear_page_dirty_for_io() we are safe to sample i_size for
2224          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2225          * on the barrier provided by TestClearPageDirty in
2226          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2227          * after page tables are updated.
2228          */
2229         size = i_size_read(mpd->inode);
2230         if (page->index == size >> PAGE_SHIFT)
2231                 len = size & ~PAGE_MASK;
2232         else
2233                 len = PAGE_SIZE;
2234         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2235         if (!err)
2236                 mpd->wbc->nr_to_write--;
2237         mpd->first_page++;
2238
2239         return err;
2240 }
2241
2242 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2243
2244 /*
2245  * mballoc gives us at most this number of blocks...
2246  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2247  * The rest of mballoc seems to handle chunks up to full group size.
2248  */
2249 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2250
2251 /*
2252  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2253  *
2254  * @mpd - extent of blocks
2255  * @lblk - logical number of the block in the file
2256  * @bh - buffer head we want to add to the extent
2257  *
2258  * The function is used to collect contig. blocks in the same state. If the
2259  * buffer doesn't require mapping for writeback and we haven't started the
2260  * extent of buffers to map yet, the function returns 'true' immediately - the
2261  * caller can write the buffer right away. Otherwise the function returns true
2262  * if the block has been added to the extent, false if the block couldn't be
2263  * added.
2264  */
2265 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2266                                    struct buffer_head *bh)
2267 {
2268         struct ext4_map_blocks *map = &mpd->map;
2269
2270         /* Buffer that doesn't need mapping for writeback? */
2271         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2272             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2273                 /* So far no extent to map => we write the buffer right away */
2274                 if (map->m_len == 0)
2275                         return true;
2276                 return false;
2277         }
2278
2279         /* First block in the extent? */
2280         if (map->m_len == 0) {
2281                 /* We cannot map unless handle is started... */
2282                 if (!mpd->do_map)
2283                         return false;
2284                 map->m_lblk = lblk;
2285                 map->m_len = 1;
2286                 map->m_flags = bh->b_state & BH_FLAGS;
2287                 return true;
2288         }
2289
2290         /* Don't go larger than mballoc is willing to allocate */
2291         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2292                 return false;
2293
2294         /* Can we merge the block to our big extent? */
2295         if (lblk == map->m_lblk + map->m_len &&
2296             (bh->b_state & BH_FLAGS) == map->m_flags) {
2297                 map->m_len++;
2298                 return true;
2299         }
2300         return false;
2301 }
2302
2303 /*
2304  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2305  *
2306  * @mpd - extent of blocks for mapping
2307  * @head - the first buffer in the page
2308  * @bh - buffer we should start processing from
2309  * @lblk - logical number of the block in the file corresponding to @bh
2310  *
2311  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2312  * the page for IO if all buffers in this page were mapped and there's no
2313  * accumulated extent of buffers to map or add buffers in the page to the
2314  * extent of buffers to map. The function returns 1 if the caller can continue
2315  * by processing the next page, 0 if it should stop adding buffers to the
2316  * extent to map because we cannot extend it anymore. It can also return value
2317  * < 0 in case of error during IO submission.
2318  */
2319 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2320                                    struct buffer_head *head,
2321                                    struct buffer_head *bh,
2322                                    ext4_lblk_t lblk)
2323 {
2324         struct inode *inode = mpd->inode;
2325         int err;
2326         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2327                                                         >> inode->i_blkbits;
2328
2329         do {
2330                 BUG_ON(buffer_locked(bh));
2331
2332                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2333                         /* Found extent to map? */
2334                         if (mpd->map.m_len)
2335                                 return 0;
2336                         /* Buffer needs mapping and handle is not started? */
2337                         if (!mpd->do_map)
2338                                 return 0;
2339                         /* Everything mapped so far and we hit EOF */
2340                         break;
2341                 }
2342         } while (lblk++, (bh = bh->b_this_page) != head);
2343         /* So far everything mapped? Submit the page for IO. */
2344         if (mpd->map.m_len == 0) {
2345                 err = mpage_submit_page(mpd, head->b_page);
2346                 if (err < 0)
2347                         return err;
2348         }
2349         return lblk < blocks;
2350 }
2351
2352 /*
2353  * mpage_map_buffers - update buffers corresponding to changed extent and
2354  *                     submit fully mapped pages for IO
2355  *
2356  * @mpd - description of extent to map, on return next extent to map
2357  *
2358  * Scan buffers corresponding to changed extent (we expect corresponding pages
2359  * to be already locked) and update buffer state according to new extent state.
2360  * We map delalloc buffers to their physical location, clear unwritten bits,
2361  * and mark buffers as uninit when we perform writes to unwritten extents
2362  * and do extent conversion after IO is finished. If the last page is not fully
2363  * mapped, we update @map to the next extent in the last page that needs
2364  * mapping. Otherwise we submit the page for IO.
2365  */
2366 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2367 {
2368         struct pagevec pvec;
2369         int nr_pages, i;
2370         struct inode *inode = mpd->inode;
2371         struct buffer_head *head, *bh;
2372         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2373         pgoff_t start, end;
2374         ext4_lblk_t lblk;
2375         sector_t pblock;
2376         int err;
2377
2378         start = mpd->map.m_lblk >> bpp_bits;
2379         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2380         lblk = start << bpp_bits;
2381         pblock = mpd->map.m_pblk;
2382
2383         pagevec_init(&pvec);
2384         while (start <= end) {
2385                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2386                                                 &start, end);
2387                 if (nr_pages == 0)
2388                         break;
2389                 for (i = 0; i < nr_pages; i++) {
2390                         struct page *page = pvec.pages[i];
2391
2392                         bh = head = page_buffers(page);
2393                         do {
2394                                 if (lblk < mpd->map.m_lblk)
2395                                         continue;
2396                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2397                                         /*
2398                                          * Buffer after end of mapped extent.
2399                                          * Find next buffer in the page to map.
2400                                          */
2401                                         mpd->map.m_len = 0;
2402                                         mpd->map.m_flags = 0;
2403                                         /*
2404                                          * FIXME: If dioread_nolock supports
2405                                          * blocksize < pagesize, we need to make
2406                                          * sure we add size mapped so far to
2407                                          * io_end->size as the following call
2408                                          * can submit the page for IO.
2409                                          */
2410                                         err = mpage_process_page_bufs(mpd, head,
2411                                                                       bh, lblk);
2412                                         pagevec_release(&pvec);
2413                                         if (err > 0)
2414                                                 err = 0;
2415                                         return err;
2416                                 }
2417                                 if (buffer_delay(bh)) {
2418                                         clear_buffer_delay(bh);
2419                                         bh->b_blocknr = pblock++;
2420                                 }
2421                                 clear_buffer_unwritten(bh);
2422                         } while (lblk++, (bh = bh->b_this_page) != head);
2423
2424                         /*
2425                          * FIXME: This is going to break if dioread_nolock
2426                          * supports blocksize < pagesize as we will try to
2427                          * convert potentially unmapped parts of inode.
2428                          */
2429                         mpd->io_submit.io_end->size += PAGE_SIZE;
2430                         /* Page fully mapped - let IO run! */
2431                         err = mpage_submit_page(mpd, page);
2432                         if (err < 0) {
2433                                 pagevec_release(&pvec);
2434                                 return err;
2435                         }
2436                 }
2437                 pagevec_release(&pvec);
2438         }
2439         /* Extent fully mapped and matches with page boundary. We are done. */
2440         mpd->map.m_len = 0;
2441         mpd->map.m_flags = 0;
2442         return 0;
2443 }
2444
2445 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2446 {
2447         struct inode *inode = mpd->inode;
2448         struct ext4_map_blocks *map = &mpd->map;
2449         int get_blocks_flags;
2450         int err, dioread_nolock;
2451
2452         trace_ext4_da_write_pages_extent(inode, map);
2453         /*
2454          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2455          * to convert an unwritten extent to be initialized (in the case
2456          * where we have written into one or more preallocated blocks).  It is
2457          * possible that we're going to need more metadata blocks than
2458          * previously reserved. However we must not fail because we're in
2459          * writeback and there is nothing we can do about it so it might result
2460          * in data loss.  So use reserved blocks to allocate metadata if
2461          * possible.
2462          *
2463          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2464          * the blocks in question are delalloc blocks.  This indicates
2465          * that the blocks and quotas has already been checked when
2466          * the data was copied into the page cache.
2467          */
2468         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2469                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2470                            EXT4_GET_BLOCKS_IO_SUBMIT;
2471         dioread_nolock = ext4_should_dioread_nolock(inode);
2472         if (dioread_nolock)
2473                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2474         if (map->m_flags & (1 << BH_Delay))
2475                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2476
2477         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2478         if (err < 0)
2479                 return err;
2480         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2481                 if (!mpd->io_submit.io_end->handle &&
2482                     ext4_handle_valid(handle)) {
2483                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2484                         handle->h_rsv_handle = NULL;
2485                 }
2486                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2487         }
2488
2489         BUG_ON(map->m_len == 0);
2490         if (map->m_flags & EXT4_MAP_NEW) {
2491                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2492                                    map->m_len);
2493         }
2494         return 0;
2495 }
2496
2497 /*
2498  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2499  *                               mpd->len and submit pages underlying it for IO
2500  *
2501  * @handle - handle for journal operations
2502  * @mpd - extent to map
2503  * @give_up_on_write - we set this to true iff there is a fatal error and there
2504  *                     is no hope of writing the data. The caller should discard
2505  *                     dirty pages to avoid infinite loops.
2506  *
2507  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2508  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2509  * them to initialized or split the described range from larger unwritten
2510  * extent. Note that we need not map all the described range since allocation
2511  * can return less blocks or the range is covered by more unwritten extents. We
2512  * cannot map more because we are limited by reserved transaction credits. On
2513  * the other hand we always make sure that the last touched page is fully
2514  * mapped so that it can be written out (and thus forward progress is
2515  * guaranteed). After mapping we submit all mapped pages for IO.
2516  */
2517 static int mpage_map_and_submit_extent(handle_t *handle,
2518                                        struct mpage_da_data *mpd,
2519                                        bool *give_up_on_write)
2520 {
2521         struct inode *inode = mpd->inode;
2522         struct ext4_map_blocks *map = &mpd->map;
2523         int err;
2524         loff_t disksize;
2525         int progress = 0;
2526
2527         mpd->io_submit.io_end->offset =
2528                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2529         do {
2530                 err = mpage_map_one_extent(handle, mpd);
2531                 if (err < 0) {
2532                         struct super_block *sb = inode->i_sb;
2533
2534                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2535                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2536                                 goto invalidate_dirty_pages;
2537                         /*
2538                          * Let the uper layers retry transient errors.
2539                          * In the case of ENOSPC, if ext4_count_free_blocks()
2540                          * is non-zero, a commit should free up blocks.
2541                          */
2542                         if ((err == -ENOMEM) ||
2543                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2544                                 if (progress)
2545                                         goto update_disksize;
2546                                 return err;
2547                         }
2548                         ext4_msg(sb, KERN_CRIT,
2549                                  "Delayed block allocation failed for "
2550                                  "inode %lu at logical offset %llu with"
2551                                  " max blocks %u with error %d",
2552                                  inode->i_ino,
2553                                  (unsigned long long)map->m_lblk,
2554                                  (unsigned)map->m_len, -err);
2555                         ext4_msg(sb, KERN_CRIT,
2556                                  "This should not happen!! Data will "
2557                                  "be lost\n");
2558                         if (err == -ENOSPC)
2559                                 ext4_print_free_blocks(inode);
2560                 invalidate_dirty_pages:
2561                         *give_up_on_write = true;
2562                         return err;
2563                 }
2564                 progress = 1;
2565                 /*
2566                  * Update buffer state, submit mapped pages, and get us new
2567                  * extent to map
2568                  */
2569                 err = mpage_map_and_submit_buffers(mpd);
2570                 if (err < 0)
2571                         goto update_disksize;
2572         } while (map->m_len);
2573
2574 update_disksize:
2575         /*
2576          * Update on-disk size after IO is submitted.  Races with
2577          * truncate are avoided by checking i_size under i_data_sem.
2578          */
2579         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2580         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2581                 int err2;
2582                 loff_t i_size;
2583
2584                 down_write(&EXT4_I(inode)->i_data_sem);
2585                 i_size = i_size_read(inode);
2586                 if (disksize > i_size)
2587                         disksize = i_size;
2588                 if (disksize > EXT4_I(inode)->i_disksize)
2589                         EXT4_I(inode)->i_disksize = disksize;
2590                 up_write(&EXT4_I(inode)->i_data_sem);
2591                 err2 = ext4_mark_inode_dirty(handle, inode);
2592                 if (err2)
2593                         ext4_error(inode->i_sb,
2594                                    "Failed to mark inode %lu dirty",
2595                                    inode->i_ino);
2596                 if (!err)
2597                         err = err2;
2598         }
2599         return err;
2600 }
2601
2602 /*
2603  * Calculate the total number of credits to reserve for one writepages
2604  * iteration. This is called from ext4_writepages(). We map an extent of
2605  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2606  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2607  * bpp - 1 blocks in bpp different extents.
2608  */
2609 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2610 {
2611         int bpp = ext4_journal_blocks_per_page(inode);
2612
2613         return ext4_meta_trans_blocks(inode,
2614                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2615 }
2616
2617 /*
2618  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2619  *                               and underlying extent to map
2620  *
2621  * @mpd - where to look for pages
2622  *
2623  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2624  * IO immediately. When we find a page which isn't mapped we start accumulating
2625  * extent of buffers underlying these pages that needs mapping (formed by
2626  * either delayed or unwritten buffers). We also lock the pages containing
2627  * these buffers. The extent found is returned in @mpd structure (starting at
2628  * mpd->lblk with length mpd->len blocks).
2629  *
2630  * Note that this function can attach bios to one io_end structure which are
2631  * neither logically nor physically contiguous. Although it may seem as an
2632  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2633  * case as we need to track IO to all buffers underlying a page in one io_end.
2634  */
2635 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2636 {
2637         struct address_space *mapping = mpd->inode->i_mapping;
2638         struct pagevec pvec;
2639         unsigned int nr_pages;
2640         long left = mpd->wbc->nr_to_write;
2641         pgoff_t index = mpd->first_page;
2642         pgoff_t end = mpd->last_page;
2643         int tag;
2644         int i, err = 0;
2645         int blkbits = mpd->inode->i_blkbits;
2646         ext4_lblk_t lblk;
2647         struct buffer_head *head;
2648
2649         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2650                 tag = PAGECACHE_TAG_TOWRITE;
2651         else
2652                 tag = PAGECACHE_TAG_DIRTY;
2653
2654         pagevec_init(&pvec);
2655         mpd->map.m_len = 0;
2656         mpd->next_page = index;
2657         while (index <= end) {
2658                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2659                                 tag);
2660                 if (nr_pages == 0)
2661                         goto out;
2662
2663                 for (i = 0; i < nr_pages; i++) {
2664                         struct page *page = pvec.pages[i];
2665
2666                         /*
2667                          * Accumulated enough dirty pages? This doesn't apply
2668                          * to WB_SYNC_ALL mode. For integrity sync we have to
2669                          * keep going because someone may be concurrently
2670                          * dirtying pages, and we might have synced a lot of
2671                          * newly appeared dirty pages, but have not synced all
2672                          * of the old dirty pages.
2673                          */
2674                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2675                                 goto out;
2676
2677                         /* If we can't merge this page, we are done. */
2678                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2679                                 goto out;
2680
2681                         lock_page(page);
2682                         /*
2683                          * If the page is no longer dirty, or its mapping no
2684                          * longer corresponds to inode we are writing (which
2685                          * means it has been truncated or invalidated), or the
2686                          * page is already under writeback and we are not doing
2687                          * a data integrity writeback, skip the page
2688                          */
2689                         if (!PageDirty(page) ||
2690                             (PageWriteback(page) &&
2691                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2692                             unlikely(page->mapping != mapping)) {
2693                                 unlock_page(page);
2694                                 continue;
2695                         }
2696
2697                         wait_on_page_writeback(page);
2698                         BUG_ON(PageWriteback(page));
2699
2700                         if (mpd->map.m_len == 0)
2701                                 mpd->first_page = page->index;
2702                         mpd->next_page = page->index + 1;
2703                         /* Add all dirty buffers to mpd */
2704                         lblk = ((ext4_lblk_t)page->index) <<
2705                                 (PAGE_SHIFT - blkbits);
2706                         head = page_buffers(page);
2707                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2708                         if (err <= 0)
2709                                 goto out;
2710                         err = 0;
2711                         left--;
2712                 }
2713                 pagevec_release(&pvec);
2714                 cond_resched();
2715         }
2716         return 0;
2717 out:
2718         pagevec_release(&pvec);
2719         return err;
2720 }
2721
2722 static int ext4_writepages(struct address_space *mapping,
2723                            struct writeback_control *wbc)
2724 {
2725         pgoff_t writeback_index = 0;
2726         long nr_to_write = wbc->nr_to_write;
2727         int range_whole = 0;
2728         int cycled = 1;
2729         handle_t *handle = NULL;
2730         struct mpage_da_data mpd;
2731         struct inode *inode = mapping->host;
2732         int needed_blocks, rsv_blocks = 0, ret = 0;
2733         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2734         bool done;
2735         struct blk_plug plug;
2736         bool give_up_on_write = false;
2737
2738         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2739                 return -EIO;
2740
2741         percpu_down_read(&sbi->s_writepages_rwsem);
2742         trace_ext4_writepages(inode, wbc);
2743
2744         /*
2745          * No pages to write? This is mainly a kludge to avoid starting
2746          * a transaction for special inodes like journal inode on last iput()
2747          * because that could violate lock ordering on umount
2748          */
2749         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2750                 goto out_writepages;
2751
2752         if (ext4_should_journal_data(inode)) {
2753                 ret = generic_writepages(mapping, wbc);
2754                 goto out_writepages;
2755         }
2756
2757         /*
2758          * If the filesystem has aborted, it is read-only, so return
2759          * right away instead of dumping stack traces later on that
2760          * will obscure the real source of the problem.  We test
2761          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2762          * the latter could be true if the filesystem is mounted
2763          * read-only, and in that case, ext4_writepages should
2764          * *never* be called, so if that ever happens, we would want
2765          * the stack trace.
2766          */
2767         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2768                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2769                 ret = -EROFS;
2770                 goto out_writepages;
2771         }
2772
2773         if (ext4_should_dioread_nolock(inode)) {
2774                 /*
2775                  * We may need to convert up to one extent per block in
2776                  * the page and we may dirty the inode.
2777                  */
2778                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2779                                                 PAGE_SIZE >> inode->i_blkbits);
2780         }
2781
2782         /*
2783          * If we have inline data and arrive here, it means that
2784          * we will soon create the block for the 1st page, so
2785          * we'd better clear the inline data here.
2786          */
2787         if (ext4_has_inline_data(inode)) {
2788                 /* Just inode will be modified... */
2789                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2790                 if (IS_ERR(handle)) {
2791                         ret = PTR_ERR(handle);
2792                         goto out_writepages;
2793                 }
2794                 BUG_ON(ext4_test_inode_state(inode,
2795                                 EXT4_STATE_MAY_INLINE_DATA));
2796                 ext4_destroy_inline_data(handle, inode);
2797                 ext4_journal_stop(handle);
2798         }
2799
2800         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2801                 range_whole = 1;
2802
2803         if (wbc->range_cyclic) {
2804                 writeback_index = mapping->writeback_index;
2805                 if (writeback_index)
2806                         cycled = 0;
2807                 mpd.first_page = writeback_index;
2808                 mpd.last_page = -1;
2809         } else {
2810                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2811                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2812         }
2813
2814         mpd.inode = inode;
2815         mpd.wbc = wbc;
2816         ext4_io_submit_init(&mpd.io_submit, wbc);
2817 retry:
2818         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2819                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2820         done = false;
2821         blk_start_plug(&plug);
2822
2823         /*
2824          * First writeback pages that don't need mapping - we can avoid
2825          * starting a transaction unnecessarily and also avoid being blocked
2826          * in the block layer on device congestion while having transaction
2827          * started.
2828          */
2829         mpd.do_map = 0;
2830         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2831         if (!mpd.io_submit.io_end) {
2832                 ret = -ENOMEM;
2833                 goto unplug;
2834         }
2835         ret = mpage_prepare_extent_to_map(&mpd);
2836         /* Submit prepared bio */
2837         ext4_io_submit(&mpd.io_submit);
2838         ext4_put_io_end_defer(mpd.io_submit.io_end);
2839         mpd.io_submit.io_end = NULL;
2840         /* Unlock pages we didn't use */
2841         mpage_release_unused_pages(&mpd, false);
2842         if (ret < 0)
2843                 goto unplug;
2844
2845         while (!done && mpd.first_page <= mpd.last_page) {
2846                 /* For each extent of pages we use new io_end */
2847                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2848                 if (!mpd.io_submit.io_end) {
2849                         ret = -ENOMEM;
2850                         break;
2851                 }
2852
2853                 /*
2854                  * We have two constraints: We find one extent to map and we
2855                  * must always write out whole page (makes a difference when
2856                  * blocksize < pagesize) so that we don't block on IO when we
2857                  * try to write out the rest of the page. Journalled mode is
2858                  * not supported by delalloc.
2859                  */
2860                 BUG_ON(ext4_should_journal_data(inode));
2861                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2862
2863                 /* start a new transaction */
2864                 handle = ext4_journal_start_with_reserve(inode,
2865                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2866                 if (IS_ERR(handle)) {
2867                         ret = PTR_ERR(handle);
2868                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2869                                "%ld pages, ino %lu; err %d", __func__,
2870                                 wbc->nr_to_write, inode->i_ino, ret);
2871                         /* Release allocated io_end */
2872                         ext4_put_io_end(mpd.io_submit.io_end);
2873                         mpd.io_submit.io_end = NULL;
2874                         break;
2875                 }
2876                 mpd.do_map = 1;
2877
2878                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2879                 ret = mpage_prepare_extent_to_map(&mpd);
2880                 if (!ret) {
2881                         if (mpd.map.m_len)
2882                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2883                                         &give_up_on_write);
2884                         else {
2885                                 /*
2886                                  * We scanned the whole range (or exhausted
2887                                  * nr_to_write), submitted what was mapped and
2888                                  * didn't find anything needing mapping. We are
2889                                  * done.
2890                                  */
2891                                 done = true;
2892                         }
2893                 }
2894                 /*
2895                  * Caution: If the handle is synchronous,
2896                  * ext4_journal_stop() can wait for transaction commit
2897                  * to finish which may depend on writeback of pages to
2898                  * complete or on page lock to be released.  In that
2899                  * case, we have to wait until after after we have
2900                  * submitted all the IO, released page locks we hold,
2901                  * and dropped io_end reference (for extent conversion
2902                  * to be able to complete) before stopping the handle.
2903                  */
2904                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2905                         ext4_journal_stop(handle);
2906                         handle = NULL;
2907                         mpd.do_map = 0;
2908                 }
2909                 /* Submit prepared bio */
2910                 ext4_io_submit(&mpd.io_submit);
2911                 /* Unlock pages we didn't use */
2912                 mpage_release_unused_pages(&mpd, give_up_on_write);
2913                 /*
2914                  * Drop our io_end reference we got from init. We have
2915                  * to be careful and use deferred io_end finishing if
2916                  * we are still holding the transaction as we can
2917                  * release the last reference to io_end which may end
2918                  * up doing unwritten extent conversion.
2919                  */
2920                 if (handle) {
2921                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2922                         ext4_journal_stop(handle);
2923                 } else
2924                         ext4_put_io_end(mpd.io_submit.io_end);
2925                 mpd.io_submit.io_end = NULL;
2926
2927                 if (ret == -ENOSPC && sbi->s_journal) {
2928                         /*
2929                          * Commit the transaction which would
2930                          * free blocks released in the transaction
2931                          * and try again
2932                          */
2933                         jbd2_journal_force_commit_nested(sbi->s_journal);
2934                         ret = 0;
2935                         continue;
2936                 }
2937                 /* Fatal error - ENOMEM, EIO... */
2938                 if (ret)
2939                         break;
2940         }
2941 unplug:
2942         blk_finish_plug(&plug);
2943         if (!ret && !cycled && wbc->nr_to_write > 0) {
2944                 cycled = 1;
2945                 mpd.last_page = writeback_index - 1;
2946                 mpd.first_page = 0;
2947                 goto retry;
2948         }
2949
2950         /* Update index */
2951         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2952                 /*
2953                  * Set the writeback_index so that range_cyclic
2954                  * mode will write it back later
2955                  */
2956                 mapping->writeback_index = mpd.first_page;
2957
2958 out_writepages:
2959         trace_ext4_writepages_result(inode, wbc, ret,
2960                                      nr_to_write - wbc->nr_to_write);
2961         percpu_up_read(&sbi->s_writepages_rwsem);
2962         return ret;
2963 }
2964
2965 static int ext4_dax_writepages(struct address_space *mapping,
2966                                struct writeback_control *wbc)
2967 {
2968         int ret;
2969         long nr_to_write = wbc->nr_to_write;
2970         struct inode *inode = mapping->host;
2971         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2972
2973         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2974                 return -EIO;
2975
2976         percpu_down_read(&sbi->s_writepages_rwsem);
2977         trace_ext4_writepages(inode, wbc);
2978
2979         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2980         trace_ext4_writepages_result(inode, wbc, ret,
2981                                      nr_to_write - wbc->nr_to_write);
2982         percpu_up_read(&sbi->s_writepages_rwsem);
2983         return ret;
2984 }
2985
2986 static int ext4_nonda_switch(struct super_block *sb)
2987 {
2988         s64 free_clusters, dirty_clusters;
2989         struct ext4_sb_info *sbi = EXT4_SB(sb);
2990
2991         /*
2992          * switch to non delalloc mode if we are running low
2993          * on free block. The free block accounting via percpu
2994          * counters can get slightly wrong with percpu_counter_batch getting
2995          * accumulated on each CPU without updating global counters
2996          * Delalloc need an accurate free block accounting. So switch
2997          * to non delalloc when we are near to error range.
2998          */
2999         free_clusters =
3000                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3001         dirty_clusters =
3002                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3003         /*
3004          * Start pushing delalloc when 1/2 of free blocks are dirty.
3005          */
3006         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3007                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3008
3009         if (2 * free_clusters < 3 * dirty_clusters ||
3010             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3011                 /*
3012                  * free block count is less than 150% of dirty blocks
3013                  * or free blocks is less than watermark
3014                  */
3015                 return 1;
3016         }
3017         return 0;
3018 }
3019
3020 /* We always reserve for an inode update; the superblock could be there too */
3021 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3022 {
3023         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3024                 return 1;
3025
3026         if (pos + len <= 0x7fffffffULL)
3027                 return 1;
3028
3029         /* We might need to update the superblock to set LARGE_FILE */
3030         return 2;
3031 }
3032
3033 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3034                                loff_t pos, unsigned len, unsigned flags,
3035                                struct page **pagep, void **fsdata)
3036 {
3037         int ret, retries = 0;
3038         struct page *page;
3039         pgoff_t index;
3040         struct inode *inode = mapping->host;
3041         handle_t *handle;
3042
3043         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3044                 return -EIO;
3045
3046         index = pos >> PAGE_SHIFT;
3047
3048         if (ext4_nonda_switch(inode->i_sb) ||
3049             S_ISLNK(inode->i_mode)) {
3050                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3051                 return ext4_write_begin(file, mapping, pos,
3052                                         len, flags, pagep, fsdata);
3053         }
3054         *fsdata = (void *)0;
3055         trace_ext4_da_write_begin(inode, pos, len, flags);
3056
3057         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3058                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3059                                                       pos, len, flags,
3060                                                       pagep, fsdata);
3061                 if (ret < 0)
3062                         return ret;
3063                 if (ret == 1)
3064                         return 0;
3065         }
3066
3067         /*
3068          * grab_cache_page_write_begin() can take a long time if the
3069          * system is thrashing due to memory pressure, or if the page
3070          * is being written back.  So grab it first before we start
3071          * the transaction handle.  This also allows us to allocate
3072          * the page (if needed) without using GFP_NOFS.
3073          */
3074 retry_grab:
3075         page = grab_cache_page_write_begin(mapping, index, flags);
3076         if (!page)
3077                 return -ENOMEM;
3078         unlock_page(page);
3079
3080         /*
3081          * With delayed allocation, we don't log the i_disksize update
3082          * if there is delayed block allocation. But we still need
3083          * to journalling the i_disksize update if writes to the end
3084          * of file which has an already mapped buffer.
3085          */
3086 retry_journal:
3087         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3088                                 ext4_da_write_credits(inode, pos, len));
3089         if (IS_ERR(handle)) {
3090                 put_page(page);
3091                 return PTR_ERR(handle);
3092         }
3093
3094         lock_page(page);
3095         if (page->mapping != mapping) {
3096                 /* The page got truncated from under us */
3097                 unlock_page(page);
3098                 put_page(page);
3099                 ext4_journal_stop(handle);
3100                 goto retry_grab;
3101         }
3102         /* In case writeback began while the page was unlocked */
3103         wait_for_stable_page(page);
3104
3105 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3106         ret = ext4_block_write_begin(page, pos, len,
3107                                      ext4_da_get_block_prep);
3108 #else
3109         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3110 #endif
3111         if (ret < 0) {
3112                 unlock_page(page);
3113                 ext4_journal_stop(handle);
3114                 /*
3115                  * block_write_begin may have instantiated a few blocks
3116                  * outside i_size.  Trim these off again. Don't need
3117                  * i_size_read because we hold i_mutex.
3118                  */
3119                 if (pos + len > inode->i_size)
3120                         ext4_truncate_failed_write(inode);
3121
3122                 if (ret == -ENOSPC &&
3123                     ext4_should_retry_alloc(inode->i_sb, &retries))
3124                         goto retry_journal;
3125
3126                 put_page(page);
3127                 return ret;
3128         }
3129
3130         *pagep = page;
3131         return ret;
3132 }
3133
3134 /*
3135  * Check if we should update i_disksize
3136  * when write to the end of file but not require block allocation
3137  */
3138 static int ext4_da_should_update_i_disksize(struct page *page,
3139                                             unsigned long offset)
3140 {
3141         struct buffer_head *bh;
3142         struct inode *inode = page->mapping->host;
3143         unsigned int idx;
3144         int i;
3145
3146         bh = page_buffers(page);
3147         idx = offset >> inode->i_blkbits;
3148
3149         for (i = 0; i < idx; i++)
3150                 bh = bh->b_this_page;
3151
3152         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3153                 return 0;
3154         return 1;
3155 }
3156
3157 static int ext4_da_write_end(struct file *file,
3158                              struct address_space *mapping,
3159                              loff_t pos, unsigned len, unsigned copied,
3160                              struct page *page, void *fsdata)
3161 {
3162         struct inode *inode = mapping->host;
3163         int ret = 0, ret2;
3164         handle_t *handle = ext4_journal_current_handle();
3165         loff_t new_i_size;
3166         unsigned long start, end;
3167         int write_mode = (int)(unsigned long)fsdata;
3168
3169         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3170                 return ext4_write_end(file, mapping, pos,
3171                                       len, copied, page, fsdata);
3172
3173         trace_ext4_da_write_end(inode, pos, len, copied);
3174         start = pos & (PAGE_SIZE - 1);
3175         end = start + copied - 1;
3176
3177         /*
3178          * generic_write_end() will run mark_inode_dirty() if i_size
3179          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3180          * into that.
3181          */
3182         new_i_size = pos + copied;
3183         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3184                 if (ext4_has_inline_data(inode) ||
3185                     ext4_da_should_update_i_disksize(page, end)) {
3186                         ext4_update_i_disksize(inode, new_i_size);
3187                         /* We need to mark inode dirty even if
3188                          * new_i_size is less that inode->i_size
3189                          * bu greater than i_disksize.(hint delalloc)
3190                          */
3191                         ext4_mark_inode_dirty(handle, inode);
3192                 }
3193         }
3194
3195         if (write_mode != CONVERT_INLINE_DATA &&
3196             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3197             ext4_has_inline_data(inode))
3198                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3199                                                      page);
3200         else
3201                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3202                                                         page, fsdata);
3203
3204         copied = ret2;
3205         if (ret2 < 0)
3206                 ret = ret2;
3207         ret2 = ext4_journal_stop(handle);
3208         if (!ret)
3209                 ret = ret2;
3210
3211         return ret ? ret : copied;
3212 }
3213
3214 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3215                                    unsigned int length)
3216 {
3217         /*
3218          * Drop reserved blocks
3219          */
3220         BUG_ON(!PageLocked(page));
3221         if (!page_has_buffers(page))
3222                 goto out;
3223
3224         ext4_da_page_release_reservation(page, offset, length);
3225
3226 out:
3227         ext4_invalidatepage(page, offset, length);
3228
3229         return;
3230 }
3231
3232 /*
3233  * Force all delayed allocation blocks to be allocated for a given inode.
3234  */
3235 int ext4_alloc_da_blocks(struct inode *inode)
3236 {
3237         trace_ext4_alloc_da_blocks(inode);
3238
3239         if (!EXT4_I(inode)->i_reserved_data_blocks)
3240                 return 0;
3241
3242         /*
3243          * We do something simple for now.  The filemap_flush() will
3244          * also start triggering a write of the data blocks, which is
3245          * not strictly speaking necessary (and for users of
3246          * laptop_mode, not even desirable).  However, to do otherwise
3247          * would require replicating code paths in:
3248          *
3249          * ext4_writepages() ->
3250          *    write_cache_pages() ---> (via passed in callback function)
3251          *        __mpage_da_writepage() -->
3252          *           mpage_add_bh_to_extent()
3253          *           mpage_da_map_blocks()
3254          *
3255          * The problem is that write_cache_pages(), located in
3256          * mm/page-writeback.c, marks pages clean in preparation for
3257          * doing I/O, which is not desirable if we're not planning on
3258          * doing I/O at all.
3259          *
3260          * We could call write_cache_pages(), and then redirty all of
3261          * the pages by calling redirty_page_for_writepage() but that
3262          * would be ugly in the extreme.  So instead we would need to
3263          * replicate parts of the code in the above functions,
3264          * simplifying them because we wouldn't actually intend to
3265          * write out the pages, but rather only collect contiguous
3266          * logical block extents, call the multi-block allocator, and
3267          * then update the buffer heads with the block allocations.
3268          *
3269          * For now, though, we'll cheat by calling filemap_flush(),
3270          * which will map the blocks, and start the I/O, but not
3271          * actually wait for the I/O to complete.
3272          */
3273         return filemap_flush(inode->i_mapping);
3274 }
3275
3276 /*
3277  * bmap() is special.  It gets used by applications such as lilo and by
3278  * the swapper to find the on-disk block of a specific piece of data.
3279  *
3280  * Naturally, this is dangerous if the block concerned is still in the
3281  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3282  * filesystem and enables swap, then they may get a nasty shock when the
3283  * data getting swapped to that swapfile suddenly gets overwritten by
3284  * the original zero's written out previously to the journal and
3285  * awaiting writeback in the kernel's buffer cache.
3286  *
3287  * So, if we see any bmap calls here on a modified, data-journaled file,
3288  * take extra steps to flush any blocks which might be in the cache.
3289  */
3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3291 {
3292         struct inode *inode = mapping->host;
3293         journal_t *journal;
3294         int err;
3295
3296         /*
3297          * We can get here for an inline file via the FIBMAP ioctl
3298          */
3299         if (ext4_has_inline_data(inode))
3300                 return 0;
3301
3302         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3303                         test_opt(inode->i_sb, DELALLOC)) {
3304                 /*
3305                  * With delalloc we want to sync the file
3306                  * so that we can make sure we allocate
3307                  * blocks for file
3308                  */
3309                 filemap_write_and_wait(mapping);
3310         }
3311
3312         if (EXT4_JOURNAL(inode) &&
3313             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3314                 /*
3315                  * This is a REALLY heavyweight approach, but the use of
3316                  * bmap on dirty files is expected to be extremely rare:
3317                  * only if we run lilo or swapon on a freshly made file
3318                  * do we expect this to happen.
3319                  *
3320                  * (bmap requires CAP_SYS_RAWIO so this does not
3321                  * represent an unprivileged user DOS attack --- we'd be
3322                  * in trouble if mortal users could trigger this path at
3323                  * will.)
3324                  *
3325                  * NB. EXT4_STATE_JDATA is not set on files other than
3326                  * regular files.  If somebody wants to bmap a directory
3327                  * or symlink and gets confused because the buffer
3328                  * hasn't yet been flushed to disk, they deserve
3329                  * everything they get.
3330                  */
3331
3332                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3333                 journal = EXT4_JOURNAL(inode);
3334                 jbd2_journal_lock_updates(journal);
3335                 err = jbd2_journal_flush(journal);
3336                 jbd2_journal_unlock_updates(journal);
3337
3338                 if (err)
3339                         return 0;
3340         }
3341
3342         return generic_block_bmap(mapping, block, ext4_get_block);
3343 }
3344
3345 static int ext4_readpage(struct file *file, struct page *page)
3346 {
3347         int ret = -EAGAIN;
3348         struct inode *inode = page->mapping->host;
3349
3350         trace_ext4_readpage(page);
3351
3352         if (ext4_has_inline_data(inode))
3353                 ret = ext4_readpage_inline(inode, page);
3354
3355         if (ret == -EAGAIN)
3356                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3357                                                 false);
3358
3359         return ret;
3360 }
3361
3362 static int
3363 ext4_readpages(struct file *file, struct address_space *mapping,
3364                 struct list_head *pages, unsigned nr_pages)
3365 {
3366         struct inode *inode = mapping->host;
3367
3368         /* If the file has inline data, no need to do readpages. */
3369         if (ext4_has_inline_data(inode))
3370                 return 0;
3371
3372         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3373 }
3374
3375 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3376                                 unsigned int length)
3377 {
3378         trace_ext4_invalidatepage(page, offset, length);
3379
3380         /* No journalling happens on data buffers when this function is used */
3381         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3382
3383         block_invalidatepage(page, offset, length);
3384 }
3385
3386 static int __ext4_journalled_invalidatepage(struct page *page,
3387                                             unsigned int offset,
3388                                             unsigned int length)
3389 {
3390         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3391
3392         trace_ext4_journalled_invalidatepage(page, offset, length);
3393
3394         /*
3395          * If it's a full truncate we just forget about the pending dirtying
3396          */
3397         if (offset == 0 && length == PAGE_SIZE)
3398                 ClearPageChecked(page);
3399
3400         return jbd2_journal_invalidatepage(journal, page, offset, length);
3401 }
3402
3403 /* Wrapper for aops... */
3404 static void ext4_journalled_invalidatepage(struct page *page,
3405                                            unsigned int offset,
3406                                            unsigned int length)
3407 {
3408         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3409 }
3410
3411 static int ext4_releasepage(struct page *page, gfp_t wait)
3412 {
3413         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3414
3415         trace_ext4_releasepage(page);
3416
3417         /* Page has dirty journalled data -> cannot release */
3418         if (PageChecked(page))
3419                 return 0;
3420         if (journal)
3421                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3422         else
3423                 return try_to_free_buffers(page);
3424 }
3425
3426 static bool ext4_inode_datasync_dirty(struct inode *inode)
3427 {
3428         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3429
3430         if (journal)
3431                 return !jbd2_transaction_committed(journal,
3432                                         EXT4_I(inode)->i_datasync_tid);
3433         /* Any metadata buffers to write? */
3434         if (!list_empty(&inode->i_mapping->private_list))
3435                 return true;
3436         return inode->i_state & I_DIRTY_DATASYNC;
3437 }
3438
3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3440                             unsigned flags, struct iomap *iomap)
3441 {
3442         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3443         unsigned int blkbits = inode->i_blkbits;
3444         unsigned long first_block, last_block;
3445         struct ext4_map_blocks map;
3446         bool delalloc = false;
3447         int ret;
3448
3449         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3450                 return -EINVAL;
3451         first_block = offset >> blkbits;
3452         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3453                            EXT4_MAX_LOGICAL_BLOCK);
3454
3455         if (flags & IOMAP_REPORT) {
3456                 if (ext4_has_inline_data(inode)) {
3457                         ret = ext4_inline_data_iomap(inode, iomap);
3458                         if (ret != -EAGAIN) {
3459                                 if (ret == 0 && offset >= iomap->length)
3460                                         ret = -ENOENT;
3461                                 return ret;
3462                         }
3463                 }
3464         } else {
3465                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3466                         return -ERANGE;
3467         }
3468
3469         map.m_lblk = first_block;
3470         map.m_len = last_block - first_block + 1;
3471
3472         if (flags & IOMAP_REPORT) {
3473                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474                 if (ret < 0)
3475                         return ret;
3476
3477                 if (ret == 0) {
3478                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3479                         struct extent_status es;
3480
3481                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3482
3483                         if (!es.es_len || es.es_lblk > end) {
3484                                 /* entire range is a hole */
3485                         } else if (es.es_lblk > map.m_lblk) {
3486                                 /* range starts with a hole */
3487                                 map.m_len = es.es_lblk - map.m_lblk;
3488                         } else {
3489                                 ext4_lblk_t offs = 0;
3490
3491                                 if (es.es_lblk < map.m_lblk)
3492                                         offs = map.m_lblk - es.es_lblk;
3493                                 map.m_lblk = es.es_lblk + offs;
3494                                 map.m_len = es.es_len - offs;
3495                                 delalloc = true;
3496                         }
3497                 }
3498         } else if (flags & IOMAP_WRITE) {
3499                 int dio_credits;
3500                 handle_t *handle;
3501                 int retries = 0;
3502
3503                 /* Trim mapping request to maximum we can map at once for DIO */
3504                 if (map.m_len > DIO_MAX_BLOCKS)
3505                         map.m_len = DIO_MAX_BLOCKS;
3506                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3507 retry:
3508                 /*
3509                  * Either we allocate blocks and then we don't get unwritten
3510                  * extent so we have reserved enough credits, or the blocks
3511                  * are already allocated and unwritten and in that case
3512                  * extent conversion fits in the credits as well.
3513                  */
3514                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3515                                             dio_credits);
3516                 if (IS_ERR(handle))
3517                         return PTR_ERR(handle);
3518
3519                 ret = ext4_map_blocks(handle, inode, &map,
3520                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3521                 if (ret < 0) {
3522                         ext4_journal_stop(handle);
3523                         if (ret == -ENOSPC &&
3524                             ext4_should_retry_alloc(inode->i_sb, &retries))
3525                                 goto retry;
3526                         return ret;
3527                 }
3528
3529                 /*
3530                  * If we added blocks beyond i_size, we need to make sure they
3531                  * will get truncated if we crash before updating i_size in
3532                  * ext4_iomap_end(). For faults we don't need to do that (and
3533                  * even cannot because for orphan list operations inode_lock is
3534                  * required) - if we happen to instantiate block beyond i_size,
3535                  * it is because we race with truncate which has already added
3536                  * the inode to the orphan list.
3537                  */
3538                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3539                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3540                         int err;
3541
3542                         err = ext4_orphan_add(handle, inode);
3543                         if (err < 0) {
3544                                 ext4_journal_stop(handle);
3545                                 return err;
3546                         }
3547                 }
3548                 ext4_journal_stop(handle);
3549         } else {
3550                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3551                 if (ret < 0)
3552                         return ret;
3553         }
3554
3555         /*
3556          * Writes that span EOF might trigger an I/O size update on completion,
3557          * so consider them to be dirty for the purposes of O_DSYNC, even if
3558          * there is no other metadata changes being made or are pending here.
3559          */
3560         iomap->flags = 0;
3561         if (ext4_inode_datasync_dirty(inode) ||
3562             offset + length > i_size_read(inode))
3563                 iomap->flags |= IOMAP_F_DIRTY;
3564         iomap->bdev = inode->i_sb->s_bdev;
3565         iomap->dax_dev = sbi->s_daxdev;
3566         iomap->offset = (u64)first_block << blkbits;
3567         iomap->length = (u64)map.m_len << blkbits;
3568
3569         if (ret == 0) {
3570                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3571                 iomap->addr = IOMAP_NULL_ADDR;
3572         } else {
3573                 if (map.m_flags & EXT4_MAP_MAPPED) {
3574                         iomap->type = IOMAP_MAPPED;
3575                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3576                         iomap->type = IOMAP_UNWRITTEN;
3577                 } else {
3578                         WARN_ON_ONCE(1);
3579                         return -EIO;
3580                 }
3581                 iomap->addr = (u64)map.m_pblk << blkbits;
3582         }
3583
3584         if (map.m_flags & EXT4_MAP_NEW)
3585                 iomap->flags |= IOMAP_F_NEW;
3586
3587         return 0;
3588 }
3589
3590 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3591                           ssize_t written, unsigned flags, struct iomap *iomap)
3592 {
3593         int ret = 0;
3594         handle_t *handle;
3595         int blkbits = inode->i_blkbits;
3596         bool truncate = false;
3597
3598         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3599                 return 0;
3600
3601         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3602         if (IS_ERR(handle)) {
3603                 ret = PTR_ERR(handle);
3604                 goto orphan_del;
3605         }
3606         if (ext4_update_inode_size(inode, offset + written))
3607                 ext4_mark_inode_dirty(handle, inode);
3608         /*
3609          * We may need to truncate allocated but not written blocks beyond EOF.
3610          */
3611         if (iomap->offset + iomap->length > 
3612             ALIGN(inode->i_size, 1 << blkbits)) {
3613                 ext4_lblk_t written_blk, end_blk;
3614
3615                 written_blk = (offset + written) >> blkbits;
3616                 end_blk = (offset + length) >> blkbits;
3617                 if (written_blk < end_blk && ext4_can_truncate(inode))
3618                         truncate = true;
3619         }
3620         /*
3621          * Remove inode from orphan list if we were extending a inode and
3622          * everything went fine.
3623          */
3624         if (!truncate && inode->i_nlink &&
3625             !list_empty(&EXT4_I(inode)->i_orphan))
3626                 ext4_orphan_del(handle, inode);
3627         ext4_journal_stop(handle);
3628         if (truncate) {
3629                 ext4_truncate_failed_write(inode);
3630 orphan_del:
3631                 /*
3632                  * If truncate failed early the inode might still be on the
3633                  * orphan list; we need to make sure the inode is removed from
3634                  * the orphan list in that case.
3635                  */
3636                 if (inode->i_nlink)
3637                         ext4_orphan_del(NULL, inode);
3638         }
3639         return ret;
3640 }
3641
3642 const struct iomap_ops ext4_iomap_ops = {
3643         .iomap_begin            = ext4_iomap_begin,
3644         .iomap_end              = ext4_iomap_end,
3645 };
3646
3647 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3648                             ssize_t size, void *private)
3649 {
3650         ext4_io_end_t *io_end = private;
3651
3652         /* if not async direct IO just return */
3653         if (!io_end)
3654                 return 0;
3655
3656         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3657                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3658                   io_end, io_end->inode->i_ino, iocb, offset, size);
3659
3660         /*
3661          * Error during AIO DIO. We cannot convert unwritten extents as the
3662          * data was not written. Just clear the unwritten flag and drop io_end.
3663          */
3664         if (size <= 0) {
3665                 ext4_clear_io_unwritten_flag(io_end);
3666                 size = 0;
3667         }
3668         io_end->offset = offset;
3669         io_end->size = size;
3670         ext4_put_io_end(io_end);
3671
3672         return 0;
3673 }
3674
3675 /*
3676  * Handling of direct IO writes.
3677  *
3678  * For ext4 extent files, ext4 will do direct-io write even to holes,
3679  * preallocated extents, and those write extend the file, no need to
3680  * fall back to buffered IO.
3681  *
3682  * For holes, we fallocate those blocks, mark them as unwritten
3683  * If those blocks were preallocated, we mark sure they are split, but
3684  * still keep the range to write as unwritten.
3685  *
3686  * The unwritten extents will be converted to written when DIO is completed.
3687  * For async direct IO, since the IO may still pending when return, we
3688  * set up an end_io call back function, which will do the conversion
3689  * when async direct IO completed.
3690  *
3691  * If the O_DIRECT write will extend the file then add this inode to the
3692  * orphan list.  So recovery will truncate it back to the original size
3693  * if the machine crashes during the write.
3694  *
3695  */
3696 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3697 {
3698         struct file *file = iocb->ki_filp;
3699         struct inode *inode = file->f_mapping->host;
3700         struct ext4_inode_info *ei = EXT4_I(inode);
3701         ssize_t ret;
3702         loff_t offset = iocb->ki_pos;
3703         size_t count = iov_iter_count(iter);
3704         int overwrite = 0;
3705         get_block_t *get_block_func = NULL;
3706         int dio_flags = 0;
3707         loff_t final_size = offset + count;
3708         int orphan = 0;
3709         handle_t *handle;
3710
3711         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3712                 /* Credits for sb + inode write */
3713                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3714                 if (IS_ERR(handle)) {
3715                         ret = PTR_ERR(handle);
3716                         goto out;
3717                 }
3718                 ret = ext4_orphan_add(handle, inode);
3719                 if (ret) {
3720                         ext4_journal_stop(handle);
3721                         goto out;
3722                 }
3723                 orphan = 1;
3724                 ext4_update_i_disksize(inode, inode->i_size);
3725                 ext4_journal_stop(handle);
3726         }
3727
3728         BUG_ON(iocb->private == NULL);
3729
3730         /*
3731          * Make all waiters for direct IO properly wait also for extent
3732          * conversion. This also disallows race between truncate() and
3733          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3734          */
3735         inode_dio_begin(inode);
3736
3737         /* If we do a overwrite dio, i_mutex locking can be released */
3738         overwrite = *((int *)iocb->private);
3739
3740         if (overwrite)
3741                 inode_unlock(inode);
3742
3743         /*
3744          * For extent mapped files we could direct write to holes and fallocate.
3745          *
3746          * Allocated blocks to fill the hole are marked as unwritten to prevent
3747          * parallel buffered read to expose the stale data before DIO complete
3748          * the data IO.
3749          *
3750          * As to previously fallocated extents, ext4 get_block will just simply
3751          * mark the buffer mapped but still keep the extents unwritten.
3752          *
3753          * For non AIO case, we will convert those unwritten extents to written
3754          * after return back from blockdev_direct_IO. That way we save us from
3755          * allocating io_end structure and also the overhead of offloading
3756          * the extent convertion to a workqueue.
3757          *
3758          * For async DIO, the conversion needs to be deferred when the
3759          * IO is completed. The ext4 end_io callback function will be
3760          * called to take care of the conversion work.  Here for async
3761          * case, we allocate an io_end structure to hook to the iocb.
3762          */
3763         iocb->private = NULL;
3764         if (overwrite)
3765                 get_block_func = ext4_dio_get_block_overwrite;
3766         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3767                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3768                 get_block_func = ext4_dio_get_block;
3769                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3770         } else if (is_sync_kiocb(iocb)) {
3771                 get_block_func = ext4_dio_get_block_unwritten_sync;
3772                 dio_flags = DIO_LOCKING;
3773         } else {
3774                 get_block_func = ext4_dio_get_block_unwritten_async;
3775                 dio_flags = DIO_LOCKING;
3776         }
3777         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3778                                    get_block_func, ext4_end_io_dio, NULL,
3779                                    dio_flags);
3780
3781         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3782                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3783                 int err;
3784                 /*
3785                  * for non AIO case, since the IO is already
3786                  * completed, we could do the conversion right here
3787                  */
3788                 err = ext4_convert_unwritten_extents(NULL, inode,
3789                                                      offset, ret);
3790                 if (err < 0)
3791                         ret = err;
3792                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3793         }
3794
3795         inode_dio_end(inode);
3796         /* take i_mutex locking again if we do a ovewrite dio */
3797         if (overwrite)
3798                 inode_lock(inode);
3799
3800         if (ret < 0 && final_size > inode->i_size)
3801                 ext4_truncate_failed_write(inode);
3802
3803         /* Handle extending of i_size after direct IO write */
3804         if (orphan) {
3805                 int err;
3806
3807                 /* Credits for sb + inode write */
3808                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3809                 if (IS_ERR(handle)) {
3810                         /*
3811                          * We wrote the data but cannot extend
3812                          * i_size. Bail out. In async io case, we do
3813                          * not return error here because we have
3814                          * already submmitted the corresponding
3815                          * bio. Returning error here makes the caller
3816                          * think that this IO is done and failed
3817                          * resulting in race with bio's completion
3818                          * handler.
3819                          */
3820                         if (!ret)
3821                                 ret = PTR_ERR(handle);
3822                         if (inode->i_nlink)
3823                                 ext4_orphan_del(NULL, inode);
3824
3825                         goto out;
3826                 }
3827                 if (inode->i_nlink)
3828                         ext4_orphan_del(handle, inode);
3829                 if (ret > 0) {
3830                         loff_t end = offset + ret;
3831                         if (end > inode->i_size || end > ei->i_disksize) {
3832                                 ext4_update_i_disksize(inode, end);
3833                                 if (end > inode->i_size)
3834                                         i_size_write(inode, end);
3835                                 /*
3836                                  * We're going to return a positive `ret'
3837                                  * here due to non-zero-length I/O, so there's
3838                                  * no way of reporting error returns from
3839                                  * ext4_mark_inode_dirty() to userspace.  So
3840                                  * ignore it.
3841                                  */
3842                                 ext4_mark_inode_dirty(handle, inode);
3843                         }
3844                 }
3845                 err = ext4_journal_stop(handle);
3846                 if (ret == 0)
3847                         ret = err;
3848         }
3849 out:
3850         return ret;
3851 }
3852
3853 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3854 {
3855         struct address_space *mapping = iocb->ki_filp->f_mapping;
3856         struct inode *inode = mapping->host;
3857         size_t count = iov_iter_count(iter);
3858         ssize_t ret;
3859         loff_t offset = iocb->ki_pos;
3860         loff_t size = i_size_read(inode);
3861
3862         if (offset >= size)
3863                 return 0;
3864
3865         /*
3866          * Shared inode_lock is enough for us - it protects against concurrent
3867          * writes & truncates and since we take care of writing back page cache,
3868          * we are protected against page writeback as well.
3869          */
3870         if (iocb->ki_flags & IOCB_NOWAIT) {
3871                 if (!inode_trylock_shared(inode))
3872                         return -EAGAIN;
3873         } else {
3874                 inode_lock_shared(inode);
3875         }
3876
3877         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3878                                            iocb->ki_pos + count - 1);
3879         if (ret)
3880                 goto out_unlock;
3881         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3882                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3883 out_unlock:
3884         inode_unlock_shared(inode);
3885         return ret;
3886 }
3887
3888 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3889 {
3890         struct file *file = iocb->ki_filp;
3891         struct inode *inode = file->f_mapping->host;
3892         size_t count = iov_iter_count(iter);
3893         loff_t offset = iocb->ki_pos;
3894         ssize_t ret;
3895
3896 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3897         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3898                 return 0;
3899 #endif
3900
3901         /*
3902          * If we are doing data journalling we don't support O_DIRECT
3903          */
3904         if (ext4_should_journal_data(inode))
3905                 return 0;
3906
3907         /* Let buffer I/O handle the inline data case. */
3908         if (ext4_has_inline_data(inode))
3909                 return 0;
3910
3911         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3912         if (iov_iter_rw(iter) == READ)
3913                 ret = ext4_direct_IO_read(iocb, iter);
3914         else
3915                 ret = ext4_direct_IO_write(iocb, iter);
3916         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3917         return ret;
3918 }
3919
3920 /*
3921  * Pages can be marked dirty completely asynchronously from ext4's journalling
3922  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3923  * much here because ->set_page_dirty is called under VFS locks.  The page is
3924  * not necessarily locked.
3925  *
3926  * We cannot just dirty the page and leave attached buffers clean, because the
3927  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3928  * or jbddirty because all the journalling code will explode.
3929  *
3930  * So what we do is to mark the page "pending dirty" and next time writepage
3931  * is called, propagate that into the buffers appropriately.
3932  */
3933 static int ext4_journalled_set_page_dirty(struct page *page)
3934 {
3935         SetPageChecked(page);
3936         return __set_page_dirty_nobuffers(page);
3937 }
3938
3939 static int ext4_set_page_dirty(struct page *page)
3940 {
3941         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3942         WARN_ON_ONCE(!page_has_buffers(page));
3943         return __set_page_dirty_buffers(page);
3944 }
3945
3946 static const struct address_space_operations ext4_aops = {
3947         .readpage               = ext4_readpage,
3948         .readpages              = ext4_readpages,
3949         .writepage              = ext4_writepage,
3950         .writepages             = ext4_writepages,
3951         .write_begin            = ext4_write_begin,
3952         .write_end              = ext4_write_end,
3953         .set_page_dirty         = ext4_set_page_dirty,
3954         .bmap                   = ext4_bmap,
3955         .invalidatepage         = ext4_invalidatepage,
3956         .releasepage            = ext4_releasepage,
3957         .direct_IO              = ext4_direct_IO,
3958         .migratepage            = buffer_migrate_page,
3959         .is_partially_uptodate  = block_is_partially_uptodate,
3960         .error_remove_page      = generic_error_remove_page,
3961 };
3962
3963 static const struct address_space_operations ext4_journalled_aops = {
3964         .readpage               = ext4_readpage,
3965         .readpages              = ext4_readpages,
3966         .writepage              = ext4_writepage,
3967         .writepages             = ext4_writepages,
3968         .write_begin            = ext4_write_begin,
3969         .write_end              = ext4_journalled_write_end,
3970         .set_page_dirty         = ext4_journalled_set_page_dirty,
3971         .bmap                   = ext4_bmap,
3972         .invalidatepage         = ext4_journalled_invalidatepage,
3973         .releasepage            = ext4_releasepage,
3974         .direct_IO              = ext4_direct_IO,
3975         .is_partially_uptodate  = block_is_partially_uptodate,
3976         .error_remove_page      = generic_error_remove_page,
3977 };
3978
3979 static const struct address_space_operations ext4_da_aops = {
3980         .readpage               = ext4_readpage,
3981         .readpages              = ext4_readpages,
3982         .writepage              = ext4_writepage,
3983         .writepages             = ext4_writepages,
3984         .write_begin            = ext4_da_write_begin,
3985         .write_end              = ext4_da_write_end,
3986         .set_page_dirty         = ext4_set_page_dirty,
3987         .bmap                   = ext4_bmap,
3988         .invalidatepage         = ext4_da_invalidatepage,
3989         .releasepage            = ext4_releasepage,
3990         .direct_IO              = ext4_direct_IO,
3991         .migratepage            = buffer_migrate_page,
3992         .is_partially_uptodate  = block_is_partially_uptodate,
3993         .error_remove_page      = generic_error_remove_page,
3994 };
3995
3996 static const struct address_space_operations ext4_dax_aops = {
3997         .writepages             = ext4_dax_writepages,
3998         .direct_IO              = noop_direct_IO,
3999         .set_page_dirty         = noop_set_page_dirty,
4000         .bmap                   = ext4_bmap,
4001         .invalidatepage         = noop_invalidatepage,
4002 };
4003
4004 void ext4_set_aops(struct inode *inode)
4005 {
4006         switch (ext4_inode_journal_mode(inode)) {
4007         case EXT4_INODE_ORDERED_DATA_MODE:
4008         case EXT4_INODE_WRITEBACK_DATA_MODE:
4009                 break;
4010         case EXT4_INODE_JOURNAL_DATA_MODE:
4011                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4012                 return;
4013         default:
4014                 BUG();
4015         }
4016         if (IS_DAX(inode))
4017                 inode->i_mapping->a_ops = &ext4_dax_aops;
4018         else if (test_opt(inode->i_sb, DELALLOC))
4019                 inode->i_mapping->a_ops = &ext4_da_aops;
4020         else
4021                 inode->i_mapping->a_ops = &ext4_aops;
4022 }
4023
4024 static int __ext4_block_zero_page_range(handle_t *handle,
4025                 struct address_space *mapping, loff_t from, loff_t length)
4026 {
4027         ext4_fsblk_t index = from >> PAGE_SHIFT;
4028         unsigned offset = from & (PAGE_SIZE-1);
4029         unsigned blocksize, pos;
4030         ext4_lblk_t iblock;
4031         struct inode *inode = mapping->host;
4032         struct buffer_head *bh;
4033         struct page *page;
4034         int err = 0;
4035
4036         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4037                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4038         if (!page)
4039                 return -ENOMEM;
4040
4041         blocksize = inode->i_sb->s_blocksize;
4042
4043         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4044
4045         if (!page_has_buffers(page))
4046                 create_empty_buffers(page, blocksize, 0);
4047
4048         /* Find the buffer that contains "offset" */
4049         bh = page_buffers(page);
4050         pos = blocksize;
4051         while (offset >= pos) {
4052                 bh = bh->b_this_page;
4053                 iblock++;
4054                 pos += blocksize;
4055         }
4056         if (buffer_freed(bh)) {
4057                 BUFFER_TRACE(bh, "freed: skip");
4058                 goto unlock;
4059         }
4060         if (!buffer_mapped(bh)) {
4061                 BUFFER_TRACE(bh, "unmapped");
4062                 ext4_get_block(inode, iblock, bh, 0);
4063                 /* unmapped? It's a hole - nothing to do */
4064                 if (!buffer_mapped(bh)) {
4065                         BUFFER_TRACE(bh, "still unmapped");
4066                         goto unlock;
4067                 }
4068         }
4069
4070         /* Ok, it's mapped. Make sure it's up-to-date */
4071         if (PageUptodate(page))
4072                 set_buffer_uptodate(bh);
4073
4074         if (!buffer_uptodate(bh)) {
4075                 err = -EIO;
4076                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4077                 wait_on_buffer(bh);
4078                 /* Uhhuh. Read error. Complain and punt. */
4079                 if (!buffer_uptodate(bh))
4080                         goto unlock;
4081                 if (S_ISREG(inode->i_mode) &&
4082                     ext4_encrypted_inode(inode)) {
4083                         /* We expect the key to be set. */
4084                         BUG_ON(!fscrypt_has_encryption_key(inode));
4085                         BUG_ON(blocksize != PAGE_SIZE);
4086                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4087                                                 page, PAGE_SIZE, 0, page->index));
4088                 }
4089         }
4090         if (ext4_should_journal_data(inode)) {
4091                 BUFFER_TRACE(bh, "get write access");
4092                 err = ext4_journal_get_write_access(handle, bh);
4093                 if (err)
4094                         goto unlock;
4095         }
4096         zero_user(page, offset, length);
4097         BUFFER_TRACE(bh, "zeroed end of block");
4098
4099         if (ext4_should_journal_data(inode)) {
4100                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4101         } else {
4102                 err = 0;
4103                 mark_buffer_dirty(bh);
4104                 if (ext4_should_order_data(inode))
4105                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4106                                         length);
4107         }
4108
4109 unlock:
4110         unlock_page(page);
4111         put_page(page);
4112         return err;
4113 }
4114
4115 /*
4116  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4117  * starting from file offset 'from'.  The range to be zero'd must
4118  * be contained with in one block.  If the specified range exceeds
4119  * the end of the block it will be shortened to end of the block
4120  * that cooresponds to 'from'
4121  */
4122 static int ext4_block_zero_page_range(handle_t *handle,
4123                 struct address_space *mapping, loff_t from, loff_t length)
4124 {
4125         struct inode *inode = mapping->host;
4126         unsigned offset = from & (PAGE_SIZE-1);
4127         unsigned blocksize = inode->i_sb->s_blocksize;
4128         unsigned max = blocksize - (offset & (blocksize - 1));
4129
4130         /*
4131          * correct length if it does not fall between
4132          * 'from' and the end of the block
4133          */
4134         if (length > max || length < 0)
4135                 length = max;
4136
4137         if (IS_DAX(inode)) {
4138                 return iomap_zero_range(inode, from, length, NULL,
4139                                         &ext4_iomap_ops);
4140         }
4141         return __ext4_block_zero_page_range(handle, mapping, from, length);
4142 }
4143
4144 /*
4145  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4146  * up to the end of the block which corresponds to `from'.
4147  * This required during truncate. We need to physically zero the tail end
4148  * of that block so it doesn't yield old data if the file is later grown.
4149  */
4150 static int ext4_block_truncate_page(handle_t *handle,
4151                 struct address_space *mapping, loff_t from)
4152 {
4153         unsigned offset = from & (PAGE_SIZE-1);
4154         unsigned length;
4155         unsigned blocksize;
4156         struct inode *inode = mapping->host;
4157
4158         /* If we are processing an encrypted inode during orphan list handling */
4159         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4160                 return 0;
4161
4162         blocksize = inode->i_sb->s_blocksize;
4163         length = blocksize - (offset & (blocksize - 1));
4164
4165         return ext4_block_zero_page_range(handle, mapping, from, length);
4166 }
4167
4168 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4169                              loff_t lstart, loff_t length)
4170 {
4171         struct super_block *sb = inode->i_sb;
4172         struct address_space *mapping = inode->i_mapping;
4173         unsigned partial_start, partial_end;
4174         ext4_fsblk_t start, end;
4175         loff_t byte_end = (lstart + length - 1);
4176         int err = 0;
4177
4178         partial_start = lstart & (sb->s_blocksize - 1);
4179         partial_end = byte_end & (sb->s_blocksize - 1);
4180
4181         start = lstart >> sb->s_blocksize_bits;
4182         end = byte_end >> sb->s_blocksize_bits;
4183
4184         /* Handle partial zero within the single block */
4185         if (start == end &&
4186             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4187                 err = ext4_block_zero_page_range(handle, mapping,
4188                                                  lstart, length);
4189                 return err;
4190         }
4191         /* Handle partial zero out on the start of the range */
4192         if (partial_start) {
4193                 err = ext4_block_zero_page_range(handle, mapping,
4194                                                  lstart, sb->s_blocksize);
4195                 if (err)
4196                         return err;
4197         }
4198         /* Handle partial zero out on the end of the range */
4199         if (partial_end != sb->s_blocksize - 1)
4200                 err = ext4_block_zero_page_range(handle, mapping,
4201                                                  byte_end - partial_end,
4202                                                  partial_end + 1);
4203         return err;
4204 }
4205
4206 int ext4_can_truncate(struct inode *inode)
4207 {
4208         if (S_ISREG(inode->i_mode))
4209                 return 1;
4210         if (S_ISDIR(inode->i_mode))
4211                 return 1;
4212         if (S_ISLNK(inode->i_mode))
4213                 return !ext4_inode_is_fast_symlink(inode);
4214         return 0;
4215 }
4216
4217 /*
4218  * We have to make sure i_disksize gets properly updated before we truncate
4219  * page cache due to hole punching or zero range. Otherwise i_disksize update
4220  * can get lost as it may have been postponed to submission of writeback but
4221  * that will never happen after we truncate page cache.
4222  */
4223 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4224                                       loff_t len)
4225 {
4226         handle_t *handle;
4227         loff_t size = i_size_read(inode);
4228
4229         WARN_ON(!inode_is_locked(inode));
4230         if (offset > size || offset + len < size)
4231                 return 0;
4232
4233         if (EXT4_I(inode)->i_disksize >= size)
4234                 return 0;
4235
4236         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4237         if (IS_ERR(handle))
4238                 return PTR_ERR(handle);
4239         ext4_update_i_disksize(inode, size);
4240         ext4_mark_inode_dirty(handle, inode);
4241         ext4_journal_stop(handle);
4242
4243         return 0;
4244 }
4245
4246 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4247 {
4248         up_write(&ei->i_mmap_sem);
4249         schedule();
4250         down_write(&ei->i_mmap_sem);
4251 }
4252
4253 int ext4_break_layouts(struct inode *inode)
4254 {
4255         struct ext4_inode_info *ei = EXT4_I(inode);
4256         struct page *page;
4257         int error;
4258
4259         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4260                 return -EINVAL;
4261
4262         do {
4263                 page = dax_layout_busy_page(inode->i_mapping);
4264                 if (!page)
4265                         return 0;
4266
4267                 error = ___wait_var_event(&page->_refcount,
4268                                 atomic_read(&page->_refcount) == 1,
4269                                 TASK_INTERRUPTIBLE, 0, 0,
4270                                 ext4_wait_dax_page(ei));
4271         } while (error == 0);
4272
4273         return error;
4274 }
4275
4276 /*
4277  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4278  * associated with the given offset and length
4279  *
4280  * @inode:  File inode
4281  * @offset: The offset where the hole will begin
4282  * @len:    The length of the hole
4283  *
4284  * Returns: 0 on success or negative on failure
4285  */
4286
4287 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4288 {
4289         struct super_block *sb = inode->i_sb;
4290         ext4_lblk_t first_block, stop_block;
4291         struct address_space *mapping = inode->i_mapping;
4292         loff_t first_block_offset, last_block_offset;
4293         handle_t *handle;
4294         unsigned int credits;
4295         int ret = 0;
4296
4297         if (!S_ISREG(inode->i_mode))
4298                 return -EOPNOTSUPP;
4299
4300         trace_ext4_punch_hole(inode, offset, length, 0);
4301
4302         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4303         if (ext4_has_inline_data(inode)) {
4304                 down_write(&EXT4_I(inode)->i_mmap_sem);
4305                 ret = ext4_convert_inline_data(inode);
4306                 up_write(&EXT4_I(inode)->i_mmap_sem);
4307                 if (ret)
4308                         return ret;
4309         }
4310
4311         /*
4312          * Write out all dirty pages to avoid race conditions
4313          * Then release them.
4314          */
4315         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4316                 ret = filemap_write_and_wait_range(mapping, offset,
4317                                                    offset + length - 1);
4318                 if (ret)
4319                         return ret;
4320         }
4321
4322         inode_lock(inode);
4323
4324         /* No need to punch hole beyond i_size */
4325         if (offset >= inode->i_size)
4326                 goto out_mutex;
4327
4328         /*
4329          * If the hole extends beyond i_size, set the hole
4330          * to end after the page that contains i_size
4331          */
4332         if (offset + length > inode->i_size) {
4333                 length = inode->i_size +
4334                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4335                    offset;
4336         }
4337
4338         if (offset & (sb->s_blocksize - 1) ||
4339             (offset + length) & (sb->s_blocksize - 1)) {
4340                 /*
4341                  * Attach jinode to inode for jbd2 if we do any zeroing of
4342                  * partial block
4343                  */
4344                 ret = ext4_inode_attach_jinode(inode);
4345                 if (ret < 0)
4346                         goto out_mutex;
4347
4348         }
4349
4350         /* Wait all existing dio workers, newcomers will block on i_mutex */
4351         inode_dio_wait(inode);
4352
4353         /*
4354          * Prevent page faults from reinstantiating pages we have released from
4355          * page cache.
4356          */
4357         down_write(&EXT4_I(inode)->i_mmap_sem);
4358
4359         ret = ext4_break_layouts(inode);
4360         if (ret)
4361                 goto out_dio;
4362
4363         first_block_offset = round_up(offset, sb->s_blocksize);
4364         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4365
4366         /* Now release the pages and zero block aligned part of pages*/
4367         if (last_block_offset > first_block_offset) {
4368                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4369                 if (ret)
4370                         goto out_dio;
4371                 truncate_pagecache_range(inode, first_block_offset,
4372                                          last_block_offset);
4373         }
4374
4375         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4376                 credits = ext4_writepage_trans_blocks(inode);
4377         else
4378                 credits = ext4_blocks_for_truncate(inode);
4379         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4380         if (IS_ERR(handle)) {
4381                 ret = PTR_ERR(handle);
4382                 ext4_std_error(sb, ret);
4383                 goto out_dio;
4384         }
4385
4386         ret = ext4_zero_partial_blocks(handle, inode, offset,
4387                                        length);
4388         if (ret)
4389                 goto out_stop;
4390
4391         first_block = (offset + sb->s_blocksize - 1) >>
4392                 EXT4_BLOCK_SIZE_BITS(sb);
4393         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4394
4395         /* If there are blocks to remove, do it */
4396         if (stop_block > first_block) {
4397
4398                 down_write(&EXT4_I(inode)->i_data_sem);
4399                 ext4_discard_preallocations(inode);
4400
4401                 ret = ext4_es_remove_extent(inode, first_block,
4402                                             stop_block - first_block);
4403                 if (ret) {
4404                         up_write(&EXT4_I(inode)->i_data_sem);
4405                         goto out_stop;
4406                 }
4407
4408                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4409                         ret = ext4_ext_remove_space(inode, first_block,
4410                                                     stop_block - 1);
4411                 else
4412                         ret = ext4_ind_remove_space(handle, inode, first_block,
4413                                                     stop_block);
4414
4415                 up_write(&EXT4_I(inode)->i_data_sem);
4416         }
4417         if (IS_SYNC(inode))
4418                 ext4_handle_sync(handle);
4419
4420         inode->i_mtime = inode->i_ctime = current_time(inode);
4421         ext4_mark_inode_dirty(handle, inode);
4422         if (ret >= 0)
4423                 ext4_update_inode_fsync_trans(handle, inode, 1);
4424 out_stop:
4425         ext4_journal_stop(handle);
4426 out_dio:
4427         up_write(&EXT4_I(inode)->i_mmap_sem);
4428 out_mutex:
4429         inode_unlock(inode);
4430         return ret;
4431 }
4432
4433 int ext4_inode_attach_jinode(struct inode *inode)
4434 {
4435         struct ext4_inode_info *ei = EXT4_I(inode);
4436         struct jbd2_inode *jinode;
4437
4438         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4439                 return 0;
4440
4441         jinode = jbd2_alloc_inode(GFP_KERNEL);
4442         spin_lock(&inode->i_lock);
4443         if (!ei->jinode) {
4444                 if (!jinode) {
4445                         spin_unlock(&inode->i_lock);
4446                         return -ENOMEM;
4447                 }
4448                 ei->jinode = jinode;
4449                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4450                 jinode = NULL;
4451         }
4452         spin_unlock(&inode->i_lock);
4453         if (unlikely(jinode != NULL))
4454                 jbd2_free_inode(jinode);
4455         return 0;
4456 }
4457
4458 /*
4459  * ext4_truncate()
4460  *
4461  * We block out ext4_get_block() block instantiations across the entire
4462  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4463  * simultaneously on behalf of the same inode.
4464  *
4465  * As we work through the truncate and commit bits of it to the journal there
4466  * is one core, guiding principle: the file's tree must always be consistent on
4467  * disk.  We must be able to restart the truncate after a crash.
4468  *
4469  * The file's tree may be transiently inconsistent in memory (although it
4470  * probably isn't), but whenever we close off and commit a journal transaction,
4471  * the contents of (the filesystem + the journal) must be consistent and
4472  * restartable.  It's pretty simple, really: bottom up, right to left (although
4473  * left-to-right works OK too).
4474  *
4475  * Note that at recovery time, journal replay occurs *before* the restart of
4476  * truncate against the orphan inode list.
4477  *
4478  * The committed inode has the new, desired i_size (which is the same as
4479  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4480  * that this inode's truncate did not complete and it will again call
4481  * ext4_truncate() to have another go.  So there will be instantiated blocks
4482  * to the right of the truncation point in a crashed ext4 filesystem.  But
4483  * that's fine - as long as they are linked from the inode, the post-crash
4484  * ext4_truncate() run will find them and release them.
4485  */
4486 int ext4_truncate(struct inode *inode)
4487 {
4488         struct ext4_inode_info *ei = EXT4_I(inode);
4489         unsigned int credits;
4490         int err = 0;
4491         handle_t *handle;
4492         struct address_space *mapping = inode->i_mapping;
4493
4494         /*
4495          * There is a possibility that we're either freeing the inode
4496          * or it's a completely new inode. In those cases we might not
4497          * have i_mutex locked because it's not necessary.
4498          */
4499         if (!(inode->i_state & (I_NEW|I_FREEING)))
4500                 WARN_ON(!inode_is_locked(inode));
4501         trace_ext4_truncate_enter(inode);
4502
4503         if (!ext4_can_truncate(inode))
4504                 return 0;
4505
4506         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4507
4508         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4509                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4510
4511         if (ext4_has_inline_data(inode)) {
4512                 int has_inline = 1;
4513
4514                 err = ext4_inline_data_truncate(inode, &has_inline);
4515                 if (err)
4516                         return err;
4517                 if (has_inline)
4518                         return 0;
4519         }
4520
4521         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4522         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4523                 if (ext4_inode_attach_jinode(inode) < 0)
4524                         return 0;
4525         }
4526
4527         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4528                 credits = ext4_writepage_trans_blocks(inode);
4529         else
4530                 credits = ext4_blocks_for_truncate(inode);
4531
4532         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4533         if (IS_ERR(handle))
4534                 return PTR_ERR(handle);
4535
4536         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4537                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4538
4539         /*
4540          * We add the inode to the orphan list, so that if this
4541          * truncate spans multiple transactions, and we crash, we will
4542          * resume the truncate when the filesystem recovers.  It also
4543          * marks the inode dirty, to catch the new size.
4544          *
4545          * Implication: the file must always be in a sane, consistent
4546          * truncatable state while each transaction commits.
4547          */
4548         err = ext4_orphan_add(handle, inode);
4549         if (err)
4550                 goto out_stop;
4551
4552         down_write(&EXT4_I(inode)->i_data_sem);
4553
4554         ext4_discard_preallocations(inode);
4555
4556         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4557                 err = ext4_ext_truncate(handle, inode);
4558         else
4559                 ext4_ind_truncate(handle, inode);
4560
4561         up_write(&ei->i_data_sem);
4562         if (err)
4563                 goto out_stop;
4564
4565         if (IS_SYNC(inode))
4566                 ext4_handle_sync(handle);
4567
4568 out_stop:
4569         /*
4570          * If this was a simple ftruncate() and the file will remain alive,
4571          * then we need to clear up the orphan record which we created above.
4572          * However, if this was a real unlink then we were called by
4573          * ext4_evict_inode(), and we allow that function to clean up the
4574          * orphan info for us.
4575          */
4576         if (inode->i_nlink)
4577                 ext4_orphan_del(handle, inode);
4578
4579         inode->i_mtime = inode->i_ctime = current_time(inode);
4580         ext4_mark_inode_dirty(handle, inode);
4581         ext4_journal_stop(handle);
4582
4583         trace_ext4_truncate_exit(inode);
4584         return err;
4585 }
4586
4587 /*
4588  * ext4_get_inode_loc returns with an extra refcount against the inode's
4589  * underlying buffer_head on success. If 'in_mem' is true, we have all
4590  * data in memory that is needed to recreate the on-disk version of this
4591  * inode.
4592  */
4593 static int __ext4_get_inode_loc(struct inode *inode,
4594                                 struct ext4_iloc *iloc, int in_mem)
4595 {
4596         struct ext4_group_desc  *gdp;
4597         struct buffer_head      *bh;
4598         struct super_block      *sb = inode->i_sb;
4599         ext4_fsblk_t            block;
4600         int                     inodes_per_block, inode_offset;
4601
4602         iloc->bh = NULL;
4603         if (inode->i_ino < EXT4_ROOT_INO ||
4604             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4605                 return -EFSCORRUPTED;
4606
4607         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4608         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4609         if (!gdp)
4610                 return -EIO;
4611
4612         /*
4613          * Figure out the offset within the block group inode table
4614          */
4615         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4616         inode_offset = ((inode->i_ino - 1) %
4617                         EXT4_INODES_PER_GROUP(sb));
4618         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4619         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4620
4621         bh = sb_getblk(sb, block);
4622         if (unlikely(!bh))
4623                 return -ENOMEM;
4624         if (!buffer_uptodate(bh)) {
4625                 lock_buffer(bh);
4626
4627                 /*
4628                  * If the buffer has the write error flag, we have failed
4629                  * to write out another inode in the same block.  In this
4630                  * case, we don't have to read the block because we may
4631                  * read the old inode data successfully.
4632                  */
4633                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4634                         set_buffer_uptodate(bh);
4635
4636                 if (buffer_uptodate(bh)) {
4637                         /* someone brought it uptodate while we waited */
4638                         unlock_buffer(bh);
4639                         goto has_buffer;
4640                 }
4641
4642                 /*
4643                  * If we have all information of the inode in memory and this
4644                  * is the only valid inode in the block, we need not read the
4645                  * block.
4646                  */
4647                 if (in_mem) {
4648                         struct buffer_head *bitmap_bh;
4649                         int i, start;
4650
4651                         start = inode_offset & ~(inodes_per_block - 1);
4652
4653                         /* Is the inode bitmap in cache? */
4654                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4655                         if (unlikely(!bitmap_bh))
4656                                 goto make_io;
4657
4658                         /*
4659                          * If the inode bitmap isn't in cache then the
4660                          * optimisation may end up performing two reads instead
4661                          * of one, so skip it.
4662                          */
4663                         if (!buffer_uptodate(bitmap_bh)) {
4664                                 brelse(bitmap_bh);
4665                                 goto make_io;
4666                         }
4667                         for (i = start; i < start + inodes_per_block; i++) {
4668                                 if (i == inode_offset)
4669                                         continue;
4670                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4671                                         break;
4672                         }
4673                         brelse(bitmap_bh);
4674                         if (i == start + inodes_per_block) {
4675                                 /* all other inodes are free, so skip I/O */
4676                                 memset(bh->b_data, 0, bh->b_size);
4677                                 set_buffer_uptodate(bh);
4678                                 unlock_buffer(bh);
4679                                 goto has_buffer;
4680                         }
4681                 }
4682
4683 make_io:
4684                 /*
4685                  * If we need to do any I/O, try to pre-readahead extra
4686                  * blocks from the inode table.
4687                  */
4688                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4689                         ext4_fsblk_t b, end, table;
4690                         unsigned num;
4691                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4692
4693                         table = ext4_inode_table(sb, gdp);
4694                         /* s_inode_readahead_blks is always a power of 2 */
4695                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4696                         if (table > b)
4697                                 b = table;
4698                         end = b + ra_blks;
4699                         num = EXT4_INODES_PER_GROUP(sb);
4700                         if (ext4_has_group_desc_csum(sb))
4701                                 num -= ext4_itable_unused_count(sb, gdp);
4702                         table += num / inodes_per_block;
4703                         if (end > table)
4704                                 end = table;
4705                         while (b <= end)
4706                                 sb_breadahead_unmovable(sb, b++);
4707                 }
4708
4709                 /*
4710                  * There are other valid inodes in the buffer, this inode
4711                  * has in-inode xattrs, or we don't have this inode in memory.
4712                  * Read the block from disk.
4713                  */
4714                 trace_ext4_load_inode(inode);
4715                 get_bh(bh);
4716                 bh->b_end_io = end_buffer_read_sync;
4717                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4718                 wait_on_buffer(bh);
4719                 if (!buffer_uptodate(bh)) {
4720                         EXT4_ERROR_INODE_BLOCK(inode, block,
4721                                                "unable to read itable block");
4722                         brelse(bh);
4723                         return -EIO;
4724                 }
4725         }
4726 has_buffer:
4727         iloc->bh = bh;
4728         return 0;
4729 }
4730
4731 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4732 {
4733         /* We have all inode data except xattrs in memory here. */
4734         return __ext4_get_inode_loc(inode, iloc,
4735                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4736 }
4737
4738 static bool ext4_should_use_dax(struct inode *inode)
4739 {
4740         if (!test_opt(inode->i_sb, DAX))
4741                 return false;
4742         if (!S_ISREG(inode->i_mode))
4743                 return false;
4744         if (ext4_should_journal_data(inode))
4745                 return false;
4746         if (ext4_has_inline_data(inode))
4747                 return false;
4748         if (ext4_encrypted_inode(inode))
4749                 return false;
4750         return true;
4751 }
4752
4753 void ext4_set_inode_flags(struct inode *inode)
4754 {
4755         unsigned int flags = EXT4_I(inode)->i_flags;
4756         unsigned int new_fl = 0;
4757
4758         if (flags & EXT4_SYNC_FL)
4759                 new_fl |= S_SYNC;
4760         if (flags & EXT4_APPEND_FL)
4761                 new_fl |= S_APPEND;
4762         if (flags & EXT4_IMMUTABLE_FL)
4763                 new_fl |= S_IMMUTABLE;
4764         if (flags & EXT4_NOATIME_FL)
4765                 new_fl |= S_NOATIME;
4766         if (flags & EXT4_DIRSYNC_FL)
4767                 new_fl |= S_DIRSYNC;
4768         if (ext4_should_use_dax(inode))
4769                 new_fl |= S_DAX;
4770         if (flags & EXT4_ENCRYPT_FL)
4771                 new_fl |= S_ENCRYPTED;
4772         inode_set_flags(inode, new_fl,
4773                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4774                         S_ENCRYPTED);
4775 }
4776
4777 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4778                                   struct ext4_inode_info *ei)
4779 {
4780         blkcnt_t i_blocks ;
4781         struct inode *inode = &(ei->vfs_inode);
4782         struct super_block *sb = inode->i_sb;
4783
4784         if (ext4_has_feature_huge_file(sb)) {
4785                 /* we are using combined 48 bit field */
4786                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4787                                         le32_to_cpu(raw_inode->i_blocks_lo);
4788                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4789                         /* i_blocks represent file system block size */
4790                         return i_blocks  << (inode->i_blkbits - 9);
4791                 } else {
4792                         return i_blocks;
4793                 }
4794         } else {
4795                 return le32_to_cpu(raw_inode->i_blocks_lo);
4796         }
4797 }
4798
4799 static inline int ext4_iget_extra_inode(struct inode *inode,
4800                                          struct ext4_inode *raw_inode,
4801                                          struct ext4_inode_info *ei)
4802 {
4803         __le32 *magic = (void *)raw_inode +
4804                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4805
4806         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4807             EXT4_INODE_SIZE(inode->i_sb) &&
4808             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4809                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4810                 return ext4_find_inline_data_nolock(inode);
4811         } else
4812                 EXT4_I(inode)->i_inline_off = 0;
4813         return 0;
4814 }
4815
4816 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4817 {
4818         if (!ext4_has_feature_project(inode->i_sb))
4819                 return -EOPNOTSUPP;
4820         *projid = EXT4_I(inode)->i_projid;
4821         return 0;
4822 }
4823
4824 /*
4825  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4826  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4827  * set.
4828  */
4829 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4830 {
4831         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4832                 inode_set_iversion_raw(inode, val);
4833         else
4834                 inode_set_iversion_queried(inode, val);
4835 }
4836 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4837 {
4838         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4839                 return inode_peek_iversion_raw(inode);
4840         else
4841                 return inode_peek_iversion(inode);
4842 }
4843
4844 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4845                           ext4_iget_flags flags, const char *function,
4846                           unsigned int line)
4847 {
4848         struct ext4_iloc iloc;
4849         struct ext4_inode *raw_inode;
4850         struct ext4_inode_info *ei;
4851         struct inode *inode;
4852         journal_t *journal = EXT4_SB(sb)->s_journal;
4853         long ret;
4854         loff_t size;
4855         int block;
4856         uid_t i_uid;
4857         gid_t i_gid;
4858         projid_t i_projid;
4859
4860         if ((!(flags & EXT4_IGET_SPECIAL) &&
4861              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4862             (ino < EXT4_ROOT_INO) ||
4863             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4864                 if (flags & EXT4_IGET_HANDLE)
4865                         return ERR_PTR(-ESTALE);
4866                 __ext4_error(sb, function, line,
4867                              "inode #%lu: comm %s: iget: illegal inode #",
4868                              ino, current->comm);
4869                 return ERR_PTR(-EFSCORRUPTED);
4870         }
4871
4872         inode = iget_locked(sb, ino);
4873         if (!inode)
4874                 return ERR_PTR(-ENOMEM);
4875         if (!(inode->i_state & I_NEW))
4876                 return inode;
4877
4878         ei = EXT4_I(inode);
4879         iloc.bh = NULL;
4880
4881         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4882         if (ret < 0)
4883                 goto bad_inode;
4884         raw_inode = ext4_raw_inode(&iloc);
4885
4886         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4887                 ext4_error_inode(inode, function, line, 0,
4888                                  "iget: root inode unallocated");
4889                 ret = -EFSCORRUPTED;
4890                 goto bad_inode;
4891         }
4892
4893         if ((flags & EXT4_IGET_HANDLE) &&
4894             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4895                 ret = -ESTALE;
4896                 goto bad_inode;
4897         }
4898
4899         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4900                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4901                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4902                         EXT4_INODE_SIZE(inode->i_sb) ||
4903                     (ei->i_extra_isize & 3)) {
4904                         ext4_error_inode(inode, function, line, 0,
4905                                          "iget: bad extra_isize %u "
4906                                          "(inode size %u)",
4907                                          ei->i_extra_isize,
4908                                          EXT4_INODE_SIZE(inode->i_sb));
4909                         ret = -EFSCORRUPTED;
4910                         goto bad_inode;
4911                 }
4912         } else
4913                 ei->i_extra_isize = 0;
4914
4915         /* Precompute checksum seed for inode metadata */
4916         if (ext4_has_metadata_csum(sb)) {
4917                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4918                 __u32 csum;
4919                 __le32 inum = cpu_to_le32(inode->i_ino);
4920                 __le32 gen = raw_inode->i_generation;
4921                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4922                                    sizeof(inum));
4923                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4924                                               sizeof(gen));
4925         }
4926
4927         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4928                 ext4_error_inode(inode, function, line, 0,
4929                                  "iget: checksum invalid");
4930                 ret = -EFSBADCRC;
4931                 goto bad_inode;
4932         }
4933
4934         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4935         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4936         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4937         if (ext4_has_feature_project(sb) &&
4938             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4939             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4940                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4941         else
4942                 i_projid = EXT4_DEF_PROJID;
4943
4944         if (!(test_opt(inode->i_sb, NO_UID32))) {
4945                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4946                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4947         }
4948         i_uid_write(inode, i_uid);
4949         i_gid_write(inode, i_gid);
4950         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4951         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4952
4953         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4954         ei->i_inline_off = 0;
4955         ei->i_dir_start_lookup = 0;
4956         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4957         /* We now have enough fields to check if the inode was active or not.
4958          * This is needed because nfsd might try to access dead inodes
4959          * the test is that same one that e2fsck uses
4960          * NeilBrown 1999oct15
4961          */
4962         if (inode->i_nlink == 0) {
4963                 if ((inode->i_mode == 0 ||
4964                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4965                     ino != EXT4_BOOT_LOADER_INO) {
4966                         /* this inode is deleted */
4967                         ret = -ESTALE;
4968                         goto bad_inode;
4969                 }
4970                 /* The only unlinked inodes we let through here have
4971                  * valid i_mode and are being read by the orphan
4972                  * recovery code: that's fine, we're about to complete
4973                  * the process of deleting those.
4974                  * OR it is the EXT4_BOOT_LOADER_INO which is
4975                  * not initialized on a new filesystem. */
4976         }
4977         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4978         ext4_set_inode_flags(inode);
4979         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4980         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4981         if (ext4_has_feature_64bit(sb))
4982                 ei->i_file_acl |=
4983                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4984         inode->i_size = ext4_isize(sb, raw_inode);
4985         if ((size = i_size_read(inode)) < 0) {
4986                 ext4_error_inode(inode, function, line, 0,
4987                                  "iget: bad i_size value: %lld", size);
4988                 ret = -EFSCORRUPTED;
4989                 goto bad_inode;
4990         }
4991         /*
4992          * If dir_index is not enabled but there's dir with INDEX flag set,
4993          * we'd normally treat htree data as empty space. But with metadata
4994          * checksumming that corrupts checksums so forbid that.
4995          */
4996         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4997             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4998                 ext4_error_inode(inode, function, line, 0,
4999                          "iget: Dir with htree data on filesystem without dir_index feature.");
5000                 ret = -EFSCORRUPTED;
5001                 goto bad_inode;
5002         }
5003         ei->i_disksize = inode->i_size;
5004 #ifdef CONFIG_QUOTA
5005         ei->i_reserved_quota = 0;
5006 #endif
5007         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5008         ei->i_block_group = iloc.block_group;
5009         ei->i_last_alloc_group = ~0;
5010         /*
5011          * NOTE! The in-memory inode i_data array is in little-endian order
5012          * even on big-endian machines: we do NOT byteswap the block numbers!
5013          */
5014         for (block = 0; block < EXT4_N_BLOCKS; block++)
5015                 ei->i_data[block] = raw_inode->i_block[block];
5016         INIT_LIST_HEAD(&ei->i_orphan);
5017
5018         /*
5019          * Set transaction id's of transactions that have to be committed
5020          * to finish f[data]sync. We set them to currently running transaction
5021          * as we cannot be sure that the inode or some of its metadata isn't
5022          * part of the transaction - the inode could have been reclaimed and
5023          * now it is reread from disk.
5024          */
5025         if (journal) {
5026                 transaction_t *transaction;
5027                 tid_t tid;
5028
5029                 read_lock(&journal->j_state_lock);
5030                 if (journal->j_running_transaction)
5031                         transaction = journal->j_running_transaction;
5032                 else
5033                         transaction = journal->j_committing_transaction;
5034                 if (transaction)
5035                         tid = transaction->t_tid;
5036                 else
5037                         tid = journal->j_commit_sequence;
5038                 read_unlock(&journal->j_state_lock);
5039                 ei->i_sync_tid = tid;
5040                 ei->i_datasync_tid = tid;
5041         }
5042
5043         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5044                 if (ei->i_extra_isize == 0) {
5045                         /* The extra space is currently unused. Use it. */
5046                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5047                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5048                                             EXT4_GOOD_OLD_INODE_SIZE;
5049                 } else {
5050                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5051                         if (ret)
5052                                 goto bad_inode;
5053                 }
5054         }
5055
5056         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5057         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5058         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5059         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5060
5061         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5062                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5063
5064                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5065                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5066                                 ivers |=
5067                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5068                 }
5069                 ext4_inode_set_iversion_queried(inode, ivers);
5070         }
5071
5072         ret = 0;
5073         if (ei->i_file_acl &&
5074             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5075                 ext4_error_inode(inode, function, line, 0,
5076                                  "iget: bad extended attribute block %llu",
5077                                  ei->i_file_acl);
5078                 ret = -EFSCORRUPTED;
5079                 goto bad_inode;
5080         } else if (!ext4_has_inline_data(inode)) {
5081                 /* validate the block references in the inode */
5082                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5083                    (S_ISLNK(inode->i_mode) &&
5084                     !ext4_inode_is_fast_symlink(inode))) {
5085                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5086                                 ret = ext4_ext_check_inode(inode);
5087                         else
5088                                 ret = ext4_ind_check_inode(inode);
5089                 }
5090         }
5091         if (ret)
5092                 goto bad_inode;
5093
5094         if (S_ISREG(inode->i_mode)) {
5095                 inode->i_op = &ext4_file_inode_operations;
5096                 inode->i_fop = &ext4_file_operations;
5097                 ext4_set_aops(inode);
5098         } else if (S_ISDIR(inode->i_mode)) {
5099                 inode->i_op = &ext4_dir_inode_operations;
5100                 inode->i_fop = &ext4_dir_operations;
5101         } else if (S_ISLNK(inode->i_mode)) {
5102                 /* VFS does not allow setting these so must be corruption */
5103                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5104                         ext4_error_inode(inode, function, line, 0,
5105                                          "iget: immutable or append flags "
5106                                          "not allowed on symlinks");
5107                         ret = -EFSCORRUPTED;
5108                         goto bad_inode;
5109                 }
5110                 if (ext4_encrypted_inode(inode)) {
5111                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5112                         ext4_set_aops(inode);
5113                 } else if (ext4_inode_is_fast_symlink(inode)) {
5114                         inode->i_link = (char *)ei->i_data;
5115                         inode->i_op = &ext4_fast_symlink_inode_operations;
5116                         nd_terminate_link(ei->i_data, inode->i_size,
5117                                 sizeof(ei->i_data) - 1);
5118                 } else {
5119                         inode->i_op = &ext4_symlink_inode_operations;
5120                         ext4_set_aops(inode);
5121                 }
5122                 inode_nohighmem(inode);
5123         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5124               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5125                 inode->i_op = &ext4_special_inode_operations;
5126                 if (raw_inode->i_block[0])
5127                         init_special_inode(inode, inode->i_mode,
5128                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5129                 else
5130                         init_special_inode(inode, inode->i_mode,
5131                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5132         } else if (ino == EXT4_BOOT_LOADER_INO) {
5133                 make_bad_inode(inode);
5134         } else {
5135                 ret = -EFSCORRUPTED;
5136                 ext4_error_inode(inode, function, line, 0,
5137                                  "iget: bogus i_mode (%o)", inode->i_mode);
5138                 goto bad_inode;
5139         }
5140         brelse(iloc.bh);
5141
5142         unlock_new_inode(inode);
5143         return inode;
5144
5145 bad_inode:
5146         brelse(iloc.bh);
5147         iget_failed(inode);
5148         return ERR_PTR(ret);
5149 }
5150
5151 static int ext4_inode_blocks_set(handle_t *handle,
5152                                 struct ext4_inode *raw_inode,
5153                                 struct ext4_inode_info *ei)
5154 {
5155         struct inode *inode = &(ei->vfs_inode);
5156         u64 i_blocks = READ_ONCE(inode->i_blocks);
5157         struct super_block *sb = inode->i_sb;
5158
5159         if (i_blocks <= ~0U) {
5160                 /*
5161                  * i_blocks can be represented in a 32 bit variable
5162                  * as multiple of 512 bytes
5163                  */
5164                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5165                 raw_inode->i_blocks_high = 0;
5166                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5167                 return 0;
5168         }
5169         if (!ext4_has_feature_huge_file(sb))
5170                 return -EFBIG;
5171
5172         if (i_blocks <= 0xffffffffffffULL) {
5173                 /*
5174                  * i_blocks can be represented in a 48 bit variable
5175                  * as multiple of 512 bytes
5176                  */
5177                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5178                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5179                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5180         } else {
5181                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5182                 /* i_block is stored in file system block size */
5183                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5184                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5185                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5186         }
5187         return 0;
5188 }
5189
5190 struct other_inode {
5191         unsigned long           orig_ino;
5192         struct ext4_inode       *raw_inode;
5193 };
5194
5195 static int other_inode_match(struct inode * inode, unsigned long ino,
5196                              void *data)
5197 {
5198         struct other_inode *oi = (struct other_inode *) data;
5199
5200         if ((inode->i_ino != ino) ||
5201             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5202                                I_DIRTY_INODE)) ||
5203             ((inode->i_state & I_DIRTY_TIME) == 0))
5204                 return 0;
5205         spin_lock(&inode->i_lock);
5206         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5207                                 I_DIRTY_INODE)) == 0) &&
5208             (inode->i_state & I_DIRTY_TIME)) {
5209                 struct ext4_inode_info  *ei = EXT4_I(inode);
5210
5211                 inode->i_state &= ~I_DIRTY_TIME;
5212                 spin_unlock(&inode->i_lock);
5213
5214                 spin_lock(&ei->i_raw_lock);
5215                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5216                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5217                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5218                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5219                 spin_unlock(&ei->i_raw_lock);
5220                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5221                 return -1;
5222         }
5223         spin_unlock(&inode->i_lock);
5224         return -1;
5225 }
5226
5227 /*
5228  * Opportunistically update the other time fields for other inodes in
5229  * the same inode table block.
5230  */
5231 static void ext4_update_other_inodes_time(struct super_block *sb,
5232                                           unsigned long orig_ino, char *buf)
5233 {
5234         struct other_inode oi;
5235         unsigned long ino;
5236         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5237         int inode_size = EXT4_INODE_SIZE(sb);
5238
5239         oi.orig_ino = orig_ino;
5240         /*
5241          * Calculate the first inode in the inode table block.  Inode
5242          * numbers are one-based.  That is, the first inode in a block
5243          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5244          */
5245         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5246         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5247                 if (ino == orig_ino)
5248                         continue;
5249                 oi.raw_inode = (struct ext4_inode *) buf;
5250                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5251         }
5252 }
5253
5254 /*
5255  * Post the struct inode info into an on-disk inode location in the
5256  * buffer-cache.  This gobbles the caller's reference to the
5257  * buffer_head in the inode location struct.
5258  *
5259  * The caller must have write access to iloc->bh.
5260  */
5261 static int ext4_do_update_inode(handle_t *handle,
5262                                 struct inode *inode,
5263                                 struct ext4_iloc *iloc)
5264 {
5265         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5266         struct ext4_inode_info *ei = EXT4_I(inode);
5267         struct buffer_head *bh = iloc->bh;
5268         struct super_block *sb = inode->i_sb;
5269         int err = 0, block;
5270         int need_datasync = 0, set_large_file = 0;
5271         uid_t i_uid;
5272         gid_t i_gid;
5273         projid_t i_projid;
5274
5275         spin_lock(&ei->i_raw_lock);
5276
5277         /* For fields not tracked in the in-memory inode,
5278          * initialise them to zero for new inodes. */
5279         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5280                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5281
5282         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5283         if (err) {
5284                 spin_unlock(&ei->i_raw_lock);
5285                 goto out_brelse;
5286         }
5287
5288         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5289         i_uid = i_uid_read(inode);
5290         i_gid = i_gid_read(inode);
5291         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5292         if (!(test_opt(inode->i_sb, NO_UID32))) {
5293                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5294                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5295 /*
5296  * Fix up interoperability with old kernels. Otherwise, old inodes get
5297  * re-used with the upper 16 bits of the uid/gid intact
5298  */
5299                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5300                         raw_inode->i_uid_high = 0;
5301                         raw_inode->i_gid_high = 0;
5302                 } else {
5303                         raw_inode->i_uid_high =
5304                                 cpu_to_le16(high_16_bits(i_uid));
5305                         raw_inode->i_gid_high =
5306                                 cpu_to_le16(high_16_bits(i_gid));
5307                 }
5308         } else {
5309                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5310                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5311                 raw_inode->i_uid_high = 0;
5312                 raw_inode->i_gid_high = 0;
5313         }
5314         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5315
5316         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5317         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5318         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5319         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5320
5321         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5322         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5323         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5324                 raw_inode->i_file_acl_high =
5325                         cpu_to_le16(ei->i_file_acl >> 32);
5326         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5327         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5328                 ext4_isize_set(raw_inode, ei->i_disksize);
5329                 need_datasync = 1;
5330         }
5331         if (ei->i_disksize > 0x7fffffffULL) {
5332                 if (!ext4_has_feature_large_file(sb) ||
5333                                 EXT4_SB(sb)->s_es->s_rev_level ==
5334                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5335                         set_large_file = 1;
5336         }
5337         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5338         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5339                 if (old_valid_dev(inode->i_rdev)) {
5340                         raw_inode->i_block[0] =
5341                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5342                         raw_inode->i_block[1] = 0;
5343                 } else {
5344                         raw_inode->i_block[0] = 0;
5345                         raw_inode->i_block[1] =
5346                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5347                         raw_inode->i_block[2] = 0;
5348                 }
5349         } else if (!ext4_has_inline_data(inode)) {
5350                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5351                         raw_inode->i_block[block] = ei->i_data[block];
5352         }
5353
5354         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5355                 u64 ivers = ext4_inode_peek_iversion(inode);
5356
5357                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5358                 if (ei->i_extra_isize) {
5359                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5360                                 raw_inode->i_version_hi =
5361                                         cpu_to_le32(ivers >> 32);
5362                         raw_inode->i_extra_isize =
5363                                 cpu_to_le16(ei->i_extra_isize);
5364                 }
5365         }
5366
5367         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5368                i_projid != EXT4_DEF_PROJID);
5369
5370         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5371             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5372                 raw_inode->i_projid = cpu_to_le32(i_projid);
5373
5374         ext4_inode_csum_set(inode, raw_inode, ei);
5375         spin_unlock(&ei->i_raw_lock);
5376         if (inode->i_sb->s_flags & SB_LAZYTIME)
5377                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5378                                               bh->b_data);
5379
5380         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5381         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5382         if (err)
5383                 goto out_brelse;
5384         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5385         if (set_large_file) {
5386                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5387                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5388                 if (err)
5389                         goto out_brelse;
5390                 ext4_set_feature_large_file(sb);
5391                 ext4_handle_sync(handle);
5392                 err = ext4_handle_dirty_super(handle, sb);
5393         }
5394         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5395 out_brelse:
5396         brelse(bh);
5397         ext4_std_error(inode->i_sb, err);
5398         return err;
5399 }
5400
5401 /*
5402  * ext4_write_inode()
5403  *
5404  * We are called from a few places:
5405  *
5406  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5407  *   Here, there will be no transaction running. We wait for any running
5408  *   transaction to commit.
5409  *
5410  * - Within flush work (sys_sync(), kupdate and such).
5411  *   We wait on commit, if told to.
5412  *
5413  * - Within iput_final() -> write_inode_now()
5414  *   We wait on commit, if told to.
5415  *
5416  * In all cases it is actually safe for us to return without doing anything,
5417  * because the inode has been copied into a raw inode buffer in
5418  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5419  * writeback.
5420  *
5421  * Note that we are absolutely dependent upon all inode dirtiers doing the
5422  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5423  * which we are interested.
5424  *
5425  * It would be a bug for them to not do this.  The code:
5426  *
5427  *      mark_inode_dirty(inode)
5428  *      stuff();
5429  *      inode->i_size = expr;
5430  *
5431  * is in error because write_inode() could occur while `stuff()' is running,
5432  * and the new i_size will be lost.  Plus the inode will no longer be on the
5433  * superblock's dirty inode list.
5434  */
5435 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5436 {
5437         int err;
5438
5439         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5440             sb_rdonly(inode->i_sb))
5441                 return 0;
5442
5443         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5444                 return -EIO;
5445
5446         if (EXT4_SB(inode->i_sb)->s_journal) {
5447                 if (ext4_journal_current_handle()) {
5448                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5449                         dump_stack();
5450                         return -EIO;
5451                 }
5452
5453                 /*
5454                  * No need to force transaction in WB_SYNC_NONE mode. Also
5455                  * ext4_sync_fs() will force the commit after everything is
5456                  * written.
5457                  */
5458                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5459                         return 0;
5460
5461                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5462                                                 EXT4_I(inode)->i_sync_tid);
5463         } else {
5464                 struct ext4_iloc iloc;
5465
5466                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5467                 if (err)
5468                         return err;
5469                 /*
5470                  * sync(2) will flush the whole buffer cache. No need to do
5471                  * it here separately for each inode.
5472                  */
5473                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5474                         sync_dirty_buffer(iloc.bh);
5475                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5476                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5477                                          "IO error syncing inode");
5478                         err = -EIO;
5479                 }
5480                 brelse(iloc.bh);
5481         }
5482         return err;
5483 }
5484
5485 /*
5486  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5487  * buffers that are attached to a page stradding i_size and are undergoing
5488  * commit. In that case we have to wait for commit to finish and try again.
5489  */
5490 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5491 {
5492         struct page *page;
5493         unsigned offset;
5494         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5495         tid_t commit_tid = 0;
5496         int ret;
5497
5498         offset = inode->i_size & (PAGE_SIZE - 1);
5499         /*
5500          * If the page is fully truncated, we don't need to wait for any commit
5501          * (and we even should not as __ext4_journalled_invalidatepage() may
5502          * strip all buffers from the page but keep the page dirty which can then
5503          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5504          * buffers). Also we don't need to wait for any commit if all buffers in
5505          * the page remain valid. This is most beneficial for the common case of
5506          * blocksize == PAGESIZE.
5507          */
5508         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5509                 return;
5510         while (1) {
5511                 page = find_lock_page(inode->i_mapping,
5512                                       inode->i_size >> PAGE_SHIFT);
5513                 if (!page)
5514                         return;
5515                 ret = __ext4_journalled_invalidatepage(page, offset,
5516                                                 PAGE_SIZE - offset);
5517                 unlock_page(page);
5518                 put_page(page);
5519                 if (ret != -EBUSY)
5520                         return;
5521                 commit_tid = 0;
5522                 read_lock(&journal->j_state_lock);
5523                 if (journal->j_committing_transaction)
5524                         commit_tid = journal->j_committing_transaction->t_tid;
5525                 read_unlock(&journal->j_state_lock);
5526                 if (commit_tid)
5527                         jbd2_log_wait_commit(journal, commit_tid);
5528         }
5529 }
5530
5531 /*
5532  * ext4_setattr()
5533  *
5534  * Called from notify_change.
5535  *
5536  * We want to trap VFS attempts to truncate the file as soon as
5537  * possible.  In particular, we want to make sure that when the VFS
5538  * shrinks i_size, we put the inode on the orphan list and modify
5539  * i_disksize immediately, so that during the subsequent flushing of
5540  * dirty pages and freeing of disk blocks, we can guarantee that any
5541  * commit will leave the blocks being flushed in an unused state on
5542  * disk.  (On recovery, the inode will get truncated and the blocks will
5543  * be freed, so we have a strong guarantee that no future commit will
5544  * leave these blocks visible to the user.)
5545  *
5546  * Another thing we have to assure is that if we are in ordered mode
5547  * and inode is still attached to the committing transaction, we must
5548  * we start writeout of all the dirty pages which are being truncated.
5549  * This way we are sure that all the data written in the previous
5550  * transaction are already on disk (truncate waits for pages under
5551  * writeback).
5552  *
5553  * Called with inode->i_mutex down.
5554  */
5555 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5556 {
5557         struct inode *inode = d_inode(dentry);
5558         int error, rc = 0;
5559         int orphan = 0;
5560         const unsigned int ia_valid = attr->ia_valid;
5561
5562         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5563                 return -EIO;
5564
5565         if (unlikely(IS_IMMUTABLE(inode)))
5566                 return -EPERM;
5567
5568         if (unlikely(IS_APPEND(inode) &&
5569                      (ia_valid & (ATTR_MODE | ATTR_UID |
5570                                   ATTR_GID | ATTR_TIMES_SET))))
5571                 return -EPERM;
5572
5573         error = setattr_prepare(dentry, attr);
5574         if (error)
5575                 return error;
5576
5577         error = fscrypt_prepare_setattr(dentry, attr);
5578         if (error)
5579                 return error;
5580
5581         if (is_quota_modification(inode, attr)) {
5582                 error = dquot_initialize(inode);
5583                 if (error)
5584                         return error;
5585         }
5586         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5587             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5588                 handle_t *handle;
5589
5590                 /* (user+group)*(old+new) structure, inode write (sb,
5591                  * inode block, ? - but truncate inode update has it) */
5592                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5593                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5594                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5595                 if (IS_ERR(handle)) {
5596                         error = PTR_ERR(handle);
5597                         goto err_out;
5598                 }
5599
5600                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5601                  * counts xattr inode references.
5602                  */
5603                 down_read(&EXT4_I(inode)->xattr_sem);
5604                 error = dquot_transfer(inode, attr);
5605                 up_read(&EXT4_I(inode)->xattr_sem);
5606
5607                 if (error) {
5608                         ext4_journal_stop(handle);
5609                         return error;
5610                 }
5611                 /* Update corresponding info in inode so that everything is in
5612                  * one transaction */
5613                 if (attr->ia_valid & ATTR_UID)
5614                         inode->i_uid = attr->ia_uid;
5615                 if (attr->ia_valid & ATTR_GID)
5616                         inode->i_gid = attr->ia_gid;
5617                 error = ext4_mark_inode_dirty(handle, inode);
5618                 ext4_journal_stop(handle);
5619         }
5620
5621         if (attr->ia_valid & ATTR_SIZE) {
5622                 handle_t *handle;
5623                 loff_t oldsize = inode->i_size;
5624                 int shrink = (attr->ia_size <= inode->i_size);
5625
5626                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5627                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628
5629                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5630                                 return -EFBIG;
5631                 }
5632                 if (!S_ISREG(inode->i_mode))
5633                         return -EINVAL;
5634
5635                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5636                         inode_inc_iversion(inode);
5637
5638                 if (ext4_should_order_data(inode) &&
5639                     (attr->ia_size < inode->i_size)) {
5640                         error = ext4_begin_ordered_truncate(inode,
5641                                                             attr->ia_size);
5642                         if (error)
5643                                 goto err_out;
5644                 }
5645                 if (attr->ia_size != inode->i_size) {
5646                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5647                         if (IS_ERR(handle)) {
5648                                 error = PTR_ERR(handle);
5649                                 goto err_out;
5650                         }
5651                         if (ext4_handle_valid(handle) && shrink) {
5652                                 error = ext4_orphan_add(handle, inode);
5653                                 orphan = 1;
5654                         }
5655                         /*
5656                          * Update c/mtime on truncate up, ext4_truncate() will
5657                          * update c/mtime in shrink case below
5658                          */
5659                         if (!shrink) {
5660                                 inode->i_mtime = current_time(inode);
5661                                 inode->i_ctime = inode->i_mtime;
5662                         }
5663                         down_write(&EXT4_I(inode)->i_data_sem);
5664                         EXT4_I(inode)->i_disksize = attr->ia_size;
5665                         rc = ext4_mark_inode_dirty(handle, inode);
5666                         if (!error)
5667                                 error = rc;
5668                         /*
5669                          * We have to update i_size under i_data_sem together
5670                          * with i_disksize to avoid races with writeback code
5671                          * running ext4_wb_update_i_disksize().
5672                          */
5673                         if (!error)
5674                                 i_size_write(inode, attr->ia_size);
5675                         up_write(&EXT4_I(inode)->i_data_sem);
5676                         ext4_journal_stop(handle);
5677                         if (error) {
5678                                 if (orphan && inode->i_nlink)
5679                                         ext4_orphan_del(NULL, inode);
5680                                 goto err_out;
5681                         }
5682                 }
5683                 if (!shrink) {
5684                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5685                 } else {
5686                         /*
5687                          * Blocks are going to be removed from the inode. Wait
5688                          * for dio in flight.
5689                          */
5690                         inode_dio_wait(inode);
5691                 }
5692                 if (orphan && ext4_should_journal_data(inode))
5693                         ext4_wait_for_tail_page_commit(inode);
5694                 down_write(&EXT4_I(inode)->i_mmap_sem);
5695
5696                 rc = ext4_break_layouts(inode);
5697                 if (rc) {
5698                         up_write(&EXT4_I(inode)->i_mmap_sem);
5699                         error = rc;
5700                         goto err_out;
5701                 }
5702
5703                 /*
5704                  * Truncate pagecache after we've waited for commit
5705                  * in data=journal mode to make pages freeable.
5706                  */
5707                 truncate_pagecache(inode, inode->i_size);
5708                 if (shrink) {
5709                         rc = ext4_truncate(inode);
5710                         if (rc)
5711                                 error = rc;
5712                 }
5713                 up_write(&EXT4_I(inode)->i_mmap_sem);
5714         }
5715
5716         if (!error) {
5717                 setattr_copy(inode, attr);
5718                 mark_inode_dirty(inode);
5719         }
5720
5721         /*
5722          * If the call to ext4_truncate failed to get a transaction handle at
5723          * all, we need to clean up the in-core orphan list manually.
5724          */
5725         if (orphan && inode->i_nlink)
5726                 ext4_orphan_del(NULL, inode);
5727
5728         if (!error && (ia_valid & ATTR_MODE))
5729                 rc = posix_acl_chmod(inode, inode->i_mode);
5730
5731 err_out:
5732         ext4_std_error(inode->i_sb, error);
5733         if (!error)
5734                 error = rc;
5735         return error;
5736 }
5737
5738 int ext4_getattr(const struct path *path, struct kstat *stat,
5739                  u32 request_mask, unsigned int query_flags)
5740 {
5741         struct inode *inode = d_inode(path->dentry);
5742         struct ext4_inode *raw_inode;
5743         struct ext4_inode_info *ei = EXT4_I(inode);
5744         unsigned int flags;
5745
5746         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5747                 stat->result_mask |= STATX_BTIME;
5748                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5749                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5750         }
5751
5752         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5753         if (flags & EXT4_APPEND_FL)
5754                 stat->attributes |= STATX_ATTR_APPEND;
5755         if (flags & EXT4_COMPR_FL)
5756                 stat->attributes |= STATX_ATTR_COMPRESSED;
5757         if (flags & EXT4_ENCRYPT_FL)
5758                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5759         if (flags & EXT4_IMMUTABLE_FL)
5760                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5761         if (flags & EXT4_NODUMP_FL)
5762                 stat->attributes |= STATX_ATTR_NODUMP;
5763
5764         stat->attributes_mask |= (STATX_ATTR_APPEND |
5765                                   STATX_ATTR_COMPRESSED |
5766                                   STATX_ATTR_ENCRYPTED |
5767                                   STATX_ATTR_IMMUTABLE |
5768                                   STATX_ATTR_NODUMP);
5769
5770         generic_fillattr(inode, stat);
5771         return 0;
5772 }
5773
5774 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5775                       u32 request_mask, unsigned int query_flags)
5776 {
5777         struct inode *inode = d_inode(path->dentry);
5778         u64 delalloc_blocks;
5779
5780         ext4_getattr(path, stat, request_mask, query_flags);
5781
5782         /*
5783          * If there is inline data in the inode, the inode will normally not
5784          * have data blocks allocated (it may have an external xattr block).
5785          * Report at least one sector for such files, so tools like tar, rsync,
5786          * others don't incorrectly think the file is completely sparse.
5787          */
5788         if (unlikely(ext4_has_inline_data(inode)))
5789                 stat->blocks += (stat->size + 511) >> 9;
5790
5791         /*
5792          * We can't update i_blocks if the block allocation is delayed
5793          * otherwise in the case of system crash before the real block
5794          * allocation is done, we will have i_blocks inconsistent with
5795          * on-disk file blocks.
5796          * We always keep i_blocks updated together with real
5797          * allocation. But to not confuse with user, stat
5798          * will return the blocks that include the delayed allocation
5799          * blocks for this file.
5800          */
5801         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5802                                    EXT4_I(inode)->i_reserved_data_blocks);
5803         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5804         return 0;
5805 }
5806
5807 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5808                                    int pextents)
5809 {
5810         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5811                 return ext4_ind_trans_blocks(inode, lblocks);
5812         return ext4_ext_index_trans_blocks(inode, pextents);
5813 }
5814
5815 /*
5816  * Account for index blocks, block groups bitmaps and block group
5817  * descriptor blocks if modify datablocks and index blocks
5818  * worse case, the indexs blocks spread over different block groups
5819  *
5820  * If datablocks are discontiguous, they are possible to spread over
5821  * different block groups too. If they are contiguous, with flexbg,
5822  * they could still across block group boundary.
5823  *
5824  * Also account for superblock, inode, quota and xattr blocks
5825  */
5826 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5827                                   int pextents)
5828 {
5829         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5830         int gdpblocks;
5831         int idxblocks;
5832         int ret = 0;
5833
5834         /*
5835          * How many index blocks need to touch to map @lblocks logical blocks
5836          * to @pextents physical extents?
5837          */
5838         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5839
5840         ret = idxblocks;
5841
5842         /*
5843          * Now let's see how many group bitmaps and group descriptors need
5844          * to account
5845          */
5846         groups = idxblocks + pextents;
5847         gdpblocks = groups;
5848         if (groups > ngroups)
5849                 groups = ngroups;
5850         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5851                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5852
5853         /* bitmaps and block group descriptor blocks */
5854         ret += groups + gdpblocks;
5855
5856         /* Blocks for super block, inode, quota and xattr blocks */
5857         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5858
5859         return ret;
5860 }
5861
5862 /*
5863  * Calculate the total number of credits to reserve to fit
5864  * the modification of a single pages into a single transaction,
5865  * which may include multiple chunks of block allocations.
5866  *
5867  * This could be called via ext4_write_begin()
5868  *
5869  * We need to consider the worse case, when
5870  * one new block per extent.
5871  */
5872 int ext4_writepage_trans_blocks(struct inode *inode)
5873 {
5874         int bpp = ext4_journal_blocks_per_page(inode);
5875         int ret;
5876
5877         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5878
5879         /* Account for data blocks for journalled mode */
5880         if (ext4_should_journal_data(inode))
5881                 ret += bpp;
5882         return ret;
5883 }
5884
5885 /*
5886  * Calculate the journal credits for a chunk of data modification.
5887  *
5888  * This is called from DIO, fallocate or whoever calling
5889  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5890  *
5891  * journal buffers for data blocks are not included here, as DIO
5892  * and fallocate do no need to journal data buffers.
5893  */
5894 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5895 {
5896         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5897 }
5898
5899 /*
5900  * The caller must have previously called ext4_reserve_inode_write().
5901  * Give this, we know that the caller already has write access to iloc->bh.
5902  */
5903 int ext4_mark_iloc_dirty(handle_t *handle,
5904                          struct inode *inode, struct ext4_iloc *iloc)
5905 {
5906         int err = 0;
5907
5908         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5909                 put_bh(iloc->bh);
5910                 return -EIO;
5911         }
5912         if (IS_I_VERSION(inode))
5913                 inode_inc_iversion(inode);
5914
5915         /* the do_update_inode consumes one bh->b_count */
5916         get_bh(iloc->bh);
5917
5918         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5919         err = ext4_do_update_inode(handle, inode, iloc);
5920         put_bh(iloc->bh);
5921         return err;
5922 }
5923
5924 /*
5925  * On success, We end up with an outstanding reference count against
5926  * iloc->bh.  This _must_ be cleaned up later.
5927  */
5928
5929 int
5930 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5931                          struct ext4_iloc *iloc)
5932 {
5933         int err;
5934
5935         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5936                 return -EIO;
5937
5938         err = ext4_get_inode_loc(inode, iloc);
5939         if (!err) {
5940                 BUFFER_TRACE(iloc->bh, "get_write_access");
5941                 err = ext4_journal_get_write_access(handle, iloc->bh);
5942                 if (err) {
5943                         brelse(iloc->bh);
5944                         iloc->bh = NULL;
5945                 }
5946         }
5947         ext4_std_error(inode->i_sb, err);
5948         return err;
5949 }
5950
5951 static int __ext4_expand_extra_isize(struct inode *inode,
5952                                      unsigned int new_extra_isize,
5953                                      struct ext4_iloc *iloc,
5954                                      handle_t *handle, int *no_expand)
5955 {
5956         struct ext4_inode *raw_inode;
5957         struct ext4_xattr_ibody_header *header;
5958         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5959         struct ext4_inode_info *ei = EXT4_I(inode);
5960         int error;
5961
5962         /* this was checked at iget time, but double check for good measure */
5963         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5964             (ei->i_extra_isize & 3)) {
5965                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5966                                  ei->i_extra_isize,
5967                                  EXT4_INODE_SIZE(inode->i_sb));
5968                 return -EFSCORRUPTED;
5969         }
5970         if ((new_extra_isize < ei->i_extra_isize) ||
5971             (new_extra_isize < 4) ||
5972             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5973                 return -EINVAL; /* Should never happen */
5974
5975         raw_inode = ext4_raw_inode(iloc);
5976
5977         header = IHDR(inode, raw_inode);
5978
5979         /* No extended attributes present */
5980         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5981             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5982                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5983                        EXT4_I(inode)->i_extra_isize, 0,
5984                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5985                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5986                 return 0;
5987         }
5988
5989         /* try to expand with EAs present */
5990         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5991                                            raw_inode, handle);
5992         if (error) {
5993                 /*
5994                  * Inode size expansion failed; don't try again
5995                  */
5996                 *no_expand = 1;
5997         }
5998
5999         return error;
6000 }
6001
6002 /*
6003  * Expand an inode by new_extra_isize bytes.
6004  * Returns 0 on success or negative error number on failure.
6005  */
6006 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6007                                           unsigned int new_extra_isize,
6008                                           struct ext4_iloc iloc,
6009                                           handle_t *handle)
6010 {
6011         int no_expand;
6012         int error;
6013
6014         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6015                 return -EOVERFLOW;
6016
6017         /*
6018          * In nojournal mode, we can immediately attempt to expand
6019          * the inode.  When journaled, we first need to obtain extra
6020          * buffer credits since we may write into the EA block
6021          * with this same handle. If journal_extend fails, then it will
6022          * only result in a minor loss of functionality for that inode.
6023          * If this is felt to be critical, then e2fsck should be run to
6024          * force a large enough s_min_extra_isize.
6025          */
6026         if (ext4_handle_valid(handle) &&
6027             jbd2_journal_extend(handle,
6028                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6029                 return -ENOSPC;
6030
6031         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6032                 return -EBUSY;
6033
6034         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6035                                           handle, &no_expand);
6036         ext4_write_unlock_xattr(inode, &no_expand);
6037
6038         return error;
6039 }
6040
6041 int ext4_expand_extra_isize(struct inode *inode,
6042                             unsigned int new_extra_isize,
6043                             struct ext4_iloc *iloc)
6044 {
6045         handle_t *handle;
6046         int no_expand;
6047         int error, rc;
6048
6049         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6050                 brelse(iloc->bh);
6051                 return -EOVERFLOW;
6052         }
6053
6054         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6055                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6056         if (IS_ERR(handle)) {
6057                 error = PTR_ERR(handle);
6058                 brelse(iloc->bh);
6059                 return error;
6060         }
6061
6062         ext4_write_lock_xattr(inode, &no_expand);
6063
6064         BUFFER_TRACE(iloc->bh, "get_write_access");
6065         error = ext4_journal_get_write_access(handle, iloc->bh);
6066         if (error) {
6067                 brelse(iloc->bh);
6068                 goto out_unlock;
6069         }
6070
6071         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6072                                           handle, &no_expand);
6073
6074         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6075         if (!error)
6076                 error = rc;
6077
6078 out_unlock:
6079         ext4_write_unlock_xattr(inode, &no_expand);
6080         ext4_journal_stop(handle);
6081         return error;
6082 }
6083
6084 /*
6085  * What we do here is to mark the in-core inode as clean with respect to inode
6086  * dirtiness (it may still be data-dirty).
6087  * This means that the in-core inode may be reaped by prune_icache
6088  * without having to perform any I/O.  This is a very good thing,
6089  * because *any* task may call prune_icache - even ones which
6090  * have a transaction open against a different journal.
6091  *
6092  * Is this cheating?  Not really.  Sure, we haven't written the
6093  * inode out, but prune_icache isn't a user-visible syncing function.
6094  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6095  * we start and wait on commits.
6096  */
6097 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6098 {
6099         struct ext4_iloc iloc;
6100         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6101         int err;
6102
6103         might_sleep();
6104         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6105         err = ext4_reserve_inode_write(handle, inode, &iloc);
6106         if (err)
6107                 return err;
6108
6109         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6110                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6111                                                iloc, handle);
6112
6113         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6114 }
6115
6116 /*
6117  * ext4_dirty_inode() is called from __mark_inode_dirty()
6118  *
6119  * We're really interested in the case where a file is being extended.
6120  * i_size has been changed by generic_commit_write() and we thus need
6121  * to include the updated inode in the current transaction.
6122  *
6123  * Also, dquot_alloc_block() will always dirty the inode when blocks
6124  * are allocated to the file.
6125  *
6126  * If the inode is marked synchronous, we don't honour that here - doing
6127  * so would cause a commit on atime updates, which we don't bother doing.
6128  * We handle synchronous inodes at the highest possible level.
6129  *
6130  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6131  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6132  * to copy into the on-disk inode structure are the timestamp files.
6133  */
6134 void ext4_dirty_inode(struct inode *inode, int flags)
6135 {
6136         handle_t *handle;
6137
6138         if (flags == I_DIRTY_TIME)
6139                 return;
6140         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6141         if (IS_ERR(handle))
6142                 goto out;
6143
6144         ext4_mark_inode_dirty(handle, inode);
6145
6146         ext4_journal_stop(handle);
6147 out:
6148         return;
6149 }
6150
6151 #if 0
6152 /*
6153  * Bind an inode's backing buffer_head into this transaction, to prevent
6154  * it from being flushed to disk early.  Unlike
6155  * ext4_reserve_inode_write, this leaves behind no bh reference and
6156  * returns no iloc structure, so the caller needs to repeat the iloc
6157  * lookup to mark the inode dirty later.
6158  */
6159 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6160 {
6161         struct ext4_iloc iloc;
6162
6163         int err = 0;
6164         if (handle) {
6165                 err = ext4_get_inode_loc(inode, &iloc);
6166                 if (!err) {
6167                         BUFFER_TRACE(iloc.bh, "get_write_access");
6168                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6169                         if (!err)
6170                                 err = ext4_handle_dirty_metadata(handle,
6171                                                                  NULL,
6172                                                                  iloc.bh);
6173                         brelse(iloc.bh);
6174                 }
6175         }
6176         ext4_std_error(inode->i_sb, err);
6177         return err;
6178 }
6179 #endif
6180
6181 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6182 {
6183         journal_t *journal;
6184         handle_t *handle;
6185         int err;
6186         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6187
6188         /*
6189          * We have to be very careful here: changing a data block's
6190          * journaling status dynamically is dangerous.  If we write a
6191          * data block to the journal, change the status and then delete
6192          * that block, we risk forgetting to revoke the old log record
6193          * from the journal and so a subsequent replay can corrupt data.
6194          * So, first we make sure that the journal is empty and that
6195          * nobody is changing anything.
6196          */
6197
6198         journal = EXT4_JOURNAL(inode);
6199         if (!journal)
6200                 return 0;
6201         if (is_journal_aborted(journal))
6202                 return -EROFS;
6203
6204         /* Wait for all existing dio workers */
6205         inode_dio_wait(inode);
6206
6207         /*
6208          * Before flushing the journal and switching inode's aops, we have
6209          * to flush all dirty data the inode has. There can be outstanding
6210          * delayed allocations, there can be unwritten extents created by
6211          * fallocate or buffered writes in dioread_nolock mode covered by
6212          * dirty data which can be converted only after flushing the dirty
6213          * data (and journalled aops don't know how to handle these cases).
6214          */
6215         if (val) {
6216                 down_write(&EXT4_I(inode)->i_mmap_sem);
6217                 err = filemap_write_and_wait(inode->i_mapping);
6218                 if (err < 0) {
6219                         up_write(&EXT4_I(inode)->i_mmap_sem);
6220                         return err;
6221                 }
6222         }
6223
6224         percpu_down_write(&sbi->s_writepages_rwsem);
6225         jbd2_journal_lock_updates(journal);
6226
6227         /*
6228          * OK, there are no updates running now, and all cached data is
6229          * synced to disk.  We are now in a completely consistent state
6230          * which doesn't have anything in the journal, and we know that
6231          * no filesystem updates are running, so it is safe to modify
6232          * the inode's in-core data-journaling state flag now.
6233          */
6234
6235         if (val)
6236                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6237         else {
6238                 err = jbd2_journal_flush(journal);
6239                 if (err < 0) {
6240                         jbd2_journal_unlock_updates(journal);
6241                         percpu_up_write(&sbi->s_writepages_rwsem);
6242                         return err;
6243                 }
6244                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6245         }
6246         ext4_set_aops(inode);
6247
6248         jbd2_journal_unlock_updates(journal);
6249         percpu_up_write(&sbi->s_writepages_rwsem);
6250
6251         if (val)
6252                 up_write(&EXT4_I(inode)->i_mmap_sem);
6253
6254         /* Finally we can mark the inode as dirty. */
6255
6256         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6257         if (IS_ERR(handle))
6258                 return PTR_ERR(handle);
6259
6260         err = ext4_mark_inode_dirty(handle, inode);
6261         ext4_handle_sync(handle);
6262         ext4_journal_stop(handle);
6263         ext4_std_error(inode->i_sb, err);
6264
6265         return err;
6266 }
6267
6268 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6269 {
6270         return !buffer_mapped(bh);
6271 }
6272
6273 int ext4_page_mkwrite(struct vm_fault *vmf)
6274 {
6275         struct vm_area_struct *vma = vmf->vma;
6276         struct page *page = vmf->page;
6277         loff_t size;
6278         unsigned long len;
6279         int ret;
6280         struct file *file = vma->vm_file;
6281         struct inode *inode = file_inode(file);
6282         struct address_space *mapping = inode->i_mapping;
6283         handle_t *handle;
6284         get_block_t *get_block;
6285         int retries = 0;
6286
6287         if (unlikely(IS_IMMUTABLE(inode)))
6288                 return VM_FAULT_SIGBUS;
6289
6290         sb_start_pagefault(inode->i_sb);
6291         file_update_time(vma->vm_file);
6292
6293         down_read(&EXT4_I(inode)->i_mmap_sem);
6294
6295         ret = ext4_convert_inline_data(inode);
6296         if (ret)
6297                 goto out_ret;
6298
6299         /* Delalloc case is easy... */
6300         if (test_opt(inode->i_sb, DELALLOC) &&
6301             !ext4_should_journal_data(inode) &&
6302             !ext4_nonda_switch(inode->i_sb)) {
6303                 do {
6304                         ret = block_page_mkwrite(vma, vmf,
6305                                                    ext4_da_get_block_prep);
6306                 } while (ret == -ENOSPC &&
6307                        ext4_should_retry_alloc(inode->i_sb, &retries));
6308                 goto out_ret;
6309         }
6310
6311         lock_page(page);
6312         size = i_size_read(inode);
6313         /* Page got truncated from under us? */
6314         if (page->mapping != mapping || page_offset(page) > size) {
6315                 unlock_page(page);
6316                 ret = VM_FAULT_NOPAGE;
6317                 goto out;
6318         }
6319
6320         if (page->index == size >> PAGE_SHIFT)
6321                 len = size & ~PAGE_MASK;
6322         else
6323                 len = PAGE_SIZE;
6324         /*
6325          * Return if we have all the buffers mapped. This avoids the need to do
6326          * journal_start/journal_stop which can block and take a long time
6327          */
6328         if (page_has_buffers(page)) {
6329                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6330                                             0, len, NULL,
6331                                             ext4_bh_unmapped)) {
6332                         /* Wait so that we don't change page under IO */
6333                         wait_for_stable_page(page);
6334                         ret = VM_FAULT_LOCKED;
6335                         goto out;
6336                 }
6337         }
6338         unlock_page(page);
6339         /* OK, we need to fill the hole... */
6340         if (ext4_should_dioread_nolock(inode))
6341                 get_block = ext4_get_block_unwritten;
6342         else
6343                 get_block = ext4_get_block;
6344 retry_alloc:
6345         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6346                                     ext4_writepage_trans_blocks(inode));
6347         if (IS_ERR(handle)) {
6348                 ret = VM_FAULT_SIGBUS;
6349                 goto out;
6350         }
6351         ret = block_page_mkwrite(vma, vmf, get_block);
6352         if (!ret && ext4_should_journal_data(inode)) {
6353                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6354                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6355                         unlock_page(page);
6356                         ret = VM_FAULT_SIGBUS;
6357                         ext4_journal_stop(handle);
6358                         goto out;
6359                 }
6360                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6361         }
6362         ext4_journal_stop(handle);
6363         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6364                 goto retry_alloc;
6365 out_ret:
6366         ret = block_page_mkwrite_return(ret);
6367 out:
6368         up_read(&EXT4_I(inode)->i_mmap_sem);
6369         sb_end_pagefault(inode->i_sb);
6370         return ret;
6371 }
6372
6373 int ext4_filemap_fault(struct vm_fault *vmf)
6374 {
6375         struct inode *inode = file_inode(vmf->vma->vm_file);
6376         int err;
6377
6378         down_read(&EXT4_I(inode)->i_mmap_sem);
6379         err = filemap_fault(vmf);
6380         up_read(&EXT4_I(inode)->i_mmap_sem);
6381
6382         return err;
6383 }